content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import os import cv2 from PIL import Image import torch import mmcv import numpy as np from torch.utils.data import Dataset import torchvision.transforms as T from torchvision.datasets import ImageFolder class ImageNetDataset(Dataset): def __init__(self, data_root, test_mode=False,**kwargs): self.classes = list(range(1000)) normalize = T.Normalize(mean=[0.456], std=[1.0]) #normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if not test_mode: traindir = os.path.join(data_root, 'train') self.dataset = ImageFolder(traindir, T.Compose([ T.Grayscale(num_output_channels=1), T.RandomResizedCrop(224, scale=(0.8, 1.0)), T.RandomHorizontalFlip(), T.ToTensor(), normalize, ])) else: valdir = os.path.join(data_root, 'val') self.dataset = ImageFolder(valdir, T.Compose([ T.Resize(256), T.CenterCrop(224), T.ToTensor(), normalize, ])) if not test_mode: self._set_group_flag() def _set_group_flag(self): """Set flag according to image aspect ratio. Images with aspect ratio greater than 1 will be set as group 1, otherwise group 0. """ self.flag = np.zeros(len(self), dtype=np.uint8) def __getitem__(self, idx): d = dict(img=self.dataset[idx][0], label=torch.tensor([self.dataset[idx][1]], dtype=torch.long)) return d def __len__(self): return len(self.dataset)
32.254237
104
0.504467
[ "Apache-2.0" ]
anorthman/mmdetection
mmdet/datasets/classify/imagenet.py
1,903
Python
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np from scipy import stats import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_case from tensorflow_probability.python.internal import test_util as tfp_test_util from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top tfd = tfp.distributions @test_util.run_all_in_graph_and_eager_modes class ZipfTest(test_case.TestCase): def assertBetween(self, x, minimum, maximum): self.assertGreaterEqual(x, minimum) self.assertLessEqual(x, maximum) def assertAllBetween(self, a, minval, maxval, atol=1e-6): a = self._GetNdArray(a) minval = self._GetNdArray(minval) maxval = self._GetNdArray(maxval) self.assertEqual(a.shape, minval.shape) self.assertEqual(a.shape, maxval.shape) for idx, _ in np.ndenumerate(a): self.assertBetween(a[idx], minval[idx] - atol, maxval[idx] + atol) def testZipfShape(self): power = tf.constant([3.0] * 5) zipf = tfd.Zipf(power=power) self.assertEqual(self.evaluate(zipf.batch_shape_tensor()), (5,)) self.assertEqual(zipf.batch_shape, tf.TensorShape([5])) self.assertAllEqual(self.evaluate(zipf.event_shape_tensor()), []) self.assertEqual(zipf.event_shape, tf.TensorShape([])) def testInvalidPower(self): invalid_powers = [-.02, 0.5, -2., .99, 1.] for power in invalid_powers: with self.assertRaisesOpError("Condition x > y"): zipf = tfd.Zipf(power=power, validate_args=True) self.evaluate(zipf.power) def testNanPower(self): zipf = tfd.Zipf(power=np.nan, validate_args=False) self.assertAllNan(self.evaluate(zipf.power)) def testValidPower_ImplicitlyConvertsToFloat32(self): powers = [2, 10, 1.1] for power in powers: zipf = tfd.Zipf(power=power, validate_args=True) self.assertEqual(zipf.power.dtype, tf.float32) def testEventDtype(self): for power_dtype in [tf.float32, tf.float64]: for event_dtype in [tf.int32, tf.int64, tf.float32, tf.float64]: power_dtype = tf.float32 event_dtype = tf.int32 power = tf.constant(5., dtype=power_dtype) zipf = tfd.Zipf(power=power, dtype=event_dtype) self.assertEqual(zipf.dtype, event_dtype) self.assertEqual(zipf.dtype, zipf.sample(10).dtype) self.assertEqual(zipf.dtype, zipf.sample(1).dtype) self.assertEqual(zipf.dtype, zipf.mode().dtype) def testInvalidEventDtype(self): with self.assertRaisesWithPredicateMatch( TypeError, "power.dtype .* not a supported .* type"): power = tf.constant(5., dtype=tf.float16) zipf = tfd.Zipf(power=power, dtype=tf.int32, validate_args=True) self.evaluate(zipf.sample()) def testZipfLogPmf_InvalidArgs(self): power = tf.constant([4.0]) # Non-integer samples are rejected if validate_args is True and # interpolate_nondiscrete is False. non_integer_samples = [0.99, 4.5, 5.001, 1e-6, -3, -2, -1, -0., 0] for x in non_integer_samples: zipf = tfd.Zipf( power=power, interpolate_nondiscrete=False, validate_args=True) with self.assertRaisesOpError("Condition (x == y|x > 0)"): self.evaluate(zipf.log_prob(x)) with self.assertRaisesOpError("Condition (x == y|x > 0)"): self.evaluate(zipf.prob(x)) def testZipfLogPmf_IntegerArgs(self): batch_size = 9 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = np.array([-3., -0., 0., 2., 3., 4., 5., 6., 7.], dtype=np.float32) zipf = tfd.Zipf(power=power) log_pmf = zipf.log_prob(x) self.assertEqual((batch_size,), log_pmf.shape) self.assertAllClose(self.evaluate(log_pmf), stats.zipf.logpmf(x, power_v)) pmf = zipf.prob(x) self.assertEqual((batch_size,), pmf.shape) self.assertAllClose(self.evaluate(pmf), stats.zipf.pmf(x, power_v)) def testZipfLogPmf_NonIntegerArgs(self): batch_size = 12 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = [-3., -0.5, 0., 2., 2.2, 3., 3.1, 4., 5., 5.5, 6., 7.2] zipf = tfd.Zipf(power=power) log_pmf = zipf.log_prob(x) self.assertEqual((batch_size,), log_pmf.shape) # Check that log_pmf(x) of tfd.Zipf is between the values of # stats.zipf.logpmf for ceil(x) and floor(x). log_pmf_values = self.evaluate(log_pmf) floor_x = np.floor(x) ceil_x = np.ceil(x) self.assertAllBetween(log_pmf_values, stats.zipf.logpmf(ceil_x, power_v), stats.zipf.logpmf(floor_x, power_v)) # Check that pmf(x) of tfd.Zipf is between the values of stats.zipf.pmf for # ceil(x) and floor(x). pmf = zipf.prob(x) self.assertEqual((batch_size,), pmf.shape) pmf_values = self.evaluate(pmf) self.assertAllBetween(pmf_values, stats.zipf.pmf(ceil_x, power_v), stats.zipf.pmf(floor_x, power_v)) def testZipfLogPmf_NonIntegerArgsNoInterpolation(self): batch_size = 12 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = [-3., -0.5, 0., 2., 2.2, 3., 3.1, 4., 5., 5.5, 6., 7.2] zipf = tfd.Zipf(power=power, interpolate_nondiscrete=False) log_pmf = zipf.log_prob(x) self.assertEqual((batch_size,), log_pmf.shape) log_pmf_values = self.evaluate(log_pmf) self.assertAllClose(log_pmf_values, stats.zipf.logpmf(x, power_v)) pmf = zipf.prob(x) self.assertEqual((batch_size,), pmf.shape) pmf_values = self.evaluate(pmf) self.assertAllClose(pmf_values, stats.zipf.pmf(x, power_v)) def testZipfLogPmfMultidimensional_IntegerArgs(self): batch_size = 6 power = tf.constant([[2.0, 4.0, 5.0]] * batch_size) power_v = [2.0, 4.0, 5.0] x = np.array([[2.1, 3.5, 4.9, 5., 6.6, 7.]], dtype=np.int32).T zipf = tfd.Zipf(power=power) log_pmf = zipf.log_prob(x) self.assertEqual((6, 3), log_pmf.shape) self.assertAllClose(self.evaluate(log_pmf), stats.zipf.logpmf(x, power_v)) pmf = zipf.prob(x) self.assertEqual((6, 3), pmf.shape) self.assertAllClose(self.evaluate(pmf), stats.zipf.pmf(x, power_v)) def testZipfLogPmfMultidimensional_NonIntegerArgs(self): batch_size = 6 power = tf.constant([[2.0, 4.0, 5.0]] * batch_size) power_v = [2.0, 4.0, 5.0] x = np.array([[2., 3.2, 4.3, 5.5, 6.9, 7.]], dtype=np.float32).T floor_x = np.floor(x) ceil_x = np.ceil(x) zipf = tfd.Zipf(power=power) log_pmf = zipf.log_prob(x) self.assertEqual((6, 3), log_pmf.shape) self.assertAllBetween( self.evaluate(log_pmf), stats.zipf.logpmf(ceil_x, power_v), stats.zipf.logpmf(floor_x, power_v)) pmf = zipf.prob(x) self.assertEqual((6, 3), pmf.shape) self.assertAllBetween( self.evaluate(pmf), stats.zipf.pmf(ceil_x, power_v), stats.zipf.pmf(floor_x, power_v)) def testZipfCdf_IntegerArgs(self): batch_size = 12 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8] zipf = tfd.Zipf(power=power) log_cdf = zipf.log_cdf(x) self.assertEqual((batch_size,), log_cdf.shape) self.assertAllClose(self.evaluate(log_cdf), stats.zipf.logcdf(x, power_v)) cdf = zipf.cdf(x) self.assertEqual((batch_size,), cdf.shape) self.assertAllClose(self.evaluate(cdf), stats.zipf.cdf(x, power_v)) def testZipfCdf_NonIntegerArgsNoInterpolation(self): batch_size = 12 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = [-3.5, -0.5, 0., 1, 1.1, 2.2, 3.1, 4., 5., 5.5, 6.4, 7.8] zipf = tfd.Zipf(power=power, interpolate_nondiscrete=False) log_cdf = zipf.log_cdf(x) self.assertEqual((batch_size,), log_cdf.shape) self.assertAllClose(self.evaluate(log_cdf), stats.zipf.logcdf(x, power_v)) cdf = zipf.cdf(x) self.assertEqual((batch_size,), cdf.shape) self.assertAllClose(self.evaluate(cdf), stats.zipf.cdf(x, power_v)) def testZipfCdf_NonIntegerArgsInterpolated(self): batch_size = 12 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = [-3.5, -0.5, 0., 1, 1.1, 2.2, 3.1, 4., 5., 5.5, 6.4, 7.8] floor_x = np.floor(x) ceil_x = np.ceil(x) zipf = tfd.Zipf(power=power) log_cdf = zipf.log_cdf(x) self.assertEqual((batch_size,), log_cdf.shape) self.assertAllBetween( self.evaluate(log_cdf), stats.zipf.logcdf(floor_x, power_v), stats.zipf.logcdf(ceil_x, power_v)) cdf = zipf.cdf(x) self.assertEqual((batch_size,), cdf.shape) self.assertAllBetween( self.evaluate(cdf), stats.zipf.cdf(floor_x, power_v), stats.zipf.cdf(ceil_x, power_v)) def testZipfCdf_NonIntegerArgs(self): batch_size = 12 power = tf.constant([3.0] * batch_size) power_v = 3.0 x = [-3.5, -0.5, 0., 1, 1.1, 2.2, 3.1, 4., 5., 5.5, 6.4, 7.8] floor_x = np.floor(x) ceil_x = np.ceil(x) zipf = tfd.Zipf(power=power) log_cdf = zipf.log_cdf(x) self.assertEqual((batch_size,), log_cdf.shape) self.assertAllBetween( self.evaluate(log_cdf), stats.zipf.logcdf(floor_x, power_v), stats.zipf.logcdf(ceil_x, power_v)) cdf = zipf.cdf(x) self.assertEqual((batch_size,), cdf.shape) self.assertAllBetween( self.evaluate(cdf), stats.zipf.cdf(floor_x, power_v), stats.zipf.cdf(ceil_x, power_v)) def testZipfCdfMultidimensional_IntegerArgs(self): batch_size = 6 power = tf.constant([[2.0, 4.0, 5.0]] * batch_size) power_v = [2.0, 4.0, 5.0] x = np.array([[2., 3., 4., 5., 6., 7.]], dtype=np.float32).T zipf = tfd.Zipf(power=power) log_cdf = zipf.log_cdf(x) self.assertEqual((6, 3), log_cdf.shape) self.assertAllClose(self.evaluate(log_cdf), stats.zipf.logcdf(x, power_v)) cdf = zipf.cdf(x) self.assertEqual((6, 3), cdf.shape) self.assertAllClose(self.evaluate(cdf), stats.zipf.cdf(x, power_v)) def testZipfCdfMultidimensional_NonIntegerArgs(self): batch_size = 6 power = tf.constant([[2.0, 4.0, 5.0]] * batch_size) power_v = [2.0, 4.0, 5.0] x = np.array([[2.3, 3.5, 4.1, 5.5, 6.8, 7.9]], dtype=np.float32).T floor_x = np.floor(x) ceil_x = np.ceil(x) zipf = tfd.Zipf(power=power) log_cdf = zipf.log_cdf(x) self.assertEqual((6, 3), log_cdf.shape) self.assertAllBetween( self.evaluate(log_cdf), stats.zipf.logcdf(floor_x, power_v), stats.zipf.logcdf(ceil_x, power_v)) cdf = zipf.cdf(x) self.assertEqual((6, 3), cdf.shape) self.assertAllBetween( self.evaluate(cdf), stats.zipf.cdf(floor_x, power_v), stats.zipf.cdf(ceil_x, power_v)) def testZipfMean(self): power_v = [2.0, 3.0, 2.5] zipf = tfd.Zipf(power=power_v) self.assertEqual((3,), zipf.mean().shape) self.assertAllClose(self.evaluate(zipf.mean()), stats.zipf.mean(power_v)) def testZipfVariance(self): power_v = [4.0, 3.0, 5.5] # var is undefined for power <= 3 zipf = tfd.Zipf(power=power_v) self.assertEqual((3,), zipf.variance().shape) stat_vars = np.vectorize(stats.zipf.var)(power_v) self.assertAllClose(self.evaluate(zipf.variance()), stat_vars) def testZipfStd(self): power_v = [4.0, 3.5, 4.5] zipf = tfd.Zipf(power=power_v) self.assertEqual((3,), zipf.stddev().shape) stat_stddevs = np.vectorize(stats.zipf.std)(power_v) self.assertAllClose(self.evaluate(zipf.stddev()), stat_stddevs) def testZipfMode(self): power_v = [10.0, 3.0, 2.5, 3.2, 1.1, 0.05] zipf = tfd.Zipf(power=power_v) self.assertEqual((6,), zipf.mode().shape) self.assertAllClose(self.evaluate(zipf.mode()), np.ones_like(power_v)) def testZipfSample(self): power_v = 5. n = int(500e4) for power_dtype in [tf.float32, tf.float64]: power = tf.constant(power_v, dtype=power_dtype) for dtype in [tf.int32, tf.int64, tf.float32, tf.float64]: zipf = tfd.Zipf(power=power, dtype=dtype) samples = zipf.sample(n, seed=tfp_test_util.test_seed()) sample_values = self.evaluate(samples) self.assertEqual((n,), samples.shape) self.assertEqual((n,), sample_values.shape) self.assertAllClose( sample_values.mean(), stats.zipf.mean(power_v), rtol=.01) self.assertAllClose( sample_values.std(), stats.zipf.std(power_v), rtol=.03) def testZipfSample_ValidateArgs(self): power_v = 3. n = int(100e3) for power_dtype in [tf.float32, tf.float64]: power = tf.constant(power_v, dtype=power_dtype) for dtype in [tf.int32, tf.int64, tf.float32, tf.float64]: zipf = tfd.Zipf(power=power, dtype=dtype, validate_args=True) samples = zipf.sample(n, seed=tfp_test_util.test_seed()) self.evaluate(samples) def testZipfSampleMultidimensionalMean(self): power_v = np.array([np.arange(5, 15, dtype=np.float32)]) # 1 x 10 zipf = tfd.Zipf(power=power_v) n = int(100e3) samples = zipf.sample(n, seed=tfp_test_util.test_seed()) sample_values = self.evaluate(samples) self.assertEqual((n, 1, 10,), samples.shape) self.assertEqual((n, 1, 10,), sample_values.shape) # stats.zipf wants float64 params. stats_mean = np.vectorize(stats.zipf.mean)(power_v.astype(np.float64)) self.assertAllClose(sample_values.mean(axis=0), stats_mean, rtol=.01) def testZipfSampleMultidimensionalStd(self): power_v = np.array([np.arange(5, 10, dtype=np.float32)]) # 1 x 5 zipf = tfd.Zipf(power=power_v) n = int(100e4) samples = zipf.sample(n, seed=tfp_test_util.test_seed()) sample_values = self.evaluate(samples) self.assertEqual((n, 1, 5), samples.shape) self.assertEqual((n, 1, 5), sample_values.shape) # stats.zipf wants float64 params. stats_std = np.vectorize(stats.zipf.std)(power_v.astype(np.float64)) self.assertAllClose(sample_values.std(axis=0), stats_std, rtol=.04) # Test that sampling with the same seed twice gives the same results. def testZipfSampleMultipleTimes(self): n = 1000 seed = tfp_test_util.test_seed() power = 1.5 zipf1 = tfd.Zipf(power=power, name="zipf1") tf.compat.v1.set_random_seed(seed) samples1 = self.evaluate(zipf1.sample(n, seed=seed)) zipf2 = tfd.Zipf(power=power, name="zipf2") tf.compat.v1.set_random_seed(seed) samples2 = self.evaluate(zipf2.sample(n, seed=seed)) self.assertAllEqual(samples1, samples2) def testZipfSample_AvoidsInfiniteLoop(self): zipf = tfd.Zipf(power=1.) n = 1000 self.evaluate(zipf.sample(n, seed=tfp_test_util.test_seed())) if __name__ == "__main__": tf.test.main()
36.584726
115
0.666058
[ "Apache-2.0" ]
ColCarroll/probability
tensorflow_probability/python/distributions/zipf_test.py
15,329
Python
"""Implements interface for OSv unikernels.""" from backend.vm import VMConfig from os import path from .imgedit import set_cmdline class OSv: cmdline_template = "--ip=eth0,{ipv4_addr},255.255.255.0 --nameserver=10.0.125.0 {extra_cmdline}" @staticmethod def configure(image, config, nic_name): cmdline = OSv.cmdline_template.format( ipv4_addr=config.ipv4_addr, extra_cmdline=config.cmdline if config.cmdline else image.default_cmdline, ) set_cmdline(path.join(image.root, 'system.qemu'), cmdline) vmc = VMConfig( name=config.name, nic_name=nic_name, num_cpus=4, vdisk_path=path.join(image.root, 'system.qemu'), vdisk_format='qcow2', memory_size=1024000 ) return vmc
29.535714
100
0.634825
[ "MIT" ]
Cunik/Cunik-engine
backend/unikernel/osv/__init__.py
827
Python
# # Captions: # project_title="Services Repository" project_owner1="" project_owner2="" project_cip="ServiceRepo" nav_up="To the top" cap_findsrv="Find service" cap_findsrv_desc="Find service by JSON key" cap_findsrvtag_desc="...or by query variable, tag etc." cap_injson="Incoming JSON" cap_outjson="Outgoing JSON" cap_search_and="AND" cap_search_or="OR" cap_showall_conf="Show all saved services?" # b_find="Find service" b_findall="Show all" # err_emptyq="Empty search query"
16.758621
55
0.771605
[ "MIT" ]
divlv/servicerepo
www/captions.py
486
Python
# coding=utf-8 # Copyright 2019 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Tests for tensor2robot.train_eval.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os from absl import flags import gin import mock import numpy as np from six.moves import zip from tensor2robot.hooks import hook_builder from tensor2robot.models import abstract_model from tensor2robot.preprocessors import noop_preprocessor from tensor2robot.utils import mocks from tensor2robot.utils import train_eval import tensorflow.compat.v1 as tf from tensorflow.contrib import predictor as contrib_predictor FLAGS = flags.FLAGS _MAX_TRAIN_STEPS = 400 _EVAL_STEPS = 40 _BATCH_SIZE = 4 _EVAL_THROTTLE_SECS = 0.0 class FakeHook(tf.train.SessionRunHook): def __init__(self): self._mock = mock.MagicMock() def begin(self): self._mock.begin() return @property def mock(self): return self._mock class FakeHookBuilder(hook_builder.HookBuilder): def __init__(self): self._hook = FakeHook() def create_hooks(self, *args, **kwargs): del args, kwargs return [self._hook] @property def hook_mock(self): return self._hook.mock class TrainEvalTest(tf.test.TestCase): def _compute_total_loss(self, labels, logits): """Summation of the categorical hinge loss for labels and logits.""" error = 0. for label, logit in zip(labels, logits): # Reference tensorflow implementation can be found in keras.losses. positive = (label * logit) negative = ((1 - label) * logit) error += np.maximum(0., negative - positive + 1.) return error def test_train_eval_model(self): """Tests that a simple model trains and exported models are valid.""" gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel( preprocessor_cls=noop_preprocessor.NoOpPreprocessor) mock_input_generator_train = mocks.MockInputGenerator( batch_size=_BATCH_SIZE) mock_input_generator_eval = mocks.MockInputGenerator(batch_size=1) fake_hook_builder = FakeHookBuilder() train_eval.train_eval_model( t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, input_generator_eval=mock_input_generator_eval, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir, train_hook_builders=[fake_hook_builder], eval_hook_builders=[fake_hook_builder], eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) self.assertTrue(fake_hook_builder.hook_mock.begin.called) # We ensure that both numpy and tf_example inference models are exported. best_exporter_numpy_path = os.path.join(model_dir, 'export', 'best_exporter_numpy', '*') numpy_model_paths = sorted(tf.io.gfile.glob(best_exporter_numpy_path)) # There should be at least 1 exported model. self.assertGreater(len(numpy_model_paths), 0) # This mock network converges nicely which is why we have several best # models, by default we keep the best 5 and the latest one is always the # best. self.assertLessEqual(len(numpy_model_paths), 5) best_exporter_tf_example_path = os.path.join( model_dir, 'export', 'best_exporter_tf_example', '*') tf_example_model_paths = sorted( tf.io.gfile.glob(best_exporter_tf_example_path)) # There should be at least 1 exported model. self.assertGreater(len(tf_example_model_paths), 0) # This mock network converges nicely which is why we have several best # models, by default we keep the best 5 and the latest one is always the # best. self.assertLessEqual(len(tf_example_model_paths), 5) # We test both saved models within one test since the bulk of the time # is spent training the model in the firstplace. # Verify that the serving estimator does exactly the same as the normal # estimator with all the parameters. estimator_predict = tf.estimator.Estimator( model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=model_dir)) prediction_ref = estimator_predict.predict( input_fn=mock_input_generator_eval.create_dataset_input_fn( mode=tf.estimator.ModeKeys.EVAL)) # Now we can load our exported estimator graph with the numpy feed_dict # interface, there are no dependencies on the model_fn or preprocessor # anymore. # We load the latest model since it had the best eval performance. numpy_predictor_fn = contrib_predictor.from_saved_model( numpy_model_paths[-1]) features, labels = mock_input_generator_eval.create_numpy_data() ref_error = self._compute_total_loss( labels, [val['logit'].flatten() for val in prediction_ref]) numpy_predictions = [] for feature, label in zip(features, labels): predicted = numpy_predictor_fn({'x': feature.reshape( 1, -1)})['logit'].flatten() numpy_predictions.append(predicted) # This ensures that we actually achieve near-perfect classification. if label > 0: self.assertGreater(predicted[0], 0) else: self.assertLess(predicted[0], 0) numpy_error = self._compute_total_loss(labels, numpy_predictions) # Now we can load our exported estimator graph with the tf_example feed_dict # interface, there are no dependencies on the model_fn or preprocessor # anymore. # We load the latest model since it had the best eval performance. tf_example_predictor_fn = contrib_predictor.from_saved_model( tf_example_model_paths[-1]) tf_example_predictions = [] for feature, label in zip(features, labels): # We have to create our serialized tf.Example proto. example = tf.train.Example() example.features.feature['measured_position'].float_list.value.extend( feature) feed_dict = { 'input_example_tensor': np.array(example.SerializeToString()).reshape(1,) } predicted = tf_example_predictor_fn(feed_dict)['logit'].flatten() tf_example_predictions.append(predicted) # This ensures that we actually achieve perfect classification. if label > 0: self.assertGreater(predicted[0], 0) else: self.assertLess(predicted[0], 0) tf_example_error = self._compute_total_loss(labels, tf_example_predictions) np.testing.assert_almost_equal(tf_example_error, numpy_error) # The exported saved models both have to have the same performance and since # we train on eval on the same fixed dataset the latest and greatest # model error should also be the best. np.testing.assert_almost_equal(ref_error, tf_example_error, decimal=3) def test_init_from_checkpoint_global_step(self): """Tests that a simple model trains and exported models are valid.""" gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) gin.bind_parameter('tf.estimator.RunConfig.keep_checkpoint_max', 3) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel( preprocessor_cls=noop_preprocessor.NoOpPreprocessor) mock_input_generator_train = mocks.MockInputGenerator( batch_size=_BATCH_SIZE) train_eval.train_eval_model( t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir, eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) # The model trains for 200 steps and saves a checkpoint each 100 steps and # keeps 3 -> len == 3. self.assertLen(tf.io.gfile.glob(os.path.join(model_dir, 'model*.meta')), 3) # The continuous training has its own directory. continue_model_dir = self.create_tempdir().full_path init_from_checkpoint_fn = functools.partial( abstract_model.default_init_from_checkpoint_fn, checkpoint=model_dir) continue_mock_t2r_model = mocks.MockT2RModel( preprocessor_cls=noop_preprocessor.NoOpPreprocessor, init_from_checkpoint_fn=init_from_checkpoint_fn) continue_mock_input_generator_train = mocks.MockInputGenerator( batch_size=_BATCH_SIZE) train_eval.train_eval_model( t2r_model=continue_mock_t2r_model, input_generator_train=continue_mock_input_generator_train, model_dir=continue_model_dir, max_train_steps=_MAX_TRAIN_STEPS + 100, eval_steps=_EVAL_STEPS, eval_throttle_secs=_EVAL_THROTTLE_SECS, create_exporters_fn=train_eval.create_default_exporters) # If the model was successful restored including the global step, only 1 # additional checkpoint to the init one should be created -> len == 2. self.assertLen( tf.io.gfile.glob(os.path.join(continue_model_dir, 'model*.meta')), 2) def test_init_from_checkpoint_use_avg_model_params_and_weights(self): """Tests that a simple model trains and exported models are valid.""" gin.bind_parameter('tf.estimator.RunConfig.save_checkpoints_steps', 100) gin.bind_parameter('tf.estimator.RunConfig.keep_checkpoint_max', 3) model_dir = self.create_tempdir().full_path mock_t2r_model = mocks.MockT2RModel( preprocessor_cls=noop_preprocessor.NoOpPreprocessor, use_avg_model_params=True) mock_input_generator_train = mocks.MockInputGenerator( batch_size=_BATCH_SIZE) mock_input_generator = mocks.MockInputGenerator(batch_size=1) mock_input_generator.set_specification_from_model( mock_t2r_model, tf.estimator.ModeKeys.TRAIN) train_eval.train_eval_model( t2r_model=mock_t2r_model, input_generator_train=mock_input_generator_train, max_train_steps=_MAX_TRAIN_STEPS, model_dir=model_dir) init_checkpoint = tf.train.NewCheckpointReader( tf.train.latest_checkpoint(model_dir)) # Verify that the serving estimator does exactly the same as the normal # estimator with all the parameters. initial_estimator_predict = tf.estimator.Estimator( model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=model_dir)) # pylint: disable=g-complex-comprehension initial_predictions = [ prediction['logit'] for prediction in list( initial_estimator_predict.predict( input_fn=mock_input_generator.create_dataset_input_fn( mode=tf.estimator.ModeKeys.EVAL))) ] # The continuous training has its own directory. continue_model_dir = self.create_tempdir().full_path init_from_checkpoint_fn = functools.partial( abstract_model.default_init_from_checkpoint_fn, checkpoint=model_dir) continue_mock_t2r_model = mocks.MockT2RModel( preprocessor_cls=noop_preprocessor.NoOpPreprocessor, init_from_checkpoint_fn=init_from_checkpoint_fn) continue_mock_input_generator_train = mocks.MockInputGenerator( batch_size=_BATCH_SIZE) # Re-initialize the model and train for one step, basically the same # performance as the original model. train_eval.train_eval_model( t2r_model=continue_mock_t2r_model, input_generator_train=continue_mock_input_generator_train, model_dir=continue_model_dir, max_train_steps=_MAX_TRAIN_STEPS) continue_checkpoint = tf.train.NewCheckpointReader( tf.train.latest_checkpoint(continue_model_dir)) for tensor_name, _ in tf.train.list_variables(model_dir): if 'ExponentialMovingAverage' in tensor_name: # These values are replaced by the swapping saver when using the # use_avg_model_params. continue if 'Adam' in tensor_name: # The adam optimizer values are not required. continue if 'global_step' in tensor_name: # The global step will be incremented by 1. continue self.assertAllClose( init_checkpoint.get_tensor(tensor_name), continue_checkpoint.get_tensor(tensor_name), atol=1e-3) # Verify that the serving estimator does exactly the same as the normal # estimator with all the parameters. continue_estimator_predict = tf.estimator.Estimator( model_fn=mock_t2r_model.model_fn, config=tf.estimator.RunConfig(model_dir=continue_model_dir)) continue_predictions = [ prediction['logit'] for prediction in list( continue_estimator_predict.predict( input_fn=mock_input_generator.create_dataset_input_fn( mode=tf.estimator.ModeKeys.EVAL))) ] self.assertTrue( np.allclose(initial_predictions, continue_predictions, atol=1e-1)) # A randomly initialized model estimator with all the parameters. random_estimator_predict = tf.estimator.Estimator( model_fn=mock_t2r_model.model_fn) random_predictions = [ prediction['logit'] for prediction in list( random_estimator_predict.predict( input_fn=mock_input_generator.create_dataset_input_fn( mode=tf.estimator.ModeKeys.EVAL))) ] self.assertFalse( np.allclose(initial_predictions, random_predictions, atol=1e-2)) if __name__ == '__main__': tf.test.main()
39.611268
80
0.732399
[ "Apache-2.0" ]
AakashOfficial/tensor2robot
utils/train_eval_test.py
14,062
Python
"""Support for Agent camera streaming.""" from datetime import timedelta import logging from agent import AgentError from homeassistant.components.camera import SUPPORT_ON_OFF from homeassistant.components.mjpeg.camera import ( CONF_MJPEG_URL, CONF_STILL_IMAGE_URL, MjpegCamera, filter_urllib3_logging, ) from homeassistant.const import ATTR_ATTRIBUTION, CONF_NAME from homeassistant.helpers import entity_platform from .const import ( ATTRIBUTION, CAMERA_SCAN_INTERVAL_SECS, CONNECTION, DOMAIN as AGENT_DOMAIN, ) SCAN_INTERVAL = timedelta(seconds=CAMERA_SCAN_INTERVAL_SECS) _LOGGER = logging.getLogger(__name__) _DEV_EN_ALT = "enable_alerts" _DEV_DS_ALT = "disable_alerts" _DEV_EN_REC = "start_recording" _DEV_DS_REC = "stop_recording" _DEV_SNAP = "snapshot" CAMERA_SERVICES = { _DEV_EN_ALT: "async_enable_alerts", _DEV_DS_ALT: "async_disable_alerts", _DEV_EN_REC: "async_start_recording", _DEV_DS_REC: "async_stop_recording", _DEV_SNAP: "async_snapshot", } async def async_setup_entry( hass, config_entry, async_add_entities, discovery_info=None ): """Set up the Agent cameras.""" filter_urllib3_logging() cameras = [] server = hass.data[AGENT_DOMAIN][config_entry.entry_id][CONNECTION] if not server.devices: _LOGGER.warning("Could not fetch cameras from Agent server") return for device in server.devices: if device.typeID == 2: camera = AgentCamera(device) cameras.append(camera) async_add_entities(cameras) platform = entity_platform.current_platform.get() for service, method in CAMERA_SERVICES.items(): platform.async_register_entity_service(service, {}, method) class AgentCamera(MjpegCamera): """Representation of an Agent Device Stream.""" def __init__(self, device): """Initialize as a subclass of MjpegCamera.""" self._servername = device.client.name self.server_url = device.client._server_url device_info = { CONF_NAME: device.name, CONF_MJPEG_URL: f"{self.server_url}{device.mjpeg_image_url}&size={device.mjpegStreamWidth}x{device.mjpegStreamHeight}", CONF_STILL_IMAGE_URL: f"{self.server_url}{device.still_image_url}&size={device.mjpegStreamWidth}x{device.mjpegStreamHeight}", } self.device = device self._removed = False self._name = f"{self._servername} {device.name}" self._unique_id = f"{device._client.unique}_{device.typeID}_{device.id}" super().__init__(device_info) @property def device_info(self): """Return the device info for adding the entity to the agent object.""" return { "identifiers": {(AGENT_DOMAIN, self._unique_id)}, "name": self._name, "manufacturer": "Agent", "model": "Camera", "sw_version": self.device.client.version, } async def async_update(self): """Update our state from the Agent API.""" try: await self.device.update() if self._removed: _LOGGER.debug("%s reacquired", self._name) self._removed = False except AgentError: if self.device.client.is_available: # server still available - camera error if not self._removed: _LOGGER.error("%s lost", self._name) self._removed = True @property def extra_state_attributes(self): """Return the Agent DVR camera state attributes.""" return { ATTR_ATTRIBUTION: ATTRIBUTION, "editable": False, "enabled": self.is_on, "connected": self.connected, "detected": self.is_detected, "alerted": self.is_alerted, "has_ptz": self.device.has_ptz, "alerts_enabled": self.device.alerts_active, } @property def should_poll(self) -> bool: """Update the state periodically.""" return True @property def is_recording(self) -> bool: """Return whether the monitor is recording.""" return self.device.recording @property def is_alerted(self) -> bool: """Return whether the monitor has alerted.""" return self.device.alerted @property def is_detected(self) -> bool: """Return whether the monitor has alerted.""" return self.device.detected @property def available(self) -> bool: """Return True if entity is available.""" return self.device.client.is_available @property def connected(self) -> bool: """Return True if entity is connected.""" return self.device.connected @property def supported_features(self) -> int: """Return supported features.""" return SUPPORT_ON_OFF @property def is_on(self) -> bool: """Return true if on.""" return self.device.online @property def icon(self): """Return the icon to use in the frontend, if any.""" if self.is_on: return "mdi:camcorder" return "mdi:camcorder-off" @property def motion_detection_enabled(self): """Return the camera motion detection status.""" return self.device.detector_active @property def unique_id(self) -> str: """Return a unique identifier for this agent object.""" return self._unique_id async def async_enable_alerts(self): """Enable alerts.""" await self.device.alerts_on() async def async_disable_alerts(self): """Disable alerts.""" await self.device.alerts_off() async def async_enable_motion_detection(self): """Enable motion detection.""" await self.device.detector_on() async def async_disable_motion_detection(self): """Disable motion detection.""" await self.device.detector_off() async def async_start_recording(self): """Start recording.""" await self.device.record() async def async_stop_recording(self): """Stop recording.""" await self.device.record_stop() async def async_turn_on(self): """Enable the camera.""" await self.device.enable() async def async_snapshot(self): """Take a snapshot.""" await self.device.snapshot() async def async_turn_off(self): """Disable the camera.""" await self.device.disable()
30.078704
137
0.64322
[ "Apache-2.0" ]
CantankerousBullMoose/core
homeassistant/components/agent_dvr/camera.py
6,497
Python
# -*- coding: utf-8 -*- # # This file is part of PyBuilder # # Copyright 2011-2015 PyBuilder Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pybuilder.errors import BuildFailedException from pybuilder.plugins.python.test_plugin_helper import ReportsProcessor from test_utils import Mock, patch class ReportsProcessorTests(unittest.TestCase): def setUp(self): self.reports_processor = ReportsProcessor(Mock(), Mock()) total_time = Mock() total_time.get_millis.return_value = 42 self.reports_processor.process_reports([], total_time) def test_should_raise_exception_when_not_all_tests_pass(self): self.reports_processor.tests_failed = 1 self.assertRaises(BuildFailedException, self.reports_processor.write_report_and_ensure_all_tests_passed) def test_should_not_raise_exception_when_all_tests_pass(self): self.reports_processor.tests_failed = 0 self.reports_processor.write_report_and_ensure_all_tests_passed() @patch("pybuilder.plugins.python.test_plugin_helper.render_report", return_value='rendered-report') def test_should_write_report(self, render_report): self.reports_processor.write_report_and_ensure_all_tests_passed() self.reports_processor.project.write_report.assert_called_with("integrationtest.json", 'rendered-report') def test_should_parse_reports(self): reports = [ {'test': 'name1', 'test_file': 'file1', 'success': False, 'time': 1}, {'test': 'name2', 'test_file': 'file2', 'success': False, 'time': 2}, {'test': 'name3', 'test_file': 'file3', 'success': True, 'time': 3}, {'test': 'name4', 'test_file': 'file4', 'success': True, 'time': 4} ] self.reports_processor.process_reports(reports, Mock()) self.assertEqual(self.reports_processor.tests_failed, 2) self.assertEqual(self.reports_processor.tests_executed, 4) def test_should_create_test_report_with_attributes(self): mock_time = Mock() mock_time.get_millis.return_value = 42 self.reports_processor.process_reports([], mock_time) self.reports_processor.tests_failed = 4 self.reports_processor.tests_executed = 42 self.reports_processor.reports = ['a', 'b', 'c'] self.assertEqual(self.reports_processor.test_report, { 'num_of_tests': 42, 'success': False, 'tests': ['a', 'b', 'c'], 'tests_failed': 4, 'time': 42 } )
39.878049
113
0.654434
[ "Apache-2.0" ]
AlexeySanko/pybuilder
src/unittest/python/plugins/python/test_plugin_helper_tests.py
3,270
Python
from .base import Index from .multi import MultiIndex from .range import RangeIndex
21
29
0.821429
[ "BSD-3-Clause" ]
cda-group/baloo
baloo/core/indexes/__init__.py
84
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._inputs import * __all__ = ['SqlPoolsV3Args', 'SqlPoolsV3'] @pulumi.input_type class SqlPoolsV3Args: def __init__(__self__, *, resource_group_name: pulumi.Input[str], workspace_name: pulumi.Input[str], location: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input['SkuArgs']] = None, sql_pool_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a SqlPoolsV3 resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] workspace_name: The name of the workspace. :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input['SkuArgs'] sku: The sql pool SKU. The list of SKUs may vary by region and support offer. :param pulumi.Input[str] sql_pool_name: The name of the sql pool. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "workspace_name", workspace_name) if location is not None: pulumi.set(__self__, "location", location) if sku is not None: pulumi.set(__self__, "sku", sku) if sql_pool_name is not None: pulumi.set(__self__, "sql_pool_name", sql_pool_name) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="workspaceName") def workspace_name(self) -> pulumi.Input[str]: """ The name of the workspace. """ return pulumi.get(self, "workspace_name") @workspace_name.setter def workspace_name(self, value: pulumi.Input[str]): pulumi.set(self, "workspace_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def sku(self) -> Optional[pulumi.Input['SkuArgs']]: """ The sql pool SKU. The list of SKUs may vary by region and support offer. """ return pulumi.get(self, "sku") @sku.setter def sku(self, value: Optional[pulumi.Input['SkuArgs']]): pulumi.set(self, "sku", value) @property @pulumi.getter(name="sqlPoolName") def sql_pool_name(self) -> Optional[pulumi.Input[str]]: """ The name of the sql pool. """ return pulumi.get(self, "sql_pool_name") @sql_pool_name.setter def sql_pool_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "sql_pool_name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class SqlPoolsV3(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuArgs']]] = None, sql_pool_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None): """ A sql pool resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: The geo-location where the resource lives :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[pulumi.InputType['SkuArgs']] sku: The sql pool SKU. The list of SKUs may vary by region and support offer. :param pulumi.Input[str] sql_pool_name: The name of the sql pool. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[str] workspace_name: The name of the workspace. """ ... @overload def __init__(__self__, resource_name: str, args: SqlPoolsV3Args, opts: Optional[pulumi.ResourceOptions] = None): """ A sql pool resource. :param str resource_name: The name of the resource. :param SqlPoolsV3Args args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SqlPoolsV3Args, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuArgs']]] = None, sql_pool_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SqlPoolsV3Args.__new__(SqlPoolsV3Args) __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["sku"] = sku __props__.__dict__["sql_pool_name"] = sql_pool_name __props__.__dict__["tags"] = tags if workspace_name is None and not opts.urn: raise TypeError("Missing required property 'workspace_name'") __props__.__dict__["workspace_name"] = workspace_name __props__.__dict__["current_service_objective_name"] = None __props__.__dict__["kind"] = None __props__.__dict__["name"] = None __props__.__dict__["requested_service_objective_name"] = None __props__.__dict__["sql_pool_guid"] = None __props__.__dict__["status"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:synapse/v20200401preview:SqlPoolsV3"), pulumi.Alias(type_="azure-native:synapse:SqlPoolsV3"), pulumi.Alias(type_="azure-nextgen:synapse:SqlPoolsV3"), pulumi.Alias(type_="azure-native:synapse/v20190601preview:SqlPoolsV3"), pulumi.Alias(type_="azure-nextgen:synapse/v20190601preview:SqlPoolsV3"), pulumi.Alias(type_="azure-native:synapse/v20201201:SqlPoolsV3"), pulumi.Alias(type_="azure-nextgen:synapse/v20201201:SqlPoolsV3"), pulumi.Alias(type_="azure-native:synapse/v20210301:SqlPoolsV3"), pulumi.Alias(type_="azure-nextgen:synapse/v20210301:SqlPoolsV3"), pulumi.Alias(type_="azure-native:synapse/v20210401preview:SqlPoolsV3"), pulumi.Alias(type_="azure-nextgen:synapse/v20210401preview:SqlPoolsV3")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SqlPoolsV3, __self__).__init__( 'azure-native:synapse/v20200401preview:SqlPoolsV3', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SqlPoolsV3': """ Get an existing SqlPoolsV3 resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SqlPoolsV3Args.__new__(SqlPoolsV3Args) __props__.__dict__["current_service_objective_name"] = None __props__.__dict__["kind"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["requested_service_objective_name"] = None __props__.__dict__["sku"] = None __props__.__dict__["sql_pool_guid"] = None __props__.__dict__["status"] = None __props__.__dict__["system_data"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return SqlPoolsV3(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="currentServiceObjectiveName") def current_service_objective_name(self) -> pulumi.Output[str]: """ The current service level objective name of the sql pool. """ return pulumi.get(self, "current_service_objective_name") @property @pulumi.getter def kind(self) -> pulumi.Output[str]: """ Kind of SqlPool. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ The geo-location where the resource lives """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="requestedServiceObjectiveName") def requested_service_objective_name(self) -> pulumi.Output[str]: """ The requested service level objective name of the sql pool. """ return pulumi.get(self, "requested_service_objective_name") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.SkuResponse']]: """ The sql pool SKU. The list of SKUs may vary by region and support offer. """ return pulumi.get(self, "sku") @property @pulumi.getter(name="sqlPoolGuid") def sql_pool_guid(self) -> pulumi.Output[str]: """ The Guid of the sql pool. """ return pulumi.get(self, "sql_pool_guid") @property @pulumi.getter def status(self) -> pulumi.Output[str]: """ The status of the sql pool. """ return pulumi.get(self, "status") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ SystemData of SqlPool. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
41.303681
789
0.637653
[ "Apache-2.0" ]
sebtelko/pulumi-azure-native
sdk/python/pulumi_azure_native/synapse/v20200401preview/sql_pools_v3.py
13,465
Python
import cv2 from PIL import ImageGrab import numpy as np def main(): while True: # bbox specifies specific region (bbox= x,y,width,height) img = ImageGrab.grab(bbox=(0, 40, 1075, 640)) vanilla = img_np = np.array(img) img_np = np.array(img) gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) _, binary = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY_INV) contours, hierarchy = cv2.findContours( binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) image = cv2.drawContours(img_np, contours, -1, (0, 255, 0), 2) cv2.imshow("test", image) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() print("test") break else: cv2.waitKey(1) # cv2.waitKey(0) if __name__ == "__main__": main()
29.551724
72
0.57993
[ "Apache-2.0" ]
kymotsujason/crossybot
main.py
857
Python
from timetableparser import TimeTableParser from timetablewriter import TimeTableWriter parser = TimeTableParser(False) writer = TimeTableWriter(True) # parser.decrypt_pdf("test/a.pdf", "out_a.pdf") # parser.decrypt_pdf("test/b.pdf", "out_b.pdf") csv_file_a = "test/output_week_a.csv" csv_file_b = "test/output_week_b.csv" # parser.extract_table_from_pdf("out_a.pdf", csv_file_a) # parser.extract_table_from_pdf("out_b.pdf", csv_file_b) writer.write_excel("Scott", parser.parse_csv(csv_file_a), parser.parse_csv(csv_file_b), "test/output.xlsx") print("output file is `test/output.xlsx`")
42.071429
107
0.791171
[ "MIT" ]
SCOTT-HAMILTON/Pdf2TimeTable
Pdf2TimeTable/test.py
589
Python
# -*-coding:Utf-8 -* # Copyright (c) 2014 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Objectif rejoindre.""" from math import fabs, radians, sqrt from vector import Vector from primaires.vehicule.vecteur import Vecteur from secondaires.navigation.constantes import * from secondaires.navigation.equipage.objectif import Objectif class Rejoindre(Objectif): """Objectif rejoindre. Cet objectif demande à un équipage de rejoindre un point précisé en coordonnées. Le point indiqué doit être statique (il existe un objectif particulier pour les points mobiles, comme les navires, qui intègrent leur propre calcul). Cet objectif est responsable de trouver un chemin entre le point actuel et le point visé. Cela inclut le choix de chemins détournés si le chemin direct ne peut être pris avec des calculs qui peuvent être assez complexes pour déterminer la vitesse et direction des chemins intermédiaires. """ def __init__(self, equipage, x=None, y=None, vitesse=1): Objectif.__init__(self, equipage, x, y, vitesse) self.x = x self.y = y self.vitesse = vitesse self.ancienne_vitesse = None self.vitesse_optimale = vitesse self.autre_direction = None self.autoriser_vitesse_sup = True self.doit_reculer = () def afficher(self): """Méthode à redéfinir retournant l'affichage de l'objectif.""" if self.doit_reculer: return "Doit reculer" navire = self.navire distance = self.get_distance() direction = (distance.direction + 90) % 360 msg_dist = get_nom_distance(distance) return "Cap sur {}° ({}), à {}".format(round(direction), distance.nom_direction, msg_dist) def get_distance(self): """Retourne la distance (Vecteur) entre le navire et la destination. Cette méthode crée un vecteur (class Vecteur définie dans le module primaire vehicule) qui représente la distance entre la position du navire et la destination. """ navire = self.navire position = navire.opt_position o_x = position.x o_y = position.y d_x = self.x d_y = self.y distance = Vecteur(d_x - o_x, d_y - o_y, 0) return distance def trouver_distance_min(self, cible): """Trouve la distance minimum. Cette distance est fonction de la distance minimum entre une salle du navire d'origine et une salle du navire cible. """ navire = self.navire etendue = navire.etendue altitude = etendue.altitude salle_cible = None distance = None for salle in navire.salles.values(): if salle.coords.z != altitude: continue x, y = salle.coords.x, salle.coords.y for t_salle in cible.salles.values(): if t_salle.coords.z != altitude: continue t_x, t_y = t_salle.coords.x, t_salle.coords.y t_distance = sqrt((t_x - x) ** 2 + (t_y - y) ** 2) if distance is None or t_distance < distance: distance = t_distance salle_cible = t_salle return distance, salle_cible def transmettre_controles(self): """Donne les contrôles indiqués (vitesse et direction).""" equipage = self.equipage navire = self.navire distance = self.get_distance() if self.autre_direction: direction = round(self.autre_direction) else: direction = round(distance.direction) # Crée ou modifie les contrôles if equipage.controles.get("direction"): equipage.controles["direction"].direction = direction else: equipage.controler("direction", direction) vitesse = self.vitesse if equipage.controles.get("vitesse"): ancienne_vitesse = equipage.controles["vitesse"].vitesse equipage.controles["vitesse"].vitesse = vitesse if vitesse != ancienne_vitesse: equipage.controles["vitesse"].calculer_vitesse() else: equipage.controler("vitesse", self.vitesse, self.autoriser_vitesse_sup) def trouver_cap(self): """Trouve le cap, tenant compte des obstacles.""" equipage = self.equipage navire = self.navire # Si on doit reculer, vérifie que c'est toujours vrai if self.doit_reculer: x, y = self.doit_reculer p_x = navire.position.x p_y = navire.position.y max_distance = navire.get_max_distance_au_centre() if sqrt((x - p_x) ** 2 + (y - p_y) ** 2) > max_distance + 1: self.doit_reculer = () else: return # On examine les points listés par la vigie # Si il n'y a pas de vigie, pas le moyen de les éviter tries = equipage.vigie_tries # Si le dictionnaire est vide, ne fait rien if not tries: self.autre_direction = None self.transmettre_controles() return # On n'examine que les obstacles obstacles = tries.get("obstacle", {}).copy() obstacles.update(tries.get("salle", {})) obstacles.update(tries.get("sallenavire", {})) # On s'intéresse seulement aux obstacles qui ont un angle # dangereux, entre -90° et 90° dangereux = obstacles.copy() for angle in obstacles.keys(): if angle < -90 or angle > 90: del dangereux[angle] # Si il n'y a aucun obstacle, ne continue pas if not dangereux: self.ancienne_vitesse = None self.autre_direction = None self.transmettre_controles() return # Maintenant on cherche la distance la plus courte min_angle = None min_distance = None for angle, (vecteur, point) in dangereux.items(): if min_distance is None or vecteur.mag < min_distance: min_distance = vecteur.mag min_angle = angle # En fonction de la distance, modifie la vitesse if -45 <= min_angle <= 45: if min_distance <= 2: self.vitesse = 0.05 elif min_distance < 10: self.vitesse = 0.2 elif min_distance < 25: self.vitesse = 0.6 # Cherche ensuite le meilleur cap # On cherche le meilleur cap possible (c'est-à-dire le plus long) distance = 30 angles = [i * 5 for i in range(0, 35)] for i in range(1, 35): angles.append(i * -5) # Si on est pas exactement dans la bonne direction pour rejoindre # le point (x, y), on envisage de changer de cap o_distance = self.get_distance() if o_distance.norme < 30: distance = o_distance.norme relative = o_distance.direction - navire.direction.direction angles = sorted(angles, key=lambda a: fabs(a - relative)) position = navire.opt_position while distance > 0: for angle in angles: vecteur = navire.opt_direction vecteur.mag = distance vecteur.around_z(radians(angle)) if not navire.controller_collision(vecteur, collision=False, marge=0.8): if angle != 0: self.info("Cap libre sur {}°".format(angle)) self.autre_direction = round(( navire.direction.direction + angle) % 360) if fabs(angle) > 30: self.vitesse = 0 self.transmettre_controles() return distance -= 5 # On ne change pas de cap mais peut-être change-t-on de vitesse self.transmettre_controles() def creer(self): """L'objectif est créé. On crée les contrôles associéss pour atteindre l'objectif visé, à savoir, rejoindre le point (x, y), en essayant de trouver les obstacles corresondant et un cap de remplacement si nécessaire. """ equipage = self.equipage commandant = self.commandant if commandant is None: return self.trouver_cap() def verifier(self, prioritaire): """Vérifie que l'objectif est toujours valide. Dans cette méthode, on vérifie : Qu'il n'y a aucun obstacle sur la trajectoire assignée """ equipage = self.equipage navire = self.navire commandant = self.commandant if commandant is None: return if prioritaire: self.trouver_cap() def reagir_collision(self, salle, contre): """Réagit à une collision.""" if not self.doit_reculer: commandant = self.commandant if commandant is None: return personnage = commandant.personnage navire = self.navire equipage = self.equipage p_x = navire.position.x p_y = navire.position.y self.warning("Essaye de faire reculer le navire") self.doit_reculer = (p_x, p_y) # Supprime le contrôle de cap, si il existe equipage.retirer_controle("direction") if navire.gouvernail: equipage.demander("relacher_gouvernail", personnage=personnage) # Demande de plier les voiles si besoin if any(v.hissee for v in navire.voiles): equipage.demander("plier_voiles", None, personnage=personnage) # Demande de ramer en marche arrière rames = navire.rames if rames: # On doit centrer les rames si besoin if any(r.orientation != 0 for r in rames): equipage.demander("ramer", "centre", personnage=personnage) equipage.demander("ramer", "arrière", personnage=personnage)
36.12037
79
0.608989
[ "BSD-3-Clause" ]
stormi/tsunami
src/secondaires/navigation/equipage/objectifs/rejoindre.py
11,757
Python
""" 724. Minimum Partition https://www.lintcode.com/problem/minimum-partition/description 01背包 算法班2020 C27 01背包变形 第1种dp定义 dp[i][j]: considering previous i items to fill <=j, what the maximum value dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - nums[i - 1]] + nums[i - 1]) dp[0][0] = 0 dp[i][0] = 0 answer max(dp[n]) 2d array time limit exceeded """ class Solution: """ @param nums: the given array @return: the minimum difference between their sums """ def findMin(self, nums): # write your code here if not nums: return 0 n = len(nums) total_sum = sum(nums) target = total_sum // 2 dp = [[0] * (target + 1) for _ in range(2)] now, old = 0, 0 for i in range(1, n + 1): old = now now = 1 - now for j in range(0, target + 1): dp[now][j] = dp[old][j] if j >= nums[i - 1]: dp[now][j] = max(dp[now][j], dp[old][j - nums[i - 1]] + nums[i - 1]) return total_sum - 2 * max(dp[now]) s = Solution() nums = [987,523,979,847,734,706,452,903,702,332,713,181,991,843,879,505,718,694,18,303,795,521,696,388,866,908,350,528,445,780,864,295,257,337,704,648,495,949,39,33,606,553,618,191,854,405,715,413,472,185,216,489,212,199,162,462,929,191,429,726,902,9,579,403,370,435,871,160,197,884,619,716,182,7,906,974,679,531,852,158,861,174,445,701,871,557,942,798,921,389,450,485,901,179,515,401,117,451,731,828,685,20,50,673,891,232,30,385,511,338,375,118,81,392,296,546,903,59,580,620,268,422,597,876,333,766,158,295,443,204,434,357,632,592,543,341,434,58,525,683,338,165,332,51,152,191,378,63,10,475,951,469,622,811,296,415,282,547,994,358,134,195,888,75,195,805,908,673,867,346,935,318,603,507,45,209,54,641,515,867,881,880,290,781,452,808,775,998,731,908,451,592,608,87,1000,812,30,673,393,380,241,135,421,144,954,64,747,502,633] print(s.findMin(nums))
37.230769
823
0.61312
[ "MIT" ]
jianershi/algorithm
lintcode/724.1.py
1,962
Python
from rdkit import Chem from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions molecules = open('glucose_degradation_output.csv','r') lines = molecules.readlines() counter = 0 with open('Glucose_Desc.csv', 'w') as the_file: the_file.write("Generation,Id,NumStereoIsomers"+'\n') for line in lines: counter +=1 line=line.rstrip('\n') line=line.split('\t') m = Chem.MolFromSmiles(line[1]) isomers = tuple(EnumerateStereoisomers(m)) numste = str(len(isomers)) the_file.write(line[0]+","+line[1]+","+numste+'\n')
33.352941
94
0.730159
[ "BSD-3-Clause" ]
Reaction-Space-Explorer/reac-space-exp
plots/stereoisomer_gen.py
567
Python
from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA from django import forms from taggit.forms import TagField from dcim.models import Device from extras.forms import ( AddRemoveTagsForm, CustomFieldBulkEditForm, CustomFieldFilterForm, CustomFieldModelForm, CustomFieldModelCSVForm, ) from utilities.forms import ( APISelect, APISelectMultiple, BootstrapMixin, DynamicModelChoiceField, DynamicModelMultipleChoiceField, FlexibleModelChoiceField, SlugField, StaticSelect2Multiple, TagFilterField, ) from .constants import * from .models import Secret, SecretRole, UserKey def validate_rsa_key(key, is_secret=True): """ Validate the format and type of an RSA key. """ if key.startswith('ssh-rsa '): raise forms.ValidationError("OpenSSH line format is not supported. Please ensure that your public is in PEM (base64) format.") try: key = RSA.importKey(key) except ValueError: raise forms.ValidationError("Invalid RSA key. Please ensure that your key is in PEM (base64) format.") except Exception as e: raise forms.ValidationError("Invalid key detected: {}".format(e)) if is_secret and not key.has_private(): raise forms.ValidationError("This looks like a public key. Please provide your private RSA key.") elif not is_secret and key.has_private(): raise forms.ValidationError("This looks like a private key. Please provide your public RSA key.") try: PKCS1_OAEP.new(key) except Exception: raise forms.ValidationError("Error validating RSA key. Please ensure that your key supports PKCS#1 OAEP.") # # Secret roles # class SecretRoleForm(BootstrapMixin, forms.ModelForm): slug = SlugField() class Meta: model = SecretRole fields = [ 'name', 'slug', 'description', 'users', 'groups', ] widgets = { 'users': StaticSelect2Multiple(), 'groups': StaticSelect2Multiple(), } class SecretRoleCSVForm(forms.ModelForm): slug = SlugField() class Meta: model = SecretRole fields = SecretRole.csv_headers help_texts = { 'name': 'Name of secret role', } # # Secrets # class SecretForm(BootstrapMixin, CustomFieldModelForm): plaintext = forms.CharField( max_length=SECRET_PLAINTEXT_MAX_LENGTH, required=False, label='Plaintext', widget=forms.PasswordInput( attrs={ 'class': 'requires-session-key', } ) ) plaintext2 = forms.CharField( max_length=SECRET_PLAINTEXT_MAX_LENGTH, required=False, label='Plaintext (verify)', widget=forms.PasswordInput() ) role = DynamicModelChoiceField( queryset=SecretRole.objects.all(), widget=APISelect( api_url="/api/secrets/secret-roles/" ) ) tags = TagField( required=False ) class Meta: model = Secret fields = [ 'role', 'name', 'plaintext', 'plaintext2', 'tags', ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # A plaintext value is required when creating a new Secret if not self.instance.pk: self.fields['plaintext'].required = True def clean(self): # Verify that the provided plaintext values match if self.cleaned_data['plaintext'] != self.cleaned_data['plaintext2']: raise forms.ValidationError({ 'plaintext2': "The two given plaintext values do not match. Please check your input." }) class SecretCSVForm(CustomFieldModelCSVForm): device = FlexibleModelChoiceField( queryset=Device.objects.all(), to_field_name='name', help_text='Device name or ID', error_messages={ 'invalid_choice': 'Device not found.', } ) role = forms.ModelChoiceField( queryset=SecretRole.objects.all(), to_field_name='name', help_text='Name of assigned role', error_messages={ 'invalid_choice': 'Invalid secret role.', } ) plaintext = forms.CharField( help_text='Plaintext secret data' ) class Meta: model = Secret fields = Secret.csv_headers help_texts = { 'name': 'Name or username', } def save(self, *args, **kwargs): s = super().save(*args, **kwargs) s.plaintext = str(self.cleaned_data['plaintext']) return s class SecretBulkEditForm(BootstrapMixin, AddRemoveTagsForm, CustomFieldBulkEditForm): pk = forms.ModelMultipleChoiceField( queryset=Secret.objects.all(), widget=forms.MultipleHiddenInput() ) role = DynamicModelChoiceField( queryset=SecretRole.objects.all(), required=False, widget=APISelect( api_url="/api/secrets/secret-roles/" ) ) name = forms.CharField( max_length=100, required=False ) class Meta: nullable_fields = [ 'name', ] class SecretFilterForm(BootstrapMixin, CustomFieldFilterForm): model = Secret q = forms.CharField( required=False, label='Search' ) role = DynamicModelMultipleChoiceField( queryset=SecretRole.objects.all(), to_field_name='slug', required=True, widget=APISelectMultiple( api_url="/api/secrets/secret-roles/", value_field="slug", ) ) tag = TagFilterField(model) # # UserKeys # class UserKeyForm(BootstrapMixin, forms.ModelForm): class Meta: model = UserKey fields = ['public_key'] help_texts = { 'public_key': "Enter your public RSA key. Keep the private one with you; you'll need it for decryption. " "Please note that passphrase-protected keys are not supported.", } labels = { 'public_key': '' } def clean_public_key(self): key = self.cleaned_data['public_key'] # Validate the RSA key format. validate_rsa_key(key, is_secret=False) return key class ActivateUserKeyForm(forms.Form): _selected_action = forms.ModelMultipleChoiceField( queryset=UserKey.objects.all(), label='User Keys' ) secret_key = forms.CharField( widget=forms.Textarea( attrs={ 'class': 'vLargeTextField', } ), label='Your private key' )
27.932203
134
0.622118
[ "Apache-2.0" ]
Megzo/netbox
netbox/secrets/forms.py
6,592
Python
import uvloop import asyncio import jinja2 import aiohttp_jinja2 from aiohttp import web from quicksets import settings from app.middlewares import middlewares from app.views import routes async def create_app(): asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) app = web.Application(middlewares=middlewares) aiohttp_jinja2.setup( app, loader=jinja2.FileSystemLoader(settings.TEMPLATES_PATH)) app.add_routes(routes) return app if __name__ == '__main__': app = create_app() web.run_app(app, host=settings.HOST, port=settings.PORT)
24.083333
69
0.769896
[ "MIT" ]
ihor-nahuliak/task-23-jul-2019
app/application.py
578
Python
import tensorflow as tf import numpy as np def _tf_fspecial_gauss(size, sigma, ch=1): """Function to mimic the 'fspecial' gaussian MATLAB function """ x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] x_data = np.expand_dims(x_data, axis=-1) x_data = np.expand_dims(x_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) x = tf.constant(x_data, dtype=tf.float32) y = tf.constant(y_data, dtype=tf.float32) g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2))) g = tf.tile(g, [1, 1, ch, 1]) return g / tf.reduce_sum(g) def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=0.5): img1 = tf.image.rgb_to_grayscale(img1) img2 = tf.image.rgb_to_grayscale(img2) window = _tf_fspecial_gauss(size, sigma, ch=img1.get_shape().as_list()[-1]) # window shape [size, size] K1 = 0.01 K2 = 0.03 L = 1 # depth of image (255 in case the image has a differnt scale) C1 = (K1*L)**2 C2 = (K2*L)**2 mu1 = tf.nn.conv2d(img1, window, strides=[1, 1, 1, 1], padding='VALID') mu2 = tf.nn.conv2d(img2, window, strides=[1, 1, 1, 1], padding='VALID') mu1_sq = mu1*mu1 mu2_sq = mu2*mu2 mu1_mu2 = mu1*mu2 sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_sq sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu2_sq sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_mu2 if cs_map: value = ( ((2*mu1_mu2 + C1) * (2*sigma12 + C2)) / ( (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) ), (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2) ) else: value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ( (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if mean_metric: value = tf.reduce_mean(value) return value def tf_ms_ssim(img1, img2, mean_metric=True, level=5): weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32) mssim = [] mcs = [] for l in range(level): ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False) mssim.append(tf.reduce_mean(ssim_map)) mcs.append(tf.reduce_mean(cs_map)) filtered_im1 = tf.nn.avg_pool(img1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') filtered_im2 = tf.nn.avg_pool(img2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') img1 = filtered_im1 img2 = filtered_im2 # list to tensor of dim D+1 mssim = tf.pack(mssim, axis=0) mcs = tf.pack(mcs, axis=0) value = (tf.reduce_prod( mcs[0:level-1]**weight[0:level-1]) * (mssim[level-1]**weight[level-1])) if mean_metric: value = tf.reduce_mean(value) return value
35.583333
95
0.571429
[ "MIT" ]
97chenxa/Multiview2Novelview
ssim.py
2,989
Python
# Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function from rosbridge_library.protocol import Protocol from rosbridge_library.capabilities.call_service import CallService from rosbridge_library.capabilities.advertise import Advertise from rosbridge_library.capabilities.publish import Publish from rosbridge_library.capabilities.subscribe import Subscribe # imports for defragmentation from rosbridge_library.capabilities.defragmentation import Defragment # imports for external service_server from rosbridge_library.capabilities.advertise_service import AdvertiseService from rosbridge_library.capabilities.service_response import ServiceResponse from rosbridge_library.capabilities.unadvertise_service import UnadvertiseService class RosbridgeProtocol(Protocol): """ Adds the handlers for the rosbridge opcodes """ rosbridge_capabilities = [CallService, Advertise, Publish, Subscribe, Defragment, AdvertiseService, ServiceResponse, UnadvertiseService] print("registered capabilities (classes):") for cap in rosbridge_capabilities: print(" -", str(cap)) parameters = None def __init__(self, client_id, parameters = None): self.parameters = parameters Protocol.__init__(self, client_id) for capability_class in self.rosbridge_capabilities: self.add_capability(capability_class)
46.666667
140
0.793537
[ "BSD-3-Clause" ]
George-Chia/Cloudroid-Swarm
base-image/rosbridge/rosbridge_library/src/rosbridge_library/rosbridge_protocol.py
2,940
Python
from __future__ import print_function import sys import os import getopt import re import string import errno import six from jsbeautifier.__version__ import __version__ # # The MIT License (MIT) # Copyright (c) 2007-2013 Einar Lielmanis and contributors. # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Originally written by Einar Lielmanis et al., # Conversion to python by Einar Lielmanis, [email protected], # Parsing improvement for brace-less and semicolon-less statements # by Liam Newman <[email protected]> # Python is not my native language, feel free to push things around. # # Use either from command line (script displays its usage when run # without any parameters), # # # or, alternatively, use it as a module: # # import jsbeautifier # res = jsbeautifier.beautify('your javascript string') # res = jsbeautifier.beautify_file('some_file.js') # # you may specify some options: # # opts = jsbeautifier.default_options() # opts.indent_size = 2 # res = jsbeautifier.beautify('some javascript', opts) # # # Here are the available options: (read source) class BeautifierOptions: def __init__(self): self.indent_size = 4 self.indent_char = ' ' self.indent_with_tabs = False self.preserve_newlines = True self.max_preserve_newlines = 10 self.space_in_paren = False self.space_in_empty_paren = False self.e4x = False self.jslint_happy = False self.brace_style = 'collapse' self.keep_array_indentation = False self.keep_function_indentation = False self.eval_code = False self.unescape_strings = False self.wrap_line_length = 0 self.break_chained_methods = False def __repr__(self): return \ """indent_size = %d indent_char = [%s] preserve_newlines = %s max_preserve_newlines = %d space_in_paren = %s jslint_happy = %s indent_with_tabs = %s brace_style = %s keep_array_indentation = %s eval_code = %s wrap_line_length = %s unescape_strings = %s """ % ( self.indent_size, self.indent_char, self.preserve_newlines, self.max_preserve_newlines, self.space_in_paren, self.jslint_happy, self.indent_with_tabs, self.brace_style, self.keep_array_indentation, self.eval_code, self.wrap_line_length, self.unescape_strings, ) class BeautifierFlags: def __init__(self, mode): self.mode = mode self.parent = None self.last_text = '' self.last_word = '' self.declaration_statement = False self.declaration_assignment = False self.in_html_comment = False self.multiline_frame = False self.if_block = False self.else_block = False self.do_block = False self.do_while = False self.in_case = False self.in_case_statement = False self.case_body = False self.indentation_level = 0 self.line_indent_level = 0 self.start_line_index = 0 self.ternary_depth = 0 self.had_comment = False def apply_base(self, flags_base, added_newline): next_indent_level = flags_base.indentation_level; if not added_newline and \ flags_base.line_indent_level > next_indent_level: next_indent_level = flags_base.line_indent_level; self.parent = flags_base; self.last_text = flags_base.last_text self.last_word = flags_base.last_word self.indentation_level = next_indent_level # Using object instead of string to allow for later expansion of info about each line class OutputLine: def __init__(self): self.text = [] class Acorn: def __init__(self): # This section of code was translated to python from acorn (javascript). # # Acorn was written by Marijn Haverbeke and released under an MIT # license. The Unicode regexps (for identifiers and whitespace) were # taken from [Esprima](http://esprima.org) by Ariya Hidayat. # # Git repositories for Acorn are available at # # http://marijnhaverbeke.nl/git/acorn # https://github.com/marijnh/acorn.git # ## Character categories # Big ugly regular expressions that match characters in the # whitespace, identifier, and identifier-start categories. These # are only applied when a character is found to actually have a # code point above 128. self.nonASCIIwhitespace = re.compile(six.u("[\u1680\u180e\u2000-\u200a\u202f\u205f\u3000\ufeff]")) self.nonASCIIidentifierStartChars = six.u("\xaa\xb5\xba\xc0-\xd6\xd8-\xf6\xf8-\u02c1\u02c6-\u02d1\u02e0-\u02e4\u02ec\u02ee\u0370-\u0374\u0376\u0377\u037a-\u037d\u0386\u0388-\u038a\u038c\u038e-\u03a1\u03a3-\u03f5\u03f7-\u0481\u048a-\u0527\u0531-\u0556\u0559\u0561-\u0587\u05d0-\u05ea\u05f0-\u05f2\u0620-\u064a\u066e\u066f\u0671-\u06d3\u06d5\u06e5\u06e6\u06ee\u06ef\u06fa-\u06fc\u06ff\u0710\u0712-\u072f\u074d-\u07a5\u07b1\u07ca-\u07ea\u07f4\u07f5\u07fa\u0800-\u0815\u081a\u0824\u0828\u0840-\u0858\u08a0\u08a2-\u08ac\u0904-\u0939\u093d\u0950\u0958-\u0961\u0971-\u0977\u0979-\u097f\u0985-\u098c\u098f\u0990\u0993-\u09a8\u09aa-\u09b0\u09b2\u09b6-\u09b9\u09bd\u09ce\u09dc\u09dd\u09df-\u09e1\u09f0\u09f1\u0a05-\u0a0a\u0a0f\u0a10\u0a13-\u0a28\u0a2a-\u0a30\u0a32\u0a33\u0a35\u0a36\u0a38\u0a39\u0a59-\u0a5c\u0a5e\u0a72-\u0a74\u0a85-\u0a8d\u0a8f-\u0a91\u0a93-\u0aa8\u0aaa-\u0ab0\u0ab2\u0ab3\u0ab5-\u0ab9\u0abd\u0ad0\u0ae0\u0ae1\u0b05-\u0b0c\u0b0f\u0b10\u0b13-\u0b28\u0b2a-\u0b30\u0b32\u0b33\u0b35-\u0b39\u0b3d\u0b5c\u0b5d\u0b5f-\u0b61\u0b71\u0b83\u0b85-\u0b8a\u0b8e-\u0b90\u0b92-\u0b95\u0b99\u0b9a\u0b9c\u0b9e\u0b9f\u0ba3\u0ba4\u0ba8-\u0baa\u0bae-\u0bb9\u0bd0\u0c05-\u0c0c\u0c0e-\u0c10\u0c12-\u0c28\u0c2a-\u0c33\u0c35-\u0c39\u0c3d\u0c58\u0c59\u0c60\u0c61\u0c85-\u0c8c\u0c8e-\u0c90\u0c92-\u0ca8\u0caa-\u0cb3\u0cb5-\u0cb9\u0cbd\u0cde\u0ce0\u0ce1\u0cf1\u0cf2\u0d05-\u0d0c\u0d0e-\u0d10\u0d12-\u0d3a\u0d3d\u0d4e\u0d60\u0d61\u0d7a-\u0d7f\u0d85-\u0d96\u0d9a-\u0db1\u0db3-\u0dbb\u0dbd\u0dc0-\u0dc6\u0e01-\u0e30\u0e32\u0e33\u0e40-\u0e46\u0e81\u0e82\u0e84\u0e87\u0e88\u0e8a\u0e8d\u0e94-\u0e97\u0e99-\u0e9f\u0ea1-\u0ea3\u0ea5\u0ea7\u0eaa\u0eab\u0ead-\u0eb0\u0eb2\u0eb3\u0ebd\u0ec0-\u0ec4\u0ec6\u0edc-\u0edf\u0f00\u0f40-\u0f47\u0f49-\u0f6c\u0f88-\u0f8c\u1000-\u102a\u103f\u1050-\u1055\u105a-\u105d\u1061\u1065\u1066\u106e-\u1070\u1075-\u1081\u108e\u10a0-\u10c5\u10c7\u10cd\u10d0-\u10fa\u10fc-\u1248\u124a-\u124d\u1250-\u1256\u1258\u125a-\u125d\u1260-\u1288\u128a-\u128d\u1290-\u12b0\u12b2-\u12b5\u12b8-\u12be\u12c0\u12c2-\u12c5\u12c8-\u12d6\u12d8-\u1310\u1312-\u1315\u1318-\u135a\u1380-\u138f\u13a0-\u13f4\u1401-\u166c\u166f-\u167f\u1681-\u169a\u16a0-\u16ea\u16ee-\u16f0\u1700-\u170c\u170e-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176c\u176e-\u1770\u1780-\u17b3\u17d7\u17dc\u1820-\u1877\u1880-\u18a8\u18aa\u18b0-\u18f5\u1900-\u191c\u1950-\u196d\u1970-\u1974\u1980-\u19ab\u19c1-\u19c7\u1a00-\u1a16\u1a20-\u1a54\u1aa7\u1b05-\u1b33\u1b45-\u1b4b\u1b83-\u1ba0\u1bae\u1baf\u1bba-\u1be5\u1c00-\u1c23\u1c4d-\u1c4f\u1c5a-\u1c7d\u1ce9-\u1cec\u1cee-\u1cf1\u1cf5\u1cf6\u1d00-\u1dbf\u1e00-\u1f15\u1f18-\u1f1d\u1f20-\u1f45\u1f48-\u1f4d\u1f50-\u1f57\u1f59\u1f5b\u1f5d\u1f5f-\u1f7d\u1f80-\u1fb4\u1fb6-\u1fbc\u1fbe\u1fc2-\u1fc4\u1fc6-\u1fcc\u1fd0-\u1fd3\u1fd6-\u1fdb\u1fe0-\u1fec\u1ff2-\u1ff4\u1ff6-\u1ffc\u2071\u207f\u2090-\u209c\u2102\u2107\u210a-\u2113\u2115\u2119-\u211d\u2124\u2126\u2128\u212a-\u212d\u212f-\u2139\u213c-\u213f\u2145-\u2149\u214e\u2160-\u2188\u2c00-\u2c2e\u2c30-\u2c5e\u2c60-\u2ce4\u2ceb-\u2cee\u2cf2\u2cf3\u2d00-\u2d25\u2d27\u2d2d\u2d30-\u2d67\u2d6f\u2d80-\u2d96\u2da0-\u2da6\u2da8-\u2dae\u2db0-\u2db6\u2db8-\u2dbe\u2dc0-\u2dc6\u2dc8-\u2dce\u2dd0-\u2dd6\u2dd8-\u2dde\u2e2f\u3005-\u3007\u3021-\u3029\u3031-\u3035\u3038-\u303c\u3041-\u3096\u309d-\u309f\u30a1-\u30fa\u30fc-\u30ff\u3105-\u312d\u3131-\u318e\u31a0-\u31ba\u31f0-\u31ff\u3400-\u4db5\u4e00-\u9fcc\ua000-\ua48c\ua4d0-\ua4fd\ua500-\ua60c\ua610-\ua61f\ua62a\ua62b\ua640-\ua66e\ua67f-\ua697\ua6a0-\ua6ef\ua717-\ua71f\ua722-\ua788\ua78b-\ua78e\ua790-\ua793\ua7a0-\ua7aa\ua7f8-\ua801\ua803-\ua805\ua807-\ua80a\ua80c-\ua822\ua840-\ua873\ua882-\ua8b3\ua8f2-\ua8f7\ua8fb\ua90a-\ua925\ua930-\ua946\ua960-\ua97c\ua984-\ua9b2\ua9cf\uaa00-\uaa28\uaa40-\uaa42\uaa44-\uaa4b\uaa60-\uaa76\uaa7a\uaa80-\uaaaf\uaab1\uaab5\uaab6\uaab9-\uaabd\uaac0\uaac2\uaadb-\uaadd\uaae0-\uaaea\uaaf2-\uaaf4\uab01-\uab06\uab09-\uab0e\uab11-\uab16\uab20-\uab26\uab28-\uab2e\uabc0-\uabe2\uac00-\ud7a3\ud7b0-\ud7c6\ud7cb-\ud7fb\uf900-\ufa6d\ufa70-\ufad9\ufb00-\ufb06\ufb13-\ufb17\ufb1d\ufb1f-\ufb28\ufb2a-\ufb36\ufb38-\ufb3c\ufb3e\ufb40\ufb41\ufb43\ufb44\ufb46-\ufbb1\ufbd3-\ufd3d\ufd50-\ufd8f\ufd92-\ufdc7\ufdf0-\ufdfb\ufe70-\ufe74\ufe76-\ufefc\uff21-\uff3a\uff41-\uff5a\uff66-\uffbe\uffc2-\uffc7\uffca-\uffcf\uffd2-\uffd7\uffda-\uffdc") self.nonASCIIidentifierChars = six.u("\u0300-\u036f\u0483-\u0487\u0591-\u05bd\u05bf\u05c1\u05c2\u05c4\u05c5\u05c7\u0610-\u061a\u0620-\u0649\u0672-\u06d3\u06e7-\u06e8\u06fb-\u06fc\u0730-\u074a\u0800-\u0814\u081b-\u0823\u0825-\u0827\u0829-\u082d\u0840-\u0857\u08e4-\u08fe\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\u0966-\u096f\u0981-\u0983\u09bc\u09be-\u09c4\u09c7\u09c8\u09d7\u09df-\u09e0\u0a01-\u0a03\u0a3c\u0a3e-\u0a42\u0a47\u0a48\u0a4b-\u0a4d\u0a51\u0a66-\u0a71\u0a75\u0a81-\u0a83\u0abc\u0abe-\u0ac5\u0ac7-\u0ac9\u0acb-\u0acd\u0ae2-\u0ae3\u0ae6-\u0aef\u0b01-\u0b03\u0b3c\u0b3e-\u0b44\u0b47\u0b48\u0b4b-\u0b4d\u0b56\u0b57\u0b5f-\u0b60\u0b66-\u0b6f\u0b82\u0bbe-\u0bc2\u0bc6-\u0bc8\u0bca-\u0bcd\u0bd7\u0be6-\u0bef\u0c01-\u0c03\u0c46-\u0c48\u0c4a-\u0c4d\u0c55\u0c56\u0c62-\u0c63\u0c66-\u0c6f\u0c82\u0c83\u0cbc\u0cbe-\u0cc4\u0cc6-\u0cc8\u0cca-\u0ccd\u0cd5\u0cd6\u0ce2-\u0ce3\u0ce6-\u0cef\u0d02\u0d03\u0d46-\u0d48\u0d57\u0d62-\u0d63\u0d66-\u0d6f\u0d82\u0d83\u0dca\u0dcf-\u0dd4\u0dd6\u0dd8-\u0ddf\u0df2\u0df3\u0e34-\u0e3a\u0e40-\u0e45\u0e50-\u0e59\u0eb4-\u0eb9\u0ec8-\u0ecd\u0ed0-\u0ed9\u0f18\u0f19\u0f20-\u0f29\u0f35\u0f37\u0f39\u0f41-\u0f47\u0f71-\u0f84\u0f86-\u0f87\u0f8d-\u0f97\u0f99-\u0fbc\u0fc6\u1000-\u1029\u1040-\u1049\u1067-\u106d\u1071-\u1074\u1082-\u108d\u108f-\u109d\u135d-\u135f\u170e-\u1710\u1720-\u1730\u1740-\u1750\u1772\u1773\u1780-\u17b2\u17dd\u17e0-\u17e9\u180b-\u180d\u1810-\u1819\u1920-\u192b\u1930-\u193b\u1951-\u196d\u19b0-\u19c0\u19c8-\u19c9\u19d0-\u19d9\u1a00-\u1a15\u1a20-\u1a53\u1a60-\u1a7c\u1a7f-\u1a89\u1a90-\u1a99\u1b46-\u1b4b\u1b50-\u1b59\u1b6b-\u1b73\u1bb0-\u1bb9\u1be6-\u1bf3\u1c00-\u1c22\u1c40-\u1c49\u1c5b-\u1c7d\u1cd0-\u1cd2\u1d00-\u1dbe\u1e01-\u1f15\u200c\u200d\u203f\u2040\u2054\u20d0-\u20dc\u20e1\u20e5-\u20f0\u2d81-\u2d96\u2de0-\u2dff\u3021-\u3028\u3099\u309a\ua640-\ua66d\ua674-\ua67d\ua69f\ua6f0-\ua6f1\ua7f8-\ua800\ua806\ua80b\ua823-\ua827\ua880-\ua881\ua8b4-\ua8c4\ua8d0-\ua8d9\ua8f3-\ua8f7\ua900-\ua909\ua926-\ua92d\ua930-\ua945\ua980-\ua983\ua9b3-\ua9c0\uaa00-\uaa27\uaa40-\uaa41\uaa4c-\uaa4d\uaa50-\uaa59\uaa7b\uaae0-\uaae9\uaaf2-\uaaf3\uabc0-\uabe1\uabec\uabed\uabf0-\uabf9\ufb20-\ufb28\ufe00-\ufe0f\ufe20-\ufe26\ufe33\ufe34\ufe4d-\ufe4f\uff10-\uff19\uff3f") self.nonASCIIidentifierStart = re.compile("[" + self.nonASCIIidentifierStartChars + "]") self.nonASCIIidentifier = re.compile("[" + self.nonASCIIidentifierStartChars + self.nonASCIIidentifierChars + "]") # Whether a single character denotes a newline. self.newline = re.compile(six.u("[\n\r\u2028\u2029]")) # Matches a whole line break (where CRLF is considered a single # line break). Used to count lines. self.lineBreak = re.compile(six.u("\r\n|[\n\r\u2028\u2029]")) # Test whether a given character code starts an identifier. def isIdentifierStart(self, code): if code < 65: return code == 36 if code < 91: return True if code < 97: return code == 95 if code < 123: return True; return code >= 0xaa and self.nonASCIIidentifierStart.match(six.unichr(code)) != None; # Test whether a given character is part of an identifier. def isIdentifierChar(self, code): if code < 48: return code == 36; if code < 58: return True; if code < 65: return False; if code < 91: return True; if code < 97: return code == 95; if code < 123: return True; return code >= 0xaa and self.nonASCIIidentifier.match(six.unichr(code)) != None; def default_options(): return BeautifierOptions() def beautify(string, opts = default_options() ): b = Beautifier() return b.beautify(string, opts) def beautify_file(file_name, opts = default_options() ): if file_name == '-': # stdin stream = sys.stdin else: stream = open(file_name) return beautify(''.join(stream.readlines()), opts); def usage(stream=sys.stdout): print("jsbeautifier.py@" + __version__ + """ Javascript beautifier (http://jsbeautifier.org/) Usage: jsbeautifier.py [options] <infile> <infile> can be "-", which means stdin. <outfile> defaults to stdout Input options: -i, --stdin read input from stdin Output options: -s, --indent-size=NUMBER indentation size. (default 4). -c, --indent-char=CHAR character to indent with. (default space). -t, --indent-with-tabs Indent with tabs, overrides -s and -c -d, --disable-preserve-newlines do not preserve existing line breaks. -P, --space-in-paren add padding spaces within paren, ie. f( a, b ) -E, --space-in-empty-paren Add a single space inside empty paren, ie. f( ) -j, --jslint-happy more jslint-compatible output -b, --brace-style=collapse brace style (collapse, expand, end-expand) -k, --keep-array-indentation keep array indentation. -o, --outfile=FILE specify a file to output to (default stdout) -f, --keep-function-indentation Do not re-indent function bodies defined in var lines. -x, --unescape-strings Decode printable chars encoded in \\xNN notation. -X, --e4x Pass E4X xml literals through untouched -w, --wrap-line-length Attempt to wrap line when it exceeds this length. NOTE: Line continues until next wrap point is found. Rarely needed options: --eval-code evaluate code if a JS interpreter is installed. May be useful with some obfuscated script but poses a potential security issue. -l, --indent-level=NUMBER initial indentation level. (default 0). -h, --help, --usage prints this help statement. -v, --version Show the version """, file=stream) if stream == sys.stderr: return 1 else: return 0 class MODE: BlockStatement, Statement, ObjectLiteral, ArrayLiteral, \ ForInitializer, Conditional, Expression = range(7) class Beautifier: def __init__(self, opts = default_options() ): self.opts = opts self.blank_state() self.acorn = Acorn(); def blank_state(self): # internal flags self.flags = None self.previous_flags = None self.flag_store = [] self.input_wanted_newline = False if self.opts.indent_with_tabs: self.opts.indent_char = "\t" self.opts.indent_size = 1 self.indent_string = self.opts.indent_char * self.opts.indent_size self.preindent_string = '' self.last_type = 'TK_START_BLOCK' # last token type self.last_last_text = '' # pre-last token text self.input = None self.output_lines = [ OutputLine() ] self.output_space_before_token = False self.whitespace_before_token = [] self.whitespace = ["\n", "\r", "\t", " "] self.wordchar = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_$' self.digits = '0123456789' self.punct = '+ - * / % & ++ -- = += -= *= /= %= == === != !== > < >= <= >> << >>> >>>= >>= <<= && &= | || ! ~ , : ? ^ ^= |= :: =>' self.punct += ' <?= <? ?> <%= <% %>' self.punct = self.punct.split(' ') # Words which always should start on a new line self.line_starters = 'continue,try,throw,return,var,let,const,if,switch,case,default,for,while,break,function,yield'.split(',') self.reserved_words = self.line_starters + ['do', 'in', 'else', 'get', 'set', 'new', 'catch', 'finally', 'typeof']; self.set_mode(MODE.BlockStatement) self.parser_pos = 0 def beautify(self, s, opts = None ): if opts != None: self.opts = opts if self.opts.brace_style not in ['expand', 'collapse', 'end-expand']: raise(Exception('opts.brace_style must be "expand", "collapse" or "end-expand".')) self.blank_state() while s and s[0] in [' ', '\t']: self.preindent_string += s[0] s = s[1:] self.input = self.unpack(s, self.opts.eval_code) self.parser_pos = 0 handlers = { 'TK_START_EXPR': self.handle_start_expr, 'TK_END_EXPR': self.handle_end_expr, 'TK_START_BLOCK': self.handle_start_block, 'TK_END_BLOCK': self.handle_end_block, 'TK_WORD': self.handle_word, 'TK_RESERVED': self.handle_word, 'TK_SEMICOLON': self.handle_semicolon, 'TK_STRING': self.handle_string, 'TK_EQUALS': self.handle_equals, 'TK_OPERATOR': self.handle_operator, 'TK_COMMA': self.handle_comma, 'TK_BLOCK_COMMENT': self.handle_block_comment, 'TK_INLINE_COMMENT': self.handle_inline_comment, 'TK_COMMENT': self.handle_comment, 'TK_DOT': self.handle_dot, 'TK_UNKNOWN': self.handle_unknown, } while True: self.token_text, self.token_type = self.get_next_token() #print (token_text, self.token_type, self.flags.mode) if self.token_type == 'TK_EOF': while self.flags.mode == MODE.Statement: self.restore_mode(); break keep_whitespace = self.opts.keep_array_indentation and self.is_array(self.flags.mode) self.input_wanted_newline = self.n_newlines > 0 if keep_whitespace: for i in range(self.n_newlines): self.append_newline(i > 0) else: # not keep_whitespace if self.opts.max_preserve_newlines != 0 and self.n_newlines > self.opts.max_preserve_newlines: self.n_newlines = self.opts.max_preserve_newlines if self.opts.preserve_newlines and self.n_newlines > 1: for i in range(self.n_newlines): self.append_newline(i != 0) handlers[self.token_type](self.token_text) # The cleanest handling of inline comments is to treat them as though they aren't there. # Just continue formatting and the behavior should be logical. if self.token_type != 'TK_INLINE_COMMENT' and self.token_type != 'TK_COMMENT' and self.token_type != 'TK_BLOCK_COMMENT' and self.token_type != 'TK_UNKNOWN': self.last_last_text = self.flags.last_text self.last_type = self.token_type self.flags.last_text = self.token_text self.flags.had_comment = self.token_type in ['TK_COMMENT', 'TK_INLINE_COMMENT', 'TK_BLOCK_COMMENT'] sweet_code = ''.join(self.output_lines[0].text) if len(self.output_lines) > 1: for line_index in range(1, len(self.output_lines)): sweet_code += '\n' + ''.join(self.output_lines[line_index].text); sweet_code = re.sub('[\n ]+$', '', sweet_code) return sweet_code def unpack(self, source, evalcode=False): import jsbeautifier.unpackers as unpackers try: return unpackers.run(source, evalcode) except unpackers.UnpackingError as error: print('error:', error) return '' def trim_output(self, eat_newlines = False): self.trim_output_line(self.output_lines[-1]) while eat_newlines and len(self.output_lines) > 1 and \ len(self.output_lines[-1].text) == 0: self.output_lines.pop() self.trim_output_line(self.output_lines[-1]) def trim_output_line(self, line): while len(line.text) \ and ( line.text[-1] == ' '\ or line.text[-1] == self.indent_string \ or line.text[-1] == self.preindent_string): line.text.pop() def is_special_word(self, s): return s in ['case', 'return', 'do', 'if', 'throw', 'else'] def is_array(self, mode): return mode == MODE.ArrayLiteral def is_expression(self, mode): return mode in [MODE.Expression, MODE.ForInitializer, MODE.Conditional] def just_added_newline(self): line = self.output_lines[-1] return len(line.text) == 0 def just_added_blankline(self): if self.just_added_newline(): if len(self.output_lines) == 1: return True line = self.output_lines[-2] return len(line.text) == 0 return False def allow_wrap_or_preserved_newline(self, token_text, force_linewrap = False): if self.opts.wrap_line_length > 0 and not force_linewrap: line = self.output_lines[-1] # never wrap the first token of a line. if len(line.text) > 0: proposed_line_length = len(''.join(line.text)) + len(token_text) if self.output_space_before_token: proposed_line_length += 1 if proposed_line_length >= self.opts.wrap_line_length: force_linewrap = True if ((self.opts.preserve_newlines and self.input_wanted_newline) or force_linewrap) and not self.just_added_newline(): self.append_newline(preserve_statement_flags = True) def append_newline(self, force_newline = False, preserve_statement_flags = False): self.output_space_before_token = False if not preserve_statement_flags: if self.flags.last_text != ';' and self.flags.last_text != ',' and self.flags.last_text != '=' and self.last_type != 'TK_OPERATOR': while self.flags.mode == MODE.Statement and not self.flags.if_block and not self.flags.do_block: self.restore_mode(); if len(self.output_lines) == 1 and self.just_added_newline(): # no newline on start of file return if force_newline or not self.just_added_newline(): self.flags.multiline_frame = True self.output_lines.append(OutputLine()) def append_token_line_indentation(self): if self.just_added_newline(): line = self.output_lines[-1] if self.opts.keep_array_indentation and self.is_array(self.flags.mode) and self.input_wanted_newline: # prevent removing of this whitespace as redundant line.text.append(''); for item in self.whitespace_before_token: line.text.append(item) else: if self.preindent_string != '': line.text.append(self.preindent_string) level = self.flags.indentation_level; self.append_indent_string(level) def append_indent_string(self, level): # Never indent your first output indent at the start of the file if len(self.output_lines) > 1: line = self.output_lines[-1] self.flags.line_indent_level = level for i in range(level): line.text.append(self.indent_string) def append_token_space_before(self): # make sure only single space gets drawn line = self.output_lines[-1] if self.output_space_before_token and len(line.text) and line.text[-1] not in [' ', self.indent_string]: line.text.append(' ') def append_token(self, s): self.append_token_line_indentation() self.append_token_space_before() self.output_space_before_token = False self.output_lines[-1].text.append(s) def indent(self): self.flags.indentation_level += 1 def deindent(self): allow_deindent = self.flags.indentation_level > 0 and ((self.flags.parent == None) or self.flags.indentation_level > self.flags.parent.indentation_level) if allow_deindent: self.flags.indentation_level -= 1 def remove_redundant_indentation(self, frame): # This implementation is effective but has some issues: # - less than great performance due to array splicing # - can cause line wrap to happen too soon due to indent removal # after wrap points are calculated # These issues are minor compared to ugly indentation. if frame.multiline_frame: return # remove one indent from each line inside this section index = frame.start_line_index splice_index = 0 while index < len(self.output_lines): line = self.output_lines[index] index += 1 # skip empty lines if len(line.text) == 0: continue # skip the preindent string if present if self.preindent_string != '' and \ line.text[0] == self.preindent_string: splice_index = 1 else: splice_index = 0 # remove one indent, if present if line.text[splice_index] == self.indent_string: del line.text[splice_index] def set_mode(self, mode): if self.flags: self.flag_store.append(self.flags) self.previous_flags = self.flags else: self.previous_flags = BeautifierFlags(mode) self.flags = BeautifierFlags(mode) self.flags.apply_base(self.previous_flags, self.just_added_newline()); self.flags.start_line_index = len(self.output_lines) def restore_mode(self): if len(self.flag_store) > 0: self.previous_flags = self.flags self.flags = self.flag_store.pop() if self.previous_flags.mode == MODE.Statement: self.remove_redundant_indentation(self.previous_flags) def start_of_object_property(self): return self.flags.parent.mode == MODE.ObjectLiteral and self.flags.mode == MODE.Statement and self.flags.last_text == ':' and \ self.flags.ternary_depth == 0 def start_of_statement(self): if ( (self.last_type == 'TK_RESERVED' and self.flags.last_text in ['var', 'let', 'const'] and self.token_type == 'TK_WORD') \ or (self.last_type == 'TK_RESERVED' and self.flags.last_text== 'do') \ or (self.last_type == 'TK_RESERVED' and self.flags.last_text== 'return' and not self.input_wanted_newline) \ or (self.last_type == 'TK_RESERVED' and self.flags.last_text == 'else' and not (self.token_type == 'TK_RESERVED' and self.token_text == 'if' )) \ or (self.last_type == 'TK_END_EXPR' and (self.previous_flags.mode == MODE.ForInitializer or self.previous_flags.mode == MODE.Conditional)) \ or (self.last_type == 'TK_WORD' and self.flags.mode == MODE.BlockStatement \ and not self.flags.in_case and not (self.token_text == '--' or self.token_text == '++') and self.token_type != 'TK_WORD' and self.token_type != 'TK_RESERVED') \ or (self.flags.mode == MODE.ObjectLiteral and self.flags.last_text == ':' and self.flags.ternary_depth == 0) \ ): self.set_mode(MODE.Statement); self.indent(); if self.last_type == 'TK_RESERVED' and self.flags.last_text in ['var', 'let', 'const'] and self.token_type == 'TK_WORD': self.flags.declaration_statement = True # Issue #276: # If starting a new statement with [if, for, while, do], push to a new line. # if (a) if (b) if(c) d(); else e(); else f(); if not self.start_of_object_property(): self.allow_wrap_or_preserved_newline(self.token_text, self.token_type == 'TK_RESERVED' and self.token_text in ['do', 'for', 'if', 'while']); return True else: return False def is_next(self, find): local_pos = self.parser_pos if local_pos >= len(self.input): return False c = self.input[local_pos] while (c in self.whitespace) and c != find: local_pos+= 1 if local_pos >= len(self.input): return False c = self.input[local_pos] return c == find def get_next_token(self): self.n_newlines = 0 if self.parser_pos >= len(self.input): return '', 'TK_EOF' self.input_wanted_newline = False self.whitespace_before_token = [] c = self.input[self.parser_pos] self.parser_pos += 1 while c in self.whitespace: if c == '\n': self.n_newlines += 1 self.whitespace_before_token = [] elif c == self.indent_string: self.whitespace_before_token.append(self.indent_string) elif c != '\r': self.whitespace_before_token.append(' ') if self.parser_pos >= len(self.input): return '', 'TK_EOF' c = self.input[self.parser_pos] self.parser_pos += 1 # NOTE: because beautifier doesn't fully parse, it doesn't use acorn.isIdentifierStart. # It just treats all identifiers and numbers and such the same. if self.acorn.isIdentifierChar(ord(self.input[self.parser_pos-1])): if self.parser_pos < len(self.input): while self.acorn.isIdentifierChar(ord(self.input[self.parser_pos])): c = c + self.input[self.parser_pos] self.parser_pos += 1 if self.parser_pos == len(self.input): break # small and surprisingly unugly hack for IE-10 representation if self.parser_pos != len(self.input) and self.input[self.parser_pos] in '+-' \ and re.match('^[0-9]+[Ee]$', c): sign = self.input[self.parser_pos] self.parser_pos += 1 t = self.get_next_token() c += sign + t[0] return c, 'TK_WORD' if not (self.last_type == 'TK_DOT' \ or (self.last_type == 'TK_RESERVED' and self.flags.last_text in ['set', 'get'])) \ and c in self.reserved_words: if c == 'in': # in is an operator, need to hack return c, 'TK_OPERATOR' return c, 'TK_RESERVED' return c, 'TK_WORD' if c in '([': return c, 'TK_START_EXPR' if c in ')]': return c, 'TK_END_EXPR' if c == '{': return c, 'TK_START_BLOCK' if c == '}': return c, 'TK_END_BLOCK' if c == ';': return c, 'TK_SEMICOLON' if c == '/': comment = '' inline_comment = True if self.input[self.parser_pos] == '*': # peek /* .. */ comment self.parser_pos += 1 if self.parser_pos < len(self.input): while not (self.input[self.parser_pos] == '*' and \ self.parser_pos + 1 < len(self.input) and \ self.input[self.parser_pos + 1] == '/')\ and self.parser_pos < len(self.input): c = self.input[self.parser_pos] comment += c if c in '\r\n': inline_comment = False self.parser_pos += 1 if self.parser_pos >= len(self.input): break self.parser_pos += 2 if inline_comment and self.n_newlines == 0: return '/*' + comment + '*/', 'TK_INLINE_COMMENT' else: return '/*' + comment + '*/', 'TK_BLOCK_COMMENT' if self.input[self.parser_pos] == '/': # peek // comment comment = c while self.input[self.parser_pos] not in '\r\n': comment += self.input[self.parser_pos] self.parser_pos += 1 if self.parser_pos >= len(self.input): break return comment, 'TK_COMMENT' if c == '`' or c == "'" or c == '"' or \ ( \ (c == '/') or \ (self.opts.e4x and c == "<" and re.match('^<(!\[CDATA\[[\s\S]*?\]\]|[-a-zA-Z:0-9_.]+|\{[^{}]*\})\s*([-a-zA-Z:0-9_.]+=(\{[^{}]*\}|"[^"]*"|\'[^\']*\')\s*)*\/?\s*>', self.input[self.parser_pos - 1:])) \ ) and ( \ (self.last_type == 'TK_RESERVED' and self.is_special_word(self.flags.last_text)) or \ (self.last_type == 'TK_END_EXPR' and self.previous_flags.mode in [MODE.Conditional, MODE.ForInitializer]) or \ (self.last_type in ['TK_COMMENT', 'TK_START_EXPR', 'TK_START_BLOCK', 'TK_END_BLOCK', 'TK_OPERATOR', \ 'TK_EQUALS', 'TK_EOF', 'TK_SEMICOLON', 'TK_COMMA'])): sep = c esc = False esc1 = 0 esc2 = 0 resulting_string = c in_char_class = False if self.parser_pos < len(self.input): if sep == '/': # handle regexp in_char_class = False while esc or in_char_class or self.input[self.parser_pos] != sep: resulting_string += self.input[self.parser_pos] if not esc: esc = self.input[self.parser_pos] == '\\' if self.input[self.parser_pos] == '[': in_char_class = True elif self.input[self.parser_pos] == ']': in_char_class = False else: esc = False self.parser_pos += 1 if self.parser_pos >= len(self.input): # incomplete regex when end-of-file reached # bail out with what has received so far return resulting_string, 'TK_STRING' elif self.opts.e4x and sep == '<': # handle e4x xml literals xmlRegExp = re.compile('<(\/?)(!\[CDATA\[[\s\S]*?\]\]|[-a-zA-Z:0-9_.]+|\{[^{}]*\})\s*([-a-zA-Z:0-9_.]+=(\{[^{}]*\}|"[^"]*"|\'[^\']*\')\s*)*(\/?)\s*>') xmlStr = self.input[self.parser_pos - 1:] match = xmlRegExp.match(xmlStr) if match: rootTag = match.group(2) depth = 0 while (match): isEndTag = match.group(1) tagName = match.group(2) isSingletonTag = (match.groups()[-1] != "") or (match.group(2)[0:8] == "![CDATA[") if tagName == rootTag and not isSingletonTag: if isEndTag: depth -= 1 else: depth += 1 if depth <= 0: break match = xmlRegExp.search(xmlStr, match.end()) if match: xmlLength = match.end() # + len(match.group()) else: xmlLength = len(xmlStr) self.parser_pos += xmlLength - 1 return xmlStr[:xmlLength], 'TK_STRING' else: # handle string while esc or self.input[self.parser_pos] != sep: resulting_string += self.input[self.parser_pos] if esc1 and esc1 >= esc2: try: esc1 = int(resulting_string[-esc2:], 16) except Exception: esc1 = False if esc1 and esc1 >= 0x20 and esc1 <= 0x7e: esc1 = chr(esc1) resulting_string = resulting_string[:-2 - esc2] if esc1 == sep or esc1 == '\\': resulting_string += '\\' resulting_string += esc1 esc1 = 0 if esc1: esc1 += 1 elif not esc: esc = self.input[self.parser_pos] == '\\' else: esc = False if self.opts.unescape_strings: if self.input[self.parser_pos] == 'x': esc1 += 1 esc2 = 2 elif self.input[self.parser_pos] == 'u': esc1 += 1 esc2 = 4 self.parser_pos += 1 if self.parser_pos >= len(self.input): # incomplete string when end-of-file reached # bail out with what has received so far return resulting_string, 'TK_STRING' self.parser_pos += 1 resulting_string += sep if sep == '/': # regexps may have modifiers /regexp/MOD, so fetch those too while self.parser_pos < len(self.input) and self.input[self.parser_pos] in self.wordchar: resulting_string += self.input[self.parser_pos] self.parser_pos += 1 return resulting_string, 'TK_STRING' if c == '#': # she-bang if len(self.output_lines) == 1 and len(self.output_lines[0].text) == 0 and \ len(self.input) > self.parser_pos and self.input[self.parser_pos] == '!': resulting_string = c while self.parser_pos < len(self.input) and c != '\n': c = self.input[self.parser_pos] resulting_string += c self.parser_pos += 1 return resulting_string.strip() + '\n', 'TK_UNKNOWN' # Spidermonkey-specific sharp variables for circular references # https://developer.mozilla.org/En/Sharp_variables_in_JavaScript # http://mxr.mozilla.org/mozilla-central/source/js/src/jsscan.cpp around line 1935 sharp = '#' if self.parser_pos < len(self.input) and self.input[self.parser_pos] in self.digits: while True: c = self.input[self.parser_pos] sharp += c self.parser_pos += 1 if self.parser_pos >= len(self.input) or c == '#' or c == '=': break if c == '#' or self.parser_pos >= len(self.input): pass elif self.input[self.parser_pos] == '[' and self.input[self.parser_pos + 1] == ']': sharp += '[]' self.parser_pos += 2 elif self.input[self.parser_pos] == '{' and self.input[self.parser_pos + 1] == '}': sharp += '{}' self.parser_pos += 2 return sharp, 'TK_WORD' if c == '<' and self.input[self.parser_pos - 1 : self.parser_pos + 3] == '<!--': self.parser_pos += 3 c = '<!--' while self.parser_pos < len(self.input) and self.input[self.parser_pos] != '\n': c += self.input[self.parser_pos] self.parser_pos += 1 self.flags.in_html_comment = True return c, 'TK_COMMENT' if c == '-' and self.flags.in_html_comment and self.input[self.parser_pos - 1 : self.parser_pos + 2] == '-->': self.flags.in_html_comment = False self.parser_pos += 2 return '-->', 'TK_COMMENT' if c == '.': return c, 'TK_DOT' if c in self.punct: while self.parser_pos < len(self.input) and c + self.input[self.parser_pos] in self.punct: c += self.input[self.parser_pos] self.parser_pos += 1 if self.parser_pos >= len(self.input): break if c == ',': return c, 'TK_COMMA' if c == '=': return c, 'TK_EQUALS' return c, 'TK_OPERATOR' return c, 'TK_UNKNOWN' def handle_start_expr(self, token_text): if self.start_of_statement(): # The conditional starts the statement if appropriate. pass next_mode = MODE.Expression if token_text == '[': if self.last_type == 'TK_WORD' or self.flags.last_text == ')': if self.last_type == 'TK_RESERVED' and self.flags.last_text in self.line_starters: self.output_space_before_token = True self.set_mode(next_mode) self.append_token(token_text) self.indent() if self.opts.space_in_paren: self.output_space_before_token = True return next_mode = MODE.ArrayLiteral if self.is_array(self.flags.mode): if self.flags.last_text == '[' or ( self.flags.last_text == ',' and (self.last_last_text == ']' or self.last_last_text == '}')): # ], [ goes to a new line # }, [ goes to a new line if not self.opts.keep_array_indentation: self.append_newline() else: if self.last_type == 'TK_RESERVED' and self.flags.last_text == 'for': next_mode = MODE.ForInitializer elif self.last_type == 'TK_RESERVED' and self.flags.last_text in ['if', 'while']: next_mode = MODE.Conditional else: next_mode = MODE.Expression if self.flags.last_text == ';' or self.last_type == 'TK_START_BLOCK': self.append_newline() elif self.last_type in ['TK_END_EXPR', 'TK_START_EXPR', 'TK_END_BLOCK'] or self.flags.last_text == '.': # do nothing on (( and )( and ][ and ]( and .( # TODO: Consider whether forcing this is required. Review failing tests when removed. self.allow_wrap_or_preserved_newline(token_text, self.input_wanted_newline); elif not (self.last_type == 'TK_RESERVED' and token_text == '(') and self.last_type not in ['TK_WORD', 'TK_OPERATOR']: self.output_space_before_token = True elif (self.last_type == 'TK_RESERVED' and (self.flags.last_word == 'function' or self.flags.last_word == 'typeof')) or \ (self.flags.last_text == '*' and self.last_last_text =='function'): # function() vs function (), typeof() vs typeof () if self.opts.jslint_happy: self.output_space_before_token = True elif self.last_type == 'TK_RESERVED' and (self.flags.last_text in self.line_starters or self.flags.last_text == 'catch'): # TODO: option space_before_conditional self.output_space_before_token = True # Support of this kind of newline preservation: # a = (b && # (c || d)); if self.last_type in ['TK_EQUALS', 'TK_OPERATOR']: if not self.start_of_object_property(): self.allow_wrap_or_preserved_newline(token_text) self.set_mode(next_mode) self.append_token(token_text) if self.opts.space_in_paren: self.output_space_before_token = True # In all cases, if we newline while inside an expression it should be indented. self.indent() def handle_end_expr(self, token_text): # statements inside expressions are not valid syntax, but... # statements must all be closed when their container closes while self.flags.mode == MODE.Statement: self.restore_mode() if self.flags.multiline_frame: self.allow_wrap_or_preserved_newline(self.token_text, self.token_text == ']' and self.is_array(self.flags.mode) and not self.opts.keep_array_indentation) if self.opts.space_in_paren: if self.last_type == 'TK_START_EXPR' and not self.opts.space_in_empty_paren: # empty parens are always "()" and "[]", not "( )" or "[ ]" self.output_space_before_token = False self.trim_output() else: self.output_space_before_token = True if self.token_text == ']' and self.opts.keep_array_indentation: self.append_token(token_text) self.restore_mode() else: self.restore_mode() self.append_token(token_text) self.remove_redundant_indentation(self.previous_flags); # do {} while () // no statement required after if self.flags.do_while and self.previous_flags.mode == MODE.Conditional: self.previous_flags.mode = MODE.Expression self.flags.do_block = False self.flags.do_while = False def handle_start_block(self, token_text): self.set_mode(MODE.BlockStatement) empty_braces = self.is_next('}') empty_anonymous_function = empty_braces and self.flags.last_word == 'function' and \ self.last_type == 'TK_END_EXPR' if self.opts.brace_style == 'expand': if self.last_type != 'TK_OPERATOR' and \ (empty_anonymous_function or self.last_type == 'TK_EQUALS' or (self.last_type == 'TK_RESERVED' and self.is_special_word(self.flags.last_text) and self.flags.last_text != 'else')): self.output_space_before_token = True else: self.append_newline(preserve_statement_flags = True) else: # collapse if self.last_type not in ['TK_OPERATOR', 'TK_START_EXPR']: if self.last_type == 'TK_START_BLOCK': self.append_newline() else: self.output_space_before_token = True else: # if TK_OPERATOR or TK_START_EXPR if self.is_array(self.previous_flags.mode) and self.flags.last_text == ',': if self.last_last_text == '}': self.output_space_before_token = True else: self.append_newline() self.append_token(token_text) self.indent() def handle_end_block(self, token_text): # statements must all be closed when their container closes while self.flags.mode == MODE.Statement: self.restore_mode() empty_braces = self.last_type == 'TK_START_BLOCK'; if self.opts.brace_style == 'expand': if not empty_braces: self.append_newline() else: # skip {} if not empty_braces: if self.is_array(self.flags.mode) and self.opts.keep_array_indentation: self.opts.keep_array_indentation = False self.append_newline() self.opts.keep_array_indentation = True else: self.append_newline() self.restore_mode() self.append_token(token_text) def handle_word(self, token_text): if self.start_of_statement(): # The conditional starts the statement if appropriate. pass elif self.input_wanted_newline and \ not self.is_expression(self.flags.mode) and \ (self.last_type != 'TK_OPERATOR' or (self.flags.last_text == '--' or self.flags.last_text == '++')) and \ self.last_type != 'TK_EQUALS' and \ (self.opts.preserve_newlines or not (self.last_type == 'TK_RESERVED' and self.flags.last_text in ['var', 'let', 'const', 'set', 'get'])): self.append_newline() if self.flags.do_block and not self.flags.do_while: if self.token_type == 'TK_RESERVED' and token_text == 'while': # do {} ## while () self.output_space_before_token = True self.append_token(token_text) self.output_space_before_token = True self.flags.do_while = True return else: # do {} should always have while as the next word. # if we don't see the expected while, recover self.append_newline() self.flags.do_block = False # if may be followed by else, or not # Bare/inline ifs are tricky # Need to unwind the modes correctly: if (a) if (b) c(); else d(); else e(); if self.flags.if_block: if (not self.flags.else_block) and (self.token_type == 'TK_RESERVED' and token_text == 'else'): self.flags.else_block = True else: while self.flags.mode == MODE.Statement: self.restore_mode() self.flags.if_block = False; if self.token_type == 'TK_RESERVED' and (token_text == 'case' or (token_text == 'default' and self.flags.in_case_statement)): self.append_newline() if self.flags.case_body or self.opts.jslint_happy: self.flags.case_body = False self.deindent() self.append_token(token_text) self.flags.in_case = True self.flags.in_case_statement = True return if self.token_type == 'TK_RESERVED' and token_text == 'function': if self.flags.last_text in ['}', ';'] or (self.just_added_newline() and not self.flags.last_text in ['{', ':', '=', ',']): # make sure there is a nice clean space of at least one blank line # before a new function definition, except in arrays if not self.just_added_blankline() and not self.flags.had_comment: self.append_newline() self.append_newline(True) if self.last_type == 'TK_RESERVED' or self.last_type == 'TK_WORD': if self.last_type == 'TK_RESERVED' and self.flags.last_text in ['get', 'set', 'new', 'return']: self.output_space_before_token = True else: self.append_newline() elif self.last_type == 'TK_OPERATOR' or self.flags.last_text == '=': # foo = function self.output_space_before_token = True elif self.is_expression(self.flags.mode): # (function pass else: self.append_newline() if self.last_type in ['TK_COMMA', 'TK_START_EXPR', 'TK_EQUALS', 'TK_OPERATOR']: if not self.start_of_object_property(): self.allow_wrap_or_preserved_newline(token_text) if self.token_type == 'TK_RESERVED' and token_text == 'function': self.append_token(token_text) self.flags.last_word = token_text return prefix = 'NONE' if self.last_type == 'TK_END_BLOCK': if not (self.token_type == 'TK_RESERVED' and token_text in ['else', 'catch', 'finally']): prefix = 'NEWLINE' else: if self.opts.brace_style in ['expand', 'end-expand']: prefix = 'NEWLINE' else: prefix = 'SPACE' self.output_space_before_token = True elif self.last_type == 'TK_SEMICOLON' and self.flags.mode == MODE.BlockStatement: # TODO: Should this be for STATEMENT as well? prefix = 'NEWLINE' elif self.last_type == 'TK_SEMICOLON' and self.is_expression(self.flags.mode): prefix = 'SPACE' elif self.last_type == 'TK_STRING': prefix = 'NEWLINE' elif self.last_type == 'TK_RESERVED' or self.last_type == 'TK_WORD' or \ (self.flags.last_text == '*' and self.last_last_text == 'function'): prefix = 'SPACE' elif self.last_type == 'TK_START_BLOCK': prefix = 'NEWLINE' elif self.last_type == 'TK_END_EXPR': self.output_space_before_token = True prefix = 'NEWLINE' if self.token_type == 'TK_RESERVED' and token_text in self.line_starters and self.flags.last_text != ')': if self.flags.last_text == 'else': prefix = 'SPACE' else: prefix = 'NEWLINE' if self.token_type == 'TK_RESERVED' and token_text in ['else', 'catch', 'finally']: if self.last_type != 'TK_END_BLOCK' \ or self.opts.brace_style == 'expand' \ or self.opts.brace_style == 'end-expand': self.append_newline() else: self.trim_output(True) line = self.output_lines[-1] # If we trimmed and there's something other than a close block before us # put a newline back in. Handles '} // comment' scenario. if line.text[-1] != '}': self.append_newline() self.output_space_before_token = True elif prefix == 'NEWLINE': if self.last_type == 'TK_RESERVED' and self.is_special_word(self.flags.last_text): # no newline between return nnn self.output_space_before_token = True elif self.last_type != 'TK_END_EXPR': if (self.last_type != 'TK_START_EXPR' or not (self.token_type == 'TK_RESERVED' and token_text in ['var', 'let', 'const'])) and self.flags.last_text != ':': # no need to force newline on VAR - # for (var x = 0... if self.token_type == 'TK_RESERVED' and token_text == 'if' and self.flags.last_word == 'else' and self.flags.last_text != '{': self.output_space_before_token = True else: self.append_newline() elif self.token_type == 'TK_RESERVED' and token_text in self.line_starters and self.flags.last_text != ')': self.append_newline() elif self.is_array(self.flags.mode) and self.flags.last_text == ',' and self.last_last_text == '}': self.append_newline() # }, in lists get a newline elif prefix == 'SPACE': self.output_space_before_token = True self.append_token(token_text) self.flags.last_word = token_text if self.token_type == 'TK_RESERVED' and token_text == 'do': self.flags.do_block = True if self.token_type == 'TK_RESERVED' and token_text == 'if': self.flags.if_block = True def handle_semicolon(self, token_text): if self.start_of_statement(): # The conditional starts the statement if appropriate. # Semicolon can be the start (and end) of a statement self.output_space_before_token = False while self.flags.mode == MODE.Statement and not self.flags.if_block and not self.flags.do_block: self.restore_mode() self.append_token(token_text) if self.flags.mode == MODE.ObjectLiteral: # OBJECT mode is weird and doesn't get reset too well. self.flags.mode = MODE.BlockStatement def handle_string(self, token_text): if self.start_of_statement(): # The conditional starts the statement if appropriate. # One difference - strings want at least a space before self.output_space_before_token = True elif self.last_type == 'TK_RESERVED' or self.last_type == 'TK_WORD': self.output_space_before_token = True elif self.last_type in ['TK_COMMA', 'TK_START_EXPR', 'TK_EQUALS', 'TK_OPERATOR']: if not self.start_of_object_property(): self.allow_wrap_or_preserved_newline(token_text) else: self.append_newline() self.append_token(token_text) def handle_equals(self, token_text): if self.start_of_statement(): # The conditional starts the statement if appropriate. pass if self.flags.declaration_statement: # just got an '=' in a var-line, different line breaking rules will apply self.flags.declaration_assignment = True self.output_space_before_token = True self.append_token(token_text) self.output_space_before_token = True def handle_comma(self, token_text): if self.flags.declaration_statement: if self.is_expression(self.flags.parent.mode): # do not break on comma, for ( var a = 1, b = 2 self.flags.declaration_assignment = False self.append_token(token_text) if self.flags.declaration_assignment: self.flags.declaration_assignment = False self.append_newline(preserve_statement_flags = True) else: self.output_space_before_token = True return self.append_token(token_text) if self.flags.mode == MODE.ObjectLiteral \ or (self.flags.mode == MODE.Statement and self.flags.parent.mode == MODE.ObjectLiteral): if self.flags.mode == MODE.Statement: self.restore_mode() self.append_newline() else: # EXPR or DO_BLOCK self.output_space_before_token = True def handle_operator(self, token_text): # Check if this is a BlockStatement that should be treated as a ObjectLiteral if self.token_text == ':' and self.flags.mode == MODE.BlockStatement and \ self.last_last_text == '{' and \ (self.last_type == 'TK_WORD' or self.last_type == 'TK_RESERVED'): self.flags.mode = MODE.ObjectLiteral if self.start_of_statement(): # The conditional starts the statement if appropriate. pass space_before = True space_after = True if self.last_type == 'TK_RESERVED' and self.is_special_word(self.flags.last_text): # return had a special handling in TK_WORD self.output_space_before_token = True self.append_token(token_text) return # hack for actionscript's import .*; if token_text == '*' and self.last_type == 'TK_DOT' and not self.last_last_text.isdigit(): self.append_token(token_text) return if token_text == ':' and self.flags.in_case: self.flags.case_body = True self.indent() self.append_token(token_text) self.append_newline() self.flags.in_case = False return if token_text == '::': # no spaces around the exotic namespacing syntax operator self.append_token(token_text) return # http://www.ecma-international.org/ecma-262/5.1/#sec-7.9.1 # if there is a newline between -- or ++ and anything else we should preserve it. if self.input_wanted_newline and (token_text == '--' or token_text == '++'): self.append_newline() # Allow line wrapping between operators in an expression if self.last_type == 'TK_OPERATOR': self.allow_wrap_or_preserved_newline(token_text) if token_text in ['--', '++', '!', '~'] \ or (token_text in ['+', '-'] \ and (self.last_type in ['TK_START_BLOCK', 'TK_START_EXPR', 'TK_EQUALS', 'TK_OPERATOR'] \ or self.flags.last_text in self.line_starters or self.flags.last_text == ',')): space_before = False space_after = False if self.flags.last_text == ';' and self.is_expression(self.flags.mode): # for (;; ++i) # ^^ space_before = True if self.last_type == 'TK_RESERVED': space_before = True if self.flags.mode == MODE.BlockStatement and self.flags.last_text in ['{', ';']: # { foo: --i } # foo(): --bar self.append_newline() elif token_text == ':': if self.flags.ternary_depth == 0: if self.flags.mode == MODE.BlockStatement: self.flags.mode = MODE.ObjectLiteral space_before = False else: self.flags.ternary_depth -= 1 elif token_text == '?': self.flags.ternary_depth += 1 elif self.token_text == '*' and self.last_type == 'TK_RESERVED' and self.flags.last_text == 'function': space_before = False space_after = False if space_before: self.output_space_before_token = True self.append_token(token_text) if space_after: self.output_space_before_token = True def handle_block_comment(self, token_text): lines = token_text.replace('\x0d', '').split('\x0a') javadoc = False # block comment starts with a new line self.append_newline(preserve_statement_flags = True) if len(lines) > 1: if not any(l for l in lines[1:] if ( l.strip() == '' or (l.lstrip())[0] != '*')): javadoc = True # first line always indented self.append_token(lines[0]) for line in lines[1:]: self.append_newline(preserve_statement_flags = True) if javadoc: # javadoc: reformat and re-indent self.append_token(' ' + line.strip()) else: # normal comments output raw self.output_lines[-1].text.append(line) self.append_newline(preserve_statement_flags = True) def handle_inline_comment(self, token_text): self.output_space_before_token = True self.append_token(token_text) self.output_space_before_token = True def handle_comment(self, token_text): if self.input_wanted_newline: self.append_newline(preserve_statement_flags = True) if not self.input_wanted_newline: self.trim_output(True) self.output_space_before_token = True self.append_token(token_text) self.append_newline(preserve_statement_flags = True) def handle_dot(self, token_text): if self.start_of_statement(): # The conditional starts the statement if appropriate. pass if self.last_type == 'TK_RESERVED' and self.is_special_word(self.flags.last_text): self.output_space_before_token = True else: # allow preserved newlines before dots in general # force newlines on dots after close paren when break_chained - for bar().baz() self.allow_wrap_or_preserved_newline(token_text, self.flags.last_text == ')' and self.opts.break_chained_methods) self.append_token(token_text) def handle_unknown(self, token_text): self.append_token(token_text) if token_text[len(token_text) - 1] == '\n': self.append_newline() def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def main(): argv = sys.argv[1:] try: opts, args = getopt.getopt(argv, "s:c:o:dEPjbkil:xhtfvXw:", ['indent-size=','indent-char=','outfile=', 'disable-preserve-newlines', 'space-in-paren', 'space-in-empty-paren', 'jslint-happy', 'brace-style=', 'keep-array-indentation', 'indent-level=', 'unescape-strings', 'help', 'usage', 'stdin', 'eval-code', 'indent-with-tabs', 'keep-function-indentation', 'version', 'e4x', 'wrap-line-length']) except getopt.GetoptError as ex: print(ex, file=sys.stderr) return usage(sys.stderr) js_options = default_options() file = None outfile = 'stdout' if len(args) == 1: file = args[0] for opt, arg in opts: if opt in ('--keep-array-indentation', '-k'): js_options.keep_array_indentation = True if opt in ('--keep-function-indentation','-f'): js_options.keep_function_indentation = True elif opt in ('--outfile', '-o'): outfile = arg elif opt in ('--indent-size', '-s'): js_options.indent_size = int(arg) elif opt in ('--indent-char', '-c'): js_options.indent_char = arg elif opt in ('--indent-with-tabs', '-t'): js_options.indent_with_tabs = True elif opt in ('--disable-preserve-newlines', '-d'): js_options.preserve_newlines = False elif opt in ('--space-in-paren', '-P'): js_options.space_in_paren = True elif opt in ('--space-in-empty-paren', '-E'): js_options.space_in_empty_paren = True elif opt in ('--jslint-happy', '-j'): js_options.jslint_happy = True elif opt in ('--eval-code'): js_options.eval_code = True elif opt in ('--brace-style', '-b'): js_options.brace_style = arg elif opt in ('--unescape-strings', '-x'): js_options.unescape_strings = True elif opt in ('--e4x', '-X'): js_options.e4x = True elif opt in ('--wrap-line-length ', '-w'): js_options.wrap_line_length = int(arg) elif opt in ('--stdin', '-i'): file = '-' elif opt in ('--version', '-v'): return print(__version__) elif opt in ('--help', '--usage', '-h'): return usage() if not file: print("Must define at least one file.", file=sys.stderr) return usage(sys.stderr) else: try: if outfile == 'stdout': print(beautify_file(file, js_options)) else: mkdir_p(os.path.dirname(outfile)) with open(outfile, 'w') as f: f.write(beautify_file(file, js_options) + '\n') except Exception as ex: print(ex, file=sys.stderr) return 1 # Success return 0
44.059501
4,249
0.583228
[ "MIT" ]
fedmich/js-beautify
python/jsbeautifier/__init__.py
68,865
Python
'''Module to manage and advanced game state''' from collections import defaultdict import numpy as np from . import constants from . import characters from . import utility class ForwardModel(object): """Class for helping with the [forward] modeling of the game state.""" def run(self, num_times, board, agents, bombs, items, flames, is_partially_observable, agent_view_size, action_space, training_agent=None, is_communicative=False): """Run the forward model. Args: num_times: The number of times to run it for. This is a maximum and it will stop early if we reach a done. board: The board state to run it from. agents: The agents to use to run it. bombs: The starting bombs. items: The starting items. flames: The starting flames. is_partially_observable: Whether the board is partially observable or not. Only applies to TeamRadio. agent_view_size: If it's partially observable, then the size of the square that the agent can view. action_space: The actions that each agent can take. training_agent: The training agent to pass to done. is_communicative: Whether the action depends on communication observations as well. Returns: steps: The list of step results, which are each a dict of "obs", "next_obs", "reward", "action". board: Updated board. agents: Updated agents, same models though. bombs: Updated bombs. items: Updated items. flames: Updated flames. done: Whether we completed the game in these steps. info: The result of the game if it's completed. """ steps = [] for _ in num_times: obs = self.get_observations( board, agents, bombs, is_partially_observable, agent_view_size) actions = self.act( agents, obs, action_space, is_communicative=is_communicative) board, agents, bombs, items, flames = self.step( actions, board, agents, bombs, items, flames) next_obs = self.get_observations( board, agents, bombs, is_partially_observable, agent_view_size) reward = self.get_rewards(agents, game_type, step_count, max_steps) done = self.get_done(agents, game_type, step_count, max_steps, training_agent) info = self.get_info(done, rewards, game_type, agents) steps.append({ "obs": obs, "next_obs": next_obs, "reward": reward, "actions": actions, }) if done: # Callback to let the agents know that the game has ended. for agent in agents: agent.episode_end(reward[agent.agent_id]) break return steps, board, agents, bombs, items, flames, done, info @staticmethod def act(agents, obs, action_space, is_communicative=False): """Returns actions for each agent in this list. Args: agents: A list of agent objects. obs: A list of matching observations per agent. action_space: The action space for the environment using this model. is_communicative: Whether the action depends on communication observations as well. Returns a list of actions. """ def act_ex_communication(agent): '''Handles agent's move without communication''' if agent.is_alive: return agent.act(obs[agent.agent_id], action_space=action_space) else: return constants.Action.Stop.value def act_with_communication(agent): '''Handles agent's move with communication''' if agent.is_alive: action = agent.act( obs[agent.agent_id], action_space=action_space) if type(action) == int: action = [action] + [0, 0] assert (type(action) == list) return action else: return [constants.Action.Stop.value, 0, 0] ret = [] for agent in agents: if is_communicative: ret.append(act_with_communication(agent)) else: ret.append(act_ex_communication(agent)) return ret @staticmethod def step(actions, curr_board, curr_agents, curr_bombs, curr_items, curr_flames, max_blast_strength=10): board_size = len(curr_board) # Tick the flames. Replace any dead ones with passages. If there is an # item there, then reveal that item. flames = [] for flame in curr_flames: position = flame.position if flame.is_dead(): item_value = curr_items.get(position) if item_value: del curr_items[position] else: item_value = constants.Item.Passage.value curr_board[position] = item_value else: flame.tick() flames.append(flame) curr_flames = flames # Redraw all current flames # Multiple flames may share a position and the map should contain # a flame until all flames are dead to avoid issues with bomb # movements and explosions. for flame in curr_flames: curr_board[flame.position] = constants.Item.Flames.value # Step the living agents and moving bombs. # If two agents try to go to the same spot, they should bounce back to # their previous spots. This is complicated with one example being when # there are three agents all in a row. If the one in the middle tries # to go to the left and bounces with the one on the left, and then the # one on the right tried to go to the middle one's position, she should # also bounce. A way of doing this is to gather all the new positions # before taking any actions. Then, if there are disputes, correct those # disputes iteratively. # Additionally, if two agents try to switch spots by moving into each # Figure out desired next position for alive agents alive_agents = [agent for agent in curr_agents if agent.is_alive] desired_agent_positions = [agent.position for agent in alive_agents] for num_agent, agent in enumerate(alive_agents): position = agent.position # We change the curr_board here as a safeguard. We will later # update the agent's new position. curr_board[position] = constants.Item.Passage.value action = actions[agent.agent_id] if action == constants.Action.Stop.value: pass elif action == constants.Action.Bomb.value: position = agent.position if not utility.position_is_bomb(curr_bombs, position): bomb = agent.maybe_lay_bomb() if bomb: curr_bombs.append(bomb) elif utility.is_valid_direction(curr_board, position, action): desired_agent_positions[num_agent] = agent.get_next_position( action) # Gather desired next positions for moving bombs. Handle kicks later. desired_bomb_positions = [bomb.position for bomb in curr_bombs] for num_bomb, bomb in enumerate(curr_bombs): curr_board[bomb.position] = constants.Item.Passage.value if bomb.is_moving(): desired_position = utility.get_next_position( bomb.position, bomb.moving_direction) if utility.position_on_board(curr_board, desired_position) \ and not utility.position_is_powerup(curr_board, desired_position) \ and not utility.position_is_wall(curr_board, desired_position): desired_bomb_positions[num_bomb] = desired_position # Position switches: # Agent <-> Agent => revert both to previous position. # Bomb <-> Bomb => revert both to previous position. # Agent <-> Bomb => revert Bomb to previous position. crossings = {} def crossing(current, desired): '''Checks to see if an agent is crossing paths''' current_x, current_y = current desired_x, desired_y = desired if current_x != desired_x: assert current_y == desired_y return ('X', min(current_x, desired_x), current_y) assert current_x == desired_x return ('Y', current_x, min(current_y, desired_y)) for num_agent, agent in enumerate(alive_agents): if desired_agent_positions[num_agent] != agent.position: desired_position = desired_agent_positions[num_agent] border = crossing(agent.position, desired_position) if border in crossings: # Crossed another agent - revert both to prior positions. desired_agent_positions[num_agent] = agent.position num_agent2, _ = crossings[border] desired_agent_positions[num_agent2] = alive_agents[ num_agent2].position else: crossings[border] = (num_agent, True) for num_bomb, bomb in enumerate(curr_bombs): if desired_bomb_positions[num_bomb] != bomb.position: desired_position = desired_bomb_positions[num_bomb] border = crossing(bomb.position, desired_position) if border in crossings: # Crossed - revert to prior position. desired_bomb_positions[num_bomb] = bomb.position num, is_agent = crossings[border] if not is_agent: # Crossed bomb - revert that to prior position as well. desired_bomb_positions[num] = curr_bombs[num].position else: crossings[border] = (num_bomb, False) # Deal with multiple agents or multiple bomb collisions on desired next # position by resetting desired position to current position for # everyone involved in the collision. agent_occupancy = defaultdict(int) bomb_occupancy = defaultdict(int) for desired_position in desired_agent_positions: agent_occupancy[desired_position] += 1 for desired_position in desired_bomb_positions: bomb_occupancy[desired_position] += 1 # Resolve >=2 agents or >=2 bombs trying to occupy the same space. change = True while change: change = False for num_agent, agent in enumerate(alive_agents): desired_position = desired_agent_positions[num_agent] curr_position = agent.position # Either another agent is going to this position or more than # one bomb is going to this position. In both scenarios, revert # to the original position. if desired_position != curr_position and \ (agent_occupancy[desired_position] > 1 or bomb_occupancy[desired_position] > 1): desired_agent_positions[num_agent] = curr_position agent_occupancy[curr_position] += 1 change = True for num_bomb, bomb in enumerate(curr_bombs): desired_position = desired_bomb_positions[num_bomb] curr_position = bomb.position if desired_position != curr_position and \ (bomb_occupancy[desired_position] > 1 or agent_occupancy[desired_position] > 1): desired_bomb_positions[num_bomb] = curr_position bomb_occupancy[curr_position] += 1 change = True # Handle kicks. agent_indexed_by_kicked_bomb = {} kicked_bomb_indexed_by_agent = {} delayed_bomb_updates = [] delayed_agent_updates = [] # Loop through all bombs to see if they need a good kicking or cause # collisions with an agent. for num_bomb, bomb in enumerate(curr_bombs): desired_position = desired_bomb_positions[num_bomb] if agent_occupancy[desired_position] == 0: # There was never an agent around to kick or collide. continue agent_list = [ (num_agent, agent) for (num_agent, agent) in enumerate(alive_agents) \ if desired_position == desired_agent_positions[num_agent]] if not agent_list: # Agents moved from collision. continue # The agent_list should contain a single element at this point. assert (len(agent_list) == 1) num_agent, agent = agent_list[0] if desired_position == agent.position: # Agent did not move if desired_position != bomb.position: # Bomb moved, but agent did not. The bomb should revert # and stop. delayed_bomb_updates.append((num_bomb, bomb.position)) continue # NOTE: At this point, we have that the agent in question tried to # move into this position. if not agent.can_kick: # If we move the agent at this point, then we risk having two # agents on a square in future iterations of the loop. So we # push this change to the next stage instead. delayed_bomb_updates.append((num_bomb, bomb.position)) delayed_agent_updates.append((num_agent, agent.position)) continue # Agent moved and can kick - see if the target for the kick never had anyhing on it direction = constants.Action(actions[agent.agent_id]) target_position = utility.get_next_position(desired_position, direction) if utility.position_on_board(curr_board, target_position) and \ agent_occupancy[target_position] == 0 and \ bomb_occupancy[target_position] == 0 and \ not utility.position_is_powerup(curr_board, target_position) and \ not utility.position_is_wall(curr_board, target_position): # Ok to update bomb desired location as we won't iterate over it again here # but we can not update bomb_occupancy on target position and need to check it again # However we need to set the bomb count on the current position to zero so # that the agent can stay on this position. bomb_occupancy[desired_position] = 0 delayed_bomb_updates.append((num_bomb, target_position)) agent_indexed_by_kicked_bomb[num_bomb] = num_agent kicked_bomb_indexed_by_agent[num_agent] = num_bomb bomb.moving_direction = direction # Bombs may still collide and we then need to reverse bomb and agent .. else: delayed_bomb_updates.append((num_bomb, bomb.position)) delayed_agent_updates.append((num_agent, agent.position)) for (num_bomb, bomb_position) in delayed_bomb_updates: desired_bomb_positions[num_bomb] = bomb_position bomb_occupancy[bomb_position] += 1 change = True for (num_agent, agent_position) in delayed_agent_updates: desired_agent_positions[num_agent] = agent_position agent_occupancy[agent_position] += 1 change = True while change: change = False for num_agent, agent in enumerate(alive_agents): desired_position = desired_agent_positions[num_agent] curr_position = agent.position # Agents and bombs can only share a square if they are both in their # original position (Agent dropped bomb and has not moved) if desired_position != curr_position and \ (agent_occupancy[desired_position] > 1 or bomb_occupancy[desired_position] != 0): # Late collisions resulting from failed kicks force this agent to stay at the # original position. Check if this agent successfully kicked a bomb above and undo # the kick. if num_agent in kicked_bomb_indexed_by_agent: num_bomb = kicked_bomb_indexed_by_agent[num_agent] bomb = curr_bombs[num_bomb] desired_bomb_positions[num_bomb] = bomb.position bomb_occupancy[bomb.position] += 1 del agent_indexed_by_kicked_bomb[num_bomb] del kicked_bomb_indexed_by_agent[num_agent] desired_agent_positions[num_agent] = curr_position agent_occupancy[curr_position] += 1 change = True for num_bomb, bomb in enumerate(curr_bombs): desired_position = desired_bomb_positions[num_bomb] curr_position = bomb.position # This bomb may be a boomerang, i.e. it was kicked back to the # original location it moved from. If it is blocked now, it # can't be kicked and the agent needs to move back to stay # consistent with other movements. if desired_position == curr_position and num_bomb not in agent_indexed_by_kicked_bomb: continue bomb_occupancy_ = bomb_occupancy[desired_position] agent_occupancy_ = agent_occupancy[desired_position] # Agents and bombs can only share a square if they are both in their # original position (Agent dropped bomb and has not moved) if bomb_occupancy_ > 1 or agent_occupancy_ != 0: desired_bomb_positions[num_bomb] = curr_position bomb_occupancy[curr_position] += 1 num_agent = agent_indexed_by_kicked_bomb.get(num_bomb) if num_agent is not None: agent = alive_agents[num_agent] desired_agent_positions[num_agent] = agent.position agent_occupancy[agent.position] += 1 del kicked_bomb_indexed_by_agent[num_agent] del agent_indexed_by_kicked_bomb[num_bomb] change = True for num_bomb, bomb in enumerate(curr_bombs): if desired_bomb_positions[num_bomb] == bomb.position and \ not num_bomb in agent_indexed_by_kicked_bomb: # Bomb was not kicked this turn and its desired position is its # current location. Stop it just in case it was moving before. bomb.stop() else: # Move bomb to the new position. # NOTE: We already set the moving direction up above. bomb.position = desired_bomb_positions[num_bomb] for num_agent, agent in enumerate(alive_agents): if desired_agent_positions[num_agent] != agent.position: agent.move(actions[agent.agent_id]) if utility.position_is_powerup(curr_board, agent.position): agent.pick_up( constants.Item(curr_board[agent.position]), max_blast_strength=max_blast_strength) # Explode bombs. exploded_map = np.zeros_like(curr_board) has_new_explosions = False for bomb in curr_bombs: bomb.tick() if bomb.exploded(): has_new_explosions = True elif curr_board[bomb.position] == constants.Item.Flames.value: bomb.fire() has_new_explosions = True # Chain the explosions. while has_new_explosions: next_bombs = [] has_new_explosions = False for bomb in curr_bombs: if not bomb.exploded(): next_bombs.append(bomb) continue bomb.bomber.incr_ammo() for _, indices in bomb.explode().items(): for r, c in indices: if not all( [r >= 0, c >= 0, r < board_size, c < board_size]): break if curr_board[r][c] == constants.Item.Rigid.value: break exploded_map[r][c] = 1 if curr_board[r][c] == constants.Item.Wood.value: break curr_bombs = next_bombs for bomb in curr_bombs: if bomb.in_range(exploded_map): bomb.fire() has_new_explosions = True # Update the board's bombs. for bomb in curr_bombs: curr_board[bomb.position] = constants.Item.Bomb.value # Update the board's flames. flame_positions = np.where(exploded_map == 1) for row, col in zip(flame_positions[0], flame_positions[1]): curr_flames.append(characters.Flame((row, col))) for flame in curr_flames: curr_board[flame.position] = constants.Item.Flames.value # Kill agents on flames. Otherwise, update position on curr_board. for agent in alive_agents: if curr_board[agent.position] == constants.Item.Flames.value: agent.die() else: curr_board[agent.position] = utility.agent_value(agent.agent_id) return curr_board, curr_agents, curr_bombs, curr_items, curr_flames def get_observations(self, curr_board, agents, bombs, is_partially_observable, agent_view_size, game_type, game_env): """Gets the observations as an np.array of the visible squares. The agent gets to choose whether it wants to keep the fogged part in memory. """ board_size = len(curr_board) def make_bomb_maps(position): ''' Makes an array of an agents bombs and the bombs attributes ''' blast_strengths = np.zeros((board_size, board_size)) life = np.zeros((board_size, board_size)) for bomb in bombs: x, y = bomb.position if not is_partially_observable \ or in_view_range(position, x, y): blast_strengths[(x, y)] = bomb.blast_strength life[(x, y)] = bomb.life return blast_strengths, life def in_view_range(position, v_row, v_col): '''Checks to see if a tile is in an agents viewing area''' row, col = position return all([ row >= v_row - agent_view_size, row <= v_row + agent_view_size, col >= v_col - agent_view_size, col <= v_col + agent_view_size ]) attrs = [ 'position', 'blast_strength', 'can_kick', 'teammate', 'ammo', 'enemies' ] alive_agents = [ utility.agent_value(agent.agent_id) for agent in agents if agent.is_alive ] observations = [] for agent in agents: agent_obs = {'alive': alive_agents} board = curr_board if is_partially_observable: board = board.copy() for row in range(board_size): for col in range(board_size): if not in_view_range(agent.position, row, col): board[row, col] = constants.Item.Fog.value agent_obs['board'] = board bomb_blast_strengths, bomb_life = make_bomb_maps(agent.position) agent_obs['bomb_blast_strength'] = bomb_blast_strengths agent_obs['bomb_life'] = bomb_life agent_obs['game_type'] = game_type.value agent_obs['game_env'] = game_env for attr in attrs: assert hasattr(agent, attr) agent_obs[attr] = getattr(agent, attr) observations.append(agent_obs) return observations @staticmethod def get_done(agents, step_count, max_steps, game_type, training_agent): # print('get_done called...', training_agent) alive = [agent for agent in agents if agent.is_alive] alive_ids = sorted([agent.agent_id for agent in alive]) if step_count >= max_steps: print('gameover : max timestep over') return True elif game_type == constants.GameType.FFA: if training_agent is not None and training_agent not in alive_ids: print('gameover : ffa training_agent has died') return True if len(alive) <= 1: print('checkout : ffa only %s player survived' % len(alive)) return len(alive) <= 1 elif len(alive_ids) <= 1: print('gameover : only one player survived') return True elif alive_ids == [0, 2]: print('gameover : [0,2] team won') return True elif any([ alive_ids == [1, 3] ]): print('gameover : [1,3] team won') return True return False @staticmethod def get_info(done, rewards, game_type, agents): if game_type == constants.GameType.FFA: alive = [agent for agent in agents if agent.is_alive] if done: if len(alive) != 1: # Either we have more than 1 alive (reached max steps) or # we have 0 alive (last agents died at the same time). return { 'result': constants.Result.Tie, } else: return { 'result': constants.Result.Win, 'winners': [num for num, reward in enumerate(rewards) \ if reward == 1] } else: return { 'result': constants.Result.Incomplete, } elif done: # We are playing a team game. if rewards == [-1] * 4: return { 'result': constants.Result.Tie, } else: return { 'result': constants.Result.Win, 'winners': [num for num, reward in enumerate(rewards) \ if reward == 1], } else: return { 'result': constants.Result.Incomplete, } @staticmethod def get_rewards(agents, game_type, step_count, max_steps): print('get_rewards called..', self.training_agent) def any_lst_equal(lst, values): '''Checks if list are equal''' return any([lst == v for v in values]) alive_agents = [num for num, agent in enumerate(agents) \ if agent.is_alive] if game_type == constants.GameType.FFA: if len(alive_agents) == 1: # An agent won. Give them +1, others -1. return [2 * int(agent.is_alive) - 1 for agent in agents] elif step_count >= max_steps: # Game is over from time. Everyone gets -1. return [-1] * 4 else: # Game running: 0 for alive, -1 for dead. return [int(agent.is_alive) - 1 for agent in agents] else: # We are playing a team game. if any_lst_equal(alive_agents, [[0, 2], [0], [2]]): # Team [0, 2] wins. return [1, -1, 1, -1] elif any_lst_equal(alive_agents, [[1, 3], [1], [3]]): # Team [1, 3] wins. return [-1, 1, -1, 1] elif step_count >= max_steps: # Game is over by max_steps. All agents tie. return [-1] * 4 elif len(alive_agents) == 0: # Everyone's dead. All agents tie. return [-1] * 4 else: # No team has yet won or lost. return [0] * 4
44.561162
103
0.564801
[ "Apache-2.0" ]
psyoblade/playground
pommerman/forward_model.py
29,143
Python
import copy import datetime import glob import json import os import sys import threading from os import path from urllib.parse import urlparse, urljoin, ParseResult import xmltodict import yaml from bs4 import BeautifulSoup from flask import Flask, render_template, Response, send_from_directory, request from flask.views import View from flask.helpers import url_for, send_file, make_response from flask_frozen import Freezer, walk_directory from hashlib import md5 from yaml import FullLoader from src.Feature import Feature from src.dist import get_dist_pages from src.github import assert_valid_git_hub_url from src.navigation import process_video_nav, process_nav, get_current_url from src.api import get_api_page from src.encoder import DateAwareEncoder from src.externals import process_nav_includes from src.grammar import get_grammar from src.markdown.makrdown import jinja_aware_markdown from src.pages.MyFlatPages import MyFlatPages from src.pdf import generate_pdf from src.processors.processors import process_code_blocks from src.processors.processors import set_replace_simple_code from src.search import build_search_indices from src.sitemap import generate_sitemap, generate_temporary_sitemap from src.ktl_components import KTLComponentExtension app = Flask(__name__, static_folder='_assets') app.config.from_pyfile('mysettings.py') app.jinja_env.trim_blocks = True app.jinja_env.lstrip_blocks = True pages = MyFlatPages(app) freezer = Freezer(app) ignore_stdlib = False build_mode = False build_contenteditable = False build_check_links = True build_errors = [] url_adapter = app.create_url_adapter(None) root_folder = path.join(os.path.dirname(__file__)) data_folder = path.join(os.path.dirname(__file__), "data") _nav_cache = None _nav_lock = threading.RLock() _cached_asset_version = {} def get_asset_version(filename): if filename in _cached_asset_version: return _cached_asset_version[filename] filepath = (root_folder if root_folder else ".") + filename if filename and path.exists(filepath): with open(filepath, 'rb') as file: digest = md5(file.read()).hexdigest() _cached_asset_version[filename] = digest return digest return None def get_site_data(): data = {} for data_file in os.listdir(data_folder): if data_file.startswith('_'): continue if not data_file.endswith(".yml"): continue data_file_path = path.join(data_folder, data_file) with open(data_file_path, encoding="UTF-8") as stream: try: file_name_without_extension = data_file[:-4] if data_file.endswith(".yml") else data_file data[file_name_without_extension] = yaml.load(stream, Loader=FullLoader) except yaml.YAMLError as exc: sys.stderr.write('Cant parse data file ' + data_file + ': ') sys.stderr.write(str(exc)) sys.exit(-1) except IOError as exc: sys.stderr.write('Cant read data file ' + data_file + ': ') sys.stderr.write(str(exc)) sys.exit(-1) return data site_data = get_site_data() def get_nav(): global _nav_cache global _nav_lock with _nav_lock: if _nav_cache is not None: nav = _nav_cache else: nav = get_nav_impl() nav = copy.deepcopy(nav) if build_mode: _nav_cache = copy.deepcopy(nav) # NOTE. This call depends on `request.path`, cannot cache process_nav(request.path, nav) return nav def get_nav_impl(): with open(path.join(data_folder, "_nav.yml")) as stream: nav = yaml.load(stream, Loader=FullLoader) nav = process_nav_includes(build_mode, nav) return nav def get_kotlin_features(): features_dir = path.join(os.path.dirname(__file__), "kotlin-features") features = [] for feature_meta in yaml.load(open(path.join(features_dir, "kotlin-features.yml"))): file_path = path.join(features_dir, feature_meta['content_file']) with open(file_path, encoding='utf-8') as f: content = f.read() content = content.replace("\r\n", "\n") if file_path.endswith(".md"): html_content = BeautifulSoup(jinja_aware_markdown(content, pages), 'html.parser') content = process_code_blocks(html_content) features.append(Feature(content, feature_meta)) return features @app.context_processor def add_year_to_context(): return { 'year': datetime.datetime.now().year } app.jinja_env.add_extension(KTLComponentExtension) @app.context_processor def add_data_to_context(): nav = get_nav() return { 'nav': nav, 'data': site_data, 'site': { 'pdf_url': app.config['PDF_URL'], 'forum_url': app.config['FORUM_URL'], 'site_github_url': app.config['SITE_GITHUB_URL'], 'data': site_data, 'text_using_gradle': app.config['TEXT_USING_GRADLE'], 'code_baseurl': app.config['CODE_URL'], 'contenteditable': build_contenteditable }, 'headerCurrentUrl': get_current_url(nav['subnav']['content']) } @app.template_filter('get_domain') def get_domain(url): return urlparse(url).netloc app.jinja_env.globals['get_domain'] = get_domain @app.template_filter('split_chunk') def split_chunk(list, size): return [list[i:i+size] for i in range(len(list))[::size]] app.jinja_env.globals['split_chunk'] = split_chunk @app.template_filter('autoversion') def autoversion_filter(filename): asset_version = get_asset_version(filename) if asset_version is None: return filename original = urlparse(filename)._asdict() original.update(query=original.get('query') + '&v=' + asset_version) return ParseResult(**original).geturl() @app.route('/data/events.json') def get_events(): with open(path.join(data_folder, "events.xml"), encoding="UTF-8") as events_file: events = xmltodict.parse(events_file.read())['events']['event'] return Response(json.dumps(events, cls=DateAwareEncoder), mimetype='application/json') @app.route('/data/cities.json') def get_cities(): return Response(json.dumps(site_data['cities'], cls=DateAwareEncoder), mimetype='application/json') @app.route('/data/kotlinconf.json') def get_kotlinconf(): return Response(json.dumps(site_data['kotlinconf'], cls=DateAwareEncoder), mimetype='application/json') @app.route('/data/universities.json') def get_universities(): return Response(json.dumps(site_data['universities'], cls=DateAwareEncoder), mimetype='application/json') @app.route('/data/user-groups.json') def get_user_groups(): return Response(json.dumps(site_data['user-groups'], cls=DateAwareEncoder), mimetype='application/json') @app.route('/docs/reference/grammar.html') def grammar(): grammar = get_grammar(build_mode) if grammar is None: return "Grammar file not found", 404 return render_template('pages/grammar.html', kotlinGrammar=grammar) @app.route('/docs/videos.html') def videos_page(): return render_template('pages/videos.html', videos=process_video_nav(site_data['videos'])) @app.route('/docs/kotlin-reference.pdf') def kotlin_reference_pdf(): return send_file(path.join(root_folder, "assets", "kotlin-reference.pdf")) @app.route('/docs/kotlin-docs.pdf') def kotlin_docs_pdf(): return send_file(path.join(root_folder, "assets", "kotlin-reference.pdf")) @app.route('/community/') def community_page(): return render_template('pages/community.html') @app.route('/user-groups/user-group-list.html') def user_group_list(): return render_template( 'pages/user-groups/user-group-list.html', user_groups_data=site_data['user-groups'], number_of_groups=sum(map(lambda section: len(section['groups']), site_data['user-groups']))) @app.route('/education/') def education_page(): return render_template('pages/education/index.html') @app.route('/') def index_page(): features = get_kotlin_features() return render_template('pages/index.html', is_index_page=True, features=features ) def process_page(page_path): # get_nav() has side effect to copy and patch files from the `external` folder # under site folder. We need it for dev mode to make sure file is up-to-date # TODO: extract get_nav and implement the explicit way to avoid side-effects get_nav() page = pages.get_or_404(page_path) if 'redirect_path' in page.meta and page.meta['redirect_path'] is not None: page_path = page.meta['redirect_path'] if page_path.startswith('https://') or page_path.startswith('http://'): return render_template('redirect.html', url=page_path) else: return render_template('redirect.html', url=url_for('page', page_path = page_path)) if 'date' in page.meta and page['date'] is not None: page.meta['formatted_date'] = page.meta['date'].strftime('%d %B %Y') if page.meta['formatted_date'].startswith('0'): page.meta['formatted_date'] = page.meta['formatted_date'][1:] if 'github_edit_url' in page.meta: edit_on_github_url = page.meta['github_edit_url'] else: edit_on_github_url = app.config['EDIT_ON_GITHUB_URL'] + app.config['FLATPAGES_ROOT'] + "/" + page_path + \ app.config['FLATPAGES_EXTENSION'] assert_valid_git_hub_url(edit_on_github_url, page_path) template = page.meta["layout"] if 'layout' in page.meta else 'default.html' if not template.endswith(".html"): template += ".html" if build_check_links: validate_links_weak(page, page_path) return render_template( template, page=page, baseurl="", edit_on_github_url=edit_on_github_url, ) def validate_links_weak(page, page_path): for link in page.parsed_html.select('a'): if 'href' not in link.attrs: continue href = urlparse(urljoin('/' + page_path, link['href'])) if href.scheme != '': continue endpoint, params = url_adapter.match(href.path, 'GET', query_args={}) if endpoint != 'page' and endpoint != 'get_index_page': response = app.test_client().get(href.path) if response.status_code == 404: build_errors.append("Broken link: " + str(href.path) + " on page " + page_path) continue referenced_page = pages.get(params['page_path']) if referenced_page is None: build_errors.append("Broken link: " + str(href.path) + " on page " + page_path) continue if href.fragment == '': continue ids = [] for x in referenced_page.parsed_html.select('h1,h2,h3,h4'): try: ids.append(x['id']) except KeyError: pass for x in referenced_page.parsed_html.select('a'): try: ids.append(x['name']) except KeyError: pass if href.fragment not in ids: build_errors.append("Bad anchor: " + str(href.fragment) + " on page " + page_path) if not build_mode and len(build_errors) > 0: errors_copy = [] for item in build_errors: errors_copy.append(item) build_errors.clear() raise Exception("Validation errors " + str(len(errors_copy)) + ":\n\n" + "\n".join(str(item) for item in errors_copy)) @freezer.register_generator def page(): for page in pages: yield {'page_path': page.path} @app.route('/<path:page_path>.html') def page(page_path): return process_page(page_path) @app.route('/404.html') def page_404(): return render_template('pages/404.html') @freezer.register_generator def api_page(): api_folder = path.join(root_folder, 'api') for root, dirs, files in os.walk(api_folder): for file in files: yield {'page_path': path.join(path.relpath(root, api_folder), file).replace(os.sep, '/')} class RedirectTemplateView(View): def __init__(self, url): self.redirect_url = url def dispatch_request(self): return render_template('redirect.html', url=self.redirect_url) def generate_redirect_pages(): redirects_folder = path.join(root_folder, 'redirects') for root, dirs, files in os.walk(redirects_folder): for file in files: if not file.endswith(".yml"): continue redirects_file_path = path.join(redirects_folder, file) with open(redirects_file_path, encoding="UTF-8") as stream: try: redirects = yaml.load(stream, Loader=FullLoader) for entry in redirects: url_to = entry["to"] url_from = entry["from"] url_list = url_from if isinstance(url_from, list) else [url_from] for url in url_list: app.add_url_rule(url, view_func=RedirectTemplateView.as_view(url, url=url_to)) except yaml.YAMLError as exc: sys.stderr.write('Cant parse data file ' + file + ': ') sys.stderr.write(str(exc)) sys.exit(-1) except IOError as exc: sys.stderr.write('Cant read data file ' + file + ': ') sys.stderr.write(str(exc)) sys.exit(-1) @app.errorhandler(404) def page_not_found(e): return render_template('pages/404.html'), 404 app.register_error_handler(404, page_not_found) @app.route('/api/<path:page_path>') def api_page(page_path): path_other, ext = path.splitext(page_path) if ext == '.html': return process_api_page(page_path[:-5]) elif path.basename(page_path) == "package-list" or ext: return respond_with_package_list(page_path) elif not page_path.endswith('/'): page_path += '/' return process_api_page(page_path + 'index') def process_api_page(page_path): return render_template( 'api.html', page=get_api_page(build_mode, page_path) ) def respond_with_package_list(page_path): file_path = path.join(root_folder, 'api', page_path) if not path.exists(file_path): return make_response(path.basename(page_path) + " not found", 404) return send_file(file_path, mimetype="text/plain") @app.route('/assets/<path:path>') def asset(path): return send_from_directory('assets', path) @app.route('/assets/images/tutorials/<path:filename>') def tutorial_img(filename): return send_from_directory(path.join('assets', 'images', 'tutorials'), filename) @freezer.register_generator def asset(): for filename in walk_directory(path.join(root_folder, "assets")): yield {'path': filename} @app.route('/<path:page_path>') def get_index_page(page_path): """ Handle requests which urls don't end with '.html' (for example, '/doc/') We don't need any generator here, because such urls are equivalent to the same urls with 'index.html' at the end. :param page_path: str :return: str """ if not page_path.endswith('/'): page_path += '/' return process_page(page_path + 'index') generate_redirect_pages() @app.after_request def add_header(request): request.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" request.headers["Pragma"] = "no-cache" request.headers["Expires"] = "0" request.headers['Cache-Control'] = 'public, max-age=0' return request if __name__ == '__main__': print("\n\n\nRunning new KotlinWebSite generator/dev-mode:\n") argv_copy = [] for arg in sys.argv: print("arg: " + arg) if arg == "--ignore-stdlib": ignore_stdlib = True elif arg == "--no-check-links": build_check_links = False elif arg == "--editable": build_contenteditable = True else: argv_copy.append(arg) print("\n\n") print("ignore_stdlib: " + str(ignore_stdlib)) print("build_check_links: " + str(build_check_links)) print("build_contenteditable: " + str(build_contenteditable)) print("\n\n") set_replace_simple_code(build_contenteditable) with (open(path.join(root_folder, "_nav-mapped.yml"), 'w')) as output: yaml.dump(get_nav_impl(), output) if len(argv_copy) > 1: if argv_copy[1] == "build": build_mode = True urls = freezer.freeze() if len(build_errors) > 0: for error in build_errors: sys.stderr.write(error + '\n') sys.exit(-1) elif argv_copy[1] == "sitemap": generate_sitemap(get_dist_pages()) # temporary sitemap generate_temporary_sitemap() elif argv_copy[1] == "index": build_search_indices(get_dist_pages()) elif argv_copy[1] == "reference-pdf": generate_pdf("kotlin-docs.pdf", site_data) else: print("Unknown argument: " + argv_copy[1]) sys.exit(1) else: app.run(host="0.0.0.0", debug=True, threaded=True, **{"extra_files": { '/src/data/_nav.yml', *glob.glob("/src/pages-includes/**/*", recursive=True), }})
32.096715
114
0.648815
[ "Apache-2.0" ]
Chinay-Domitrix/kotlin-web-site
kotlin-website.py
17,589
Python
# -*- coding: utf-8 -*- class TestInvalidPathTweenFactory: def test_it_400s_if_the_requested_path_isnt_utf8(self, app): app.get("/%c5", status=400)
23.142857
64
0.697531
[ "BSD-2-Clause" ]
13625025773/h
tests/functional/test_tweens.py
162
Python
""" Simple million word count program. main idea is Python pairs words with the number of times that number appears in the triple quoted string. Credit to William J. Turkel and Adam Crymble for the word frequency code used below. I just merged the two ideas. """ wordstring = '''SCENE I. Yorkshire. Gaultree Forest. Enter the ARCHBISHOP OF YORK, MOWBRAY, LORD HASTINGS, and others ARCHBISHOP OF YORK What is this forest call'd? HASTINGS 'Tis Gaultree Forest, an't shall please your grace. ARCHBISHOP OF YORK Here stand, my lords; and send discoverers forth To know the numbers of our enemies. HASTINGS We have sent forth already. ARCHBISHOP OF YORK 'Tis well done. My friends and brethren in these great affairs, I must acquaint you that I have received New-dated letters from Northumberland; Their cold intent, tenor and substance, thus: Here doth he wish his person, with such powers As might hold sortance with his quality, The which he could not levy; whereupon He is retired, to ripe his growing fortunes, To Scotland: and concludes in hearty prayers That your attempts may overlive the hazard And fearful melting of their opposite. MOWBRAY Thus do the hopes we have in him touch ground And dash themselves to pieces. Enter a Messenger HASTINGS Now, what news? Messenger West of this forest, scarcely off a mile, In goodly form comes on the enemy; And, by the ground they hide, I judge their number Upon or near the rate of thirty thousand. MOWBRAY The just proportion that we gave them out Let us sway on and face them in the field. ARCHBISHOP OF YORK What well-appointed leader fronts us here? Enter WESTMORELAND MOWBRAY I think it is my Lord of Westmoreland. WESTMORELAND Health and fair greeting from our general, The prince, Lord John and Duke of Lancaster. ARCHBISHOP OF YORK Say on, my Lord of Westmoreland, in peace: What doth concern your coming? WESTMORELAND Then, my lord, Unto your grace do I in chief address The substance of my speech. If that rebellion Came like itself, in base and abject routs, Led on by bloody youth, guarded with rags, And countenanced by boys and beggary, I say, if damn'd commotion so appear'd, In his true, native and most proper shape, You, reverend father, and these noble lords Had not been here, to dress the ugly form Of base and bloody insurrection With your fair honours. You, lord archbishop, Whose see is by a civil peace maintained, Whose beard the silver hand of peace hath touch'd, Whose learning and good letters peace hath tutor'd, Whose white investments figure innocence, The dove and very blessed spirit of peace, Wherefore do you so ill translate ourself Out of the speech of peace that bears such grace, Into the harsh and boisterous tongue of war; Turning your books to graves, your ink to blood, Your pens to lances and your tongue divine To a trumpet and a point of war? ARCHBISHOP OF YORK Wherefore do I this? so the question stands. Briefly to this end: we are all diseased, And with our surfeiting and wanton hours Have brought ourselves into a burning fever, And we must bleed for it; of which disease Our late king, Richard, being infected, died. But, my most noble Lord of Westmoreland, I take not on me here as a physician, Nor do I as an enemy to peace Troop in the throngs of military men; But rather show awhile like fearful war, To diet rank minds sick of happiness And purge the obstructions which begin to stop Our very veins of life. Hear me more plainly. I have in equal balance justly weigh'd What wrongs our arms may do, what wrongs we suffer, And find our griefs heavier than our offences. We see which way the stream of time doth run, And are enforced from our most quiet there By the rough torrent of occasion; And have the summary of all our griefs, When time shall serve, to show in articles; Which long ere this we offer'd to the king, And might by no suit gain our audience: When we are wrong'd and would unfold our griefs, We are denied access unto his person Even by those men that most have done us wrong. The dangers of the days but newly gone, Whose memory is written on the earth With yet appearing blood, and the examples Of every minute's instance, present now, Hath put us in these ill-beseeming arms, Not to break peace or any branch of it, But to establish here a peace indeed, Concurring both in name and quality. WESTMORELAND When ever yet was your appeal denied? Wherein have you been galled by the king? What peer hath been suborn'd to grate on you, That you should seal this lawless bloody book Of forged rebellion with a seal divine And consecrate commotion's bitter edge? ARCHBISHOP OF YORK My brother general, the commonwealth, To brother born an household cruelty, I make my quarrel in particular. WESTMORELAND There is no need of any such redress; Or if there were, it not belongs to you. MOWBRAY Why not to him in part, and to us all That feel the bruises of the days before, And suffer the condition of these times To lay a heavy and unequal hand Upon our honours? WESTMORELAND O, my good Lord Mowbray, Construe the times to their necessities, And you shall say indeed, it is the time, And not the king, that doth you injuries. Yet for your part, it not appears to me Either from the king or in the present time That you should have an inch of any ground To build a grief on: were you not restored To all the Duke of Norfolk's signories, Your noble and right well remember'd father's? MOWBRAY What thing, in honour, had my father lost, That need to be revived and breathed in me? The king that loved him, as the state stood then, Was force perforce compell'd to banish him: And then that Harry Bolingbroke and he, Being mounted and both roused in their seats, Their neighing coursers daring of the spur, Their armed staves in charge, their beavers down, Their eyes of fire sparking through sights of steel And the loud trumpet blowing them together, Then, then, when there was nothing could have stay'd My father from the breast of Bolingbroke, O when the king did throw his warder down, His own life hung upon the staff he threw; Then threw he down himself and all their lives That by indictment and by dint of sword Have since miscarried under Bolingbroke. WESTMORELAND You speak, Lord Mowbray, now you know not what. The Earl of Hereford was reputed then In England the most valiant gentlemen: Who knows on whom fortune would then have smiled? But if your father had been victor there, He ne'er had borne it out of Coventry: For all the country in a general voice Cried hate upon him; and all their prayers and love Were set on Hereford, whom they doted on And bless'd and graced indeed, more than the king. But this is mere digression from my purpose. Here come I from our princely general To know your griefs; to tell you from his grace That he will give you audience; and wherein It shall appear that your demands are just, You shall enjoy them, every thing set off That might so much as think you enemies. MOWBRAY But he hath forced us to compel this offer; And it proceeds from policy, not love. WESTMORELAND Mowbray, you overween to take it so; This offer comes from mercy, not from fear: For, lo! within a ken our army lies, Upon mine honour, all too confident To give admittance to a thought of fear. Our battle is more full of names than yours, Our men more perfect in the use of arms, Our armour all as strong, our cause the best; Then reason will our heart should be as good Say you not then our offer is compell'd. MOWBRAY Well, by my will we shall admit no parley. WESTMORELAND That argues but the shame of your offence: A rotten case abides no handling. HASTINGS Hath the Prince John a full commission, In very ample virtue of his father, To hear and absolutely to determine Of what conditions we shall stand upon? WESTMORELAND That is intended in the general's name: I muse you make so slight a question. ARCHBISHOP OF YORK Then take, my Lord of Westmoreland, this schedule, For this contains our general grievances: Each several article herein redress'd, All members of our cause, both here and hence, That are insinew'd to this action, Acquitted by a true substantial form And present execution of our wills To us and to our purposes confined, We come within our awful banks again And knit our powers to the arm of peace. WESTMORELAND This will I show the general. Please you, lords, In sight of both our battles we may meet; And either end in peace, which God so frame! Or to the place of difference call the swords Which must decide it. ARCHBISHOP OF YORK My lord, we will do so. Exit WESTMORELAND MOWBRAY There is a thing within my bosom tells me That no conditions of our peace can stand. HASTINGS Fear you not that: if we can make our peace Upon such large terms and so absolute As our conditions shall consist upon, Our peace shall stand as firm as rocky mountains. MOWBRAY Yea, but our valuation shall be such That every slight and false-derived cause, Yea, every idle, nice and wanton reason Shall to the king taste of this action; That, were our royal faiths martyrs in love, We shall be winnow'd with so rough a wind That even our corn shall seem as light as chaff And good from bad find no partition. ARCHBISHOP OF YORK No, no, my lord. Note this; the king is weary Of dainty and such picking grievances: For he hath found to end one doubt by death Revives two greater in the heirs of life, And therefore will he wipe his tables clean And keep no tell-tale to his memory That may repeat and history his loss To new remembrance; for full well he knows He cannot so precisely weed this land As his misdoubts present occasion: His foes are so enrooted with his friends That, plucking to unfix an enemy, He doth unfasten so and shake a friend: So that this land, like an offensive wife That hath enraged him on to offer strokes, As he is striking, holds his infant up And hangs resolved correction in the arm That was uprear'd to execution. HASTINGS Besides, the king hath wasted all his rods On late offenders, that he now doth lack The very instruments of chastisement: So that his power, like to a fangless lion, May offer, but not hold. ARCHBISHOP OF YORK 'Tis very true: And therefore be assured, my good lord marshal, If we do now make our atonement well, Our peace will, like a broken limb united, Grow stronger for the breaking. MOWBRAY Be it so. Here is return'd my Lord of Westmoreland. Re-enter WESTMORELAND WESTMORELAND The prince is here at hand: pleaseth your lordship To meet his grace just distance 'tween our armies. MOWBRAY Your grace of York, in God's name then, set forward. ARCHBISHOP OF YORK Before, and greet his grace: my lord, we come. Exeunt''' wordlist = wordstring.split() wordfreq = [wordlist.count(w) for w in wordlist] print("String\n {} \n".format(wordstring)) print("List\n {} \n".format(str(wordlist))) print("Frequencies\n {} \n".format(str(wordfreq))) print("Pairs\n {}".format(str(dict(zip(wordlist, wordfreq))))) print("Edit I made to show how to pull from IntellijIdea") print("Adding my two cents here")
36.154605
64
0.786189
[ "MIT" ]
onepseudoxy/Python
CountMillionCharacter.py
10,991
Python
""" YQL out mkt cap and currency to fill out yahoo table """ """ TODO: retreive lists of 100 symbols from database and update""" """ Results are intented to use while matching yahoo tickers, which one has mkt cap? which ones has sector? """ import mysql.connector import stockretriever import sys import time from random import randint cnx = mysql.connector.connect(user='root', password='root', database='yahoo') cursor = cnx.cursor() sleeptime = 10 add_market_cap = ("INSERT INTO stocks " "(symbol, market_cap, currency) " "VALUES (%s, %s, %s) " "ON DUPLICATE KEY UPDATE market_cap=VALUES(market_cap), currency=VALUES(currency)") get_new_symbols = """SELECT symbol FROM yahoo.stocks WHERE market_cap is NULL and currency is NULL""" try: cursor.execute(get_new_symbols) except mysql.connector.errors.IntegrityError, e: print(e) for result in cursor.fetchall(): for symbol in result: data = [] market_cap = "" currency = "" try: data = stockretriever.get_current_info([symbol]) except TypeError as e: #print "Typerror {0}: {1}".format(e.errno, e.strerror) print "Type error, could not fetch current info on ", symbol except Exception as e: print(e) try: currency = data['Currency'] market_cap = data['MarketCapitalization'] except Exception as e: print "No currency or mkt cap error", e continue data_company = (symbol, market_cap, currency) try: cursor.execute(add_market_cap, data_company) except mysql.connector.errors.IntegrityError, e: print(e) continue try: print "Success updating", symbol, currency, market_cap except UnicodeEncodeError as e: print e cnx.commit() time.sleep(randint(0,sleeptime)) cursor.close() cnx.close()
27.805556
111
0.618881
[ "BSD-3-Clause" ]
pettersoderlund/fondout
script/StockScraper-master/update_market_cap_yahoo.py
2,002
Python
import os import time import datetime import socket import platform import sys from multiprocessing.dummy import Pool as ThreadPool from colorama import Fore, Back, Style def rtspbrute(ip1): log=open("logs",'r') if ip1 not in log: flag=0 ip1 = ip1[:-1] os.system("mkdir -p Hikvision/%s 2> /dev/null"%(str(ip1).strip())) dat=datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') os.system("mkdir Hikvision/%s/%s 2>/dev/null" %(ip1.strip(),dat.strip())) for passw in passread: chann=1 passw = passw[:-1] print Fore.YELLOW+"\nRunning '%s' with password '%s'\n" %(str(ip1).strip(), str(passw)) os.system("ffmpeg -v quiet -stimeout 7000000 -rtsp_transport tcp -y -i rtsp://admin:%s@%s:554/Streaming/Channels/101/ -ss 00:00:01.50 -vframes 1 Hikvision/%s/%s_temp.jpg " %(str(passw).strip(),str(ip1).strip(),str(ip1).strip(),ip1.strip())) if os.path.exists("Hikvision/%s/%s_temp.jpg" %(str(ip1).strip(),str(ip1).strip())): print Fore.GREEN + "Found Access of %s with password %s" %(str(ip1).strip(), str(passw)) print(Style.RESET_ALL) access = open("hik-access-list","a") print >> access, ("rtsp://admin:%s@%s:554/Streaming/Channels/101/" %(str(passw),str(ip1).strip())) access.close() log = open("logs","a") print >> log, (str(ip1)) flag=1 while chann<=3: print "Trying to take screenshot of Channel No. "+str(chann) os.system("ffmpeg -v quiet -stimeout 7000000 -rtsp_transport tcp -y -i rtsp://admin:%s@%s:554/Streaming/Channels/%s01/ -ss 00:00:01.50 -vframes 1 Hikvision/%s/%s/%s_%s.jpg " %(str(passw).strip(),str(ip1).strip(),str(chann),str(ip1).strip(),str(dat).strip(),ip1.strip(),str(chann)) ) chann=chann+1 if flag == 1: break return 1 if __name__ == "__main__": iplist = sys.argv[1] f = open(iplist,"r") ip = f.readlines() passlist = sys.argv[2] password = open(passlist,"r") passread = password.readlines() access = open("hik-access-list","w") access.close() pool = ThreadPool(100) results = pool.map(rtspbrute, ip) pool.close() pool.join() os.system("find Hikvision/ -type d -empty -delete") os.system("python pics-viewer.py Hikvision") os.system("mv index.html Hikvision.html") print Fore.CYAN+"\n\nFINISHED\n"
38.413793
287
0.658887
[ "MIT" ]
haka110/Cam-Brute
hik-brute.py
2,228
Python
# Copyright (c) 2014 eBay Software Foundation # Copyright 2015 HP Software, LLC # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ import horizon from openstack_dashboard.dashboards.project import dashboard class Clusters(horizon.Panel): name = _("Clusters") slug = 'database_clusters' permissions = ('openstack.services.database', 'openstack.services.object-store',) dashboard.Project.register(Clusters)
33.677419
78
0.733716
[ "Apache-2.0" ]
NeCTAR-RC/trove-dashboard
trove_dashboard/content/database_clusters/panel.py
1,044
Python
# Generated by Django 2.2.1 on 2019-07-06 21:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('publish', '0031_bundle_description'), ] operations = [ migrations.CreateModel( name='Docset', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('docset_id', models.CharField(max_length=255)), ('name', models.CharField(default='', max_length=255)), ], ), ]
26.863636
114
0.57868
[ "BSD-3-Clause" ]
SFDO-Tooling/sfdoc
sfdoc/publish/migrations/0032_docset.py
591
Python
from functools import partial from g_code_test_data.http.http_settings import HTTP_SETTINGS from g_code_test_data.g_code_configuration import HTTPGCodeConfirmConfig from robot_server.service.legacy.routers.modules import post_serial_command from robot_server.service.legacy.models.modules import SerialCommand from opentrons.hardware_control.emulation.magdeck import SERIAL as SERIAL_NUM MAGDECK_CALIBRATE = HTTPGCodeConfirmConfig( name='magdeck_calibrate', executable=partial( post_serial_command, command=SerialCommand(command_type='calibrate'), serial=SERIAL_NUM, ), settings=HTTP_SETTINGS, ) MAGDECK_DEACTIVATE = HTTPGCodeConfirmConfig( name='magdeck_deactivate', executable=partial( post_serial_command, command=SerialCommand(command_type='deactivate'), serial=SERIAL_NUM, ), settings=HTTP_SETTINGS, ) MAGDECK_ENGAGE = HTTPGCodeConfirmConfig( name='magdeck_engage', executable=partial( post_serial_command, command=SerialCommand(command_type='engage', args=[5.1]), serial=SERIAL_NUM, ), settings=HTTP_SETTINGS, ) MAGDECK_CONFIGURATIONS = [ MAGDECK_CALIBRATE, MAGDECK_DEACTIVATE, MAGDECK_ENGAGE, ]
29.452381
77
0.760711
[ "Apache-2.0" ]
MarcelRobitaille/opentrons
g-code-testing/g_code_test_data/http/modules/magdeck.py
1,237
Python
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2018 Dan Tès <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.api.core import * class ChannelAdminLogEventActionTogglePreHistoryHidden(Object): """Attributes: ID: ``0x5f5c95f1`` Args: new_value: ``bool`` """ ID = 0x5f5c95f1 def __init__(self, new_value: bool): self.new_value = new_value # Bool @staticmethod def read(b: BytesIO, *args) -> "ChannelAdminLogEventActionTogglePreHistoryHidden": # No flags new_value = Bool.read(b) return ChannelAdminLogEventActionTogglePreHistoryHidden(new_value) def write(self) -> bytes: b = BytesIO() b.write(Int(self.ID, False)) # No flags b.write(Bool(self.new_value)) return b.getvalue()
29.12963
86
0.686586
[ "MIT" ]
block1o1/CryptoPredicted
ENV/lib/python3.5/site-packages/pyrogram/api/types/channel_admin_log_event_action_toggle_pre_history_hidden.py
1,574
Python
# https://github.com/iliaschalkidis/lmtc-eurlex57k/blob/master/metrics.py from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score import numpy as np def mean_precision_k(y_true, y_score, k=10): """Mean precision at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- mean precision @k : float """ p_ks = [] for y_t, y_s in zip(y_true, y_score): if np.sum(y_t == 1): p_ks.append(ranking_precision_score(y_t, y_s, k=k)) return np.mean(p_ks) def mean_recall_k(y_true, y_score, k=10): """Mean recall at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- mean recall @k : float """ r_ks = [] for y_t, y_s in zip(y_true, y_score): if np.sum(y_t == 1): r_ks.append(ranking_recall_score(y_t, y_s, k=k)) return np.mean(r_ks) def mean_ndcg_score(y_true, y_score, k=10, gains="exponential"): """Normalized discounted cumulative gain (NDCG) at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. gains : str Whether gains should be "exponential" (default) or "linear". Returns ------- Mean NDCG @k : float """ ndcg_s = [] for y_t, y_s in zip(y_true, y_score): if np.sum(y_t == 1): ndcg_s.append(ndcg_score(y_t, y_s, k=k, gains=gains)) return np.mean(ndcg_s) def mean_rprecision_k(y_true, y_score, k=10): """Mean precision at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- mean precision @k : float """ p_ks = [] for y_t, y_s in zip(y_true, y_score): if np.sum(y_t == 1): p_ks.append(ranking_rprecision_score(y_t, y_s, k=k)) return np.mean(p_ks) def ranking_recall_score(y_true, y_score, k=10): # https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf """Recall at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- precision @k : float """ unique_y = np.unique(y_true) if len(unique_y) == 1: return ValueError("The score cannot be approximated.") elif len(unique_y) > 2: raise ValueError("Only supported for two relevance levels.") pos_label = unique_y[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) n_relevant = np.sum(y_true == pos_label) return float(n_relevant) / n_pos def ranking_precision_score(y_true, y_score, k=10): """Precision at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- precision @k : float """ unique_y = np.unique(y_true) if len(unique_y) == 1: return ValueError("The score cannot be approximated.") elif len(unique_y) > 2: raise ValueError("Only supported for two relevance levels.") pos_label = unique_y[1] order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) n_relevant = np.sum(y_true == pos_label) return float(n_relevant) / k def ranking_rprecision_score(y_true, y_score, k=10): """Precision at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- precision @k : float """ unique_y = np.unique(y_true) if len(unique_y) == 1: return ValueError("The score cannot be approximated.") elif len(unique_y) > 2: raise ValueError("Only supported for two relevance levels.") pos_label = unique_y[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) n_relevant = np.sum(y_true == pos_label) # Divide by min(n_pos, k) such that the best achievable score is always 1.0. return float(n_relevant) / min(k, n_pos) def average_precision_score(y_true, y_score, k=10): """Average precision at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. Returns ------- average precision @k : float """ unique_y = np.unique(y_true) if len(unique_y) == 1: return ValueError("The score cannot be approximated.") elif len(unique_y) > 2: raise ValueError("Only supported for two relevance levels.") pos_label = unique_y[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1][:min(n_pos, k)] y_true = np.asarray(y_true)[order] score = 0 for i in range(len(y_true)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec if n_pos == 0: return 0 return score / n_pos def dcg_score(y_true, y_score, k=10, gains="exponential"): """Discounted cumulative gain (DCG) at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. gains : str Whether gains should be "exponential" (default) or "linear". Returns ------- DCG @k : float """ order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) if gains == "exponential": gains = 2 ** y_true - 1 elif gains == "linear": gains = y_true else: raise ValueError("Invalid gains option.") # highest rank is 1 so +2 instead of +1 discounts = np.log2(np.arange(len(y_true)) + 2) return np.sum(gains / discounts) def ndcg_score(y_true, y_score, k=10, gains="exponential"): """Normalized discounted cumulative gain (NDCG) at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). y_score : array-like, shape = [n_samples] Predicted scores. k : int Rank. gains : str Whether gains should be "exponential" (default) or "linear". Returns ------- NDCG @k : float """ best = dcg_score(y_true, y_true, k, gains) actual = dcg_score(y_true, y_score, k, gains) return actual / best # Alternative API. def dcg_from_ranking(y_true, ranking): """Discounted cumulative gain (DCG) at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). ranking : array-like, shape = [k] Document indices, i.e., ranking[0] is the index of top-ranked document, ranking[1] is the index of second-ranked document, ... k : int Rank. Returns ------- DCG @k : float """ y_true = np.asarray(y_true) ranking = np.asarray(ranking) rel = y_true[ranking] gains = 2 ** rel - 1 discounts = np.log2(np.arange(len(ranking)) + 2) return np.sum(gains / discounts) def ndcg_from_ranking(y_true, ranking): """Normalized discounted cumulative gain (NDCG) at rank k Parameters ---------- y_true : array-like, shape = [n_samples] Ground truth (true relevance labels). ranking : array-like, shape = [k] Document indices, i.e., ranking[0] is the index of top-ranked document, ranking[1] is the index of second-ranked document, ... k : int Rank. Returns ------- NDCG @k : float """ k = len(ranking) best_ranking = np.argsort(y_true)[::-1] best = dcg_from_ranking(y_true, best_ranking[:k]) return dcg_from_ranking(y_true, ranking) / best def colwise_accuracy(y_true,y_pred): y_pred=y_pred.T y_true=y_true.T acc_list=[] for cate in range(0,y_pred.shape[0]): acc_list.append(accuracy_score(y_pred[cate],y_true[cate])) return sum(acc_list)/len(acc_list) def calculate_metrics(pred, target, threshold=0.5): pred = np.array(pred > threshold, dtype=float) return {'Accuracy': accuracy_score(y_true=target, y_pred=pred), 'Column-wise Accuracy': colwise_accuracy(y_true=target, y_pred=pred), 'micro/precision': precision_score(y_true=target, y_pred=pred, average='micro'), 'micro/recall': recall_score(y_true=target, y_pred=pred, average='micro'), 'micro/f1': f1_score(y_true=target, y_pred=pred, average='micro'), 'macro/precision': precision_score(y_true=target, y_pred=pred, average='macro'), 'macro/recall': recall_score(y_true=target, y_pred=pred, average='macro'), 'macro/f1': f1_score(y_true=target, y_pred=pred, average='macro'), 'samples/precision': precision_score(y_true=target, y_pred=pred, average='samples'), 'samples/recall': recall_score(y_true=target, y_pred=pred, average='samples'), 'samples/f1': f1_score(y_true=target, y_pred=pred, average='samples'), }
28.360434
96
0.602389
[ "Apache-2.0" ]
myeonghak/kobert-multi-label-VOC-classifier
voc_classifier/metrics_for_multilabel.py
10,465
Python
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import logging import time import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid.dygraph.dygraph_to_static import ProgramTranslator from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.jit import declarative from paddle.fluid.dygraph.nn import Embedding from paddle.fluid.optimizer import SGDOptimizer PRINT_STEP = 20 SEED = 2020 program_translator = ProgramTranslator() class SimpleLSTMRNN(fluid.Layer): def __init__(self, hidden_size, num_steps, num_layers=2, init_scale=0.1, dropout=None): super(SimpleLSTMRNN, self).__init__() self._hidden_size = hidden_size self._num_layers = num_layers self._init_scale = init_scale self._dropout = dropout self._num_steps = num_steps self.cell_array = [] self.hidden_array = [] self.weight_1_arr = [] self.weight_2_arr = [] self.bias_arr = [] self.mask_array = [] for i in range(self._num_layers): weight_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)), shape=[self._hidden_size * 2, self._hidden_size * 4], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)) self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1)) bias_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)), shape=[self._hidden_size * 4], dtype="float32", default_initializer=fluid.initializer.Constant(0.0)) self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1)) def forward(self, input_embedding, init_hidden=None, init_cell=None): cell_array = [] hidden_array = [] for i in range(self._num_layers): hidden_array.append(init_hidden[i]) cell_array.append(init_cell[i]) res = [] for index in range(self._num_steps): step_input = input_embedding[:, index, :] for k in range(self._num_layers): pre_hidden = hidden_array[k] pre_cell = cell_array[k] weight_1 = self.weight_1_arr[k] bias = self.bias_arr[k] nn = fluid.layers.concat([step_input, pre_hidden], 1) gate_input = fluid.layers.matmul(x=nn, y=weight_1) gate_input = fluid.layers.elementwise_add(gate_input, bias) i, j, f, o = fluid.layers.split( gate_input, num_or_sections=4, dim=-1) c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid( i) * fluid.layers.tanh(j) m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o) hidden_array[k] = m cell_array[k] = c step_input = m if self._dropout is not None and self._dropout > 0.0: step_input = fluid.layers.dropout( step_input, dropout_prob=self._dropout, dropout_implementation='upscale_in_train') res.append(step_input) real_res = fluid.layers.concat(res, 1) real_res = fluid.layers.reshape( real_res, [-1, self._num_steps, self._hidden_size]) last_hidden = fluid.layers.concat(hidden_array, 1) last_hidden = fluid.layers.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size]) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(cell_array, 1) last_cell = fluid.layers.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size]) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) return real_res, last_hidden, last_cell class PtbModel(fluid.Layer): def __init__(self, hidden_size, vocab_size, num_layers=2, num_steps=20, init_scale=0.1, dropout=None): super(PtbModel, self).__init__() self.hidden_size = hidden_size self.vocab_size = vocab_size self.init_scale = init_scale self.num_layers = num_layers self.num_steps = num_steps self.dropout = dropout self.simple_lstm_rnn = SimpleLSTMRNN( hidden_size, num_steps, num_layers=num_layers, init_scale=init_scale, dropout=dropout) self.embedding = Embedding( size=[vocab_size, hidden_size], dtype='float32', is_sparse=False, param_attr=fluid.ParamAttr( name='embedding_para', initializer=fluid.initializer.UniformInitializer( low=-init_scale, high=init_scale))) self.softmax_weight = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.hidden_size, self.vocab_size], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self.init_scale, high=self.init_scale)) self.softmax_bias = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.vocab_size], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self.init_scale, high=self.init_scale)) def build_once(self, input, label, init_hidden, init_cell): pass @declarative def forward(self, input, label, init_hidden, init_cell): init_h = fluid.layers.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size]) init_c = fluid.layers.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size]) x_emb = self.embedding(input) x_emb = fluid.layers.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size]) if self.dropout is not None and self.dropout > 0.0: x_emb = fluid.layers.dropout( x_emb, dropout_prob=self.dropout, dropout_implementation='upscale_in_train') rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h, init_c) projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False) loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) return loss, last_hidden, last_cell def debug_emb(self): np.save("emb_grad", self.x_emb.gradient()) def train(place): num_layers = 1 batch_size = 4 hidden_size = 10 num_steps = 3 init_scale = 0.1 max_epoch = 1 dropout = 0.0 vocab_size = 1000 batch_num = 200 with fluid.dygraph.guard(place): fluid.default_startup_program().random_seed = SEED fluid.default_main_program().random_seed = SEED ptb_model = PtbModel( hidden_size=hidden_size, vocab_size=vocab_size, num_layers=num_layers, num_steps=num_steps, init_scale=init_scale, dropout=dropout) sgd = SGDOptimizer( learning_rate=1e-3, parameter_list=ptb_model.parameters()) for epoch_id in range(max_epoch): total_loss = 0.0 iters = 0.0 total_sample = 0 init_hidden_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') init_cell_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') init_hidden = to_variable(init_hidden_data) init_cell = to_variable(init_cell_data) for step_id in range(batch_num): x_data = np.arange(12).reshape(4, 3).astype('int64') y_data = np.arange(1, 13).reshape(4, 3).astype('int64') y_data = y_data.reshape((-1, 1)) x_data = x_data.reshape((-1, num_steps, 1)) y_data = y_data.reshape((-1, num_steps, 1)) x = to_variable(x_data) y = to_variable(y_data) dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden, init_cell) out_loss = dy_loss.numpy() dy_loss.backward() sgd.minimize(dy_loss) ptb_model.clear_gradients() total_loss += out_loss iters += num_steps total_sample += 1 if step_id % PRINT_STEP == 0: if step_id == 0: logging.info("epoch %d | step %d, loss %0.3f" % ( epoch_id, step_id, total_loss / total_sample)) avg_batch_time = time.time() else: speed = PRINT_STEP / (time.time() - avg_batch_time) logging.info( "epoch %d | step %d, loss %0.3f, speed %.3f steps/s" % (epoch_id, step_id, total_loss / total_sample, speed)) avg_batch_time = time.time() return out_loss, last_hidden.numpy(), last_cell.numpy() def train_dygraph(place): program_translator.enable(False) return train(place) def train_static(place): program_translator.enable(True) return train(place) class TestPtb(unittest.TestCase): def setUp(self): self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \ else fluid.CPUPlace() def test_check_result(self): loss_1, hidden_1, cell_1 = train_static(self.place) loss_2, hidden_2, cell_2 = train_dygraph(self.place) self.assertTrue( np.allclose(loss_1, loss_2), msg="static loss: {} \ndygraph loss: {}".format(loss_1, loss_2)) self.assertTrue( np.allclose(hidden_1, hidden_2), msg="static hidden: {} \ndygraph acc1: {}".format(hidden_1, hidden_2)) self.assertTrue( np.allclose(cell_1, cell_2), msg="static cell: {} \ndygraph cell: {}".format(cell_1, cell_2)) if __name__ == '__main__': unittest.main()
37.301887
80
0.581858
[ "Apache-2.0" ]
92lqllearning/Paddle
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py
11,862
Python
from tqdm import tqdm import matplotlib.pyplot as plt from matplotlib import rc rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) rc('text.latex', preamble=r'''\usepackage{amsmath} \usepackage{physics} \usepackage{siunitx} ''') rc('figure', dpi=150) def plot_and_save(plotting_func): plotting_func() plt.savefig(str(plotting_func.__name__).split(sep='.')[0] + '.pdf', bbox_inches='tight', pad_inches = 0) plt.close() if __name__ == "__main__": plotter_list = [] for plotting_func in tqdm(plotter_list): plot_and_save(plotting_func)
26.818182
108
0.69661
[ "Apache-2.0" ]
jacopok/notes
phd_courses/theoretical_high_energy_astroparticle/figures/make_all_figures.py
590
Python
# Generated by Django 3.2.9 on 2022-01-03 10:15 import cloudinary.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('neighbourhood', '0003_auto_20211222_2324'), ] operations = [ migrations.CreateModel( name='Location', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, null=True)), ('created_on', models.DateTimeField(auto_now_add=True, null=True)), ('updated_on', models.DateTimeField(auto_now=True, null=True)), ], ), migrations.RemoveField( model_name='profile', name='name', ), migrations.AddField( model_name='neighbourhood', name='description', field=models.TextField(max_length=200, null=True), ), migrations.AddField( model_name='neighbourhood', name='hood_image', field=cloudinary.models.CloudinaryField(max_length=255, null=True, verbose_name='hood_image'), ), migrations.AddField( model_name='neighbourhood', name='location', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='neighbourhood.location'), ), migrations.AddField( model_name='profile', name='location', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='neighbourhood.location'), ), ]
34.857143
121
0.600117
[ "MIT" ]
Maryan23/MyHood
neighbourhood/migrations/0004_auto_20220103_1315.py
1,708
Python
import deepSI from deepSI.systems.system import System_ss, System_data import numpy as np class NarendraLiBenchmark(System_ss): #https://arxiv.org/pdf/2003.14162.pdf """docstring for NarendraLiBenchmark""" def __init__(self): '''Noise, system setting and x0 settings''' super(NarendraLiBenchmark, self).__init__(nx=2) def f(self,x,u): x1,x2 = x x1new = (x1/(1+x1**2)+1)*np.sin(x2) x2new = x2*np.cos(x2) + x1*np.exp(-(x1**2+x2**2)/8) + u**3/(1+u**2+0.5*np.cos(x1+x2)) return [x1new,x2new] def h(self,x): x1,x2 = x return x1/(1+0.5*np.sin(x2)) + x2/(1+0.5*np.sin(x1)) + self.random.normal(scale=0.1) def get_train_data(self): exp = System_data(u=self.random.uniform(low=-2.5,high=2.5,size=(2000,))) return self.apply_experiment(exp) def get_test_data(self): exp = System_data(u=self.random.uniform(low=-2.5,high=2.5,size=(2000,))) return self.apply_experiment(exp) if __name__ == '__main__': from deepSI import fit_systems sys = NarendraLiBenchmark() sys_data = sys.get_train_data() SYS = fit_systems.System_IO_fit_linear # sys_fit, score, kwargs = fit_systems.fit_system_tuner(SYS, sys_data, dict(na=range(0,7),nb=range(1,7))) score, sys_fit, kwargs, _ = fit_systems.grid_search(SYS, sys_data, dict(na=range(0,7),nb=range(1,7))) sys_data_predict = sys_fit.apply_experiment(sys_data) sys_data.plot() sys_data_predict.plot(show=True)
37.35
109
0.655957
[ "BSD-3-Clause" ]
csutakbalazs/deepSI
deepSI/systems/narendra_li_benchmark.py
1,494
Python
from __future__ import absolute_import, division, print_function, \ with_statement import sys import os sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../')) from shadowsocksr.crypto import rc4_md5 from shadowsocksr.crypto import openssl from shadowsocksr.crypto import sodium from shadowsocksr.crypto import table def run(func): try: func() except: pass def run_n(func, name): try: func(name) except: pass def main(): print("\n""rc4_md5") rc4_md5.test() print("\n""aes-256-cfb") openssl.test_aes_256_cfb() print("\n""aes-128-cfb") openssl.test_aes_128_cfb() print("\n""bf-cfb") run(openssl.test_bf_cfb) print("\n""camellia-128-cfb") run_n(openssl.run_method, "camellia-128-cfb") print("\n""cast5-cfb") run_n(openssl.run_method, "cast5-cfb") print("\n""idea-cfb") run_n(openssl.run_method, "idea-cfb") print("\n""seed-cfb") run_n(openssl.run_method, "seed-cfb") print("\n""salsa20") run(sodium.test_salsa20) print("\n""chacha20") run(sodium.test_chacha20) if __name__ == '__main__': main()
20.54902
67
0.714695
[ "Apache-2.0" ]
hcaijin/ssrspeedtest
shadowsocksr/encrypt_test.py
1,048
Python
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to implement an AWS Lambda function that publishes messages to an AWS IoT Greengrass connector. """ # snippet-start:[greengrass.python.connector-modbus-rtu-usage.complete] import json import greengrasssdk iot_client = greengrasssdk.client('iot-data') send_topic = 'modbus/adapter/request' def create_read_coils_request(): return { "request": { "operation": "ReadCoilsRequest", "device": 1, "address": 0x01, "count": 1}, "id": "TestRequest"} def publish_basic_message(): iot_client.publish( topic=send_topic, payload=json.dumps(create_read_coils_request())) publish_basic_message() # In this example, the required AWS Lambda handler is never called. def function_handler(event, context): return # snippet-end:[greengrass.python.connector-modbus-rtu-usage.complete]
24.121951
75
0.706775
[ "Apache-2.0" ]
1n5an1ty/aws-doc-sdk-examples
python/example_code/greengrass/snippets/connector_modbus_rtu_usage.py
989
Python
import constraint coins = [1, 2, 5, 10, 20, 50, 100, 200] CSP = constraint.Problem() for coin in coins: CSP.addVariable(coin, range(0, 201, coin)) CSP.addConstraint(constraint.ExactSumConstraint(200)) print len(CSP.getSolutions())
26.222222
53
0.724576
[ "MIT" ]
rik0/rk-exempla
some-euler/p31.py
236
Python
#!/usr/bin/env python # file trying to apply and test the pid controller on carla. import glob import os import sys import time import matplotlib.pyplot as plt from PID_controller import PID import numpy as np import speed_profile_reader as spr try: sys.path.append(glob.glob('../**/*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla import random import time class TestData: def __init__(self, total_duration, time_increment): self._iter_num = 0 self.time = np.empty([int(total_duration / time_increment) + 1, 1]) self.setpoint = np.empty([int(total_duration / time_increment) + 1, 1]) self.actual_velocity = np.empty([int(total_duration / time_increment) + 1, 1]) self.error = np.empty([int(total_duration / time_increment) + 1, 1]) def append_data(self, t, sp, vel, error): self.time[self._iter_num] = t self.setpoint[self._iter_num] = sp self.actual_velocity[self._iter_num] = vel self.error[self._iter_num] = error self._iter_num+=1 def plot(self): plt.figure() plt.plot(self.time, self.setpoint) plt.plot(self.time, self.actual_velocity) plt.xlabel('Time (s)') plt.ylabel('Velocity (m/s)') plt.title("PID Result") plt.figure() plt.plot(self.time, self.error, 'r--', label='error', alpha=0.75, linewidth=0.5) plt.plot(self.time, np.zeros(len(self.time)), 'k--', linewidth=0.5) plt.title("Controller Error") plt.show() class DataInit: K = { "Kp": 0.055734, "Ki": 0.0114169, "Kd": .00006 # For 10 m/s # "Kp": 0.055734, # "Ki": 0.0130169, # "Kd": .000006 # "Kp": 1, # "Ki": 0.0112, # "Kd": 0.000006 } total_duration = 20 sampling_period = 0.025 def main(): actor_list = [] verboseIsEnabled = None try: """ Section for starting the client and connecting to the server """ client = carla.Client('localhost', 2000) client.set_timeout(2.0) for arg in sys.argv: if (arg == '--verbose'): verboseIsEnabled = True if verboseIsEnabled: print('client version: %s' % client.get_client_version()) print('server version: %s' % client.get_server_version()) print('client to server connection status: {}'.format(client.get_server_version())) print('Retrieving the world data from server...') world = client.get_world() if verboseIsEnabled: print('{} \n'.format(world)) """ Section for retrieving the blueprints and spawn the actors """ blueprint_library = world.get_blueprint_library() if verboseIsEnabled: print('\nRetrieving CARLA blueprint library...') print('\nobject: %s\n\nblueprint methods: %s\n\nblueprint list:' % (type(blueprint_library), dir(blueprint_library)) ) for blueprint in blueprint_library: print(blueprint) audi_blueprint = blueprint_library.find('vehicle.audi.tt') print('\n%s\n' % audi_blueprint) color = '191,191,191' audi_blueprint.set_attribute('color', color) transform = carla.Transform( carla.Location( x=10.5, y=-1.8, z=38.5),carla.Rotation(yaw=0.0) ) vehicleEgo = world.spawn_actor(audi_blueprint, transform) actor_list.append(vehicleEgo) print('created %s' % vehicleEgo.type_id) color = random.choice(audi_blueprint.get_attribute('color').recommended_values) audi_blueprint.set_attribute('color', color) """ Section for initializing the PID testing """ user_input_sp = None while (not isinstance(user_input_sp, int)) and (not isinstance(user_input_sp, float)): user_input_sp = input('Enter the desired Setpoint:\n') data = TestData(DataInit.total_duration, DataInit.sampling_period) start = time.time() print('\nStarting test:\n\n' + 'Time(s) current_vel(m/s) setpoint_vel(m/s) throttle(%) pid_demand') time.sleep(2.5) print('.................................................................\n') time.sleep(1) # raise SystemExit p = PID( DataInit.K['Kp'], DataInit.K['Ki'], DataInit.K['Kd'] ) p.setPoint(user_input_sp) p.Integrator_min = -5 p.Integrator_max = 40 pid = 0 for _ in range(int(DataInit.total_duration / DataInit.sampling_period) + 1): measurement_value = vehicleEgo.get_velocity().x vehicleEgo.apply_control(carla.VehicleControl(pid)) if 1 > pid > 0 else vehicleEgo.apply_control(carla.VehicleControl(1)) if 0 > pid: vehicleEgo.apply_control(carla.VehicleControl(brake=abs(pid))) pid = p.update(measurement_value) data.append_data(round(time.time() - start, 2), p.getSetPoint(), round(vehicleEgo.get_velocity().x, 5), p.getError()) time.sleep(DataInit.sampling_period) print('%0.3f\t%0.2f\t\t\t%0.2f\t\t%0.2f\t%0.2f' % (time.time() - start, vehicleEgo.get_velocity().x, p.set_point, vehicleEgo.get_control().throttle, pid)) data.plot() print('\nError Mean (Steady State):\n' + str(round(np.absolute(np.mean(data.error[data.error.shape[0]/2:data.error.shape[0]])), 5)*100) + '%\n') finally: print('destroying actors') for actor in actor_list: actor.destroy() print('done.') if __name__ == '__main__': main()
33.593407
133
0.564279
[ "MIT" ]
AbdulHoffmann/carla_carissma
PythonAPI/carissma_project/PID_apply_static_sp.py
6,114
Python
{% if cookiecutter.use_celery == 'y' %} from __future__ import absolute_import import os from celery import Celery from django.apps import AppConfig from django.conf import settings if not settings.configured: # set the default Django settings module for the 'celery' program. os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings.local') # pragma: no cover app = Celery('{{cookiecutter.project_slug}}') class CeleryConfig(AppConfig): name = '{{cookiecutter.project_slug}}.taskapp' verbose_name = 'Celery Config' def ready(self): # Using a string here means the worker will not have to # pickle the object when using Windows. app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS, force=True) {% if cookiecutter.use_sentry_for_error_reporting == 'y' -%} if hasattr(settings, 'RAVEN_CONFIG'): # Celery signal registration from raven import Client as RavenClient from raven.contrib.celery import register_signal as raven_register_signal from raven.contrib.celery import register_logger_signal as raven_register_logger_signal raven_client = RavenClient(dsn=settings.RAVEN_CONFIG['DSN']) raven_register_logger_signal(raven_client) raven_register_signal(raven_client) {%- endif %} {% if cookiecutter.use_opbeat == 'y' -%} if hasattr(settings, 'OPBEAT'): from opbeat.contrib.django.models import client as opbeat_client from opbeat.contrib.django.models import logger as opbeat_logger from opbeat.contrib.django.models import register_handlers as opbeat_register_handlers from opbeat.contrib.celery import register_signal as opbeat_register_signal try: opbeat_register_signal(opbeat_client) except Exception as e: opbeat_logger.exception('Failed installing celery hook: %s' % e) if 'opbeat.contrib.django' in settings.INSTALLED_APPS: opbeat_register_handlers() {%- endif %} @app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request)) # pragma: no cover {% else %} # Use this as a starting point for your project with celery. # If you are not using celery, you can remove this app {% endif -%}
38.253968
99
0.688797
[ "Apache-2.0" ]
andkon/botstarter
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/taskapp/celery.py
2,410
Python
import logging import os from typing import Generator import pytest @pytest.fixture(scope="module", autouse=True) def change_to_resources_dir(test_resources, request): os.chdir(test_resources) yield os.chdir(request.config.invocation_dir) @pytest.fixture() def test_filename( change_to_resources_dir, storage, request ) -> Generator[str, None, None]: """Pushes a file to remote storage, yields its filename and then deletes it from remote storage""" filename = request.param storage.push_file(filename) yield filename storage.delete(filename) NAME_COLLISIONS_DIR_NAME = "storage_name_collisions" @pytest.fixture() def setup_name_collision(change_to_resources_dir, storage): """ Pushes files and dirs with colliding names to remote storage, yields files pushed and deletes everything at cleanup """ pushed_objects = storage.push(NAME_COLLISIONS_DIR_NAME) yield pushed_objects storage.delete(NAME_COLLISIONS_DIR_NAME) @pytest.fixture() def test_dirname( change_to_resources_dir, storage, request ) -> Generator[str, None, None]: """Pushes a directory to remote storage, yields its name and then deletes it from remote storage""" dirname = request.param storage.push_directory(dirname) yield dirname storage.delete(dirname) def test_delete_no_matches(storage, caplog): with caplog.at_level(logging.WARNING): deleted_files = storage.delete("there is no such file") assert len(deleted_files) == 0 assert "Not deleting anything" in caplog.text def test_delete_file(storage): storage.push_file("sample.txt", overwrite_existing=True) assert len(storage.list_objects("sample.txt")) == 1 deleted_objects = storage.delete("sample.txt") assert len(deleted_objects) == 1 assert len(storage.list_objects("sample.txt")) == 0 def test_delete_with_base_path(storage): base_path = "base_path" storage.set_remote_base_path(base_path) storage.push_file("sample.txt", overwrite_existing=True) assert len(storage.list_objects("sample.txt")) == 1 deleted_objects = storage.delete("sample.txt") assert len(deleted_objects) == 1 assert deleted_objects[0].name == f"{base_path}/sample.txt" def test_delete_dir(storage): storage.push_directory("sample_dir", overwrite_existing=True) assert len(storage.list_objects("sample_dir")) == 2 deleted_objects = storage.delete("sample_dir") assert len(deleted_objects) == 2 assert len(storage.list_objects("sample_dir")) == 0 @pytest.mark.parametrize( "test_filename", ["sample.txt"], indirect=["test_filename"], ) def test_push_file_empty_base_path(storage, test_filename): remote_objects = storage.push(test_filename) assert len(remote_objects) == 1 # we need lstrip because s3 paths (and names) start with "/" while google storage paths start without it... assert remote_objects[0].name.lstrip("/") == test_filename @pytest.mark.parametrize( "test_filename", ["sample.txt"], indirect=["test_filename"], ) def test_push_file_nonempty_base_path(storage, test_filename): base_path = "base_path" storage.set_remote_base_path(base_path) remote_objects = storage.push(test_filename) assert len(remote_objects) == 1 assert remote_objects[0].name.lstrip("/") == f"{base_path}/{test_filename}" @pytest.mark.parametrize( "test_dirname", ["sample_dir"], indirect=["test_dirname"], ) def test_push_directory(storage, test_dirname): remote_objects = storage.push(test_dirname) assert len(remote_objects) == 2 assert len(storage.list_objects(test_dirname)) == 2 @pytest.mark.parametrize( "file_or_dir_name", ["non_existing_file.txt", "non_existing_dir"] ) def test_push_non_existing(storage, file_or_dir_name): with pytest.raises( FileNotFoundError, match="does not refer to a file or directory" ): storage.push(file_or_dir_name) @pytest.mark.parametrize( "test_filename", ["sample.txt"], indirect=["test_filename"], ) def test_pull_file(storage, test_filename, tmpdir): local_base_dir = tmpdir.mkdir("remote_storage") storage.pull(test_filename, local_base_dir=local_base_dir) assert os.path.isfile(os.path.join(local_base_dir, test_filename)) pulled_files = storage.pull(test_filename) assert len(pulled_files) == 0 @pytest.mark.parametrize( "test_filename", ["sample.txt"], indirect=["test_filename"], ) def test_pull_file_to_existing_dir_path(storage, test_filename, tmpdir): local_base_dir = tmpdir.mkdir("remote_storage") local_base_dir.mkdir(test_filename) with pytest.raises( FileExistsError, match="Cannot pull file to a path which is an existing directory:", ): storage.pull(test_filename, local_base_dir=local_base_dir) @pytest.mark.parametrize( "test_dirname", ["sample_dir"], indirect=["test_dirname"], ) def test_pull_dir(storage, test_dirname, tmpdir): local_base_dir = tmpdir.mkdir("remote_storage") storage.pull(test_dirname, local_base_dir=local_base_dir) assert os.path.isdir(os.path.join(local_base_dir, test_dirname)) assert len(os.listdir(os.path.join(local_base_dir, test_dirname))) == 2 pulled_files = storage.pull(test_dirname) assert len(pulled_files) == 0 @pytest.mark.parametrize( "file_or_dir_name", ["non_existing_file.txt", "non_existing_dir"] ) def test_pull_non_existing(storage, file_or_dir_name, caplog): with caplog.at_level(logging.WARNING): pulled_files = storage.pull(file_or_dir_name) assert len(pulled_files) == 0 assert "No such remote file or directory" in caplog.text def test_name_collisions_pulling_properly(setup_name_collision, storage, tmpdir): storage.set_remote_base_path(NAME_COLLISIONS_DIR_NAME) local_base_dir = tmpdir.mkdir("remote_storage") colliding_file_name = "file.txt.collision" colliding_dir_name = "dir_name_collision" storage.pull("file.txt", local_base_dir=local_base_dir) storage.pull("dir_name", local_base_dir=local_base_dir) assert not os.path.isfile(os.path.join(local_base_dir, colliding_file_name)) assert os.path.isfile(os.path.join(local_base_dir, "file.txt")) assert not os.path.isdir(os.path.join(local_base_dir, colliding_dir_name)) assert os.path.isdir(os.path.join(local_base_dir, "dir_name")) storage.pull(colliding_file_name, local_base_dir=local_base_dir) assert os.path.isfile(os.path.join(local_base_dir, colliding_file_name)) storage.pull(colliding_dir_name, local_base_dir=local_base_dir) assert os.path.isfile(os.path.join(local_base_dir, colliding_dir_name, "file.txt")) def test_name_collisions_deleting_properly(setup_name_collision, storage): storage.set_remote_base_path(NAME_COLLISIONS_DIR_NAME) storage.delete("file.txt") remaining_object_names = [ obj.name.lstrip("/").lstrip(f"{NAME_COLLISIONS_DIR_NAME}/") for obj in storage.list_objects("") ] assert "file.txt" not in remaining_object_names assert "file.txt.collision" in remaining_object_names assert "dir_name/file.txt" in remaining_object_names # TODO or not TODO: many cases are missing - checking names, testing overwriting.
33.601852
111
0.74194
[ "MIT" ]
AnesBenmerzoug/accsr
tests/accsr/test_remote_storage.py
7,258
Python
"""Performs face alignment and stores face thumbnails in the output directory.""" # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function from scipy import misc import sys import os import argparse import tensorflow as tf import numpy as np import facenet from detect_face import create_mtcnn, detect_face import random from time import sleep def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir, False) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename+'.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim<2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:,:,0:3] bounding_boxes, _ = detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces>0: det = bounding_boxes[:,0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces>1: if args.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1]) img_center = img_size / 2 offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets,2.0),0) index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering det_arr.append(det[index,:]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-args.margin/2, 0) bb[1] = np.maximum(det[1]-args.margin/2, 0) bb[2] = np.minimum(det[2]+args.margin/2, img_size[1]) bb[3] = np.minimum(det[3]+args.margin/2, img_size[0]) cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear') nrof_successfully_aligned += 1 filename_base, file_extension = os.path.splitext(output_filename) if args.detect_multiple_faces: output_filename_n = "{}_{}{}".format(filename_base, i, file_extension) else: output_filename_n = "{}{}".format(filename_base, file_extension) misc.imsave(output_filename_n, scaled) text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--input_dir', type=str, help='Directory with unaligned images.') parser.add_argument('--output_dir', type=str, help='Directory with aligned face thumbnails.') parser.add_argument('--image_size', type=int, help='Image size (height, width) in pixels.', default=182) parser.add_argument('--margin', type=int, help='Margin for the crop around the bounding box (height, width) in pixels.', default=44) parser.add_argument('--random_order', help='Shuffles the order of images to enable alignment using multiple processes.', action='store_true') parser.add_argument('--gpu_memory_fraction', type=float, help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0) parser.add_argument('--detect_multiple_faces', type=bool, help='Detect and align multiple faces per image.', default=False) return parser.parse_args(argv) if __name__ == '__main__': main(parse_arguments(sys.argv[1:]))
51.8875
133
0.57456
[ "MIT" ]
btlk/facenet
facenet/align/align_dataset_mtcnn.py
8,302
Python
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'MessageContact' db.create_table('umessages_messagecontact', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('from_user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='from_users', to=orm['auth.User'])), ('to_user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='to_users', to=orm['auth.User'])), ('latest_message', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['umessages.Message'])), )) db.send_create_signal('umessages', ['MessageContact']) # Adding unique constraint on 'MessageContact', fields ['from_user', 'to_user'] db.create_unique('umessages_messagecontact', ['from_user_id', 'to_user_id']) # Adding model 'MessageRecipient' db.create_table('umessages_messagerecipient', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('message', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['umessages.Message'])), ('read_at', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('deleted_at', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), )) db.send_create_signal('umessages', ['MessageRecipient']) # Adding model 'Message' db.create_table('umessages_message', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('body', self.gf('django.db.models.fields.TextField')()), ('sender', self.gf('django.db.models.fields.related.ForeignKey')(related_name='sent_messages', to=orm['auth.User'])), ('sent_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('sender_deleted_at', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), )) db.send_create_signal('umessages', ['Message']) def backwards(self, orm): # Removing unique constraint on 'MessageContact', fields ['from_user', 'to_user'] db.delete_unique('umessages_messagecontact', ['from_user_id', 'to_user_id']) # Deleting model 'MessageContact' db.delete_table('umessages_messagecontact') # Deleting model 'MessageRecipient' db.delete_table('umessages_messagerecipient') # Deleting model 'Message' db.delete_table('umessages_message') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'umessages.message': { 'Meta': {'ordering': "['-sent_at']", 'object_name': 'Message'}, 'body': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'recipients': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'received_messages'", 'symmetrical': 'False', 'through': "orm['umessages.MessageRecipient']", 'to': "orm['auth.User']"}), 'sender': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sent_messages'", 'to': "orm['auth.User']"}), 'sender_deleted_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'sent_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, 'umessages.messagecontact': { 'Meta': {'ordering': "['latest_message']", 'unique_together': "(('from_user', 'to_user'),)", 'object_name': 'MessageContact'}, 'from_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'from_users'", 'to': "orm['auth.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latest_message': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['umessages.Message']"}), 'to_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'to_users'", 'to': "orm['auth.User']"}) }, 'umessages.messagerecipient': { 'Meta': {'object_name': 'MessageRecipient'}, 'deleted_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['umessages.Message']"}), 'read_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) } } complete_apps = ['umessages']
65.691057
221
0.593936
[ "BSD-3-Clause" ]
SkyTruth/django-userena
userena/contrib/umessages/migrations/0001_initial.py
8,080
Python
#!/bin/env python import csv from datetime import datetime import os import xml.etree.ElementTree as ET import xml # https://stackabuse.com/reading-and-writing-xml-files-in-python/ # xmlformatter: # https://www.freeformatter.com/xml-formatter.html#ad-output infile = "./RAJAPerf-timing.csv" def read_infile(infile): """STUB""" with open(infile) as csvfile: rps_reader = csv.reader(csvfile, delimiter=',') def get_date(): """STUB""" date = datetime.now().strftime("%-Y-%m-%dT%H:%M:%S") return date date = get_date() perf_report = ET.Element("performance-report") name ="RAJAPerf" + date + ".xml" time_units="seconds" perf_report.set("date", date) perf_report.set("name", name) perf_report.set("time-units", time_units) perf_root = ET.SubElement(perf_report, 'timing') perf_root.set("end-time",date) perf_root.set("name", "kokkos_perf_suite") #print(ET.tostring(perf_report)) # b'<performance-report time-units="seconds" date="2020-12-16T14:34:40" # name="RAJAPerf-timing.csv"><timing end-time="2020-12-16T14:34:40" # name="kokkos_perf_suite" /></performance-report>' # metadata TBD # create hierarchy test_suite_list = [] with open(infile) as csvfile: rps_reader = csv.reader(csvfile, delimiter=',') for row in rps_reader: test_suite_list.append(row) suite_names_set = set([x[0][:x[0].find("_")] for x in test_suite_list[2:]]) #suite_names_set #Out[135]: {'Basic', 'KokkosMechanics'} heirarch_dict = dict() for name in suite_names_set: heirarch_dict[name] = [] # heirarch_dict # Out[137]: {'KokkosMechanics': [], 'Basic': []} for item in test_suite_list[2:]: key = item[0][:item[0].find("_")] heirarch_dict[key].append(item) #print(item) #NEXT STEPS: For the main test categories, Basic and KokkosMechanics, sum # the test times over all of the kernels for each of their variants col_meanings_dict = dict() for index, item in enumerate(test_suite_list[1]): #print(index, item) col_meanings_dict[index] = item #col_meanings_dict # Out[152]: # {0: 'Kernel ', # 1: ' Base_Seq ', # 2: ' Lambda_Seq ', # 3: ' RAJA_Seq ', # 4: ' Base_CUDA ', # 5: ' RAJA_CUDA ', # 6: ' Kokkos_Lambda_Seq ', # 7: ' Kokkos_Functor_Seq ', # 8: ' Kokkos_Lambda_CUDA ', # 9: ' Kokkos_Functor_CUDA'} def associate_timings_with_xml(xml_element, timing_dict, suite_or_test_name): """STUB -- xml_element will be an element of perf_report; timing_dict = a map of variant names to test run times """ for key, value in timing_dict.items(): xml_element.set(key.lower(), str(value)) xml_element.set("name", suite_or_test_name.strip()) def create_RPS_xml_report(suite_name, suite_data_list): """STUB - suite_name is a string = Basic, KokkosMechanics, etc.; suite_data_list will be the values for a key, Basic or KokkosMechanics """ aggregate_results_dict = dict() #print(suite_data_list) for list_item in suite_data_list: for index, timing in enumerate(list_item[1:]): if "Not run" in timing: continue variant_name = col_meanings_dict[index + 1] if variant_name not in aggregate_results_dict: aggregate_results_dict[variant_name] = 0.0 # sums values of all the basic kernels aggregate_results_dict[variant_name] += float(timing) #print(aggregate_results_dict) suite_root = ET.SubElement(perf_root, "timing") associate_timings_with_xml(suite_root, aggregate_results_dict, suite_name) for list_item in suite_data_list: test_timings_dict = dict() for index, timing in enumerate(list_item[1:]): if "Not run" in timing: continue variant_name = col_meanings_dict[index + 1] test_timings_dict[variant_name] = float(timing) xml_element_for_a_kernel_test = ET.SubElement(suite_root, "timing") associate_timings_with_xml(xml_element_for_a_kernel_test, test_timings_dict, list_item[0]) def run(): """STUB""" read_infile(infile) #create_RPS_xml_report("Basic", heirarch_dict["Basic"]) for key in heirarch_dict.keys(): create_RPS_xml_report(key, heirarch_dict[key]) # Aided in debugging #print(heirarch_dict["KokkosMechanics"]) # Prints xml to screen as string #print(ET.tostring(perf_report)) ET.dump(perf_report) if __name__ == "__main__": run()
25.563218
78
0.678507
[ "BSD-3-Clause" ]
CRobeck/RAJAPerf
scripts/csv_xml.py
4,448
Python
#!/usr/bin/env python2 # -*- mode: python -*- # # Electrum - lightweight Bitcoin client # Copyright (C) 2016 The Electrum developers # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import threading from PyQt5.QtWidgets import QVBoxLayout, QLabel from qtum_electrum.gui.qt.password_dialog import PasswordLayout, PW_PASSPHRASE from qtum_electrum.gui.qt.util import * from qtum_electrum.i18n import _ from qtum_electrum.util import PrintError # The trickiest thing about this handler was getting windows properly # parented on MacOSX. class QtHandlerBase(QObject, PrintError): '''An interface between the GUI (here, QT) and the device handling logic for handling I/O.''' passphrase_signal = pyqtSignal(object, object) message_signal = pyqtSignal(object, object) error_signal = pyqtSignal(object, object) word_signal = pyqtSignal(object) clear_signal = pyqtSignal() query_signal = pyqtSignal(object, object) yes_no_signal = pyqtSignal(object) status_signal = pyqtSignal(object) def __init__(self, win, device): super(QtHandlerBase, self).__init__() self.clear_signal.connect(self.clear_dialog) self.error_signal.connect(self.error_dialog) self.message_signal.connect(self.message_dialog) self.passphrase_signal.connect(self.passphrase_dialog) self.word_signal.connect(self.word_dialog) self.query_signal.connect(self.win_query_choice) self.yes_no_signal.connect(self.win_yes_no_question) self.status_signal.connect(self._update_status) self.win = win self.device = device self.dialog = None self.done = threading.Event() def top_level_window(self): return self.win.top_level_window() def update_status(self, paired): self.status_signal.emit(paired) def _update_status(self, paired): if hasattr(self, 'button'): button = self.button icon_name = button.icon_paired if paired else button.icon_unpaired button.setIcon(read_QIcon(icon_name)) def query_choice(self, msg, labels): self.done.clear() self.query_signal.emit(msg, labels) self.done.wait() return self.choice def yes_no_question(self, msg): self.done.clear() self.yes_no_signal.emit(msg) self.done.wait() return self.ok def show_message(self, msg, on_cancel=None): self.message_signal.emit(msg, on_cancel) def show_error(self, msg, blocking=False): self.done.clear() self.error_signal.emit(msg, blocking) if blocking: self.done.wait() def finished(self): self.clear_signal.emit() def get_word(self, msg): self.done.clear() self.word_signal.emit(msg) self.done.wait() return self.word def get_passphrase(self, msg, confirm): self.done.clear() self.passphrase_signal.emit(msg, confirm) self.done.wait() return self.passphrase def passphrase_dialog(self, msg, confirm): # If confirm is true, require the user to enter the passphrase twice parent = self.top_level_window() d = WindowModalDialog(parent, _("Enter Passphrase")) if confirm: OK_button = OkButton(d) playout = PasswordLayout(msg=msg, kind=PW_PASSPHRASE, OK_button=OK_button) vbox = QVBoxLayout() vbox.addLayout(playout.layout()) vbox.addLayout(Buttons(CancelButton(d), OK_button)) d.setLayout(vbox) passphrase = playout.new_password() if d.exec_() else None else: pw = QLineEdit() pw.setEchoMode(2) pw.setMinimumWidth(200) vbox = QVBoxLayout() vbox.addWidget(WWLabel(msg)) vbox.addWidget(pw) vbox.addLayout(Buttons(CancelButton(d), OkButton(d))) d.setLayout(vbox) passphrase = pw.text() if d.exec_() else None self.passphrase = passphrase self.done.set() def word_dialog(self, msg): dialog = WindowModalDialog(self.top_level_window(), "") hbox = QHBoxLayout(dialog) hbox.addWidget(QLabel(msg)) text = QLineEdit() text.setMaximumWidth(100) text.returnPressed.connect(dialog.accept) hbox.addWidget(text) hbox.addStretch(1) dialog.exec_() # Firmware cannot handle cancellation self.word = text.text() self.done.set() def message_dialog(self, msg, on_cancel): # Called more than once during signing, to confirm output and fee self.clear_dialog() title = _('Please check your %s device') % self.device self.dialog = dialog = WindowModalDialog(self.top_level_window(), title) l = QLabel(msg) vbox = QVBoxLayout(dialog) vbox.addWidget(l) if on_cancel: dialog.rejected.connect(on_cancel) vbox.addLayout(Buttons(CancelButton(dialog))) dialog.show() def error_dialog(self, msg, blocking): self.win.show_error(msg, parent=self.top_level_window()) if blocking: self.done.set() def clear_dialog(self): if self.dialog: self.dialog.accept() self.dialog = None def win_query_choice(self, msg, labels): self.choice = self.win.query_choice(msg, labels) self.done.set() def win_yes_no_question(self, msg): self.ok = self.win.question(msg) self.done.set() from qtum_electrum.plugin import hook from qtum_electrum.util import UserCancelled from qtum_electrum.gui.qt.main_window import StatusBarButton class QtPluginBase(object): @hook def load_wallet(self, wallet, window): for keystore in wallet.get_keystores(): if not isinstance(keystore, self.keystore_class): continue if not self.libraries_available: message = keystore.plugin.get_library_not_available_message() window.show_error(message) return tooltip = self.device + '\n' + (keystore.label or 'unnamed') cb = partial(self.show_settings_dialog, window, keystore) button = StatusBarButton(QIcon(self.icon_unpaired), tooltip, cb) button.icon_paired = self.icon_paired button.icon_unpaired = self.icon_unpaired window.statusBar().addPermanentWidget(button) handler = self.create_handler(window) handler.button = button keystore.handler = handler keystore.thread = TaskThread(window, window.on_error) self.add_show_address_on_hw_device_button_for_receive_addr(wallet, keystore, window) # Trigger a pairing keystore.thread.add(partial(self.get_client, keystore)) def choose_device(self, window, keystore): '''This dialog box should be usable even if the user has forgotten their PIN or it is in bootloader mode.''' device_id = self.device_manager().xpub_id(keystore.xpub) if not device_id: try: info = self.device_manager().select_device(self, keystore.handler, keystore) except UserCancelled: return device_id = info.device.id_ return device_id def show_settings_dialog(self, window, keystore): device_id = self.choose_device(window, keystore) def add_show_address_on_hw_device_button_for_receive_addr(self, wallet, keystore, main_window): plugin = keystore.plugin receive_address_e = main_window.receive_address_e def show_address(): addr = receive_address_e.text() keystore.thread.add(partial(plugin.show_address, wallet, addr, keystore)) receive_address_e.addButton("eye1.png", show_address, _("Show on {}").format(plugin.device))
37.90678
100
0.666331
[ "MIT" ]
mikehash/qtum-electrum
qtum_electrum/plugins/hw_wallet/qt.py
8,946
Python
"""Python Crypto Bot consuming Coinbase Pro or Binance APIs""" import functools import os import sched import sys import time import pandas as pd from datetime import datetime from models.PyCryptoBot import PyCryptoBot, truncate as _truncate from models.AppState import AppState from models.Trading import TechnicalAnalysis from models.TradingAccount import TradingAccount from models.helper.MarginHelper import calculate_margin from views.TradingGraphs import TradingGraphs from models.Strategy import Strategy from models.helper.LogHelper import Logger # minimal traceback sys.tracebacklimit = 1 app = PyCryptoBot() account = TradingAccount(app) technical_analysis = None state = AppState(app, account) state.initLastAction() s = sched.scheduler(time.time, time.sleep) def executeJob(sc=None, app: PyCryptoBot=None, state: AppState=None, trading_data=pd.DataFrame()): """Trading bot job which runs at a scheduled interval""" global technical_analysis # connectivity check (only when running live) if app.isLive() and app.getTime() is None: Logger.warning('Your connection to the exchange has gone down, will retry in 1 minute!') # poll every 5 minute list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app, state)) return # increment state.iterations state.iterations = state.iterations + 1 if not app.isSimulation(): # retrieve the app.getMarket() data trading_data = app.getHistoricalData(app.getMarket(), app.getGranularity()) else: if len(trading_data) == 0: return None # analyse the market data if app.isSimulation() and len(trading_data.columns) > 8: df = trading_data else: trading_dataCopy = trading_data.copy() technical_analysis = TechnicalAnalysis(trading_dataCopy) technical_analysis.addAll() df = technical_analysis.getDataFrame() if app.isSimulation(): df_last = app.getInterval(df, state.iterations) else: df_last = app.getInterval(df) if len(df_last.index.format()) > 0: current_df_index = str(df_last.index.format()[0]) else: current_df_index = state.last_df_index formatted_current_df_index = f'{current_df_index} 00:00:00' if len(current_df_index) == 10 else current_df_index if app.getSmartSwitch() == 1 and app.getGranularity() == 3600 and app.is1hEMA1226Bull() is True and app.is6hEMA1226Bull() is True: Logger.info('*** smart switch from granularity 3600 (1 hour) to 900 (15 min) ***') app.notifyTelegram(app.getMarket() + " smart switch from granularity 3600 (1 hour) to 900 (15 min)") app.setGranularity(900) list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app, state)) if app.getSmartSwitch() == 1 and app.getGranularity() == 900 and app.is1hEMA1226Bull() is False and app.is6hEMA1226Bull() is False: Logger.info("*** smart switch from granularity 900 (15 min) to 3600 (1 hour) ***") app.notifyTelegram(app.getMarket() + " smart switch from granularity 900 (15 min) to 3600 (1 hour)") app.setGranularity(3600) list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app, state)) if app.getExchange() == 'binance' and app.getGranularity() == 86400: if len(df) < 250: # data frame should have 250 rows, if not retry Logger.error('error: data frame length is < 250 (' + str(len(df)) + ')') list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app, state)) else: if len(df) < 300: if not app.isSimulation(): # data frame should have 300 rows, if not retry Logger.error('error: data frame length is < 300 (' + str(len(df)) + ')') list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app, state)) if len(df_last) > 0: now = datetime.today().strftime('%Y-%m-%d %H:%M:%S') if not app.isSimulation(): ticker = app.getTicker(app.getMarket()) now = ticker[0] price = ticker[1] if price < df_last['low'].values[0] or price == 0: price = float(df_last['close'].values[0]) else: price = float(df_last['close'].values[0]) if price < 0.0001: raise Exception(app.getMarket() + ' is unsuitable for trading, quote price is less than 0.0001!') # technical indicators ema12gtema26 = bool(df_last['ema12gtema26'].values[0]) ema12gtema26co = bool(df_last['ema12gtema26co'].values[0]) goldencross = bool(df_last['goldencross'].values[0]) macdgtsignal = bool(df_last['macdgtsignal'].values[0]) macdgtsignalco = bool(df_last['macdgtsignalco'].values[0]) ema12ltema26 = bool(df_last['ema12ltema26'].values[0]) ema12ltema26co = bool(df_last['ema12ltema26co'].values[0]) macdltsignal = bool(df_last['macdltsignal'].values[0]) macdltsignalco = bool(df_last['macdltsignalco'].values[0]) obv = float(df_last['obv'].values[0]) obv_pc = float(df_last['obv_pc'].values[0]) elder_ray_buy = bool(df_last['eri_buy'].values[0]) elder_ray_sell = bool(df_last['eri_sell'].values[0]) # if simulation interations < 200 set goldencross to true if app.isSimulation() and state.iterations < 200: goldencross = True # candlestick detection hammer = bool(df_last['hammer'].values[0]) inverted_hammer = bool(df_last['inverted_hammer'].values[0]) hanging_man = bool(df_last['hanging_man'].values[0]) shooting_star = bool(df_last['shooting_star'].values[0]) three_white_soldiers = bool(df_last['three_white_soldiers'].values[0]) three_black_crows = bool(df_last['three_black_crows'].values[0]) morning_star = bool(df_last['morning_star'].values[0]) evening_star = bool(df_last['evening_star'].values[0]) three_line_strike = bool(df_last['three_line_strike'].values[0]) abandoned_baby = bool(df_last['abandoned_baby'].values[0]) morning_doji_star = bool(df_last['morning_doji_star'].values[0]) evening_doji_star = bool(df_last['evening_doji_star'].values[0]) two_black_gapping = bool(df_last['two_black_gapping'].values[0]) strategy = Strategy(app, state, df, state.iterations) state.action = strategy.getAction() immediate_action = False margin, profit, sell_fee = 0, 0, 0 if state.last_buy_size > 0 and state.last_buy_price > 0 and price > 0 and state.last_action == 'BUY': # update last buy high if price > state.last_buy_high: state.last_buy_high = price if state.last_buy_high > 0: change_pcnt_high = ((price / state.last_buy_high) - 1) * 100 else: change_pcnt_high = 0 # buy and sell calculations state.last_buy_fee = round(state.last_buy_size * app.getTakerFee(), 8) state.last_buy_filled = round(((state.last_buy_size - state.last_buy_fee) / state.last_buy_price), 8) # if not a simulation, sync with exchange orders if not app.isSimulation(): exchange_last_buy = app.getLastBuy() if exchange_last_buy is not None: if state.last_buy_size != exchange_last_buy['size']: state.last_buy_size = exchange_last_buy['size'] if state.last_buy_filled != exchange_last_buy['filled']: state.last_buy_filled = exchange_last_buy['filled'] if state.last_buy_price != exchange_last_buy['price']: state.last_buy_price = exchange_last_buy['price'] if app.getExchange() == 'coinbasepro': if state.last_buy_fee != exchange_last_buy['fee']: state.last_buy_fee = exchange_last_buy['fee'] margin, profit, sell_fee = calculate_margin( buy_size=state.last_buy_size, buy_filled=state.last_buy_filled, buy_price=state.last_buy_price, buy_fee=state.last_buy_fee, sell_percent=app.getSellPercent(), sell_price=price, sell_taker_fee=app.getTakerFee()) # handle immedate sell actions if strategy.isSellTrigger(price, technical_analysis.getTradeExit(price), margin, change_pcnt_high, obv_pc, macdltsignal): state.action = 'SELL' state.last_action = 'BUY' immediate_action = True # handle overriding wait actions (do not sell if sell at loss disabled!) if strategy.isWaitTrigger(margin): state.action = 'WAIT' state.last_action = 'BUY' immediate_action = False bullbeartext = '' if app.disableBullOnly() is True or (df_last['sma50'].values[0] == df_last['sma200'].values[0]): bullbeartext = '' elif goldencross is True: bullbeartext = ' (BULL)' elif goldencross is False: bullbeartext = ' (BEAR)' # polling is every 5 minutes (even for hourly intervals), but only process once per interval if (immediate_action is True or state.last_df_index != current_df_index): precision = 4 if (price < 0.01): precision = 8 # Since precision does not change after this point, it is safe to prepare a tailored `truncate()` that would # work with this precision. It should save a couple of `precision` uses, one for each `truncate()` call. truncate = functools.partial(_truncate, n=precision) price_text = 'Close: ' + truncate(price) ema_text = app.compare(df_last['ema12'].values[0], df_last['ema26'].values[0], 'EMA12/26', precision) macd_text = '' if app.disableBuyMACD() is False: macd_text = app.compare(df_last['macd'].values[0], df_last['signal'].values[0], 'MACD', precision) obv_text = '' if app.disableBuyOBV() is False: obv_text = 'OBV: ' + truncate(df_last['obv'].values[0]) + ' (' + str( truncate(df_last['obv_pc'].values[0])) + '%)' state.eri_text = '' if app.disableBuyElderRay() is False: if elder_ray_buy is True: state.eri_text = 'ERI: buy | ' elif elder_ray_sell is True: state.eri_text = 'ERI: sell | ' else: state.eri_text = 'ERI: | ' if hammer is True: log_text = '* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up")' Logger.info(log_text) if shooting_star is True: log_text = '* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")' Logger.info(log_text) if hanging_man is True: log_text = '* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")' Logger.info(log_text) if inverted_hammer is True: log_text = '* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")' Logger.info(log_text) if three_white_soldiers is True: log_text = '*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if three_black_crows is True: log_text = '* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if morning_star is True: log_text = '*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if evening_star is True: log_text = '*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if three_line_strike is True: log_text = '** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if abandoned_baby is True: log_text = '** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if morning_doji_star is True: log_text = '** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if evening_doji_star is True: log_text = '** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if two_black_gapping is True: log_text = '*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) ema_co_prefix = '' ema_co_suffix = '' if ema12gtema26co is True: ema_co_prefix = '*^ ' ema_co_suffix = ' ^*' elif ema12ltema26co is True: ema_co_prefix = '*v ' ema_co_suffix = ' v*' elif ema12gtema26 is True: ema_co_prefix = '^ ' ema_co_suffix = ' ^' elif ema12ltema26 is True: ema_co_prefix = 'v ' ema_co_suffix = ' v' macd_co_prefix = '' macd_co_suffix = '' if app.disableBuyMACD() is False: if macdgtsignalco is True: macd_co_prefix = '*^ ' macd_co_suffix = ' ^*' elif macdltsignalco is True: macd_co_prefix = '*v ' macd_co_suffix = ' v*' elif macdgtsignal is True: macd_co_prefix = '^ ' macd_co_suffix = ' ^' elif macdltsignal is True: macd_co_prefix = 'v ' macd_co_suffix = ' v' obv_prefix = '' obv_suffix = '' if app.disableBuyOBV() is False: if float(obv_pc) > 0: obv_prefix = '^ ' obv_suffix = ' ^ | ' elif float(obv_pc) < 0: obv_prefix = 'v ' obv_suffix = ' v | ' if not app.isVerbose(): if state.last_action != '': output_text = formatted_current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + \ app.printGranularity() + ' | ' + price_text + ' | ' + ema_co_prefix + \ ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + \ obv_prefix + obv_text + obv_suffix + state.eri_text + ' | ' + state.action + \ ' | Last Action: ' + state.last_action else: output_text = formatted_current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + \ app.printGranularity() + ' | ' + price_text + ' | ' + ema_co_prefix + \ ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + \ obv_prefix + obv_text + obv_suffix + state.eri_text + ' | ' + state.action + ' ' if state.last_action == 'BUY': if state.last_buy_size > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' output_text += ' | ' + margin_text + ' (delta: ' + str(round(price - state.last_buy_price, precision)) + ')' Logger.info(output_text) # Seasonal Autoregressive Integrated Moving Average (ARIMA) model (ML prediction for 3 intervals from now) if not app.isSimulation(): try: prediction = technical_analysis.seasonalARIMAModelPrediction(int(app.getGranularity() / 60) * 3) # 3 intervals from now Logger.info(f'Seasonal ARIMA model predicts the closing price will be {str(round(prediction[1], 2))} at {prediction[0]} (delta: {round(prediction[1] - price, 2)})') except: pass if state.last_action == 'BUY': # display support, resistance and fibonacci levels Logger.info(technical_analysis.printSupportResistanceFibonacciLevels(price)) else: Logger.debug('-- Iteration: ' + str(state.iterations) + ' --' + bullbeartext) if state.last_action == 'BUY': if state.last_buy_size > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' Logger.debug('-- Margin: ' + margin_text + ' --') Logger.debug('price: ' + truncate(price)) Logger.debug('ema12: ' + truncate(float(df_last['ema12'].values[0]))) Logger.debug('ema26: ' + truncate(float(df_last['ema26'].values[0]))) Logger.debug('ema12gtema26co: ' + str(ema12gtema26co)) Logger.debug('ema12gtema26: ' + str(ema12gtema26)) Logger.debug('ema12ltema26co: ' + str(ema12ltema26co)) Logger.debug('ema12ltema26: ' + str(ema12ltema26)) Logger.debug('sma50: ' + truncate(float(df_last['sma50'].values[0]))) Logger.debug('sma200: ' + truncate(float(df_last['sma200'].values[0]))) Logger.debug('macd: ' + truncate(float(df_last['macd'].values[0]))) Logger.debug('signal: ' + truncate(float(df_last['signal'].values[0]))) Logger.debug('macdgtsignal: ' + str(macdgtsignal)) Logger.debug('macdltsignal: ' + str(macdltsignal)) Logger.debug('obv: ' + str(obv)) Logger.debug('obv_pc: ' + str(obv_pc)) Logger.debug('action: ' + state.action) # informational output on the most recent entry Logger.info('') Logger.info('================================================================================') txt = ' Iteration : ' + str(state.iterations) + bullbeartext Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Timestamp : ' + str(df_last.index.format()[0]) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info('--------------------------------------------------------------------------------') txt = ' Close : ' + truncate(price) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' EMA12 : ' + truncate(float(df_last['ema12'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' EMA26 : ' + truncate(float(df_last['ema26'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Crossing Above : ' + str(ema12gtema26co) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Above : ' + str(ema12gtema26) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Crossing Below : ' + str(ema12ltema26co) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Below : ' + str(ema12ltema26) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') if (ema12gtema26 is True and ema12gtema26co is True): txt = ' Condition : EMA12 is currently crossing above EMA26' elif (ema12gtema26 is True and ema12gtema26co is False): txt = ' Condition : EMA12 is currently above EMA26 and has crossed over' elif (ema12ltema26 is True and ema12ltema26co is True): txt = ' Condition : EMA12 is currently crossing below EMA26' elif (ema12ltema26 is True and ema12ltema26co is False): txt = ' Condition : EMA12 is currently below EMA26 and has crossed over' else: txt = ' Condition : -' Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' SMA20 : ' + truncate(float(df_last['sma20'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' SMA200 : ' + truncate(float(df_last['sma200'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info('--------------------------------------------------------------------------------') txt = ' MACD : ' + truncate(float(df_last['macd'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Signal : ' + truncate(float(df_last['signal'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Above : ' + str(macdgtsignal) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Below : ' + str(macdltsignal) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') if (macdgtsignal is True and macdgtsignalco is True): txt = ' Condition : MACD is currently crossing above Signal' elif (macdgtsignal is True and macdgtsignalco is False): txt = ' Condition : MACD is currently above Signal and has crossed over' elif (macdltsignal is True and macdltsignalco is True): txt = ' Condition : MACD is currently crossing below Signal' elif (macdltsignal is True and macdltsignalco is False): txt = ' Condition : MACD is currently below Signal and has crossed over' else: txt = ' Condition : -' Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info('--------------------------------------------------------------------------------') txt = ' Action : ' + state.action Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info('================================================================================') if state.last_action == 'BUY': txt = ' Margin : ' + margin_text Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info('================================================================================') # if a buy signal if state.action == 'BUY': state.last_buy_price = price state.last_buy_high = state.last_buy_price # if live if app.isLive(): app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') BUY at ' + price_text) if not app.isVerbose(): Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | BUY') else: Logger.info('--------------------------------------------------------------------------------') Logger.info('| *** Executing LIVE Buy Order *** |') Logger.info('--------------------------------------------------------------------------------') # display balances Logger.info(app.getBaseCurrency() + ' balance before order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info(app.getQuoteCurrency() + ' balance before order: ' + str(account.getBalance(app.getQuoteCurrency()))) # execute a live market buy state.last_buy_size = float(account.getBalance(app.getQuoteCurrency())) if app.getBuyMaxSize() and state.last_buy_size > app.getBuyMaxSize(): state.last_buy_size = app.getBuyMaxSize() resp = app.marketBuy(app.getMarket(), state.last_buy_size, app.getBuyPercent()) Logger.debug(resp) # display balances Logger.info(app.getBaseCurrency() + ' balance after order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info(app.getQuoteCurrency() + ' balance after order: ' + str(account.getBalance(app.getQuoteCurrency()))) # if not live else: app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') TEST BUY at ' + price_text) # TODO: Improve simulator calculations by including calculations for buy and sell limit configurations. if state.last_buy_size == 0 and state.last_buy_filled == 0: state.last_buy_size = 1000 state.first_buy_size = 1000 state.buy_count = state.buy_count + 1 state.buy_sum = state.buy_sum + state.last_buy_size if not app.isVerbose(): Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | BUY') bands = technical_analysis.getFibonacciRetracementLevels(float(price)) Logger.info(' Fibonacci Retracement Levels:' + str(bands)) technical_analysis.printSupportResistanceLevel(float(price)) if len(bands) >= 1 and len(bands) <= 2: if len(bands) == 1: first_key = list(bands.keys())[0] if first_key == 'ratio1': state.fib_low = 0 state.fib_high = bands[first_key] if first_key == 'ratio1_618': state.fib_low = bands[first_key] state.fib_high = bands[first_key] * 2 else: state.fib_low = bands[first_key] elif len(bands) == 2: first_key = list(bands.keys())[0] second_key = list(bands.keys())[1] state.fib_low = bands[first_key] state.fib_high = bands[second_key] else: Logger.info('--------------------------------------------------------------------------------') Logger.info('| *** Executing TEST Buy Order *** |') Logger.info('--------------------------------------------------------------------------------') if app.shouldSaveGraphs(): tradinggraphs = TradingGraphs(technical_analysis) ts = datetime.now().timestamp() filename = app.getMarket() + '_' + app.printGranularity() + '_buy_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True) # if a sell signal elif state.action == 'SELL': # if live if app.isLive(): app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') SELL at ' + price_text + ' (margin: ' + margin_text + ', (delta: ' + str(round(price - state.last_buy_price, precision)) + ')') if not app.isVerbose(): Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | SELL') bands = technical_analysis.getFibonacciRetracementLevels(float(price)) Logger.info(' Fibonacci Retracement Levels:' + str(bands)) if len(bands) >= 1 and len(bands) <= 2: if len(bands) == 1: first_key = list(bands.keys())[0] if first_key == 'ratio1': state.fib_low = 0 state.fib_high = bands[first_key] if first_key == 'ratio1_618': state.fib_low = bands[first_key] state.fib_high = bands[first_key] * 2 else: state.fib_low = bands[first_key] elif len(bands) == 2: first_key = list(bands.keys())[0] second_key = list(bands.keys())[1] state.fib_low = bands[first_key] state.fib_high = bands[second_key] else: Logger.info('--------------------------------------------------------------------------------') Logger.info('| *** Executing LIVE Sell Order *** |') Logger.info('--------------------------------------------------------------------------------') # display balances Logger.info(app.getBaseCurrency() + ' balance before order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info(app.getQuoteCurrency() + ' balance before order: ' + str(account.getBalance(app.getQuoteCurrency()))) # execute a live market sell resp = app.marketSell(app.getMarket(), float(account.getBalance(app.getBaseCurrency())), app.getSellPercent()) Logger.debug(resp) # display balances Logger.info(app.getBaseCurrency() + ' balance after order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info(app.getQuoteCurrency() + ' balance after order: ' + str(account.getBalance(app.getQuoteCurrency()))) # if not live else: margin, profit, sell_fee = calculate_margin( buy_size=state.last_buy_size, buy_filled=state.last_buy_filled, buy_price=state.last_buy_price, buy_fee=state.last_buy_fee, sell_percent=app.getSellPercent(), sell_price=price, sell_taker_fee=app.getTakerFee()) if state.last_buy_size > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') TEST SELL at ' + price_text + ' (margin: ' + margin_text + ', (delta: ' + str(round(price - state.last_buy_price, precision)) + ')') # Preserve next buy values for simulator state.sell_count = state.sell_count + 1 buy_size = ((app.getSellPercent() / 100) * ((price / state.last_buy_price) * (state.last_buy_size - state.last_buy_fee))) state.last_buy_size = buy_size - sell_fee state.sell_sum = state.sell_sum + state.last_buy_size if not app.isVerbose(): if price > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | SELL | ' + str(price) + ' | BUY | ' + str(state.last_buy_price) + ' | DIFF | ' + str(price - state.last_buy_price) + ' | DIFF | ' + str(profit) + ' | MARGIN NO FEES | ' + margin_text + ' | MARGIN FEES | ' + str(round(sell_fee, precision))) else: Logger.info('--------------------------------------------------------------------------------') Logger.info('| *** Executing TEST Sell Order *** |') Logger.info('--------------------------------------------------------------------------------') if app.shouldSaveGraphs(): tradinggraphs = TradingGraphs(technical_analysis) ts = datetime.now().timestamp() filename = app.getMarket() + '_' + app.printGranularity() + '_sell_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True) # last significant action if state.action in ['BUY', 'SELL']: state.last_action = state.action state.last_df_index = str(df_last.index.format()[0]) if not app.isLive() and state.iterations == len(df): Logger.info("\nSimulation Summary: ") if state.buy_count > state.sell_count and app.allowSellAtLoss(): # Calculate last sell size state.last_buy_size = ((app.getSellPercent() / 100) * ((price / state.last_buy_price) * (state.last_buy_size - state.last_buy_fee))) # Reduce sell fee from last sell size state.last_buy_size = state.last_buy_size - state.last_buy_price * app.getTakerFee() state.sell_sum = state.sell_sum + state.last_buy_size state.sell_count = state.sell_count + 1 elif state.buy_count > state.sell_count and not app.allowSellAtLoss(): Logger.info("\n") Logger.info(' Note : "sell at loss" is disabled and you have an open trade, if the margin') Logger.info(' result below is negative it will assume you sold at the end of the') Logger.info(' simulation which may not be ideal. Try setting --sellatloss 1') Logger.info("\n") Logger.info(' Buy Count : ' + str(state.buy_count)) Logger.info(' Sell Count : ' + str(state.sell_count)) Logger.info(' First Buy : ' + str(state.first_buy_size)) Logger.info(' Last Sell : ' + str(state.last_buy_size)) app.notifyTelegram(f"Simulation Summary\n Buy Count: {state.buy_count}\n Sell Count: {state.sell_count}\n First Buy: {state.first_buy_size}\n Last Sell: {state.last_buy_size}\n") if state.sell_count > 0: Logger.info("\n") Logger.info(' Margin : ' + _truncate((((state.last_buy_size - state.first_buy_size) / state.first_buy_size) * 100), 4) + '%') Logger.info("\n") Logger.info(' ** non-live simulation, assuming highest fees') app.notifyTelegram(f" Margin: {_truncate((((state.last_buy_size - state.first_buy_size) / state.first_buy_size) * 100), 4)}%\n ** non-live simulation, assuming highest fees\n") else: if state.last_buy_size > 0 and state.last_buy_price > 0 and price > 0 and state.last_action == 'BUY': # show profit and margin if already bought Logger.info(now + ' | ' + app.getMarket() + bullbeartext + ' | ' + app.printGranularity() + ' | Current Price: ' + str(price) + ' | Margin: ' + str(margin) + ' | Profit: ' + str(profit)) else: Logger.info(now + ' | ' + app.getMarket() + bullbeartext + ' | ' + app.printGranularity() + ' | Current Price: ' + str(price)) # decrement ignored iteration state.iterations = state.iterations - 1 # if live if not app.disableTracker() and app.isLive(): # update order tracker csv if app.getExchange() == 'binance': account.saveTrackerCSV(app.getMarket()) elif app.getExchange() == 'coinbasepro': account.saveTrackerCSV() if app.isSimulation(): if state.iterations < 300: if app.simuluationSpeed() in ['fast', 'fast-sample']: # fast processing list(map(s.cancel, s.queue)) s.enter(0, 1, executeJob, (sc, app, state, df)) else: # slow processing list(map(s.cancel, s.queue)) s.enter(1, 1, executeJob, (sc, app, state, df)) else: # poll every 1 minute list(map(s.cancel, s.queue)) s.enter(60, 1, executeJob, (sc, app, state)) def main(): try: message = 'Starting ' if app.getExchange() == 'coinbasepro': message += 'Coinbase Pro bot' elif app.getExchange() == 'binance': message += 'Binance bot' message += ' for ' + app.getMarket() + ' using granularity ' + app.printGranularity() app.notifyTelegram(message) # initialise and start application trading_data = app.startApp(account, state.last_action) def runApp(): # run the first job immediately after starting if app.isSimulation(): executeJob(s, app, state, trading_data) else: executeJob(s, app, state) s.run() try: runApp() except KeyboardInterrupt: raise except(BaseException, Exception) as e: if app.autoRestart(): # Wait 30 second and try to relaunch application time.sleep(30) Logger.critical('Restarting application after exception: ' + repr(e)) app.notifyTelegram('Auto restarting bot for ' + app.getMarket() + ' after exception: ' + repr(e)) # Cancel the events queue map(s.cancel, s.queue) # Restart the app runApp() else: raise # catches a keyboard break of app, exits gracefully except KeyboardInterrupt: Logger.warning(str(datetime.now()) + ' bot is closed via keyboard interrupt...') try: sys.exit(0) except SystemExit: os._exit(0) except(BaseException, Exception) as e: # catch all not managed exceptions and send a Telegram message if configured app.notifyTelegram('Bot for ' + app.getMarket() + ' got an exception: ' + repr(e)) Logger.critical(repr(e)) raise main()
51.137376
202
0.504417
[ "Apache-2.0" ]
treggit/pycryptobot
pycryptobot.py
41,319
Python
#!/usr/bin/env python3 # encoding: utf-8 # Copyright 2017 Tomoki Hayashi (Nagoya University) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Automatic speech recognition model training script.""" import logging import os import random import subprocess import sys from distutils.version import LooseVersion import configargparse import numpy as np import torch from espnet.utils.cli_utils import strtobool from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES is_torch_1_2_plus = LooseVersion(torch.__version__) >= LooseVersion("1.2") # NOTE: you need this func to generate our sphinx doc def get_parser(parser=None, required=True): """Get default arguments.""" if parser is None: parser = configargparse.ArgumentParser( description="Train an automatic speech recognition (ASR) model on one CPU, " "one or multiple GPUs", config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter, ) # general configuration parser.add("--config", is_config_file=True, help="config file path") parser.add( "--config2", is_config_file=True, help="second config file path that overwrites the settings in `--config`.", ) parser.add( "--config3", is_config_file=True, help="third config file path that overwrites the settings in " "`--config` and `--config2`.", ) parser.add_argument( "--ngpu", default=None, type=int, help="Number of GPUs. If not given, use all visible devices", ) parser.add_argument( "--train-dtype", default="float32", choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"], help="Data type for training (only pytorch backend). " "O0,O1,.. flags require apex. " "See https://nvidia.github.io/apex/amp.html#opt-levels", ) parser.add_argument( "--backend", default="chainer", type=str, choices=["chainer", "pytorch"], help="Backend library", ) parser.add_argument( "--outdir", type=str, required=required, help="Output directory" ) parser.add_argument("--debugmode", default=1, type=int, help="Debugmode") parser.add_argument("--dict", required=required, help="Dictionary") parser.add_argument("--seed", default=1, type=int, help="Random seed") parser.add_argument("--debugdir", type=str, help="Output directory for debugging") parser.add_argument( "--resume", "-r", default="", nargs="?", help="Resume the training from snapshot", ) parser.add_argument( "--minibatches", "-N", type=int, default="-1", help="Process only N minibatches (for debug)", ) parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option") parser.add_argument( "--tensorboard-dir", default=None, type=str, nargs="?", help="Tensorboard log dir path", ) parser.add_argument( "--report-interval-iters", default=100, type=int, help="Report interval iterations", ) parser.add_argument( "--save-interval-iters", default=0, type=int, help="Save snapshot interval iterations", ) # task related parser.add_argument( "--train-json", type=str, default=None, help="Filename of train label data (json)", ) parser.add_argument( "--valid-json", type=str, default=None, help="Filename of validation label data (json)", ) # network architecture parser.add_argument( "--model-module", type=str, default=None, help="model defined module (default: espnet.nets.xxx_backend.e2e_asr:E2E)", ) # encoder parser.add_argument( "--num-encs", default=1, type=int, help="Number of encoders in the model." ) # loss related parser.add_argument( "--ctc_type", default="warpctc", type=str, choices=["builtin", "warpctc"], help="Type of CTC implementation to calculate loss.", ) parser.add_argument( "--mtlalpha", default=0.5, type=float, help="Multitask learning coefficient, " "alpha: alpha*ctc_loss + (1-alpha)*att_loss ", ) parser.add_argument( "--lsm-weight", default=0.0, type=float, help="Label smoothing weight" ) # recognition options to compute CER/WER parser.add_argument( "--report-cer", default=False, action="store_true", help="Compute CER on development set", ) parser.add_argument( "--report-wer", default=False, action="store_true", help="Compute WER on development set", ) parser.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses") parser.add_argument("--beam-size", type=int, default=4, help="Beam size") parser.add_argument("--penalty", default=0.0, type=float, help="Incertion penalty") parser.add_argument( "--maxlenratio", default=0.0, type=float, help="""Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths""", ) parser.add_argument( "--minlenratio", default=0.0, type=float, help="Input length ratio to obtain min output length", ) parser.add_argument( "--ctc-weight", default=0.3, type=float, help="CTC weight in joint decoding" ) parser.add_argument( "--rnnlm", type=str, default=None, help="RNNLM model file to read" ) parser.add_argument( "--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read" ) parser.add_argument("--lm-weight", default=0.1, type=float, help="RNNLM weight.") parser.add_argument("--sym-space", default="<space>", type=str, help="Space symbol") parser.add_argument("--sym-blank", default="<blank>", type=str, help="Blank symbol") # minibatch related parser.add_argument( "--sortagrad", default=0, type=int, nargs="?", help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs", ) parser.add_argument( "--batch-count", default="auto", choices=BATCH_COUNT_CHOICES, help="How to count batch_size. " "The default (auto) will find how to count by args.", ) parser.add_argument( "--batch-size", "--batch-seqs", "-b", default=0, type=int, help="Maximum seqs in a minibatch (0 to disable)", ) parser.add_argument( "--batch-bins", default=0, type=int, help="Maximum bins in a minibatch (0 to disable)", ) parser.add_argument( "--batch-frames-in", default=0, type=int, help="Maximum input frames in a minibatch (0 to disable)", ) parser.add_argument( "--batch-frames-out", default=0, type=int, help="Maximum output frames in a minibatch (0 to disable)", ) parser.add_argument( "--batch-frames-inout", default=0, type=int, help="Maximum input+output frames in a minibatch (0 to disable)", ) parser.add_argument( "--maxlen-in", "--batch-seq-maxlen-in", default=800, type=int, metavar="ML", help="When --batch-count=seq, " "batch size is reduced if the input sequence length > ML.", ) parser.add_argument( "--maxlen-out", "--batch-seq-maxlen-out", default=150, type=int, metavar="ML", help="When --batch-count=seq, " "batch size is reduced if the output sequence length > ML", ) parser.add_argument( "--n-iter-processes", default=0, type=int, help="Number of processes of iterator", ) parser.add_argument( "--preprocess-conf", type=str, default=None, nargs="?", help="The configuration file for the pre-processing", ) # optimization related parser.add_argument( "--opt", default="adadelta", type=str, choices=["adadelta", "adam", "noam"], help="Optimizer", ) parser.add_argument( "--accum-grad", default=1, type=int, help="Number of gradient accumuration" ) parser.add_argument( "--eps", default=1e-8, type=float, help="Epsilon constant for optimizer" ) parser.add_argument( "--eps-decay", default=0.01, type=float, help="Decaying ratio of epsilon" ) parser.add_argument( "--weight-decay", default=0.0, type=float, help="Weight decay ratio" ) parser.add_argument( "--criterion", default="acc", type=str, choices=["loss", "acc"], help="Criterion to perform epsilon decay", ) parser.add_argument( "--threshold", default=1e-4, type=float, help="Threshold to stop iteration" ) parser.add_argument( "--epochs", "-e", default=30, type=int, help="Maximum number of epochs" ) parser.add_argument( "--early-stop-criterion", default="validation/main/acc", type=str, nargs="?", help="Value to monitor to trigger an early stopping of the training", ) parser.add_argument( "--patience", default=3, type=int, nargs="?", help="Number of epochs to wait without improvement " "before stopping the training", ) parser.add_argument( "--grad-clip", default=5, type=float, help="Gradient norm threshold to clip" ) parser.add_argument( "--num-save-attention", default=3, type=int, help="Number of samples of attention to be saved", ) parser.add_argument( "--num-save-ctc", default=3, type=int, help="Number of samples of CTC probability to be saved", ) parser.add_argument( "--grad-noise", type=strtobool, default=False, help="The flag to switch to use noise injection to gradients during training", ) # asr_mix related parser.add_argument( "--num-spkrs", default=1, type=int, choices=[1, 2], help="Number of speakers in the speech.", ) # decoder related parser.add_argument( "--context-residual", default=False, type=strtobool, nargs="?", help="The flag to switch to use context vector residual in the decoder network", ) # finetuning related parser.add_argument( "--enc-init", default=None, type=str, help="Pre-trained ASR model to initialize encoder.", ) parser.add_argument( "--enc-init-mods", default="enc.enc.", type=lambda s: [str(mod) for mod in s.split(",") if s != ""], help="List of encoder modules to initialize, separated by a comma.", ) parser.add_argument( "--dec-init", default=None, type=str, help="Pre-trained ASR, MT or LM model to initialize decoder.", ) parser.add_argument( "--dec-init-mods", default="att., dec.", type=lambda s: [str(mod) for mod in s.split(",") if s != ""], help="List of decoder modules to initialize, separated by a comma.", ) parser.add_argument( "--freeze-mods", default=None, type=lambda s: [str(mod) for mod in s.split(",") if s != ""], help="List of modules to freeze, separated by a comma.", ) # front end related parser.add_argument( "--use-frontend", type=strtobool, default=False, help="The flag to switch to use frontend system.", ) # WPE related parser.add_argument( "--use-wpe", type=strtobool, default=False, help="Apply Weighted Prediction Error", ) parser.add_argument( "--wtype", default="blstmp", type=str, choices=[ "lstm", "blstm", "lstmp", "blstmp", "vgglstmp", "vggblstmp", "vgglstm", "vggblstm", "gru", "bgru", "grup", "bgrup", "vgggrup", "vggbgrup", "vgggru", "vggbgru", ], help="Type of encoder network architecture " "of the mask estimator for WPE. " "", ) parser.add_argument("--wlayers", type=int, default=2, help="") parser.add_argument("--wunits", type=int, default=300, help="") parser.add_argument("--wprojs", type=int, default=300, help="") parser.add_argument("--wdropout-rate", type=float, default=0.0, help="") parser.add_argument("--wpe-taps", type=int, default=5, help="") parser.add_argument("--wpe-delay", type=int, default=3, help="") parser.add_argument( "--use-dnn-mask-for-wpe", type=strtobool, default=False, help="Use DNN to estimate the power spectrogram. " "This option is experimental.", ) # Beamformer related parser.add_argument("--use-beamformer", type=strtobool, default=True, help="") parser.add_argument( "--btype", default="blstmp", type=str, choices=[ "lstm", "blstm", "lstmp", "blstmp", "vgglstmp", "vggblstmp", "vgglstm", "vggblstm", "gru", "bgru", "grup", "bgrup", "vgggrup", "vggbgrup", "vgggru", "vggbgru", ], help="Type of encoder network architecture " "of the mask estimator for Beamformer.", ) parser.add_argument("--blayers", type=int, default=2, help="") parser.add_argument("--bunits", type=int, default=300, help="") parser.add_argument("--bprojs", type=int, default=300, help="") parser.add_argument("--badim", type=int, default=320, help="") parser.add_argument( "--bnmask", type=int, default=2, help="Number of beamforming masks, " "default is 2 for [speech, noise].", ) parser.add_argument( "--ref-channel", type=int, default=-1, help="The reference channel used for beamformer. " "By default, the channel is estimated by DNN.", ) parser.add_argument("--bdropout-rate", type=float, default=0.0, help="") # Feature transform: Normalization parser.add_argument( "--stats-file", type=str, default=None, help="The stats file for the feature normalization", ) parser.add_argument( "--apply-uttmvn", type=strtobool, default=True, help="Apply utterance level mean " "variance normalization.", ) parser.add_argument("--uttmvn-norm-means", type=strtobool, default=True, help="") parser.add_argument("--uttmvn-norm-vars", type=strtobool, default=False, help="") # Feature transform: Fbank parser.add_argument( "--fbank-fs", type=int, default=16000, help="The sample frequency used for " "the mel-fbank creation.", ) parser.add_argument( "--n-mels", type=int, default=80, help="The number of mel-frequency bins." ) parser.add_argument("--fbank-fmin", type=float, default=0.0, help="") parser.add_argument("--fbank-fmax", type=float, default=None, help="") return parser def main(cmd_args): """Run the main training function.""" parser = get_parser() args, _ = parser.parse_known_args(cmd_args) if args.backend == "chainer" and args.train_dtype != "float32": raise NotImplementedError( f"chainer backend does not support --train-dtype {args.train_dtype}." "Use --dtype float32." ) if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"): raise ValueError( f"--train-dtype {args.train_dtype} does not support the CPU backend." ) from espnet.utils.dynamic_import import dynamic_import if args.model_module is None: model_module = "espnet.nets." + args.backend + "_backend.e2e_asr:E2E" else: model_module = args.model_module model_class = dynamic_import(model_module) model_class.add_arguments(parser) args = parser.parse_args(cmd_args) args.model_module = model_module if "chainer_backend" in args.model_module: args.backend = "chainer" if "pytorch_backend" in args.model_module: args.backend = "pytorch" # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.warning("Skip DEBUG/INFO messages") # If --ngpu is not given, # 1. if CUDA_VISIBLE_DEVICES is set, all visible devices # 2. if nvidia-smi exists, use all devices # 3. else ngpu=0 if args.ngpu is None: cvd = os.environ.get("CUDA_VISIBLE_DEVICES") if cvd is not None: ngpu = len(cvd.split(",")) else: logging.warning("CUDA_VISIBLE_DEVICES is not set.") try: p = subprocess.run( ["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE ) except (subprocess.CalledProcessError, FileNotFoundError): ngpu = 0 else: ngpu = len(p.stderr.decode().split("\n")) - 1 else: if is_torch_1_2_plus and args.ngpu != 1: logging.debug( "There are some bugs with multi-GPU processing in PyTorch 1.2+" + " (see https://github.com/pytorch/pytorch/issues/21108)" ) ngpu = args.ngpu logging.info(f"ngpu: {ngpu}") # display PYTHONPATH logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)")) # set random seed logging.info("random seed = %d" % args.seed) random.seed(args.seed) np.random.seed(args.seed) # load dictionary for debug log if args.dict is not None: with open(args.dict, "rb") as f: dictionary = f.readlines() char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary] char_list.insert(0, "<blank>") char_list.append("<eos>") # for non-autoregressive training using Transformer if hasattr(args, "decoder_mode") and args.decoder_mode == "maskctc": char_list.append("<mask>") args.char_list = char_list else: args.char_list = None # train logging.info("backend = " + args.backend) if args.num_spkrs == 1: if args.backend == "chainer": from espnet.asr.chainer_backend.asr import train train(args) elif args.backend == "pytorch": from espnet.asr.pytorch_backend.asr import train train(args) else: raise ValueError("Only chainer and pytorch are supported.") else: # FIXME(kamo): Support --model-module if args.backend == "pytorch": from espnet.asr.pytorch_backend.asr_mix import train train(args) else: raise ValueError("Only pytorch is supported.") if __name__ == "__main__": main(sys.argv[1:])
31.438871
88
0.577376
[ "Apache-2.0" ]
Advanjef/espnet
espnet/bin/asr_train.py
20,058
Python
# -*- coding=utf-8 -*- import pygame from pygame.locals import MOUSEBUTTONDOWN from pybfcontrol.bf_common import BFControlId,BFBase, TEXT_ALIGN_LEFT,TEXT_ALIGN_MIDDLE CLICK_EFFECT_TIME = 100 PADING = 4 class BFButton(BFBase): def __init__(self, parent, rect, text='Button', click=None): super(BFButton, self).__init__() self.x,self.y,self.width,self.height = rect self.bg_color = (225,225,225) self.parent = parent self.surface = parent.subsurface(rect) self.is_hover = False self.in_click = False self.click_loss_time = 0 self.click_event_id = -1 self.ctl_id = BFControlId().instance().get_new_id() self._text = text self._click = click self.init_font() def init_font(self): white = 100, 100, 100 self.textImage = self.font.render(self._text, True, white) w, h = self.textImage.get_size() self._ty = (self.height - h) / 2 if self._text_align == TEXT_ALIGN_LEFT: self._tx = PADING elif self._text_align == TEXT_ALIGN_MIDDLE: self._tx = (self.width - PADING - w) / 2 else: self._tx = (self.width - PADING * 2 - w) @property def text(self): return self._text @text.setter def text(self, value): self._text = value self.init_font() @property def click(self): return self._click @click.setter def click(self, value): self._click = value def clear_hover(self): self.is_hover = False def update(self, event): if self.in_click and event.type == pygame.USEREVENT+1 and BFControlId().instance().click_id == self.ctl_id: if self._click: self._click(self) self.click_event_id = -1 return True x, y = pygame.mouse.get_pos() if x > self.x and x < self.x + self.width and y > self.y and y < self.y + self.height: if self.panel: self.panel.clear_hover() self.is_hover = True if event.type == MOUSEBUTTONDOWN: pressed_array = pygame.mouse.get_pressed() if pressed_array[0]: self.in_click = True if self.panel: self.panel.clear_foucs() self.click_loss_time = pygame.time.get_ticks() + CLICK_EFFECT_TIME BFControlId().instance().click_id = self.ctl_id pygame.time.set_timer(pygame.USEREVENT+1,CLICK_EFFECT_TIME-10) return True else: self.is_hover = False return False def draw(self): if self.in_click: if self.click_loss_time < pygame.time.get_ticks(): self.in_click = False if not self._visible: return if self.in_click: r,g,b = self.bg_color k = 0.95 self.surface.fill((r*k, g*k, b*k)) else: self.surface.fill(self.bg_color) if self.is_hover: pygame.draw.rect(self.surface, (0,0,0), (0,0,self.width,self.height), 1) pygame.draw.rect(self.surface, (100,100,100), (0,0,self.width-1,self.height-1), 1) layers = 5 r_step = (210-170)/layers g_step = (225-205)/layers for i in range(layers): pygame.draw.rect(self.surface, (170+r_step*i, 205+g_step*i, 255), (i, i, self.width - 2 - i*2, self.height - 2 - i*2), 1) else: self.surface.fill(self.bg_color) pygame.draw.rect(self.surface, (0,0,0), (0,0,self.width,self.height), 1) pygame.draw.rect(self.surface, (100,100,100), (0,0,self.width-1,self.height-1), 1) pygame.draw.rect(self.surface, self.bg_color, (0,0,self.width-2,self.height-2), 1) self.surface.blit(self.textImage, (self._tx, self._ty)) class BFButtonGroup(object): def __init__(self): self.btn_list = [] def add_button(self, button): self.btn_list.append(button) def make_button(self, screen, rect, text='Button', click=None): button = BFButton(screen, rect,text=text,click=click) self.add_button(button) def update(self, event): for button in self.btn_list: button.update(event) def draw(self): for button in self.btn_list: button.draw()
35.430894
137
0.583983
[ "MIT" ]
zhangenter/bf_control
pybfcontrol/bf_button.py
4,358
Python
#(c) 2016 by Authors #This file is a part of ABruijn program. #Released under the BSD license (see LICENSE file) """ Runs repeat/contigger binary """ from __future__ import absolute_import import subprocess import logging import os from flye.utils.utils import which REPEAT_BIN = "flye-modules" CONTIGGER_BIN = "flye-modules" logger = logging.getLogger() class RepeatException(Exception): pass def check_binaries(): if not which(REPEAT_BIN) or not which(CONTIGGER_BIN): raise RepeatException("Repeat/contigger binaries were not found. " "Did you run 'make'?") try: devnull = open(os.devnull, "w") subprocess.check_call([REPEAT_BIN, "repeat", "-h"], stderr=devnull) except subprocess.CalledProcessError as e: raise RepeatException(str(e)) except OSError as e: raise RepeatException(str(e)) def analyse_repeats(args, run_params, input_assembly, out_folder, log_file, config_file): logger.debug("-----Begin repeat analyser log------") cmdline = [REPEAT_BIN, "repeat", "--disjointigs", input_assembly, "--reads", ",".join(args.reads), "--out-dir", out_folder, "--config", config_file, "--log", log_file, "--threads", str(args.threads)] if args.debug: cmdline.append("--debug") if args.meta: cmdline.append("--meta") if args.keep_haplotypes: cmdline.append("--keep-haplotypes") #if args.kmer_size: # cmdline.extend(["--kmer", str(args.kmer_size)]) cmdline.extend(["--min-ovlp", str(run_params["min_overlap"])]) if args.hifi_error: cmdline.extend(["--extra-params", "repeat_graph_ovlp_divergence={}".format(args.hifi_error)]) try: logger.debug("Running: " + " ".join(cmdline)) subprocess.check_call(cmdline) except subprocess.CalledProcessError as e: if e.returncode == -9: logger.error("Looks like the system ran out of memory") raise RepeatException(str(e)) except OSError as e: raise RepeatException(str(e)) def generate_contigs(args, run_params, graph_edges, out_folder, log_file, config_file, repeat_graph, reads_alignment): logger.debug("-----Begin contigger analyser log------") cmdline = [CONTIGGER_BIN, "contigger", "--graph-edges", graph_edges, "--reads", ",".join(args.reads), "--out-dir", out_folder, "--config", config_file, "--repeat-graph", repeat_graph, "--graph-aln", reads_alignment, "--log", log_file, "--threads", str(args.threads)] if args.debug: cmdline.append("--debug") if args.keep_haplotypes: cmdline.append("--no-scaffold") #if args.kmer_size: # cmdline.extend(["--kmer", str(args.kmer_size)]) cmdline.extend(["--min-ovlp", str(run_params["min_overlap"])]) try: logger.debug("Running: " + " ".join(cmdline)) subprocess.check_call(cmdline) except subprocess.CalledProcessError as e: if e.returncode == -9: logger.error("Looks like the system ran out of memory") raise RepeatException(str(e)) except OSError as e: raise RepeatException(str(e))
33.865979
83
0.624353
[ "BSD-3-Clause" ]
arun-sub/Flye
flye/assembly/repeat_graph.py
3,285
Python
import json import typing import collections from matplotlib import cm from matplotlib.colors import Normalize, to_hex, CSS4_COLORS, BASE_COLORS import matplotlib.pyplot as plt from clldutils.color import qualitative_colors, sequential_colors, rgb_as_hex from cldfviz.multiparameter import CONTINUOUS, CATEGORICAL, Parameter __all__ = ['COLORMAPS', 'hextriplet', 'Colormap'] COLORMAPS = { CATEGORICAL: ['boynton', 'tol', 'base', 'seq'], CONTINUOUS: [cm for cm in plt.colormaps() if not cm.endswith('_r')], } def hextriplet(s): """ Wrap clldutils.color.rgb_as_hex to provide unified error handling. """ if s in BASE_COLORS: return rgb_as_hex([float(d) for d in BASE_COLORS[s]]) if s in CSS4_COLORS: return CSS4_COLORS[s] try: return rgb_as_hex(s) except (AssertionError, ValueError) as e: raise ValueError('Invalid color spec: "{}" ({})'.format(s, str(e))) class Colormap: def __init__(self, parameter: Parameter, name: typing.Optional[str] = None, novalue=None): domain = parameter.domain self.explicit_cm = None if name and name.startswith('{'): self.explicit_cm = collections.OrderedDict() raw = json.loads(name, object_pairs_hook=collections.OrderedDict) if novalue: raw.setdefault('None', novalue) label_to_code = {v: k for k, v in parameter.domain.items()} for v, c in raw.items(): if (v not in parameter.value_to_code) and v not in label_to_code: raise ValueError('Colormap value "{}" not in domain {}'.format( v, list(parameter.value_to_code.keys()))) v = parameter.value_to_code.get(v, label_to_code.get(v)) self.explicit_cm[v] = hextriplet(c) vals = list(parameter.value_to_code) if len(vals) > len(self.explicit_cm): raise ValueError('Colormap {} does not cover all values {}!'.format( dict(raw), vals)) name = None # reorder the domain of the parameter (and prune it to valid values): parameter.domain = collections.OrderedDict( (c, l) for c, l in sorted( [i for i in parameter.domain.items() if i[0] in self.explicit_cm], key=lambda i: list(self.explicit_cm.keys()).index(i[0])) ) self.novalue = hextriplet(novalue) if novalue else None self._cm = getattr(cm, name or 'yyy', cm.jet) if isinstance(domain, tuple): assert not self.explicit_cm # Initialize matplotlib colormap and normalizer: norm = Normalize(domain[0], domain[1]) self.cm = lambda v: to_hex(self._cm(norm(float(v)))) else: if self.explicit_cm: self.cm = lambda v: self.explicit_cm[v] else: if name == 'seq': colors = sequential_colors(len(domain)) else: colors = qualitative_colors(len(domain), set=name) self.cm = lambda v: dict(zip(domain, colors))[v] def scalar_mappable(self): return cm.ScalarMappable(norm=None, cmap=self._cm) def __call__(self, value): if value is None: return self.novalue return self.cm(value)
39.835294
94
0.599232
[ "Apache-2.0" ]
cldf/cldfviz
src/cldfviz/colormap.py
3,386
Python
import torch class KFold: def __init__(self, dataset, n_fold=10, batch_size=32, num_workers=0, pin_memory=False): self.fold = 0 self.batch_size = batch_size self.num_workers = num_workers self.pin_memory = pin_memory self.dataset = dataset self.n_fold = n_fold self.fold_size = len(self.dataset) // self.n_fold self.folded_size = self.n_fold * self.fold_size self.fold_idx = self.fold_split() def fold_split(self, random_seed=None): """ Splitting the folds. Args: random_seed: Random seed for reproducibility Returns: tensor containing indices for folds, where dim=0 is the fold number """ if random_seed is not None: torch.manual_seed(random_seed) fold_idx = torch.randperm(self.dataset.__len__()) fold_idx = fold_idx[:self.folded_size].view(-1, self.fold_size) return fold_idx def fold_loaders(self, fold=-1): """ Loading a specific fold as train and test data loader. If no fold number is provided it returns the next fold. It returns a randomly sampled subset of the original data set. Args: fold: fold number to return Returns: (train data loader, test data loader) """ if fold == -1: fold = self.fold test_fold_idx = self.fold_idx[fold] train_fold_idx = self.fold_idx[[i for i in range(self.n_fold) if i != fold]].view(-1) train_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, # args.batch_size, num_workers=self.num_workers, # args.loader_num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(train_fold_idx)) test_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, # args.batch_size, num_workers=self.num_workers, # args.loader_num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(test_fold_idx)) self.fold = (self.fold + 1) % self.n_fold return train_loader, test_loader
39.353846
158
0.555903
[ "MIT" ]
raharth/PyMatch
pymatch/utils/KFold.py
2,558
Python
# -*- coding: utf-8 -*- # # Copyright 2011 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from google.appengine.api import users from google.appengine.ext import webapp from util import * import webapp2 class WhoAmIHandler(webapp2.RequestHandler): def get(self): self.response.out.write(Util.getUsernameFromEmail(users.get_current_user().email())) app = webapp2.WSGIApplication( [ ('/whoami', WhoAmIHandler), ], debug=True)
27.714286
88
0.736082
[ "Apache-2.0" ]
lmanul/awty
whoami.py
970
Python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. MAJOR = 1 MINOR = 7 PATCH = 0 PRE_RELEASE = 'rc' # Use the following formatting: (major, minor, patch, pre-release) VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE) __shortversion__ = '.'.join(map(str, VERSION[:3])) __version__ = '.'.join(map(str, VERSION[:3])) + ''.join(VERSION[3:]) __package_name__ = 'nemo_toolkit' __contact_names__ = 'NVIDIA' __contact_emails__ = '[email protected]' __homepage__ = 'https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/' __repository_url__ = 'https://github.com/nvidia/nemo' __download_url__ = 'https://github.com/NVIDIA/NeMo/releases' __description__ = 'NeMo - a toolkit for Conversational AI' __license__ = 'Apache2' __keywords__ = 'deep learning, machine learning, gpu, NLP, NeMo, nvidia, pytorch, torch, tts, speech, language'
38.944444
111
0.74679
[ "Apache-2.0" ]
btarjan/NeMo
nemo/package_info.py
1,402
Python
# Licensed to the Software Freedom Conservancy (SFC) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from selenium.common.exceptions import TimeoutException class TestPageLoadTimeout(object): @pytest.mark.xfail_phantomjs( reason='PhantomJS does not implement page load timeouts') def testShouldTimeoutOnPageLoadTakingTooLong(self, driver, pages): driver.set_page_load_timeout(0.01) with pytest.raises(TimeoutException): pages.load("simpleTest.html") @pytest.mark.xfail_marionette( reason='https://bugzilla.mozilla.org/show_bug.cgi?id=1309231') @pytest.mark.xfail_phantomjs( reason='PhantomJS does not implement page load timeouts') def testClickShouldTimeout(self, driver, pages): pages.load("simpleTest.html") driver.set_page_load_timeout(0.01) with pytest.raises(TimeoutException): driver.find_element_by_id("multilinelink").click()
40.219512
70
0.745907
[ "Apache-2.0" ]
shubhramittal/selenium
py/test/selenium/webdriver/common/page_load_timeout_tests.py
1,649
Python
from bs4 import BeautifulSoup from django.forms import ( BaseForm, BaseFormSet, BoundField, CheckboxInput, CheckboxSelectMultiple, DateInput, EmailInput, FileInput, MultiWidget, NumberInput, PasswordInput, RadioSelect, Select, SelectDateWidget, TextInput, URLInput, ) from django.utils.html import conditional_escape, escape, strip_tags from django.utils.safestring import mark_safe from .bootstrap import get_bootstrap_setting from .exceptions import BootstrapError from .forms import ( FORM_GROUP_CLASS, is_widget_with_placeholder, render_field, render_form, render_form_group, render_label, ) from .text import text_value from .utils import add_css_class, render_template_file try: # If Django is set up without a database, importing this widget gives RuntimeError from django.contrib.auth.forms import ReadOnlyPasswordHashWidget except RuntimeError: ReadOnlyPasswordHashWidget = None class BaseRenderer(object): """A content renderer.""" def __init__(self, *args, **kwargs): self.layout = kwargs.get("layout", "") self.form_group_class = kwargs.get("form_group_class", FORM_GROUP_CLASS) self.field_class = kwargs.get("field_class", "") self.label_class = kwargs.get("label_class", "") self.show_help = kwargs.get("show_help", True) self.show_label = kwargs.get("show_label", True) self.exclude = kwargs.get("exclude", "") self.set_placeholder = kwargs.get("set_placeholder", True) self.size = self.parse_size(kwargs.get("size", "")) self.horizontal_label_class = kwargs.get( "horizontal_label_class", get_bootstrap_setting("horizontal_label_class") ) self.horizontal_field_class = kwargs.get( "horizontal_field_class", get_bootstrap_setting("horizontal_field_class") ) def parse_size(self, size): size = text_value(size).lower().strip() if size in ("sm", "small"): return "small" if size in ("lg", "large"): return "large" if size in ("md", "medium", ""): return "medium" raise BootstrapError('Invalid value "%s" for parameter "size" (expected "sm", "md", "lg" or "").' % size) def get_size_class(self, prefix="form-control"): if self.size == "small": return prefix + "-sm" if self.size == "large": return prefix + "-lg" return "" def _render(self): return "" def render(self): return mark_safe(self._render()) class FormsetRenderer(BaseRenderer): """Default formset renderer.""" def __init__(self, formset, *args, **kwargs): if not isinstance(formset, BaseFormSet): raise BootstrapError('Parameter "formset" should contain a valid Django Formset.') self.formset = formset super().__init__(*args, **kwargs) def render_management_form(self): return text_value(self.formset.management_form) def render_form(self, form, **kwargs): return render_form(form, **kwargs) def render_forms(self): rendered_forms = [] for form in self.formset.forms: rendered_forms.append( self.render_form( form, layout=self.layout, form_group_class=self.form_group_class, field_class=self.field_class, label_class=self.label_class, show_label=self.show_label, show_help=self.show_help, exclude=self.exclude, set_placeholder=self.set_placeholder, size=self.size, horizontal_label_class=self.horizontal_label_class, horizontal_field_class=self.horizontal_field_class, ) ) return "\n".join(rendered_forms) def get_formset_errors(self): return self.formset.non_form_errors() def render_errors(self): formset_errors = self.get_formset_errors() if formset_errors: return render_template_file( "bootstrap4/form_errors.html", context={"errors": formset_errors, "form": self.formset, "layout": self.layout}, ) return "" def _render(self): return "".join([self.render_errors(), self.render_management_form(), self.render_forms()]) class FormRenderer(BaseRenderer): """Default form renderer.""" def __init__(self, form, *args, **kwargs): if not isinstance(form, BaseForm): raise BootstrapError('Parameter "form" should contain a valid Django Form.') self.form = form super().__init__(*args, **kwargs) self.error_css_class = kwargs.get("error_css_class", None) self.required_css_class = kwargs.get("required_css_class", None) self.bound_css_class = kwargs.get("bound_css_class", None) self.alert_error_type = kwargs.get("alert_error_type", "non_fields") self.form_check_class = kwargs.get("form_check_class", "form-check") def render_fields(self): rendered_fields = [] for field in self.form: rendered_fields.append( render_field( field, layout=self.layout, form_group_class=self.form_group_class, field_class=self.field_class, label_class=self.label_class, form_check_class=self.form_check_class, show_label=self.show_label, show_help=self.show_help, exclude=self.exclude, set_placeholder=self.set_placeholder, size=self.size, horizontal_label_class=self.horizontal_label_class, horizontal_field_class=self.horizontal_field_class, error_css_class=self.error_css_class, required_css_class=self.required_css_class, bound_css_class=self.bound_css_class, ) ) return "\n".join(rendered_fields) def get_fields_errors(self): form_errors = [] for field in self.form: if not field.is_hidden and field.errors: form_errors += field.errors return form_errors def render_errors(self, type="all"): form_errors = None if type == "all": form_errors = self.get_fields_errors() + self.form.non_field_errors() elif type == "fields": form_errors = self.get_fields_errors() elif type == "non_fields": form_errors = self.form.non_field_errors() if form_errors: return render_template_file( "bootstrap4/form_errors.html", context={"errors": form_errors, "form": self.form, "layout": self.layout, "type": type}, ) return "" def _render(self): return self.render_errors(self.alert_error_type) + self.render_fields() class FieldRenderer(BaseRenderer): """Default field renderer.""" # These widgets will not be wrapped in a form-control class WIDGETS_NO_FORM_CONTROL = (CheckboxInput, RadioSelect, CheckboxSelectMultiple, FileInput) def __init__(self, field, *args, **kwargs): if not isinstance(field, BoundField): raise BootstrapError('Parameter "field" should contain a valid Django BoundField.') self.field = field super().__init__(*args, **kwargs) self.widget = field.field.widget self.is_multi_widget = isinstance(field.field.widget, MultiWidget) self.initial_attrs = self.widget.attrs.copy() self.field_help = text_value(mark_safe(field.help_text)) if self.show_help and field.help_text else "" self.field_errors = [conditional_escape(text_value(error)) for error in field.errors] self.form_check_class = kwargs.get("form_check_class", "form-check") if "placeholder" in kwargs: # Find the placeholder in kwargs, even if it's empty self.placeholder = kwargs["placeholder"] elif get_bootstrap_setting("set_placeholder"): # If not found, see if we set the label self.placeholder = field.label else: # Or just set it to empty self.placeholder = "" if self.placeholder: self.placeholder = text_value(self.placeholder) self.addon_before = kwargs.get("addon_before", self.widget.attrs.pop("addon_before", "")) self.addon_after = kwargs.get("addon_after", self.widget.attrs.pop("addon_after", "")) self.addon_before_class = kwargs.get( "addon_before_class", self.widget.attrs.pop("addon_before_class", "input-group-text") ) self.addon_after_class = kwargs.get( "addon_after_class", self.widget.attrs.pop("addon_after_class", "input-group-text") ) # These are set in Django or in the global BOOTSTRAP4 settings, and # they can be overwritten in the template error_css_class = kwargs.get("error_css_class", None) required_css_class = kwargs.get("required_css_class", None) bound_css_class = kwargs.get("bound_css_class", None) if error_css_class is not None: self.error_css_class = error_css_class else: self.error_css_class = getattr(field.form, "error_css_class", get_bootstrap_setting("error_css_class")) if required_css_class is not None: self.required_css_class = required_css_class else: self.required_css_class = getattr( field.form, "required_css_class", get_bootstrap_setting("required_css_class") ) if bound_css_class is not None: self.success_css_class = bound_css_class else: self.success_css_class = getattr(field.form, "bound_css_class", get_bootstrap_setting("success_css_class")) # If the form is marked as form.empty_permitted, do not set required class if self.field.form.empty_permitted: self.required_css_class = "" def restore_widget_attrs(self): self.widget.attrs = self.initial_attrs.copy() def add_class_attrs(self, widget=None): if widget is None: widget = self.widget classes = widget.attrs.get("class", "") if ReadOnlyPasswordHashWidget is not None and isinstance(widget, ReadOnlyPasswordHashWidget): # Render this is a static control classes = add_css_class(classes, "form-control-static", prepend=True) elif not isinstance(widget, self.WIDGETS_NO_FORM_CONTROL): classes = add_css_class(classes, "form-control", prepend=True) # For these widget types, add the size class here classes = add_css_class(classes, self.get_size_class()) elif isinstance(widget, CheckboxInput): classes = add_css_class(classes, "form-check-input", prepend=True) elif isinstance(widget, FileInput): classes = add_css_class(classes, "form-control-file", prepend=True) if self.field.errors: if self.error_css_class: classes = add_css_class(classes, self.error_css_class) else: if self.field.form.is_bound: classes = add_css_class(classes, self.success_css_class) widget.attrs["class"] = classes def add_placeholder_attrs(self, widget=None): if widget is None: widget = self.widget placeholder = widget.attrs.get("placeholder", self.placeholder) if placeholder and self.set_placeholder and is_widget_with_placeholder(widget): # TODO: Should this be stripped and/or escaped? widget.attrs["placeholder"] = placeholder def add_help_attrs(self, widget=None): if widget is None: widget = self.widget if not isinstance(widget, CheckboxInput): widget.attrs["title"] = widget.attrs.get("title", escape(strip_tags(self.field_help))) def add_widget_attrs(self): if self.is_multi_widget: widgets = self.widget.widgets else: widgets = [self.widget] for widget in widgets: self.add_class_attrs(widget) self.add_placeholder_attrs(widget) self.add_help_attrs(widget) def list_to_class(self, html, klass): classes = add_css_class(klass, self.get_size_class()) mapping = [ ("<ul", '<div class="{classes}"'.format(classes=classes)), ("</ul>", "</div>"), ("<li", '<div class="{form_check_class}"'.format(form_check_class=self.form_check_class)), ("</li>", "</div>"), ] for k, v in mapping: html = html.replace(k, v) # Apply bootstrap4 classes to labels and inputs. # A simple 'replace' isn't enough as we don't want to have several 'class' attr definition, which would happen # if we tried to 'html.replace("input", "input class=...")' soup = BeautifulSoup(html, features="html.parser") enclosing_div = soup.find("div", {"class": classes}) if enclosing_div: for label in enclosing_div.find_all("label"): label.attrs["class"] = label.attrs.get("class", []) + ["form-check-label"] try: label.input.attrs["class"] = label.input.attrs.get("class", []) + ["form-check-input"] except AttributeError: pass return str(soup) def add_checkbox_label(self, html): return html + render_label( content=self.field.label, label_for=self.field.id_for_label, label_title=escape(strip_tags(self.field_help)), label_class="form-check-label", ) def fix_date_select_input(self, html): div1 = '<div class="col-4">' div2 = "</div>" html = html.replace("<select", div1 + "<select") html = html.replace("</select>", "</select>" + div2) return '<div class="row bootstrap4-multi-input">{html}</div>'.format(html=html) def fix_file_input_label(self, html): if self.layout != "horizontal": html = "<br>" + html return html def post_widget_render(self, html): if isinstance(self.widget, RadioSelect): html = self.list_to_class(html, "radio radio-success") elif isinstance(self.widget, CheckboxSelectMultiple): html = self.list_to_class(html, "checkbox") elif isinstance(self.widget, SelectDateWidget): html = self.fix_date_select_input(html) elif isinstance(self.widget, CheckboxInput): html = self.add_checkbox_label(html) elif isinstance(self.widget, FileInput): html = self.fix_file_input_label(html) return html def wrap_widget(self, html): if isinstance(self.widget, CheckboxInput): # Wrap checkboxes # Note checkboxes do not get size classes, see #318 html = '<div class="form-check">{html}</div>'.format(html=html) return html def make_input_group_addon(self, inner_class, outer_class, content): if not content: return "" if inner_class: content = '<span class="{inner_class}">{content}</span>'.format(inner_class=inner_class, content=content) return '<div class="{outer_class}">{content}</div>'.format(outer_class=outer_class, content=content) @property def is_input_group(self): allowed_widget_types = (TextInput, PasswordInput, DateInput, NumberInput, Select, EmailInput, URLInput) return (self.addon_before or self.addon_after) and isinstance(self.widget, allowed_widget_types) def make_input_group(self, html): if self.is_input_group: before = self.make_input_group_addon(self.addon_before_class, "input-group-prepend", self.addon_before) after = self.make_input_group_addon(self.addon_after_class, "input-group-append", self.addon_after) html = self.append_errors("{before}{html}{after}".format(before=before, html=html, after=after)) html = '<div class="input-group">{html}</div>'.format(html=html) return html def append_help(self, html): field_help = self.field_help or None if field_help: help_html = render_template_file( "bootstrap4/field_help_text.html", context={ "field": self.field, "field_help": field_help, "layout": self.layout, "show_help": self.show_help, }, ) html += help_html return html def append_errors(self, html): field_errors = self.field_errors if field_errors: errors_html = render_template_file( "bootstrap4/field_errors.html", context={ "field": self.field, "field_errors": field_errors, "layout": self.layout, "show_help": self.show_help, }, ) html += errors_html return html def append_to_field(self, html): if isinstance(self.widget, CheckboxInput): # we have already appended errors and help to checkboxes # in append_to_checkbox_field return html if not self.is_input_group: # we already appended errors for input groups in make_input_group html = self.append_errors(html) return self.append_help(html) def append_to_checkbox_field(self, html): if not isinstance(self.widget, CheckboxInput): # we will append errors and help to normal fields later in append_to_field return html html = self.append_errors(html) return self.append_help(html) def get_field_class(self): field_class = self.field_class if not field_class and self.layout == "horizontal": field_class = self.horizontal_field_class return field_class def wrap_field(self, html): field_class = self.get_field_class() if field_class: html = '<div class="{field_class}">{html}</div>'.format(field_class=field_class, html=html) return html def get_label_class(self): label_class = self.label_class if not label_class and self.layout == "horizontal": label_class = self.horizontal_label_class label_class = add_css_class(label_class, "col-form-label") label_class = text_value(label_class) if not self.show_label or self.show_label == "sr-only": label_class = add_css_class(label_class, "sr-only") return label_class def get_label(self): if self.show_label == "skip": return None elif isinstance(self.widget, CheckboxInput): label = None else: label = self.field.label if self.layout == "horizontal" and not label: return mark_safe("&#160;") return label def add_label(self, html): label = self.get_label() if label: html = render_label(label, label_for=self.field.id_for_label, label_class=self.get_label_class()) + html return html def get_form_group_class(self): form_group_class = self.form_group_class if self.field.errors: if self.error_css_class: form_group_class = add_css_class(form_group_class, self.error_css_class) else: if self.field.form.is_bound: form_group_class = add_css_class(form_group_class, self.success_css_class) if self.field.field.required and self.required_css_class: form_group_class = add_css_class(form_group_class, self.required_css_class) if self.layout == "horizontal": form_group_class = add_css_class(form_group_class, "row") return form_group_class def wrap_label_and_field(self, html): return render_form_group(html, self.get_form_group_class()) def _render(self): # See if we're not excluded if self.field.name in self.exclude.replace(" ", "").split(","): return "" # Hidden input requires no special treatment if self.field.is_hidden: return text_value(self.field) # Render the widget self.add_widget_attrs() html = self.field.as_widget(attrs=self.widget.attrs) self.restore_widget_attrs() # Start post render html = self.post_widget_render(html) html = self.append_to_checkbox_field(html) html = self.wrap_widget(html) html = self.make_input_group(html) html = self.append_to_field(html) html = self.wrap_field(html) html = self.add_label(html) html = self.wrap_label_and_field(html) return html class InlineFieldRenderer(FieldRenderer): """Inline field renderer.""" def add_error_attrs(self): field_title = self.widget.attrs.get("title", "") field_title += " " + " ".join([strip_tags(e) for e in self.field_errors]) self.widget.attrs["title"] = field_title.strip() def add_widget_attrs(self): super().add_widget_attrs() self.add_error_attrs() def append_to_field(self, html): return html def get_field_class(self): return self.field_class def get_label_class(self): return add_css_class(self.label_class, "sr-only")
39.285458
119
0.621744
[ "Unlicense" ]
Andre-Azu/neigbourhood
env/lib/python3.8/site-packages/bootstrap4/renderers.py
21,882
Python
import tensorflow as tf import numpy as np import os import matplotlib.pyplot as plt from tqdm import tqdm class RBM(object): def __init__(self,num_visible,num_hidden,visible_unit_type='bin',main_dir='/Users/chamalgomes/Documents/Python/GitLab/DeepLearning/KAI PROJECT/rbm/models', model_name='rbm_model',gibbs_sampling_steps=1,learning_rate=0.01,momentum=0.9,l2=0.001,batch_size=10, num_epochs=10,stddev=0.1,verbose=0,plot_training_loss=True): """" INPUT PARAMETER 1) num_visible: number of visible units in the RBM INPUT PARAMETER 2) num_hidden: number of hidden units in the RBM INPUT PARAMETER 3) main_dir: main directory to put the models, data and summary directories INPUT PARAMETER 4) model_name: name of the model you wanna save the data INPUT PARAMETER 5) gibbs_sampling_steps: Default 1 (Hence Optional) INPUT PARAMETER 6) learning_rate: Default 0.01 (Hence Optional) INPUT PARAMETER 7) momentum: Default 0.9(Hence Optional) for Gradient Descent INPUT PARAMETER 8) l2: l2 regularization lambda value for weight decay Default 0.001(Hence Optional) INPUT PARAMETER 9) batch_size: Default 10 (Hence Optional) INPUT PARAMETER 10) num_epochs: Default 10 (Hence Optional) INPUT PARAMETER 11) stddev: optional, default 0.1. Ignored if visible_unit_type is not 'gauss' INPUT PARAMETER 12) verbose: evel of verbosity. optional, default 0(for Regularization) INPUT PARAMETER 13) plot_training_loss: whether or not to plot training loss, default True INPUT PARAMETER 14) visible_units_type: Binary or Gaussian (Default Binary) """ #Defining main paramters self.num_visible = num_visible #1 self.num_hidden = num_hidden #2 self.main_dir = main_dir #3 self.model_name = model_name #4 self.gibbs_sampling_steps = gibbs_sampling_steps #5 self.learning_rate = learning_rate #6 self.momentum = momentum #7 self.l2 = l2 #8 self.batch_size = batch_size #9 self.num_epochs = num_epochs #10 self.stddev = stddev #11 self.verbose = verbose #12 self.plot_training_loss = plot_training_loss #13 self.visible_unit_type = visible_unit_type #14 self._create_model_directory() self.model_path = os.path.join(self.main_dir, self.model_name) self.W = None self.bh_ = None self.bv_ = None self.dw = None self.dbh_ = None self.dbv_ = None self.w_upd8 = None self.bh_upd8 = None self.bv_upd8 = None self.encode = None self.recontruct = None self.loss_function = None self.batch_cost = None self.batch_free_energy = None self.training_losses = [] self.input_data = None#_build_model self.hrand = None # _build_model self.validation_size = None #fit self.tf_session = None #fit self.tf_saver = None #_initialize_tf_utilities_and_ops def sample_prob(self,probs,rand): """ takes a tensor of probabilitiesas from a sigmoidal activation and sample from all the distributions. probs INPUT parameter: tensor of probabilities rand INPUT parameter :tensor (of same shape as probabilities) of random values :RETURN binary sample of probabilities """ return tf.nn.relu(tf.sign(probs-rand)) def gen_batches(self,data,batch_size): """ Divide input data into batches data INPUT parameter: input data( like a data frame) batch_size INPUT parameter: desired size of each batch :RETURN data divided in batches """ data = np.array(data) for i in range(0,data.shape[0],batch_size): yield data[i:i+batch_size] def fit(self,train_set,validation_set = None,restore_previous_model=False): """" fit the model to the training data INPUT PARAMETER train_set: training set INPUT PARAMETER validation set.default None (Hence Optional) INPUT PARAMETER restore_previous_model: if true, a previous trained model with the same name of this model is restored from disk to continue training. OUTPUT: self """ if validation_set is not None: self.validation_size = validation_set.shape[0] tf.reset_default_graph() self._build_model()# you will come across it later on with tf.Session() as self.tf_session: self._initialize_tf_utilities_and_ops(restore_previous_model) self._train_model(train_set, validation_set) self.tf_saver.save(self.tf_session, self.model_path) if self.plot_training_loss: #plot editing should be done here as you wish plt.plot(self.training_losses) plt.title("Training batch losses v.s. iteractions") plt.xlabel("Num of training iteractions") plt.ylabel("Reconstruction error") plt.show() def _initialize_tf_utilities_and_ops(self, restore_previous_model): """" Initialize TensorFlow operations: summaries, init operations, saver, summary_writer. Restore a previously trained model if the flag restore_previous_model is true. """ init_op = tf.global_variables_initializer() self.tf_saver = tf.train.Saver() self.tf_session.run(init_op) if restore_previous_model: self.tf_saver.restore(self.tf_session, self.model_path) def _train_model(self, train_set, validation_set): """" Train the Model INPUT PARAMETER train set: Training set INPUT PARAMETER validation_set: Validation set OUTPUT self """ for i in range(self.num_epochs): self._run_train_step(train_set) if validation_set is not None: self._run_validation_error(i, validation_set) def _run_train_step(self,train_set): """" Run a training step. A training step is made by randomly shuffling the training set, divide into batches and run the variable update nodes for each batch. If self.plot_training_loss is true, will record training loss after each batch. INPUT PARAMETER train_set: training set OUTPUT self """ np.random.shuffle(train_set) batches = [_ for _ in self.gen_batches(train_set, self.batch_size)] updates = [self.w_upd8, self.bh_upd8, self.bv_upd8] for batch in batches: if self.plot_training_loss: _,loss = self.tf_session.run([updates,self.loss_function],feed_dict = self._create_feed_dict(batch)) self.training_losses.append(loss) else: self.tf_session.run(updates, feed_dict=self._create_feed_dict(batch)) def _run_validation_error(self, epoch, validation_set): """ Run the error computation on the validation set and print it out for each epoch. INPUT PARAMETER: current epoch INPUT PARAMETER validation_set: validation data OUTPUT: self """ loss = self.tf_session.run(self.loss_function, feed_dict=self._create_feed_dict(validation_set)) if self.verbose == 1: tqdm.write("Validation cost at step %s: %s" % (epoch, loss)) def _create_feed_dict(self, data): """ Create the dictionary of data to feed to TensorFlow's session during training. :param data: training/validation set batch :return: dictionary(self.input_data: data, self.hrand: random_uniform) """ return { self.input_data: data, self.hrand: np.random.rand(data.shape[0], self.num_hidden), } def _build_model(self): """ BUilding the Restriced Boltzman Machine in Tensorflow """ self.input_data, self.hrand = self._create_placeholders() #check the function below self.W, self.bh_, self.bv_, self.dw, self.dbh_, self.dbv_ = self._create_variables()#check the function below hprobs0, hstates0, vprobs, hprobs1, hstates1 = self.gibbs_sampling_step(self.input_data) positive = self.compute_positive_association(self.input_data, hprobs0, hstates0) nn_input = vprobs for step in range(self.gibbs_sampling_steps - 1): hprobs, hstates, vprobs, hprobs1, hstates1 = self.gibbs_sampling_step(nn_input) nn_input = vprobs self.reconstruct = vprobs negative = tf.matmul(tf.transpose(vprobs), hprobs1) self.encode = hprobs1 #exact formula in my paper dw = positive - negative self.dw = self.momentum*self.dw + (1-self.momentum)*dw self.w_upd8 = self.W.assign_add(self.learning_rate*self.dw - self.learning_rate*self.l2*self.W) dbh_ = tf.reduce_mean(hprobs0 - hprobs1, 0) self.dbh_ = self.momentum*self.dbh_ + self.learning_rate*dbh_ self.bh_upd8 = self.bh_.assign_add(self.dbh_) dbv_ = tf.reduce_mean(self.input_data - vprobs, 0) self.dbv_ = self.momentum*self.dbv_ + self.learning_rate*dbv_ self.bv_upd8 = self.bv_.assign_add(self.dbv_) self.loss_function = tf.sqrt(tf.reduce_mean(tf.square(self.input_data - vprobs))) self.batch_cost = tf.sqrt(tf.reduce_mean(tf.square(self.input_data - vprobs), 1)) self._create_free_energy_for_batch() def _create_free_energy_for_batch(self): """ Create free energy ops to batch input data :return: self """ if self.visible_unit_type == 'bin': self._create_free_energy_for_bin() elif self.visible_unit_type == 'gauss': self._create_free_energy_for_gauss() else: self.batch_free_energy = None def _create_free_energy_for_bin(self): """ Create free energy for mdoel with Bin visible layer :return: self """ #Refer to the Binary Free Energy Equation self.batch_free_energy = - (tf.matmul(self.input_data, tf.reshape(self.bv_, [-1, 1])) + tf.reshape(tf.reduce_sum(tf.log(tf.exp(tf.matmul(self.input_data, self.W) + self.bh_) + 1), 1), [-1, 1])) def _create_free_energy_for_gauss(self): """ Create free energy for model with Gauss visible layer :return: self """ #Refer to the Gaussian Free Energy Equation self.batch_free_energy = - (tf.matmul(self.input_data, tf.reshape(self.bv_, [-1, 1])) - tf.reshape(tf.reduce_sum(0.5 * self.input_data * self.input_data, 1), [-1, 1]) + tf.reshape(tf.reduce_sum(tf.log(tf.exp(tf.matmul(self.input_data, self.W) + self.bh_) + 1), 1), [-1, 1])) def _create_placeholders(self): """ Create the TensorFlow placeholders for the model. :return: tuple(input(shape(None, num_visible)), hrand(shape(None, num_hidden))) """ x = tf.placeholder('float', [None, self.num_visible], name='x-input') hrand = tf.placeholder('float', [None, self.num_hidden], name='hrand') return x, hrand def _create_variables(self): """ Create the TensorFlow variables for the model. :return: tuple(weights(shape(num_visible, num_hidden), hidden bias(shape(num_hidden)), visible bias(shape(num_visible))) """ W = tf.Variable(tf.random_normal((self.num_visible, self.num_hidden), mean=0.0, stddev=0.01), name='weights') dw = tf.Variable(tf.zeros([self.num_visible, self.num_hidden]), name = 'derivative-weights') bh_ = tf.Variable(tf.zeros([self.num_hidden]), name='hidden-bias') dbh_ = tf.Variable(tf.zeros([self.num_hidden]), name='derivative-hidden-bias') bv_ = tf.Variable(tf.zeros([self.num_visible]), name='visible-bias') dbv_ = tf.Variable(tf.zeros([self.num_visible]), name='derivative-visible-bias') return W, bh_, bv_, dw, dbh_, dbv_ def gibbs_sampling_step(self, visible): """ Performs one step of gibbs sampling. :param visible: activations of the visible units :return: tuple(hidden probs, hidden states, visible probs, new hidden probs, new hidden states) """ hprobs, hstates = self.sample_hidden_from_visible(visible) vprobs = self.sample_visible_from_hidden(hprobs) hprobs1, hstates1 = self.sample_hidden_from_visible(vprobs) return hprobs, hstates, vprobs, hprobs1, hstates1 def sample_hidden_from_visible(self, visible): """ Sample the hidden units from the visible units. This is the Positive phase of the Contrastive Divergence algorithm. :param visible: activations of the visible units :return: tuple(hidden probabilities, hidden binary states) """ hprobs = tf.nn.sigmoid(tf.matmul(visible, self.W) + self.bh_) hstates = self.sample_prob(hprobs, self.hrand) return hprobs, hstates def sample_visible_from_hidden(self, hidden): """ Sample the visible units from the hidden units. This is the Negative phase of the Contrastive Divergence algorithm. :param hidden: activations of the hidden units :return: visible probabilities """ visible_activation = tf.matmul(hidden, tf.transpose(self.W)) + self.bv_ if self.visible_unit_type == 'bin': vprobs = tf.nn.sigmoid(visible_activation) elif self.visible_unit_type == 'gauss': vprobs = tf.truncated_normal((1, self.num_visible), mean=visible_activation, stddev=self.stddev) else: vprobs = None return vprobs def compute_positive_association(self, visible, hidden_probs, hidden_states): """ Compute positive associations between visible and hidden units. :param visible: visible units :param hidden_probs: hidden units probabilities :param hidden_states: hidden units states :return: positive association = dot(visible.T, hidden) """ if self.visible_unit_type == 'bin': positive = tf.matmul(tf.transpose(visible), hidden_states) elif self.visible_unit_type == 'gauss': positive = tf.matmul(tf.transpose(visible), hidden_probs) else: positive = None return positive def _create_model_directory(self): """ Create the directory for storing the model :return: self """ if not os.path.isdir(self.main_dir): print("Created dir: ", self.main_dir) os.mkdir(self.main_dir) def getRecontructError(self, data): """ return Reconstruction Error (loss) from data in batch. :param data: input data of shape num_samples x visible_size :return: Reconstruction cost for each sample in the batch """ with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) batch_loss = self.tf_session.run(self.batch_cost, feed_dict=self._create_feed_dict(data)) return batch_loss def getFreeEnergy(self, data): """ return Free Energy from data. :param data: input data of shape num_samples x visible_size :return: Free Energy for each sample: p(x) """ with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) batch_FE = self.tf_session.run(self.batch_free_energy, feed_dict=self._create_feed_dict(data)) return batch_FE def getRecontruction(self, data): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) batch_reconstruct = self.tf_session.run(self.recontruct, feed_dict=self._create_feed_dict(data)) return batch_reconstruct def load_model(self, shape, gibbs_sampling_steps, model_path): """ Load a trained model from disk. The shape of the model (num_visible, num_hidden) and the number of gibbs sampling steps must be known in order to restore the model. :param shape: tuple(num_visible, num_hidden) :param gibbs_sampling_steps: :param model_path: :return: self """ self.num_visible, self.num_hidden = shape[0], shape[1] self.gibbs_sampling_steps = gibbs_sampling_steps tf.reset_default_graph() self._build_model() init_op = tf.global_variables_initializer() self.tf_saver = tf.train.Saver() with tf.Session() as self.tf_session: self.tf_session.run(init_op) self.tf_saver.restore(self.tf_session, model_path) def get_model_parameters(self): """ Return the model parameters in the form of numpy arrays. :return: model parameters """ with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) return { 'W': self.W.eval(), 'bh_': self.bh_.eval(), 'bv_': self.bv_.eval() } #The MIT License (MIT) #Copyright (c) 2016 Gabriele Angeletti #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. #© 2019 GitHub, Inc.
38.474849
354
0.633459
[ "MIT" ]
Phoebe0222/MLSA-workshops-2019-student
Unsupervised-Learning/rbm.py
19,123
Python
from data_processing_calibration import DataProcessingCalibration if __name__ == "__main__": # Start processing dp_ST = DataProcessingCalibration() print("Initialize is successful.") # Open .csv file with data data_from_sensor = dp_ST.openFile('C://static_test.csv') print("Data was got.") # Filter and processing, and convert data in Euler angles data_orientation_ST = dp_ST.processFile(data_from_sensor) print("Data was converted.") # Use method of Allan Variation for data tau_roll, ad_roll, tau_pitch, ad_pitch, tau_yaw, ad_yaw = dp_ST.deviationAllan(data_orientation_ST, rate=31) print("Using method of Allan Variation was successful.") # Create plots dp_ST.plotDataFromFile(data_orientation_ST, tau_roll, ad_roll, tau_pitch, ad_pitch, tau_yaw, ad_yaw) print("Plots creating was successful.")
36.958333
113
0.722661
[ "MIT" ]
DefenderOfSockets/Calibration_IMU_MPU6050
static_test/main.py
887
Python
""" Support for Smappee energy monitor. For more details about this component, please refer to the documentation at https://home-assistant.io/components/smappee/ """ import logging from datetime import datetime, timedelta import re import voluptuous as vol from requests.exceptions import RequestException from homeassistant.const import ( CONF_USERNAME, CONF_PASSWORD, CONF_HOST ) from homeassistant.util import Throttle from homeassistant.helpers.discovery import load_platform import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['smappy==0.2.16'] _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = 'Smappee' DEFAULT_HOST_PASSWORD = 'admin' CONF_CLIENT_ID = 'client_id' CONF_CLIENT_SECRET = 'client_secret' CONF_HOST_PASSWORD = 'host_password' DOMAIN = 'smappee' DATA_SMAPPEE = 'SMAPPEE' _SENSOR_REGEX = re.compile( r'(?P<key>([A-Za-z]+))\=' + r'(?P<value>([0-9\.]+))') CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Inclusive(CONF_CLIENT_ID, 'Server credentials'): cv.string, vol.Inclusive(CONF_CLIENT_SECRET, 'Server credentials'): cv.string, vol.Inclusive(CONF_USERNAME, 'Server credentials'): cv.string, vol.Inclusive(CONF_PASSWORD, 'Server credentials'): cv.string, vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_HOST_PASSWORD, default=DEFAULT_HOST_PASSWORD): cv.string }), }, extra=vol.ALLOW_EXTRA) MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=30) def setup(hass, config): """Set up the Smapee component.""" client_id = config.get(DOMAIN).get(CONF_CLIENT_ID) client_secret = config.get(DOMAIN).get(CONF_CLIENT_SECRET) username = config.get(DOMAIN).get(CONF_USERNAME) password = config.get(DOMAIN).get(CONF_PASSWORD) host = config.get(DOMAIN).get(CONF_HOST) host_password = config.get(DOMAIN).get(CONF_HOST_PASSWORD) smappee = Smappee(client_id, client_secret, username, password, host, host_password) if not smappee.is_local_active and not smappee.is_remote_active: _LOGGER.error("Neither Smappee server or local component enabled.") return False hass.data[DATA_SMAPPEE] = smappee load_platform(hass, 'switch', DOMAIN) load_platform(hass, 'sensor', DOMAIN) return True class Smappee: """Stores data retrieved from Smappee sensor.""" def __init__(self, client_id, client_secret, username, password, host, host_password): """Initialize the data.""" import smappy self._remote_active = False self._local_active = False if client_id is not None: try: self._smappy = smappy.Smappee(client_id, client_secret) self._smappy.authenticate(username, password) self._remote_active = True except RequestException as error: self._smappy = None _LOGGER.exception( "Smappee server authentication failed (%s)", error) else: _LOGGER.warning("Smappee server component init skipped.") if host is not None: try: self._localsmappy = smappy.LocalSmappee(host) self._localsmappy.logon(host_password) self._local_active = True except RequestException as error: self._localsmappy = None _LOGGER.exception( "Local Smappee device authentication failed (%s)", error) else: _LOGGER.warning("Smappee local component init skipped.") self.locations = {} self.info = {} self.consumption = {} self.sensor_consumption = {} self.instantaneous = {} if self._remote_active or self._local_active: self.update() @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Update data from Smappee API.""" if self.is_remote_active: service_locations = self._smappy.get_service_locations() \ .get('serviceLocations') for location in service_locations: location_id = location.get('serviceLocationId') if location_id is not None: self.sensor_consumption[location_id] = {} self.locations[location_id] = location.get('name') self.info[location_id] = self._smappy \ .get_service_location_info(location_id) _LOGGER.debug("Remote info %s %s", self.locations, self.info[location_id]) for sensors in self.info[location_id].get('sensors'): sensor_id = sensors.get('id') self.sensor_consumption[location_id]\ .update({sensor_id: self.get_sensor_consumption( location_id, sensor_id, aggregation=3, delta=1440)}) _LOGGER.debug("Remote sensors %s %s", self.locations, self.sensor_consumption[location_id]) self.consumption[location_id] = self.get_consumption( location_id, aggregation=3, delta=1440) _LOGGER.debug("Remote consumption %s %s", self.locations, self.consumption[location_id]) if self.is_local_active: self.local_devices = self.get_switches() _LOGGER.debug("Local switches %s", self.local_devices) self.instantaneous = self.load_instantaneous() _LOGGER.debug("Local values %s", self.instantaneous) @property def is_remote_active(self): """Return true if Smappe server is configured and working.""" return self._remote_active @property def is_local_active(self): """Return true if Smappe local device is configured and working.""" return self._local_active def get_switches(self): """Get switches from local Smappee.""" if not self.is_local_active: return try: return self._localsmappy.load_command_control_config() except RequestException as error: _LOGGER.error( "Error getting switches from local Smappee. (%s)", error) def get_consumption(self, location_id, aggregation, delta): """Update data from Smappee.""" # Start & End accept epoch (in milliseconds), # datetime and pandas timestamps # Aggregation: # 1 = 5 min values (only available for the last 14 days), # 2 = hourly values, # 3 = daily values, # 4 = monthly values, # 5 = quarterly values if not self.is_remote_active: return end = datetime.utcnow() start = end - timedelta(minutes=delta) try: return self._smappy.get_consumption(location_id, start, end, aggregation) except RequestException as error: _LOGGER.error( "Error getting comsumption from Smappee cloud. (%s)", error) def get_sensor_consumption(self, location_id, sensor_id, aggregation, delta): """Update data from Smappee.""" # Start & End accept epoch (in milliseconds), # datetime and pandas timestamps # Aggregation: # 1 = 5 min values (only available for the last 14 days), # 2 = hourly values, # 3 = daily values, # 4 = monthly values, # 5 = quarterly values if not self.is_remote_active: return end = datetime.utcnow() start = end - timedelta(minutes=delta) try: return self._smappy.get_sensor_consumption(location_id, sensor_id, start, end, aggregation) except RequestException as error: _LOGGER.error( "Error getting comsumption from Smappee cloud. (%s)", error) def actuator_on(self, location_id, actuator_id, is_remote_switch, duration=None): """Turn on actuator.""" # Duration = 300,900,1800,3600 # or any other value for an undetermined period of time. # # The comport plugs have a tendency to ignore the on/off signal. # And because you can't read the status of a plug, it's more # reliable to execute the command twice. try: if is_remote_switch: self._smappy.actuator_on(location_id, actuator_id, duration) self._smappy.actuator_on(location_id, actuator_id, duration) else: self._localsmappy.on_command_control(actuator_id) self._localsmappy.on_command_control(actuator_id) except RequestException as error: _LOGGER.error( "Error turning actuator on. (%s)", error) return False return True def actuator_off(self, location_id, actuator_id, is_remote_switch, duration=None): """Turn off actuator.""" # Duration = 300,900,1800,3600 # or any other value for an undetermined period of time. # # The comport plugs have a tendency to ignore the on/off signal. # And because you can't read the status of a plug, it's more # reliable to execute the command twice. try: if is_remote_switch: self._smappy.actuator_off(location_id, actuator_id, duration) self._smappy.actuator_off(location_id, actuator_id, duration) else: self._localsmappy.off_command_control(actuator_id) self._localsmappy.off_command_control(actuator_id) except RequestException as error: _LOGGER.error( "Error turning actuator on. (%s)", error) return False return True def active_power(self): """Get sum of all instantaneous active power values from local hub.""" if not self.is_local_active: return try: return self._localsmappy.active_power() except RequestException as error: _LOGGER.error( "Error getting data from Local Smappee unit. (%s)", error) def active_cosfi(self): """Get the average of all instantaneous cosfi values.""" if not self.is_local_active: return try: return self._localsmappy.active_cosfi() except RequestException as error: _LOGGER.error( "Error getting data from Local Smappee unit. (%s)", error) def instantaneous_values(self): """ReportInstantaneousValues.""" if not self.is_local_active: return report_instantaneous_values = \ self._localsmappy.report_instantaneous_values() report_result = \ report_instantaneous_values['report'].split('<BR>') properties = {} for lines in report_result: lines_result = lines.split(',') for prop in lines_result: match = _SENSOR_REGEX.search(prop) if match: properties[match.group('key')] = \ match.group('value') _LOGGER.debug(properties) return properties def active_current(self): """Get current active Amps.""" if not self.is_local_active: return properties = self.instantaneous_values() return float(properties['current']) def active_voltage(self): """Get current active Voltage.""" if not self.is_local_active: return properties = self.instantaneous_values() return float(properties['voltage']) def load_instantaneous(self): """LoadInstantaneous.""" if not self.is_local_active: return try: return self._localsmappy.load_instantaneous() except RequestException as error: _LOGGER.error( "Error getting data from Local Smappee unit. (%s)", error)
36.276353
78
0.581089
[ "Apache-2.0" ]
Arshrock/home-assistant
homeassistant/components/smappee.py
12,733
Python
import os import math from decimal import Decimal import utility import torch import torch.nn.utils as utils from tqdm import tqdm class Trainer(): def __init__(self, args, loader, my_model, my_loss, ckp): self.args = args self.scale = args.scale self.ckp = ckp self.loader_train = loader.loader_train self.loader_test = loader.loader_test self.model = my_model self.loss = my_loss self.optimizer = utility.make_optimizer(args, self.model) self.flag_ae_loss = True if args.loss.lower().find('ae') >= 0 else False if self.args.precision == 'amp': self.scaler = torch.cuda.amp.GradScaler() if self.args.load != '': # To avoid "UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`." # The 0 gradient value will not update any parameter of the model to train. self.optimizer.zero_grad() self.optimizer.step() self.optimizer.load(ckp.dir, epoch=len(ckp.log)) self.error_last = 1e8 def train(self): self.loss.step() epoch = self.optimizer.get_last_epoch() + 1 lr = self.optimizer.get_lr() self.ckp.write_log( '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr)) ) self.loss.start_log() self.model.train() timer_data, timer_model = utility.timer(), utility.timer() # TEMP self.loader_train.dataset.set_scale(0) for batch, (lr, hr, _,) in enumerate(self.loader_train): lr, hr = self.prepare(lr, hr) if self.flag_ae_loss: hr, hr_ae = hr[:,:self.args.n_colors, ...], hr[:,self.args.n_colors:,...] else: hr_ae = None timer_data.hold() timer_model.tic() self.optimizer.zero_grad() if self.args.precision == 'amp': with torch.cuda.amp.autocast(): sr = self.model(lr, 0) if self.flag_ae_loss: sr_ae = self._forward_auto_encoder(hr_ae, 0) else: sr_ae = None loss = self.loss(sr, hr, sr_ae, hr_ae) self.scaler.scale(loss).backward() else: sr = self.model(lr, 0) if self.flag_ae_loss: sr_ae = self._forward_auto_encoder(hr_ae, 0) else: sr_ae = None loss = self.loss(sr, hr, sr_ae, hr_ae) loss.backward() if self.args.gclip > 0: utils.clip_grad_value_( self.model.parameters(), self.args.gclip ) if self.args.precision == 'amp': self.scaler.step(self.optimizer) self.scaler.update() else: self.optimizer.step() timer_model.hold() if (batch + 1) % self.args.print_every == 0: self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format( (batch + 1) * self.args.batch_size, len(self.loader_train.dataset), self.loss.display_loss(batch), timer_model.release(), timer_data.release())) timer_data.tic() self.loss.end_log(len(self.loader_train)) self.error_last = self.loss.log[-1, -1] self.optimizer.schedule() def test(self): torch.set_grad_enabled(False) epoch = self.optimizer.get_last_epoch() self.ckp.write_log('\nEvaluation:') self.ckp.add_log( torch.zeros(1, len(self.loader_test), len(self.scale)) ) self.model.eval() timer_test = utility.timer() if self.args.save_results: self.ckp.begin_background() for idx_data, d in enumerate(self.loader_test): for idx_scale, scale in enumerate(self.scale): d.dataset.set_scale(idx_scale) for lr, hr, filename in tqdm(d, ncols=80): lr, hr = self.prepare(lr, hr) sr = self.model(lr, idx_scale) sr = utility.quantize(sr, self.args.rgb_range) save_list = [sr] self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr( sr, hr, scale, self.args.rgb_range, dataset=d ) if self.args.save_gt: save_list.extend([lr, hr]) if self.args.save_results: self.ckp.save_results(d, filename[0], save_list, scale) self.ckp.log[-1, idx_data, idx_scale] /= len(d) best = self.ckp.log.max(0) self.ckp.write_log( '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format( d.dataset.name, scale, self.ckp.log[-1, idx_data, idx_scale], best[0][idx_data, idx_scale], best[1][idx_data, idx_scale] + 1 ) ) self.ckp.write_log('Forward: {:.2f}s\n'.format(timer_test.toc())) self.ckp.write_log('Saving...') if self.args.save_results: self.ckp.end_background() if not self.args.test_only: self.ckp.save(self, epoch, is_best=(best[1][0, 0] + 1 == epoch)) self.ckp.write_log( 'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True ) torch.set_grad_enabled(True) def prepare(self, *args): device = torch.device('cpu' if self.args.cpu else 'cuda') def _prepare(tensor): if self.args.precision == 'half': tensor = tensor.half() return tensor.to(device) return [_prepare(a) for a in args] def terminate(self): if self.args.test_only: self.test() return True else: epoch = self.optimizer.get_last_epoch() + 1 return epoch > self.args.epochs # return epoch >= self.args.epochs def _forward_auto_encoder(self, x, idx_scale): self.model.set_forward_ae_loss(True) x = self.model(x, idx_scale) self.model.set_forward_ae_loss(False) return x
34.645503
105
0.51069
[ "MIT" ]
CvlabAssignment/WRcan
src/trainer.py
6,548
Python
# # PySNMP MIB module NOKIA-HWM-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/NOKIA-HWM-MIB # Produced by pysmi-0.3.4 at Wed May 1 14:23:29 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") entPhysicalIndex, = mibBuilder.importSymbols("ENTITY-MIB", "entPhysicalIndex") ntcHWMibs, ntcHWReqs, ntcCommonModules = mibBuilder.importSymbols("NOKIA-COMMON-MIB-OID-REGISTRATION-MIB", "ntcHWMibs", "ntcHWReqs", "ntcCommonModules") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") ObjectIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, Integer32, IpAddress, TimeTicks, ModuleIdentity, MibIdentifier, Unsigned32, Counter32, NotificationType, iso, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "Integer32", "IpAddress", "TimeTicks", "ModuleIdentity", "MibIdentifier", "Unsigned32", "Counter32", "NotificationType", "iso", "Bits") AutonomousType, TextualConvention, TimeStamp, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "AutonomousType", "TextualConvention", "TimeStamp", "DisplayString") ntcHWModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 94, 1, 16, 5, 1)) ntcHWModule.setRevisions(('1998-08-24 00:00', '1998-09-03 00:00', '1998-09-24 00:00', '1998-10-04 00:00', '1999-01-08 00:00', '1999-08-05 00:00', '1999-10-25 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ntcHWModule.setRevisionsDescriptions(('Rev 0.1 August 24, 1998 Initial version - ready for review', 'Rev 0.2 September 3, 1998 Initial review by Tero Soukko whose comments have been incorporated.', 'Rev 0.3 September 24, 1998 ready for initial review.', 'Rev 0.4 Updated anchors to use values registered by Mika Kiikkila.', 'Rev 1.0 Syntax of ntcHWLastChangedTime changed from DateAndTime to TimeStamp. Traps commented out because they are part of Nokia Common Alarm MIB.', 'Rev 1.01 Those IMPORTS which are not used are removed. Groups ntcHWSlots and ntcHWEventGroup which are not defined in this module are removed. The name NokiaHwmSlotEntry is changed to NtcHWSlotEntry on account of convenience. All notification definions before out-commented removed. Some esthetic modifications made.', "Comment 'The NMS is not allowed to set the value of ntcHWAdminstate to missing.' added to the ntcHWAdminstate's description.",)) if mibBuilder.loadTexts: ntcHWModule.setLastUpdated('9901080000Z') if mibBuilder.loadTexts: ntcHWModule.setOrganization('Nokia') if mibBuilder.loadTexts: ntcHWModule.setContactInfo('Anna-Kaisa Lindfors Nokia Telecommunications Oy Hiomotie 5, FIN-00380 Helsinki +358-9-51121 [email protected]') if mibBuilder.loadTexts: ntcHWModule.setDescription('The MIB module that is used to control the Hardware Management information.') ntcHWObjs = MibIdentifier((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1)) ntcHWEvents = MibIdentifier((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 2, 0)) ntcHWGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 94, 1, 16, 8, 1, 1)) ntcHWCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 94, 1, 16, 8, 1, 2)) ntcHWUnitTable = MibTable((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1), ) if mibBuilder.loadTexts: ntcHWUnitTable.setStatus('current') if mibBuilder.loadTexts: ntcHWUnitTable.setDescription("A table which contains an entry for each pluggable circuit board (in this MIB a 'unit' is the same as a pluggable circuit board.) Entries of this table are automatically created by the hardware management software.") ntcHWUnitEntry = MibTableRow((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1), ).setIndexNames((0, "ENTITY-MIB", "entPhysicalIndex")) if mibBuilder.loadTexts: ntcHWUnitEntry.setStatus('current') if mibBuilder.loadTexts: ntcHWUnitEntry.setDescription('A conceptual row in the ntcHWUnitTable. Rows are created automatically by the Hardware Management software.') ntcHWAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("inService", 1), ("outOfService", 2), ("inTest", 3), ("missing", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ntcHWAdminState.setStatus('current') if mibBuilder.loadTexts: ntcHWAdminState.setDescription('Represents the desired state of the unit. inService indicates that the unit is intended to be operating normally. outOfService indicates that the unit should be taken out of normal operating mode and no data traffic should appear in this unit. inTest indicates that the unit should be placed into a selftest mode. missing indicates that the unit is expected to be present but has been detected as not being physically present. The NMS is not allowed to set the value of ntcHWAdminstate to missing.') ntcHWOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("down", 1), ("up", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWOperState.setStatus('current') if mibBuilder.loadTexts: ntcHWOperState.setDescription('Indicates the current state of the unit. down indicates that the unit is in a non-functional state. up indicates that the unit is functioning normally.') ntcHWAvailabilityStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11))).clone(namedValues=NamedValues(("inCharge", 1), ("applicationStarting", 2), ("applicationShutdown", 3), ("platformStarting", 4), ("resetting", 5), ("separated", 6), ("unconfigured", 7), ("testing", 8), ("standby", 9), ("dormant", 10), ("unavailable", 11)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWAvailabilityStatus.setStatus('current') if mibBuilder.loadTexts: ntcHWAvailabilityStatus.setDescription("Provides more specific information on the state of the unit in this conceptual row. The status column has eleven defined values: inCharge = the unit is fully operational and ready to perform its desired tasks; applicationStarting = the application software is starting up; applicationShutdown = the application software is shutting down; platformStarting = Basic platform software is starting up; resetting = the disk files are closed and hardware reset is forced; separated = Only basic OS software is running. The unit can start application software on request; unconfigured = The administrative state of the unit is 'missing', disk files are closed and only basic OS software is running. The unit refuses to start application software; testing = Selftests can be performed, only basic OS are running; standby = The unit is redundant and is fully operational but not in charge of operations. It is ready to move to 'inCharge' state when necessary; dormant = All connections are physically inactive to enable removal of the unit without electric disturbance in the backplane. Only watchdog software is running for a short duration of time; unavailable = The unit is not physically present or cannot be contacted.") ntcHWRestart = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("reset", 1), ("hotRestart", 2), ("detach", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ntcHWRestart.setStatus('current') if mibBuilder.loadTexts: ntcHWRestart.setDescription('Provides the ability to reset or perform a hot restart the unit represented by this conceptual row. reset = the Unit is shutdown in an orderly manner and restarted again via hardware reset; hotRestart = only the software in a unit is restarted, a hardware reset is not initiated; detach = all electrical connections of the unit are forced to an inactive state to enable removal of the unit without electrical disturbance in the backplane.') ntcHWLedState = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("red", 1), ("yellow", 2), ("black", 3), ("green", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWLedState.setStatus('current') if mibBuilder.loadTexts: ntcHWLedState.setDescription('Indicates the current LED color of the unit represented by this conceptual row.') ntcHWSerialNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 6), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWSerialNumber.setStatus('current') if mibBuilder.loadTexts: ntcHWSerialNumber.setDescription('The units serial number in displayable format.') ntcHWProductionDate = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 7), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWProductionDate.setStatus('current') if mibBuilder.loadTexts: ntcHWProductionDate.setDescription('The units production date in displayable format.') ntcHWUnitEntryChanged = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 1, 1, 8), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWUnitEntryChanged.setStatus('current') if mibBuilder.loadTexts: ntcHWUnitEntryChanged.setDescription('Represents the value of sysUpTime at the instant that this conceptual row entry has changed.') ntcHWSlotTable = MibTable((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 2), ) if mibBuilder.loadTexts: ntcHWSlotTable.setStatus('current') if mibBuilder.loadTexts: ntcHWSlotTable.setDescription('Table whose entries represent the expected circuit board type. The entries are created automatically by the hardware management software.') ntcHWSlotEntry = MibTableRow((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 2, 1), ).setIndexNames((0, "ENTITY-MIB", "entPhysicalIndex")) if mibBuilder.loadTexts: ntcHWSlotEntry.setStatus('current') if mibBuilder.loadTexts: ntcHWSlotEntry.setDescription('The logical row describing the expected circiut board type of a slot.') ntcHWDesiredUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 2, 1, 2), AutonomousType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ntcHWDesiredUnitType.setStatus('current') if mibBuilder.loadTexts: ntcHWDesiredUnitType.setDescription("The unit type which is expected to be inserted or present in the current slot. An indication of the vendor-specific hardware type of the HWM entity. Note that this is different from the definition of MIB-II's sysObjectID. An agent should set this object to a enterprise-specific registration identifier value indicating the specific equipment type in detail. If no vendor-specific registration identifier exists for this entity, or the value is unknown by this agent, then the value { 0 0 } is returned.") ntcHWLastChangedTime = MibScalar((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 3), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntcHWLastChangedTime.setStatus('current') if mibBuilder.loadTexts: ntcHWLastChangedTime.setDescription('The value of sysUpTime at the time any of these events occur: * any instance in the following object changes value: - hwmUnitEntryChanged This object shall be set to value 0 in startup.') ntcHWLoadInventoryContainer = MibScalar((1, 3, 6, 1, 4, 1, 94, 1, 16, 7, 1, 1, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ntcHWLoadInventoryContainer.setStatus('current') if mibBuilder.loadTexts: ntcHWLoadInventoryContainer.setDescription('Writing any value to this object will cause the hardware management software to reread its configuration file from disk.') ntcHWUnits = ObjectGroup((1, 3, 6, 1, 4, 1, 94, 1, 16, 8, 1, 1, 1)).setObjects(("NOKIA-HWM-MIB", "ntcHWAdminState"), ("NOKIA-HWM-MIB", "ntcHWOperState"), ("NOKIA-HWM-MIB", "ntcHWAvailabilityStatus"), ("NOKIA-HWM-MIB", "ntcHWRestart"), ("NOKIA-HWM-MIB", "ntcHWLedState"), ("NOKIA-HWM-MIB", "ntcHWSerialNumber"), ("NOKIA-HWM-MIB", "ntcHWProductionDate"), ("NOKIA-HWM-MIB", "ntcHWUnitEntryChanged")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ntcHWUnits = ntcHWUnits.setStatus('current') if mibBuilder.loadTexts: ntcHWUnits.setDescription('A collection of objects representing the status of a unit.') ntcHWCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 94, 1, 16, 8, 1, 2, 1)).setObjects(("ENTITY-MIB", "entityPhysicalGroup"), ("NOKIA-HWM-MIB", "ntcHWUnits")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ntcHWCompliance = ntcHWCompliance.setStatus('current') if mibBuilder.loadTexts: ntcHWCompliance.setDescription('The compliance statement Hardware Management.') mibBuilder.exportSymbols("NOKIA-HWM-MIB", ntcHWCompliance=ntcHWCompliance, ntcHWLedState=ntcHWLedState, ntcHWDesiredUnitType=ntcHWDesiredUnitType, ntcHWLastChangedTime=ntcHWLastChangedTime, ntcHWSlotEntry=ntcHWSlotEntry, ntcHWUnits=ntcHWUnits, ntcHWUnitEntry=ntcHWUnitEntry, ntcHWUnitEntryChanged=ntcHWUnitEntryChanged, ntcHWUnitTable=ntcHWUnitTable, ntcHWProductionDate=ntcHWProductionDate, ntcHWLoadInventoryContainer=ntcHWLoadInventoryContainer, ntcHWGroups=ntcHWGroups, ntcHWCompliances=ntcHWCompliances, ntcHWModule=ntcHWModule, ntcHWOperState=ntcHWOperState, ntcHWRestart=ntcHWRestart, ntcHWEvents=ntcHWEvents, ntcHWAvailabilityStatus=ntcHWAvailabilityStatus, ntcHWAdminState=ntcHWAdminState, ntcHWSlotTable=ntcHWSlotTable, ntcHWSerialNumber=ntcHWSerialNumber, ntcHWObjs=ntcHWObjs, PYSNMP_MODULE_ID=ntcHWModule)
168
1,280
0.772321
[ "Apache-2.0" ]
agustinhenze/mibs.snmplabs.com
pysnmp-with-texts/NOKIA-HWM-MIB.py
14,112
Python
class NoNodeData(Exception): pass class AVLNode(object): def __init__(self, key=None, value=None) -> None: """Initializes the AVL Node. Args: data (dict, optional): {Key:Value} pair. Defaults to None. """ super().__init__() self.key = key self.value = value self.left = None self.right = None self.height = 1 def __str__(self) -> str: """Prints single AVL Node to stdout Raises: NoNodeData: If no data is present in the node Returns: str: output string """ if self.key: out = "data: {0}\nleft: {1}\nright: {2}\n".format( (self.key, self.value), self.left.__str__(), self.right.__str__()) return out raise NoNodeData def get_key(self) -> str: """returns the key of the node Returns: str: the key in (key, value) pair """ return self.key def get_value(self) -> str: """returns the value of the key Returns: str: the value in (key, value) pair """ return self.value
23.56
82
0.516129
[ "MIT" ]
gpk2000/avl-db
avltree/AVLNode.py
1,178
Python
# -*- coding: utf-8 -*- from benedict.core import clone as _clone from benedict.core import traverse as _traverse import unittest class traverse_test_case(unittest.TestCase): def test_traverse(self): i = { 'a': { 'x': 2, 'y': 3, 'z': { 'ok': 5, } }, 'b': { 'x': 7, 'y': 11, 'z': { 'ok': 13, } }, 'c': { 'x': 17, 'y': 19, 'z': { 'ok': 23, } }, } o = _clone(i) with self.assertRaises(ValueError): _traverse(o, True) def f(parent, key, value): if not isinstance(value, dict): parent[key] = (value + 1) _traverse(o, f) r = { 'a': { 'x': 3, 'y': 4, 'z': { 'ok': 6, } }, 'b': { 'x': 8, 'y': 12, 'z': { 'ok': 14, } }, 'c': { 'x': 18, 'y': 20, 'z': { 'ok': 24, } }, } self.assertEqual(o, r)
22
47
0.249311
[ "MIT" ]
antran22/python-benedict
tests/core/test_traverse.py
1,452
Python
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- from logging import getLogger from .onnx_model import OnnxModel from typing import Tuple from onnx import helper, TensorProto logger = getLogger(__name__) class FusionUtils: def __init__(self, model: OnnxModel): self.model: OnnxModel = model def cast_graph_input_to_int32(self, input_name: str) -> Tuple[bool, str]: graph_input = self.model.find_graph_input(input_name) if graph_input is not None and graph_input.type.tensor_type.elem_type != TensorProto.INT32: cast_output, cast_node = self.cast_input_to_int32(input_name) logger.debug(f"Casted graph input {input_name} to int32") return True, cast_output logger.debug(f"Did not cast graph input {input_name} to int32: found {graph_input is not None}") return False, input_name def cast_input_to_int32(self, input_name: str): cast_output = input_name + '_int32' # Avoid consequent Cast nodes. inputs = [input_name] output_name_to_node = self.model.output_name_to_node() if input_name in output_name_to_node: parent_node = output_name_to_node[input_name] if parent_node and parent_node.op_type == 'Cast': inputs = [parent_node.input[0]] cast_node = helper.make_node('Cast', inputs=inputs, outputs=[cast_output]) cast_node.attribute.extend([helper.make_attribute("to", int(TensorProto.INT32))]) self.model.add_node(cast_node) return cast_output, cast_node def remove_cast_int32(self, input_name: str): input_name_to_nodes = self.model.input_name_to_nodes() nodes = input_name_to_nodes[input_name] for node in nodes: if node.op_type == "Cast": is_int32 = False for att in node.attribute: if att.name == 'to' and att.i == int(TensorProto.INT32): is_int32 = True break if is_int32: output_name = node.output[0] self.model.remove_node(node) self.model.replace_input_of_all_nodes(output_name, input_name)
41.741379
104
0.609252
[ "Apache-2.0" ]
kiminh/fastformers
examples/fastformers/onnx_graph_optimizer/fusion_utils.py
2,421
Python
import pytest import requests from directory_constants import expertise, sectors from django.shortcuts import Http404 from django.urls import reverse from core import helpers import core.tests.helpers @pytest.mark.parametrize('status_code,exception', ( (400, requests.exceptions.HTTPError), (404, Http404), (500, requests.exceptions.HTTPError), )) def test_handle_cms_response_error(status_code, exception): response = core.tests.helpers.create_response(status_code=status_code) with pytest.raises(exception): helpers.handle_cms_response(response) def test_handle_cms_response_ok(): response = core.tests.helpers.create_response( status_code=200, json_payload={'field': 'value'} ) assert helpers.handle_cms_response(response) == {'field': 'value'} @pytest.mark.parametrize('path,expect_code', ( ('/', None), ('?language=pt', 'pt'), ('/?language=ar', 'ar'), ('/industries?language=es', 'es'), ('/industries/?language=zh-hans', 'zh-hans'), ('/industries/aerospace?language=de', 'de'), ('/industries/automotive/?language=fr', 'fr'), ('?lang=fr', 'fr'), ('?language=de&lang=de', 'de'), ('?lang=pt&language=es', 'es') )) def test_get_language_from_querystring(path, expect_code, rf): url = reverse('index') request = rf.get(url + path) language_code = helpers.get_language_from_querystring(request) assert language_code == expect_code def test_company_parser_serialize_for_template(retrieve_profile_data): company = helpers.CompanyParser(retrieve_profile_data) assert company.serialize_for_template() == { 'address': '123 Fake Street, Fakeville, London, E14 6XK', 'address_line_1': '123 Fake Street', 'address_line_2': 'Fakeville', 'country': 'GB', 'date_of_creation': '02 March 2015', 'description': 'Ecommerce website', 'email_address': '[email protected]', 'email_full_name': 'Jeremy', 'employees': '501-1,000', 'expertise_countries': '', 'expertise_industries': '', 'expertise_languages': '', 'expertise_products_services': {}, 'expertise_regions': '', 'facebook_url': 'http://www.facebook.com', 'has_expertise': False, 'keywords': 'word1, word2', 'linkedin_url': 'http://www.linkedin.com', 'locality': 'London', 'logo': 'nice.jpg', 'mobile_number': '07506043448', 'modified': '2016-11-23T11:21:10.977518Z', 'name': 'Great company', 'number': '01234567', 'po_box': 'abc', 'postal_code': 'E14 6XK', 'postal_full_name': 'Jeremy', 'sectors': 'Security', 'slug': 'great-company', 'summary': 'this is a short summary', 'supplier_case_studies': [], 'twitter_url': 'http://www.twitter.com', 'verified_with_code': True, 'website': 'http://example.com', 'company_type': 'COMPANIES_HOUSE', 'is_published_investment_support_directory': True, 'is_published_find_a_supplier': True, 'is_in_companies_house': True } def test_company_parser_serialize_for_template_empty(): company = helpers.CompanyParser({}) assert company.serialize_for_template() == {} def test_get_results_from_search_response_xss(retrieve_profile_data): response = core.tests.helpers.create_response(json_payload={ 'hits': { 'total': 1, 'hits': [ { '_source': retrieve_profile_data, 'highlight': { 'description': [ '<a onmouseover=javascript:func()>stuff</a>', 'to the max <em>wolf</em>.' ] } } ] } }) formatted = helpers.get_results_from_search_response(response) assert formatted['results'][0]['highlight'] == ( '&lt;a onmouseover=javascript:func()&gt;stuff&lt;/a&gt;...to the max ' '<em>wolf</em>.' ) def test_get_filters_labels(): filters = { 'expertise_languages': ['aa'], 'q': 'foo', 'page': 5, 'expertise_regions': ['NORTH_EAST'], 'expertise_products_services_financial': [expertise.FINANCIAL[1]], 'industries': [sectors.AEROSPACE, sectors.ADVANCED_MANUFACTURING], 'expertise_products_services_human_resources': [ 'Employment and talent research' ], } expected = [ 'Afar', 'North East', 'Insurance', 'Aerospace', 'Advanced manufacturing', 'Employment and talent research', ] assert helpers.get_filters_labels(filters) == expected
31.388158
78
0.607001
[ "MIT" ]
uktrade/directory-ui-supplier
core/tests/test_helpers.py
4,771
Python
from setuptools import setup setup( name='yt-dl', version = "0.1.0", author = "Fernando Luiz Cola", author_email ="[email protected]", license = "MIT", install_requires=[ 'Flask', 'youtube-dl', ], )
21.571429
52
0.480132
[ "Unlicense" ]
ferlzc/youtube-dl-flask
setup.py
302
Python
import re import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from collections import OrderedDict __all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161'] model_urls = { 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth', 'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth', 'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth', 'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth', } def densenet121(pretrained=False, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet121']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def densenet169(pretrained=False, **kwargs): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), **kwargs) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet169']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def densenet201(pretrained=False, **kwargs): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), **kwargs) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet201']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def densenet161(pretrained=False, **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24), **kwargs) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet161']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model class _DenseLayer(nn.Sequential): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate def forward(self, x): new_features = super(_DenseLayer, self).forward(x) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return torch.cat([x, new_features], 1) class _DenseBlock(nn.Sequential): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) self.add_module('denselayer%d' % (i + 1), layer) class _Transition(nn.Sequential): def __init__(self, num_input_features, num_output_features): super(_Transition, self).__init__() self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes """ def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1) out = self.classifier(out) return out
44.216814
109
0.625638
[ "BSD-3-Clause" ]
AaronLeong/cvlib
cvlib/models/densenet.py
9,993
Python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: storyboard_node.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from container_sdk.model.next_builder import storyboard_brick_pb2 as container__sdk_dot_model_dot_next__builder_dot_storyboard__brick__pb2 from container_sdk.model.next_builder import storyboard_route_pb2 as container__sdk_dot_model_dot_next__builder_dot_storyboard__route__pb2 from container_sdk.model.next_builder import micro_app_project_pb2 as container__sdk_dot_model_dot_next__builder_dot_micro__app__project__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='storyboard_node.proto', package='next_builder', syntax='proto3', serialized_options=_b('ZFgo.easyops.local/contracts/protorepo-models/easyops/model/next_builder'), serialized_pb=_b('\n\x15storyboard_node.proto\x12\x0cnext_builder\x1a\x37\x63ontainer_sdk/model/next_builder/storyboard_brick.proto\x1a\x37\x63ontainer_sdk/model/next_builder/storyboard_route.proto\x1a\x38\x63ontainer_sdk/model/next_builder/micro_app_project.proto\"\xe8\x02\n\x0eStoryboardNode\x12\x12\n\ninstanceId\x18\x01 \x01(\t\x12\r\n\x05\x61lias\x18\x02 \x01(\t\x12\r\n\x05\x61ppId\x18\x03 \x01(\t\x12\n\n\x02id\x18\x04 \x01(\t\x12\x12\n\nmountPoint\x18\x05 \x01(\t\x12\x0c\n\x04sort\x18\x06 \x01(\x05\x12\x0c\n\x04type\x18\x07 \x01(\t\x12,\n\x05\x62rick\x18\x08 \x01(\x0b\x32\x1d.next_builder.StoryboardBrick\x12,\n\x05route\x18\t \x01(\x0b\x32\x1d.next_builder.StoryboardRoute\x12.\n\x07project\x18\n \x01(\x0b\x32\x1d.next_builder.MicroAppProject\x12,\n\x06parent\x18\x0b \x01(\x0b\x32\x1c.next_builder.StoryboardNode\x12.\n\x08\x63hildren\x18\x0c \x03(\x0b\x32\x1c.next_builder.StoryboardNodeBHZFgo.easyops.local/contracts/protorepo-models/easyops/model/next_builderb\x06proto3') , dependencies=[container__sdk_dot_model_dot_next__builder_dot_storyboard__brick__pb2.DESCRIPTOR,container__sdk_dot_model_dot_next__builder_dot_storyboard__route__pb2.DESCRIPTOR,container__sdk_dot_model_dot_next__builder_dot_micro__app__project__pb2.DESCRIPTOR,]) _STORYBOARDNODE = _descriptor.Descriptor( name='StoryboardNode', full_name='next_builder.StoryboardNode', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='instanceId', full_name='next_builder.StoryboardNode.instanceId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alias', full_name='next_builder.StoryboardNode.alias', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='appId', full_name='next_builder.StoryboardNode.appId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='next_builder.StoryboardNode.id', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mountPoint', full_name='next_builder.StoryboardNode.mountPoint', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sort', full_name='next_builder.StoryboardNode.sort', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='next_builder.StoryboardNode.type', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='brick', full_name='next_builder.StoryboardNode.brick', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='route', full_name='next_builder.StoryboardNode.route', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='project', full_name='next_builder.StoryboardNode.project', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='parent', full_name='next_builder.StoryboardNode.parent', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='children', full_name='next_builder.StoryboardNode.children', index=11, number=12, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=212, serialized_end=572, ) _STORYBOARDNODE.fields_by_name['brick'].message_type = container__sdk_dot_model_dot_next__builder_dot_storyboard__brick__pb2._STORYBOARDBRICK _STORYBOARDNODE.fields_by_name['route'].message_type = container__sdk_dot_model_dot_next__builder_dot_storyboard__route__pb2._STORYBOARDROUTE _STORYBOARDNODE.fields_by_name['project'].message_type = container__sdk_dot_model_dot_next__builder_dot_micro__app__project__pb2._MICROAPPPROJECT _STORYBOARDNODE.fields_by_name['parent'].message_type = _STORYBOARDNODE _STORYBOARDNODE.fields_by_name['children'].message_type = _STORYBOARDNODE DESCRIPTOR.message_types_by_name['StoryboardNode'] = _STORYBOARDNODE _sym_db.RegisterFileDescriptor(DESCRIPTOR) StoryboardNode = _reflection.GeneratedProtocolMessageType('StoryboardNode', (_message.Message,), { 'DESCRIPTOR' : _STORYBOARDNODE, '__module__' : 'storyboard_node_pb2' # @@protoc_insertion_point(class_scope:next_builder.StoryboardNode) }) _sym_db.RegisterMessage(StoryboardNode) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
52.987342
992
0.774845
[ "Apache-2.0" ]
easyopsapis/easyops-api-python
container_sdk/model/next_builder/storyboard_node_pb2.py
8,372
Python
#!/usr/bin/env python3 import asyncio import logging from collections import defaultdict from functools import partial from box import Box _l = logging.getLogger(__name__) _instances = dict() _events = defaultdict(asyncio.Event) _event_queues = list() _event_callbacks = defaultdict(list) class Component: """A stateful element in a workflow that can be configured, run, and uniquely named.""" def __init__(self, *args, id=None, workflow=None, parent=None, logger=_l, **kwargs): self.id = id if id: key = (type(self), id) if key in _instances: raise ValueError( f'{key[0].__name__} with ID "{id}" already exists: {_instances[key]}') _instances[key] = self self.workflow = workflow self.parent = parent self.children = list() if parent: parent.children.append(self) self.logger = logger self.loop = asyncio.get_event_loop() self._event_lock = set() self._debug = {'events'} self._settings = Box(self.configure(**kwargs) or dict()) if not workflow: workflow = self settings = [f'{k}={v}' for k, v in workflow.safe_settings(self._settings).items()] self.debug(f'Initialized {" ".join(settings)}') def configure(self, **settings): return settings def settings(self, **override): return Box(self._settings, **override) def safe_settings(self, settings): return settings @property def type(self): return type(self).__name__ @property def status(self): return getattr(self, '_status', None) @status.setter def status(self, status): if not (self.hasstatus(status) or status in self._event_lock): self._event_lock.add(status) try: self._status_setter(status) finally: self._event_lock.remove(status) _dependent_statuses = {'processing-finished', 'finished', 'exited'} def _status_setter(self, status): event = status if isinstance(status, ComponentEvent) else ComponentEvent(status, self) if event.status in self._dependent_statuses: children = set(filter(lambda c: isinstance(c, Component), self.children)) ready = set(filter(lambda c: c.hasstatus(event.status), children)) if len(children) > len(ready): if 'events' in self._debug: pending = ", ".join(c.id for c in children.difference(ready)) self.debug(f'Status "{event.status}" waiting on {pending}') return if self.hasstatus('aborted') and event.status != 'exited': if 'events' in self._debug: self.debug(f'Ignoring status "{event.status}" because the component is ' 'in aborted state') return # event.id = self._fqevent(status) if 'events' in self._debug: self.debug(f'Emitting event "{event.id}"') self._status = event.status _events[event.id].set() for queue in _event_queues: queue.put_nowait(event) if self.parent and event.status != 'aborted' and not isinstance(self, LocalEvents): self.parent.status = event.status for callback in _event_callbacks[event.id]: asyncio.ensure_future(callback()) _event_callbacks[event.id].clear() def hasstatus(self, status): """Return `True` if given status was set.""" if isinstance(status, ComponentEvent): event = status.id elif ':' in status: event = status else: event = ComponentEvent(status, self).id return _events[event].is_set() async def waiton(self, event): if 'events' in self._debug: self.debug(f'Waiting on event "{event}"') await _events[event].wait() if 'events' in self._debug: self.debug(f'Received event "{event}"') @property def running(self): """Return `True` if in one of the running states.""" if not self.stopped: for status in ['started', 'running']: if self.hasstatus(status): return True @property def stopped(self): """Return `True` if in one of the stopped states.""" for status in ['aborted', 'finished']: if self.hasstatus(status): return True @property def aborted(self): """Return `True` if the aborted event was emitted.""" return self.hasstatus('aborted') def start(self): self.status = 'started' return self.run() def stop(self): self.debug('Stopping') def abort(self, exception=None): if self.hasstatus('aborted'): return self.status = ComponentEvent('aborted', self, exception) for child in self.children: if child.settings().get('error-propagation') in ('none', 'up'): if 'events' in self._debug: self.debug(f'Suppressing error propagation to child {child.id}') elif not child.hasstatus('aborted'): if 'events' in self._debug: self.debug(f'Propagating error to child {child.id}') child.abort() if self.parent: if self.parent.settings().get('error-propagation') in ('none', 'down'): if 'events' in self._debug: self.debug(f'Suppressing error propagation to parent {self.parent.id}') elif not self.parent.hasstatus('aborted'): if 'events' in self._debug: self.debug(f'Propagating error to parent {self.parent.id}') self.parent.abort(exception) def __getattr__(self, name): if name not in ('critical', 'error', 'warning', 'info', 'debug', 'exception'): raise AttributeError(f"'{self.type}' object has no attribute '{name}'") return partial(self._proxied_logging_method, name) def _proxied_logging_method(self, method, *args, **kwargs): if method == 'debug': if logging in (self.workflow or self).settings(): debug = (self.workflow or self).settings().logging.debug else: debug = [] if not ('all' in debug or self.type in debug or (self.id in debug)): return lambda *a, **kw: None return getattr(self.logger, method)(*self._log_formatted(*args), **kwargs) def _log_formatted(self, msg, *args): """Return the msg prefixed with this component's ID and type.""" prefix = f'{self.id} ' if self.id else '' msg = f'{prefix}({self.type}) {msg}' return (msg,) + args async def run(self): self.status = 'running' async def try_while_running(self, callable, timeout=0.5): """Return result of `callable`, or raise `ComponentInterrupted` if component is stopped.""" while self.running: coro = callable() try: return await asyncio.wait_for(coro, timeout) except asyncio.TimeoutError: pass raise ComponentInterrupted class ComponentEvent: def __init__(self, status, component, exception=None): self.status = status self.component = component self.exception = exception @property def id(self): """Return a fully qualified ID string representing this event.""" return f'{self.component.id}:{self.status}' class LocalEvents: pass class ComponentInterrupted(Exception): pass def get_event_listener(): """Return a new `Queue` object that will see all events.""" queue = asyncio.Queue() _event_queues.append(queue) return queue def add_event_callback(event, callable, *args, **kwargs): """Register a callback that will be called upon the given event.""" _event_callbacks[event].append(partial(callable, *args, **kwargs))
33.524793
99
0.590903
[ "MIT" ]
DrDub/pipekit
pipekit/component.py
8,113
Python
# sqlite/base.py # Copyright (C) 2005-2022 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php r""" .. dialect:: sqlite :name: SQLite :full_support: 3.21, 3.28+ :normal_support: 3.12+ :best_effort: 3.7.16+ .. _sqlite_datetime: Date and Time Types ------------------- SQLite does not have built-in DATE, TIME, or DATETIME types, and pysqlite does not provide out of the box functionality for translating values between Python `datetime` objects and a SQLite-supported format. SQLAlchemy's own :class:`~sqlalchemy.types.DateTime` and related types provide date formatting and parsing functionality when SQLite is used. The implementation classes are :class:`_sqlite.DATETIME`, :class:`_sqlite.DATE` and :class:`_sqlite.TIME`. These types represent dates and times as ISO formatted strings, which also nicely support ordering. There's no reliance on typical "libc" internals for these functions so historical dates are fully supported. Ensuring Text affinity ^^^^^^^^^^^^^^^^^^^^^^ The DDL rendered for these types is the standard ``DATE``, ``TIME`` and ``DATETIME`` indicators. However, custom storage formats can also be applied to these types. When the storage format is detected as containing no alpha characters, the DDL for these types is rendered as ``DATE_CHAR``, ``TIME_CHAR``, and ``DATETIME_CHAR``, so that the column continues to have textual affinity. .. seealso:: `Type Affinity <https://www.sqlite.org/datatype3.html#affinity>`_ - in the SQLite documentation .. _sqlite_autoincrement: SQLite Auto Incrementing Behavior ---------------------------------- Background on SQLite's autoincrement is at: https://sqlite.org/autoinc.html Key concepts: * SQLite has an implicit "auto increment" feature that takes place for any non-composite primary-key column that is specifically created using "INTEGER PRIMARY KEY" for the type + primary key. * SQLite also has an explicit "AUTOINCREMENT" keyword, that is **not** equivalent to the implicit autoincrement feature; this keyword is not recommended for general use. SQLAlchemy does not render this keyword unless a special SQLite-specific directive is used (see below). However, it still requires that the column's type is named "INTEGER". Using the AUTOINCREMENT Keyword ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ To specifically render the AUTOINCREMENT keyword on the primary key column when rendering DDL, add the flag ``sqlite_autoincrement=True`` to the Table construct:: Table('sometable', metadata, Column('id', Integer, primary_key=True), sqlite_autoincrement=True) Allowing autoincrement behavior SQLAlchemy types other than Integer/INTEGER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ SQLite's typing model is based on naming conventions. Among other things, this means that any type name which contains the substring ``"INT"`` will be determined to be of "integer affinity". A type named ``"BIGINT"``, ``"SPECIAL_INT"`` or even ``"XYZINTQPR"``, will be considered by SQLite to be of "integer" affinity. However, **the SQLite autoincrement feature, whether implicitly or explicitly enabled, requires that the name of the column's type is exactly the string "INTEGER"**. Therefore, if an application uses a type like :class:`.BigInteger` for a primary key, on SQLite this type will need to be rendered as the name ``"INTEGER"`` when emitting the initial ``CREATE TABLE`` statement in order for the autoincrement behavior to be available. One approach to achieve this is to use :class:`.Integer` on SQLite only using :meth:`.TypeEngine.with_variant`:: table = Table( "my_table", metadata, Column("id", BigInteger().with_variant(Integer, "sqlite"), primary_key=True) ) Another is to use a subclass of :class:`.BigInteger` that overrides its DDL name to be ``INTEGER`` when compiled against SQLite:: from sqlalchemy import BigInteger from sqlalchemy.ext.compiler import compiles class SLBigInteger(BigInteger): pass @compiles(SLBigInteger, 'sqlite') def bi_c(element, compiler, **kw): return "INTEGER" @compiles(SLBigInteger) def bi_c(element, compiler, **kw): return compiler.visit_BIGINT(element, **kw) table = Table( "my_table", metadata, Column("id", SLBigInteger(), primary_key=True) ) .. seealso:: :meth:`.TypeEngine.with_variant` :ref:`sqlalchemy.ext.compiler_toplevel` `Datatypes In SQLite Version 3 <https://sqlite.org/datatype3.html>`_ .. _sqlite_concurrency: Database Locking Behavior / Concurrency --------------------------------------- SQLite is not designed for a high level of write concurrency. The database itself, being a file, is locked completely during write operations within transactions, meaning exactly one "connection" (in reality a file handle) has exclusive access to the database during this period - all other "connections" will be blocked during this time. The Python DBAPI specification also calls for a connection model that is always in a transaction; there is no ``connection.begin()`` method, only ``connection.commit()`` and ``connection.rollback()``, upon which a new transaction is to be begun immediately. This may seem to imply that the SQLite driver would in theory allow only a single filehandle on a particular database file at any time; however, there are several factors both within SQLite itself as well as within the pysqlite driver which loosen this restriction significantly. However, no matter what locking modes are used, SQLite will still always lock the database file once a transaction is started and DML (e.g. INSERT, UPDATE, DELETE) has at least been emitted, and this will block other transactions at least at the point that they also attempt to emit DML. By default, the length of time on this block is very short before it times out with an error. This behavior becomes more critical when used in conjunction with the SQLAlchemy ORM. SQLAlchemy's :class:`.Session` object by default runs within a transaction, and with its autoflush model, may emit DML preceding any SELECT statement. This may lead to a SQLite database that locks more quickly than is expected. The locking mode of SQLite and the pysqlite driver can be manipulated to some degree, however it should be noted that achieving a high degree of write-concurrency with SQLite is a losing battle. For more information on SQLite's lack of write concurrency by design, please see `Situations Where Another RDBMS May Work Better - High Concurrency <https://www.sqlite.org/whentouse.html>`_ near the bottom of the page. The following subsections introduce areas that are impacted by SQLite's file-based architecture and additionally will usually require workarounds to work when using the pysqlite driver. .. _sqlite_isolation_level: Transaction Isolation Level / Autocommit ---------------------------------------- SQLite supports "transaction isolation" in a non-standard way, along two axes. One is that of the `PRAGMA read_uncommitted <https://www.sqlite.org/pragma.html#pragma_read_uncommitted>`_ instruction. This setting can essentially switch SQLite between its default mode of ``SERIALIZABLE`` isolation, and a "dirty read" isolation mode normally referred to as ``READ UNCOMMITTED``. SQLAlchemy ties into this PRAGMA statement using the :paramref:`_sa.create_engine.isolation_level` parameter of :func:`_sa.create_engine`. Valid values for this parameter when used with SQLite are ``"SERIALIZABLE"`` and ``"READ UNCOMMITTED"`` corresponding to a value of 0 and 1, respectively. SQLite defaults to ``SERIALIZABLE``, however its behavior is impacted by the pysqlite driver's default behavior. When using the pysqlite driver, the ``"AUTOCOMMIT"`` isolation level is also available, which will alter the pysqlite connection using the ``.isolation_level`` attribute on the DBAPI connection and set it to None for the duration of the setting. .. versionadded:: 1.3.16 added support for SQLite AUTOCOMMIT isolation level when using the pysqlite / sqlite3 SQLite driver. The other axis along which SQLite's transactional locking is impacted is via the nature of the ``BEGIN`` statement used. The three varieties are "deferred", "immediate", and "exclusive", as described at `BEGIN TRANSACTION <https://sqlite.org/lang_transaction.html>`_. A straight ``BEGIN`` statement uses the "deferred" mode, where the database file is not locked until the first read or write operation, and read access remains open to other transactions until the first write operation. But again, it is critical to note that the pysqlite driver interferes with this behavior by *not even emitting BEGIN* until the first write operation. .. warning:: SQLite's transactional scope is impacted by unresolved issues in the pysqlite driver, which defers BEGIN statements to a greater degree than is often feasible. See the section :ref:`pysqlite_serializable` for techniques to work around this behavior. .. seealso:: :ref:`dbapi_autocommit` SAVEPOINT Support ---------------------------- SQLite supports SAVEPOINTs, which only function once a transaction is begun. SQLAlchemy's SAVEPOINT support is available using the :meth:`_engine.Connection.begin_nested` method at the Core level, and :meth:`.Session.begin_nested` at the ORM level. However, SAVEPOINTs won't work at all with pysqlite unless workarounds are taken. .. warning:: SQLite's SAVEPOINT feature is impacted by unresolved issues in the pysqlite driver, which defers BEGIN statements to a greater degree than is often feasible. See the section :ref:`pysqlite_serializable` for techniques to work around this behavior. Transactional DDL ---------------------------- The SQLite database supports transactional :term:`DDL` as well. In this case, the pysqlite driver is not only failing to start transactions, it also is ending any existing transaction when DDL is detected, so again, workarounds are required. .. warning:: SQLite's transactional DDL is impacted by unresolved issues in the pysqlite driver, which fails to emit BEGIN and additionally forces a COMMIT to cancel any transaction when DDL is encountered. See the section :ref:`pysqlite_serializable` for techniques to work around this behavior. .. _sqlite_foreign_keys: Foreign Key Support ------------------- SQLite supports FOREIGN KEY syntax when emitting CREATE statements for tables, however by default these constraints have no effect on the operation of the table. Constraint checking on SQLite has three prerequisites: * At least version 3.6.19 of SQLite must be in use * The SQLite library must be compiled *without* the SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER symbols enabled. * The ``PRAGMA foreign_keys = ON`` statement must be emitted on all connections before use -- including the initial call to :meth:`sqlalchemy.schema.MetaData.create_all`. SQLAlchemy allows for the ``PRAGMA`` statement to be emitted automatically for new connections through the usage of events:: from sqlalchemy.engine import Engine from sqlalchemy import event @event.listens_for(Engine, "connect") def set_sqlite_pragma(dbapi_connection, connection_record): cursor = dbapi_connection.cursor() cursor.execute("PRAGMA foreign_keys=ON") cursor.close() .. warning:: When SQLite foreign keys are enabled, it is **not possible** to emit CREATE or DROP statements for tables that contain mutually-dependent foreign key constraints; to emit the DDL for these tables requires that ALTER TABLE be used to create or drop these constraints separately, for which SQLite has no support. .. seealso:: `SQLite Foreign Key Support <https://www.sqlite.org/foreignkeys.html>`_ - on the SQLite web site. :ref:`event_toplevel` - SQLAlchemy event API. :ref:`use_alter` - more information on SQLAlchemy's facilities for handling mutually-dependent foreign key constraints. .. _sqlite_on_conflict_ddl: ON CONFLICT support for constraints ----------------------------------- .. seealso:: This section describes the :term:`DDL` version of "ON CONFLICT" for SQLite, which occurs within a CREATE TABLE statement. For "ON CONFLICT" as applied to an INSERT statement, see :ref:`sqlite_on_conflict_insert`. SQLite supports a non-standard DDL clause known as ON CONFLICT which can be applied to primary key, unique, check, and not null constraints. In DDL, it is rendered either within the "CONSTRAINT" clause or within the column definition itself depending on the location of the target constraint. To render this clause within DDL, the extension parameter ``sqlite_on_conflict`` can be specified with a string conflict resolution algorithm within the :class:`.PrimaryKeyConstraint`, :class:`.UniqueConstraint`, :class:`.CheckConstraint` objects. Within the :class:`_schema.Column` object, there are individual parameters ``sqlite_on_conflict_not_null``, ``sqlite_on_conflict_primary_key``, ``sqlite_on_conflict_unique`` which each correspond to the three types of relevant constraint types that can be indicated from a :class:`_schema.Column` object. .. seealso:: `ON CONFLICT <https://www.sqlite.org/lang_conflict.html>`_ - in the SQLite documentation .. versionadded:: 1.3 The ``sqlite_on_conflict`` parameters accept a string argument which is just the resolution name to be chosen, which on SQLite can be one of ROLLBACK, ABORT, FAIL, IGNORE, and REPLACE. For example, to add a UNIQUE constraint that specifies the IGNORE algorithm:: some_table = Table( 'some_table', metadata, Column('id', Integer, primary_key=True), Column('data', Integer), UniqueConstraint('id', 'data', sqlite_on_conflict='IGNORE') ) The above renders CREATE TABLE DDL as:: CREATE TABLE some_table ( id INTEGER NOT NULL, data INTEGER, PRIMARY KEY (id), UNIQUE (id, data) ON CONFLICT IGNORE ) When using the :paramref:`_schema.Column.unique` flag to add a UNIQUE constraint to a single column, the ``sqlite_on_conflict_unique`` parameter can be added to the :class:`_schema.Column` as well, which will be added to the UNIQUE constraint in the DDL:: some_table = Table( 'some_table', metadata, Column('id', Integer, primary_key=True), Column('data', Integer, unique=True, sqlite_on_conflict_unique='IGNORE') ) rendering:: CREATE TABLE some_table ( id INTEGER NOT NULL, data INTEGER, PRIMARY KEY (id), UNIQUE (data) ON CONFLICT IGNORE ) To apply the FAIL algorithm for a NOT NULL constraint, ``sqlite_on_conflict_not_null`` is used:: some_table = Table( 'some_table', metadata, Column('id', Integer, primary_key=True), Column('data', Integer, nullable=False, sqlite_on_conflict_not_null='FAIL') ) this renders the column inline ON CONFLICT phrase:: CREATE TABLE some_table ( id INTEGER NOT NULL, data INTEGER NOT NULL ON CONFLICT FAIL, PRIMARY KEY (id) ) Similarly, for an inline primary key, use ``sqlite_on_conflict_primary_key``:: some_table = Table( 'some_table', metadata, Column('id', Integer, primary_key=True, sqlite_on_conflict_primary_key='FAIL') ) SQLAlchemy renders the PRIMARY KEY constraint separately, so the conflict resolution algorithm is applied to the constraint itself:: CREATE TABLE some_table ( id INTEGER NOT NULL, PRIMARY KEY (id) ON CONFLICT FAIL ) .. _sqlite_on_conflict_insert: INSERT...ON CONFLICT (Upsert) ----------------------------------- .. seealso:: This section describes the :term:`DML` version of "ON CONFLICT" for SQLite, which occurs within an INSERT statement. For "ON CONFLICT" as applied to a CREATE TABLE statement, see :ref:`sqlite_on_conflict_ddl`. From version 3.24.0 onwards, SQLite supports "upserts" (update or insert) of rows into a table via the ``ON CONFLICT`` clause of the ``INSERT`` statement. A candidate row will only be inserted if that row does not violate any unique or primary key constraints. In the case of a unique constraint violation, a secondary action can occur which can be either "DO UPDATE", indicating that the data in the target row should be updated, or "DO NOTHING", which indicates to silently skip this row. Conflicts are determined using columns that are part of existing unique constraints and indexes. These constraints are identified by stating the columns and conditions that comprise the indexes. SQLAlchemy provides ``ON CONFLICT`` support via the SQLite-specific :func:`_sqlite.insert()` function, which provides the generative methods :meth:`_sqlite.Insert.on_conflict_do_update` and :meth:`_sqlite.Insert.on_conflict_do_nothing`: .. sourcecode:: pycon+sql >>> from sqlalchemy.dialects.sqlite import insert >>> insert_stmt = insert(my_table).values( ... id='some_existing_id', ... data='inserted value') >>> do_update_stmt = insert_stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT (id) DO UPDATE SET data = ?{stop} >>> do_nothing_stmt = insert_stmt.on_conflict_do_nothing( ... index_elements=['id'] ... ) >>> print(do_nothing_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT (id) DO NOTHING .. versionadded:: 1.4 .. seealso:: `Upsert <https://sqlite.org/lang_UPSERT.html>`_ - in the SQLite documentation. Specifying the Target ^^^^^^^^^^^^^^^^^^^^^ Both methods supply the "target" of the conflict using column inference: * The :paramref:`_sqlite.Insert.on_conflict_do_update.index_elements` argument specifies a sequence containing string column names, :class:`_schema.Column` objects, and/or SQL expression elements, which would identify a unique index or unique constraint. * When using :paramref:`_sqlite.Insert.on_conflict_do_update.index_elements` to infer an index, a partial index can be inferred by also specifying the :paramref:`_sqlite.Insert.on_conflict_do_update.index_where` parameter: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values(user_email='[email protected]', data='inserted data') >>> do_update_stmt = stmt.on_conflict_do_update( ... index_elements=[my_table.c.user_email], ... index_where=my_table.c.user_email.like('%@gmail.com'), ... set_=dict(data=stmt.excluded.data) ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (data, user_email) VALUES (?, ?) ON CONFLICT (user_email) WHERE user_email LIKE '%@gmail.com' DO UPDATE SET data = excluded.data >>> The SET Clause ^^^^^^^^^^^^^^^ ``ON CONFLICT...DO UPDATE`` is used to perform an update of the already existing row, using any combination of new values as well as values from the proposed insertion. These values are specified using the :paramref:`_sqlite.Insert.on_conflict_do_update.set_` parameter. This parameter accepts a dictionary which consists of direct values for UPDATE: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values(id='some_id', data='inserted value') >>> do_update_stmt = stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT (id) DO UPDATE SET data = ? .. warning:: The :meth:`_sqlite.Insert.on_conflict_do_update` method does **not** take into account Python-side default UPDATE values or generation functions, e.g. those specified using :paramref:`_schema.Column.onupdate`. These values will not be exercised for an ON CONFLICT style of UPDATE, unless they are manually specified in the :paramref:`_sqlite.Insert.on_conflict_do_update.set_` dictionary. Updating using the Excluded INSERT Values ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In order to refer to the proposed insertion row, the special alias :attr:`~.sqlite.Insert.excluded` is available as an attribute on the :class:`_sqlite.Insert` object; this object creates an "excluded." prefix on a column, that informs the DO UPDATE to update the row with the value that would have been inserted had the constraint not failed: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values( ... id='some_id', ... data='inserted value', ... author='jlh' ... ) >>> do_update_stmt = stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value', author=stmt.excluded.author) ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data, author) VALUES (?, ?, ?) ON CONFLICT (id) DO UPDATE SET data = ?, author = excluded.author Additional WHERE Criteria ^^^^^^^^^^^^^^^^^^^^^^^^^ The :meth:`_sqlite.Insert.on_conflict_do_update` method also accepts a WHERE clause using the :paramref:`_sqlite.Insert.on_conflict_do_update.where` parameter, which will limit those rows which receive an UPDATE: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values( ... id='some_id', ... data='inserted value', ... author='jlh' ... ) >>> on_update_stmt = stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value', author=stmt.excluded.author), ... where=(my_table.c.status == 2) ... ) >>> print(on_update_stmt) {opensql}INSERT INTO my_table (id, data, author) VALUES (?, ?, ?) ON CONFLICT (id) DO UPDATE SET data = ?, author = excluded.author WHERE my_table.status = ? Skipping Rows with DO NOTHING ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ``ON CONFLICT`` may be used to skip inserting a row entirely if any conflict with a unique constraint occurs; below this is illustrated using the :meth:`_sqlite.Insert.on_conflict_do_nothing` method: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values(id='some_id', data='inserted value') >>> stmt = stmt.on_conflict_do_nothing(index_elements=['id']) >>> print(stmt) {opensql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT (id) DO NOTHING If ``DO NOTHING`` is used without specifying any columns or constraint, it has the effect of skipping the INSERT for any unique violation which occurs: .. sourcecode:: pycon+sql >>> stmt = insert(my_table).values(id='some_id', data='inserted value') >>> stmt = stmt.on_conflict_do_nothing() >>> print(stmt) {opensql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT DO NOTHING .. _sqlite_type_reflection: Type Reflection --------------- SQLite types are unlike those of most other database backends, in that the string name of the type usually does not correspond to a "type" in a one-to-one fashion. Instead, SQLite links per-column typing behavior to one of five so-called "type affinities" based on a string matching pattern for the type. SQLAlchemy's reflection process, when inspecting types, uses a simple lookup table to link the keywords returned to provided SQLAlchemy types. This lookup table is present within the SQLite dialect as it is for all other dialects. However, the SQLite dialect has a different "fallback" routine for when a particular type name is not located in the lookup map; it instead implements the SQLite "type affinity" scheme located at https://www.sqlite.org/datatype3.html section 2.1. The provided typemap will make direct associations from an exact string name match for the following types: :class:`_types.BIGINT`, :class:`_types.BLOB`, :class:`_types.BOOLEAN`, :class:`_types.BOOLEAN`, :class:`_types.CHAR`, :class:`_types.DATE`, :class:`_types.DATETIME`, :class:`_types.FLOAT`, :class:`_types.DECIMAL`, :class:`_types.FLOAT`, :class:`_types.INTEGER`, :class:`_types.INTEGER`, :class:`_types.NUMERIC`, :class:`_types.REAL`, :class:`_types.SMALLINT`, :class:`_types.TEXT`, :class:`_types.TIME`, :class:`_types.TIMESTAMP`, :class:`_types.VARCHAR`, :class:`_types.NVARCHAR`, :class:`_types.NCHAR` When a type name does not match one of the above types, the "type affinity" lookup is used instead: * :class:`_types.INTEGER` is returned if the type name includes the string ``INT`` * :class:`_types.TEXT` is returned if the type name includes the string ``CHAR``, ``CLOB`` or ``TEXT`` * :class:`_types.NullType` is returned if the type name includes the string ``BLOB`` * :class:`_types.REAL` is returned if the type name includes the string ``REAL``, ``FLOA`` or ``DOUB``. * Otherwise, the :class:`_types.NUMERIC` type is used. .. versionadded:: 0.9.3 Support for SQLite type affinity rules when reflecting columns. .. _sqlite_partial_index: Partial Indexes --------------- A partial index, e.g. one which uses a WHERE clause, can be specified with the DDL system using the argument ``sqlite_where``:: tbl = Table('testtbl', m, Column('data', Integer)) idx = Index('test_idx1', tbl.c.data, sqlite_where=and_(tbl.c.data > 5, tbl.c.data < 10)) The index will be rendered at create time as:: CREATE INDEX test_idx1 ON testtbl (data) WHERE data > 5 AND data < 10 .. versionadded:: 0.9.9 .. _sqlite_dotted_column_names: Dotted Column Names ------------------- Using table or column names that explicitly have periods in them is **not recommended**. While this is generally a bad idea for relational databases in general, as the dot is a syntactically significant character, the SQLite driver up until version **3.10.0** of SQLite has a bug which requires that SQLAlchemy filter out these dots in result sets. .. versionchanged:: 1.1 The following SQLite issue has been resolved as of version 3.10.0 of SQLite. SQLAlchemy as of **1.1** automatically disables its internal workarounds based on detection of this version. The bug, entirely outside of SQLAlchemy, can be illustrated thusly:: import sqlite3 assert sqlite3.sqlite_version_info < (3, 10, 0), "bug is fixed in this version" conn = sqlite3.connect(":memory:") cursor = conn.cursor() cursor.execute("create table x (a integer, b integer)") cursor.execute("insert into x (a, b) values (1, 1)") cursor.execute("insert into x (a, b) values (2, 2)") cursor.execute("select x.a, x.b from x") assert [c[0] for c in cursor.description] == ['a', 'b'] cursor.execute(''' select x.a, x.b from x where a=1 union select x.a, x.b from x where a=2 ''') assert [c[0] for c in cursor.description] == ['a', 'b'], \ [c[0] for c in cursor.description] The second assertion fails:: Traceback (most recent call last): File "test.py", line 19, in <module> [c[0] for c in cursor.description] AssertionError: ['x.a', 'x.b'] Where above, the driver incorrectly reports the names of the columns including the name of the table, which is entirely inconsistent vs. when the UNION is not present. SQLAlchemy relies upon column names being predictable in how they match to the original statement, so the SQLAlchemy dialect has no choice but to filter these out:: from sqlalchemy import create_engine eng = create_engine("sqlite://") conn = eng.connect() conn.exec_driver_sql("create table x (a integer, b integer)") conn.exec_driver_sql("insert into x (a, b) values (1, 1)") conn.exec_driver_sql("insert into x (a, b) values (2, 2)") result = conn.exec_driver_sql("select x.a, x.b from x") assert result.keys() == ["a", "b"] result = conn.exec_driver_sql(''' select x.a, x.b from x where a=1 union select x.a, x.b from x where a=2 ''') assert result.keys() == ["a", "b"] Note that above, even though SQLAlchemy filters out the dots, *both names are still addressable*:: >>> row = result.first() >>> row["a"] 1 >>> row["x.a"] 1 >>> row["b"] 1 >>> row["x.b"] 1 Therefore, the workaround applied by SQLAlchemy only impacts :meth:`_engine.CursorResult.keys` and :meth:`.Row.keys()` in the public API. In the very specific case where an application is forced to use column names that contain dots, and the functionality of :meth:`_engine.CursorResult.keys` and :meth:`.Row.keys()` is required to return these dotted names unmodified, the ``sqlite_raw_colnames`` execution option may be provided, either on a per-:class:`_engine.Connection` basis:: result = conn.execution_options(sqlite_raw_colnames=True).exec_driver_sql(''' select x.a, x.b from x where a=1 union select x.a, x.b from x where a=2 ''') assert result.keys() == ["x.a", "x.b"] or on a per-:class:`_engine.Engine` basis:: engine = create_engine("sqlite://", execution_options={"sqlite_raw_colnames": True}) When using the per-:class:`_engine.Engine` execution option, note that **Core and ORM queries that use UNION may not function properly**. SQLite-specific table options ----------------------------- One option for CREATE TABLE is supported directly by the SQLite dialect in conjunction with the :class:`_schema.Table` construct: * ``WITHOUT ROWID``:: Table("some_table", metadata, ..., sqlite_with_rowid=False) .. seealso:: `SQLite CREATE TABLE options <https://www.sqlite.org/lang_createtable.html>`_ """ # noqa import datetime import numbers import re from .json import JSON from .json import JSONIndexType from .json import JSONPathType from ... import exc from ... import schema as sa_schema from ... import sql from ... import types as sqltypes from ... import util from ...engine import default from ...engine import processors from ...engine import reflection from ...sql import coercions from ...sql import ColumnElement from ...sql import compiler from ...sql import elements from ...sql import roles from ...sql import schema from ...types import BLOB # noqa from ...types import BOOLEAN # noqa from ...types import CHAR # noqa from ...types import DECIMAL # noqa from ...types import FLOAT # noqa from ...types import INTEGER # noqa from ...types import NUMERIC # noqa from ...types import REAL # noqa from ...types import SMALLINT # noqa from ...types import TEXT # noqa from ...types import TIMESTAMP # noqa from ...types import VARCHAR # noqa class _SQliteJson(JSON): def result_processor(self, dialect, coltype): default_processor = super(_SQliteJson, self).result_processor( dialect, coltype ) def process(value): try: return default_processor(value) except TypeError: if isinstance(value, numbers.Number): return value else: raise return process class _DateTimeMixin: _reg = None _storage_format = None def __init__(self, storage_format=None, regexp=None, **kw): super(_DateTimeMixin, self).__init__(**kw) if regexp is not None: self._reg = re.compile(regexp) if storage_format is not None: self._storage_format = storage_format @property def format_is_text_affinity(self): """return True if the storage format will automatically imply a TEXT affinity. If the storage format contains no non-numeric characters, it will imply a NUMERIC storage format on SQLite; in this case, the type will generate its DDL as DATE_CHAR, DATETIME_CHAR, TIME_CHAR. .. versionadded:: 1.0.0 """ spec = self._storage_format % { "year": 0, "month": 0, "day": 0, "hour": 0, "minute": 0, "second": 0, "microsecond": 0, } return bool(re.search(r"[^0-9]", spec)) def adapt(self, cls, **kw): if issubclass(cls, _DateTimeMixin): if self._storage_format: kw["storage_format"] = self._storage_format if self._reg: kw["regexp"] = self._reg return super(_DateTimeMixin, self).adapt(cls, **kw) def literal_processor(self, dialect): bp = self.bind_processor(dialect) def process(value): return "'%s'" % bp(value) return process class DATETIME(_DateTimeMixin, sqltypes.DateTime): r"""Represent a Python datetime object in SQLite using a string. The default string storage format is:: "%(year)04d-%(month)02d-%(day)02d %(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d" e.g.:: 2021-03-15 12:05:57.105542 The storage format can be customized to some degree using the ``storage_format`` and ``regexp`` parameters, such as:: import re from sqlalchemy.dialects.sqlite import DATETIME dt = DATETIME(storage_format="%(year)04d/%(month)02d/%(day)02d " "%(hour)02d:%(minute)02d:%(second)02d", regexp=r"(\d+)/(\d+)/(\d+) (\d+)-(\d+)-(\d+)" ) :param storage_format: format string which will be applied to the dict with keys year, month, day, hour, minute, second, and microsecond. :param regexp: regular expression which will be applied to incoming result rows. If the regexp contains named groups, the resulting match dict is applied to the Python datetime() constructor as keyword arguments. Otherwise, if positional groups are used, the datetime() constructor is called with positional arguments via ``*map(int, match_obj.groups(0))``. """ # noqa _storage_format = ( "%(year)04d-%(month)02d-%(day)02d " "%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d" ) def __init__(self, *args, **kwargs): truncate_microseconds = kwargs.pop("truncate_microseconds", False) super(DATETIME, self).__init__(*args, **kwargs) if truncate_microseconds: assert "storage_format" not in kwargs, ( "You can specify only " "one of truncate_microseconds or storage_format." ) assert "regexp" not in kwargs, ( "You can specify only one of " "truncate_microseconds or regexp." ) self._storage_format = ( "%(year)04d-%(month)02d-%(day)02d " "%(hour)02d:%(minute)02d:%(second)02d" ) def bind_processor(self, dialect): datetime_datetime = datetime.datetime datetime_date = datetime.date format_ = self._storage_format def process(value): if value is None: return None elif isinstance(value, datetime_datetime): return format_ % { "year": value.year, "month": value.month, "day": value.day, "hour": value.hour, "minute": value.minute, "second": value.second, "microsecond": value.microsecond, } elif isinstance(value, datetime_date): return format_ % { "year": value.year, "month": value.month, "day": value.day, "hour": 0, "minute": 0, "second": 0, "microsecond": 0, } else: raise TypeError( "SQLite DateTime type only accepts Python " "datetime and date objects as input." ) return process def result_processor(self, dialect, coltype): if self._reg: return processors.str_to_datetime_processor_factory( self._reg, datetime.datetime ) else: return processors.str_to_datetime class DATE(_DateTimeMixin, sqltypes.Date): r"""Represent a Python date object in SQLite using a string. The default string storage format is:: "%(year)04d-%(month)02d-%(day)02d" e.g.:: 2011-03-15 The storage format can be customized to some degree using the ``storage_format`` and ``regexp`` parameters, such as:: import re from sqlalchemy.dialects.sqlite import DATE d = DATE( storage_format="%(month)02d/%(day)02d/%(year)04d", regexp=re.compile("(?P<month>\d+)/(?P<day>\d+)/(?P<year>\d+)") ) :param storage_format: format string which will be applied to the dict with keys year, month, and day. :param regexp: regular expression which will be applied to incoming result rows. If the regexp contains named groups, the resulting match dict is applied to the Python date() constructor as keyword arguments. Otherwise, if positional groups are used, the date() constructor is called with positional arguments via ``*map(int, match_obj.groups(0))``. """ _storage_format = "%(year)04d-%(month)02d-%(day)02d" def bind_processor(self, dialect): datetime_date = datetime.date format_ = self._storage_format def process(value): if value is None: return None elif isinstance(value, datetime_date): return format_ % { "year": value.year, "month": value.month, "day": value.day, } else: raise TypeError( "SQLite Date type only accepts Python " "date objects as input." ) return process def result_processor(self, dialect, coltype): if self._reg: return processors.str_to_datetime_processor_factory( self._reg, datetime.date ) else: return processors.str_to_date class TIME(_DateTimeMixin, sqltypes.Time): r"""Represent a Python time object in SQLite using a string. The default string storage format is:: "%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d" e.g.:: 12:05:57.10558 The storage format can be customized to some degree using the ``storage_format`` and ``regexp`` parameters, such as:: import re from sqlalchemy.dialects.sqlite import TIME t = TIME(storage_format="%(hour)02d-%(minute)02d-" "%(second)02d-%(microsecond)06d", regexp=re.compile("(\d+)-(\d+)-(\d+)-(?:-(\d+))?") ) :param storage_format: format string which will be applied to the dict with keys hour, minute, second, and microsecond. :param regexp: regular expression which will be applied to incoming result rows. If the regexp contains named groups, the resulting match dict is applied to the Python time() constructor as keyword arguments. Otherwise, if positional groups are used, the time() constructor is called with positional arguments via ``*map(int, match_obj.groups(0))``. """ _storage_format = "%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d" def __init__(self, *args, **kwargs): truncate_microseconds = kwargs.pop("truncate_microseconds", False) super(TIME, self).__init__(*args, **kwargs) if truncate_microseconds: assert "storage_format" not in kwargs, ( "You can specify only " "one of truncate_microseconds or storage_format." ) assert "regexp" not in kwargs, ( "You can specify only one of " "truncate_microseconds or regexp." ) self._storage_format = "%(hour)02d:%(minute)02d:%(second)02d" def bind_processor(self, dialect): datetime_time = datetime.time format_ = self._storage_format def process(value): if value is None: return None elif isinstance(value, datetime_time): return format_ % { "hour": value.hour, "minute": value.minute, "second": value.second, "microsecond": value.microsecond, } else: raise TypeError( "SQLite Time type only accepts Python " "time objects as input." ) return process def result_processor(self, dialect, coltype): if self._reg: return processors.str_to_datetime_processor_factory( self._reg, datetime.time ) else: return processors.str_to_time colspecs = { sqltypes.Date: DATE, sqltypes.DateTime: DATETIME, sqltypes.JSON: _SQliteJson, sqltypes.JSON.JSONIndexType: JSONIndexType, sqltypes.JSON.JSONPathType: JSONPathType, sqltypes.Time: TIME, } ischema_names = { "BIGINT": sqltypes.BIGINT, "BLOB": sqltypes.BLOB, "BOOL": sqltypes.BOOLEAN, "BOOLEAN": sqltypes.BOOLEAN, "CHAR": sqltypes.CHAR, "DATE": sqltypes.DATE, "DATE_CHAR": sqltypes.DATE, "DATETIME": sqltypes.DATETIME, "DATETIME_CHAR": sqltypes.DATETIME, "DOUBLE": sqltypes.DOUBLE, "DECIMAL": sqltypes.DECIMAL, "FLOAT": sqltypes.FLOAT, "INT": sqltypes.INTEGER, "INTEGER": sqltypes.INTEGER, "JSON": JSON, "NUMERIC": sqltypes.NUMERIC, "REAL": sqltypes.REAL, "SMALLINT": sqltypes.SMALLINT, "TEXT": sqltypes.TEXT, "TIME": sqltypes.TIME, "TIME_CHAR": sqltypes.TIME, "TIMESTAMP": sqltypes.TIMESTAMP, "VARCHAR": sqltypes.VARCHAR, "NVARCHAR": sqltypes.NVARCHAR, "NCHAR": sqltypes.NCHAR, } class SQLiteCompiler(compiler.SQLCompiler): extract_map = util.update_copy( compiler.SQLCompiler.extract_map, { "month": "%m", "day": "%d", "year": "%Y", "second": "%S", "hour": "%H", "doy": "%j", "minute": "%M", "epoch": "%s", "dow": "%w", "week": "%W", }, ) def visit_truediv_binary(self, binary, operator, **kw): return ( self.process(binary.left, **kw) + " / " + "(%s + 0.0)" % self.process(binary.right, **kw) ) def visit_now_func(self, fn, **kw): return "CURRENT_TIMESTAMP" def visit_localtimestamp_func(self, func, **kw): return 'DATETIME(CURRENT_TIMESTAMP, "localtime")' def visit_true(self, expr, **kw): return "1" def visit_false(self, expr, **kw): return "0" def visit_char_length_func(self, fn, **kw): return "length%s" % self.function_argspec(fn) def visit_cast(self, cast, **kwargs): if self.dialect.supports_cast: return super(SQLiteCompiler, self).visit_cast(cast, **kwargs) else: return self.process(cast.clause, **kwargs) def visit_extract(self, extract, **kw): try: return "CAST(STRFTIME('%s', %s) AS INTEGER)" % ( self.extract_map[extract.field], self.process(extract.expr, **kw), ) except KeyError as err: raise exc.CompileError( "%s is not a valid extract argument." % extract.field ) from err def limit_clause(self, select, **kw): text = "" if select._limit_clause is not None: text += "\n LIMIT " + self.process(select._limit_clause, **kw) if select._offset_clause is not None: if select._limit_clause is None: text += "\n LIMIT " + self.process(sql.literal(-1)) text += " OFFSET " + self.process(select._offset_clause, **kw) else: text += " OFFSET " + self.process(sql.literal(0), **kw) return text def for_update_clause(self, select, **kw): # sqlite has no "FOR UPDATE" AFAICT return "" def visit_is_distinct_from_binary(self, binary, operator, **kw): return "%s IS NOT %s" % ( self.process(binary.left), self.process(binary.right), ) def visit_is_not_distinct_from_binary(self, binary, operator, **kw): return "%s IS %s" % ( self.process(binary.left), self.process(binary.right), ) def visit_json_getitem_op_binary(self, binary, operator, **kw): if binary.type._type_affinity is sqltypes.JSON: expr = "JSON_QUOTE(JSON_EXTRACT(%s, %s))" else: expr = "JSON_EXTRACT(%s, %s)" return expr % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) def visit_json_path_getitem_op_binary(self, binary, operator, **kw): if binary.type._type_affinity is sqltypes.JSON: expr = "JSON_QUOTE(JSON_EXTRACT(%s, %s))" else: expr = "JSON_EXTRACT(%s, %s)" return expr % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) def visit_empty_set_op_expr(self, type_, expand_op): # slightly old SQLite versions don't seem to be able to handle # the empty set impl return self.visit_empty_set_expr(type_) def visit_empty_set_expr(self, element_types): return "SELECT %s FROM (SELECT %s) WHERE 1!=1" % ( ", ".join("1" for type_ in element_types or [INTEGER()]), ", ".join("1" for type_ in element_types or [INTEGER()]), ) def visit_regexp_match_op_binary(self, binary, operator, **kw): return self._generate_generic_binary(binary, " REGEXP ", **kw) def visit_not_regexp_match_op_binary(self, binary, operator, **kw): return self._generate_generic_binary(binary, " NOT REGEXP ", **kw) def _on_conflict_target(self, clause, **kw): if clause.constraint_target is not None: target_text = "(%s)" % clause.constraint_target elif clause.inferred_target_elements is not None: target_text = "(%s)" % ", ".join( ( self.preparer.quote(c) if isinstance(c, str) else self.process(c, include_table=False, use_schema=False) ) for c in clause.inferred_target_elements ) if clause.inferred_target_whereclause is not None: target_text += " WHERE %s" % self.process( clause.inferred_target_whereclause, include_table=False, use_schema=False, literal_binds=True, ) else: target_text = "" return target_text def visit_on_conflict_do_nothing(self, on_conflict, **kw): target_text = self._on_conflict_target(on_conflict, **kw) if target_text: return "ON CONFLICT %s DO NOTHING" % target_text else: return "ON CONFLICT DO NOTHING" def visit_on_conflict_do_update(self, on_conflict, **kw): clause = on_conflict target_text = self._on_conflict_target(on_conflict, **kw) action_set_ops = [] set_parameters = dict(clause.update_values_to_set) # create a list of column assignment clauses as tuples insert_statement = self.stack[-1]["selectable"] cols = insert_statement.table.c for c in cols: col_key = c.key if col_key in set_parameters: value = set_parameters.pop(col_key) elif c in set_parameters: value = set_parameters.pop(c) else: continue if coercions._is_literal(value): value = elements.BindParameter(None, value, type_=c.type) else: if ( isinstance(value, elements.BindParameter) and value.type._isnull ): value = value._clone() value.type = c.type value_text = self.process(value.self_group(), use_schema=False) key_text = self.preparer.quote(col_key) action_set_ops.append("%s = %s" % (key_text, value_text)) # check for names that don't match columns if set_parameters: util.warn( "Additional column names not matching " "any column keys in table '%s': %s" % ( self.current_executable.table.name, (", ".join("'%s'" % c for c in set_parameters)), ) ) for k, v in set_parameters.items(): key_text = ( self.preparer.quote(k) if isinstance(k, str) else self.process(k, use_schema=False) ) value_text = self.process( coercions.expect(roles.ExpressionElementRole, v), use_schema=False, ) action_set_ops.append("%s = %s" % (key_text, value_text)) action_text = ", ".join(action_set_ops) if clause.update_whereclause is not None: action_text += " WHERE %s" % self.process( clause.update_whereclause, include_table=True, use_schema=False ) return "ON CONFLICT %s DO UPDATE SET %s" % (target_text, action_text) class SQLiteDDLCompiler(compiler.DDLCompiler): def get_column_specification(self, column, **kwargs): coltype = self.dialect.type_compiler.process( column.type, type_expression=column ) colspec = self.preparer.format_column(column) + " " + coltype default = self.get_column_default_string(column) if default is not None: if isinstance(column.server_default.arg, ColumnElement): default = "(" + default + ")" colspec += " DEFAULT " + default if not column.nullable: colspec += " NOT NULL" on_conflict_clause = column.dialect_options["sqlite"][ "on_conflict_not_null" ] if on_conflict_clause is not None: colspec += " ON CONFLICT " + on_conflict_clause if column.primary_key: if ( column.autoincrement is True and len(column.table.primary_key.columns) != 1 ): raise exc.CompileError( "SQLite does not support autoincrement for " "composite primary keys" ) if ( column.table.dialect_options["sqlite"]["autoincrement"] and len(column.table.primary_key.columns) == 1 and issubclass(column.type._type_affinity, sqltypes.Integer) and not column.foreign_keys ): colspec += " PRIMARY KEY" on_conflict_clause = column.dialect_options["sqlite"][ "on_conflict_primary_key" ] if on_conflict_clause is not None: colspec += " ON CONFLICT " + on_conflict_clause colspec += " AUTOINCREMENT" if column.computed is not None: colspec += " " + self.process(column.computed) return colspec def visit_primary_key_constraint(self, constraint): # for columns with sqlite_autoincrement=True, # the PRIMARY KEY constraint can only be inline # with the column itself. if len(constraint.columns) == 1: c = list(constraint)[0] if ( c.primary_key and c.table.dialect_options["sqlite"]["autoincrement"] and issubclass(c.type._type_affinity, sqltypes.Integer) and not c.foreign_keys ): return None text = super(SQLiteDDLCompiler, self).visit_primary_key_constraint( constraint ) on_conflict_clause = constraint.dialect_options["sqlite"][ "on_conflict" ] if on_conflict_clause is None and len(constraint.columns) == 1: on_conflict_clause = list(constraint)[0].dialect_options["sqlite"][ "on_conflict_primary_key" ] if on_conflict_clause is not None: text += " ON CONFLICT " + on_conflict_clause return text def visit_unique_constraint(self, constraint): text = super(SQLiteDDLCompiler, self).visit_unique_constraint( constraint ) on_conflict_clause = constraint.dialect_options["sqlite"][ "on_conflict" ] if on_conflict_clause is None and len(constraint.columns) == 1: col1 = list(constraint)[0] if isinstance(col1, schema.SchemaItem): on_conflict_clause = list(constraint)[0].dialect_options[ "sqlite" ]["on_conflict_unique"] if on_conflict_clause is not None: text += " ON CONFLICT " + on_conflict_clause return text def visit_check_constraint(self, constraint): text = super(SQLiteDDLCompiler, self).visit_check_constraint( constraint ) on_conflict_clause = constraint.dialect_options["sqlite"][ "on_conflict" ] if on_conflict_clause is not None: text += " ON CONFLICT " + on_conflict_clause return text def visit_column_check_constraint(self, constraint): text = super(SQLiteDDLCompiler, self).visit_column_check_constraint( constraint ) if constraint.dialect_options["sqlite"]["on_conflict"] is not None: raise exc.CompileError( "SQLite does not support on conflict clause for " "column check constraint" ) return text def visit_foreign_key_constraint(self, constraint): local_table = constraint.elements[0].parent.table remote_table = constraint.elements[0].column.table if local_table.schema != remote_table.schema: return None else: return super(SQLiteDDLCompiler, self).visit_foreign_key_constraint( constraint ) def define_constraint_remote_table(self, constraint, table, preparer): """Format the remote table clause of a CREATE CONSTRAINT clause.""" return preparer.format_table(table, use_schema=False) def visit_create_index( self, create, include_schema=False, include_table_schema=True ): index = create.element self._verify_index_table(index) preparer = self.preparer text = "CREATE " if index.unique: text += "UNIQUE " text += "INDEX " if create.if_not_exists: text += "IF NOT EXISTS " text += "%s ON %s (%s)" % ( self._prepared_index_name(index, include_schema=True), preparer.format_table(index.table, use_schema=False), ", ".join( self.sql_compiler.process( expr, include_table=False, literal_binds=True ) for expr in index.expressions ), ) whereclause = index.dialect_options["sqlite"]["where"] if whereclause is not None: where_compiled = self.sql_compiler.process( whereclause, include_table=False, literal_binds=True ) text += " WHERE " + where_compiled return text def post_create_table(self, table): if table.dialect_options["sqlite"]["with_rowid"] is False: return "\n WITHOUT ROWID" return "" class SQLiteTypeCompiler(compiler.GenericTypeCompiler): def visit_large_binary(self, type_, **kw): return self.visit_BLOB(type_) def visit_DATETIME(self, type_, **kw): if ( not isinstance(type_, _DateTimeMixin) or type_.format_is_text_affinity ): return super(SQLiteTypeCompiler, self).visit_DATETIME(type_) else: return "DATETIME_CHAR" def visit_DATE(self, type_, **kw): if ( not isinstance(type_, _DateTimeMixin) or type_.format_is_text_affinity ): return super(SQLiteTypeCompiler, self).visit_DATE(type_) else: return "DATE_CHAR" def visit_TIME(self, type_, **kw): if ( not isinstance(type_, _DateTimeMixin) or type_.format_is_text_affinity ): return super(SQLiteTypeCompiler, self).visit_TIME(type_) else: return "TIME_CHAR" def visit_JSON(self, type_, **kw): # note this name provides NUMERIC affinity, not TEXT. # should not be an issue unless the JSON value consists of a single # numeric value. JSONTEXT can be used if this case is required. return "JSON" class SQLiteIdentifierPreparer(compiler.IdentifierPreparer): reserved_words = set( [ "add", "after", "all", "alter", "analyze", "and", "as", "asc", "attach", "autoincrement", "before", "begin", "between", "by", "cascade", "case", "cast", "check", "collate", "column", "commit", "conflict", "constraint", "create", "cross", "current_date", "current_time", "current_timestamp", "database", "default", "deferrable", "deferred", "delete", "desc", "detach", "distinct", "drop", "each", "else", "end", "escape", "except", "exclusive", "exists", "explain", "false", "fail", "for", "foreign", "from", "full", "glob", "group", "having", "if", "ignore", "immediate", "in", "index", "indexed", "initially", "inner", "insert", "instead", "intersect", "into", "is", "isnull", "join", "key", "left", "like", "limit", "match", "natural", "not", "notnull", "null", "of", "offset", "on", "or", "order", "outer", "plan", "pragma", "primary", "query", "raise", "references", "reindex", "rename", "replace", "restrict", "right", "rollback", "row", "select", "set", "table", "temp", "temporary", "then", "to", "transaction", "trigger", "true", "union", "unique", "update", "using", "vacuum", "values", "view", "virtual", "when", "where", ] ) class SQLiteExecutionContext(default.DefaultExecutionContext): @util.memoized_property def _preserve_raw_colnames(self): return ( not self.dialect._broken_dotted_colnames or self.execution_options.get("sqlite_raw_colnames", False) ) def _translate_colname(self, colname): # TODO: detect SQLite version 3.10.0 or greater; # see [ticket:3633] # adjust for dotted column names. SQLite # in the case of UNION may store col names as # "tablename.colname", or if using an attached database, # "database.tablename.colname", in cursor.description if not self._preserve_raw_colnames and "." in colname: return colname.split(".")[-1], colname else: return colname, None class SQLiteDialect(default.DefaultDialect): name = "sqlite" supports_alter = False # SQlite supports "DEFAULT VALUES" but *does not* support # "VALUES (DEFAULT)" supports_default_values = True supports_default_metavalue = False supports_empty_insert = False supports_cast = True supports_multivalues_insert = True tuple_in_values = True supports_statement_cache = True default_paramstyle = "qmark" execution_ctx_cls = SQLiteExecutionContext statement_compiler = SQLiteCompiler ddl_compiler = SQLiteDDLCompiler type_compiler = SQLiteTypeCompiler preparer = SQLiteIdentifierPreparer ischema_names = ischema_names colspecs = colspecs construct_arguments = [ ( sa_schema.Table, { "autoincrement": False, "with_rowid": True, }, ), (sa_schema.Index, {"where": None}), ( sa_schema.Column, { "on_conflict_primary_key": None, "on_conflict_not_null": None, "on_conflict_unique": None, }, ), (sa_schema.Constraint, {"on_conflict": None}), ] _broken_fk_pragma_quotes = False _broken_dotted_colnames = False @util.deprecated_params( _json_serializer=( "1.3.7", "The _json_serializer argument to the SQLite dialect has " "been renamed to the correct name of json_serializer. The old " "argument name will be removed in a future release.", ), _json_deserializer=( "1.3.7", "The _json_deserializer argument to the SQLite dialect has " "been renamed to the correct name of json_deserializer. The old " "argument name will be removed in a future release.", ), ) def __init__( self, native_datetime=False, json_serializer=None, json_deserializer=None, _json_serializer=None, _json_deserializer=None, **kwargs, ): default.DefaultDialect.__init__(self, **kwargs) if _json_serializer: json_serializer = _json_serializer if _json_deserializer: json_deserializer = _json_deserializer self._json_serializer = json_serializer self._json_deserializer = json_deserializer # this flag used by pysqlite dialect, and perhaps others in the # future, to indicate the driver is handling date/timestamp # conversions (and perhaps datetime/time as well on some hypothetical # driver ?) self.native_datetime = native_datetime if self.dbapi is not None: if self.dbapi.sqlite_version_info < (3, 7, 16): util.warn( "SQLite version %s is older than 3.7.16, and will not " "support right nested joins, as are sometimes used in " "more complex ORM scenarios. SQLAlchemy 1.4 and above " "no longer tries to rewrite these joins." % (self.dbapi.sqlite_version_info,) ) # NOTE: python 3.7 on fedora for me has SQLite 3.34.1. These # version checks are getting very stale. self._broken_dotted_colnames = self.dbapi.sqlite_version_info < ( 3, 10, 0, ) self.supports_default_values = self.dbapi.sqlite_version_info >= ( 3, 3, 8, ) self.supports_cast = self.dbapi.sqlite_version_info >= (3, 2, 3) self.supports_multivalues_insert = ( # https://www.sqlite.org/releaselog/3_7_11.html self.dbapi.sqlite_version_info >= (3, 7, 11) ) # see https://www.sqlalchemy.org/trac/ticket/2568 # as well as https://www.sqlite.org/src/info/600482d161 self._broken_fk_pragma_quotes = self.dbapi.sqlite_version_info < ( 3, 6, 14, ) _isolation_lookup = util.immutabledict( {"READ UNCOMMITTED": 1, "SERIALIZABLE": 0} ) def get_isolation_level_values(self, dbapi_connection): return list(self._isolation_lookup) def set_isolation_level(self, dbapi_connection, level): isolation_level = self._isolation_lookup[level] cursor = dbapi_connection.cursor() cursor.execute(f"PRAGMA read_uncommitted = {isolation_level}") cursor.close() def get_isolation_level(self, dbapi_connection): cursor = dbapi_connection.cursor() cursor.execute("PRAGMA read_uncommitted") res = cursor.fetchone() if res: value = res[0] else: # https://www.sqlite.org/changes.html#version_3_3_3 # "Optional READ UNCOMMITTED isolation (instead of the # default isolation level of SERIALIZABLE) and # table level locking when database connections # share a common cache."" # pre-SQLite 3.3.0 default to 0 value = 0 cursor.close() if value == 0: return "SERIALIZABLE" elif value == 1: return "READ UNCOMMITTED" else: assert False, "Unknown isolation level %s" % value @reflection.cache def get_schema_names(self, connection, **kw): s = "PRAGMA database_list" dl = connection.exec_driver_sql(s) return [db[1] for db in dl if db[1] != "temp"] @reflection.cache def get_table_names(self, connection, schema=None, **kw): if schema is not None: qschema = self.identifier_preparer.quote_identifier(schema) master = "%s.sqlite_master" % qschema else: master = "sqlite_master" s = ("SELECT name FROM %s " "WHERE type='table' ORDER BY name") % ( master, ) rs = connection.exec_driver_sql(s) return [row[0] for row in rs] @reflection.cache def get_temp_table_names(self, connection, **kw): s = ( "SELECT name FROM sqlite_temp_master " "WHERE type='table' ORDER BY name " ) rs = connection.exec_driver_sql(s) return [row[0] for row in rs] @reflection.cache def get_temp_view_names(self, connection, **kw): s = ( "SELECT name FROM sqlite_temp_master " "WHERE type='view' ORDER BY name " ) rs = connection.exec_driver_sql(s) return [row[0] for row in rs] def has_table(self, connection, table_name, schema=None): self._ensure_has_table_connection(connection) info = self._get_table_pragma( connection, "table_info", table_name, schema=schema ) return bool(info) def _get_default_schema_name(self, connection): return "main" @reflection.cache def get_view_names(self, connection, schema=None, **kw): if schema is not None: qschema = self.identifier_preparer.quote_identifier(schema) master = "%s.sqlite_master" % qschema else: master = "sqlite_master" s = ("SELECT name FROM %s " "WHERE type='view' ORDER BY name") % ( master, ) rs = connection.exec_driver_sql(s) return [row[0] for row in rs] @reflection.cache def get_view_definition(self, connection, view_name, schema=None, **kw): if schema is not None: qschema = self.identifier_preparer.quote_identifier(schema) master = "%s.sqlite_master" % qschema s = ("SELECT sql FROM %s WHERE name = ? AND type='view'") % ( master, ) rs = connection.exec_driver_sql(s, (view_name,)) else: try: s = ( "SELECT sql FROM " " (SELECT * FROM sqlite_master UNION ALL " " SELECT * FROM sqlite_temp_master) " "WHERE name = ? " "AND type='view'" ) rs = connection.exec_driver_sql(s, (view_name,)) except exc.DBAPIError: s = ( "SELECT sql FROM sqlite_master WHERE name = ? " "AND type='view'" ) rs = connection.exec_driver_sql(s, (view_name,)) result = rs.fetchall() if result: return result[0].sql @reflection.cache def get_columns(self, connection, table_name, schema=None, **kw): pragma = "table_info" # computed columns are threaded as hidden, they require table_xinfo if self.server_version_info >= (3, 31): pragma = "table_xinfo" info = self._get_table_pragma( connection, pragma, table_name, schema=schema ) columns = [] tablesql = None for row in info: name = row[1] type_ = row[2].upper() nullable = not row[3] default = row[4] primary_key = row[5] hidden = row[6] if pragma == "table_xinfo" else 0 # hidden has value 0 for normal columns, 1 for hidden columns, # 2 for computed virtual columns and 3 for computed stored columns # https://www.sqlite.org/src/info/069351b85f9a706f60d3e98fbc8aaf40c374356b967c0464aede30ead3d9d18b if hidden == 1: continue generated = bool(hidden) persisted = hidden == 3 if tablesql is None and generated: tablesql = self._get_table_sql( connection, table_name, schema, **kw ) columns.append( self._get_column_info( name, type_, nullable, default, primary_key, generated, persisted, tablesql, ) ) return columns def _get_column_info( self, name, type_, nullable, default, primary_key, generated, persisted, tablesql, ): if generated: # the type of a column "cc INTEGER GENERATED ALWAYS AS (1 + 42)" # somehow is "INTEGER GENERATED ALWAYS" type_ = re.sub("generated", "", type_, flags=re.IGNORECASE) type_ = re.sub("always", "", type_, flags=re.IGNORECASE).strip() coltype = self._resolve_type_affinity(type_) if default is not None: default = str(default) colspec = { "name": name, "type": coltype, "nullable": nullable, "default": default, "autoincrement": "auto", "primary_key": primary_key, } if generated: sqltext = "" if tablesql: pattern = r"[^,]*\s+AS\s+\(([^,]*)\)\s*(?:virtual|stored)?" match = re.search( re.escape(name) + pattern, tablesql, re.IGNORECASE ) if match: sqltext = match.group(1) colspec["computed"] = {"sqltext": sqltext, "persisted": persisted} return colspec def _resolve_type_affinity(self, type_): """Return a data type from a reflected column, using affinity rules. SQLite's goal for universal compatibility introduces some complexity during reflection, as a column's defined type might not actually be a type that SQLite understands - or indeed, my not be defined *at all*. Internally, SQLite handles this with a 'data type affinity' for each column definition, mapping to one of 'TEXT', 'NUMERIC', 'INTEGER', 'REAL', or 'NONE' (raw bits). The algorithm that determines this is listed in https://www.sqlite.org/datatype3.html section 2.1. This method allows SQLAlchemy to support that algorithm, while still providing access to smarter reflection utilities by recognizing column definitions that SQLite only supports through affinity (like DATE and DOUBLE). """ match = re.match(r"([\w ]+)(\(.*?\))?", type_) if match: coltype = match.group(1) args = match.group(2) else: coltype = "" args = "" if coltype in self.ischema_names: coltype = self.ischema_names[coltype] elif "INT" in coltype: coltype = sqltypes.INTEGER elif "CHAR" in coltype or "CLOB" in coltype or "TEXT" in coltype: coltype = sqltypes.TEXT elif "BLOB" in coltype or not coltype: coltype = sqltypes.NullType elif "REAL" in coltype or "FLOA" in coltype or "DOUB" in coltype: coltype = sqltypes.REAL else: coltype = sqltypes.NUMERIC if args is not None: args = re.findall(r"(\d+)", args) try: coltype = coltype(*[int(a) for a in args]) except TypeError: util.warn( "Could not instantiate type %s with " "reflected arguments %s; using no arguments." % (coltype, args) ) coltype = coltype() else: coltype = coltype() return coltype @reflection.cache def get_pk_constraint(self, connection, table_name, schema=None, **kw): constraint_name = None table_data = self._get_table_sql(connection, table_name, schema=schema) if table_data: PK_PATTERN = r"CONSTRAINT (\w+) PRIMARY KEY" result = re.search(PK_PATTERN, table_data, re.I) constraint_name = result.group(1) if result else None cols = self.get_columns(connection, table_name, schema, **kw) cols.sort(key=lambda col: col.get("primary_key")) pkeys = [] for col in cols: if col["primary_key"]: pkeys.append(col["name"]) return {"constrained_columns": pkeys, "name": constraint_name} @reflection.cache def get_foreign_keys(self, connection, table_name, schema=None, **kw): # sqlite makes this *extremely difficult*. # First, use the pragma to get the actual FKs. pragma_fks = self._get_table_pragma( connection, "foreign_key_list", table_name, schema=schema ) fks = {} for row in pragma_fks: (numerical_id, rtbl, lcol, rcol) = (row[0], row[2], row[3], row[4]) if not rcol: # no referred column, which means it was not named in the # original DDL. The referred columns of the foreign key # constraint are therefore the primary key of the referred # table. referred_pk = self.get_pk_constraint( connection, rtbl, schema=schema, **kw ) # note that if table doesn't exist, we still get back a record, # just it has no columns in it referred_columns = referred_pk["constrained_columns"] else: # note we use this list only if this is the first column # in the constraint. for subsequent columns we ignore the # list and append "rcol" if present. referred_columns = [] if self._broken_fk_pragma_quotes: rtbl = re.sub(r"^[\"\[`\']|[\"\]`\']$", "", rtbl) if numerical_id in fks: fk = fks[numerical_id] else: fk = fks[numerical_id] = { "name": None, "constrained_columns": [], "referred_schema": schema, "referred_table": rtbl, "referred_columns": referred_columns, "options": {}, } fks[numerical_id] = fk fk["constrained_columns"].append(lcol) if rcol: fk["referred_columns"].append(rcol) def fk_sig(constrained_columns, referred_table, referred_columns): return ( tuple(constrained_columns) + (referred_table,) + tuple(referred_columns) ) # then, parse the actual SQL and attempt to find DDL that matches # the names as well. SQLite saves the DDL in whatever format # it was typed in as, so need to be liberal here. keys_by_signature = dict( ( fk_sig( fk["constrained_columns"], fk["referred_table"], fk["referred_columns"], ), fk, ) for fk in fks.values() ) table_data = self._get_table_sql(connection, table_name, schema=schema) if table_data is None: # system tables, etc. return [] def parse_fks(): FK_PATTERN = ( r"(?:CONSTRAINT (\w+) +)?" r"FOREIGN KEY *\( *(.+?) *\) +" r'REFERENCES +(?:(?:"(.+?)")|([a-z0-9_]+)) *\((.+?)\) *' r"((?:ON (?:DELETE|UPDATE) " r"(?:SET NULL|SET DEFAULT|CASCADE|RESTRICT|NO ACTION) *)*)" ) for match in re.finditer(FK_PATTERN, table_data, re.I): ( constraint_name, constrained_columns, referred_quoted_name, referred_name, referred_columns, onupdatedelete, ) = match.group(1, 2, 3, 4, 5, 6) constrained_columns = list( self._find_cols_in_sig(constrained_columns) ) if not referred_columns: referred_columns = constrained_columns else: referred_columns = list( self._find_cols_in_sig(referred_columns) ) referred_name = referred_quoted_name or referred_name options = {} for token in re.split(r" *\bON\b *", onupdatedelete.upper()): if token.startswith("DELETE"): ondelete = token[6:].strip() if ondelete and ondelete != "NO ACTION": options["ondelete"] = ondelete elif token.startswith("UPDATE"): onupdate = token[6:].strip() if onupdate and onupdate != "NO ACTION": options["onupdate"] = onupdate yield ( constraint_name, constrained_columns, referred_name, referred_columns, options, ) fkeys = [] for ( constraint_name, constrained_columns, referred_name, referred_columns, options, ) in parse_fks(): sig = fk_sig(constrained_columns, referred_name, referred_columns) if sig not in keys_by_signature: util.warn( "WARNING: SQL-parsed foreign key constraint " "'%s' could not be located in PRAGMA " "foreign_keys for table %s" % (sig, table_name) ) continue key = keys_by_signature.pop(sig) key["name"] = constraint_name key["options"] = options fkeys.append(key) # assume the remainders are the unnamed, inline constraints, just # use them as is as it's extremely difficult to parse inline # constraints fkeys.extend(keys_by_signature.values()) return fkeys def _find_cols_in_sig(self, sig): for match in re.finditer(r'(?:"(.+?)")|([a-z0-9_]+)', sig, re.I): yield match.group(1) or match.group(2) @reflection.cache def get_unique_constraints( self, connection, table_name, schema=None, **kw ): auto_index_by_sig = {} for idx in self.get_indexes( connection, table_name, schema=schema, include_auto_indexes=True, **kw, ): if not idx["name"].startswith("sqlite_autoindex"): continue sig = tuple(idx["column_names"]) auto_index_by_sig[sig] = idx table_data = self._get_table_sql( connection, table_name, schema=schema, **kw ) if not table_data: return [] unique_constraints = [] def parse_uqs(): UNIQUE_PATTERN = r'(?:CONSTRAINT "?(.+?)"? +)?UNIQUE *\((.+?)\)' INLINE_UNIQUE_PATTERN = ( r'(?:(".+?")|(?:[\[`])?([a-z0-9_]+)(?:[\]`])?) ' r"+[a-z0-9_ ]+? +UNIQUE" ) for match in re.finditer(UNIQUE_PATTERN, table_data, re.I): name, cols = match.group(1, 2) yield name, list(self._find_cols_in_sig(cols)) # we need to match inlines as well, as we seek to differentiate # a UNIQUE constraint from a UNIQUE INDEX, even though these # are kind of the same thing :) for match in re.finditer(INLINE_UNIQUE_PATTERN, table_data, re.I): cols = list( self._find_cols_in_sig(match.group(1) or match.group(2)) ) yield None, cols for name, cols in parse_uqs(): sig = tuple(cols) if sig in auto_index_by_sig: auto_index_by_sig.pop(sig) parsed_constraint = {"name": name, "column_names": cols} unique_constraints.append(parsed_constraint) # NOTE: auto_index_by_sig might not be empty here, # the PRIMARY KEY may have an entry. return unique_constraints @reflection.cache def get_check_constraints(self, connection, table_name, schema=None, **kw): table_data = self._get_table_sql( connection, table_name, schema=schema, **kw ) if not table_data: return [] CHECK_PATTERN = r"(?:CONSTRAINT (\w+) +)?" r"CHECK *\( *(.+) *\),? *" check_constraints = [] # NOTE: we aren't using re.S here because we actually are # taking advantage of each CHECK constraint being all on one # line in the table definition in order to delineate. This # necessarily makes assumptions as to how the CREATE TABLE # was emitted. for match in re.finditer(CHECK_PATTERN, table_data, re.I): check_constraints.append( {"sqltext": match.group(2), "name": match.group(1)} ) return check_constraints @reflection.cache def get_indexes(self, connection, table_name, schema=None, **kw): pragma_indexes = self._get_table_pragma( connection, "index_list", table_name, schema=schema ) indexes = [] include_auto_indexes = kw.pop("include_auto_indexes", False) for row in pragma_indexes: # ignore implicit primary key index. # https://www.mail-archive.com/[email protected]/msg30517.html if not include_auto_indexes and row[1].startswith( "sqlite_autoindex" ): continue indexes.append(dict(name=row[1], column_names=[], unique=row[2])) # loop thru unique indexes to get the column names. for idx in list(indexes): pragma_index = self._get_table_pragma( connection, "index_info", idx["name"] ) for row in pragma_index: if row[2] is None: util.warn( "Skipped unsupported reflection of " "expression-based index %s" % idx["name"] ) indexes.remove(idx) break else: idx["column_names"].append(row[2]) return indexes @reflection.cache def _get_table_sql(self, connection, table_name, schema=None, **kw): if schema: schema_expr = "%s." % ( self.identifier_preparer.quote_identifier(schema) ) else: schema_expr = "" try: s = ( "SELECT sql FROM " " (SELECT * FROM %(schema)ssqlite_master UNION ALL " " SELECT * FROM %(schema)ssqlite_temp_master) " "WHERE name = ? " "AND type = 'table'" % {"schema": schema_expr} ) rs = connection.exec_driver_sql(s, (table_name,)) except exc.DBAPIError: s = ( "SELECT sql FROM %(schema)ssqlite_master " "WHERE name = ? " "AND type = 'table'" % {"schema": schema_expr} ) rs = connection.exec_driver_sql(s, (table_name,)) return rs.scalar() def _get_table_pragma(self, connection, pragma, table_name, schema=None): quote = self.identifier_preparer.quote_identifier if schema is not None: statements = ["PRAGMA %s." % quote(schema)] else: # because PRAGMA looks in all attached databases if no schema # given, need to specify "main" schema, however since we want # 'temp' tables in the same namespace as 'main', need to run # the PRAGMA twice statements = ["PRAGMA main.", "PRAGMA temp."] qtable = quote(table_name) for statement in statements: statement = "%s%s(%s)" % (statement, pragma, qtable) cursor = connection.exec_driver_sql(statement) if not cursor._soft_closed: # work around SQLite issue whereby cursor.description # is blank when PRAGMA returns no rows: # https://www.sqlite.org/cvstrac/tktview?tn=1884 result = cursor.fetchall() else: result = [] if result: return result else: return []
34.656669
110
0.599601
[ "MIT" ]
aalvrz/sqlalchemy
lib/sqlalchemy/dialects/sqlite/base.py
87,820
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #----------------------------------------------------------------------------------------- class GeoMap: ''' INFO: Map boundary edges order: [LeftLowerLon,LeftLowerLat,UpperRightLon,UpperRightLat] Background type: 'none' 'etopo' 'esri' --> background source Background sources available for 'esri': ESRI_Imagery_World_2D (MapServer) ESRI_StreetMap_World_2D (MapServer) I3_Imagery_Prime_World (GlobeServer) NASA_CloudCover_World (GlobeServer) NatGeo_World_Map (MapServer) NGS_Topo_US_2D (MapServer) Ocean_Basemap (MapServer) USA_Topo_Maps (MapServer) World_Imagery (MapServer) World_Physical_Map (MapServer) World_Shaded_Relief (MapServer) World_Street_Map (MapServer) World_Terrain_Base (MapServer) World_Topo_Map (MapServer) ''' #--------------------------------------------------------------------------------------- def __init__(self, Cfg=[]): # Defaults (example setting) if not Cfg: self._cfg = {'Bounds': [7., 36., 19., 48.], 'FigSize': [6., 6.], 'Background': ['esri','World_Terrain_Base',1500], 'Grid': [5., 5.]} else: self._cfg = Cfg self._zo = 1 #--------------------------------------------------------------------------------------- def BasePlot(self): plt.figure(figsize = (self._cfg['FigSize'][0], self._cfg['FigSize'][1])) # Basemap self._map = Basemap(self._cfg['Bounds'][0], self._cfg['Bounds'][1], self._cfg['Bounds'][2], self._cfg['Bounds'][3], resolution = 'l', projection = 'tmerc', epsg = 3857) # Background land if self._cfg['Background'][0] == 'color': self._map.drawlsmask(land_color = self._cfg['Background'][1], ocean_color = self._cfg['Background'][2], grid = 1.25, lakes = True) if self._cfg['Background'][0] == 'etopo': self._map.etopo(zorder = self._zo) if self._cfg['Background'][0] == 'esri': self._map.arcgisimage(service = self._cfg['Background'][1], xpixels = self._cfg['Background'][2], dpi = 300, zorder = self._zo) if self._cfg['Background'][0] == 'relief': self._map.shadedrelief() #--------------------------------------------------------------------------------------- def DrawGrid(self): # Parallels and meridians parallels = np.arange(-90, 90, self._cfg['Grid'][1]) meridians = np.arange(0, 360., self._cfg['Grid'][0]) self._zo += 1 self._map.drawparallels(parallels, labels = [1,0,0,0], fontsize = 14, weight = 'normal', linewidth = 0.5, zorder = self._zo) self._zo += 1 self._map.drawmeridians(meridians, labels = [0,0,0,1], fontsize = 14, weight = 'normal', linewidth = 0.5, zorder = self._zo) #--------------------------------------------------------------------------------------- def DrawBounds(self): # Boundaries and lines self._zo += 1 self._map.drawcoastlines(linewidth = 0.8, zorder = self._zo) self._zo += 1 self._map.drawstates(linewidth = 0.8, zorder = self._zo) self._zo += 1 self._map.drawcountries(linewidth = 0.8, zorder = self._zo) self._zo += 1 self._map.drawrivers(linewidth = 0.1, color = 'b', zorder = self._zo) """ self._zo += 1 self._map.drawmapboundary(linewidth = 2, color = 'k', zorder = self._zo) """ #--------------------------------------------------------------------------------------- def Title(self, string, Set=['bold','k',18]): plt.title(string, weight = Set[0], color = Set[1], fontsize = Set[2]) #--------------------------------------------------------------------------------------- def PointPlot(self, Lon, Lat, Label=[], Set=['o','y',5,1]): x, y = self._map(Lon, Lat) self._zo += 1 self._map.plot(x, y, Set[0], color = Set[1], markersize = Set[2], markeredgewidth = Set[3], label = Label, zorder = self._zo) #--------------------------------------------------------------------------------------- def LabelPlot(self, Lon, Lat, Label, Set=['normal','k',14]): x, y = self._map(Lon, Lat) # If only one label provided, convert to list if isinstance(Label, str): x = [x] y = [y] Label = [Label] self._zo += 1 for i, string in enumerate(Label): plt.text(x[i], y[i], string, weight = Set[0], color = Set[1], fontsize = Set[2], zorder = self._zo) #--------------------------------------------------------------------------------------- def AreaPlot(self, Lon, Lat, Set=['y',1,'k',1]): x, y = self._map(Lon, Lat) if Set[0]: self._zo += 1 plt.fill(x, y, color = Set[0], alpha = Set[1], zorder = self._zo) if Set[2]: self._zo += 1 plt.plot(x, y, Set[2], linewidth = Set[3], zorder = self._zo) #--------------------------------------------------------------------------------------- def MeshPlot(self, Lon, Lat, Elev, Cmap=[], Clim=[], Mesh=True): from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator x, y = self._map(Lon, Lat) z = Elev if not Cmap: Cmap = cm.jet # cmap.set_under('w', alpha=0.) if not Clim: Clim = [z.min(), z.max()] levels = MaxNLocator(nbins=16).tick_values(Clim[0], Clim[1]) norm = BoundaryNorm(levels, ncolors = Cmap.N, clip=True) if not Mesh: self._zo += 1 h = plt.scatter(x, y, c = z, s = 20, marker = 's', cmap = Cmap, vmin = Clim[0], vmax = Clim[1], lw = 0, alpha = 1., zorder = self._zo) else: self._zo += 1 z = z[:-1, :-1] h = plt.pcolormesh(x, y, z, cmap = Cmap, norm = norm, vmin = Clim[0], vmax = Clim[1], lw = 0, alpha = 1., zorder = self._zo) clb = plt.gcf().colorbar(h, orientation = 'vertical') clb.outline.set_linewidth(1) clb.ax.tick_params(labelsize=14) clb.set_label('Spectral Acceleration ($g$)', size=12) #--------------------------------------------------------------------------------------- def ShapeFile(self, ShpFile, Name, Color='k'): # NOTE: this doesn't always work with polygons, # better to use the function in crd_tool self._zo += 1 self._map.readshapefile(ShpFile, Name, linewidth = 1.5, drawbounds = True, color = Color, zorder = self._zo) #--------------------------------------------------------------------------------------- def Legend(self, Location=[]): self._zo += 1 if Location: l = plt.legend(loc = Location, numpoints = 1) else: # Default outside l = plt.legend(bbox_to_anchor = (1.05, 1), loc = 2, borderaxespad = 0., numpoints = 1) l.set_zorder(self._zo) #--------------------------------------------------------------------------------------- def Show(self): plt.show(block = False) #--------------------------------------------------------------------------------------- def Close(self): plt.close('all') #--------------------------------------------------------------------------------------- def SaveFig(self, OutFile, Dpi=150): plt.savefig(OutFile, bbox_inches = 'tight', dpi = Dpi)
30.937282
90
0.401847
[ "MIT" ]
wqqpp007/geoist
geoist/cattools/MapTools.py
8,879
Python
#!/usr/bin/env python # Test whether a client sends a correct PUBLISH to a topic with QoS 2 and responds to a disconnect. import context import paho_test rc = 1 keepalive = 60 connect_packet = paho_test.gen_connect( "publish-qos2-test", keepalive=keepalive, clean_session=False, ) connack_packet = paho_test.gen_connack(rc=0) disconnect_packet = paho_test.gen_disconnect() mid = 1 publish_packet = paho_test.gen_publish( u"pub/qos2/test", qos=2, mid=mid, payload="message".encode('utf-8')) publish_dup_packet = paho_test.gen_publish( u"pub/qos2/test", qos=2, mid=mid, payload="message".encode('utf-8'), dup=True) pubrec_packet = paho_test.gen_pubrec(mid) pubrel_packet = paho_test.gen_pubrel(mid) pubcomp_packet = paho_test.gen_pubcomp(mid) sock = paho_test.create_server_socket() client = context.start_client() try: (conn, address) = sock.accept() conn.settimeout(5) if paho_test.expect_packet(conn, "connect", connect_packet): conn.send(connack_packet) if paho_test.expect_packet(conn, "publish", publish_packet): # Disconnect client. It should reconnect. conn.close() (conn, address) = sock.accept() conn.settimeout(15) if paho_test.expect_packet(conn, "connect", connect_packet): conn.send(connack_packet) if paho_test.expect_packet(conn, "retried publish", publish_dup_packet): conn.send(pubrec_packet) if paho_test.expect_packet(conn, "pubrel", pubrel_packet): # Disconnect client. It should reconnect. conn.close() (conn, address) = sock.accept() conn.settimeout(15) # Complete connection and message flow. if paho_test.expect_packet(conn, "connect", connect_packet): conn.send(connack_packet) if paho_test.expect_packet(conn, "retried pubrel", pubrel_packet): conn.send(pubcomp_packet) if paho_test.expect_packet(conn, "disconnect", disconnect_packet): rc = 0 conn.close() finally: client.terminate() client.wait() sock.close() exit(rc)
31.810811
99
0.614274
[ "Unlicense" ]
Jegeva/BruCON_2021
backend/mqtt_react/python_bugg/paho.mqtt.python/test/lib/03-publish-c2b-qos2-disconnect.py
2,354
Python
import base64 from django.http import HttpResponse from django.contrib.auth import authenticate, login # Reference: https://www.djangosnippets.org/snippets/243/ def view_or_basicauth(view, request, test_func, realm="", *args, **kwargs): """ This is a helper function used by both 'logged_in_or_basicauth' and 'has_perm_or_basicauth' that does the nitty of determining if they are already logged in or if they have provided proper http-authorization and returning the view if all goes well, otherwise responding with a 401. """ if test_func(request.user): # Already logged in, just return the view. return view(request, *args, **kwargs) # They are not logged in. See if they provided login credentials if 'HTTP_AUTHORIZATION' in request.META: auth = request.META['HTTP_AUTHORIZATION'].split() if len(auth) == 2: # NOTE: We only support basic authentication for now. if auth[0].lower() == "basic": uname, passwd = base64.b64decode(auth[1]).split(':') user = authenticate(username=uname, password=passwd) if user is not None: if user.is_active: login(request, user) request.user = user return view(request, *args, **kwargs) # Either they did not provide an authorization header or # something in the authorization attempt failed. Send a 401 # back to them to ask them to authenticate. response = HttpResponse() response.status_code = 401 response['WWW-Authenticate'] = 'Basic realm="%s"' % realm return response def logged_in_or_basicauth(realm=""): """ A simple decorator that requires a user to be logged in. If they are not logged in the request is examined for a 'authorization' header. If the header is present it is tested for basic authentication and the user is logged in with the provided credentials. If the header is not present a http 401 is sent back to the requestor to provide credentials. The purpose of this is that in several django projects I have needed several specific views that need to support basic authentication, yet the web site as a whole used django's provided authentication. The uses for this are for urls that are access programmatically such as by rss feed readers, yet the view requires a user to be logged in. Many rss readers support supplying the authentication credentials via http basic auth (and they do NOT support a redirect to a form where they post a username/password.) Usage is simple: @logged_in_or_basicauth() def your_view: ... You can provide the name of the realm to ask for authentication within. """ def view_decorator(func): def wrapper(request, *args, **kwargs): return view_or_basicauth(func, request, lambda u: u.is_authenticated(), realm, *args, **kwargs) return wrapper return view_decorator def has_perm_or_basicauth(perm, realm=""): """ This is similar to the above decorator 'logged_in_or_basicauth' except that it requires the logged in user to have a specific permission. Use: @logged_in_or_basicauth('asforums.view_forumcollection') def your_view: ... """ def view_decorator(func): def wrapper(request, *args, **kwargs): return view_or_basicauth(func, request, lambda u: u.has_perm(perm), realm, *args, **kwargs) return wrapper return view_decorator
37.4
79
0.649198
[ "MIT" ]
tullyrankin/python-frameworks
django/basic_auth/example1/decorators.py
3,740
Python
# Configuration file with default options, # There are four main sections: General, Features, LQP and Learning corresponding to different # functionalities. You can disable any of the Features or Learning section (by commenting it out) according to your requirement. [General] # general options idir=/home/hussain/datasets/LFW/lfwa # images directory path odir=/scratch/testing/new-experiments/ # path where cropped_images, learned model and computed features will be stored dataset=LFW # name of dataset to use; it can be either LFW or FERET [currently not supported] width=80 # width of cropped images height=150 # height of cropped images padding=10 # (same as cellsize) use a padding of one cell on each side. This value must be same as the option cell-size has in the features section xoffset=1 # offsets to be added (from the center position) to the crop window placed over the original aligned images yoffset=-4 cbdataset=train-val # complete # This option is used only with LQP Features. It is used to choose subset of dataset for codebook learning e.g. in case of LFW it can be either view1 training validation ('train-val') subset or complete view1 set('complete') ftype=LQP # Feature types. Choice can be LBP, LTP, LBP+LTP or LQP usergb=False # if color images, use color information during feature computations. [Features] # options for feature computation listfile="" # a list file containing list of cropped images to compute features cellsize=10 # cellsize for the histogram grid tol=5 # [5,7] # tolerance values used for LTP or LQP features (can pass a list, i.e. tol=[5, 7]) [LQP] #LQP Options lqptype=2 # LQP type represent LQP geometric structure. # Choices can be either Disk (2) or Hor+Ver+Diag+ADiag (9) strip. lqpsize=7 # LQP size represent radius (length of strip) # of LQP disk (HVDA strip) (can pass a list i.e. lqpsize=[5,7]) coding=4 # LQP encoding type can be: Binary (0), Ternary (1) or Split-Ternary (4) cbsize=150 # Codebook size (number of visual words) used for # LQP computation (can pass a list, i.e. cbsize=[100, 150] cbfile="" # [Optional] A list file containing list of images for learning the codebook [Learning] # options for model learning view=complete # view2 # complete # Choice of the dataset, options cans be view1: used for # parameter tuning purposes; view2: used only for model # evaluation; complete: a model parameters will be first # tuned on view1 and results will be reported on view2 ttype=with-pca # Choice of Training with or without PCA (for feature # evaluation) Available options are with-pca or without- # (a pca model is learned and features are compared in the pca space) # or without-pca (features are compared in there original space) featdir="" # Directory path where computed features have been stored, used if # learning is being done without feature computation cycle. dist=cosine # Distance metric for comparing features. Choices are cosine, chi-square and L2. # For optimal results use cosine metric for comparing PCA reduced features and # chi-squared for comparing non-reduced ones. pcadim=[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000] # Number of PCA components. You can pass a scalar or list, i.e. # pcadim= 500. In case of a list, all the dimensions will be used # for model learning (on view1) and finally only the best performing one will be # kept. Note that a single model with max(pcadim) is learned in this case # but evaluation is done using all the dimensions. # Caution: providing a much higher dimension makes the learning slow and memory # intensive
68.241379
256
0.698585
[ "BSD-3-Clause" ]
csgcmai/lqp_face
face-rec/config.py
3,958
Python
from __future__ import print_function import os import xml.etree.ElementTree as ET def load_xml_for_module(xml_dir_path, module_name, or_dummy=True): xml_tree = ET.Element("dummy") if or_dummy else None for sfx in ["_8hpp", "_8h"]: xml_path = os.path.join(xml_dir_path, "%s%s.xml" % (module_name, sfx)) if os.path.isfile(xml_path): with open(xml_path, "rb") as fin: xml_tree = ET.fromstring(fin.read()) return xml_tree def get_toplevel_functions(xml_tree, name=None): path = "./compounddef/sectiondef[@kind='%s']/memberdef[@kind='function']" if name: path = "%s/[name='%s']" % (path, name) all_nodes = [] for section_kind in ["func", "user-defined"]: nodes = xml_tree.findall(path % section_kind) all_nodes.extend(map(lambda n: n, nodes)) return all_nodes def get_single_child_element_text_contents(el, child_element_tag): nodes = el.findall("./%s" % child_element_tag) nnodes = len(nodes) if nnodes == 0: return None text = nodes[0].text if nnodes > 1: print("Warning: more than 1 child element with tag '%s' found; picking first" % (child_element_tag,)) return text def for_each_param(node, callback): assert(node.tag == "memberdef" and node.attrib.get("kind") == "function") plist = node.find("./detaileddescription/para/parameterlist[@kind='param']") def get_direct_text(n, tag): c = n.find("./%s" % tag) if c is not None: return " ".join(c.itertext()).strip() for param in node.findall("./param"): name, ptyp, desc = None, None, None name = get_direct_text(param, "declname") ptyp = get_direct_text(param, "type") if name and plist is not None: for plist_item in plist.findall("parameteritem"): if plist_item.find("./parameternamelist/[parametername='%s']" % name) is not None: pdesc_node = plist_item.find("./parameterdescription") if pdesc_node is not None: desc = " ".join(pdesc_node.itertext()).strip() callback(name, ptyp, desc)
40.754717
109
0.622685
[ "BSD-3-Clause" ]
745198699/src
tools/doxygen_utils.py
2,160
Python
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test pipeline for tfx.dsl.compiler.compiler.""" import os import tensorflow_model_analysis as tfma from tfx.components import CsvExampleGen from tfx.components import Evaluator from tfx.components import ExampleValidator from tfx.components import ImporterNode from tfx.components import Pusher from tfx.components import SchemaGen from tfx.components import StatisticsGen from tfx.components import Trainer from tfx.components.trainer.executor import GenericExecutor from tfx.dsl.components.base import executor_spec from tfx.dsl.components.common import resolver from tfx.dsl.experimental import latest_blessed_model_resolver from tfx.orchestration import data_types from tfx.orchestration import pipeline from tfx.proto import pusher_pb2 from tfx.proto import trainer_pb2 from tfx.types import Channel from tfx.types import standard_artifacts def create_test_pipeline(): """Builds an Iris example pipeline with slight changes.""" pipeline_name = "iris" iris_root = "iris_root" serving_model_dir = os.path.join(iris_root, "serving_model", pipeline_name) tfx_root = "tfx_root" data_path = os.path.join(tfx_root, "data_path") pipeline_root = os.path.join(tfx_root, "pipelines", pipeline_name) example_gen = CsvExampleGen(input_base=data_path) statistics_gen = StatisticsGen(examples=example_gen.outputs["examples"]) importer = ImporterNode( source_uri="m/y/u/r/i", properties={ "split_names": "['train', 'eval']", }, custom_properties={ "int_custom_property": 42, "str_custom_property": "42", }, artifact_type=standard_artifacts.Examples).with_id("my_importer") another_statistics_gen = StatisticsGen( examples=importer.outputs["result"]).with_id("another_statistics_gen") schema_gen = SchemaGen(statistics=statistics_gen.outputs["statistics"]) example_validator = ExampleValidator( statistics=statistics_gen.outputs["statistics"], schema=schema_gen.outputs["schema"]) trainer = Trainer( # Use RuntimeParameter as module_file to test out RuntimeParameter in # compiler. module_file=data_types.RuntimeParameter( name="module_file", default=os.path.join(iris_root, "iris_utils.py"), ptype=str), custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), examples=example_gen.outputs["examples"], schema=schema_gen.outputs["schema"], train_args=trainer_pb2.TrainArgs(num_steps=2000), # Attaching `TrainerArgs` as platform config is not sensible practice, # but is only for testing purpose. eval_args=trainer_pb2.EvalArgs(num_steps=5)).with_platform_config( config=trainer_pb2.TrainArgs(num_steps=2000)) model_resolver = resolver.Resolver( strategy_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=Channel( type=standard_artifacts.Model, producer_component_id=trainer.id), model_blessing=Channel(type=standard_artifacts.ModelBlessing)).with_id( "latest_blessed_model_resolver") eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name="eval")], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec( thresholds={ "sparse_categorical_accuracy": tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={"value": 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={"value": -1e-10})) }) ]) evaluator = Evaluator( examples=example_gen.outputs["examples"], model=trainer.outputs["model"], baseline_model=model_resolver.outputs["model"], eval_config=eval_config) pusher = Pusher( model=trainer.outputs["model"], model_blessing=evaluator.outputs["blessing"], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, another_statistics_gen, importer, schema_gen, example_validator, trainer, model_resolver, evaluator, pusher, ], enable_cache=True, beam_pipeline_args=["--my_testing_beam_pipeline_args=foo"], # Attaching `TrainerArgs` as platform config is not sensible practice, # but is only for testing purpose. platform_config=trainer_pb2.TrainArgs(num_steps=2000), execution_mode=pipeline.ExecutionMode.SYNC)
38.711268
78
0.709478
[ "Apache-2.0" ]
Saiprasad16/tfx
tfx/dsl/compiler/testdata/iris_pipeline_sync.py
5,497
Python
"""Similar to DDPG except we only need obs and act, not the reward, etc. """ import numpy as np class RingBuffer(object): def __init__(self, maxlen, shape, dtype='float32'): self.maxlen = maxlen self.start = 0 self.length = 0 if dtype == 'uint8': # Daniel: special case with our XP replay. Force memory allocation # right away by the += 0 op, to check that system has enough RAM. # Might not be good for speed so we'll have to time it. self.data = np.zeros((maxlen,) + shape, dtype=np.uint8) print("Allocating data of size {} ...".format(self.data.shape)) self.data += 0 else: self.data = np.zeros((maxlen,) + shape).astype(dtype) # Daniel: avoid over-writing teacher samples. self.teach_idx = 0 def __len__(self): return self.length def __getitem__(self, idx): # Daniel: we shouldn't be calling this if it's using our DDPG/IMIT. assert self.teach_idx == 0, \ 'Something went wrong, why are we calling this method?' if idx < 0 or idx >= self.length: raise KeyError() return self.data[(self.start + idx) % self.maxlen] def get_batch(self, idxs): #return self.data[(self.start + idxs) % self.maxlen] # Daniel: seems like it's just fine to do this. It's the responsibility # of the caller to call a valid set of indices. And we do that with # randint in the memory class later. Here we avoid headaches with # `self.start` because I restrict it to be at least the teach_idx. return self.data[idxs] def append(self, v, is_teacher=False): if self.length < self.maxlen: # We have space, simply increase the length. self.length += 1 if is_teacher: self.teach_idx += 1 elif self.length == self.maxlen: # No space, "remove" the first item. #self.start = (self.start + 1) % self.maxlen self.start = max(self.teach_idx, (self.start + 1) % self.maxlen) else: # This should never happen. raise RuntimeError() self.data[(self.start + self.length - 1) % self.maxlen] = v def array_min2d(x): x = np.array(x) if x.ndim >= 2: return x return x.reshape(-1, 1) class Memory(object): def __init__(self, limit, action_shape, observation_shape, dtype='float32', do_valid=False): """Daniel: careful about RAM usage. See: https://github.com/BerkeleyAutomation/baselines-fork/issues/9 For this we can assume that in the replay buffer, the teacher samples come first, and are fixed ahead of time, so our 'starting' index for adding into the replay buffer should be offset by this quantity. """ self.limit = limit self.do_valid = do_valid if self.do_valid: self.valid_frac = 0.2 self.nb_valid_items = 0 # will adjust later self.observations0 = RingBuffer(limit, shape=observation_shape, dtype=dtype) self.actions = RingBuffer(limit, shape=action_shape) self.nb_teach = 0 self.done_adding_teach = False def sample(self, batch_size): # Draw such that we always have a proceeding element. # TODO(Daniel): the -2 doesn't make sense, we don't need a proceeding # element because the next observation is in a separate ring buffer?? I # think it should be nb_entries, so we are in practice not sampling the # last two items in this replay buffer. I'm switching to -1, should do # 0 later if I'm confident we're not ignoring anything else ... if self.do_valid: # If we're doing validation, which should NOT normally be true, # ignore the first few items, which we assign to be in validation. batch_idxs = np.random.randint(self.nb_valid_items, self.nb_entries-1, size=batch_size) else: batch_idxs = np.random.randint(self.nb_entries-1, size=batch_size) obs0_batch = self.observations0.get_batch(batch_idxs) action_batch = self.actions.get_batch(batch_idxs) # Assume `x < self.nb_teach` (not equality!) is a teacher sample. flag_teacher = (batch_idxs < self.nb_teach).astype(np.float32) result = { 'obs0': array_min2d(obs0_batch), 'actions': array_min2d(action_batch), 'flag_teacher': array_min2d(flag_teacher), } return result def append(self, obs0, action, is_teacher=False, training=True): """Keep separate copies of obs0, obs1. So it's not memory efficient. """ if not training: return if is_teacher: assert not self.done_adding_teach, self.nb_teach assert self.nb_teach < self.limit, self.nb_teach self.nb_teach += 1 self.observations0.append(obs0, is_teacher) self.actions.append(action, is_teacher) def set_teacher_idx(self): """Call from IMIT so we do not over-write teacher data. """ self.done_adding_teach = True def set_valid_idx(self): """Set the validation index. """ assert self.done_adding_teach self.nb_valid_items = int(self.valid_frac * self.nb_entries) @property def nb_entries(self): return len(self.observations0) @property def nb_teach_entries(self): return self.nb_teach @property def nb_valid(self): return self.nb_valid_items def get_valid_obs(self, s_idx, e_idx): """Get a validation minibatch with fixed starting and ending indices. """ assert self.do_valid batch_idxs = np.arange(s_idx, e_idx) obs0_batch = self.observations0.get_batch(batch_idxs) action_batch = self.actions.get_batch(batch_idxs) result = { 'obs0': array_min2d(obs0_batch), 'actions': array_min2d(action_batch), } return result
38.04908
84
0.60803
[ "MIT" ]
DanielTakeshi/baselines-fork
baselines/imit/memory.py
6,202
Python
"""empty message Revision ID: eb02de174736 Revises: c0de0819f9f0 Create Date: 2020-02-04 18:29:57.302993 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'eb02de174736' down_revision = 'c0de0819f9f0' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('Shows', 'name', existing_type=sa.VARCHAR(), nullable=False) op.create_foreign_key(None, 'Shows', 'Venue', ['name'], ['name']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'Shows', type_='foreignkey') op.alter_column('Shows', 'name', existing_type=sa.VARCHAR(), nullable=True) # ### end Alembic commands ###
25.257143
69
0.644796
[ "Apache-2.0" ]
nkatwesigye/project_furry
starter_code/migrations/versions/eb02de174736_.py
884
Python
from jogo_banco import __version__ def test_version(): assert __version__ == '0.1.0'
15.166667
34
0.725275
[ "Apache-2.0" ]
rafaelgarrafiel/jogo_banco
tests/test_jogo_banco.py
91
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Add or check license header Usuage: - add the default license header to source files that do not contain a valid license: python license_header.py add - check if every files has a license header python license_header.py check """ import re import os import argparse # the default apache license _LICENSE = """Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" # if a file contains any str in the list, then consider it has been licensed _LICENSE_PATTERNS = ['Licensed to the Apache Software Foundation'] # the folders or files that will be ignored _WHITE_LIST = ['R-package/', 'cub/', 'dlpack/', 'dmlc-core/', 'mshadow/', 'nnvm', 'ps-lite', 'src/operator/mkl/', 'cmake/Modules/FindJeMalloc.cmake', 'src/operator/special_functions-inl.h', 'src/operator/nn/pool.h', 'src/operator/contrib/psroi_pooling-inl.h', 'src/operator/contrib/nn/deformable_im2col.h', 'example/speech-demo/io_func/convert2kaldi.py', 'example/speech-demo/decode_mxnet.sh', 'example/image-classification/predict-cpp/image-classification-predict.cc', 'src/operator/contrib/ctc_include/', 'cmake/Modules/FindJeMalloc.cmake'] # language extensions and the according commment mark _LANGS = {'.cc':'*', '.h':'*', '.cu':'*', '.cuh':'*', '.py':'#', '.pm':'#', '.scala':'*', '.cc':'*', '.sh':'#', '.cmake':'#', '.java':'*', '.sh':'#', '.cpp':'*', '.hpp':'*', '.c':'*', '.bat':'rem', '.pl':'#'} # Previous license header, which will be removed _OLD_LICENSE = re.compile('.*Copyright.*by Contributors') def _has_license(lines): return any([any([p in l.decode('utf-8') for p in _LICENSE_PATTERNS]) for l in lines]) def _get_license(comment_mark): if comment_mark == '*': body = '/*\n' else: body = '' for l in _LICENSE.split('\n'): if comment_mark == '*': body += ' ' body += comment_mark if len(l): body += ' ' + l body += '\n' if comment_mark == '*': body += ' */\n' body += '\n' return body def _valid_file(fname, verbose=False): if any([l in fname for l in _WHITE_LIST]): if verbose: print('skip ' + fname + ', it matches the white list') return False _, ext = os.path.splitext(fname) if ext not in _LANGS: if verbose: print('skip ' + fname + ', unknown file extension') return False return True def process_file(fname, action, verbose=True): if not _valid_file(fname, verbose): return True with open(fname, 'rb') as f: lines = f.readlines() if not lines: return True if _has_license(lines): return True elif action == 'check': return False _, ext = os.path.splitext(fname) with open(fname, 'wb') as f: # shebang line if lines[0].startswith(b'#!'): f.write(lines[0].rstrip()+b'\n\n') del lines[0] f.write(str.encode(_get_license(_LANGS[ext]))) for l in lines: f.write(l.rstrip()+b'\n') print('added license header to ' + fname) return False def process_folder(root, action): excepts = [] for root, _, files in os.walk(root): for f in files: fname = os.path.normpath(os.path.join(root, f)) if not process_file(fname, action): excepts.append(fname) if action == 'check' and excepts: raise Exception('The following files do not contain a valid license, '+ 'you can use `python tools/license_header.py add` to add'+ 'them automatically', excepts) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Add or check source license header') parser.add_argument( 'action', nargs=1, type=str, choices=['add', 'check'], default='add', help = 'add or check') args = parser.parse_args() process_folder(os.path.join(os.path.dirname(__file__), '..'), args.action[0])
35.134969
90
0.624411
[ "Apache-2.0" ]
GrassSunFlower/mxnet
tools/license_header.py
5,727
Python
"""Test service helpers.""" import asyncio from copy import deepcopy import unittest from unittest.mock import patch # To prevent circular import when running just this file import homeassistant.components # noqa from homeassistant import core as ha, loader from homeassistant.const import STATE_ON, STATE_OFF, ATTR_ENTITY_ID from homeassistant.helpers import service, template from homeassistant.setup import async_setup_component import homeassistant.helpers.config_validation as cv from tests.common import get_test_home_assistant, mock_service class TestServiceHelpers(unittest.TestCase): """Test the Home Assistant service helpers.""" def setUp(self): # pylint: disable=invalid-name """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() self.calls = mock_service(self.hass, 'test_domain', 'test_service') def tearDown(self): # pylint: disable=invalid-name """Stop down everything that was started.""" self.hass.stop() def test_template_service_call(self): """Test service call with templating.""" config = { 'service_template': '{{ \'test_domain.test_service\' }}', 'entity_id': 'hello.world', 'data_template': { 'hello': '{{ \'goodbye\' }}', 'data': { 'value': '{{ \'complex\' }}', 'simple': 'simple' }, 'list': ['{{ \'list\' }}', '2'], }, } service.call_from_config(self.hass, config) self.hass.block_till_done() self.assertEqual('goodbye', self.calls[0].data['hello']) self.assertEqual('complex', self.calls[0].data['data']['value']) self.assertEqual('simple', self.calls[0].data['data']['simple']) self.assertEqual('list', self.calls[0].data['list'][0]) def test_passing_variables_to_templates(self): """Test passing variables to templates.""" config = { 'service_template': '{{ var_service }}', 'entity_id': 'hello.world', 'data_template': { 'hello': '{{ var_data }}', }, } service.call_from_config(self.hass, config, variables={ 'var_service': 'test_domain.test_service', 'var_data': 'goodbye', }) self.hass.block_till_done() self.assertEqual('goodbye', self.calls[0].data['hello']) def test_bad_template(self): """Test passing bad template.""" config = { 'service_template': '{{ var_service }}', 'entity_id': 'hello.world', 'data_template': { 'hello': '{{ states + unknown_var }}' } } service.call_from_config(self.hass, config, variables={ 'var_service': 'test_domain.test_service', 'var_data': 'goodbye', }) self.hass.block_till_done() self.assertEqual(len(self.calls), 0) def test_split_entity_string(self): """Test splitting of entity string.""" service.call_from_config(self.hass, { 'service': 'test_domain.test_service', 'entity_id': 'hello.world, sensor.beer' }) self.hass.block_till_done() self.assertEqual(['hello.world', 'sensor.beer'], self.calls[-1].data.get('entity_id')) def test_not_mutate_input(self): """Test for immutable input.""" config = cv.SERVICE_SCHEMA({ 'service': 'test_domain.test_service', 'entity_id': 'hello.world, sensor.beer', 'data': { 'hello': 1, }, 'data_template': { 'nested': { 'value': '{{ 1 + 1 }}' } } }) orig = deepcopy(config) # Only change after call is each template getting hass attached template.attach(self.hass, orig) service.call_from_config(self.hass, config, validate_config=False) assert orig == config @patch('homeassistant.helpers.service._LOGGER.error') def test_fail_silently_if_no_service(self, mock_log): """Test failing if service is missing.""" service.call_from_config(self.hass, None) self.assertEqual(1, mock_log.call_count) service.call_from_config(self.hass, {}) self.assertEqual(2, mock_log.call_count) service.call_from_config(self.hass, { 'service': 'invalid' }) self.assertEqual(3, mock_log.call_count) def test_extract_entity_ids(self): """Test extract_entity_ids method.""" self.hass.states.set('light.Bowl', STATE_ON) self.hass.states.set('light.Ceiling', STATE_OFF) self.hass.states.set('light.Kitchen', STATE_OFF) loader.get_component(self.hass, 'group').Group.create_group( self.hass, 'test', ['light.Ceiling', 'light.Kitchen']) call = ha.ServiceCall('light', 'turn_on', {ATTR_ENTITY_ID: 'light.Bowl'}) self.assertEqual(['light.bowl'], service.extract_entity_ids(self.hass, call)) call = ha.ServiceCall('light', 'turn_on', {ATTR_ENTITY_ID: 'group.test'}) self.assertEqual(['light.ceiling', 'light.kitchen'], service.extract_entity_ids(self.hass, call)) self.assertEqual(['group.test'], service.extract_entity_ids( self.hass, call, expand_group=False)) @asyncio.coroutine def test_async_get_all_descriptions(hass): """Test async_get_all_descriptions.""" group = loader.get_component(hass, 'group') group_config = {group.DOMAIN: {}} yield from async_setup_component(hass, group.DOMAIN, group_config) descriptions = yield from service.async_get_all_descriptions(hass) assert len(descriptions) == 1 assert 'description' in descriptions['group']['reload'] assert 'fields' in descriptions['group']['reload'] logger = loader.get_component(hass, 'logger') logger_config = {logger.DOMAIN: {}} yield from async_setup_component(hass, logger.DOMAIN, logger_config) descriptions = yield from service.async_get_all_descriptions(hass) assert len(descriptions) == 2 assert 'description' in descriptions[logger.DOMAIN]['set_level'] assert 'fields' in descriptions[logger.DOMAIN]['set_level']
35.604396
75
0.603395
[ "Apache-2.0" ]
DevRGT/home-assistant
tests/helpers/test_service.py
6,480
Python
# ---------------------------------------------------------------- # ---------- ASSOCIATION RULE MINING : NOTEABLE ATTEMPT 2 --------- # ---------------------------------------------------------------- # ------------------ DAILY DATASET -------------------- association_rules = apriori(dailyRankedCrimes.values, min_support=0.02, min_confidence=0.95, min_lift=3, min_length=4, use_colnames = True) association_results = list(association_rules) print(len(association_results)) # 17 # ------------------ YEARLY DATASET -------------------- association_rules = apriori(yearlyRankedCrimes.values, min_support=0.02, min_confidence=0.95, min_lift=3, min_length=4, use_colnames = True) association_results = list(association_rules) print(len(association_results)) # 2 # Not Many Rules, playing with the settings: association_rules = apriori(yearlyRankedCrimes.values, min_support=0.0045, min_confidence=0.95, min_lift=1, min_length=2, use_colnames = True) association_results = list(association_rules) print(len(association_results)) # 41 # This is better # I printed the Rules using the common commands (found in common-commands.py)
37.866667
142
0.634683
[ "MIT" ]
CraftingGamerTom/wsu-computer-science
CS-383_Cloud-Computing_2020-Spring/association-rule-mining/attempt2.py
1,136
Python
# Copyright (c) 2013 Shotgun Software Inc. # # CONFIDENTIAL AND PROPRIETARY # # This work is provided "AS IS" and subject to the Shotgun Pipeline Toolkit # Source Code License included in this distribution package. See LICENSE. # By accessing, using, copying or modifying this work you indicate your # agreement to the Shotgun Pipeline Toolkit Source Code License. All rights # not expressly granted therein are reserved by Shotgun Software Inc. import sgtk from tank.platform.qt import QtGui from tank.platform.qt import QtCore from . import project_model views = sgtk.platform.import_framework("tk-framework-qtwidgets", "views") class ProjectWidget(QtGui.QFrame): """ Simple widget that shows a project's thumbnail and name. """ MARGIN = 5 ICON_SIZE = QtCore.QSize(32, 32) def __init__(self, parent=None): QtGui.QFrame.__init__(self, parent) # initialize the UI # simple frame with a thumbnail and a label self.setObjectName("frame") self.setFrameStyle(self.NoFrame) self.setContentsMargins(self.MARGIN, self.MARGIN, self.MARGIN, self.MARGIN) self.label = QtGui.QLabel(self) self.label.setAlignment(QtCore.Qt.AlignVCenter | QtCore.Qt.AlignLeft) self.label.setWordWrap(True) self.thumbnail = QtGui.QLabel(self) self.thumbnail.setScaledContents(True) self.layout = QtGui.QHBoxLayout(self) self.layout.addWidget(self.thumbnail) self.layout.addWidget(self.label) self.layout.setStretchFactor(self.label, 1) self.layout.setContentsMargins(0, 0, 0, 0) self.setLayout(self.layout) self.setVisible(False) self.set_selected(False) def set_thumbnail(self, pixmap): scaled = pixmap.scaled(self.ICON_SIZE, QtCore.Qt.KeepAspectRatio) self.thumbnail.setPixmap(scaled) def set_text(self, label): metrics = QtGui.QFontMetrics(self.label.font()) elided = metrics.elidedText(label, QtCore.Qt.ElideMiddle, self.label.width()) self.label.setText(elided) self.setToolTip(label) def set_selected(self, selected): """ Update the styling to reflect if the widget is selected or not """ if selected: p = QtGui.QPalette() highlight_col = p.color(QtGui.QPalette.Active, QtGui.QPalette.Highlight) transp_highlight_str = "rgba(%s, %s, %s, 25%%)" % \ (highlight_col.red(), highlight_col.green(), highlight_col.blue()) highlight_str = "rgb(%s, %s, %s)" % \ (highlight_col.red(), highlight_col.green(), highlight_col.blue()) # make a border around the cell self.setStyleSheet( """#frame { border-width: 2px; border-color: %s; border-style: solid; background-color: %s; } """ % (highlight_str, transp_highlight_str)) else: self.setStyleSheet( """#frame { border-width: 2px; border-color: transparent; border-style: solid; }""") class ProjectDelegate(views.EditSelectedWidgetDelegate): """ Wrapper around the ProjectWidget for delegate use """ def __init__(self, view): views.EditSelectedWidgetDelegate.__init__(self, view) def _create_widget(self, parent): return ProjectWidget(parent) def _on_before_paint(self, widget, model_index, style_options): if (style_options.state & QtGui.QStyle.State_Selected): widget.set_selected(True) else: widget.set_selected(False) icon = model_index.data(QtCore.Qt.DecorationRole) if icon is not None: thumb = icon.pixmap(30) widget.set_thumbnail(thumb) widget.set_text(model_index.data(project_model.ProjectModel.DISPLAY_NAME_ROLE)) def _on_before_selection(self, widget, model_index, style_options): self._on_before_paint(widget, model_index, style_options) def sizeHint(self, style_options, model_index): return QtCore.QSize(175, 2*ProjectWidget.MARGIN + ProjectWidget.ICON_SIZE.height())
36.724138
91
0.64507
[ "MIT" ]
JoanAzpeitia/lp_sg
install/app_store/tk-framework-adminui/v0.1.6/python/setup_project/project_delegate.py
4,260
Python
import unittest from robotide.preferences.settings import SettingsMigrator from robotide.utils import overrides class SettingsMigrationTestCase(SettingsMigrator, unittest.TestCase): def __init__(self, methodName='runTest'): unittest.TestCase.__init__(self, methodName=methodName) def setUp(self): self._old_settings = {} self._default_settings = lambda:0 self._from_0_to_1_called = False self._from_1_to_2_called = False self._merge_called = False def test_migration_from_0_to_2(self): self._old_settings[SettingsMigrator.SETTINGS_VERSION] = 0 self.migrate() self.assertTrue(self._from_0_to_1_called) self.assertTrue(self._from_1_to_2_called) self.assertTrue(self._merge_called) def test_migration_from_1_to_2(self): self._old_settings[SettingsMigrator.SETTINGS_VERSION] = 1 self.migrate() self.assertFalse(self._from_0_to_1_called) self.assertTrue(self._from_1_to_2_called) self.assertTrue(self._merge_called) @overrides(SettingsMigrator) def migrate_from_0_to_1(self, settings): self.assertEqual(self._old_settings, settings) self._from_0_to_1_called = True settings[SettingsMigrator.SETTINGS_VERSION] = 1 @overrides(SettingsMigrator) def migrate_from_1_to_2(self, settings): self.assertEqual(self._old_settings, settings) self._from_1_to_2_called = True settings[SettingsMigrator.SETTINGS_VERSION] = 2 def merge(self): self._merge_called = True if __name__ == '__main__': unittest.main()
33.163265
69
0.721231
[ "ECL-2.0", "Apache-2.0" ]
Acidburn0zzz/RIDE
utest/preferences/test_settings.py
1,625
Python
### # Copyright (c) 2003-2005, Daniel DiPaolo # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### import time from supybot.test import * class NewsTestCase(ChannelPluginTestCase): plugins = ('News','User') def setUp(self): ChannelPluginTestCase.setUp(self) # Create a valid user to use self.prefix = 'news!bar@baz' self.irc.feedMsg(ircmsgs.privmsg(self.nick, 'register tester moo', prefix=self.prefix)) m = self.irc.takeMsg() # Response to register. def testAddnews(self): self.assertNotError('add 0 subject: foo') self.assertRegexp('news', 'subject') self.assertNotError('add 0 subject2: foo2') self.assertRegexp('news', 'subject.*subject2') self.assertNotError('add 5 subject3: foo3') self.assertRegexp('news', 'subject3') print() print('Sleeping to expire the news item (testAddnews)') time.sleep(6) print('Done sleeping.') self.assertNotRegexp('news', 'subject3') def testNews(self): # These should both fail first, as they will have nothing in the DB self.assertRegexp('news', 'no news') self.assertRegexp('news #channel', 'no news') # Now we'll add news and make sure listnews doesn't fail self.assertNotError('add #channel 0 subject: foo') self.assertNotError('news #channel') self.assertNotError('add 0 subject: foo') self.assertRegexp('news', '#1') self.assertNotError('news 1') def testChangenews(self): self.assertNotError('add 0 Foo: bar') self.assertNotError('change 1 s/bar/baz/') self.assertNotRegexp('news 1', 'bar') self.assertRegexp('news 1', 'baz') def testOldnews(self): self.assertRegexp('old', 'No old news') self.assertNotError('add 0 a: b') self.assertRegexp('old', 'No old news') self.assertNotError('add 5 foo: bar') self.assertRegexp('old', 'No old news') print() print('Sleeping to expire the news item (testOldnews)') time.sleep(6) print('Done sleeping.') self.assertNotError('old') # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
42.579545
79
0.681345
[ "BSD-3-Clause" ]
ircpuzzles/competitionbot
plugins/News/test.py
3,747
Python
from enum import Enum class GeneClass(str, Enum): PROTEIN_CODING = ("protein coding,nonsense mediated decay",) PSEUDOGENE = "pseudogene,unprocessed pseudogene,polymorphic pseudogene,unitary pseudogene,transcribed unprocessed pseudogene,transcribed processed pseudogene, IG pseudogene" MICRO_RNA = "micro RNA" SHORT_NCRNA = ( "piRNA,rRNA,siRNA,snRNA,snoRNA,tRNA,scaRNA,vaultRNA,sRNA,misc RNA" ) LONG_NCRNA = "lincRNA,macro IncRNA,prime3 overlapping ncrna,antisense,retained intron,sense intronic,sense overlapping,macro IncRNA,bidirectional IncRNA" IMMUNOGLOBULIN = "IG C gene,IG D gene,IG J gene,IG V gene" T_CELL_RECEPTOR = "TR C gene,TR J gene, TR V gene"
50
177
0.76
[ "MIT" ]
lifeomic/phc-sdk-py
phc/easy/omics/options/gene_class.py
700
Python
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """post process for 310 inference""" import os import json import argparse import numpy as np parser = argparse.ArgumentParser(description="resnet inference") parser.add_argument("--result_path", type=str, required=True, help="result files path.") parser.add_argument("--label_path", type=str, required=True, help="image file path.") args = parser.parse_args() batch_size = 1 num_classes = 1000 def get_result(result_path, label_path): """calculate the result""" files = os.listdir(result_path) with open(label_path, "r") as label: labels = json.load(label) top1 = 0 top5 = 0 total_data = len(files) for file in files: img_ids_name = file.split('_0.')[0] data_path = os.path.join(result_path, img_ids_name + "_0.bin") result = np.fromfile(data_path, dtype=np.float16).reshape(batch_size, num_classes) for batch in range(batch_size): predict = np.argsort(-result[batch], axis=-1) if labels[img_ids_name+".JPEG"] == predict[0]: top1 += 1 if labels[img_ids_name+".JPEG"] in predict[:5]: top5 += 1 print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.") if __name__ == '__main__': get_result(args.result_path, args.label_path)
37.509434
107
0.666499
[ "Apache-2.0" ]
mindspore-ai/models
research/cv/resnext152_64x4d/postprocess.py
1,988
Python
from .checkpoints_evaluation import CheckpointsEvaluationControlFlow from .controlflow import ( record_train_batch_stats, record_validation_stats, validation_round, ) from .helpers import prepare_batch __all__ = [ "CheckpointsEvaluationControlFlow", "record_validation_stats", "record_train_batch_stats", "validation_round", "prepare_batch", ]
23.5625
68
0.777188
[ "Apache-2.0" ]
c4dt/mlbench-core
mlbench_core/controlflow/pytorch/__init__.py
377
Python
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT """ Display accelerometer data once per second """ import time import board import adafruit_lsm303_accel i2c = board.I2C() # uses board.SCL and board.SDA sensor = adafruit_lsm303_accel.LSM303_Accel(i2c) while True: acc_x, acc_y, acc_z = sensor.acceleration print( "Acceleration (m/s^2): ({0:10.3f}, {1:10.3f}, {2:10.3f})".format( acc_x, acc_y, acc_z ) ) print("") time.sleep(1.0)
22.956522
73
0.666667
[ "MIT" ]
Yarik9008/SoftAcademic
libralli/circcuitpython/adafruit-circuitpython-bundle-7.x-mpy-20211225/examples/lsm303_accel_simpletest.py
528
Python
#!/usr/bin/python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Patch an orderfile. Starting with a list of symbols in a binary and an orderfile (ordered list of symbols), matches the symbols in the orderfile and augments each symbol with the symbols residing at the same address (due to having identical code). Note: It is possible to have. - Several symbols mapping to the same offset in the binary. - Several offsets for a given symbol (because we strip the ".clone." suffix) TODO(lizeb): Since the suffix ".clone." is only used with -O3 that we don't currently use, simplify the logic by removing the suffix handling. The general pipeline is: 1. Get the symbol infos (name, offset, size, section) from the binary 2. Get the symbol names from the orderfile 3. Find the orderfile symbol names in the symbols coming from the binary 4. For each symbol found, get all the symbols at the same address 5. Output them to an updated orderfile, with several different prefixes """ import collections import logging import optparse import sys import cygprofile_utils import symbol_extractor # Prefixes for the symbols. We strip them from the incoming symbols, and add # them back in the output file. _PREFIXES = ('.text.startup.', '.text.hot.', '.text.unlikely.', '.text.') def _RemoveClone(name): """Return name up to the ".clone." marker.""" clone_index = name.find('.clone.') if clone_index != -1: return name[:clone_index] return name def _GroupSymbolInfos(symbol_infos): """Group the symbol infos by name and offset. Args: symbol_infos: an iterable of SymbolInfo Returns: The same output as _GroupSymbolInfosFromBinary. """ # Map the addresses to symbols. offset_to_symbol_infos = collections.defaultdict(list) name_to_symbol_infos = collections.defaultdict(list) for symbol in symbol_infos: symbol = symbol_extractor.SymbolInfo(name=_RemoveClone(symbol.name), offset=symbol.offset, size=symbol.size, section=symbol.section) offset_to_symbol_infos[symbol.offset].append(symbol) name_to_symbol_infos[symbol.name].append(symbol) return (dict(offset_to_symbol_infos), dict(name_to_symbol_infos)) def _GroupSymbolInfosFromBinary(binary_filename): """Group all the symbols from a binary by name and offset. Args: binary_filename: path to the binary. Returns: A tuple of dict: (offset_to_symbol_infos, name_to_symbol_infos): - offset_to_symbol_infos: {offset: [symbol_info1, ...]} - name_to_symbol_infos: {name: [symbol_info1, ...]} """ symbol_infos = symbol_extractor.SymbolInfosFromBinary(binary_filename) return _GroupSymbolInfos(symbol_infos) def _StripPrefix(line): """Get the symbol from a line with a linker section name. Args: line: a line from an orderfile, usually in the form: .text.SymbolName Returns: The symbol, SymbolName in the example above. """ line = line.rstrip('\n') for prefix in _PREFIXES: if line.startswith(prefix): return line[len(prefix):] return line # Unprefixed case def _GetSymbolsFromStream(lines): """Get the symbols from an iterable of lines. Filters out wildcards and lines which do not correspond to symbols. Args: lines: iterable of lines from an orderfile. Returns: Same as GetSymbolsFromOrderfile """ # TODO(lizeb): Retain the prefixes later in the processing stages. symbols = [] unique_symbols = set() for line in lines: line = _StripPrefix(line) name = _RemoveClone(line) if name == '' or name == '*' or name == '.text': continue if not line in unique_symbols: symbols.append(line) unique_symbols.add(line) return symbols def GetSymbolsFromOrderfile(filename): """Return the symbols from an orderfile. Args: filename: The name of the orderfile. Returns: A list of symbol names. """ with open(filename, 'r') as f: return _GetSymbolsFromStream(f.xreadlines()) def _SymbolsWithSameOffset(profiled_symbol, name_to_symbol_info, offset_to_symbol_info): """Expand a profiled symbol to include all symbols which share an offset with that symbol. Args: profiled_symbol: the string symbol name to be expanded. name_to_symbol_info: {name: [symbol_info1], ...}, as returned by GetSymbolInfosFromBinary offset_to_symbol_info: {offset: [symbol_info1, ...], ...} Returns: A list of symbol names, or an empty list if profiled_symbol was not in name_to_symbol_info. """ if not profiled_symbol in name_to_symbol_info: return [] symbol_infos = name_to_symbol_info[profiled_symbol] expanded = [] for symbol_info in symbol_infos: expanded += (s.name for s in offset_to_symbol_info[symbol_info.offset]) return expanded def _ExpandSymbols(profiled_symbols, name_to_symbol_infos, offset_to_symbol_infos): """Expand all of the symbols in profiled_symbols to include any symbols which share the same address. Args: profiled_symbols: Symbols to match name_to_symbol_infos: {name: [symbol_info1], ...}, as returned by GetSymbolInfosFromBinary offset_to_symbol_infos: {offset: [symbol_info1, ...], ...} Returns: A list of the symbol names. """ found_symbols = 0 missing_symbols = [] all_symbols = [] for name in profiled_symbols: expansion = _SymbolsWithSameOffset(name, name_to_symbol_infos, offset_to_symbol_infos) if expansion: found_symbols += 1 all_symbols += expansion else: all_symbols.append(name) missing_symbols.append(name) logging.info('symbols found: %d\n' % found_symbols) if missing_symbols > 0: logging.warning('%d missing symbols.' % len(missing_symbols)) missing_symbols_to_show = min(100, len(missing_symbols)) logging.warning('First %d missing symbols:\n%s' % ( missing_symbols_to_show, '\n'.join(missing_symbols[:missing_symbols_to_show]))) return all_symbols def _PrintSymbolsWithPrefixes(symbol_names, output_file): """For each symbol, outputs it to output_file with the prefixes.""" unique_outputs = set() for name in symbol_names: for prefix in _PREFIXES: linker_section = prefix + name if not linker_section in unique_outputs: output_file.write(linker_section + '\n') unique_outputs.add(linker_section) def main(argv): parser = optparse.OptionParser(usage= 'usage: %prog [options] <unpatched_orderfile> <library>') parser.add_option('--target-arch', action='store', dest='arch', choices=['arm', 'arm64', 'x86', 'x86_64', 'x64', 'mips'], help='The target architecture for the library.') options, argv = parser.parse_args(argv) if not options.arch: options.arch = cygprofile_utils.DetectArchitecture() if len(argv) != 3: parser.print_help() return 1 orderfile_filename = argv[1] binary_filename = argv[2] symbol_extractor.SetArchitecture(options.arch) (offset_to_symbol_infos, name_to_symbol_infos) = _GroupSymbolInfosFromBinary( binary_filename) profiled_symbols = GetSymbolsFromOrderfile(orderfile_filename) expanded_symbols = _ExpandSymbols( profiled_symbols, name_to_symbol_infos, offset_to_symbol_infos) _PrintSymbolsWithPrefixes(expanded_symbols, sys.stdout) # The following is needed otherwise Gold only applies a partial sort. print '.text' # gets methods not in a section, such as assembly print '.text.*' # gets everything else return 0 if __name__ == '__main__': logging.basicConfig(level=logging.INFO) sys.exit(main(sys.argv))
32.936975
80
0.710677
[ "BSD-3-Clause" ]
yury-s/v8-inspector
Source/chrome/tools/cygprofile/patch_orderfile.py
7,839
Python
# Generated by Django 2.0.2 on 2018-09-06 13:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('institution', '0016_institution_funding_document_email'), ] operations = [ migrations.AddField( model_name='institution', name='funding_document_receiver', field=models.CharField(max_length=100, null=True), ), migrations.AddField( model_name='institution', name='funding_document_template', field=models.CharField(max_length=100, null=True), ), ]
26.125
67
0.623604
[ "MIT" ]
M4rkD/cogs3
institution/migrations/0017_auto_20180906_1349.py
627
Python
# -*- coding: utf-8 -*- """ This file contains all the settings used in production. This file is required and if development.py is present these values are overridden. """ from server.settings.components import config # Production flags: # https://docs.djangoproject.com/en/2.2/howto/deployment/ DEBUG = False ALLOWED_HOSTS = [ # TODO: check production hosts config('DOMAIN_NAME'), # We need this value for `healthcheck` to work: 'localhost', ] # Staticfiles # https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/ # This is a hack to allow a special flag to be used with `--dry-run` # to test things locally. _COLLECTSTATIC_DRYRUN = config( 'DJANGO_COLLECTSTATIC_DRYRUN', cast=bool, default=False, ) # Adding STATIC_ROOT to collect static files via 'collectstatic': STATIC_ROOT = '.static' if _COLLECTSTATIC_DRYRUN else '/var/www/django/static' STATICFILES_STORAGE = ( # This is a string, not a tuple, # but it does not fit into 80 characters rule. 'django.contrib.staticfiles.storage.ManifestStaticFilesStorage' ) # Media files # https://docs.djangoproject.com/en/2.2/topics/files/ MEDIA_ROOT = '/var/www/django/media' # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators _PASS = 'django.contrib.auth.password_validation' # noqa: S105 AUTH_PASSWORD_VALIDATORS = [ {'NAME': '{0}.UserAttributeSimilarityValidator'.format(_PASS)}, {'NAME': '{0}.MinimumLengthValidator'.format(_PASS)}, {'NAME': '{0}.CommonPasswordValidator'.format(_PASS)}, {'NAME': '{0}.NumericPasswordValidator'.format(_PASS)}, ] # Security # https://docs.djangoproject.com/en/2.2/topics/security/ SECURE_HSTS_SECONDS = 31536000 # the same as Caddy has SECURE_HSTS_INCLUDE_SUBDOMAINS = True SECURE_HSTS_PRELOAD = True SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') SECURE_SSL_REDIRECT = True SECURE_REDIRECT_EXEMPT = [ # This is required for healthcheck to work: '^health/', ] SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True
26.294872
78
0.736714
[ "MIT" ]
alisher-matkurbanov/wemake-django-template
{{cookiecutter.project_name}}/server/settings/environments/production.py
2,051
Python
# ============================================ __author__ = "Sachin Mehta and Ximing Lu" __maintainer__ = "Sachin Mehta and Ximing Lu" # ============================================ import torch from utilities.print_utilities import * import os from utilities.lr_scheduler import get_lr_scheduler from metrics.metric_utils import accuracy from metrics.statistics import Statistics import gc from utilities.utils import save_checkpoint, load_checkpoint, save_arguments from utilities.build_dataloader import get_data_loader from utilities.build_model import build_model from utilities.build_optimizer import build_optimizer, update_optimizer, read_lr_from_optimzier from utilities.build_criteria import build_criteria import numpy as np import math import json from utilities.save_dict_to_file import DictWriter from train_and_eval.train_utils import prediction class Trainer(object): '''This class implemetns the training and validation functionality for training ML model for medical imaging''' def __init__(self, opts): super(Trainer, self).__init__() self.opts = opts self.best_acc = 0 self.start_epoch = 0 # maximum batch size for CNN on single GPU self.max_bsz_cnn_gpu0 = opts.max_bsz_cnn_gpu0 self.resume = self.opts.checkpoint if self.opts.checkpoint is not None and os.path.isdir( self.opts.checkpoint) else None self.global_setter() def global_setter(self): self.setup_device() self.setup_directories() self.setup_logger() self.setup_lr_scheduler() self.setup_dataloader() self.setup_model_optimizer_lossfn() def setup_directories(self): if not os.path.isdir(self.opts.savedir): os.makedirs(self.opts.savedir) def setup_device(self): num_gpus = torch.cuda.device_count() self.num_gpus = num_gpus if num_gpus > 0: print_log_message('Using {} GPUs'.format(num_gpus)) else: print_log_message('Using CPU') self.device = torch.device("cuda:0" if num_gpus > 0 else "cpu") self.use_multi_gpu = True if num_gpus > 1 else False if torch.backends.cudnn.is_available(): import torch.backends.cudnn as cudnn cudnn.benchmark = True cudnn.deterministic = True def setup_logger(self): # Let's visualize logs on tensorboard. It's awesome try: from torch.utils.tensorboard import SummaryWriter except: from utilities.summary_writer import SummaryWriter self.logger = SummaryWriter(log_dir=self.opts.savedir, comment='Training and Validation logs') def setup_lr_scheduler(self): # fetch learning rate scheduler self.lr_scheduler = get_lr_scheduler(self.opts) def setup_dataloader(self): from model.base_feature_extractor import BaseFeatureExtractor base_feature_extractor = BaseFeatureExtractor(opts=self.opts) base_feature_extractor = base_feature_extractor.to(device=self.device) # We do not want the base extractor to train, so setting it to eval mode if self.use_multi_gpu: base_feature_extractor = torch.nn.DataParallel(base_feature_extractor) self.base_feature_extractor = base_feature_extractor self.base_feature_extractor.eval() # sanity check if self.base_feature_extractor.training: print_warning_message('Base feature extractor is in training mode. Moving to evaluation mode') self.base_feature_extractor.eval() train_loader, val_loader, diag_classes, class_weights = get_data_loader(opts=self.opts) self.train_loader = train_loader self.val_loader = val_loader self.diag_classes = diag_classes self.class_weights = torch.from_numpy(class_weights) def setup_model_optimizer_lossfn(self): # Build Model odim = self.base_feature_extractor.module.output_feature_sz if self.use_multi_gpu else self.base_feature_extractor.output_feature_sz mi_model = build_model(opts=self.opts, diag_classes=self.diag_classes, base_feature_odim=odim ) if self.resume is not None: resume_ep, resume_model_state, resume_optim_state, resume_perf = load_checkpoint( checkpoint_dir=self.opts.checkpoint, device=self.device) self.start_epoch = resume_ep self.best_acc = resume_perf self.mi_model.load_state_dict(resume_model_state) self.optimizer.load_state_dict(resume_optim_state) # move optimizer state to the device for state in self.optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(device=self.device) print_log_message('Resuming from checkpoint saved at {}th epoch'.format(self.start_epoch)) mi_model = mi_model.to(device=self.device) if self.use_multi_gpu: mi_model = torch.nn.DataParallel(mi_model) self.mi_model = mi_model # Build Loss function criteria = build_criteria(opts=self.opts, class_weights=self.class_weights.float()) self.criteria = criteria.to(device=self.device) # Build optimizer self.optimizer = build_optimizer(model=self.mi_model, opts=self.opts) def training(self, epoch, lr, *args, **kwargs): train_stats = Statistics() self.mi_model.train() self.optimizer.zero_grad() num_samples = len(self.train_loader) epoch_start_time = time.time() for batch_id, batch in enumerate(self.train_loader): words, true_diag_labels = batch true_diag_labels = true_diag_labels.to(device=self.device) # prediction pred_diag_labels = prediction( words=words, cnn_model=self.base_feature_extractor, mi_model=self.mi_model, max_bsz_cnn_gpu0=self.max_bsz_cnn_gpu0, num_gpus=self.num_gpus, device=self.device ) # compute loss loss = self.criteria(pred_diag_labels, true_diag_labels) # compute metrics top1_acc = accuracy(pred_diag_labels, true_diag_labels, topk=(1,)) loss.backward() # Gradient accumulation is useful, when batch size is very small say 1 # Gradients will be accumulated for accum_count iterations # After accum_count iterations, weights are updated and graph is freed. if (batch_id + 1) % self.opts.accum_count == 0 or batch_id + 1 == len(self.train_loader): self.optimizer.step() self.optimizer.zero_grad() train_stats.update(loss=loss.item(), acc=top1_acc[0].item()) if batch_id % self.opts.log_interval == 0 and batch_id > 0: # print after every 100 batches train_stats.output(epoch=epoch, batch=batch_id, n_batches=num_samples, start=epoch_start_time, lr=lr) return train_stats.avg_acc(), train_stats.avg_loss() def warm_up(self, *args, **kwargs): self.mi_model.train() num_samples = len(self.train_loader) warm_up_iterations = int(math.ceil((self.opts.warm_up_iterations * 1.0) / num_samples) * num_samples) print_info_message('Warming Up') print_log_message( 'LR will linearly change from {} to {} in about {} steps'.format(self.opts.warm_up_min_lr, self.opts.lr, warm_up_iterations)) lr_list = np.linspace(1e-7, self.opts.lr, warm_up_iterations) epoch_start_time = time.time() iteration = -1 while iteration < warm_up_iterations: warm_up_stats = Statistics() for batch_id, batch in enumerate(self.train_loader): if iteration >= warm_up_iterations: break iteration += 1 try: lr_iter = lr_list[iteration] except: # fall back to final LR after warm-up step if iteration is outsize lr_list range lr_iter = self.opts.lr # update learning rate at every iteration self.optimizer = update_optimizer(optimizer=self.optimizer, lr_value=lr_iter) words, true_diag_labels = batch true_diag_labels = true_diag_labels.to(device=self.device) # prediction pred_diag_labels = prediction( words=words, cnn_model=self.base_feature_extractor, mi_model=self.mi_model, max_bsz_cnn_gpu0=self.max_bsz_cnn_gpu0, num_gpus=self.num_gpus, device=self.device ) # compute loss loss = self.criteria(pred_diag_labels, true_diag_labels) # compute metrics top1_acc = accuracy(pred_diag_labels, true_diag_labels, topk=(1,)) loss.backward() # Gradient accumulation is useful, when batch size is very small say 1 # Gradients will be accumulated for accum_count iterations # After accum_count iterations, weights are updated and graph is freed. if (batch_id + 1) % self.opts.accum_count == 0 or batch_id + 1 == len(self.train_loader): self.optimizer.step() self.optimizer.zero_grad() warm_up_stats.update(loss=loss.item(), acc=top1_acc[0].item()) if batch_id % self.opts.log_interval == 0 and batch_id > 0: # print after every 100 batches warm_up_stats.output(epoch=-1, batch=iteration, n_batches=warm_up_iterations, start=epoch_start_time, lr=lr_iter) gc.collect() print_log_message('Warming Up... Done!!!') def validation(self, epoch, lr, *args, **kwargs): val_stats = Statistics() self.mi_model.eval() num_samples = len(self.val_loader) with torch.no_grad(): epoch_start_time = time.time() for batch_id, batch in enumerate(self.val_loader): # bags, bag_hist_arr, words, word_hist_arr, true_diag_labels = batch words, true_diag_labels = batch true_diag_labels = true_diag_labels.to(device=self.device) # prediction pred_diag_labels = prediction( words=words, cnn_model=self.base_feature_extractor, mi_model=self.mi_model, max_bsz_cnn_gpu0=self.max_bsz_cnn_gpu0, num_gpus=self.num_gpus, device=self.device ) # compute loss loss = self.criteria(pred_diag_labels, true_diag_labels) # compute metrics top1_acc = accuracy(pred_diag_labels, true_diag_labels, topk=(1,)) val_stats.update(loss=loss.item(), acc=top1_acc[0].item()) if batch_id % self.opts.log_interval == 0 and batch_id > 0: # print after every 100 batches val_stats.output(epoch=epoch, batch=batch_id, n_batches=num_samples, start=epoch_start_time, lr=lr) gc.collect() avg_acc = val_stats.avg_acc() avg_loss = val_stats.avg_loss() print_log_message('* Validation Stats') print_log_message('* Loss: {:5.2f}, Mean Acc: {:3.2f}'.format(avg_loss, avg_acc)) return avg_acc, avg_loss def run(self, *args, **kwargs): kwargs['need_attn'] = False if self.opts.warm_up: self.warm_up(args=args, kwargs=kwargs) if self.resume is not None: # find the LR value for epoch in range(self.start_epoch): self.lr_scheduler.step(epoch) eval_stats_dict = dict() for epoch in range(self.start_epoch, self.opts.epochs): epoch_lr = self.lr_scheduler.step(epoch) self.optimizer = update_optimizer(optimizer=self.optimizer, lr_value=epoch_lr) # Uncomment this line if you want to check the optimizer's LR is updated correctly # assert read_lr_from_optimzier(self.optimizer) == epoch_lr train_acc, train_loss = self.training(epoch=epoch, lr=epoch_lr, args=args, kwargs=kwargs) val_acc, val_loss = self.validation(epoch=epoch, lr=epoch_lr, args=args, kwargs=kwargs) eval_stats_dict[epoch] = val_acc gc.collect() # remember best accuracy and save checkpoint for best model is_best = val_acc >= self.best_acc self.best_acc = max(val_acc, self.best_acc) model_state = self.mi_model.module.state_dict() if isinstance(self.mi_model, torch.nn.DataParallel) \ else self.mi_model.state_dict() optimizer_state = self.optimizer.state_dict() save_checkpoint(epoch=epoch, model_state=model_state, optimizer_state=optimizer_state, best_perf=self.best_acc, save_dir=self.opts.savedir, is_best=is_best, keep_best_k_models=self.opts.keep_best_k_models ) self.logger.add_scalar('LR', round(epoch_lr, 6), epoch) self.logger.add_scalar('TrainingLoss', train_loss, epoch) self.logger.add_scalar('TrainingAcc', train_acc, epoch) self.logger.add_scalar('ValidationLoss', val_loss, epoch) self.logger.add_scalar('ValidationAcc', val_acc, epoch) # dump the validation epoch id and accuracy data, so that it could be used for filtering later on eval_stats_dict_sort = {k: v for k, v in sorted(eval_stats_dict.items(), key=lambda item: item[1], reverse=True )} eval_stats_fname = '{}/val_stats_bag_{}_word_{}_{}_{}'.format( self.opts.savedir, self.opts.bag_size, self.opts.word_size, self.opts.attn_fn, self.opts.attn_type, ) writer = DictWriter(file_name=eval_stats_fname, format='json') # if json file does not exist if not os.path.isfile(eval_stats_fname): writer.write(data_dict=eval_stats_dict_sort) else: with open(eval_stats_fname, 'r') as json_file: eval_stats_dict_old = json.load(json_file) eval_stats_dict_old.update(eval_stats_dict_sort) eval_stats_dict_updated = {k: v for k, v in sorted(eval_stats_dict_old.items(), key=lambda item: item[1], reverse=True )} writer.write(data_dict=eval_stats_dict_updated) self.logger.close()
41.248677
140
0.602745
[ "MIT" ]
alibalapour/HATNet
train_and_eval/trainer.py
15,592
Python
class Error(Exception): '''Base Error.''' def __init__(self): self.error = 'Fatal error occured.' super().__init__(self.error) class ArgError(Error): '''Argument Error.''' def __init__(self): self.error = 'Incorrect argument passed.' super().__init__(self.error) class MissingArg(ArgError): '''Argument is missing.''' def __init__(self, arg): self.error = f'{arg} is a required argument that is missing.' super().__init__(self.error) class InvalidArg(ArgError): '''Argument is invalid.''' def __init__(self, arg): self.error = f'{arg} is invalid.' super().__init__(self.error) class HTTPError(Error): '''Error occured in HTTP.''' def __init__(self, code): self.error = f'An error occured. Status: {code}' super().__init__(self.error) class Timeout(HTTPError): '''Connection timed out.''' def __init__(self): self.error = 'The connection timed out.' super().__init__(self.error) class MissingData(Error): '''Missing data.''' def __init__(self, data): self.error = f'Value of {data} is missing.'
22.255319
63
0.685468
[ "MIT" ]
cree-py/cocasync
cocasync/errors.py
1,046
Python
from django.apps import AppConfig class RuntimeMainConfig(AppConfig): name = 'runtime_main'
16.333333
35
0.77551
[ "Apache-2.0" ]
Bodya00/RunTime
runtime/runtime_main/apps.py
98
Python
from sympy import symbols, integrate, Rational, lambdify import matplotlib.pyplot as plt import numpy as np # Pollution from a factory is entering a lake. The rate of concentration of the pollutant at time t is given by t = symbols( 't', positive = True ) dP = 91*t ** Rational( 5, 2 ) # where t is the number of years since the factory started introducing pollutants into the lake. # Ecologists estimate that the lake can accept a total level of pollution of 7600 units before all the fish life in the lake ends. # Can the factory operate for 5 years without killing all the fish in the​ lake? # Yes, because: P = integrate( dP, ( t, 0, 5 ) ).evalf() round( P ) # is less than 7600. # What is the polution doing? g_xlim = [ 1, 10 ] g_ylim = [ -5, 15 ] lam_p = lambdify( t, integrate( dP, t ), np ) x_vals = np.linspace( g_xlim[0], g_xlim[1], 1000, endpoint=True ) y_vals = lam_p( x_vals ) plt.plot( x_vals, y_vals ) plt.show()
33.464286
132
0.708645
[ "MIT" ]
bmoretz/Python-Playground
src/Classes/MSDS400/Module 7/polution.py
939
Python
import numpy as np import pandas as pd from collections import OrderedDict def one_to_one_matching(pred_infos, gt_infos, keys=('scene_id', 'view_id'), allow_pred_missing=False): keys = list(keys) pred_infos['pred_id'] = np.arange(len(pred_infos)) gt_infos['gt_id'] = np.arange(len(gt_infos)) matches = pred_infos.merge(gt_infos, on=keys) matches_gb = matches.groupby(keys).groups assert all([len(v) == 1 for v in matches_gb.values()]) if not allow_pred_missing: assert len(matches) == len(gt_infos) return matches def get_candidate_matches(pred_infos, gt_infos, group_keys=['scene_id', 'view_id', 'label'], only_valids=True): pred_infos['pred_id'] = np.arange(len(pred_infos)) gt_infos['gt_id'] = np.arange(len(gt_infos)) group_keys = list(group_keys) cand_infos = pred_infos.merge(gt_infos, on=group_keys) if only_valids: cand_infos = cand_infos[cand_infos['valid']].reset_index(drop=True) cand_infos['cand_id'] = np.arange(len(cand_infos)) return cand_infos def match_poses(cand_infos, group_keys=['scene_id', 'view_id', 'label']): assert 'error' in cand_infos matches = [] def match_label_preds(group): gt_ids_matched = set() group = group.reset_index(drop=True) gb_pred = group.groupby('pred_id', sort=False) ids_sorted = gb_pred.first().sort_values('score', ascending=False) gb_pred_groups = gb_pred.groups for idx, _ in ids_sorted.iterrows(): pred_group = group.iloc[gb_pred_groups[idx]] best_error = np.inf best_match = None for _, tentative_match in pred_group.iterrows(): if tentative_match['error'] < best_error and \ tentative_match['gt_id'] not in gt_ids_matched: best_match = tentative_match best_error = tentative_match['error'] if best_match is not None: gt_ids_matched.add(best_match['gt_id']) matches.append(best_match) if len(cand_infos) > 0: cand_infos.groupby(group_keys).apply(match_label_preds) matches = pd.DataFrame(matches).reset_index(drop=True) else: matches = cand_infos return matches
36.369231
75
0.630711
[ "MIT" ]
lesteve/robopose
robopose/evaluation/meters/utils.py
2,364
Python
# -- --------------------------------------------------------------------------------------------------- -- # # -- project: A python project for algorithmic trading in FXCM -- # # -- --------------------------------------------------------------------------------------------------- -- # # -- script: requirements.txt : text file with the required libraries for the project -- # # -- author: YOUR GITHUB USER NAME -- # # -- license: MIT License -- # # -- --------------------------------------------------------------------------------------------------- -- # # -- Template repository: https://github.com/IFFranciscoME/trading-project -- # # -- --------------------------------------------------------------------------------------------------- -- # # -- Packages for the script import fxcmpy import pandas as pd # -- --------------------------------------------------------------------------------------------------- -- # # -- --------------------------------------------------------------------------------------------------- -- # api_token = "ba432..." # This token is obtained in the fxcm trading station platform con = fxcmpy.fxcmpy(access_token=api_token, server='demo', log_level='error', log_file='fxcm_logs.txt') # -- --------------------------------------------------------------------------------------------------- -- # # -- --------------------------------------------------------------------------------------------------- -- # def fxcm_ohlc(p_instrument, p_period, p_ini, p_end): """ to download OHLC prices from FXCM broker Parameters ---------- p_instrument: str The name of the instrument according to fxcmpy p_freq: str The frequency or granularity of prices, according to fxcmpy p_ini: str Initial timestamp, in format "yyyy-mm-dd hh:mm:ss" p_end: str final timestamp, in format "yyyy-mm-dd hh:mm:ss" Returns ------- data_ohlc: DataFrame with columns Open, High, Low, Close and Timestamp as index """ data_ohlc = con.get_candles(instrument=p_instrument, period=p_period, start=p_ini, end=p_end) data_ohlc['open'] = (data_ohlc['bidopen'] + data_ohlc['askopen'])*0.5 data_ohlc['high'] = (data_ohlc['bidhigh'] + data_ohlc['askhigh'])*0.5 data_ohlc['low'] = (data_ohlc['bidlow'] + data_ohlc['asklow'])*0.5 data_ohlc['close'] = (data_ohlc['bidclose'] + data_ohlc['askclose'])*0.5 data_ohlc = data_ohlc[['open', 'high', 'low', 'close']] data_ohlc.index.name = 'timestamp' return data_ohlc
44.698413
109
0.393111
[ "MIT" ]
IFFranciscoME/trading-project
data.py
2,816
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/1/28 14:07 # @Author : ywl # @Email : [email protected] # @File : commit-msg.py.py import os import sys import re import json crc_list = ( 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 ) def sum_crc16(crc, file_bit): """ 计算CRC16 @param crc:初始校验码 @param file_bit:文件2进制流 @return:校验码 """ for bit in file_bit: crc = 0xffff & crc # temp = crc // 256 temp = crc >> 8 crc = 0xffff & crc crc <<= 8 crc = 0xffff & crc crc ^= crc_list[0xff & (temp ^ bit)] return crc def sum_file_crc16(file_name): """ 计算文件校验码,每次计算4096字节 @param file_name:文件名 @return:校验码 """ crc = 0 with open(file_name, 'rb') as f: crc = sum_crc16(crc, f.read()) return crc def get_version(): with open("pack/release_version.json", "r+", encoding="utf8") as f: try: versions = json.load(f) return 'v' + versions["release_versions"][-1][-1] except Exception as e: print("读取版本失败 : ", e) exit(-1) def get_srv_crc(): srv_name = "src/AIService" if not os.path.exists(srv_name) or os.path.isdir(srv_name): print("no srv build AIService") exit(-1) return sum_file_crc16(srv_name) # crc = hex(sum_file_crc16(srv_name)).upper()[2:] # crc = '0' * (4 - len(crc)) + crc # return crc def check_first_line(line): return re.match(r'\[version : [vV](0|[1-9][0-9]*.?)\.(0|[1-9][0-9]*.?)\.(0|[1-9][0-9]*.?)\] ' r'\[srv-crc16 : [0-9A-F]{4}\]$', line) def add_pre_msg(): commit_msg_file = sys.argv[1] with open(commit_msg_file, "r+") as f: text = list() while True: line = f.readline() if not line: break text.append(line) pre = "[version : %s] [srv-crc16 : %04X]\n" % (get_version(), get_srv_crc()) if check_first_line(text[0]): text[0] = pre else: text.insert(0, pre) f.seek(0) f.truncate() f.writelines(text) if __name__ == "__main__": add_pre_msg()
33.096296
98
0.597359
[ "MIT" ]
wotsen/learning_platform_server
hooks/commit-msg.py
4,550
Python
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import filecmp import os import json import tempfile import unittest from india_rbi.below_poverty_line.preprocess import BelowPovertyLineDataLoader # module_dir_ is the path to where this test is running from. module_dir_ = os.path.dirname(__file__) class TestPreprocess(unittest.TestCase): def test_create_csv(self): with tempfile.TemporaryDirectory() as tmp_dir: xlsx_file = os.path.join(module_dir_, 'test_data/test.XLSX') expected_file = os.path.join(module_dir_, 'test_data/expected.csv') result_file = os.path.join(tmp_dir, 'test_cleaed.csv') loader = BelowPovertyLineDataLoader(xlsx_file) loader.download() loader.process() loader.save(csv_file_path=result_file) same = filecmp.cmp(result_file, expected_file) os.remove(result_file) self.assertTrue(same) if __name__ == '__main__': unittest.main()
32.382979
79
0.720762
[ "Apache-2.0" ]
clincoln8/data
scripts/india_rbi/below_poverty_line/preprocess_test.py
1,522
Python
# coding: utf-8 ################################################################### # Copyright (c) 2016-2020 European Synchrotron Radiation Facility # # # # Author: Marius Retegan # # # # This work is licensed under the terms of the MIT license. # # For further information, see https://github.com/mretegan/crispy # ################################################################### """Classes used to setup Quanty calculations.""" import datetime import glob import logging import os import re import subprocess from functools import lru_cache from PyQt5.QtCore import QProcess, Qt, pyqtSignal from crispy import resourceAbsolutePath from crispy.config import Config from crispy.gui.items import BaseItem, DoubleItem, IntItem, SelectableItem from crispy.gui.quanty.axes import Axes from crispy.gui.quanty.hamiltonian import Hamiltonian from crispy.gui.quanty.spectra import Spectra from crispy.quanty import CALCULATIONS, XDB logger = logging.getLogger(__name__) settings = Config().read() SUBSHELLS = { "3d": {"atomicNumbers": (21, 30 + 1), "coreElectrons": 18}, "4d": {"atomicNumbers": (39, 48 + 1), "coreElectrons": 36}, "4f": {"atomicNumbers": (57, 71 + 1), "coreElectrons": 54}, "5d": {"atomicNumbers": (72, 80 + 1), "coreElectrons": 68}, "5f": {"atomicNumbers": (89, 103 + 1), "coreElectrons": 86}, } OCCUPANCIES = {"s": 2, "p": 6, "d": 10, "f": 14} class Element(BaseItem): def __init__(self, parent=None, name="Element", value=None): super().__init__(parent=parent, name=name) self.symbol = None self.charge = None self.value = value @property def atomicNumber(self): return XDB.atomic_number(self.symbol) @property def valenceSubshell(self): """Name of the valence subshell.""" for subshell, properties in SUBSHELLS.items(): if self.atomicNumber in range(*properties["atomicNumbers"]): return subshell return None @property def valenceBlock(self): # pylint: disable=unsubscriptable-object """Name of the valence block.""" return self.valenceSubshell[-1] @property def valenceOccupancy(self): """Occupancy of the valence subshell.""" assert self.charge is not None, "The charge must be set." # Reverse the string holding the charge before changing it to # an integer. charge = int(self.charge[::-1]) # Calculate the number of electrons of the ion. ion_electrons = self.atomicNumber - charge core_electorns = SUBSHELLS[self.valenceSubshell]["coreElectrons"] occupancy = ion_electrons - core_electorns return occupancy @property def value(self): if self.charge is None: return f"{self.symbol}" return f"{self.symbol}{self.charge}" @value.setter def value(self, value): if value is None: return tokens = re.findall(r"(\w{1,2})(\d[+,-])", value) if not tokens: raise ValueError(f"Invalid element {value}.") [tokens] = tokens self.symbol, self.charge = tokens class Configuration: # pylint: disable=too-many-instance-attributes def __init__(self, value=None): self.value = value self.energy = None self.atomic_parameters = None @property def value(self): return self._value @value.setter def value(self, value): PATTERNS = (r"^(\d)(\w)(\d+),(\d)(\w)(\d+)$", r"^(\d)(\w)(\d+)$") # Test the configuration string. tokens = (token for pattern in PATTERNS for token in re.findall(pattern, value)) if not tokens: raise ValueError("Invalid configuration string.") [tokens] = tokens if len(tokens) == 3: core = None valence = tokens elif len(tokens) == 6: core = tokens[:3] valence = tokens[-3:] else: raise ValueError("Unexpected length of the configuration string.") valenceLevel, valenceShell, valenceOccupancy = valence valenceLevel = int(valenceLevel) valenceOccupancy = int(valenceOccupancy) if valenceOccupancy > OCCUPANCIES[valenceShell]: raise ValueError("Wrong number of electrons in the valence shell.") if core: coreLevel, coreShell, coreOccupancy = core coreLevel = int(coreLevel) coreOccupancy = int(coreOccupancy) if coreOccupancy > OCCUPANCIES[coreShell]: raise ValueError("Wrong number of electrons in the core shell.") self.levels = (coreLevel, valenceLevel) self.shells = (coreShell, valenceShell) self.occupancies = [coreOccupancy, valenceOccupancy] else: self.levels = (valenceLevel,) self.shells = (valenceShell,) self.occupancies = [valenceOccupancy] self.subshells = tuple( [f"{level}{shell}" for level, shell in zip(self.levels, self.shells)] ) self._value = value @property def hasCore(self): return len(self.subshells) == 2 @staticmethod def countParticles(shell, occupancy): """Count the number of particles (electrons) or quasiparticles (holes) in a shell.""" key = f"{shell}{occupancy}" if key in ("s0", "s2", "p0", "p6", "d0", "d10", "f0", "f14"): particles = "zero" elif key in ("s1", "p1", "p5", "d1", "d9", "f1", "f13"): particles = "one" else: particles = "multiple" return particles @property def numberOfCoreParticles(self): """Count the number of core particles. Returns None if the electronic configuration has no core.""" if not self.hasCore: return None core_shell, _ = self.shells core_occupancy, _ = self.occupancies return self.countParticles(core_shell, core_occupancy) @classmethod def fromSubshellsAndOccupancies(cls, subshells, occupancies): value = ",".join( f"{subshell:s}{occupancy:d}" for subshell, occupancy in zip(subshells, occupancies) ) return cls(value=value) def __hash__(self): return hash(self.value) def __eq__(self, other): return self.value == other.value def __lt__(self, other): return self.value < other.value def __repr__(self): return self.value class Symmetry(BaseItem): def __init__(self, parent=None, name="Symmetry", value=None): super().__init__(parent=parent, name=name, value=value) class Edge(BaseItem): def __init__(self, parent=None, name="Edge", value=None): super().__init__(parent=parent, name=name, value=value) @property def coreSubshells(self): """Use the name of the edge to determine the names of the core subshells. e.g. for K (1s) the function returns ("1s",), while for K-L2,3 (1s2p) it returns ("1s", "2p"). """ PATTERNS = (r".*\((\d\w)(\d\w)\)", r".*\((\d\w)\)") name = self.value tokens = (token for pattern in PATTERNS for token in re.findall(pattern, name)) # Get the elements of the generator. [tokens] = tokens if not tokens: raise ValueError("The name of the edge cannot be parsed.") if isinstance(tokens, str): tokens = (tokens,) return tokens @property def coreBlocks(self): return tuple(subshell[1] for subshell in self.coreSubshells) @property def coreOccupancies(self): return tuple(OCCUPANCIES[coreBlock] for coreBlock in self.coreBlocks) @property def labels(self): """Edge or line labels needed to interrogate xraydb database.""" CONVERTERS = { "Kɑ": "Ka1", "Kβ": "Kb1", "K": "K", "L1": "L1", "L2,3": "L3", "M1": "M1", "M2,3": "M3", "M4,5": "M5", "N1": "N1", "N2,3": "N3", "N4,5": "N5", "O1": "O1", "O2,3": "O3", "O4,5": "O5", } raw, _ = self.value.split() names = list() separator = "-" if separator in raw: names.extend(raw.split(separator)) else: names.append(raw) # TODO: This needs to be put in a try/except block. names = [CONVERTERS[name] for name in names] return tuple(names) class Experiment(BaseItem): def __init__(self, parent=None, name="Experiment", value=None): super().__init__(parent=parent, name=name, value=value) @property def isOneStep(self): return self.value in ("XAS", "XPS") @property def isTwoSteps(self): return not self.isOneStep @property def excitesToVacuum(self): return self.value in ("XES", "XPS") @property def isOneDimensional(self): return not self.isTwoDimensional @property def isTwoDimensional(self): return self.value in ("RIXS",) @property def isEmission(self): return self.value in ("XES",) class Temperature(IntItem): def __init__(self, parent=None, name="Temperature", value=None): super().__init__(parent=parent, name=name, value=value) @property def value(self): return self._value @value.setter def value(self, value): if value < 0: raise ValueError("The temperature cannot be negative.") self._value = value class MagneticField(DoubleItem): def __init__(self, parent=None, name="Magnetic Field", value=None): super().__init__(parent=parent, name=name, value=value) @property def value(self): return self._value @value.setter def value(self, value): self._value = value # Set the values in the magnetic field Hamiltonian term. calculation = self.ancestor hamiltonian = calculation.hamiltonian # Use the normalized vector. k = calculation.axes.xaxis.photon.k.normalized TESLA_TO_EV = 5.7883818011084e-05 for i, name in enumerate(("Bx", "By", "Bz")): # Get the values of the wave vector. for item in hamiltonian.findChild(name): item.value = k[i] * value * TESLA_TO_EV class Runner(QProcess): outputUpdated = pyqtSignal(str) successful = pyqtSignal(bool) def __init__(self, parent=None): super().__init__(parent=parent) # Merge stdout and stderr channels. self.setProcessChannelMode(QProcess.MergedChannels) self.startingTime = None self.endingTime = None self.readyRead.connect(self.updateOutput) self.finished.connect(self.checkExitCodes) self.output = str() def run(self, inputName): self.startingTime = datetime.datetime.now() # Run Quanty using QProcess. try: self.start(self.executablePath, (inputName,)) except FileNotFoundError as error: raise RuntimeError from error cwd = os.getcwd() message = f"Running Quanty {inputName} in the folder {cwd}." logger.info(message) def checkExitCodes(self, exitCode, exitStatus): self.endingTime = datetime.datetime.now() successful = False if exitStatus == 0 and exitCode == 0: message = "Quanty has finished successfully in " delta = self.runningTime hours, reminder = divmod(delta, 3600) minutes, seconds = divmod(reminder, 60) seconds = round(seconds, 2) if hours > 0: message += "{} hours {} minutes and {} seconds.".format( hours, minutes, seconds ) elif minutes > 0: message += "{} minutes and {} seconds.".format(minutes, seconds) else: message += "{} seconds.".format(seconds) logger.info(message) successful = True elif exitStatus == 0 and exitCode == 1: message = ( "Quanty has finished unsuccessfully. " "Check the logging window for more details." ) logger.info(message) # exitCode is platform dependent; exitStatus is always 1. elif exitStatus == 1: message = "Quanty was stopped." logger.info(message) self.successful.emit(successful) def updateOutput(self): data = self.readAll().data() data = data.decode("utf-8").rstrip() self.output = self.output + data self.outputUpdated.emit(data) @property def runningTime(self): return (self.endingTime - self.startingTime).total_seconds() @property def executablePath(self): path = Config().read().value("Quanty/Path") if path is None: message = ( "The path to the Quanty executable is not set. " "Please use the preferences menu to set it." ) raise FileNotFoundError(message) # Test the executable. with open(os.devnull, "w") as fp: try: subprocess.call(path, stdout=fp, stderr=fp) except FileNotFoundError as e: message = ( "The Quanty executable is not working properly. " "Is the PATH set correctly?" ) logger.error(message) raise e return path class Calculation(SelectableItem): # pylint: disable=too-many-instance-attributes, too-many-arguments, too-many-public-methods titleChanged = pyqtSignal(str) def __init__( self, symbol="Ni", charge="2+", symmetry="Oh", experiment="XAS", edge="L2,3 (2p)", hamiltonian=True, parent=None, ): super().__init__(parent=parent, name="Calculation") # Set the very special ancestor, in this case self. self._ancestor = self # Validate the keyword arguments. This is best done this way; using properties # it gets rather convoluted. self._symbols = list() for subshell in CALCULATIONS.keys(): self._symbols.extend(CALCULATIONS[subshell]["symbols"]) self._symbols = tuple(sorted(self._symbols)) if symbol not in self.symbols: symbol = self._symbols[0] # Get the subshell. subshell = None for subshell in CALCULATIONS.keys(): if symbol in CALCULATIONS[subshell]["symbols"]: break symbols = CALCULATIONS[subshell]["symbols"] experiments = CALCULATIONS[subshell]["experiments"] self._charges = tuple(symbols[symbol]["charges"]) if charge not in self._charges: charge = self._charges[0] self._experiments = tuple(experiments) if experiment not in self._experiments: experiment = self._experiments[0] self._symmetries = tuple(experiments[experiment]["symmetries"]) if symmetry not in self._symmetries: symmetry = self._symmetries[0] self._edges = tuple(experiments[experiment]["edges"]) if edge not in self._edges: edge = self._edges[0] self.element = Element(parent=self, value=f"{symbol}{charge}") self.symmetry = Symmetry(parent=self, value=symmetry) self.experiment = Experiment(parent=self, value=experiment) self.edge = Edge(parent=self, value=edge) self.temperature = Temperature(parent=self, value=10) self.magneticField = MagneticField(parent=self, value=0) self.axes = Axes(parent=self) self.spectra = Spectra(parent=self) # This flag is needed because the class is also used to generate Hamiltonian # parameters, which are needed to create the Hamiltonian object in the # first place. A bit of chicken and egg problem. if hamiltonian: self.hamiltonian = Hamiltonian(parent=self) # Set the name of the calculation. subshells = "".join(self.edge.coreSubshells) element = self.element.value symmetry = self.symmetry.value experiment = self.experiment.value self._value = f"{element}_{symmetry}_{experiment}_{subshells}" # Instantiate the runner used to execute Quanty. self.runner = Runner() self.runner.successful.connect(self.process) @property def value(self): return self._value @value.setter def value(self, value): self._value = value self.dataChanged.emit(0) self.titleChanged.emit(value) def data(self, column, role=Qt.DisplayRole): if role in (Qt.EditRole, Qt.DisplayRole, Qt.UserRole): column = 0 if column == 1 else 1 return super().data(column, role) def setData(self, column, value, role=Qt.EditRole): if role in (Qt.EditRole, Qt.UserRole): column = 0 if column == 1 else 1 return super().setData(column, value, role) def flags(self, column): return ( Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsEditable | Qt.ItemIsUserCheckable ) @property def symbols(self): return self._symbols @property def charges(self): return self._charges @property def symmetries(self): return self._symmetries @property def experiments(self): return self._experiments @property def edges(self): return self._edges @property def templateName(self): valenceSubshell = self.element.valenceSubshell symmetry = self.symmetry.value experiment = self.experiment.value subshells = "".join(self.edge.coreSubshells) return f"{valenceSubshell}_{symmetry}_{experiment}_{subshells}.lua" @property @lru_cache() def configurations(self): """Determine the electronic configurations involved in a calculation.""" valenceSubshell = self.element.valenceSubshell valenceOccupancy = self.element.valenceOccupancy configurations = list() # Initial configuration. initialConfiguration = Configuration.fromSubshellsAndOccupancies( subshells=(valenceSubshell,), occupancies=(valenceOccupancy,) ) configurations.append(initialConfiguration) # Final and in some cases intermediate configurations. if self.experiment.isOneStep: if not self.experiment.excitesToVacuum: valenceOccupancy += 1 (coreSubshell,) = self.edge.coreSubshells (coreOccupancy,) = self.edge.coreOccupancies coreOccupancy -= 1 finalConfiguration = Configuration.fromSubshellsAndOccupancies( subshells=(coreSubshell, valenceSubshell), occupancies=(coreOccupancy, valenceOccupancy), ) configurations.append(finalConfiguration) else: if not self.experiment.excitesToVacuum: valenceOccupancy += 1 core1Subshell, core2Subshell = self.edge.coreSubshells core1Occupancy, core2Occupancy = self.edge.coreOccupancies core1Occupancy -= 1 core2Occupancy -= 1 intermediateConfiguration = Configuration.fromSubshellsAndOccupancies( subshells=(core1Subshell, valenceSubshell), occupancies=(core1Occupancy, valenceOccupancy), ) configurations.append(intermediateConfiguration) if core2Subshell == valenceSubshell: finalConfiguration = Configuration.fromSubshellsAndOccupancies( subshells=(valenceSubshell,), occupancies=(valenceOccupancy - 1,), ) else: finalConfiguration = Configuration.fromSubshellsAndOccupancies( subshells=(core2Subshell, valenceSubshell), occupancies=(core2Occupancy, valenceOccupancy), ) configurations.append(finalConfiguration) return configurations @property def replacements(self): """Replacements dictionary used to fill the calculation template. The construction of more complex items is delegated to the respective object. """ replacements = dict() # Values defined in another places. replacements["Verbosity"] = settings.value("Quanty/Verbosity") replacements["DenseBorder"] = settings.value("Quanty/DenseBorder") replacements["ShiftToZero"] = settings.value("Quanty/ShiftSpectra") subshell = self.element.valenceSubshell occupancy = self.element.valenceOccupancy replacements[f"NElectrons_{subshell}"] = occupancy replacements["Temperature"] = self.temperature.value replacements["Prefix"] = self.value replacements.update(self.axes.xaxis.replacements) if self.experiment.isTwoDimensional: replacements.update(self.axes.yaxis.replacements) replacements.update(self.spectra.replacements) replacements.update(self.hamiltonian.replacements) return replacements @property def input(self): path = resourceAbsolutePath( os.path.join("quanty", "templates", f"{self.templateName}") ) try: with open(path) as fp: template = fp.read() except FileNotFoundError as e: message = f"Could not find the template file {self.templateName}." logger.error(message) raise e for pattern, replacement in self.replacements.items(): # True/False in Lua are lowercase. if isinstance(replacement, bool): replacement = str(replacement).lower() else: replacement = str(replacement) template = template.replace(f"${pattern}", str(replacement)) return template @property def inputName(self): return f"{self.value}.lua" @property def output(self): return self.runner.output # @property # def summary(self): # return f"Summary for {self.value}" def saveInput(self): # TODO: Is this too hidden? os.chdir(settings.value("CurrentPath")) with open(self.inputName, "w") as fp: fp.write(self.input) def run(self): # Don't crash if something went wrong when saving the input file. try: self.saveInput() except FileNotFoundError: return self.runner.run(self.inputName) def process(self, successful): if not successful: return # TODO: Check if loading the spectra was successful. self.spectra.load() def stop(self): self.runner.kill() def clean(self): os.remove(f"{self.value}.lua") # Remove the spectra. for spectrum in glob.glob(f"{self.value}*.spec"): os.remove(spectrum) def copyFrom(self, item): super().copyFrom(item) self.temperature.copyFrom(item.temperature) self.magneticField.copyFrom(item.magneticField) self.axes.copyFrom(item.axes) self.spectra.copyFrom(item.spectra) self.hamiltonian.copyFrom(item.hamiltonian) def main(): pass if __name__ == "__main__": main()
31.88785
95
0.59521
[ "MIT" ]
jminar/crispy
crispy/gui/quanty/calculation.py
23,886
Python
from django.core.exceptions import ObjectDoesNotExist from rest_framework.serializers import PrimaryKeyRelatedField, RelatedField class UniqueRelatedField(RelatedField): """ Like rest_framework's PrimaryKeyRelatedField, but selecting by any unique field instead of the primary key. """ default_error_messages = PrimaryKeyRelatedField.default_error_messages.copy() def __init__(self, field_name, serializer_field=None, **kwargs): super().__init__(**kwargs) self.related_field_name = field_name self.serializer_field = serializer_field def to_internal_value(self, data): if self.serializer_field is not None: data = self.serializer_field.to_internal_value(data) try: return self.get_queryset().get(**{self.related_field_name: data}) except ObjectDoesNotExist: self.fail('does_not_exist', pk_value=data) except (TypeError, ValueError): self.fail('incorrect_type', data_type=type(data).__name__) def to_representation(self, value): value = getattr(value, self.related_field_name) if self.serializer_field is not None: value = self.serializer_field.to_representation(value) return value
38.181818
81
0.711111
[ "MIT" ]
azengard/reseller-api
apps/api/serializers.py
1,260
Python