content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2020, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide a set of objects to represent different stages of a connection to a Bokeh server. ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports from enum import Enum, auto #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'CONNECTED_BEFORE_ACK', 'CONNECTED_AFTER_ACK', 'DISCONNECTED', 'ErrorReason', 'NOT_YET_CONNECTED', 'WAITING_FOR_REPLY', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class ErrorReason(Enum): NO_ERROR = auto() HTTP_ERROR = auto() NETWORK_ERROR = auto() class NOT_YET_CONNECTED(object): ''' The ``ClientConnection`` is not yet connected. ''' async def run(self, connection): return await connection._connect_async() class CONNECTED_BEFORE_ACK(object): ''' The ``ClientConnection`` connected to a Bokeh server, but has not yet received an ACK from it. ''' async def run(self, connection): return await connection._wait_for_ack() class CONNECTED_AFTER_ACK(object): ''' The ``ClientConnection`` connected to a Bokeh server, and has received an ACK from it. ''' async def run(self, connection): return await connection._handle_messages() class DISCONNECTED(object): ''' The ``ClientConnection`` was connected to a Bokeh server, but is now disconnected. ''' def __init__(self, reason=ErrorReason.NO_ERROR, error_code=None, error_detail=""): ''' Constructs a DISCONNECT-State with given reason (``ErrorReason`` enum), error id and additional information provided as string. ''' self._error_code = error_code self._error_detail = error_detail self._error_reason = reason @property def error_reason(self): ''' The reason for the error encoded as an enumeration value. ''' return self._error_reason @property def error_code(self): ''' Holds the error code, if any. None otherwise. ''' return self._error_code @property def error_detail(self): ''' Holds the error message, if any. Empty string otherwise. ''' return self._error_detail async def run(self, connection): return None class WAITING_FOR_REPLY(object): ''' The ``ClientConnection`` has sent a message to the Bokeh Server which should generate a paired reply, and is waiting for the reply. ''' def __init__(self, reqid): self._reqid = reqid self._reply = None @property def reply(self): ''' The reply from the server. (``None`` until the reply arrives) ''' return self._reply @property def reqid(self): ''' The request ID of the originating message. ''' return self._reqid async def run(self, connection): message = await connection._pop_message() if message is None: return await connection._transition_to_disconnected() elif 'reqid' in message.header and message.header['reqid'] == self.reqid: self._reply = message return await connection._transition(CONNECTED_AFTER_ACK()) else: return await connection._next() #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
30.496732
86
0.476211
[ "BSD-3-Clause" ]
lvcarlosja/bokeh
bokeh/client/states.py
4,666
Python
import mxnet as mx import proposal import proposal_target from rcnn.config import config import focal_loss eps = 2e-5 use_global_stats = True workspace = 512 res_deps = {'50': (3, 4, 6, 3), '101': (3, 4, 23, 3), '152': (3, 8, 36, 3), '200': (3, 24, 36, 3)} units = res_deps['101'] filter_list = [256, 512, 1024, 2048] def residual_unit(data, num_filter, stride, dim_match, name): bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn1') act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') conv1 = mx.sym.Convolution(data=act1, num_filter=int(num_filter * 0.25), kernel=(1, 1), stride=(1, 1), pad=(0, 0), no_bias=True, workspace=workspace, name=name + '_conv1') bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn2') act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') conv2 = mx.sym.Convolution(data=act2, num_filter=int(num_filter * 0.25), kernel=(3, 3), stride=stride, pad=(1, 1), no_bias=True, workspace=workspace, name=name + '_conv2') bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name=name + '_bn3') act3 = mx.sym.Activation(data=bn3, act_type='relu', name=name + '_relu3') conv3 = mx.sym.Convolution(data=act3, num_filter=num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), no_bias=True, workspace=workspace, name=name + '_conv3') if dim_match: shortcut = data else: shortcut = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1, 1), stride=stride, no_bias=True, workspace=workspace, name=name + '_sc') sum = mx.sym.ElementWiseSum(*[conv3, shortcut], name=name + '_plus') return sum def get_resnet_conv(data): # res1 data_bn = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=eps, use_global_stats=use_global_stats, name='bn_data') conv0 = mx.sym.Convolution(data=data_bn, num_filter=64, kernel=(7, 7), stride=(2, 2), pad=(3, 3), no_bias=True, name="conv0", workspace=workspace) bn0 = mx.sym.BatchNorm(data=conv0, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn0') relu0 = mx.sym.Activation(data=bn0, act_type='relu', name='relu0') pool0 = mx.symbol.Pooling(data=relu0, kernel=(3, 3), stride=(2, 2), pad=(1, 1), pool_type='max', name='pool0') # res2 unit = residual_unit(data=pool0, num_filter=filter_list[0], stride=(1, 1), dim_match=False, name='stage1_unit1') for i in range(2, units[0] + 1): unit = residual_unit(data=unit, num_filter=filter_list[0], stride=(1, 1), dim_match=True, name='stage1_unit%s' % i) # res3 unit = residual_unit(data=unit, num_filter=filter_list[1], stride=(2, 2), dim_match=False, name='stage2_unit1') for i in range(2, units[1] + 1): unit = residual_unit(data=unit, num_filter=filter_list[1], stride=(1, 1), dim_match=True, name='stage2_unit%s' % i) # res4 unit = residual_unit(data=unit, num_filter=filter_list[2], stride=(2, 2), dim_match=False, name='stage3_unit1') for i in range(2, units[2] + 1): unit = residual_unit(data=unit, num_filter=filter_list[2], stride=(1, 1), dim_match=True, name='stage3_unit%s' % i) return unit def get_resnet_train(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS): data = mx.symbol.Variable(name="data") im_info = mx.symbol.Variable(name="im_info") gt_boxes = mx.symbol.Variable(name="gt_boxes") rpn_label = mx.symbol.Variable(name='label') rpn_bbox_target = mx.symbol.Variable(name='bbox_target') rpn_bbox_weight = mx.symbol.Variable(name='bbox_weight') # shared convolutional layers conv_feat = get_resnet_conv(data) # RPN layers rpn_conv = mx.symbol.Convolution( data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3") rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu") rpn_cls_score = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score") rpn_bbox_pred = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred") # prepare rpn data rpn_cls_score_reshape = mx.symbol.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") # classification rpn_cls_prob = mx.symbol.SoftmaxOutput(data=rpn_cls_score_reshape, label=rpn_label, multi_output=True, normalization='valid', use_ignore=True, ignore_label=-1, name="rpn_cls_prob") # bounding box regression rpn_bbox_loss_ = rpn_bbox_weight * mx.symbol.smooth_l1(name='rpn_bbox_loss_', scalar=3.0, data=(rpn_bbox_pred - rpn_bbox_target)) rpn_bbox_loss = mx.sym.MakeLoss(name='rpn_bbox_loss', data=rpn_bbox_loss_, grad_scale=1.0 / config.TRAIN.RPN_BATCH_SIZE) # ROI proposal rpn_cls_act = mx.symbol.SoftmaxActivation( data=rpn_cls_score_reshape, mode="channel", name="rpn_cls_act") rpn_cls_act_reshape = mx.symbol.Reshape( data=rpn_cls_act, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_act_reshape') if config.TRAIN.CXX_PROPOSAL: rois = mx.contrib.symbol.Proposal( cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', feature_stride=config.RPN_FEAT_STRIDE, scales=tuple(config.ANCHOR_SCALES), ratios=tuple(config.ANCHOR_RATIOS), rpn_pre_nms_top_n=config.TRAIN.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=config.TRAIN.RPN_POST_NMS_TOP_N, threshold=config.TRAIN.RPN_NMS_THRESH, rpn_min_size=config.TRAIN.RPN_MIN_SIZE) else: rois = mx.symbol.Custom( cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', op_type='proposal', feat_stride=config.RPN_FEAT_STRIDE, scales=tuple(config.ANCHOR_SCALES), ratios=tuple(config.ANCHOR_RATIOS), rpn_pre_nms_top_n=config.TRAIN.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=config.TRAIN.RPN_POST_NMS_TOP_N, threshold=config.TRAIN.RPN_NMS_THRESH, rpn_min_size=config.TRAIN.RPN_MIN_SIZE) # ROI proposal target gt_boxes_reshape = mx.symbol.Reshape(data=gt_boxes, shape=(-1, 5), name='gt_boxes_reshape') group = mx.symbol.Custom(rois=rois, gt_boxes=gt_boxes_reshape, op_type='proposal_target', num_classes=num_classes, batch_images=config.TRAIN.BATCH_IMAGES, batch_rois=config.TRAIN.BATCH_ROIS, fg_fraction=config.TRAIN.FG_FRACTION) rois = group[0] label = group[1] bbox_target = group[2] bbox_weight = group[3] # Fast R-CNN roi_pool = mx.symbol.ROIPooling( name='roi_pool5', data=conv_feat, rois=rois, pooled_size=(14, 14), spatial_scale=1.0 / config.RCNN_FEAT_STRIDE) # res5 unit = residual_unit(data=roi_pool, num_filter=filter_list[3], stride=(2, 2), dim_match=False, name='stage4_unit1') for i in range(2, units[3] + 1): unit = residual_unit(data=unit, num_filter=filter_list[3], stride=(1, 1), dim_match=True, name='stage4_unit%s' % i) bn1 = mx.sym.BatchNorm(data=unit, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn1') relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1') pool1 = mx.symbol.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1') # classification cls_score = mx.symbol.FullyConnected(name='cls_score', data=pool1, num_hidden=num_classes) bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=pool1, num_hidden=num_classes * 4) if config.TRAIN.ENABLE_OHEM: labels_ohem, bbox_weights_ohem = mx.sym.Custom(op_type='BoxAnnotatorOHEM', num_classes=num_classes, \ num_reg_classes=num_classes, roi_per_img=config.TRAIN.BATCH_ROIS_OHEM, cls_score=cls_score, \ bbox_pred=bbox_pred, labels=label, bbox_targets=bbox_target, bbox_weights=bbox_weight) cls_prob = mx.sym.SoftmaxOutput(name='cls_prob', data=cls_score, label=labels_ohem, \ normalization='valid', use_ignore=True, ignore_label=-1) bbox_loss_ = bbox_weights_ohem * mx.sym.smooth_l1(name='bbox_loss_', scalar=1.0, \ data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / config.TRAIN.BATCH_ROIS_OHEM) elif config.TRAIN.ENABLE_FOCALLOSS: #cls_prob = mx.symbol.SoftmaxOutput(name='cls_prob', data=cls_score, label=label, normalization='batch') cls_prob = mx.sym.Custom(op_type='FocalLoss', name='cls_prob', data=cls_score, labels=label, gamma= 2,alpha = 0.25) bbox_loss_ = bbox_weight * mx.symbol.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / config.TRAIN.BATCH_ROIS) else: cls_prob = mx.symbol.SoftmaxOutput(name='cls_prob', data=cls_score, label=label, normalization='batch') bbox_loss_ = bbox_weight * mx.symbol.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / config.TRAIN.BATCH_ROIS) # reshape output label = mx.symbol.Reshape(data=label, shape=(config.TRAIN.BATCH_IMAGES, -1), name='label_reshape') cls_prob = mx.symbol.Reshape(data=cls_prob, shape=(config.TRAIN.BATCH_IMAGES, -1, num_classes), name='cls_prob_reshape') bbox_loss = mx.symbol.Reshape(data=bbox_loss, shape=(config.TRAIN.BATCH_IMAGES, -1, 4 * num_classes), name='bbox_loss_reshape') group = mx.symbol.Group([rpn_cls_prob, rpn_bbox_loss, cls_prob, bbox_loss, mx.symbol.BlockGrad(label)]) return group def get_resnet_test(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS): data = mx.symbol.Variable(name="data") im_info = mx.symbol.Variable(name="im_info") # shared convolutional layers conv_feat = get_resnet_conv(data) # RPN rpn_conv = mx.symbol.Convolution( data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3") rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu") rpn_cls_score = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score") rpn_bbox_pred = mx.symbol.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred") # ROI Proposal rpn_cls_score_reshape = mx.symbol.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") rpn_cls_prob = mx.symbol.SoftmaxActivation( data=rpn_cls_score_reshape, mode="channel", name="rpn_cls_prob") rpn_cls_prob_reshape = mx.symbol.Reshape( data=rpn_cls_prob, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_prob_reshape') if config.TEST.CXX_PROPOSAL: rois = mx.contrib.symbol.Proposal( cls_prob=rpn_cls_prob_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', feature_stride=config.RPN_FEAT_STRIDE, scales=tuple(config.ANCHOR_SCALES), ratios=tuple(config.ANCHOR_RATIOS), rpn_pre_nms_top_n=config.TEST.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=config.TEST.RPN_POST_NMS_TOP_N, threshold=config.TEST.RPN_NMS_THRESH, rpn_min_size=config.TEST.RPN_MIN_SIZE) else: rois = mx.symbol.Custom( cls_prob=rpn_cls_prob_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', op_type='proposal', feat_stride=config.RPN_FEAT_STRIDE, scales=tuple(config.ANCHOR_SCALES), ratios=tuple(config.ANCHOR_RATIOS), rpn_pre_nms_top_n=config.TEST.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=config.TEST.RPN_POST_NMS_TOP_N, threshold=config.TEST.RPN_NMS_THRESH, rpn_min_size=config.TEST.RPN_MIN_SIZE) # Fast R-CNN roi_pool = mx.symbol.ROIPooling( name='roi_pool5', data=conv_feat, rois=rois, pooled_size=(14, 14), spatial_scale=1.0 / config.RCNN_FEAT_STRIDE) # res5 unit = residual_unit(data=roi_pool, num_filter=filter_list[3], stride=(2, 2), dim_match=False, name='stage4_unit1') for i in range(2, units[3] + 1): unit = residual_unit(data=unit, num_filter=filter_list[3], stride=(1, 1), dim_match=True, name='stage4_unit%s' % i) bn1 = mx.sym.BatchNorm(data=unit, fix_gamma=False, eps=eps, use_global_stats=use_global_stats, name='bn1') relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1') pool1 = mx.symbol.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1') # classification cls_score = mx.symbol.FullyConnected(name='cls_score', data=pool1, num_hidden=num_classes) cls_prob = mx.symbol.softmax(name='cls_prob', data=cls_score) # bounding box regression bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=pool1, num_hidden=num_classes * 4) # reshape output cls_prob = mx.symbol.Reshape(data=cls_prob, shape=(config.TEST.BATCH_IMAGES, -1, num_classes), name='cls_prob_reshape') bbox_pred = mx.symbol.Reshape(data=bbox_pred, shape=(config.TEST.BATCH_IMAGES, -1, 4 * num_classes), name='bbox_pred_reshape') # group output group = mx.symbol.Group([rois, cls_prob, bbox_pred]) return group
59
133
0.696163
[ "Apache-2.0" ]
angelfish91/Faster-RCNN-MXnet011
rcnn/symbol/symbol_resnet_modify.py
13,629
Python
# -*- coding: utf-8 -*- """Subspace Outlier Detection (SOD) """ # Author: Yahya Almardeny <[email protected]> # License: BSD 2 clause import numpy as np import numba as nb from sklearn.neighbors import NearestNeighbors from sklearn.utils import check_array from ..utils.utility import check_parameter from .base import BaseDetector @nb.njit(parallel=True) def _snn_imp(ind, ref_set_): """Internal function for fast snn calculation Parameters ---------- ind : int Indices return by kNN. ref_set_ : int, optional (default=10) specifies the number of shared nearest neighbors to create the reference set. Note that ref_set must be smaller than n_neighbors. """ n = ind.shape[0] _count = np.zeros(shape=(n, ref_set_), dtype=np.uint32) for i in nb.prange(n): temp = np.empty(n, dtype=np.uint32) test_element_set = set(ind[i]) for j in nb.prange(n): temp[j] = len(set(ind[j]).intersection(test_element_set)) temp[i] = np.iinfo(np.uint32).max _count[i] = np.argsort(temp)[::-1][1:ref_set_ + 1] return _count class SOD(BaseDetector): """Subspace outlier detection (SOD) schema aims to detect outlier in varying subspaces of a high dimensional feature space. For each data object, SOD explores the axis-parallel subspace spanned by the data object's neighbors and determines how much the object deviates from the neighbors in this subspace. See :cite:`kriegel2009outlier` for details. Parameters ---------- n_neighbors : int, optional (default=20) Number of neighbors to use by default for k neighbors queries. ref_set: int, optional (default=10) specifies the number of shared nearest neighbors to create the reference set. Note that ref_set must be smaller than n_neighbors. alpha: float in (0., 1.), optional (default=0.8) specifies the lower limit for selecting subspace. 0.8 is set as default as suggested in the original paper. contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function. Attributes ---------- decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, contamination=0.1, n_neighbors=20, ref_set=10, alpha=0.8): super(SOD, self).__init__(contamination=contamination) if isinstance(n_neighbors, int): check_parameter(n_neighbors, low=1, param_name='n_neighbors') else: raise ValueError( "n_neighbors should be int. Got %s" % type(n_neighbors)) if isinstance(ref_set, int): check_parameter(ref_set, low=1, high=n_neighbors, param_name='ref_set') else: raise ValueError("ref_set should be int. Got %s" % type(ref_set)) if isinstance(alpha, float): check_parameter(alpha, low=0.0, high=1.0, param_name='alpha') else: raise ValueError("alpha should be float. Got %s" % type(alpha)) self.n_neighbors_ = n_neighbors self.ref_set_ = ref_set self.alpha_ = alpha self.decision_scores_ = None def fit(self, X, y=None): """Fit detector. y is ignored in unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator. """ # validate inputs X and y (optional) X = check_array(X) self._set_n_classes(y) self.decision_scores_ = self.decision_function(X) self._process_decision_scores() return self def decision_function(self, X): """Predict raw anomaly score of X using the fitted detector. The anomaly score of an input sample is computed based on different detector algorithms. For consistency, outliers are assigned with larger anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ return self._sod(X) def _snn(self, X): """This function is called internally to calculate the shared nearest neighbors (SNN). SNN is reported to be more robust than k nearest neighbors. Returns ------- snn_indices : numpy array of shape (n_shared_nearest_neighbors,) The indices of top k shared nearest neighbors for each observation. """ knn = NearestNeighbors(n_neighbors=self.n_neighbors_) knn.fit(X) # Get the knn index ind = knn.kneighbors(return_distance=False) return _snn_imp(ind, self.ref_set_) def _sod(self, X): """This function is called internally to perform subspace outlier detection algorithm. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ ref_inds = self._snn(X) anomaly_scores = np.zeros(shape=(X.shape[0],)) for i in range(X.shape[0]): obs = X[i] ref = X[ref_inds[i,],] means = np.mean(ref, axis=0) # mean of each column # average squared distance of the reference to the mean var_total = np.sum(np.sum(np.square(ref - means))) / self.ref_set_ var_expect = self.alpha_ * var_total / X.shape[1] var_actual = np.var(ref, axis=0) # variance of each attribute var_inds = [1 if (j < var_expect) else 0 for j in var_actual] rel_dim = np.sum(var_inds) if rel_dim != 0: anomaly_scores[i] = np.sqrt( np.dot(var_inds, np.square(obs - means)) / rel_dim) return anomaly_scores
35.164179
79
0.621817
[ "BSD-2-Clause" ]
BillyGareth/pyod
pyod/models/sod.py
7,068
Python
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import pytest from unittestzero import Assert from pages.dashboard import DashboardPage class TestProductFilter(object): @pytest.mark.nondestructive def test_feedback_can_be_filtered_by_all_products_and_versions(self, mozwebqa): """Tests product filtering in dashboard 1. Verify that at least one product exists 2. Verify that filtering by product returns results 3. Verify that versions show up when you choose a product 4. Verify that the state of the filters are correct after being applied 5. Verify product and version values in the URL NB: We don't cycle through all product/version combinations--only the first two of each. """ dashboard_pg = DashboardPage(mozwebqa) dashboard_pg.go_to_dashboard_page() total_messages = dashboard_pg.total_message_count products = dashboard_pg.product_filter.products Assert.greater(len(products), 0) for product in products[:2]: if not product: # If it's the "unknown" product, just skip it. continue dashboard_pg.product_filter.select_product(product) Assert.greater(total_messages, dashboard_pg.total_message_count) versions = dashboard_pg.product_filter.versions Assert.greater(len(versions), 0) for version in versions[:2]: if not version: # If it's the "unknown" version, just skip it. continue dashboard_pg.product_filter.select_version(version) Assert.greater(total_messages, dashboard_pg.total_message_count) Assert.equal(dashboard_pg.product_filter.selected_product, product) Assert.equal(dashboard_pg.product_filter.selected_version, version) Assert.equal(dashboard_pg.product_from_url, product) Assert.equal(dashboard_pg.version_from_url, version) Assert.greater(len(dashboard_pg.messages), 0) dashboard_pg.product_filter.unselect_version(version) dashboard_pg.product_filter.unselect_product(product)
39.295082
83
0.673759
[ "BSD-3-Clause" ]
ANKIT-KS/fjord
smoketests/tests/dashboard/test_product_filter.py
2,397
Python
import re import os from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request, HtmlResponse from scrapy.utils.response import get_base_url from scrapy.utils.url import urljoin_rfc from urllib import urlencode import hashlib import csv from product_spiders.items import Product, ProductLoaderWithNameStrip as ProductLoader from scrapy import log HERE = os.path.abspath(os.path.dirname(__file__)) class thepetexpress_spider(BaseSpider): name = 'thepetexpress.co.uk' allowed_domains = ['thepetexpress.co.uk', 'www.thepetexpress.co.uk'] start_urls = ('http://www.thepetexpress.co.uk/',) def parse(self, response): if not isinstance(response, HtmlResponse): return hxs = HtmlXPathSelector(response) # categories categories = hxs.select(u'//nav[@class="cat"]/ul/li/ul/li/a/@href').extract() for url in categories: url = urljoin_rfc(get_base_url(response), url + u'?sort=titledesc') yield Request(url) # pagination next_page = hxs.select(u'//a[@class="nxt"]/@href').extract() if next_page: next_page = urljoin_rfc(get_base_url(response), next_page[0]) yield Request(next_page) # products products = hxs.select(u'//div[@class="products"]//a/@href').extract() for url in products: url = urljoin_rfc(get_base_url(response), url) yield Request(url, callback=self.parse_product) def parse_product(self, response): if not isinstance(response, HtmlResponse): return hxs = HtmlXPathSelector(response) loader = ProductLoader(item=Product(), response=response) loader.add_value('url', response.url) loader.add_xpath('name', u'//div[@id="product"]/h1/text()') loader.add_xpath('price', u'//p[@class="price"]/span[@class="our_price"]/text()') if loader.get_output_value('price'): yield loader.load_item()
35.526316
89
0.668148
[ "Apache-2.0" ]
0--key/lib
portfolio/Python/scrapy/seapets/thepetexpress.py
2,025
Python
from CtCI_Custom_Classes.stack import Stack class SetOfStacks: def __init__(self, capacity): self.capacity = capacity self.stacks = [] def get_last_stack(self): if not self.stacks: return None return self.stacks[-1] def is_empty(self): last = self.get_last_stack() return not last or last.is_empty() def pop(self): last = self.get_last_stack() if not last: return None v = last.pop() if last.get_size() == 0: del self.stacks[-1] return v def push(self, data): last = self.get_last_stack() if last and not last.is_full(): last.push(data) else: stack = Stack(self.capacity) stack.push(data) self.stacks.append(stack)
23.914286
43
0.551971
[ "MIT" ]
enyquist/Cracking_the_Coding_Interview
CtCI_custom_classes/overflow_stack.py
837
Python
# coding: utf-8 """ Ory Kratos Welcome to the ORY Kratos HTTP API documentation! # noqa: E501 The version of the OpenAPI document: latest Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import ory_kratos_client from ory_kratos_client.models.request_method_config import RequestMethodConfig # noqa: E501 from ory_kratos_client.rest import ApiException class TestRequestMethodConfig(unittest.TestCase): """RequestMethodConfig unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test RequestMethodConfig include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = ory_kratos_client.models.request_method_config.RequestMethodConfig() # noqa: E501 if include_optional : return RequestMethodConfig( action = '0', errors = [ ory_kratos_client.models.error.Error( message = '0', ) ], fields = [ ory_kratos_client.models.form_field.formField( disabled = True, errors = [ ory_kratos_client.models.error.Error( message = '0', ) ], name = '0', pattern = '0', required = True, type = '0', value = ory_kratos_client.models.value.value(), ) ], method = '0' ) else : return RequestMethodConfig( action = '0', fields = [ ory_kratos_client.models.form_field.formField( disabled = True, errors = [ ory_kratos_client.models.error.Error( message = '0', ) ], name = '0', pattern = '0', required = True, type = '0', value = ory_kratos_client.models.value.value(), ) ], method = '0', ) def testRequestMethodConfig(self): """Test RequestMethodConfig""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
32.627907
100
0.497149
[ "Apache-2.0" ]
Marcuzz/sdk
clients/kratos/python/test/test_request_method_config.py
2,806
Python
# -*- coding: utf-8 -*- """ mslib.mscolab._tests.test_utils ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tests for mscolab/utils This file is part of mss. :copyright: Copyright 2019 Shivashis Padhi :copyright: Copyright 2019-2020 by the mss team, see AUTHORS. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from mslib.mscolab.server import db, APP, initialize_managers from mslib.mscolab.models import User from mslib.mscolab.utils import get_recent_pid from mslib.mscolab.conf import mscolab_settings from mslib.mscolab.mscolab import handle_db_seed class Test_Utils(object): def setup(self): handle_db_seed() self.app = APP self.app.config['SQLALCHEMY_DATABASE_URI'] = mscolab_settings.SQLALCHEMY_DB_URI self.app.config['MSCOLAB_DATA_DIR'] = mscolab_settings.MSCOLAB_DATA_DIR self.app.config['UPLOAD_FOLDER'] = mscolab_settings.UPLOAD_FOLDER self.app, _, cm, fm = initialize_managers(self.app) self.fm = fm self.cm = cm db.init_app(self.app) with self.app.app_context(): self.user = User.query.filter_by(id=8).first() def test_get_recent_pid(self): with self.app.app_context(): p_id = get_recent_pid(self.fm, self.user) assert p_id == 4 def teardown(self): pass
33.509091
87
0.686923
[ "Apache-2.0" ]
gisi90/MSS
mslib/mscolab/_tests/test_utils.py
1,843
Python
import os import numpy as np import tensorflow as tf from collections import deque def sample(logits): noise = tf.random_uniform(tf.shape(logits)) return tf.argmax(logits - tf.log(-tf.log(noise)), 1) def cat_entropy(logits): a0 = logits - tf.reduce_max(logits, 1, keepdims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, 1, keepdims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1) def cat_entropy_softmax(p0): return - tf.reduce_sum(p0 * tf.log(p0 + 1e-6), axis = 1) def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): #lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v # pick the one with the correct shape q = q.reshape(shape) return (scale * q[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False): if data_format == 'NHWC': channel_ax = 3 strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, nf, 1, 1] else: raise NotImplementedError bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope): nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def _ln(x, g, b, e=1e-5, axes=[1]): u, s = tf.nn.moments(x, axes=axes, keep_dims=True) x = (x-u)/tf.sqrt(s+e) x = x*g+b return x def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def conv_to_fc(x): nh = np.prod([v.value for v in x.get_shape()[1:]]) x = tf.reshape(x, [-1, nh]) return x def discount_with_dones(rewards, dones, gamma): discounted = [] r = 0 for reward, done in zip(rewards[::-1], dones[::-1]): r = reward + gamma*r*(1.-done) # fixed off by one bug discounted.append(r) return discounted[::-1] def find_trainable_variables(key): return tf.trainable_variables(key) def make_path(f): return os.makedirs(f, exist_ok=True) def constant(p): return 1 def linear(p): return 1-p def middle_drop(p): eps = 0.75 if 1-p<eps: return eps*0.1 return 1-p def double_linear_con(p): p *= 2 eps = 0.125 if 1-p<eps: return eps return 1-p def double_middle_drop(p): eps1 = 0.75 eps2 = 0.25 if 1-p<eps1: if 1-p<eps2: return eps2*0.5 return eps1*0.1 return 1-p schedules = { 'linear':linear, 'constant':constant, 'double_linear_con': double_linear_con, 'middle_drop': middle_drop, 'double_middle_drop': double_middle_drop } class Scheduler(object): def __init__(self, v, nvalues, schedule): self.n = 0. self.v = v self.nvalues = nvalues self.schedule = schedules[schedule] def value(self): current_value = self.v*self.schedule(self.n/self.nvalues) self.n += 1. return current_value def value_steps(self, steps): return self.v*self.schedule(steps/self.nvalues) class EpisodeStats: def __init__(self, nsteps, nenvs): self.episode_rewards = [] for i in range(nenvs): self.episode_rewards.append([]) self.lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths self.rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards self.nsteps = nsteps self.nenvs = nenvs def feed(self, rewards, masks): rewards = np.reshape(rewards, [self.nenvs, self.nsteps]) masks = np.reshape(masks, [self.nenvs, self.nsteps]) for i in range(0, self.nenvs): for j in range(0, self.nsteps): self.episode_rewards[i].append(rewards[i][j]) if masks[i][j]: l = len(self.episode_rewards[i]) s = sum(self.episode_rewards[i]) self.lenbuffer.append(l) self.rewbuffer.append(s) self.episode_rewards[i] = [] def mean_length(self): if self.lenbuffer: return np.mean(self.lenbuffer) else: return 0 # on the first params dump, no episodes are finished def mean_reward(self): if self.rewbuffer: return np.mean(self.rewbuffer) else: return 0 # For ACER def get_by_index(x, idx): assert(len(x.get_shape()) == 2) assert(len(idx.get_shape()) == 1) idx_flattened = tf.range(0, x.shape[0]) * x.shape[1] + idx y = tf.gather(tf.reshape(x, [-1]), # flatten input idx_flattened) # use flattened indices return y def check_shape(ts,shapes): i = 0 for (t,shape) in zip(ts,shapes): assert t.get_shape().as_list()==shape, "id " + str(i) + " shape " + str(t.get_shape()) + str(shape) i += 1 def avg_norm(t): return tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(t), axis=-1))) def gradient_add(g1, g2, param): print([g1, g2, param.name]) assert (not (g1 is None and g2 is None)), param.name if g1 is None: return g2 elif g2 is None: return g1 else: return g1 + g2 def q_explained_variance(qpred, q): _, vary = tf.nn.moments(q, axes=[0, 1]) _, varpred = tf.nn.moments(q - qpred, axes=[0, 1]) check_shape([vary, varpred], [[]] * 2) return 1.0 - (varpred / vary)
32.616725
107
0.587651
[ "MIT" ]
zeuseyera/baselines-kr
baselines/a2c/utils.py
9,361
Python
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v2beta1_horizontal_pod_autoscaler import V2beta1HorizontalPodAutoscaler class TestV2beta1HorizontalPodAutoscaler(unittest.TestCase): """ V2beta1HorizontalPodAutoscaler unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV2beta1HorizontalPodAutoscaler(self): """ Test V2beta1HorizontalPodAutoscaler """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v2beta1_horizontal_pod_autoscaler.V2beta1HorizontalPodAutoscaler() pass if __name__ == '__main__': unittest.main()
23.888889
108
0.739535
[ "Apache-2.0" ]
TokkoLabs/client-python
kubernetes/test/test_v2beta1_horizontal_pod_autoscaler.py
1,075
Python
# Generated by Django 3.0.8 on 2021-07-07 22:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('keyword_relation', '0010_auto_20210322_2049'), ] operations = [ migrations.CreateModel( name='Keyword_Grouping', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('keyword', models.CharField(max_length=512)), ('group', models.IntegerField(default=-1)), ], ), ]
27.090909
114
0.588926
[ "MIT" ]
rohanjsuresh/extracted_keyword_validation
keyword_relation/migrations/0011_keyword_grouping.py
596
Python
import tensorflow as tf class FrozenBatchNorm2D(tf.keras.layers.Layer): def __init__(self, eps=1e-5, **kwargs): super().__init__(**kwargs) self.eps = eps def build(self, input_shape): self.weight = self.add_weight(name='weight', shape=[input_shape[-1]], initializer='zeros', trainable=False) self.bias = self.add_weight(name='bias', shape=[input_shape[-1]], initializer='zeros', trainable=False) self.running_mean = self.add_weight(name='running_mean', shape=[input_shape[-1]], initializer='zeros', trainable=False) self.running_var = self.add_weight(name='running_var', shape=[input_shape[-1]], initializer='ones', trainable=False) def call(self, x): scale = self.weight * tf.math.rsqrt(self.running_var + self.eps) shift = self.bias - self.running_mean * scale return x * scale + shift def compute_output_shape(self, input_shape): return input_shape class Linear(tf.keras.layers.Layer): ''' Use this custom layer instead of tf.keras.layers.Dense to allow loading converted PyTorch Dense weights that have shape (output_dim, input_dim) ''' def __init__(self, output_dim, **kwargs): super().__init__(**kwargs) self.output_dim = output_dim def build(self, input_shape): self.kernel = self.add_weight(name='kernel', shape=[self.output_dim, input_shape[-1]], initializer='zeros', trainable=True) self.bias = self.add_weight(name='bias', shape=[self.output_dim], initializer='zeros', trainable=True) def call(self, x): return tf.matmul(x, self.kernel, transpose_b=True) + self.bias def compute_output_shape(self, input_shape): return input_shape.as_list()[:-1] + [self.output_dim] class FixedEmbedding(tf.keras.layers.Layer): def __init__(self, embed_shape, **kwargs): super().__init__(**kwargs) self.embed_shape = embed_shape def build(self, input_shape): self.w = self.add_weight(name='kernel', shape=self.embed_shape, initializer='zeros', trainable=True) def call(self, x=None): return self.w
38.911765
79
0.544974
[ "MIT" ]
Leonardo-Blanger/detr_tensorflow
detr_tensorflow/models/custom_layers.py
2,646
Python
import ClientSide2 #custom package import numpy as np import argparse import json import os import ClassifierFunctions2 as cf import random import logging from matplotlib import pyplot as plt from builtins import input from Notation import SpaceGroupsDict as spgs SpGr = spgs.spacegroups() from itertools import combinations,chain # Initialize essential global variables #URL = "" #you'll need me to send you the link FAMILIES = ["triclinic","monoclinic","orthorhombic","tetragonal", "trigonal","hexagonal","cubic"] DEFAULT_SESSION = os.path.join ("Sessions","session.json") DEFAULT_USER = "user_profile.json" SERVER_INFO = "server_gen2.json" # list of three, one per level prediction_per_level = [1, 1, 2] num_peaks = [1, 5] DEFAULT_FILTER_SETTINGS = { "max_numpeaks": 75, "dspace_range" : [0.5,6], "peak_threshold": 0.7, "filter_size" : 15, "passes" : 2 } def build_parser(): parser = argparse.ArgumentParser() # This will be implemented as rollout broadens parser.add_argument('--apikey', type=str, dest='key', help='api key to securely access service', metavar='KEY', required=False) parser.add_argument('--session', dest='session', help='Keep user preferences for multirun sessions', metavar='SESSION',required=False, default=None) parser.add_argument('--subset', dest='subset',help='Run a small number of the possible combinations. Mostly for testing. Input the number of combos to run.', metavar='NO_OF_COMBOS',required=False, default=None) parser.add_argument('--dataonly', dest='data_only',help='run the classification without plotting', metavar='True/[False]',required=False, default=False) parser.add_argument('--figuresonly', dest='figures_only',help='Plot the figures without running data. Data must be saved previously.', metavar='True/[False]',required=False, default=False) return parser def powerset(iterable): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) def combination_peaks(peak_batch, chem_vec, mode, temp_name, crystal_family, user_info, URL, prediction_per_level, subset, num_peaks): outpath = "Ready" if not os.path.exists(outpath): os.makedirs(outpath) find_valid_peaks = list(powerset(peak_batch["vec"])) find_valid_peaks = [item for item in find_valid_peaks if len(item) > num_peaks[0] and len(item) < num_peaks[1]] print(len(find_valid_peaks),"valid peak combinations") valid_peaks_combinations = [{"vec":proto_combo} for proto_combo in find_valid_peaks] found = False threshold = 0 tot_spec = 1 for p in prediction_per_level: tot_spec *= p guesses = {"num_pred": tot_spec} for k in range(1,tot_spec+1): guesses["species_"+str(k)]=[] guesses["spec_confidence_"+str(k)]=[] # print(guesses) common_peaks = [] failed_combos = valid_peaks_combinations #peak_locs,user_info,URL,fam persistance = 0 LIMIT = 3 # print(failed_combos) if subset >0 and subset<len(failed_combos): failed_combos = random.sample(failed_combos, subset) print("using ", len(failed_combos)," peak combinations") while len(failed_combos) > 0 and persistance < LIMIT: for combo in failed_combos: try: # print('---classifying---') # print(combo) classificated = ClientSide2.Send_For_Classification(combo, chem_vec, mode, crystal_family, user_info, URL, prediction_per_level) print(classificated) classificated["file_name"] = temp_name # print('name =') # print(temp_name) print(os.path.join(outpath,temp_name)) cf.write_to_csv(os.path.join(outpath,temp_name) + ".csv", classificated, prediction_per_level) print(tot_spec) for k in range(1,tot_spec+1): print(guesses) guesses['species_'+str(k)].append( classificated["species_"+str(k)] ) guesses['spec_confidence_'+str(k)].append( classificated["spec_confidence_"+str(k)] ) common_peaks.append(classificated["peaks"]) # remove the classified combination failed_combos.remove(combo) except KeyboardInterrupt: raise except: print("An error occured this combination was not classified.\nIt will be retried {} more times".format(LIMIT-persistance)) persistance += 1 if len(failed_combos)>0: print("there were {} failed combinations".format(len(failed_combos))) print('returning') return common_peaks, guesses def make_figures(guesses,crystal_family,froot): if crystal_family: lower_gen = SpGr.edges["genus"][crystal_family][0] upper_gen = SpGr.edges["genus"][crystal_family][1] else: lower_gen = SpGr.edges["genus"][FAMILIES[0]][0] upper_gen = SpGr.edges["genus"][FAMILIES[-1]][1] fam_range = range(SpGr.edges["species"][lower_gen][0],1+SpGr.edges["species"][upper_gen][1]) # phi = 2*np.pi/360 fig_ang = 300 phi = (2*np.pi*fig_ang/360)/(max(fam_range)-min(fam_range)+1) thet = fig_ang/(max(fam_range)-min(fam_range)+1) fam_axes = [1,3,16,75,143,168,195] # fig1 = plt.figure(1,figsize=(len(fam_range),16)) fig1 = plt.figure(2,figsize=(16,8)) plt.clf() ax1 = fig1.add_axes([0.03,0.1,.96,.8]) # ax1.set_yscale('log') fam_color = ['k','g','b','c','m','y','k'] for k in range(len(fam_axes)-1): ax1.axvspan(fam_axes[k]-0.5,fam_axes[k+1]-0.5,facecolor = fam_color[k], alpha=0.5) # ax1.axvspan(fam_axes[0],fam_axes[1]-1,alpha=0.5) ax1.axvspan(fam_axes[-1]-0.5,np.max(fam_range)-0.5,alpha=0.3) plt.ion fig2 = plt.figure(3,figsize=(8,8)) plt.clf() plt.ion ax2 = fig2.add_axes([0.1,0.1,0.8,0.8],polar=True) ax2.set_thetamin(1) ax2.set_rmin(0) ax2.set_thetamax(fig_ang) ax2.set_rlabel_position(30) ax2.set_theta_direction(-1) ax2.set_theta_zero_location("S",offset=-(360-fig_ang)/2) # ax2.set_rscale('log') prev_histograms_1 = [] prev_histograms_2 = [] plots_1 = [] plots_2 = [] # print('guesses = ') # print(guesses) num_pred = np.prod(prediction_per_level) for rank in range(1,num_pred+1): histo = np.histogram([g for g in guesses["species_{}".format(rank)]], weights = [g for g in guesses["spec_confidence_{}".format(rank)]], bins = np.arange(min(fam_range)-0.5, max(fam_range)+1.5)) histo_log = np.array([np.log10(float(h))+1 if h>0 else 0 for h in histo[0]]) # print('log_histo = ') # print(histo_log.tolist()) if rank > 1: plt.figure(2) plot_1 = plt.bar(fam_range, histo[0], bottom = np.sum(np.vstack(prev_histograms_1), axis=0), align="center", width = 1.1) plt.figure(3) sum_hist = np.sum(np.vstack(prev_histograms_1), axis=0) log_sum = np.array([np.log10(float(h))-1 if h>0 else -1 for h in sum_hist]) # print('log_sum = ') # print(log_sum.tolist()) plot_2 = plt.bar([f*phi for f in fam_range], histo_log, bottom = log_sum, align="center", width = phi) else: plt.figure(2) plot_1 = plt.bar(fam_range, histo[0], align="center", color='red', width = 1.1) plt.figure(3) plot_2 = plt.bar([f*phi for f in fam_range], histo_log, bottom = -1, align="center", color='red', width = phi) plots_1.append(plot_1) plots_2.append(plot_2) plt.figure(2) plt.yticks(rotation='vertical') plt.xticks(fam_range,rotation='vertical') prev_histograms_1.append(histo[0]) prev_histograms_2.append(histo[0]) # plt.figure(3) # ax2.set_xticks(histo[1][:-1]) plt.figure(2) # ym = ax1.get_ymax()*.9 r_max = 0 for rect in plot_1: n_max = rect.get_height()+rect.get_y() if n_max>r_max: r_max = n_max for k in range(len(FAMILIES)-1): if k ==0: ym_t = r_max*0.7 cent = 'left' else: ym_t = r_max*0.6 cent = 'center' ax1.text((fam_axes[k+1]+fam_axes[k])/2,ym_t, FAMILIES[k], horizontalalignment=cent) ax1.text((fam_axes[-1]+np.max(fam_range))/2,ym_t, FAMILIES[-1], horizontalalignment='center') ax1.autoscale(enable=True, axis='x', tight=True) ax1.tick_params(axis='x', which='major', labelsize=6) plt.xlabel("Prediction",fontsize=10) plt.ylabel("Counts",fontsize=10) # plt.legend(plots,("species_1","species_2","species_3","species_4")) leg_list = [ "species_{}".format(k+1) for k in range(num_pred) ] plt.legend(plots_1,leg_list) print("Results/"+froot+"_gen2.png") plt.savefig("Results/"+froot+"_gen2.png",dpi = 300) plt.figure(3) # plt.xlabel("Prediction",fontsize=10,rotation='vertical') # plt.ylabel("Counts",fontsize=10) r_ticks = list(range(int(np.floor(ax2.get_rmin())),int(np.ceil(ax2.get_rmax())+1))) ax2.set_rgrids(r_ticks, labels = ['10e'+str(r) for r in r_ticks]) ax2.set_thetagrids([f*thet for f in fam_axes],labels = FAMILIES) plt.legend(plots_2,leg_list) # plt.legend(plots,("species_1","species_2","species_3","species_4")) # print("Results/"+froot+"_gen2_polar.png") # plt.savefig("Results/"+froot+"_gen2_polar.png",dpi = 300) # plt.show() def main(): parser = build_parser() options = parser.parse_args() if options.subset: subset = int(options.subset) else: subset = -1 print(options.session) # opens the user specified session if options.session: with open(os.path.join("Sessions",options.session),'r') as f: session = json.load(f) # opens the default session else: with open(DEFAULT_SESSION,'r') as f: session = json.load(f) # set variables from loaded session data # print(session) file_path = session["file_path"] if "output_file" in session: output_file = session["output_file"] else: output_file = '' if "output_file_root" in session: output_file_root = session["output_file_root"] else: output_file_root = '' if not (output_file or output_file_root): raise ValueError('output_file or output_file_root must be defined in session file.') manual_peak_selection = session["manual_peak_selection"] known_family = session["known_family"] chemistry = session["chemistry"] diffraction = session["diffraction"] print('file inputs') print(output_file) print(output_file_root) mode = "" if diffraction: if chemistry: mode="DiffChem" else: mode="DiffOnly" else: if chemistry: raise ValueError('Running chemistry only predictions is currently not implemented') else: raise ValueError('Invalid prediction type. Either diffraction or chemistry must be enabled') if known_family and known_family=='yes': print('known family') crystal_family = session["crystal_family"] prediction_per_level[0] = 1 else: crystal_family = None # Load user from provided path, [IN PROGRESS] if session["user_info"]: with open(session["user_info"],'r') as f: user_info = json.load(f) else: with open(DEFAULT_USER,'r') as f: user_info = json.load(f) with open(session["server_info"],'r') as f: server_info = json.load(f) if server_info['URL']: url = server_info['URL'] else: raise ValueError('you need to have the server URL provided to you') chem_vec = cf.check_for_chemistry(session) print(file_path) print('---starting loop--') # Determine if the path is a directory or a file if os.path.isdir(file_path): print("loading files from directory") file_paths = [] for dirpath,dirnames,fpath in os.walk(file_path): for path in fpath: if not path[0] == '.': file_paths.append(os.path.join(dirpath,path)) print("found {} files to load.".format(len(file_paths))) else: file_paths = [file_path] if not os.path.exists("Results"): os.makedirs("Results") print(file_paths) for f_path in file_paths: # Load Data from specified file (DM3, TIFF, CSV etc....) print("loading data from {}".format(f_path)) image_data,scale = ClientSide2.Load_Profile(f_path) print("I successfully loaded the data") # print(scale) print(options.figures_only) print(options.data_only) # difining filepaths here to facilitate loading data. froot = os.path.splitext(os.path.basename(f_path))[0] if output_file_root: outfile = 'Results/'+output_file_root+froot+'.json' outfile_2 = 'Results/'+output_file_root+froot+'_peaks.json' else: output_file_root='' #for the figure filenames [outroot, ext] = os.path.splitext(output_file) if not ext=='.json': output_file = outroot+'.json' output_file_2 = outroot+'_peaks.json' outfile = 'Results/'+output_file outfile_2 = 'Results/'+output_file_2 # optional skipping the data creation if options.figures_only: print('Only creating figures') with open(outfile, 'r') as fp: guesses = json.load(fp) else: if diffraction: peak_locs,peaks_h = ClientSide2.Find_Peaks(image_data, scale, **FILTER_SETTINGS) # Choose which peaks to classify on if manual_peak_selection: peak_locs = cf.choose_peaks(peak_locs,peaks_h) #raise NotImplementedError else: peak_locs = [] peaks_h = [] # Script hangs when there are too many peaks. # TODO: implement something better. if len(peak_locs['d_spacing'])>25: print("\n\n======================================================") print("there are "+ str(len(peak_locs['d_spacing']))+" peaks, which is too many.") print(f_path) print("======================================================\n\n") continue common_peaks,guesses = combination_peaks(peak_locs, chem_vec, mode, froot, crystal_family, user_info, url, prediction_per_level, subset, num_peaks) # print("--- peak_locs ---") # print(peak_locs) guesses["pk_d_spacing"] = peak_locs["d_spacing"].tolist() guesses["pk_vec"] = peak_locs["vec"] print(guesses) # save data with open(outfile, 'w') as fp: json.dump(guesses, fp) with open(outfile_2, 'w') as fp: json.dump(common_peaks, fp) if options.data_only: print('skipping figures') else: make_figures(guesses,crystal_family,output_file_root+froot) # TODO: Split up this function and enable plotting on precomupted data. # plt.show(block=False) if __name__ == "__main__": main()
36.224215
203
0.590121
[ "MIT" ]
MatthewGong/DiffractionClassification
DiffractionClassifierCombinatorial2.0.py
16,156
Python
from django.core.urlresolvers import reverse from oscar.core.loading import get_model from oscar.test.testcases import WebTestCase, add_permissions from oscar.test.factories import ( CategoryFactory, PartnerFactory, ProductFactory, ProductAttributeFactory) from hooks.test.factories import ( HookEventFactory, HookFactory ) ProductClass = get_model('catalogue', 'ProductClass') Hook = get_model('hooks', 'Hook') class TestAStaffUser(WebTestCase): is_staff = True def setUp(self): super(TestAStaffUser, self).setUp() self.partner = PartnerFactory() def test_can_create_hook_with_hook_event(self): hookevent = HookEventFactory() hook = HookFactory() product_class = ProductClass.objects.create(name="Book") page = self.get(reverse('hook-create', kwargs={"hook_class_slug": product_class.slug})) form = page.form form["name"] = u'books' form["description"] = u'this is description' form["hookevent_set-0-id"] = hook form["hookevent_set-0-signal_type"] = hookevent.signal_type form["hookevent_set-0-URL"] = hookevent.URL form["hookevent_set-0-extra_headers"] = hookevent.extra_headers response = form.submit(name='action', value='save') assert Hook.objects.count() == 2
32.121951
95
0.699317
[ "BSD-3-Clause" ]
cage1016/django-oscar-hooks
tests/functional/dashboard/test_hook.py
1,317
Python
"""The tests the History component.""" # pylint: disable=protected-access,invalid-name from datetime import timedelta import json from unittest.mock import patch, sentinel import pytest from pytest import approx from homeassistant.components import history, recorder from homeassistant.components.recorder.history import get_significant_states from homeassistant.components.recorder.models import process_timestamp import homeassistant.core as ha from homeassistant.helpers.json import JSONEncoder from homeassistant.setup import async_setup_component import homeassistant.util.dt as dt_util from homeassistant.util.unit_system import IMPERIAL_SYSTEM, METRIC_SYSTEM from tests.common import init_recorder_component from tests.components.recorder.common import trigger_db_commit, wait_recording_done @pytest.mark.usefixtures("hass_history") def test_setup(): """Test setup method of history.""" # Verification occurs in the fixture pass def test_get_significant_states(hass_history): """Test that only significant states are returned. We should get back every thermostat change that includes an attribute change, but only the state updates for media player (attribute changes are not significant and not returned). """ hass = hass_history zero, four, states = record_states(hass) hist = get_significant_states(hass, zero, four, filters=history.Filters()) assert states == hist def test_get_significant_states_minimal_response(hass_history): """Test that only significant states are returned. When minimal responses is set only the first and last states return a complete state. We should get back every thermostat change that includes an attribute change, but only the state updates for media player (attribute changes are not significant and not returned). """ hass = hass_history zero, four, states = record_states(hass) hist = get_significant_states( hass, zero, four, filters=history.Filters(), minimal_response=True ) # The second media_player.test state is reduced # down to last_changed and state when minimal_response # is set. We use JSONEncoder to make sure that are # pre-encoded last_changed is always the same as what # will happen with encoding a native state input_state = states["media_player.test"][1] orig_last_changed = json.dumps( process_timestamp(input_state.last_changed), cls=JSONEncoder, ).replace('"', "") orig_state = input_state.state states["media_player.test"][1] = { "last_changed": orig_last_changed, "state": orig_state, } assert states == hist def test_get_significant_states_with_initial(hass_history): """Test that only significant states are returned. We should get back every thermostat change that includes an attribute change, but only the state updates for media player (attribute changes are not significant and not returned). """ hass = hass_history zero, four, states = record_states(hass) one = zero + timedelta(seconds=1) one_and_half = zero + timedelta(seconds=1.5) for entity_id in states: if entity_id == "media_player.test": states[entity_id] = states[entity_id][1:] for state in states[entity_id]: if state.last_changed == one: state.last_changed = one_and_half hist = get_significant_states( hass, one_and_half, four, filters=history.Filters(), include_start_time_state=True, ) assert states == hist def test_get_significant_states_without_initial(hass_history): """Test that only significant states are returned. We should get back every thermostat change that includes an attribute change, but only the state updates for media player (attribute changes are not significant and not returned). """ hass = hass_history zero, four, states = record_states(hass) one = zero + timedelta(seconds=1) one_and_half = zero + timedelta(seconds=1.5) for entity_id in states: states[entity_id] = list( filter(lambda s: s.last_changed != one, states[entity_id]) ) del states["media_player.test2"] hist = get_significant_states( hass, one_and_half, four, filters=history.Filters(), include_start_time_state=False, ) assert states == hist def test_get_significant_states_entity_id(hass_history): """Test that only significant states are returned for one entity.""" hass = hass_history zero, four, states = record_states(hass) del states["media_player.test2"] del states["media_player.test3"] del states["thermostat.test"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] hist = get_significant_states( hass, zero, four, ["media_player.test"], filters=history.Filters() ) assert states == hist def test_get_significant_states_multiple_entity_ids(hass_history): """Test that only significant states are returned for one entity.""" hass = hass_history zero, four, states = record_states(hass) del states["media_player.test2"] del states["media_player.test3"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] hist = get_significant_states( hass, zero, four, ["media_player.test", "thermostat.test"], filters=history.Filters(), ) assert states == hist def test_get_significant_states_exclude_domain(hass_history): """Test if significant states are returned when excluding domains. We should get back every thermostat change that includes an attribute change, but no media player changes. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] del states["media_player.test2"] del states["media_player.test3"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_EXCLUDE: {history.CONF_DOMAINS: ["media_player"]} }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_exclude_entity(hass_history): """Test if significant states are returned when excluding entities. We should get back every thermostat and script changes, but no media player changes. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_EXCLUDE: {history.CONF_ENTITIES: ["media_player.test"]} }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_exclude(hass_history): """Test significant states when excluding entities and domains. We should not get back every thermostat and media player test changes. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] del states["thermostat.test"] del states["thermostat.test2"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_EXCLUDE: { history.CONF_DOMAINS: ["thermostat"], history.CONF_ENTITIES: ["media_player.test"], } }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_exclude_include_entity(hass_history): """Test significant states when excluding domains and include entities. We should not get back every thermostat and media player test changes. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test2"] del states["media_player.test3"] del states["thermostat.test"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: { history.CONF_ENTITIES: ["media_player.test", "thermostat.test"] }, history.CONF_EXCLUDE: {history.CONF_DOMAINS: ["thermostat"]}, }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_include_domain(hass_history): """Test if significant states are returned when including domains. We should get back every thermostat and script changes, but no media player changes. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] del states["media_player.test2"] del states["media_player.test3"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: {history.CONF_DOMAINS: ["thermostat", "script"]} }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_include_entity(hass_history): """Test if significant states are returned when including entities. We should only get back changes of the media_player.test entity. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test2"] del states["media_player.test3"] del states["thermostat.test"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: {history.CONF_ENTITIES: ["media_player.test"]} }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_include(hass_history): """Test significant states when including domains and entities. We should only get back changes of the media_player.test entity and the thermostat domain. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test2"] del states["media_player.test3"] del states["script.can_cancel_this_one"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: { history.CONF_DOMAINS: ["thermostat"], history.CONF_ENTITIES: ["media_player.test"], } }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_include_exclude_domain(hass_history): """Test if significant states when excluding and including domains. We should not get back any changes since we include only the media_player domain but also exclude it. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] del states["media_player.test2"] del states["media_player.test3"] del states["thermostat.test"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: {history.CONF_DOMAINS: ["media_player"]}, history.CONF_EXCLUDE: {history.CONF_DOMAINS: ["media_player"]}, }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_include_exclude_entity(hass_history): """Test if significant states when excluding and including domains. We should not get back any changes since we include only media_player.test but also exclude it. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] del states["media_player.test2"] del states["media_player.test3"] del states["thermostat.test"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: {history.CONF_ENTITIES: ["media_player.test"]}, history.CONF_EXCLUDE: {history.CONF_ENTITIES: ["media_player.test"]}, }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_include_exclude(hass_history): """Test if significant states when in/excluding domains and entities. We should only get back changes of the media_player.test2 entity. """ hass = hass_history zero, four, states = record_states(hass) del states["media_player.test"] del states["thermostat.test"] del states["thermostat.test2"] del states["script.can_cancel_this_one"] config = history.CONFIG_SCHEMA( { ha.DOMAIN: {}, history.DOMAIN: { history.CONF_INCLUDE: { history.CONF_DOMAINS: ["media_player"], history.CONF_ENTITIES: ["thermostat.test"], }, history.CONF_EXCLUDE: { history.CONF_DOMAINS: ["thermostat"], history.CONF_ENTITIES: ["media_player.test"], }, }, } ) check_significant_states(hass, zero, four, states, config) def test_get_significant_states_are_ordered(hass_history): """Test order of results from get_significant_states. When entity ids are given, the results should be returned with the data in the same order. """ hass = hass_history zero, four, _states = record_states(hass) entity_ids = ["media_player.test", "media_player.test2"] hist = get_significant_states( hass, zero, four, entity_ids, filters=history.Filters() ) assert list(hist.keys()) == entity_ids entity_ids = ["media_player.test2", "media_player.test"] hist = get_significant_states( hass, zero, four, entity_ids, filters=history.Filters() ) assert list(hist.keys()) == entity_ids def test_get_significant_states_only(hass_history): """Test significant states when significant_states_only is set.""" hass = hass_history entity_id = "sensor.test" def set_state(state, **kwargs): """Set the state.""" hass.states.set(entity_id, state, **kwargs) wait_recording_done(hass) return hass.states.get(entity_id) start = dt_util.utcnow() - timedelta(minutes=4) points = [] for i in range(1, 4): points.append(start + timedelta(minutes=i)) states = [] with patch("homeassistant.components.recorder.dt_util.utcnow", return_value=start): set_state("123", attributes={"attribute": 10.64}) with patch( "homeassistant.components.recorder.dt_util.utcnow", return_value=points[0] ): # Attributes are different, state not states.append(set_state("123", attributes={"attribute": 21.42})) with patch( "homeassistant.components.recorder.dt_util.utcnow", return_value=points[1] ): # state is different, attributes not states.append(set_state("32", attributes={"attribute": 21.42})) with patch( "homeassistant.components.recorder.dt_util.utcnow", return_value=points[2] ): # everything is different states.append(set_state("412", attributes={"attribute": 54.23})) hist = get_significant_states(hass, start, significant_changes_only=True) assert len(hist[entity_id]) == 2 assert states[0] not in hist[entity_id] assert states[1] in hist[entity_id] assert states[2] in hist[entity_id] hist = get_significant_states(hass, start, significant_changes_only=False) assert len(hist[entity_id]) == 3 assert states == hist[entity_id] def check_significant_states(hass, zero, four, states, config): """Check if significant states are retrieved.""" filters = history.Filters() exclude = config[history.DOMAIN].get(history.CONF_EXCLUDE) if exclude: filters.excluded_entities = exclude.get(history.CONF_ENTITIES, []) filters.excluded_domains = exclude.get(history.CONF_DOMAINS, []) include = config[history.DOMAIN].get(history.CONF_INCLUDE) if include: filters.included_entities = include.get(history.CONF_ENTITIES, []) filters.included_domains = include.get(history.CONF_DOMAINS, []) hist = get_significant_states(hass, zero, four, filters=filters) assert states == hist def record_states(hass): """Record some test states. We inject a bunch of state updates from media player, zone and thermostat. """ mp = "media_player.test" mp2 = "media_player.test2" mp3 = "media_player.test3" therm = "thermostat.test" therm2 = "thermostat.test2" zone = "zone.home" script_c = "script.can_cancel_this_one" def set_state(entity_id, state, **kwargs): """Set the state.""" hass.states.set(entity_id, state, **kwargs) wait_recording_done(hass) return hass.states.get(entity_id) zero = dt_util.utcnow() one = zero + timedelta(seconds=1) two = one + timedelta(seconds=1) three = two + timedelta(seconds=1) four = three + timedelta(seconds=1) states = {therm: [], therm2: [], mp: [], mp2: [], mp3: [], script_c: []} with patch("homeassistant.components.recorder.dt_util.utcnow", return_value=one): states[mp].append( set_state(mp, "idle", attributes={"media_title": str(sentinel.mt1)}) ) states[mp].append( set_state(mp, "YouTube", attributes={"media_title": str(sentinel.mt2)}) ) states[mp2].append( set_state(mp2, "YouTube", attributes={"media_title": str(sentinel.mt2)}) ) states[mp3].append( set_state(mp3, "idle", attributes={"media_title": str(sentinel.mt1)}) ) states[therm].append( set_state(therm, 20, attributes={"current_temperature": 19.5}) ) with patch("homeassistant.components.recorder.dt_util.utcnow", return_value=two): # This state will be skipped only different in time set_state(mp, "YouTube", attributes={"media_title": str(sentinel.mt3)}) # This state will be skipped because domain is excluded set_state(zone, "zoning") states[script_c].append( set_state(script_c, "off", attributes={"can_cancel": True}) ) states[therm].append( set_state(therm, 21, attributes={"current_temperature": 19.8}) ) states[therm2].append( set_state(therm2, 20, attributes={"current_temperature": 19}) ) with patch("homeassistant.components.recorder.dt_util.utcnow", return_value=three): states[mp].append( set_state(mp, "Netflix", attributes={"media_title": str(sentinel.mt4)}) ) states[mp3].append( set_state(mp3, "Netflix", attributes={"media_title": str(sentinel.mt3)}) ) # Attributes changed even though state is the same states[therm].append( set_state(therm, 21, attributes={"current_temperature": 20}) ) return zero, four, states async def test_fetch_period_api(hass, hass_client): """Test the fetch period view for history.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component(hass, "history", {}) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get(f"/api/history/period/{dt_util.utcnow().isoformat()}") assert response.status == 200 async def test_fetch_period_api_with_use_include_order(hass, hass_client): """Test the fetch period view for history with include order.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", {history.DOMAIN: {history.CONF_ORDER: True}} ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get(f"/api/history/period/{dt_util.utcnow().isoformat()}") assert response.status == 200 async def test_fetch_period_api_with_minimal_response(hass, hass_client): """Test the fetch period view for history with minimal_response.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component(hass, "history", {}) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}?minimal_response" ) assert response.status == 200 async def test_fetch_period_api_with_no_timestamp(hass, hass_client): """Test the fetch period view for history with no timestamp.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component(hass, "history", {}) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get("/api/history/period") assert response.status == 200 async def test_fetch_period_api_with_include_order(hass, hass_client): """Test the fetch period view for history.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", { "history": { "use_include_order": True, "include": {"entities": ["light.kitchen"]}, } }, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}", params={"filter_entity_id": "non.existing,something.else"}, ) assert response.status == 200 async def test_fetch_period_api_with_entity_glob_include(hass, hass_client): """Test the fetch period view for history.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", { "history": { "include": {"entity_globs": ["light.k*"]}, } }, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) hass.states.async_set("light.kitchen", "on") hass.states.async_set("light.cow", "on") hass.states.async_set("light.nomatch", "on") await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}", ) assert response.status == 200 response_json = await response.json() assert response_json[0][0]["entity_id"] == "light.kitchen" async def test_fetch_period_api_with_entity_glob_exclude(hass, hass_client): """Test the fetch period view for history.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", { "history": { "exclude": { "entity_globs": ["light.k*"], "domains": "switch", "entities": "media_player.test", }, } }, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) hass.states.async_set("light.kitchen", "on") hass.states.async_set("light.cow", "on") hass.states.async_set("light.match", "on") hass.states.async_set("switch.match", "on") hass.states.async_set("media_player.test", "on") await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}", ) assert response.status == 200 response_json = await response.json() assert len(response_json) == 2 assert response_json[0][0]["entity_id"] == "light.cow" assert response_json[1][0]["entity_id"] == "light.match" async def test_fetch_period_api_with_entity_glob_include_and_exclude(hass, hass_client): """Test the fetch period view for history.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", { "history": { "exclude": { "entity_globs": ["light.many*"], }, "include": { "entity_globs": ["light.m*"], "domains": "switch", "entities": "media_player.test", }, } }, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) hass.states.async_set("light.kitchen", "on") hass.states.async_set("light.cow", "on") hass.states.async_set("light.match", "on") hass.states.async_set("light.many_state_changes", "on") hass.states.async_set("switch.match", "on") hass.states.async_set("media_player.test", "on") await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}", ) assert response.status == 200 response_json = await response.json() assert len(response_json) == 3 assert response_json[0][0]["entity_id"] == "light.match" assert response_json[1][0]["entity_id"] == "media_player.test" assert response_json[2][0]["entity_id"] == "switch.match" async def test_entity_ids_limit_via_api(hass, hass_client): """Test limiting history to entity_ids.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", {"history": {}}, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) hass.states.async_set("light.kitchen", "on") hass.states.async_set("light.cow", "on") hass.states.async_set("light.nomatch", "on") await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}?filter_entity_id=light.kitchen,light.cow", ) assert response.status == 200 response_json = await response.json() assert len(response_json) == 2 assert response_json[0][0]["entity_id"] == "light.kitchen" assert response_json[1][0]["entity_id"] == "light.cow" async def test_entity_ids_limit_via_api_with_skip_initial_state(hass, hass_client): """Test limiting history to entity_ids with skip_initial_state.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", {"history": {}}, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) hass.states.async_set("light.kitchen", "on") hass.states.async_set("light.cow", "on") hass.states.async_set("light.nomatch", "on") await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_client() response = await client.get( f"/api/history/period/{dt_util.utcnow().isoformat()}?filter_entity_id=light.kitchen,light.cow&skip_initial_state", ) assert response.status == 200 response_json = await response.json() assert len(response_json) == 0 when = dt_util.utcnow() - timedelta(minutes=1) response = await client.get( f"/api/history/period/{when.isoformat()}?filter_entity_id=light.kitchen,light.cow&skip_initial_state", ) assert response.status == 200 response_json = await response.json() assert len(response_json) == 2 assert response_json[0][0]["entity_id"] == "light.kitchen" assert response_json[1][0]["entity_id"] == "light.cow" POWER_SENSOR_ATTRIBUTES = { "device_class": "power", "state_class": "measurement", "unit_of_measurement": "kW", } PRESSURE_SENSOR_ATTRIBUTES = { "device_class": "pressure", "state_class": "measurement", "unit_of_measurement": "hPa", } TEMPERATURE_SENSOR_ATTRIBUTES = { "device_class": "temperature", "state_class": "measurement", "unit_of_measurement": "°C", } @pytest.mark.parametrize( "units, attributes, state, value", [ (IMPERIAL_SYSTEM, POWER_SENSOR_ATTRIBUTES, 10, 10000), (METRIC_SYSTEM, POWER_SENSOR_ATTRIBUTES, 10, 10000), (IMPERIAL_SYSTEM, TEMPERATURE_SENSOR_ATTRIBUTES, 10, 50), (METRIC_SYSTEM, TEMPERATURE_SENSOR_ATTRIBUTES, 10, 10), (IMPERIAL_SYSTEM, PRESSURE_SENSOR_ATTRIBUTES, 1000, 14.503774389728312), (METRIC_SYSTEM, PRESSURE_SENSOR_ATTRIBUTES, 1000, 100000), ], ) async def test_statistics_during_period( hass, hass_ws_client, units, attributes, state, value ): """Test statistics_during_period.""" now = dt_util.utcnow() hass.config.units = units await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component(hass, "history", {}) await async_setup_component(hass, "sensor", {}) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) hass.states.async_set("sensor.test", state, attributes=attributes) await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() hass.data[recorder.DATA_INSTANCE].do_adhoc_statistics(period="hourly", start=now) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_ws_client() await client.send_json( { "id": 1, "type": "history/statistics_during_period", "start_time": now.isoformat(), "end_time": now.isoformat(), "statistic_ids": ["sensor.test"], } ) response = await client.receive_json() assert response["success"] assert response["result"] == {} client = await hass_ws_client() await client.send_json( { "id": 1, "type": "history/statistics_during_period", "start_time": now.isoformat(), "statistic_ids": ["sensor.test"], } ) response = await client.receive_json() assert response["success"] assert response["result"] == { "sensor.test": [ { "statistic_id": "sensor.test", "start": now.isoformat(), "mean": approx(value), "min": approx(value), "max": approx(value), "last_reset": None, "state": None, "sum": None, } ] } async def test_statistics_during_period_bad_start_time(hass, hass_ws_client): """Test statistics_during_period.""" await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", {"history": {}}, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_ws_client() await client.send_json( { "id": 1, "type": "history/statistics_during_period", "start_time": "cats", } ) response = await client.receive_json() assert not response["success"] assert response["error"]["code"] == "invalid_start_time" async def test_statistics_during_period_bad_end_time(hass, hass_ws_client): """Test statistics_during_period.""" now = dt_util.utcnow() await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component( hass, "history", {"history": {}}, ) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_ws_client() await client.send_json( { "id": 1, "type": "history/statistics_during_period", "start_time": now.isoformat(), "end_time": "dogs", } ) response = await client.receive_json() assert not response["success"] assert response["error"]["code"] == "invalid_end_time" @pytest.mark.parametrize( "units, attributes, unit", [ (IMPERIAL_SYSTEM, POWER_SENSOR_ATTRIBUTES, "W"), (METRIC_SYSTEM, POWER_SENSOR_ATTRIBUTES, "W"), (IMPERIAL_SYSTEM, TEMPERATURE_SENSOR_ATTRIBUTES, "°F"), (METRIC_SYSTEM, TEMPERATURE_SENSOR_ATTRIBUTES, "°C"), (IMPERIAL_SYSTEM, PRESSURE_SENSOR_ATTRIBUTES, "psi"), (METRIC_SYSTEM, PRESSURE_SENSOR_ATTRIBUTES, "Pa"), ], ) async def test_list_statistic_ids(hass, hass_ws_client, units, attributes, unit): """Test list_statistic_ids.""" now = dt_util.utcnow() hass.config.units = units await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component(hass, "history", {"history": {}}) await async_setup_component(hass, "sensor", {}) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) client = await hass_ws_client() await client.send_json({"id": 1, "type": "history/list_statistic_ids"}) response = await client.receive_json() assert response["success"] assert response["result"] == [] hass.states.async_set("sensor.test", 10, attributes=attributes) await hass.async_block_till_done() await hass.async_add_executor_job(trigger_db_commit, hass) await hass.async_block_till_done() await client.send_json({"id": 2, "type": "history/list_statistic_ids"}) response = await client.receive_json() assert response["success"] assert response["result"] == [ {"statistic_id": "sensor.test", "unit_of_measurement": unit} ] hass.data[recorder.DATA_INSTANCE].do_adhoc_statistics(period="hourly", start=now) await hass.async_add_executor_job(hass.data[recorder.DATA_INSTANCE].block_till_done) # Remove the state, statistics will now be fetched from the database hass.states.async_remove("sensor.test") await hass.async_block_till_done() await client.send_json({"id": 3, "type": "history/list_statistic_ids"}) response = await client.receive_json() assert response["success"] assert response["result"] == [ {"statistic_id": "sensor.test", "unit_of_measurement": unit} ] await client.send_json( {"id": 4, "type": "history/list_statistic_ids", "statistic_type": "dogs"} ) response = await client.receive_json() assert not response["success"] await client.send_json( {"id": 5, "type": "history/list_statistic_ids", "statistic_type": "mean"} ) response = await client.receive_json() assert response["success"] assert response["result"] == [ {"statistic_id": "sensor.test", "unit_of_measurement": unit} ] await client.send_json( {"id": 6, "type": "history/list_statistic_ids", "statistic_type": "sum"} ) response = await client.receive_json() assert response["success"] assert response["result"] == []
34.985646
122
0.666986
[ "Apache-2.0" ]
0xFEEDC0DE64/homeassistant-core
tests/components/history/test_init.py
36,563
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest from aliyunsdkcs.endpoint import endpoint_data class PauseClusterUpgradeRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'CS', '2015-12-15', 'PauseClusterUpgrade') self.set_uri_pattern('/api/v2/clusters/[ClusterId]/upgrade/pause') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ClusterId(self): return self.get_path_params().get('ClusterId') def set_ClusterId(self,ClusterId): self.add_path_param('ClusterId',ClusterId)
38.512821
74
0.768309
[ "Apache-2.0" ]
Explorer1092/aliyun-openapi-python-sdk
aliyun-python-sdk-cs/aliyunsdkcs/request/v20151215/PauseClusterUpgradeRequest.py
1,502
Python
#MenuTitle: Generate lowercase from uppercase """ Generate lowercase a-z from uppercase A-Z TODO (M Foley) Generate all lowercase glyphs, not just a-z """ font = Glyphs.font glyphs = list('abcdefghijklmnopqrstuvwxyz') masters = font.masters for glyph_name in glyphs: glyph = GSGlyph(glyph_name) glyph.updateGlyphInfo() font.glyphs.append(glyph) for idx,layer in enumerate(masters): comp_name = glyph_name.upper() component = GSComponent(comp_name, (0,0)) glyph.layers[idx].components.append(component) Glyphs.redraw()
24.652174
58
0.714286
[ "MIT" ]
m4rc1e/mf-glyphs-scripts
Glyph-Builders/lowercase_from_upper.py
567
Python
# to run: # pip install unittest2 # unit2 discover # # to debug: # pip install nose # nosetests --pdb import StringIO import sys import pdfquery import unittest2 from pdfquery.cache import FileCache class TestPDFQuery(unittest2.TestCase): """ Various tests based on the IRS_1040A sample doc. """ @classmethod def setUpClass(cls): cls.pdf = pdfquery.PDFQuery( "tests/samples/IRS_1040A.pdf", parse_tree_cacher=FileCache("/tmp/") if sys.argv[1] == 'cache' else None, ) cls.pdf.load() def test_xml_conversion(self): """ Test that converted XML hasn't changed from saved version. """ # get current XML for sample file tree_string = StringIO.StringIO() self.pdf.tree.write(tree_string, pretty_print=True, encoding="utf-8") tree_string = tree_string.getvalue() # get previous XML # this varies by Python version, because the float handling isn't quite # the same comparison_file = "tests/saved_output/IRS_1040A_output%s.xml" % ( "_python_2.6" if sys.version_info[0] == 2 and sys.version_info[1] < 7 else "") with open(comparison_file, 'rb') as f: saved_string = f.read() # compare current to previous if tree_string != saved_string: with open("tests/failed_output.xml", "wb") as out: out.write(tree_string) self.fail("XML conversion of sample pdf has changed! Compare %s to " "tests/failed_output.xml." % comparison_file) def test_selectors(self): """ Test the :contains and :in_bbox selectors. """ label = self.pdf.pq('LTTextLineHorizontal:contains("Your first name ' 'and initial")') self.assertEqual(len(label), 1) left_corner = float(label.attr('x0')) self.assertEqual(left_corner, 143.651) bottom_corner = float(label.attr('y0')) self.assertEqual(bottom_corner, 714.694) name = self.pdf.pq('LTTextLineHorizontal:in_bbox("%s, %s, %s, %s")' % (left_corner, bottom_corner - 30, left_corner + 150, bottom_corner) ).text() self.assertEqual(name, "John E.") def test_extract(self): """ Test the extract() function. """ values = self.pdf.extract([ ('with_parent', 'LTPage[pageid="1"]'), ('with_formatter', 'text'), ('last_name', 'LTTextLineHorizontal:in_bbox("315,680,395,700")'), ('spouse', 'LTTextLineHorizontal:in_bbox("170,650,220,680")'), ('with_parent', 'LTPage[pageid="2"]'), ('oath', 'LTTextLineHorizontal:contains("perjury")', lambda match: match.text()[:30] + "..."), ('year', 'LTTextLineHorizontal:contains("Form 1040A (")', lambda match: int(match.text()[-5:-1])) ]) self.assertDictEqual(values, { 'last_name': 'Michaels', 'spouse': 'Susan R.', 'oath': u'Under penalties of perjury, I ...', 'year': 2007 }) def test_page_numbers(self): self.assertEqual(self.pdf.tree.getroot()[0].get('page_label'), '1') class TestDocInfo(unittest2.TestCase): def test_docinfo(self): doc_info_results = [ ["tests/samples/bug11.pdf", {'Producer': 'Mac OS X 10.9.3 Quartz PDFContext', 'Title': u'\u262d\U0001f61c\U0001f4a9Unicode is fun!', 'Author': 'Russkel', 'Creator': 'Firefox', 'ModDate': "D:20140528141914+08'00'", 'CreationDate': 'D:20140528061106Z', 'Subject': ''}], ["tests/samples/bug15.pdf", {'Producer': 'Mac OS X 10.9.3 Quartz PDFContext', 'Author': 'Brepols Publishers', 'Creator': 'PDFsharp 1.2.1269-g (www.pdfsharp.com)', 'AAPL_Keywords': "[u'Brepols', u'Publishers', u'CTLO']", 'Title': 'Exporter', 'ModDate': "D:20140614192741Z00'00'", 'Keywords': 'Brepols, Publishers, CTLO', 'CreationDate': "D:20140614192741Z00'00'", 'Subject': 'Extrait de la Library of Latin Texts - Series A'}], ["tests/samples/bug17.pdf", {'CreationDate': 'D:20140328164512Z', 'Creator': 'Adobe InDesign CC (Macintosh)', 'ModDate': 'D:20140328164513Z', 'Producer': 'Adobe PDF Library 10.0.1', 'Trapped': '/False'}] ] for file_path, expected_results in doc_info_results: pdf = pdfquery.PDFQuery(file_path) pdf.load(None) self.assertDictEqual( dict(pdf.tree.getroot().attrib), expected_results ) class TestUnicode(unittest2.TestCase): def test_unicode_text(self): pdf = pdfquery.PDFQuery("tests/samples/bug18.pdf") pdf.load() self.assertEqual( pdf.pq('LTTextLineHorizontal:contains("Hop Hing Oils")').text(), (u'5 Hop Hing Oils and Fats (Hong Kong) Ltd \uf06c ' u'\u7279\u5bf6\u7cbe\u88fd\u8c6c\u6cb9') ) class TestAnnotations(unittest2.TestCase): """ Ensure that annotations such as links are getting added to the PDFs properly, as discussed in issue #28. """ @classmethod def setUpClass(cls): cls.pdf = pdfquery.PDFQuery( "tests/samples/bug28.pdf", parse_tree_cacher=FileCache("/tmp/") if sys.argv[1] == 'cache' else None, ) cls.pdf.load() def test_xml_conversion(self): """ Test that converted XML hasn't changed from saved version. """ # get current XML for sample file tree_string = StringIO.StringIO() self.pdf.tree.write(tree_string, pretty_print=True, encoding="utf-8") tree_string = tree_string.getvalue() # get previous XML comparison_file = 'tests/saved_output/bug28.xml' with open(comparison_file, 'rb') as f: saved_string = f.read() # compare current to previous if tree_string != saved_string: with open("tests/failed_output.xml", "wb") as out: out.write(tree_string) self.fail("XML conversion of sample pdf has changed! Compare %s " "to tests/failed_output.xml." % comparison_file) if __name__ == '__main__': unittest2.main()
34.630208
90
0.563393
[ "MIT" ]
leeoniya/pdfquery
tests/tests.py
6,649
Python
from controller.enums import PartEnum def convert_from_part_id(part_id): if part_id == PartEnum.FUSE.value: return 'Fuse', 'Fuse' elif part_id == PartEnum.BACKCOVER.value: return 'BottomCover', 'BottomCoverFlipped' elif part_id == PartEnum.WHITECOVER.value: return 'WhiteCover', 'WhiteCoverFlipped' elif part_id == PartEnum.BLUECOVER.value: return 'BlueCover', 'BlueCoverFlipped' elif part_id == PartEnum.BLACKCOVER.value: return 'BlackCover', 'BlackCoverFlipped' elif part_id == PartEnum.PCB.value: return 'PCB', 'PCBFlipped' else: print("[W] Could not convert class_id") return -1, -1 def convert_to_part_id(class_name): if class_name == 'Fuse': return PartEnum.FUSE.value elif class_name == 'BottomCover': return PartEnum.BACKCOVER.value elif class_name == 'BottomCoverFlipped': return PartEnum.BACKCOVER_FLIPPED.value elif class_name == 'WhiteCover': return PartEnum.WHITECOVER.value elif class_name == 'WhiteCoverFlipped': return PartEnum.WHITECOVER_FLIPPED.value elif class_name == 'BlueCover': return PartEnum.BLUECOVER.value elif class_name == 'BlueCoverFlipped': return PartEnum.BLUECOVER_FLIPPED.value elif class_name == 'BlackCover': return PartEnum.BLACKCOVER.value elif class_name == 'BlackCoverFlipped': return PartEnum.BLACKCOVER_FLIPPED.value elif class_name == 'PCB': return PartEnum.PCB.value elif class_name == 'PCBFlipped': return PartEnum.PCB_FLIPPED.value else: return PartEnum.INVALID.value
34.479167
50
0.682175
[ "MIT" ]
EmilRyberg/P6BinPicking
controller/class_converter.py
1,655
Python
# Copyright 2016 Hewlett Packard Enterprise Development Company LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_versionedobjects import fixture as ovo_fixture from nova import context from nova import exception from nova import objects from nova import test from nova.tests import uuidsentinel class ConsoleAuthTokenTestCase(test.TestCase): def setUp(self): super(ConsoleAuthTokenTestCase, self).setUp() self.context = context.RequestContext('fake-user', 'fake-project') instance = objects.Instance( context=self.context, project_id=self.context.project_id, uuid=uuidsentinel.fake_instance) instance.create() self.console = objects.ConsoleAuthToken( context=self.context, instance_uuid=uuidsentinel.fake_instance, console_type='fake-type', host='fake-host', port=1000, internal_access_path='fake-internal_access_path', access_url_base='fake-external_access_path' ) self.token = self.console.authorize(100) def test_validate(self): connection_info = objects.ConsoleAuthToken.validate( self.context, self.token) expected = self.console.obj_to_primitive()['nova_object.data'] del expected['created_at'] ovo_fixture.compare_obj(self, connection_info, expected, allow_missing=['created_at']) def test_validate_invalid(self): unauthorized_token = uuidsentinel.token self.assertRaises( exception.InvalidToken, objects.ConsoleAuthToken.validate, self.context, unauthorized_token)
38.551724
78
0.68381
[ "Apache-2.0" ]
MultipleCrashes/nova
nova/tests/functional/db/test_console_auth_token.py
2,236
Python
import argparse import datetime import json import os import time from os import path import numpy as np import torch from absl import flags from torch import optim from pprint import pprint import wandb from src.alive_sieve import AliveSieve, SievePlayback from src.nets import AgentModel from src.rewards_lib import calc_rewards from src.sampling import (generate_test_batches, generate_training_batch, hash_batches) FLAGS = flags.FLAGS def render_action(t, s, prop, term): agent = t % 2 speaker = 'A' if agent == 0 else 'B' utility = s.utilities[:, agent] print(' ', end='') if speaker == 'B': print(' ', end='') print(' ' + ''.join([str(v) for v in s.m_prev[0].view(-1).tolist()]), end='') print(' %s/%s %s/%s %s/%s' % ( prop[0][0].item(), s.pool[0][0].item(), prop[0][1].item(), s.pool[0][1].item(), prop[0][2].item(), s.pool[0][2].item(), ), end='') print('') if t + 1 == s.N[0]: print(' [out of time]') elif term[0][0]: print(' ACC') def save_model(model_file, agent_models, agent_opts, start_time, episode): state = {} for i in range(2): state['agent%s' % i] = {} state['agent%s' % i]['model_state'] = agent_models[i].state_dict() state['agent%s' % i]['opt_state'] = agent_opts[i].state_dict() state['episode'] = episode state['elapsed_time'] = time.time() - start_time with open(model_file + '.tmp', 'wb') as f: torch.save(state, f) os.rename(model_file + '.tmp', model_file) def load_model(model_file, agent_models, agent_opts): with open(model_file, 'rb') as f: state = torch.load(f) for i in range(2): agent_models[i].load_state_dict(state['agent%s' % i]['model_state']) agent_opts[i].load_state_dict(state['agent%s' % i]['opt_state']) episode = state['episode'] # create a kind of 'virtual' start_time start_time = time.time() - state['elapsed_time'] return episode, start_time class State(object): def __init__(self, N, pool, utilities): batch_size = N.size()[0] self.N = N self.pool = pool self.utilities = torch.zeros(batch_size, 2, 3, dtype=torch.int64, device=FLAGS.device) self.utilities[:, 0] = utilities[0] self.utilities[:, 1] = utilities[1] self.last_proposal = torch.zeros(batch_size, 3, dtype=torch.int64, device=FLAGS.device) self.m_prev = torch.zeros(batch_size, FLAGS.utt_max_length, dtype=torch.int64, device=FLAGS.device) def sieve_(self, still_alive_idxes): self.N = self.N[still_alive_idxes] self.pool = self.pool[still_alive_idxes] self.utilities = self.utilities[still_alive_idxes] self.last_proposal = self.last_proposal[still_alive_idxes] self.m_prev = self.m_prev[still_alive_idxes] def run_episode( batch, agent_models, batch_size, testing, render=False, initial_agent=0): """ turning testing on means, we disable stochasticity: always pick the argmax """ s = State(**batch) sieve = AliveSieve(batch_size=batch_size) actions_by_timestep = [] alive_masks = [] # next two tensors wont be sieved, they will stay same size throughout # entire batch, we will update them using sieve.out_idxes[...] rewards = torch.zeros(batch_size, 3, device=FLAGS.device) num_steps = torch.full((batch_size,), FLAGS.max_timesteps, dtype=torch.int64, device=FLAGS.device) term_matches_argmax_count = 0 utt_matches_argmax_count = 0 utt_stochastic_draws = 0 num_policy_runs = 0 prop_matches_argmax_count = 0 prop_stochastic_draws = 0 utt_mask = torch.zeros(2, batch_size, 3, dtype=torch.int64, device=FLAGS.device) prop_mask = torch.zeros(2, batch_size, 3, dtype=torch.int64, device=FLAGS.device) entropy_loss_by_agent = [ torch.zeros(1, device=FLAGS.device), torch.zeros(1, device=FLAGS.device) ] if render: print(' ') print(' ', '{} {} {}'.format(*s.utilities[0][0].tolist()), ' ', '{} {} {}'.format(*s.pool[0].tolist()), ' ', '{} {} {}'.format(*s.utilities[0][1].tolist())) current_A_proposal = torch.zeros(sieve.batch_size, 3, dtype=torch.int64, device=FLAGS.device) prev_A_proposal = torch.zeros(sieve.batch_size, 3, dtype=torch.int64, device=FLAGS.device) current_A_message = torch.zeros(sieve.batch_size, FLAGS.utt_max_length, dtype=torch.int64, device=FLAGS.device) prev_A_message = torch.zeros(sieve.batch_size, FLAGS.utt_max_length, dtype=torch.int64, device=FLAGS.device) current_A_term = torch.zeros(sieve.batch_size, 1, dtype=torch.uint8) for t in range(FLAGS.max_timesteps): if FLAGS.linguistic: if FLAGS.normal_form and t % 2 == 1: _prev_message = prev_A_message else: _prev_message = s.m_prev else: _prev_message = torch.zeros(sieve.batch_size, 6, dtype=torch.int64, device=FLAGS.device) if FLAGS.proposal: if FLAGS.normal_form and t % 2 == 1: _prev_proposal = prev_A_proposal else: _prev_proposal = s.last_proposal else: _prev_proposal = torch.zeros(sieve.batch_size, 3, dtype=torch.int64, device=FLAGS.device) # agent = t % 2 agent = (initial_agent + t) % 2 agent_model = agent_models[agent] (nodes, term_a, s.m_prev, this_proposal, _entropy_loss, _term_matches_argmax_count, _utt_matches_argmax_count, _utt_stochastic_draws, _prop_matches_argmax_count, _prop_stochastic_draws, _utt_mask, _prop_mask) = agent_model( pool=s.pool, utility=s.utilities[:, agent], m_prev=_prev_message, prev_proposal=_prev_proposal, testing=testing, ) entropy_loss_by_agent[agent] += _entropy_loss actions_by_timestep.append(nodes) term_matches_argmax_count += _term_matches_argmax_count num_policy_runs += sieve.batch_size utt_matches_argmax_count += _utt_matches_argmax_count utt_stochastic_draws += _utt_stochastic_draws prop_matches_argmax_count += _prop_matches_argmax_count prop_stochastic_draws += _prop_stochastic_draws if FLAGS.force_masking_comm: utt_mask[agent][sieve.out_idxes] |= _utt_mask prop_mask[agent][sieve.out_idxes] |= _prop_mask if FLAGS.proposal_termination and not FLAGS.normal_form: term_a = torch.prod(this_proposal == _prev_proposal, dim=1, keepdim=True) elif not FLAGS.proposal_termination and FLAGS.normal_form: #TODO which proposal to use here? if t % 2 == 1: term_a = (term_a * current_A_term) else: current_A_term = term_a term_a = torch.zeros((sieve.batch_size,1), dtype=torch.uint8, device=FLAGS.device) elif FLAGS.proposal_termination and FLAGS.normal_form: if t % 2 == 1: term_a = torch.prod(this_proposal == current_A_proposal, dim=1, keepdim=True) else: term_a = torch.zeros((sieve.batch_size,1), dtype=torch.uint8, device=FLAGS.device) if render and sieve.out_idxes[0] == 0: render_action( t=t, s=s, term=term_a, prop=this_proposal ) new_rewards = calc_rewards( t=t, s=s, term=term_a, agent=agent, ) rewards[sieve.out_idxes] = new_rewards s.last_proposal = this_proposal if FLAGS.normal_form and t % 2 == 0: prev_A_proposal = current_A_proposal current_A_proposal = this_proposal prev_A_message = current_A_message current_A_message = s.m_prev sieve.mark_dead(term_a) sieve.mark_dead(t + 1 >= s.N) alive_masks.append(sieve.alive_mask.clone()) sieve.set_dead_global(num_steps, t + 1) if sieve.all_dead(): break s.sieve_(sieve.alive_idxes) if FLAGS.normal_form: current_A_proposal = current_A_proposal[sieve.alive_idxes] prev_A_proposal = prev_A_proposal[sieve.alive_idxes] current_A_message = current_A_message[sieve.alive_idxes] prev_A_message = prev_A_message[sieve.alive_idxes] sieve.self_sieve_() if render: print(' rewards: {:2.2f} {:2.2f} {:2.2f}'.format(*rewards[0].tolist())) print(' ') utt_mask_count = utt_mask.sum(dim=[1,2]).cpu().numpy() prop_mask_count = prop_mask.sum(dim=[1,2]).cpu().numpy() return (actions_by_timestep, rewards, num_steps, alive_masks, entropy_loss_by_agent, term_matches_argmax_count, num_policy_runs, utt_matches_argmax_count, utt_stochastic_draws, prop_matches_argmax_count, prop_stochastic_draws, utt_mask_count, prop_mask_count) def safe_div(a, b): """ returns a / b, unless b is zero, in which case returns 0 this is primarily for usage in cases where b might be systemtically zero, eg because comms are disabled or similar also accounts for a or b being tensors """ if isinstance(a, torch.Tensor): a = a.item() if isinstance(b, torch.Tensor): b = b.item() return 0 if b == 0 else a / b def run(args): """ testing option will: - use argmax, ie disable stochastic draws - not run optimizers - not save model """ if args.wandb: if args.wandb_offline: os.environ["WANDB_MODE"] = "dryrun" wandb.init(project='ecn', name=args.name, dir=f'{args.savedir}', group=args.wandb_group) wandb.config.update(args) wandb.config.update(FLAGS) flags_dict = {flag.name: flag.value for flag in FLAGS.flags_by_module_dict()['main.py']} args_dict = args.__dict__ pprint(args_dict) pprint(flags_dict) os.makedirs(args.model_dir, exist_ok=True) os.makedirs(args.logdir, exist_ok=True) if args.seed is not None: np.random.seed(args.seed) torch.manual_seed(args.seed) train_r = np.random.RandomState(args.seed) else: train_r = np.random test_r = np.random.RandomState(args.test_seed) test_batches = generate_test_batches(batch_size=args.batch_size, num_batches=5, random_state=test_r) test_hashes = hash_batches(test_batches) episode = 0 start_time = time.time() agent_models = [] agent_opts = [] agent_name = ['A', 'B'] for i in range(2): model = AgentModel( name=agent_name[i], term_entropy_reg=args.term_entropy_reg, utterance_entropy_reg=args.utterance_entropy_reg, proposal_entropy_reg=args.proposal_entropy_reg ).to(FLAGS.device) agent_models.append(model) agent_opts.append(optim.Adam(params=agent_models[i].parameters())) if args.wandb: wandb.watch(agent_models) if path.isfile(args.model_file) and not args.no_load: episode, start_time = load_model( model_file=args.model_file, agent_models=agent_models, agent_opts=agent_opts) print('loaded model') elif args.testing: print('') print('ERROR: must have loadable model to use --testing option') print('') return last_print = time.time() rewards_sum = torch.zeros(3, device=FLAGS.device) steps_sum = 0 count_sum = 0 f_log = open(args.log_file, 'w') all_args = {**args_dict, **flags_dict} f_log.write('meta: %s\n' % json.dumps(all_args)) last_save = time.time() baseline = torch.zeros(3, device=FLAGS.device) term_matches_argmax_count = 0 num_policy_runs = 0 utt_matches_argmax_count = 0 utt_stochastic_draws = 0 prop_matches_argmax_count = 0 prop_stochastic_draws = 0 utt_mask_count = np.array([0,0]) prop_mask_count = np.array([0,0]) while episode < args.episodes: render = (episode % args.render_every_episode == 0) split = 2 if FLAGS.randomize_first else 1 agent_losses = [0,0] both_rewards = [] for i in range(2): agent_opts[i].zero_grad() for initial_agent in range(split): batch = generate_training_batch(batch_size=args.batch_size // split, test_hashes=test_hashes, random_state=train_r) (actions, rewards, steps, alive_masks, entropy_loss_by_agent, _term_matches_argmax_count, _num_policy_runs, _utt_matches_argmax_count, _utt_stochastic_draws, _prop_matches_argmax_count, _prop_stochastic_draws, _utt_mask_count, _prop_mask_count) = run_episode( batch=batch, agent_models=agent_models, batch_size=args.batch_size // split, render=render, initial_agent=initial_agent, testing=args.testing) term_matches_argmax_count += _term_matches_argmax_count utt_matches_argmax_count += _utt_matches_argmax_count utt_stochastic_draws += _utt_stochastic_draws num_policy_runs += _num_policy_runs prop_matches_argmax_count += _prop_matches_argmax_count prop_stochastic_draws += _prop_stochastic_draws utt_mask_count += _utt_mask_count prop_mask_count += _prop_mask_count if not args.testing: reward_loss_by_agent = [0, 0] baselined_rewards = rewards - baseline rewards_by_agent = [] for i in range(2): if FLAGS.prosocial: rewards_by_agent.append(baselined_rewards[:, 2]) else: rewards_by_agent.append(baselined_rewards[:, i]) sieve_playback = SievePlayback(alive_masks) for t, global_idxes in sieve_playback: agent = (initial_agent + t) % 2 if len(actions[t]) > 0: for action in actions[t]: _rewards = rewards_by_agent[agent] _reward = _rewards[global_idxes].float().contiguous().view( sieve_playback.batch_size, 1) _reward_loss = - (action * _reward) _reward_loss = _reward_loss.sum() reward_loss_by_agent[agent] += _reward_loss for i in range(2): loss = entropy_loss_by_agent[i] + reward_loss_by_agent[i] loss.backward() rewards_sum += rewards.detach().sum(0) steps_sum += steps.sum() count_sum += args.batch_size // split both_rewards.append(rewards) for i in range(2): agent_opts[i].step() rewards = torch.cat(both_rewards).detach() baseline = 0.7 * baseline + 0.3 * rewards.mean(0).detach() if render: """ run the test batches, print the results """ test_rewards_sum = np.zeros(3) test_count_sum = len(test_batches) * args.batch_size test_num_policy_runs = 0 test_utt_mask_count = [0,0] test_prop_mask_count = [0,0] test_utt_mask_count = np.array([0,0]) test_prop_mask_count = np.array([0,0]) for test_batch in test_batches: (actions, test_rewards, steps, alive_masks, entropy_loss_by_agent, _term_matches_argmax_count, _test_num_policy_runs, _utt_matches_argmax_count, _utt_stochastic_draws, _prop_matches_argmax_count, _prop_stochastic_draws, _test_utt_mask_count, _test_prop_mask_count) = run_episode( batch=test_batch, agent_models=agent_models, batch_size=args.batch_size, render=True, testing=True) test_rewards_sum += test_rewards.sum(0).cpu().numpy() test_num_policy_runs += _test_num_policy_runs test_utt_mask_count += _test_utt_mask_count test_prop_mask_count += _test_prop_mask_count time_since_last = time.time() - last_print rewards_str = '%.2f,%.2f,%.2f' % (rewards_sum[0] / count_sum, rewards_sum[1] / count_sum, rewards_sum[2] / count_sum) test_rewards_str = '%.2f,%.2f,%.2f' % (test_rewards_sum[0] / test_count_sum, test_rewards_sum[1] / test_count_sum, test_rewards_sum[2] / test_count_sum) baseline_str = '%.2f,%.2f,%.2f' % (baseline[0], baseline[1], baseline[2]) utt_mask_pct = utt_mask_count / (3 * count_sum) test_utt_mask_pct = test_utt_mask_count / (3 * test_count_sum) prop_mask_pct = prop_mask_count / (3 * count_sum) test_prop_mask_pct = test_prop_mask_count / (3 * test_count_sum) print('test {}'.format(test_rewards_str)) print('train {}'.format(rewards_str)) print('base {}'.format(baseline_str)) print('ep {}, {} games/sec, {:2.2f} avg steps'.format( episode, int(count_sum / time_since_last), steps_sum.item() / count_sum )) print('argmaxp term={:4.4f} utt={:4.4f} prop={:4.4f}'.format( term_matches_argmax_count / num_policy_runs, safe_div(utt_matches_argmax_count, utt_stochastic_draws), prop_matches_argmax_count / prop_stochastic_draws )) if FLAGS.force_masking_comm: print('utt mask % {:2.2f},{:2.2f} test % {:2.2f},{:2.2f}'.format( *utt_mask_pct, *test_utt_mask_pct, )) print('prop mask % {:2.2f},{:2.2f} test % {:2.2f},{:2.2f}'.format( *prop_mask_pct, *test_prop_mask_pct, )) episode_log = { 'episode': episode, 'avg_reward_A': (rewards_sum[0] / count_sum).item(), 'avg_reward_B': (rewards_sum[1] / count_sum).item(), 'avg_reward_0': (rewards_sum[2] / count_sum).item(), 'test_reward_A': (test_rewards_sum[0] / test_count_sum).item(), 'test_reward_B': (test_rewards_sum[1] / test_count_sum).item(), 'test_reward': (test_rewards_sum[2] / test_count_sum).item(), 'avg_steps': torch.true_divide(steps_sum, count_sum).item(), 'games_sec': (count_sum / time_since_last), 'elapsed': time.time() - start_time, 'argmaxp_term': term_matches_argmax_count / num_policy_runs, 'argmaxp_utt': safe_div(utt_matches_argmax_count, utt_stochastic_draws), 'argmaxp_prop': prop_matches_argmax_count / prop_stochastic_draws, 'utt_unmasked_A': utt_mask_pct[0], 'utt_unmasked_B': utt_mask_pct[1], 'prop_unmasked_A': prop_mask_pct[0], 'prop_unmasked_B': prop_mask_pct[1], 'test_utt_unmasked_A': test_utt_mask_pct[0], 'test_utt_unmasked_B': test_utt_mask_pct[1], 'test_prop_unmasked_A': test_prop_mask_pct[0], 'test_prop_unmasked_B': test_prop_mask_pct[1], } f_log.write(json.dumps(episode_log) + '\n') f_log.flush() if args.wandb: wandb.log(episode_log) last_print = time.time() steps_sum = 0 rewards_sum.fill_(0) term_matches_argmax_count = 0 num_policy_runs = 0 utt_matches_argmax_count = 0 utt_stochastic_draws = 0 prop_matches_argmax_count = 0 prop_stochastic_draws = 0 count_sum = 0 utt_mask_count.fill(0) prop_mask_count.fill(0) if (not args.testing and not args.no_save and episode > 0 and episode % args.save_every_episode == 0): save_model(model_file=args.model_file, agent_models=agent_models, agent_opts=agent_opts, start_time=start_time, episode=episode) print('saved model') episode += 1 if (not args.no_save and not args.testing): save_model( model_file=args.model_file, agent_models=agent_models, agent_opts=agent_opts, start_time=start_time, episode=episode) print('saved model') f_log.close()
39.565138
118
0.58554
[ "MIT" ]
mnoukhov/ecn
src/ecn.py
21,563
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ !!! This generally needs to be run right after the close of applications for a framework, and passed to product !!! managers & CCS. Generate a CSV with per-lot draft statistics for each supplier who registered interest in the framework, whether or not they made a complete application in the end. Fields included: * Supplier ID * Supplier DM name * Application / no_application * The status of their declaration * The number of services submitted and left in draft per lot Usage: scripts/framework-applications/export-framework-applications-at-close.py <framework_slug> <stage> <auth_token> <output-dir> [-e <exclude_suppliers>] Example: scripts/framework-applications/export-framework-applications-at-close.py g-cloud-11 preview myToken path/to/myfolder -e 123,456,789 """ import os import sys from datetime import datetime from dmapiclient import DataAPIClient from docopt import docopt sys.path.insert(0, '.') from dmscripts.export_framework_applications_at_close import GenerateFrameworkApplicationsCSV from dmutils.env_helpers import get_api_endpoint_from_stage if __name__ == "__main__": arguments = docopt(__doc__) output_dir = arguments['<output-dir>'] stage = arguments['<stage>'] framework_slug = arguments['<framework_slug>'] filename = "{}-how-application-looked-at-close-{}-{}.csv".format( framework_slug, stage, datetime.utcnow().strftime("%Y-%m-%d_%H.%M-") ) # Create output directory if it doesn't already exist if not os.path.exists(output_dir): os.makedirs(output_dir) client = DataAPIClient( base_url=get_api_endpoint_from_stage(stage), auth_token=arguments['<auth_token>'], ) csv_builder = GenerateFrameworkApplicationsCSV( client=client, target_framework_slug=framework_slug ) if arguments.get('<exclude_suppliers>') is not None: # updates the generator with any IDs the user wants excluded csv_builder.excluded_supplier_ids = [int(n) for n in arguments['<exclude_suppliers>'].split(',')] csv_builder.populate_output() with open(os.path.join(output_dir, filename), 'w') as csvfile: csv_builder.write_csv(outfile=csvfile)
33.382353
120
0.725551
[ "MIT" ]
Crown-Commercial-Service/digitalmarketplace-scripts
scripts/framework-applications/export-framework-applications-at-close.py
2,270
Python
from docxtpl import DocxTemplate import csv import json import random #случайный авто with open('Car_info.txt') as file: car_rand = [] reader = csv.reader(file) for row in file: car_rand.append(row) report_car = car_rand[random.randint(0, len(car_rand)-1)] car_info = report_car.split() #О авто def get_data (Brand, Model, Fuel_cons, Price): return { 'Название': Brand, 'Модель': Model, 'Объем': Fuel_cons, 'Цена': Price } def from_template(Brand, Model, Fuel_cons, Price, template): template = DocxTemplate(template) data = get_data(Brand, Model, Fuel_cons, Price) template.render(data) template.save('О_машине.docx') def report(Brand, Model, Fuel_cons, Price): template = 'О_машине.docx' document = from_template(Brand, Model, Fuel_cons, Price, template) report(car_info[0], car_info[1], car_info[2], car_info[3]) #csv файл car_list=[] with open('Авто_инфо.txt', 'r') as file: for row in file: inner_list = [x.strip() for x in row.split(',')] car_list.append(inner_list) print(car_list) with open('car.csv', 'w') as file: writer = csv.writer(file, delimiter = '*') writer.writerows(car_list) #json файл with open('Авто_json.txt', 'w') as f: json.dump(str(car_info), f)
30.809524
70
0.665379
[ "MIT" ]
Nikolas-01/Lesson_7
7.py
1,369
Python
# Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. import re # noqa: F401 import sys # noqa: F401 from datadog_api_client.v2.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class SecurityFilterExclusionFilter(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = {} validations = {} additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "name": (str,), # noqa: E501 "query": (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { "name": "name", # noqa: E501 "query": "query", # noqa: E501 } _composed_schemas = {} required_properties = set( [ "_data_store", "_check_type", "_spec_property_naming", "_path_to_item", "_configuration", "_visited_composed_classes", ] ) @convert_js_args_to_python_args def __init__(self, name, query, *args, **kwargs): # noqa: E501 """SecurityFilterExclusionFilter - a model defined in OpenAPI Args: name (str): Exclusion filter name. query (str): Exclusion filter query. Logs that match this query are excluded from the security filter. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop("_check_type", True) _spec_property_naming = kwargs.pop("_spec_property_naming", False) _path_to_item = kwargs.pop("_path_to_item", ()) _configuration = kwargs.pop("_configuration", None) _visited_composed_classes = kwargs.pop("_visited_composed_classes", ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.name = name self.query = query for var_name, var_value in kwargs.items(): if ( var_name not in self.attribute_map and self._configuration is not None and self._configuration.discard_unknown_keys and self.additional_properties_type is None ): # discard variable. continue setattr(self, var_name, var_value)
39.994152
114
0.583126
[ "Apache-2.0" ]
rchenzheng/datadog-api-client-python
src/datadog_api_client/v2/model/security_filter_exclusion_filter.py
6,839
Python
# -*- coding:utf-8 -*- """ """ import pandas as pd from pandas.util import hash_pandas_object from hypernets.tabular.datasets.dsutils import load_bank from . import if_cuml_ready, is_cuml_installed if is_cuml_installed: import cudf from hypernets.tabular.cuml_ex import CumlToolBox dd_selector = CumlToolBox.feature_selector_with_drift_detection @if_cuml_ready class Test_drift_detection: def test_shift_score(self): df = load_bank().head(1000) df = cudf.from_pandas(df) selector = dd_selector() scores = selector._covariate_shift_score(df[:700], df[700:]) print('_covariate_shift_score', scores) assert scores['id'] >=0.95 def test_feature_selection(self): df = load_bank() df = cudf.from_pandas(df) y = df.pop('y') p = int(df.shape[0] * 0.8) X_train = df[:p] X_test = df[p:] # = train_test_split(df, train_size=0.7, random_state=9527) selector = dd_selector(remove_shift_variable=False, auc_threshold=0.55, min_features=15, remove_size=0.2) remain_features, history, scores = selector.select(X_train, X_test, copy_data=True) assert len(remain_features) == 15 selector = dd_selector(remove_shift_variable=True, auc_threshold=0.55, min_features=15, remove_size=0.2) remain_features, history, scores = selector.select(X_train, X_test, copy_data=True) assert len(remain_features) == 16 def test_drift_detector_split(self): df = cudf.from_pandas(load_bank()) y = df.pop('y') X_train, X_test = CumlToolBox.train_test_split(df.copy(), train_size=0.7, shuffle=True, random_state=9527) dd = dd_selector().get_detector() dd.fit(X_train, X_test) assert len(dd.feature_names_) == 17 assert len(dd.feature_importances_) == 17 assert dd.auc_ assert len(dd.estimator_) == 5 proba = dd.predict_proba(df) assert proba.shape[0] == df.shape[0] df = cudf.from_pandas(load_bank()) y = df.pop('y') p = int(df.shape[0] * 0.2) X_train, X_test, y_train, y_test = dd.train_test_split(df.copy(), y, test_size=0.2) assert X_train.shape == (df.shape[0] - p, df.shape[1]) assert y_train.shape == (df.shape[0] - p,) assert X_test.shape == (p, df.shape[1]) assert y_test.shape == (p,) df['y'] = y X_train['y'] = y_train X_test['y'] = y_test df, X_train, X_test = CumlToolBox.to_local(df, X_train, X_test) df_split = pd.concat([X_train, X_test]) df_hash = hash_pandas_object(df).sort_values() splitted_hash = hash_pandas_object(df_split).sort_values() assert (df_hash == splitted_hash).all()
35.590361
114
0.603927
[ "Apache-2.0" ]
lyhue1991/Hypernets
hypernets/tests/tabular/tb_cuml/drift_detection_test.py
2,954
Python
"""Abstract class for image transports. Defines generic functions. """ # Copyright (c) 2018 Erling Andersen, Haukeland University Hospital, Bergen, Norway from abc import ABCMeta, abstractmethod # , abstractproperty # import imagedata.transports class NoOtherInstance(Exception): pass class AbstractTransport(object, metaclass=ABCMeta): """Abstract base class definition for imagedata transport plugins. Plugins must be a subclass of AbstractPlugin and must define the attributes set in __init__() and the following methods: open() method isfile() method walk() method """ plugin_type = 'transport' def __init__(self, name, description, authors, version, url, schemes): object.__init__(self) self.__name = name self.__description = description self.__authors = authors self.__version = version self.__url = url self.__schemes = schemes @property def name(self): """Plugin name Single word string describing the image format. Typical names: file, dicom, xnat """ return self.__name @property def description(self): """Plugin description Single line string describing the transport method. """ return self.__description @property def authors(self): """Plugin authors Multi-line string naming the author(s) of the plugin. """ return self.__authors @property def version(self): """Plugin version String giving the plugin version. Version scheme: 1.0.0 """ return self.__version @property def url(self): """Plugin URL URL string to the site of the plugin or the author(s). """ return self.__url @property def schemes(self): """List of transport schemes supported by this plugin. List of strings. """ return self.__schemes @abstractmethod def walk(self, top): """Generate the file names in a directory tree by walking the tree. Input: - top: starting point for walk (str) Return: - tuples of (root, dirs, files) """ pass @abstractmethod def isfile(self, path): """Return True if path is an existing regular file. """ pass @abstractmethod def open(self, path, mode='r'): """Extract a member from the archive as a file-like object. """ pass @abstractmethod def close(self): """Close the transport """ pass @abstractmethod def info(self, path) -> str: """Return info describing the object Args: path (str): object path Returns: description (str): Preferably a one-line string describing the object """ pass
23.52381
83
0.592105
[ "MIT" ]
erling6232/imagedata
src/imagedata/transports/abstracttransport.py
2,964
Python
# coding: utf-8 """ IncQuery Server No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 0.12.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class TWCRepositoryInfoResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'repository_structure': 'TWCRepositoryStructure', 'last_updated': 'str' } attribute_map = { 'repository_structure': 'repositoryStructure', 'last_updated': 'lastUpdated' } def __init__(self, repository_structure=None, last_updated=None): # noqa: E501 """TWCRepositoryInfoResponse - a model defined in OpenAPI""" # noqa: E501 self._repository_structure = None self._last_updated = None self.discriminator = None self.repository_structure = repository_structure self.last_updated = last_updated @property def repository_structure(self): """Gets the repository_structure of this TWCRepositoryInfoResponse. # noqa: E501 :return: The repository_structure of this TWCRepositoryInfoResponse. # noqa: E501 :rtype: TWCRepositoryStructure """ return self._repository_structure @repository_structure.setter def repository_structure(self, repository_structure): """Sets the repository_structure of this TWCRepositoryInfoResponse. :param repository_structure: The repository_structure of this TWCRepositoryInfoResponse. # noqa: E501 :type: TWCRepositoryStructure """ if repository_structure is None: raise ValueError("Invalid value for `repository_structure`, must not be `None`") # noqa: E501 self._repository_structure = repository_structure @property def last_updated(self): """Gets the last_updated of this TWCRepositoryInfoResponse. # noqa: E501 :return: The last_updated of this TWCRepositoryInfoResponse. # noqa: E501 :rtype: str """ return self._last_updated @last_updated.setter def last_updated(self, last_updated): """Sets the last_updated of this TWCRepositoryInfoResponse. :param last_updated: The last_updated of this TWCRepositoryInfoResponse. # noqa: E501 :type: str """ if last_updated is None: raise ValueError("Invalid value for `last_updated`, must not be `None`") # noqa: E501 self._last_updated = last_updated def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TWCRepositoryInfoResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.858156
124
0.619168
[ "Apache-2.0" ]
thomas-bc/mms-autocref
iqs_client/models/twc_repository_info_response.py
4,351
Python
"""This is a set of tools built up over time for working with Gaussian and QChem input and output.""" ######################################################################## # # # # # This script was written by Thomas Heavey in 2017. # # [email protected] [email protected] # # # # Copyright 2017 Thomas J. Heavey IV # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # # implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # ######################################################################## pass
61.25
74
0.348105
[ "Apache-2.0" ]
theavey/QM-calc-scripts
gautools/__init__.py
1,715
Python
# -*- coding: utf-8 -*- from datetime import date, time import pytest from django.contrib.admin import site as admin_site from resources.admin.period_inline import PeriodModelForm, prefix_weekday from resources.models import Period, Resource from resources.models.unit import Unit from resources.tests.utils import assert_response_contains, get_form_data @pytest.mark.django_db @pytest.mark.parametrize("commit", (False, True)) def test_period_model_form(space_resource, commit): period = Period(resource=space_resource, start=date(2015, 8, 1), end=date(2015, 11, 1), name="plop") period.full_clean() period.save() for wd in range(7): period.days.create(weekday=wd, opens=time(9, wd * 2), closes=time(12 + wd)) pmf = PeriodModelForm(instance=period) data = get_form_data(pmf, prepared=True) # Make every day open at 06, set closed on wednesdays for key in list(data.keys()): if key.startswith(prefix_weekday(2, "")): data[key] = "" elif key.endswith("opens"): data[key] = "06:00" pmf = PeriodModelForm(instance=period, data=data) assert pmf.is_valid() period = pmf.save(commit=commit) if not commit: period.save() pmf.save_m2m() assert all(day.opens.hour == 6 for day in period.days.all()) assert not period.days.filter(weekday=2).exists() # Weekdays _got_ closed, yeah? @pytest.mark.django_db @pytest.mark.parametrize("model", (Resource, Unit)) def test_period_inline_containing_admins_work(rf, admin_user, model, space_resource, test_unit): if model is Resource: instance = space_resource elif model is Unit: instance = test_unit else: raise NotImplementedError("Unexpected parametrization") admin = admin_site._registry[model] # Sorry for accessing a private member :( request = rf.get("/") request.user = admin_user response = admin.change_view(request, instance.pk) assert_response_contains(response, prefix_weekday(2, "opens")) # should have a weekday field
36.642857
104
0.703704
[ "MIT" ]
City-of-Helsinki/respa
resources/tests/test_admin_period_inline.py
2,052
Python
import os import layout import callbacks # layout needs to be defined before creating callbacks import routes import appserver server = appserver.app.server if __name__ == "__main__": debug_mode = True if os.getenv("DEBUG", "false") == "true" else False if debug_mode is True: print(f"Initiating server. Debug mode enabled.") # appserver.app.enable_dev_tools(debug=True) else: print(f"Initiating server.") appserver.app.run_server( debug=debug_mode, host="0.0.0.0", port=5000 )
27.4
73
0.671533
[ "MIT" ]
budavariam/activity-visualizer
src/app.py
548
Python
# Visualizer is for debugging purposes only import logging import math import random import threading import http.server import socketserver import os import re from shapely import wkt import matplotlib.pyplot as plt import mpld3 import screeninfo import tempfile import webbrowser import owlready2 from shapely import geometry import numpy as np from tqdm import tqdm import time as pytime import auto.auto from criticality_recognition import phenomena_extraction # TODO # - visualize scenario level CPs # - show has distance to in table for each individual - as ternary relations - instead of omitting it #################### # Config constants # #################### # Classes to not show in visualization _NO_PRINTING_CLASSES = {"physics.Has_Distance_To", "perception.Is_Full_Occlusion", "perception.Is_Occlusion"} # Data/object properties to hide from the individual tables shown when hovering _NO_PRINTING_PROPERTIES = {"perceptional_property", "traffic_related_concept_property", "descriptive_traffic_entity_property", "traffic_entity_property", "activity_property", "physical_property", "traffic_modeling_property", "traffic_entity_property", "automotive_urban_traffic_property", "L1_property", "L2_property", "L3_property", "L4_property", "L5_property", "L6_property", "traffic_model_element_property", "criticality_phenomenon_as_object_property", "has_positional_relation", "has_spatial_relation", "has_dynamical_relation", "SF_spatial_relation", "performance_spatial_relation", "EH_spatial_relation", "RCC8_spatial_relation", "rcc8dc", "ehDisjoint"} # If one hides long property lists, this is the number after which the list is cut off _MAX_PROPS_DISPLAY = 4 _AVOID_LABEL_COLLISIONS = False # Logging logger = logging.getLogger(__name__) # Helper function for sorting CPs & individuals def natural_sort_key(s, _nsre=re.compile("([0-9]+)")): return [int(text) if text.isdigit() else text.lower() for text in _nsre.split(str(s))] ####### # CSS # ####### # Scene CSS (added is iframes to scenario HTML) scene_css = """ <style> svg * { font-size: 4pt; } table { border: solid 1px #DDEEEE; border-collapse: collapse; border-spacing: 0; font: normal 8px, sans-serif; } thead th { background-color: #DDEFEF; border: solid 1px #DDEEEE; color: #336B6B; padding: 3px; text-align: left; text-shadow: 1px 1px 1px #fff; font-size: 10pt; } tbody td { background-color: #FFFFFF; border: solid 1px #DDEEEE; color: #333; padding: 3px; text-shadow: 1px 1px 1px #fff; font-size: 8pt; } .cp-tooltip {} </style> """ # Scenario CSS (main CSS) scenario_css = """ <style> .slider { -webkit-appearance: none; /* Override default CSS styles */ appearance: none; width: 100%; /* Full-width */ height: 25px; /* Specified height */ background: #d3d3d3; /* Grey background */ outline: none; /* Remove outline */ opacity: 0.7; /* Set transparency (for mouse-over effects on hover) */ -webkit-transition: .2s; /* 0.2 seconds transition on hover */ transition: opacity .2s; } .slider:hover { opacity: 1; /* Fully shown on mouse-over */ } .slider::-webkit-slider-thumb { -webkit-appearance: none; /* Override default look */ appearance: none; width: 25px; /* Set a specific slider handle width */ height: 25px; /* Slider handle height */ background: #04AA6D; /* Green background */ cursor: pointer; /* Cursor on hover */ } .slider::-moz-range-thumb { width: 25px; /* Set a specific slider handle width */ height: 25px; /* Slider handle height */ background: #04AA6D; /* Green background */ cursor: pointer; /* Cursor on hover */ } </style>""" def visualize_scenario(scenario, cps=None): """ Creates an HTML visualization of the given scenario. Starts a simple web server at localhost:8000 (blocking). :param scenario: Either a list of worlds, each world representing a single scene or a single world representing a whole scenario :param cps: A list of criticality phenomena which optionally to visualize as well. :return: The path to the directory in which to find the created HTML visualization. """ pl_html = [] scenario_inst = None if cps is None: cps = [] # Fetch scene list if type(scenario) == list: scenes = [scene_world.search(type=auto.auto.get_ontology(auto.auto.Ontology.Traffic_Model, scene_world).Scene) [0] for scene_world in scenario] elif type(scenario) == owlready2.namespace.World or type(scenario) == owlready2.World: tm = auto.auto.get_ontology(auto.auto.Ontology.Traffic_Model, scenario) scenario_inst = scenario.search(type=tm.Scenario)[0] scenes = list(filter(lambda x: tm.Scene in x.is_a, scenario_inst.has_traffic_model)) else: raise ValueError scenes = sorted(scenes, key=lambda x: x.inTimePosition[0].numericPosition[0]) # Assemble scenario title title = "Scenario" if scenario_inst and hasattr(scenario_inst, "identifier") and len(scenario_inst.identifier) > 0: title += " " + str(scenario_inst.identifier[0]) scenario_info = "(" + str(len(scenes)) + " Scenes)" # Main HTML code for index.html html_body = """<!DOCTYPE html> <html> <head> <link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous"> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-ka7Sk0Gln4gmtz2MlQnikT1wXgYsOg+OMhuP+IlRH9sENBO0LRn5q+8nbTov4+1p" crossorigin="anonymous"></script> <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script> <meta charset="utf-8">""" + scenario_css + """ <title>""" + title + """</title> </head> <body> <div class=\"d-flex flex-row justify-content-center\"><div class=\"mt-3 py-1 px-6 alert alert-info\" style=\"display: inline-block\" role=\"alert\"><center><h5>""" + title + """ """ + scenario_info + """</h5></center></div></div> <div class="slidecontainer m-2"> <input type="range" min="1" max=\"""" + str(len(scenes)) + """\" value="1" class="slider" id="myRange"> </div> <script> var slider = document.getElementById("myRange"); var last_set = 1 var show_all_cps = true slider.oninput = function() { var output = document.getElementById("plt" + this.value); var last_output = document.getElementById("plt" + last_set); last_output.style.display = 'none'; output.style.display = 'block'; last_set = this.value } function toggle_cps_all_iframes() { show_all_cps = !show_all_cps $(".cp-all-button").each(function(i) { if (show_all_cps) { this.parentElement.classList.add("active") this.checked = true } else { this.parentElement.classList.remove("active") this.checked = false } }) $(".cp-button").each(function(i) { if (show_all_cps) { this.parentElement.classList.add("active") this.checked = true } else { this.parentElement.classList.remove("active") this.checked = false } }) $(".scene-plot").each(function(i) { this.contentWindow.toggle_cps(show_all_cps) }) } function toggle_cp_class(ele, cp_cls_id) { // 0. disable automatically checked checkbox (will be added again at step 3) ele.checked = !ele.checked // 1. find active scene plot active_scene = $(".scene-plot-container").filter(function(i) { return this.style.display !== "none" })[0] // 2. get CP pred. str for given cp_cls_id cp_pred = active_scene.getElementsByClassName("scene-plot")[0].contentWindow.cp_predicates[cp_cls_id] // 3. Toggle all buttons for this CP pred $("label > span:contains(" + cp_pred + ")").each(function(i) { this.parentElement.classList.toggle("active") this.parentElement.querySelector(".cp-button").checked = !this.parentElement.querySelector(".cp-button").checked }) // 4. check if (and where) CP pred. str is present in cp_predicates, pass the resulting index $(".scene-plot").each(function(k) { cp_cls_id_scene = -1 for (var i = 0; i < this.contentWindow.cp_predicates.length; i++) { if (cp_pred === this.contentWindow.cp_predicates[i]) { cp_cls_id_scene = i } } if (cp_cls_id_scene >= 0) { this.contentWindow.toggle_cp_class(cp_cls_id_scene, ele.checked) } }) } </script> """ pl_html.append(html_body) iframes = [] def get_color(p): # Fetches a different color each time, but ensures that it has a readable contrast. _LUMA_LIMIT = 170 color = 0 luma = _LUMA_LIMIT while luma >= _LUMA_LIMIT: color = random.randrange(0, 0xFFFFFF, 0xF) luma = 0.2126 * ((color >> 16) & 0xff) + 0.7152 * ((color >> 8) & 0xff) + 0.0722 * ((color >> 0) & 0xff) return "#" + "%06x" % color # Create HTML for each scene for i, scene in enumerate(scenes): logger.info("Plotting scene " + str(i + 1) + " / " + str(len(scenes))) scene_cps = [cp for cp in cps if cp.is_representable_in_scene(scene)] cp_colors = list(map(get_color, range(len([x for c in scene_cps for x in c.subjects])))) cp_color = 0 no_geo_entities = [] width = 24.5 height = 10 try: primary_screens = list(filter(lambda x: x.is_primary, screeninfo.get_monitors())) if len(primary_screens) > 0: width = (primary_screens[0].width_mm / 25.4) * 0.73 height = (primary_screens[0].height_mm / 25.4) * 0.73 except screeninfo.common.ScreenInfoError: logger.info("No screens found, using default plot size of " + str(width) + " in x " + str(height) + " in") fig = plt.figure(figsize=(width, height)) plt.axis("equal") entity_labels = [] entity_relations = [] relations_per_cp_class = dict() cps_relations = [] cps_for_tooltips = [] centroids_x = [] centroids_y = [] plotted_labels = [] entity_points = dict() traffic_entities = tqdm(scene.has_traffic_entity) for entity in traffic_entities: traffic_entities.set_description(str(entity)) if len(entity.hasGeometry) > 0: for geo in entity.hasGeometry: shape = wkt.loads(geo.asWKT[0]) entity_cp_relations = [] points = None if hasattr(shape, "exterior"): points = shape.exterior.xy try: hasattr(shape, "coords") points = shape.coords.xy except NotImplementedError: pass if points: if (np.isclose(centroids_x, shape.centroid.x) & np.isclose(centroids_y, shape.centroid.y))\ .any(): x = shape.centroid.x + 0.0 y = shape.centroid.y + 0.8 plt.plot((shape.centroid.x, x), (shape.centroid.y, y), "k-") else: x = shape.centroid.x y = shape.centroid.y entity_points[entity] = (x, y) centroids_x.append(x) centroids_y.append(y) plt.plot(*points, alpha=.6) if auto.auto.get_ontology(auto.auto.Ontology.Physics, scenario).Dynamical_Object in \ entity.INDIRECT_is_a: plt.fill(*points, alpha=.3) if entity.has_yaw is not None: x_dir = (0.9 * math.cos(math.radians(entity.has_yaw))) y_dir = (0.9 * math.sin(math.radians(entity.has_yaw))) plt.arrow(shape.centroid.x, shape.centroid.y, dx=x_dir, dy=y_dir, shape="full", length_includes_head=True, color="gray", alpha=0.6, head_width=1) entity_labels.append(_describe_entity(entity)) # Plot CPs entity_scene_cps = list(filter(lambda scp: entity in scp.subjects, scene_cps)) if len(entity_scene_cps) > 0: plt.plot(x, y, "o", color="r", mec="k", markersize=3, alpha=1) ent_color = "red" else: ent_color = "black" if entity.identifier and len(entity.identifier) > 0 and not entity.is_persistent and not \ (isinstance(entity.identifier[0], str) and entity.identifier[0].startswith("repr")): plt.annotate(entity.identifier[0], (x+0.2, y+0.2), color=ent_color) already_drawn_cps = [] # init dict for cp in entity_scene_cps: if cp.predicate not in relations_per_cp_class.keys(): relations_per_cp_class[cp.predicate] = [] for cp in entity_scene_cps: if cp not in already_drawn_cps: same_line_cps = [x for x in entity_scene_cps if [y for z in x.objects.values() for y in z] == [y for z in cp.objects.values() for y in z]] labels = [(x.predicate.split("(")[0], (x.predicate.split("(")[1].replace(")", ""), str(x))) for x in same_line_cps] already_drawn_cps += same_line_cps subj_x = x subj_y = y for objs in cp.objects.values(): for obj in objs: if len(obj.hasGeometry) > 0: if obj in entity_points.keys(): obj_x = entity_points[obj][0] obj_y = entity_points[obj][1] else: geom_o = wkt.loads(obj.hasGeometry[0].asWKT[0]) obj_x = geom_o.centroid.x obj_y = geom_o.centroid.y m = (obj_y - subj_y) / (obj_x - subj_x) b = subj_y - m * subj_x head_width = 0.2 head_length = 1.5 * head_width arrow = plt.arrow(subj_x, subj_y, dx=(obj_x - subj_x), dy=(obj_y - subj_y), color=cp_colors[cp_color], shape="full", length_includes_head=True, head_width=head_width, head_length=head_length) if len(labels[0]) > 1: label_row = " ".join([label[0] for label in labels]) else: label_row = labels[0] x_offset = (len(label_row) * 0.055) / 2 - 0.055 if subj_x > obj_x: label_x = obj_x + abs(subj_x - obj_x) / 2 - x_offset else: label_x = obj_x - abs(subj_x - obj_x) / 2 - x_offset a = math.degrees(math.atan(m)) for l_i, label in enumerate(labels): label_string = label[0].replace("CP_", "") label_len = (len(label_string) * 0.09 + 0.1) label_x_offset = abs(math.cos(math.atan(m)) * label_len) while True: # Finds a free space to plot label label_y = m * label_x + b + 0.05 label_x_1 = label_x - label_x_offset / 2 + 0.05 label_y_1 = m * label_x_1 + b label_x_2 = label_x + label_x_offset / 2 + 0.05 label_y_2 = m * label_x_2 + b label_line1 = geometry.LineString([(label_x_1, label_y_1), (label_x_2, label_y_2)]) new_bb = label_line1.buffer(0.1, cap_style=2) new_bb_rect = list(zip(*new_bb.exterior.xy))[:-1] if not _AVOID_LABEL_COLLISIONS or not \ _has_collision_with_bbs(plotted_labels, new_bb_rect): break label_x += label_x_offset / 10 annot = plt.annotate(label_string, (label_x, label_y), color=cp_colors[cp_color], rotation=a, fontsize=2, rotation_mode="anchor") entity_cp_relations.append(annot) cps_relations.append(annot) relations_per_cp_class[same_line_cps[l_i].predicate] += [annot, arrow] cps_for_tooltips.append(same_line_cps[l_i]) plotted_labels.append(new_bb_rect) label_x += label_x_offset subj_x = obj_x subj_y = obj_y entity_cp_relations += [arrow] cp_color = (cp_color + 1) % len(cp_colors) entity_relations.append(entity_cp_relations) elif len(set([str(y) for y in entity.INDIRECT_is_a]).intersection(_NO_PRINTING_CLASSES)) == 0: no_geo_entities.append(_describe_entity(entity)) logger.info("Done with layout, creating MPLD3 plot, JS plugins, and HTML string") pl2 = plt.plot(centroids_x, centroids_y, "o", color="b", mec="k", markersize=2, mew=1, alpha=.4) tooltip_individuals = ToolTipAndClickInfo(pl2[0], labels=entity_labels, targets=entity_relations, targets_per_cp=relations_per_cp_class) fig.tight_layout() mpld3.plugins.connect(fig, tooltip_individuals) for h, cp_text in enumerate(cps_relations): tooltip_cp = CPTooltip(cp_text, cps_for_tooltips[h]) mpld3.plugins.connect(fig, tooltip_cp) html = "\n\t\t<div class=\"container-fluid scene-plot-container\" id=\"plt" + str(i + 1) + "\" style =\"" if i != 0: html += "display: none;" html += "\">" html += """ <div class="row"> <div class="col-md-1"> """ cp_count_total = len([x for x in cps if (isinstance(x.traffic_model, list) and scene in x.traffic_model) or x.traffic_model == scenario_inst]) html += """<div class=""> <label class="btn btn-primary active" style="margin-bottom: 10px; width: %s"> <input type="checkbox" class="cp-all-button" id="cp-all-button-%s" autocomplete="off" onclick="toggle_cps_all_iframes();" checked> <span>Show all criticality phenomena (%s)</span> </label>""" % ("100%", str(i), str(cp_count_total)) for l, pred in enumerate(sorted(relations_per_cp_class.keys(), key=natural_sort_key)): cp_count = len([x for x in cps if x.predicate == pred and ((isinstance(x.traffic_model, list) and scene in x.traffic_model) or x.traffic_model == scenario_inst)]) html += """ <br /> <label class="btn btn-secondary active" style="margin-bottom: 5px; width: %s"> <input type="checkbox" class="cp-button" id="cp-button-%s-%s" autocomplete="off" onclick="toggle_cp_class(this, %s);" checked> <span>%s (%s)</span> </label>""" % ("100%", str(i), str(l), str(l), pred, str(cp_count)) html += """ </div> </div> <div class="col-md-11"> """ html += "<div class=\"embed-responsive embed-responsive-16by9\">\n" html += "\t\t\t\t\t\t<iframe class=\"scene-plot\" src=\"scene" + str(i + 1) + ".html\" class=\"embed-responsive-item\" style=\"width: 100%; height: " + str(height*1.27) + "in\" allowfullscreen></iframe>\n\t\t\t\t\t</div>\n" iframe_html = """<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta HTTP-EQUIV="Access-Control-Allow-Origin" CONTENT="localhost"> <link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous"> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-ka7Sk0Gln4gmtz2MlQnikT1wXgYsOg+OMhuP+IlRH9sENBO0LRn5q+8nbTov4+1p" crossorigin="anonymous"></script> <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script> </head> <body>""" iframe_html += scene_css iframe_html += """ <div class="d-flex flex-row justify-content-center"> <div class="btn-group btn-group-toggle" data-bs-toggle="buttons"> <label class="btn btn-secondary active"> <input type="checkbox" id="tooltip_button" checked autocomplete="off" onclick="toggle_tooltips(this);"> Show tooltip with information of individuals </label> <label class="btn btn-secondary active"> <input type="checkbox" id="descr_button" checked autocomplete="off" onclick="toggle_all_ind_relations(this);"> Show full individual relations in tooltip </label> </div> </div> <script> var show_tooltips = true var show_long_ind = true cps = [] cp_targets = [] cp_targets_per_class = [] function toggle_tooltips(ele) { ele.parentElement.classList.toggle("active") show_tooltips = !show_tooltips } function toggle_all_ind_relations(ele) { ele.parentElement.classList.toggle("active") show_long_ind = !show_long_ind } function toggle_cp_targets(targets, state) { for (let j = 0; j < targets.length; j++) { var x = mpld3.get_element(targets[j]) if (x) { if ("path" in x) { tog = x.path } else if ("obj" in x) { tog = x.obj } for (var k = 0; k < tog._groups.length; k++) { for (var l = 0; l < tog._groups[k].length; l++){ if (state) { tog._groups[k][l].style.display = "block" } else { tog._groups[k][l].style.display = "none" } } } } } } function toggle_cps(state) { for (let i = 0; i < cp_targets.length; i++) { toggle_cp_targets(cp_targets[i], state) } } function toggle_cp_class(cp_class, state) { targets = cp_targets_per_class[cp_class] toggle_cp_targets(targets, state) } </script> <div class="card m-2"> <div class="card-title d-flex flex-row justify-content-center m-1"> <h5>""" if len(scene.inTimePosition) > 0 and len(scene.inTimePosition[0].numericPosition) > 0: time = "%.2f s" % scene.inTimePosition[0].numericPosition[0] if scenario_inst and len(scenario_inst.hasEnd) > 0 and len(scenario_inst.hasEnd[0].inTimePosition) > 0 and \ len(scenario_inst.hasEnd[0].inTimePosition[0].numericPosition) > 0: time += " / %.2f s" % scenario_inst.hasEnd[0].inTimePosition[0].numericPosition[0] else: time += " / " + str(len(scenes)) else: time = str(i) + " / " + str(len(scenes)) iframe_html += "Scene " + time + "<br />" iframe_html += """ </h5> </div> <div class="card-body m-0 p-0 d-flex justify-content-center"> """ scene_html = mpld3.fig_to_html(fig) iframe_html += ''.join("\t\t"+line+"\n" for line in scene_html.splitlines()) iframe_html += """ </div> </div>""" if len(no_geo_entities) > 0: iframe_html += """ <div class="d-flex flex-row justify-content-center"> <a class="btn btn-primary" data-bs-toggle="collapse" href="#noGeoCollapse" role="button" aria-expanded="false" aria-controls="noGeoCollapse"> Show scene individuals with no geometric representation (%s) </a> </div> <div class="container-fluid collapse" id="noGeoCollapse"> <div class="card card-body m-2">""" % str(len(no_geo_entities)) iframe_html += "".join(no_geo_entities) iframe_html += """ </div> </div>""" iframe_html += "\t</body>\n</html>" iframes.append(iframe_html) html += "\t\t\t\t</div>\n\t\t\t</div>\n\t\t</div>" pl_html.append(html) # Assemble main HTML pl_html.append("\n\t</body>\n</html>") # Write main HTML to index.html tmp_dir = tempfile.mkdtemp() index_path = tmp_dir + "/index.html" with open(index_path, "w") as file: for html in pl_html: file.write(html) # Write each scene HTML to a single file for i, iframe in enumerate(iframes): frame_path = tmp_dir + "/scene" + str(i + 1) + ".html" with open(frame_path, "w") as file: for html in iframe: file.write(html) # Starts webserver os.chdir(tmp_dir) threading.Thread(target=socketserver.TCPServer(("", 8000), http.server.SimpleHTTPRequestHandler).serve_forever).start() logger.info("Visualization is available at: http://localhost:8000") webbrowser.open("http://localhost:8000") return tmp_dir def _describe_entity(entity): """ Describes the given traffic entity as an HTML list. :param entity: An object of an owlready2 class. :return: The HTML-representation of entity. """ cls = phenomena_extraction.get_most_specific_classes([entity]) label = "<table class=\"m-2\"><thead><tr><th>Individual</th><th>" + str(entity) label += " (" + ", ".join(cls[0][1]) + ")</th></tr></thead><tbody><tr><td>is_a</td><td>" label += ", ".join([str(x) for x in entity.is_a]) label += "</td></tr>" for prop in entity.get_properties(): if str(prop.python_name) not in _NO_PRINTING_PROPERTIES: label += "<tr>" label += "<td>" label += str(prop.python_name) label += "</td>" label += "<td>" label += ", ".join([str(x) for x in prop[entity][:_MAX_PROPS_DISPLAY]]) if len(prop[entity]) > _MAX_PROPS_DISPLAY: label += "<text class=\"extended_ind_props\">" label += ", ".join([str(x) for x in prop[entity][_MAX_PROPS_DISPLAY:]]) + "</text>" label += "<text class=\"extended_ind_props_dots\" style=\"display: none;\">...</text>" label += "</td>" label += "</tr>" label += "</tbody></table>" return label def _describe_cp(cp): label = "<table class=\"m-2\"><thead><tr><th>Criticality Phenomenon</th><th>" + \ str(cp.predicate).split("(")[1].replace(")", "") label += "</th></tr></thead><tbody><tr><td>Start time</td><td>" time = cp.at_time() if isinstance(time, tuple): label += str(time[0]) else: label += str(time) label += "</td></tr><tr><td>End time</td><td>" if isinstance(time, tuple): label += str(time[1]) else: label += str(time) label += "</td></tr><tr><td>Subject(s)</td><td>" if len(cp.subjects) > 0: subj_and_classes = phenomena_extraction.get_most_specific_classes(cp.subjects) label += "<br />".join([str(x[0]) + " (" + ", ".join(x[1]) + ")" for x in subj_and_classes]) label += "</td></tr><tr><td>Predicate</td><td>" label += str(cp.predicate) label += "</td></tr><tr><td>Object(s)</td><td>" if len(cp.objects) > 0: for obj_predicate in cp.objects.keys(): obj_and_classes = phenomena_extraction.get_most_specific_classes(cp.objects[obj_predicate]) label += obj_predicate + ":<br/>" + "<br />".join([str(x[0]) + " (" + ", ".join(x[1]) + ")" for x in obj_and_classes]) if len(cp.objects.keys()) > 1: label += "<br/>" label += "</td></tr>" label += "</tbody></table>" return label ################# # MPLD3 Plugins # ################# class ToolTipAndClickInfo(mpld3.plugins.PointHTMLTooltip): # Handles: # 1. the criticality phenomena toggling when clicking on CP subjects (red circles) # 2. the mouse-overs when hovering over subjects # 3. the Ctrl+Click new window action when clicking on subjects JAVASCRIPT = """ var scene_css = `""" + scene_css + """` mpld3.register_plugin("htmltooltip", HtmlTooltipPlugin); HtmlTooltipPlugin.prototype = Object.create(mpld3.Plugin.prototype); HtmlTooltipPlugin.prototype.constructor = HtmlTooltipPlugin; HtmlTooltipPlugin.prototype.requiredProps = ["id"]; HtmlTooltipPlugin.prototype.defaultProps = {labels:null, targets_per_cp:null, cps:null, hoffset:0, voffset:10, targets:null}; function HtmlTooltipPlugin(fig, props){ mpld3.Plugin.call(this, fig, props); }; HtmlTooltipPlugin.prototype.draw = function(){ var obj = mpld3.get_element(this.props.id) var labels = this.props.labels cps = obj.elements() cp_targets = this.props.targets cp_targets_per_class = this.props.targets_per_cp cp_predicates = this.props.cps var tooltip = d3.select("body").append("div") .attr("class", "mpld3-tooltip") .style("position", "absolute") .style("z-index", "10") .style("visibility", "hidden"); function show_cp(d, i) { if (!window.event.ctrlKey) { for (let j = 0; j < cp_targets[i].length; j++) { var x = mpld3.get_element(cp_targets[i][j]); if (x) { if ("path" in x) { tog = x.path } else if ("obj" in x) { tog = x.obj } for (var k = 0; k < tog._groups.length; k++){ for (var l = 0; l < tog._groups[k].length; l++){ if (tog._groups[k][l].style.display === "none"){ tog._groups[k][l].style.display = "block" } else { tog._groups[k][l].style.display = "none" } } } } } } } obj.elements() .on("mouseover", function(d, i) { if (show_tooltips) { tooltip.html(labels[i]).style("visibility", "visible"); var long_descrs = document.getElementsByClassName("extended_ind_props") var dots_descrs = document.getElementsByClassName("extended_ind_props_dots") for (let i = 0; i < long_descrs.length; i++) { if(!show_long_ind) { long_descrs[i].style.display = "none"; } else { long_descrs[i].style.display = "inline"; } } for (let i = 0; i < dots_descrs.length; i++) { if(!show_long_ind) { dots_descrs[i].style.display = "inline"; } else { dots_descrs[i].style.display = "none"; } } } }) .on("mousemove", function(d, i) { tooltip .style("top", d3.event.pageY + this.props.voffset + "px") .style("left",d3.event.pageX + this.props.hoffset + "px"); }.bind(this)) .on("mousedown.callout", show_cp) .on("mouseout", function(d, i){ tooltip.style("visibility", "hidden"); }) .on("click", function(d, i) { if (window.event.ctrlKey) { var newWindow = window.open(); newWindow.document.write( `<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous">` + scene_css + tooltip.html(labels[i])._groups[0][0].innerHTML ); } }); }; """ def __init__(self, points, labels=None, targets=None, targets_per_cp=None, hoffset=0, voffset=10, css=None): targets_ = [] for x in targets or []: x_ = [] for y in x: x_.append(mpld3.utils.get_id(y)) targets_.append(x_) self.targets_per_cp = [] self.cps = [] if targets_per_cp: self.cps = sorted(targets_per_cp.keys(), key=natural_sort_key) for cp in self.cps: x_ = [] for y in targets_per_cp[cp]: x_.append(mpld3.utils.get_id(y)) self.targets_per_cp.append(x_) super().__init__(points, labels, targets_, hoffset, voffset, css) self.dict_["targets_per_cp"] = self.targets_per_cp self.dict_["cps"] = self.cps class CPTooltip(mpld3.plugins.PluginBase): # Handles the Ctrl+Click action on criticality phenomena ID (opens a new tab). JAVASCRIPT = """ var scene_css = `""" + scene_css + """` mpld3.register_plugin("cpstooltip", CPTooltip); CPTooltip.prototype = Object.create(mpld3.Plugin.prototype); CPTooltip.prototype.constructor = CPTooltip; CPTooltip.prototype.requiredProps = ["id", "tooltip_html"]; function CPTooltip(fig, props){ mpld3.Plugin.call(this, fig, props); }; CPTooltip.prototype.draw = function(){ var obj = mpld3.get_element(this.props.id); var tooltip_html = this.props.tooltip_html; var tooltip = d3.select("body").append("div") .attr("class", "cp-tooltip") .style("position", "absolute") .style("z-index", "10") .style("visibility", "hidden"); obj.obj._groups[0][0].onmouseover = function(d, i) { tooltip.html(tooltip_html).style("visibility", "visible"); }; obj.obj._groups[0][0].onmousemove = function(d, i) { tooltip .style("top", d.clientY + 10 + "px") .style("left", d.clientX + 0 + "px"); }.bind(this); obj.obj._groups[0][0].onclick = function(d, i) { if (window.event.ctrlKey) { var newWindow = window.open(); newWindow.document.write( `<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous">` + scene_css + tooltip_html ); } }; obj.obj._groups[0][0].onmouseout = function(d, i) { tooltip.style("visibility", "hidden"); }; } """ def __init__(self, text, cp): tooltip_html = _describe_cp(cp) self.dict_ = {"type": "cpstooltip", "id": mpld3.utils.get_id(text), "tooltip_html": tooltip_html} def _has_collision_with_bbs(existing_bbs, new_bb): """ Checks if the new rectangle (new_bb) collides with some existing rectangles. """ a_left = min([x[0] for x in new_bb]) a_right = max([x[0] for x in new_bb]) a_bottom = min([x[1] for x in new_bb]) a_top = max([x[1] for x in new_bb]) for bb in existing_bbs: b_left = min([x[0] for x in bb]) b_right = max([x[0] for x in bb]) b_bottom = min([x[1] for x in bb]) b_top = max([x[1] for x in bb]) if a_left <= b_right and b_left <= a_right and a_top >= b_bottom and b_top >= a_bottom: return True return False
49.091995
298
0.497785
[ "MIT" ]
lu-w/criticality-recognition
auto/auto_visualizer/auto_visualizer.py
41,090
Python
import pytest from cool_search import BaseClass, base_function given = pytest.mark.parametrize @given("fn", [BaseClass(), base_function]) def test_parameterized(fn): assert "hello from" in fn() def test_base_function(): assert base_function() == "hello from base function" def test_base_class(): assert BaseClass().base_method() == "hello from BaseClass"
19.736842
62
0.733333
[ "Unlicense" ]
khulaifi95/cool-search
tests/test_base.py
375
Python
# coding: utf-8 """ SendinBlue API SendinBlue provide a RESTFul API that can be used with any languages. With this API, you will be able to : - Manage your campaigns and get the statistics - Manage your contacts - Send transactional Emails and SMS - and much more... You can download our wrappers at https://github.com/orgs/sendinblue **Possible responses** | Code | Message | | :-------------: | ------------- | | 200 | OK. Successful Request | | 201 | OK. Successful Creation | | 202 | OK. Request accepted | | 204 | OK. Successful Update/Deletion | | 400 | Error. Bad Request | | 401 | Error. Authentication Needed | | 402 | Error. Not enough credit, plan upgrade needed | | 403 | Error. Permission denied | | 404 | Error. Object does not exist | | 405 | Error. Method not allowed | # noqa: E501 OpenAPI spec version: 3.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import sib_api_v3_sdk from sib_api_v3_sdk.models.get_extended_contact_details_statistics import GetExtendedContactDetailsStatistics # noqa: E501 from sib_api_v3_sdk.rest import ApiException class TestGetExtendedContactDetailsStatistics(unittest.TestCase): """GetExtendedContactDetailsStatistics unit test stubs""" def setUp(self): pass def tearDown(self): pass def testGetExtendedContactDetailsStatistics(self): """Test GetExtendedContactDetailsStatistics""" # FIXME: construct object with mandatory attributes with example values # model = sib_api_v3_sdk.models.get_extended_contact_details_statistics.GetExtendedContactDetailsStatistics() # noqa: E501 pass if __name__ == '__main__': unittest.main()
44.926829
820
0.704126
[ "MIT" ]
Danilka/APIv3-python-library
test/test_get_extended_contact_details_statistics.py
1,842
Python
from rest_framework import generics from ..models import Article, Country, Source from .serializers import ArticleSerializer, CountrySerializer, SourceSerializer class ArticleListView(generics.ListCreateAPIView): queryset = Article.objects.all() serializer_class = ArticleSerializer permission_classes = [] class ArticleDetailView(generics.RetrieveUpdateDestroyAPIView): queryset = Article.objects.all() serializer_class = ArticleSerializer permission_classes = [] class CountryListView(generics.ListCreateAPIView): queryset = Country.objects.all() serializer_class = CountrySerializer permission_classes = [] class CountryDetailView(generics.RetrieveUpdateDestroyAPIView): queryset = Country.objects.all() serializer_class = CountrySerializer permission_classes = [] class SourceListView(generics.ListCreateAPIView): queryset = Source.objects.all() serializer_class = SourceSerializer permission_classes = [] class SourceDetailView(generics.RetrieveUpdateDestroyAPIView): queryset = Source.objects.all() serializer_class = SourceSerializer permission_classes = []
28.725
79
0.781549
[ "MIT" ]
XOyarz/polstats-django
main_app/api/views.py
1,149
Python
# Define here the models for your spider middleware # # See documentation in: # https://docs.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals # useful for handling different item types with a single interface from itemadapter import is_item, ItemAdapter class Proj2062SpiderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, or item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Request or item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class Proj2062DownloaderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
35.096154
78
0.674521
[ "MIT" ]
miccaldas/new_rss
support_files/scraping/entries/proj_2062/proj_2062/middlewares.py
3,652
Python
import functools as ft import inspect from typing import Any, Callable, Dict, Iterable, List, Optional, Union import pydantic from . import base class PydanticValidator(base.BaseValidator): """ Parameters validator based on `pydantic <https://pydantic-docs.helpmanual.io/>`_ library. Uses python type annotations for parameters validation. :param coerce: if ``True`` returns converted (coerced) parameters according to parameter type annotation otherwise returns parameters as is """ def __init__(self, coerce: bool = True, **config_args: Any): self._coerce = coerce config_args.setdefault('extra', 'forbid') # https://pydantic-docs.helpmanual.io/usage/model_config/ self._model_config = type('ModelConfig', (pydantic.BaseConfig,), config_args) def validate_method( self, method: Callable, params: Optional[Union[list, dict]], exclude: Iterable[str] = (), **kwargs: Any, ) -> Dict[str, Any]: """ Validates params against method using ``pydantic`` validator. :param method: method to validate parameters against :param params: parameters to be validated :param exclude: parameter names to be excluded from validation :returns: coerced parameters if `coerce` flag is ``True`` otherwise parameters as is :raises: ValidationError """ signature = self.signature(method, exclude) schema = self.build_validation_schema(signature) params_model = pydantic.create_model(method.__name__, **schema, __config__=self._model_config) bound_params = self.bind(signature, params) try: obj = params_model(**bound_params.arguments) except pydantic.ValidationError as e: raise base.ValidationError(*e.errors()) from e return {attr: getattr(obj, attr) for attr in obj.__fields_set__} if self._coerce else bound_params.arguments @ft.lru_cache(maxsize=None) def build_validation_schema(self, signature: inspect.Signature) -> Dict[str, Any]: """ Builds pydantic model based validation schema from method signature. :param signature: method signature to build schema for :returns: validation schema """ field_definitions = {} for param in signature.parameters.values(): if param.kind is inspect.Parameter.VAR_KEYWORD: field_definitions[param.name] = ( Optional[Dict[str, param.annotation]] if param.annotation is not inspect.Parameter.empty else Any, param.default if param.default is not inspect.Parameter.empty else None, ) elif param.kind is inspect.Parameter.VAR_POSITIONAL: field_definitions[param.name] = ( Optional[List[param.annotation]] if param.annotation is not inspect.Parameter.empty else Any, param.default if param.default is not inspect.Parameter.empty else None, ) else: field_definitions[param.name] = ( param.annotation if param.annotation is not inspect.Parameter.empty else Any, param.default if param.default is not inspect.Parameter.empty else ..., ) return field_definitions
40.385542
118
0.654236
[ "Unlicense" ]
bernhardkaindl/pjrpc
xjsonrpc/server/validators/pydantic.py
3,352
Python
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import pytest import re from urllib.parse import urljoin from requests import get from time import sleep from datetime import datetime from pages.webview.about_this_book import AboutBook from pages.webview.content_page import ContentPage from tests import markers from pages.webview.home import Home from pages.webview.content import Content from tests.utils import similar @markers.webview @markers.test_case("C193738") @markers.nondestructive @markers.parametrize( "is_archive,path,expected_response_status_code", [ # FIXME Requires varnish # (False, '/content/col23946', 301), (True, "/content/col23946", 301), # FIXME Requires varnish # (False, '/content/col23946/1.1', 301), (True, "/content/col23946/1.1", 301), (False, "/contents/4eaa8f03-88a8-485a-a777-dd3602f6c13e", 200), (True, "/contents/4eaa8f03-88a8-485a-a777-dd3602f6c13e", 302), ( False, ( "/contents/4eaa8f03-88a8-485a-a777-dd3602f6c13e" ":7d039be2-93c6-4f32-a469-41689bab7225" ), 200, ), ( True, ( "/contents/4eaa8f03-88a8-485a-a777-dd3602f6c13e" ":7d039be2-93c6-4f32-a469-41689bab7225" ), 302, ), (False, "/contents/[email protected]", 200), (True, "/contents/[email protected]", 200), ( False, ( "/contents/[email protected]" ":7d039be2-93c6-4f32-a469-41689bab7225" ), 200, ), ( False, ( "/contents/[email protected]" ":7d039be2-93c6-4f32-a469-41689bab7225@5" ), 200, ), (False, "/contents/TqqPA4io", 200), (True, "/contents/TqqPA4io", 302), (False, "/contents/TqqPA4io:fQOb4pPG", 200), (True, "/contents/TqqPA4io:fQOb4pPG", 302), (False, "/contents/[email protected]", 200), (True, "/contents/[email protected]", 301), (False, "/contents/[email protected]:fQOb4pPG", 200), (True, "/contents/[email protected]:fQOb4pPG", 301), (False, "/contents/[email protected]:fQOb4pPG@5", 200), (True, "/contents/[email protected]:fQOb4pPG@5", 301), ], ) def test_content_status_codes( webview_base_url, archive_base_url, is_archive, path, expected_response_status_code ): # GIVEN some URL and the expected redirect code if is_archive: url = urljoin(archive_base_url, path) else: url = urljoin(webview_base_url, path) # WHEN we visit the URL # NOTE: Don't bother trying to get status codes using Selenium # https://github.com/seleniumhq/selenium-google-code-issue-archive/issues/141 response = get(url, allow_redirects=False) # THEN we get the expected redirect code assert response.status_code == expected_response_status_code @markers.webview @markers.test_case("C194465") @markers.nondestructive @markers.parametrize( "id", [ "[email protected]:E3XenWEQ", "[email protected]:E3XenWEQ@2", "[email protected]:rKBtkIWG@2", "[email protected]:fQOb4pPG@2", ], ) def test_canonical_link_is_correct(webview_base_url, selenium, id): # GIVEN a book's content page content = Content(selenium, webview_base_url, id=id).open() section_title = content.section_title # WHEN the book's canonical url is visited selenium.get(content.canonical_url) content.wait_for_page_to_load() # THEN we end up in the same page # NOTE: we check the section title instead of the url because the canonical link seems to # take us to the latest version of the content, no matter which version we started on # NOTE: Newer versions of the book may not have the section number. For this we check in the # section_title string instead of an equality. assert content.section_title in section_title @markers.webview @markers.test_case("C176232", "C176233") @markers.nondestructive def test_navs_and_elements_are_displayed(webview_base_url, selenium): # GIVEN the home page home = Home(selenium, webview_base_url).open() # WHEN a book is clicked book = home.featured_books.openstax_list[59] content = book.click_book_cover() # THEN the site navbar and content nav are displayed assert content.header.is_nav_displayed content_header = content.content_header assert content_header.is_displayed assert content_header.is_title_displayed assert content_header.is_book_by_displayed assert content_header.is_share_displayed header_nav = content_header.nav assert header_nav.is_contents_button_displayed assert header_nav.is_searchbar_displayed assert header_nav.is_back_link_displayed assert header_nav.is_progress_bar_displayed assert header_nav.is_next_link_displayed assert content.is_section_title_displayed # Section title is on top of main content section (white area) main_content_section = content.main_content_section section_title_div_location = content.section_title_div_location section_title_div_size = content.section_title_div_size # Section title inside main content section assert section_title_div_location["x"] >= main_content_section.location["x"] assert section_title_div_location["y"] >= main_content_section.location["y"] assert ( section_title_div_location["x"] + section_title_div_size["width"] <= main_content_section.location["x"] + main_content_section.size["width"] ) assert ( section_title_div_location["y"] + section_title_div_size["height"] <= main_content_section.location["y"] + main_content_section.size["height"] ) # Section title on top of main content section assert ( section_title_div_location["y"] - main_content_section.location["y"] <= section_title_div_size["height"] ) @markers.webview @markers.test_case("C132542") @markers.nondestructive def test_author_contains_openstax(webview_base_url, selenium): # GIVEN the home page and a book home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] # WHEN the book's cover is clicked content = book.click_book_cover() # THEN the displayed author is OpenStax content_header = content.content_header assert content_header.is_book_by_displayed assert content_header.are_authors_displayed assert "OpenStax" in content_header.authors @markers.webview @markers.test_case("C176242") @markers.nondestructive def test_toc_is_displayed(webview_base_url, selenium): # GIVEN a book's content page home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() # WHEN the contents button is clicked content.header_nav.click_contents_button() toc = content.table_of_contents # THEN the table of contents is displayed assert toc.is_displayed assert toc.number_of_chapters > 0 assert toc.number_of_pages > 0 @markers.webview @markers.smoke @markers.test_case("C176243", "C176244") @markers.nondestructive def test_toc_navigation(webview_base_url, selenium): # GIVEN a book's table of contents home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() content.header_nav.click_contents_button() toc = content.table_of_contents # WHEN a chapter is expanded and we navigate to one of its pages chapter = toc.chapters[0] chapter = chapter.click() page = chapter.pages[1] chapter_section = page.chapter_section title = page.title content = page.click() # THEN we end up at the correct page assert type(content) is Content assert content.chapter_section == chapter_section assert content.section_title == title @markers.webview @markers.smoke @markers.test_case("C176257") @markers.nondestructive def test_share_on_top_right_corner(webview_base_url, selenium): # GIVEN the home page home = Home(selenium, webview_base_url).open() # WHEN a book is clicked book = home.featured_books.openstax_list[59] content = book.click_book_cover() # THEN social share links are displayed in the top right corner share = content.share assert share.is_displayed assert share.is_facebook_share_link_displayed assert share.is_twitter_share_link_displayed root = content.share.root # Top half assert root.location["y"] + root.size["height"] < selenium.get_window_size()["height"] / 2 # Right half assert root.location["x"] > selenium.get_window_size()["width"] / 2 @markers.webview @markers.smoke @markers.test_case("C132549", "C175148") @markers.nondestructive @markers.parametrize( "uuid,query,has_results,result_index,has_os_figures,has_os_tables", [ ( "36004586-651c-4ded-af87-203aca22d946", "mitosis genetics gorilla", False, None, None, None, ), ("bb62933e-f20a-4ffc-90aa-97b36c296c3e", "Fizyka", True, 1, True, False), ("bb62933e-f20a-4ffc-90aa-97b36c296c3e", "Tabela", True, 3, True, True), ], ) def test_in_book_search( webview_base_url, selenium, uuid, query, has_results, result_index, has_os_figures, has_os_tables, ): # GIVEN a book's content page and a query content = Content(selenium, webview_base_url, id=uuid).open() # WHEN we search the book for the given query search_results = content.header_nav.search(query) # THEN search results are present (or not) and bolded and link to the matching content results = search_results.results result_count = search_results.result_count assert len(results) == result_count if not has_results: assert result_count == 0 return assert result_count > 0 words = query.split() for result in results: for word in words: assert result.count_occurrences(word) == result.count_bold_occurrences(word) result = results[result_index] title = result.title content = result.click_link() assert content.section_title == title content_region = content.content_region assert content_region.has_os_figures == has_os_figures for figure in content_region.os_figures: assert figure.caption.is_labeled assert figure.caption.is_numbered assert content_region.has_os_tables == has_os_tables for table in content_region.os_tables: assert table.caption.is_labeled assert table.caption.is_numbered @markers.webview @markers.smoke @markers.test_case("C176258", "C176259", "C176261") @markers.nondestructive def test_share_links_displayed(webview_base_url, selenium): # GIVEN the home page home = Home(selenium, webview_base_url).open() # WHEN a book is clicked book = home.featured_books.openstax_list[32] content = book.click_book_cover() # THEN social share links have the expected urls current_url = selenium.current_url share = content.share expected_facebook_url = f"https://facebook.com/sharer/sharer.php?u={current_url}" assert share.facebook_share_url == expected_facebook_url expected_twitter_url = f"https://twitter.com/share?url={current_url}" assert expected_twitter_url in share.twitter_share_url expected_linkedin_url = f"https://www.linkedin.com/shareArticle?mini=true&url={current_url}" assert expected_linkedin_url in share.linkedin_share_url @markers.webview @markers.test_case("C193880") @markers.nondestructive @markers.parametrize("id", ["[email protected]:qVb4K8xR@3"]) def test_newer_version_leads_to_correct_page(webview_base_url, selenium, id): # GIVEN the content page content = Content(selenium, webview_base_url, id=id).open() version = content.book_version section_title = content.section_title # WHEN the newer version link is clicked content = content.click_newer_version_link() # THEN we end up in a newer version of the same page assert content.section_title == section_title assert content.book_version > version @markers.webview @markers.smoke @markers.test_case("C176234") @markers.nondestructive def test_get_this_book(webview_base_url, selenium): # GIVEN a book's content page home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[32] content = book.click_book_cover() # WHEN we click the "Get This Book!" button button_displayed = content.is_get_this_book_button_displayed if button_displayed: get_this_book = content.click_get_this_book_button() pdf_displayed = get_this_book.is_pdf_link_displayed offline_zip_displayed = get_this_book.is_offline_zip_link_displayed # THEN links to download the pdf, epub and offline zip versions are displayed # Look at the footer to see which downloads should have been available downloads = content.content_footer.click_downloads_tab() if not button_displayed: assert not downloads.is_any_available pytest.skip('No files available to download: "Get This Book!" button not present.') else: assert pdf_displayed or offline_zip_displayed # Check the footer if pdf_displayed: assert downloads.is_pdf_available if offline_zip_displayed: assert downloads.is_offline_zip_available @markers.webview @markers.smoke @markers.test_case("C195074") @markers.nondestructive @markers.parametrize("id", ["[email protected]:Zv6FJYpb@3"]) def test_page_with_unicode_characters_in_title_loads(webview_base_url, selenium, id): # GIVEN the webview base url, the Selenium driver and the id of a page whose title has unicode content = Content(selenium, webview_base_url, id=id) # WHEN we load the content page content = content.open() # Ensure it has a figure element assert content.content_region.has_figures # THEN the page does not reload afterwards # Wait 10 seconds to see if the page reloads sleep(10) # If we don't get a StaleElementReferenceException then the page didn't reload assert content.content_region.os_figures @markers.xfail @markers.webview @markers.smoke @markers.test_case("C176236") @markers.nondestructive def test_content_and_figures_display_after_scrolling(webview_base_url, selenium): # This is expected to fail as we ran out non-redirecting collections # with figures on the main page # GIVEN a book's content page with figures home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[60] content_page = book.click_book_cover() content_region = content_page.content_region assert not content_region.is_blank assert content_region.has_figures # WHEN we scroll to a figure figure = content_region.figures[0] content_region.scroll_to(figure) # THEN some figure is displayed assert figure.is_displayed() @markers.webview @markers.smoke @markers.test_case("C176235", "C176237") @markers.nondestructive def test_nav_and_menus_display_after_scrolling(webview_base_url, selenium): # GIVEN a book's content page home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() content_header = content.content_header original_content_header_y = content_header.root.location["y"] # WHEN we scroll to the bottom content.footer.scroll_to() content_footer = content.content_footer # THEN - the header nav is offscreen but still considered displayed # - the content nav is displayed on top without the site navbar or any social links assert content.header.is_nav_displayed assert content_header.is_displayed assert content_header.is_title_displayed assert content_header.is_book_by_displayed assert not content_header.is_share_displayed header_nav = content_header.nav assert header_nav.is_contents_button_displayed assert header_nav.is_searchbar_displayed assert header_nav.is_back_link_displayed assert header_nav.is_progress_bar_displayed assert header_nav.is_next_link_displayed assert content.is_section_title_displayed share = content.share assert not share.is_displayed assert not share.is_facebook_share_link_displayed assert not share.is_twitter_share_link_displayed # The footer is displayed at the bottom assert content_footer.is_displayed assert content_footer.is_downloads_tab_displayed assert content_footer.is_history_tab_displayed assert content_footer.is_attribution_tab_displayed assert content_footer.is_more_information_tab_displayed # Hard to check that the content_header is on top after scrolling, but we can check # that it at least has the pinned class and is above the footer assert content_header.is_pinned assert not content_header.is_opened assert not content_header.is_closed assert content_header.root.location["y"] > original_content_header_y assert content_header.root.location["y"] < content_footer.root.location["y"] @markers.webview @markers.smoke @markers.test_case("C195232") @markers.nondestructive @markers.parametrize("width,height", [(480, 640)]) def test_mobile_nav_and_menus_hide_after_scrolling(webview_base_url, selenium, width, height): # GIVEN a book's content page home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() content_header = content.content_header original_content_header_y = content_header.root.location["y"] # WHEN we scroll to the bottom content.footer.scroll_to() # THEN - the header nav is offscreen but still considered displayed # - the content nav is offscreen without the site navbar or any social links assert content.header.is_nav_displayed assert content_header.is_displayed assert content_header.is_title_displayed assert content_header.is_book_by_displayed assert not content_header.is_share_displayed header_nav = content_header.nav assert header_nav.is_contents_button_displayed assert header_nav.is_searchbar_displayed assert header_nav.is_back_link_displayed assert header_nav.is_progress_bar_displayed assert header_nav.is_next_link_displayed assert content.is_section_title_displayed share = content.share assert not share.is_displayed assert not share.is_facebook_share_link_displayed assert not share.is_twitter_share_link_displayed assert not content_header.is_pinned assert content_header.root.location["y"] == original_content_header_y # WHEN we scroll up content.scroll_up() # THEN - the header nav is offscreen but still considered displayed # - the content nav is now pinned and onscreen without the site navbar or any social links assert content.header.is_nav_displayed assert content_header.is_displayed assert content_header.is_title_displayed assert content_header.is_book_by_displayed assert not content_header.is_share_displayed header_nav = content_header.nav assert header_nav.is_contents_button_displayed assert header_nav.is_searchbar_displayed assert header_nav.is_back_link_displayed assert header_nav.is_progress_bar_displayed assert header_nav.is_next_link_displayed assert content.is_section_title_displayed share = content.share assert not share.is_displayed assert not share.is_facebook_share_link_displayed assert not share.is_twitter_share_link_displayed assert content_header.is_pinned assert content_header.is_opened assert not content_header.is_closed previous_content_header_y = content_header.root.location["y"] assert previous_content_header_y > original_content_header_y # WHEN we scroll down again content.scroll_down() # THEN - the header nav is offscreen but still considered displayed # - the content nav is now closed and offscreen without the site navbar or any social links assert content.header.is_nav_displayed assert content_header.is_displayed assert content_header.is_title_displayed assert content_header.is_book_by_displayed assert not content_header.is_share_displayed header_nav = content_header.nav assert header_nav.is_contents_button_displayed assert header_nav.is_searchbar_displayed assert header_nav.is_back_link_displayed assert header_nav.is_progress_bar_displayed assert header_nav.is_next_link_displayed assert content.is_section_title_displayed share = content.share assert not share.is_displayed assert not share.is_facebook_share_link_displayed assert not share.is_twitter_share_link_displayed assert content_header.is_pinned assert not content_header.is_opened assert content_header.is_closed assert content_header.root.location["y"] > previous_content_header_y @markers.webview @markers.smoke @markers.test_case("C162171") @markers.nondestructive def test_attribution(webview_base_url, selenium): # GIVEN a book's content page home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() # WHEN we click the attribution tab attribution = content.content_footer.click_attribution_tab() # THEN the attribution is displayed and has the correct support email assert attribution.is_displayed expected_sentence = "For questions regarding this license, please contact [email protected]." assert expected_sentence in attribution.text @markers.webview @markers.smoke @markers.test_case("C176241") @markers.nondestructive def test_back_to_top(webview_base_url, selenium): # GIVEN a book's scrolled content page home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() footer = content.content_footer content_header = content.content_header original_content_header_y = content_header.root.location["y"] # WHEN we scroll to the bottom then click the back to top link content = footer.nav.click_back_to_top_link() # THEN the content page is no longer scrolled assert content.header.is_nav_displayed assert content_header.is_displayed assert content_header.is_title_displayed assert content_header.is_book_by_displayed assert content_header.is_share_displayed header_nav = content_header.nav assert header_nav.is_contents_button_displayed assert header_nav.is_searchbar_displayed assert header_nav.is_back_link_displayed assert header_nav.is_progress_bar_displayed assert header_nav.is_next_link_displayed assert content.is_section_title_displayed share = content.share assert share.is_displayed assert share.is_facebook_share_link_displayed assert share.is_twitter_share_link_displayed # The footer is offscreen, but still considered displayed assert footer.is_displayed assert footer.is_downloads_tab_displayed assert footer.is_history_tab_displayed assert footer.is_attribution_tab_displayed assert footer.is_more_information_tab_displayed # The header is no longer pinned assert not content_header.is_pinned assert content_header.root.location["y"] == original_content_header_y @markers.webview @markers.smoke @markers.test_case("C176238", "C176239", "C176240", "C176245") @markers.nondestructive def test_navigation(webview_base_url, selenium): # GIVEN a book's content page and a sim_ratio sim_ratio = 0.4 home = Home(selenium, webview_base_url).open() book = home.featured_books.openstax_list[59] content = book.click_book_cover() header_nav = content.header_nav header_nav.click_contents_button() toc = content.table_of_contents num_pages = toc.number_of_pages assert type(content) == Content # Introduction should be the first section loaded assert ( content.section_title == "Introduction" or similar(content.section_title, "📎 Inquiry Organizer") > sim_ratio ) # Preface is skipped by default assert header_nav.progress_bar_fraction_is(2 / num_pages) # WHEN we navigate next twice and then back twice using the header and footer controls content = content.header_nav.click_next_link() assert type(content) == Content assert content.chapter_section == "1.2" assert header_nav.progress_bar_fraction_is(3 / num_pages) content = content.footer_nav.click_next_link() assert type(content) == Content assert content.chapter_section == "1.3" assert header_nav.progress_bar_fraction_is(4 / num_pages) content = content.footer_nav.click_back_link() assert type(content) == Content assert content.chapter_section == "1.2" assert header_nav.progress_bar_fraction_is(3 / num_pages) content = content.header_nav.click_back_link() # THEN we arrive back at the initial page assert header_nav.progress_bar_fraction_is(2 / num_pages) @markers.webview @markers.test_case("C195073") @markers.slow @markers.nondestructive def test_ncy_is_not_displayed(webview_base_url, american_gov_uuid, selenium): # GIVEN the webview base url, an American Government content page UUID, and the Selenium driver # WHEN the page is fully loaded using the URL page = Content(selenium, webview_base_url, id=american_gov_uuid).open() # THEN :NOT_CONVERTED_YET is not displayed assert page.is_ncy_displayed is False @markers.webview @markers.test_case("C132547", "C132548") @markers.nondestructive @markers.parametrize( "page_uuid,is_baked_book_index", [ ("bb62933e-f20a-4ffc-90aa-97b36c296c3e:85036aed-fa1a-5d51-a9c2-c07ee673488d", True), ("6a0568d8-23d7-439b-9a01-16e4e73886b3", False), ], ) def test_id_links_and_back_button(page_uuid, is_baked_book_index, webview_base_url, selenium): # GIVEN an index page in a baked book or a page with anchor links in an unbaked book content_page = Content(selenium, webview_base_url, id=page_uuid).open() content_url = content_page.current_url assert "#" not in content_url # WHEN we click on a term (baked index) or an anchor link content_region = content_page.content_region if is_baked_book_index: content_page = content_region.click_index_term() else: content_page = content_region.click_anchor_link(internal_only=True) assert content_page.current_url.startswith(content_url) # THEN we end up at the linked page and the element with the same id as the link is displayed new_url = content_page.current_url assert "#" in new_url id = re.search("#(.+)$", new_url)[1] assert id assert content_page.is_element_id_displayed(id) # WHEN we click the browser's back button content_page.back() # THEN we end up at the previous page assert content_page.current_url == content_url @markers.webview @markers.test_case("C181754") @markers.nondestructive @markers.parametrize( "ch_review_id", ["[email protected]:6IrsWVCW", pytest.param("[email protected]:aVXUrOzZ")] ) def test_chapter_review_version_matches_book_version(webview_base_url, selenium, ch_review_id): # GIVEN the webview base url, a chapter review id, and the Selenium driver # WHEN we visit the chapter review page content = Content(selenium, webview_base_url, id=ch_review_id).open() # THEN the chapter review version matches the book version assert content.page_version == content.book_version @markers.webview @markers.smoke @markers.test_case("C195064") @markers.nondestructive @markers.parametrize("ch_review_id", ["e5fbbjPE"]) def test_books_containing_go_to_book_link(webview_base_url, selenium, ch_review_id): # GIVEN the webview base url, a chapter review id, and the Selenium driver content = ContentPage(selenium, webview_base_url, id=ch_review_id).open() books = content.books_containing.book_list # WHEN we click the link to the first book title = books[0].title book = books[0].click_go_to_book_link # THEN we are on the About this Book page and it is displayed assert type(book) == AboutBook assert book.about_this_book_section.is_displayed assert book.title == title @markers.webview @markers.test_case("C195063") @markers.nondestructive @markers.parametrize("ch_review_id", ["SjdU64Og@3"]) def test_books_containing_have_revised_date(webview_base_url, selenium, ch_review_id): # GIVEN the webview base url, a chapter review id, and the Selenium driver # WHEN the content_page is fully loaded and we have a list of books containing the page content = ContentPage(selenium, webview_base_url, id=ch_review_id).open() books = content.books_containing.book_list # THEN all the Books should contain revision date for book in books: assert book.revision_date.is_displayed @markers.webview @markers.requires_complete_dataset @markers.test_case("C195061") @markers.nondestructive @markers.parametrize("page_id", ["BWYBGK7C@2"]) def test_books_containing_title_not_limited(webview_base_url, selenium, page_id): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we visit that page of the chapter and we have a list of books containing the page content = ContentPage(selenium, webview_base_url, id=page_id).open() books = content.books_containing.book_list # THEN the title of the books are not truncated by ellipses for book in books: assert "..." not in book.title @markers.webview @markers.requires_complete_dataset @markers.test_case("C195057", "C195058", "C195059", "C195072") @markers.nondestructive @markers.parametrize("page_id", ["mjO9LQWq@1", "bJs8AcSE@1", "4fGVMb7P@1"]) def test_books_containing_message_is_correct(webview_base_url, selenium, page_id): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we visit the content page # AND we have a books containing count # AND we have the overview message content = ContentPage(selenium, webview_base_url, id=page_id).open() book_count = len(content.books_containing.book_list) overview = content.books_containing.overview # THEN ensure the proper books containing overview message is displayed if book_count > 1: assert overview == f"This page is in {book_count} books:" elif book_count > 0: assert overview == "This page is in this book:" else: assert overview == "This page is not in any books." @markers.webview @markers.test_case("C195062") @markers.nondestructive @markers.parametrize("page_id", ["SjdU64Og@3"]) def test_books_containing_have_authors(webview_base_url, selenium, page_id): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we visit that page of the chapter and we have a list of books containing page content = ContentPage(selenium, webview_base_url, id=page_id).open() books = content.books_containing.book_list # THEN the authors of the book should be displayed for book in books: assert book.author.is_displayed() @markers.webview @markers.requires_complete_dataset @markers.test_case("C195065") @markers.nondestructive @markers.parametrize("page_id", ["HOATLqlR@5"]) def test_books_containing_list_in_sorted_order(webview_base_url, selenium, page_id): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we visit that page of the chapter and we have a list of books containing page content = Content(selenium, webview_base_url, id=page_id).open() # AND store the main author main_author = content.content_header.authors # AND Save list of authors and dates content = ContentPage(selenium, webview_base_url, id=page_id).open() dates = content.books_containing.date_list author = content.books_containing.author_list # THEN main author should be the author of the first book listed assert author[0][0] == main_author # AND if there are more books with main author, they should be listed first i = 1 while i < len(author) - 1 and author[i][0] == main_author: i += 1 # AND for the rest of the books, the revision dates are sorted in decreasing order date_list = [] for date in dates[i:]: date_list.append(datetime.strptime(date[0], "%b %d, %Y")) assert date_list == sorted(date_list, reverse=True) @markers.webview @markers.smoke @markers.requires_complete_dataset @markers.test_case("C195055") @markers.nondestructive @markers.parametrize("page_id", ["4fGVMb7P@1"]) def test_books_containing_button_toggles_and_labelled_books(webview_base_url, selenium, page_id): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we visit a single content page (not a book) content = ContentPage(selenium, webview_base_url, id=page_id).open() books_containing = content.books_containing # THEN the button that opens and closes the "ToC" is labelled "Books" instead of "Contents" # AND the button opens and closes the "This page is in # books" side nav contents_button = content.header_nav.contents_button assert contents_button.text == "Books" # The side nav area should be open by default assert books_containing.is_displayed content.header_nav.click_contents_button() assert not books_containing.is_displayed content.header_nav.click_contents_button() content.books_containing.wait_for_region_to_display() assert books_containing.is_displayed @markers.webview @markers.requires_complete_dataset @markers.test_case("C195054") @markers.nondestructive @markers.parametrize("page_id", ["4fGVMb7P@1"]) def test_books_containing_list_is_on_left_of_page(webview_base_url, selenium, page_id): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we load the page of the chapter and we have the width of the window content = ContentPage(selenium, webview_base_url, id=page_id).open() window_width = content.get_window_size("width") # THEN check if the books list exists and on the left assert content.books_containing.book_list assert content.location["x"] < window_width / 2 @markers.webview @markers.smoke @markers.requires_complete_dataset @markers.test_case("C195056") @markers.nondestructive @markers.parametrize("page_id", ["QlYg2VHd"]) @markers.parametrize("width,height", [(1024, 768), (630, 480)]) def test_button_open_with_certain_window_size(webview_base_url, selenium, page_id, width, height): # GIVEN the webview base url, page_id, and the Selenium driver # WHEN we visit that page of the chapter and we have a list of books containing the page content = ContentPage(selenium, webview_base_url, id=page_id).open() # THEN if window width >= 640, button should be open if width >= 640: assert content.books_containing.overview_is_displayed # AND if window width < 640, button should be closed else: assert not content.books_containing.overview_is_displayed @markers.webview @markers.test_case("C195060") @markers.nondestructive @markers.parametrize("id", ["4fGVMb7P@1"]) @markers.parametrize("highlight_color", ["#78b04a"]) def test_book_title_link_and_highlight_on_view(webview_base_url, id, selenium, highlight_color): # GIVEN the webview base url, a chapter page id, the color and the Selenium driver # WHEN we visit that page of the chapter content = ContentPage(selenium, webview_base_url, id=id).open() content_page_title = content.title # AND click the title content.books_containing.book_list[0].click_title_link() # AND get and click the Contents button content.header_nav.click_contents_button() # AND find the on viewing title and get the color active_color = content.table_of_contents.active_page_color # THEN make sure the section matches the original page title and the highlight color is correct assert content_page_title == content.section_title_without_chapter_section assert active_color == highlight_color
35.747563
100
0.7421
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
openstax/cnx-automation
tests/webview/ui/test_content.py
36,680
Python
import os from werkzeug.security import generate_password_hash from flask_script import Manager, Shell, Command, Option from flask_migrate import Migrate, MigrateCommand from app import db from app import create_app from app.models import User app = create_app(os.getenv('FLASK_CONFIG') or 'default') manager = Manager(app) migrate = Migrate(app, db) class CreateUser(Command): option_list = ( Option('--name', '-n', dest='name'), Option('--password', '-p', dest='password'), Option('--email', '-e', dest='email') ) def run(self, name, password, email): user = User() user.name = name user.hash_pass = generate_password_hash(password) user.email = email db.session.add(user) db.session.commit() def make_shell_context(): return dict(app=app, db=db, User=User) manager.add_command('shell', Shell(make_context=make_shell_context)) manager.add_command('db', MigrateCommand) manager.add_command('create_user', CreateUser()) if __name__ == '__main__': manager.run()
24.767442
68
0.684507
[ "MIT" ]
Tianny/incepiton-mysql
manage.py
1,065
Python
# # Copyright 2019 Delphix # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=missing-docstring import os import drgn import sdb def enum_lookup(enum_type_name: str, value: int) -> str: """return a string which is the short name of the enum value (truncating off the common prefix) """ fields = sdb.get_type(enum_type_name).type.enumerators enum_string: str = fields[value].name prefix = os.path.commonprefix([f[0] for f in fields]) return enum_string[prefix.rfind("_") + 1:] def nicenum(num: int, suffix: str = "B") -> str: for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: if num < 1024: return "{}{}{}".format(int(num), unit, suffix) num = int(num / 1024) return "{}{}{}".format(int(num), "Y", suffix) def P2PHASE(x: drgn.Object, align: int) -> int: return int(x & (align - 1)) def BF64_DECODE(x: drgn.Object, low: int, length: int) -> int: return int(P2PHASE(x >> low, 1 << length)) def BF64_GET(x: drgn.Object, low: int, length: int) -> int: return BF64_DECODE(x, low, length) def WEIGHT_IS_SPACEBASED(weight: int) -> bool: return weight == 0 or (BF64_GET(weight, 60, 1) != 0) def WEIGHT_GET_INDEX(weight: int) -> int: return BF64_GET((weight), 54, 6) def WEIGHT_GET_COUNT(weight: int) -> int: return BF64_GET((weight), 0, 54) METASLAB_WEIGHT_PRIMARY = int(1 << 63) METASLAB_WEIGHT_SECONDARY = int(1 << 62) METASLAB_WEIGHT_CLAIM = int(1 << 61) METASLAB_WEIGHT_TYPE = int(1 << 60) METASLAB_ACTIVE_MASK = (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY | METASLAB_WEIGHT_CLAIM) BTREE_LEAF_SIZE = 4096
29.534247
77
0.674397
[ "Apache-2.0" ]
PaulZ-98/sdb
sdb/commands/zfs/internal/__init__.py
2,156
Python
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. class _GetAttrMeta(type): # https://stackoverflow.com/questions/33727217/subscriptable-objects-in-class def __getitem__(cls, x): return getattr(cls, x) def __iter__(cls): """Getting subclasses which usually represent resolutions""" for attr in vars(cls): if not attr.startswith("_"): yield cls[attr] class DatasetTreeCore(metaclass=_GetAttrMeta): pass
31.555556
81
0.672535
[ "MIT" ]
earthobservations/python_dwd
wetterdienst/util/parameter.py
568
Python
import os import sys import numpy as np import random import math from PIL import Image, ImageOps, ImageFilter import torch import torch.utils.data as data import torchvision.transforms as transform from .base import BaseDataset class NYUv2Segmentation(BaseDataset): BASE_DIR = 'nyuv2' NUM_CLASS = 40 def __init__(self, root=os.path.expanduser('~/.cvss/data'), split='train', mode=None, transform=None, target_transform=None, **kwargs): super(NYUv2Segmentation, self).__init__( root, split, mode, transform, target_transform, **kwargs) # assert exists and prepare dataset automatically root = os.path.join(root, self.BASE_DIR) assert os.path.exists(root), "Please setup the dataset using" + \ "cvss/scripts/prepare_nyuv2.py" self.images, self.masks = _get_nyuv2_pairs(root, split) if split != 'test': assert (len(self.images) == len(self.masks)) if len(self.images) == 0: raise(RuntimeError("Found 0 images in subfolders of: \ " + root + "\n")) def __getitem__(self, index): img = Image.open(self.images[index]).convert('RGB') if self.mode == 'test': if self.transform is not None: img = self.transform(img) return img, os.path.basename(self.images[index]) mask = Image.open(self.masks[index]) # synchrosized transform if self.mode == 'train': img, mask = self._sync_transform(img, mask) elif self.mode == 'val': img, mask = self._val_sync_transform(img, mask) else: assert self.mode == 'testval' mask = self._mask_transform(mask) # general resize, normalize and toTensor if self.transform is not None: img = self.transform(img) if self.target_transform is not None: mask = self.target_transform(mask) return img, mask def _sync_transform(self, img, mask): # random mirror if random.random() < 0.5: img = img.transpose(Image.FLIP_LEFT_RIGHT) mask = mask.transpose(Image.FLIP_LEFT_RIGHT) crop_size = self.crop_size # random scale (short edge) w, h = img.size min_side = min(w, h) scale = np.random.uniform(0.5, 2.0) if min_side * scale < 350: scale = 350 * 1.0 / min_side long_size = int(self.base_size*scale) if h > w: oh = long_size ow = int(1.0 * w * long_size / h + 0.5) short_size = ow else: ow = long_size oh = int(1.0 * h * long_size / w + 0.5) short_size = oh img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # pad crop if short_size < crop_size: padh = crop_size - oh if oh < crop_size else 0 padw = crop_size - ow if ow < crop_size else 0 img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0) mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=0) # random crop crop_size w, h = img.size x1 = random.randint(0, w - crop_size) y1 = random.randint(0, h - crop_size) img = img.crop((x1, y1, x1+crop_size, y1+crop_size)) mask = mask.crop((x1, y1, x1+crop_size, y1+crop_size)) # final transform return img, self._mask_transform(mask) def _val_sync_transform(self, img, mask): # final transform return img, self._mask_transform(mask) def _mask_transform(self, mask): target = np.array(mask).astype('int64') - 1 return torch.from_numpy(target) def __len__(self): return len(self.images) @property def pred_offset(self): return 1 def _get_nyuv2_pairs(folder, split='train'): def get_path_pairs(folder, split_file): img_paths = [] mask_paths = [] with open(os.path.join(folder, split_file), 'r') as f: for filename in f.readlines(): filename = filename.strip() imgpath = os.path.join(folder, 'image', filename) maskpath = os.path.join(folder, 'mask', filename) if os.path.isfile(maskpath): img_paths.append(imgpath) mask_paths.append(maskpath) else: print('cannot find the mask:', maskpath) return img_paths, mask_paths img_paths, mask_paths = get_path_pairs(folder, split_file=split+'.txt') return img_paths, mask_paths
37.904762
79
0.568677
[ "MIT" ]
etmwb/cvsegmentation
cvss/datasets/nyuv2.py
4,776
Python
# This file was scaffold by idol_mar, but it will not be overwritten, so feel free to edit. # This file will be regenerated if you delete it. from ...codegen.all.target.optional_method import ( AllTargetOptionalMethodSchema as OptionalMethodSchemaCodegen, ) class OptionalMethodSchema(OptionalMethodSchemaCodegen): pass
33
91
0.79697
[ "MIT" ]
corps/idol
test/src/lib/idol/py_mar/all/target/optional_method.py
330
Python
# -*- coding: utf-8 -*- import os import sqlite3 import logging logger = logging.getLogger("xtc") class sqlite_handle(object): def __init__(self): self.dbname = "Xsense.db" self.conn = None def db_init(self): # 初始化db task_info、apps、scripts、run_tasks self.db_table_all() conn = sqlite3.connect(self.dbname) try: for cre in self.create_dic: conn.execute(cre) # logger.info(cre) except Exception as e: logger.info("Create table failed: {}".format(e)) return False finally: conn.close() def insert_task(self,taskdict): # 插入任务信息 for conn = sqlite3.connect(self.dbname) for task in taskdict: conn.execute( 'INSERT INTO task_Info VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)',task ) conn.commit() conn.close() def insert_script_one(self,scriptOne): # 插入脚本信息 conn = sqlite3.connect(self.dbname) conn.execute( 'INSERT INTO scripts VALUES (?,?,?,?,?,?,?,?)',scriptOne ) conn.commit() conn.close() def insert_task_many(self,script_data): # 插入任务信息 多项 conn = sqlite3.connect(self.dbname) conn.executemany( 'INSERT INTO scripts VALUES (?,?,?,?,?,?,?,?)',script_data ) conn.commit() conn.close() def db_table_all(self): crt_task_info = '''CREATE TABLE IF NOT EXISTS task_info ( taskId INT, testTaskName TEXT, optType int,scriptId INT,scriptUrl TEXT, startDate int, endDate int, exeBeginTime TEXT, exeEndTime TEXT, exeType int, interval int, iterationNum int, startIterationNumber int );''' crt_scripts = '''CREATE TABLE IF NOT EXISTS scripts ( scriptId INT, scriptName TEXT, scriptType int,scriptUrl TEXT, uploadDate int, scriptMaxRunTime int, scriptVersion int, scriptCacheUrl TEXT );''' crt_apps = '''CREATE TABLE IF NOT EXISTS apps ( scriptId INT, appCheck int, appPackageName TEXT, appUrl TEXT, appMd5 TEXT, appVersion TEXT, appVersionCode TEXT, appLastUpdateTime TEXT, appCacheUrl TEXT );''' run_tasks = '''CREATE TABLE IF NOT EXISTS run_tasks ( taskId INT, testTaskName TEXT, optType int,scriptId INT,scriptUrl TEXT, startDate int, endDate int, exeBeginTime TEXT, exeEndTime TEXT, exeType int, interval int, iterationNum int, startIterationNumber int );''' create_dic = [] create_dic.append(crt_task_info) create_dic.append(crt_scripts) create_dic.append(crt_apps) create_dic.append(run_tasks) # 保存需要运行的任务 有必要么 self.create_dic = create_dic def query_runtask(self): conn = sqlite3.connect(self.dbname) taskrows = [] #元素为tuple,(205937, 'pyclient-test', 1, 107864, 'http://202.105.193....69910.zip', 20191006000000, 20201231235959, '000000', '235959', 2, 1, 1, 1) # 获取未完成的按次任务 不含重复项 新增+启动, exeType=2按次执行 exeType=1按时执行 # optType 1`=新增任务;`2`=暂停任务;`3`=启动任务;`4`=删除任务 for row in conn.execute('SELECT DISTINCT * FROM task_info WHERE optType=3 OR optType=1 AND exeType=2 AND startIterationNumber<=iterationNum'): taskrows.append(row) conn.close() return taskrows def dele_table(self): pass def query(self, sql, sqlstring=False): conn = sqlite3.connect(self.dbname) cursor = conn.cursor() # cursor = self.conn.cursor() if sqlstring: cursor.executemany(sql, sqlstring) else: cursor.execute(sql) data = cursor.fetchall() cursor.close() return data def update(self, sql, sqlstring=False): conn = sqlite3.connect(self.dbname) cursor = conn.cursor() # cursor = self.conn.cursor() if sqlstring: cursor.executemany(sql, sqlstring) else: cursor.execute(sql) conn.commit() cursor.close() def _update(self, sql, value=None, querymany=True): ret = True try: if querymany: self.update(sql, value) else: self.update(sql) #except SqliteException: except Exception as e: logger.info("error('执行sqlite: {} 时出错:{}')".format(sql, e)) ret = False return ret def del_task_byid(self, taskid): conn = sqlite3.connect(self.dbname) cursor = conn.cursor() sql = 'DELETE FROM task_info WHERE taskid={}'.format(taskid) cursor.execute(sql) logger.info("刪除taskid={} cursor.rowcount={}".format(taskid, str(cursor.rowcount))) conn.commit() cursor.close() conn.close() def update_task_run_status(self, taskid, status): conn = sqlite3.connect(self.dbname) cursor = conn.cursor() cursor.execute("UPDATE task_info SET optType={} WHERE taskid={}".format(status, taskid)) logger.info("更新taskid={},设置optType={},cursor.rowcount={}".format(taskid, status, str(cursor.rowcount))) conn.commit() cursor.close() conn.close() def update_task_run_count(self, taskid, run_count): conn = sqlite3.connect(self.dbname) cursor = conn.cursor() cursor.execute("UPDATE task_info SET startIterationNumber={} WHERE taskid={}".format(run_count, taskid)) logger.info("更新taskid={},startIterationNumber={},cursor.rowcount={}".format(taskid, run_count, str(cursor.rowcount))) conn.commit() cursor.close() conn.close() def updata_table(self): pass if __name__ == "__main__": handle = sqlite_handle() if not os.path.isfile(handle.dbname): handle.db_init() #taskrows = handle.query_runtask() #print("taskrows=" + str(taskrows)) #handle.del_task_byid("1235") handle.update_task_run_count("206266", 60) #handle.update_task_run_status("206266", "5") # 更新/删除 单条任务、更新 脚本信息 # 下载前查询数据库,如果脚本id已经存在,且更新时间一致 则不下载,否则下载-->入库 # 任务运行,先检查是否有新任务,如果有新任务,则入库, # 没有新任务,则查询数据库,任务id运行信息是否达到rm条件(过期、完成等) # 如果运行 轮次达到 总轮次 则del # 如果 结束时间超过当前时间 则del # 此处需要增加 id 排序 后再运行 # 运行完成后,更新 id对应的轮次信息 # 今天搞定 脚本运行和结果文件 ,然后做db update 和 remove
36.318436
167
0.591601
[ "MIT" ]
zxypic/PublicPic
client-autosense/sense/sqlite_syn.py
7,075
Python
def notas(*n, sit=False): """ Função para analisar notas e situação de varios alunos. :param n: Uma ou mais notas dos alunos (aceita varias) :param sit: Valor opcional, indicando se deve ou não adicionar a situação. :return: Dicionario com varias informações sobre a situação da turma. """ dic = dict() dic["total"] = len(n) dic["maior"] = max(n) dic["menor"] = min(n) dic["media"] = sum(n) / len(n) if sit: if media < 5: dic["situação"] = "Critica" elif media < 7: dic["situação"] = "Rasoavel" else: dic["situação"] = "Boa" return dic resp = notas(5, 4, 3, sit=True) print(resp)
25.777778
78
0.566092
[ "MIT" ]
Matheus-Henrique-Burey/Curso-de-Python
Modulo-03/ex105/ex105.py
713
Python
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals.
36.285714
77
0.740157
[ "Apache-2.0" ]
Aniruddha120/qiskit-aqua
test/aqua/operators/__init__.py
508
Python
import os import csv import shutil from datetime import datetime from numpy import logspace import torch import torch.nn as nn from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from torch.optim import Adam from dataset.e_piano import create_epiano_datasets, create_pop909_datasets from model.music_transformer import MusicTransformer from model.discriminator import MusicDiscriminator from model.classifier import CNNDiscriminator from model.loss import SmoothCrossEntropyLoss from utilities.constants import * from utilities.WGAN_GP import WassersteinLoss from utilities.device import get_device, use_cuda from utilities.lr_scheduling import LrStepTracker, get_lr from utilities.argument_funcs import parse_train_args, print_train_args, write_model_params from utilities.run_model import train_epoch, eval_model CSV_HEADER = ["Epoch", "Learn rate", "Avg Train loss", "Train Accuracy", "Avg Eval loss", "Eval accuracy"] dis_filter_sizes = [2, 3, 4, 5] dis_num_filters = [300, 300, 300, 300] # Baseline is an untrained epoch that we evaluate as a baseline loss and accuracy BASELINE_EPOCH = -1 # main def main(): """ ---------- Author: Damon Gwinn ---------- Entry point. Trains a model specified by command line arguments ---------- """ args = parse_train_args() print_train_args(args) if(args.force_cpu): use_cuda(False) print("WARNING: Forced CPU usage, expect model to perform slower") print("") eventid = f"{datetime.now().strftime('MusicTransformer-%Y.%m.%d')}_gan_{args.gan}_creative_{args.creative}_ce_{args.ce_smoothing}" args.output_dir = args.output_dir + "/" + eventid os.makedirs(args.output_dir, exist_ok=True) ##### Output prep ##### params_file = os.path.join(args.output_dir, "model_params.txt") write_model_params(args, params_file) weights_folder = os.path.join(args.output_dir, "weights") os.makedirs(weights_folder, exist_ok=True) results_folder = os.path.join(args.output_dir, "results") os.makedirs(results_folder, exist_ok=True) results_file = os.path.join(results_folder, "results.csv") best_loss_file = os.path.join(results_folder, "best_loss_weights.pickle") best_acc_file = os.path.join(results_folder, "best_acc_weights.pickle") best_loss_critic_file = os.path.join(results_folder, "best_loss_critic_weights.pickle") best_acc_critic_file = os.path.join(results_folder, "best_acc_critic_weights.pickle") best_loss_classifier_file = os.path.join( results_folder, "best_loss_classifier_weights.pickle") best_acc_classifier_file = os.path.join( results_folder, "best_acc_classifier_weights.pickle") best_text = os.path.join(results_folder, "best_epochs.txt") ##### Tensorboard ##### if(args.no_tensorboard): tensorboard_summary = None else: from torch.utils.tensorboard import SummaryWriter tensorboad_dir = os.path.join(args.output_dir, "tensorboard/" + eventid) tensorboard_summary = SummaryWriter(log_dir=tensorboad_dir) ##### Datasets ##### # 데이터셋이 바뀌기 때문에 아래와같이 해주어야함 if args.interval and args.octave: print("octave interval dataset!!") classic_train, classic_val, classic_test = create_epiano_datasets('./dataset/octave_interval_e_piano', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave) pop909_dataset = create_pop909_datasets('./dataset/logscale_pop909', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) elif args.octave and args.fusion_encoding and args.absolute: print("absolute dataset!!") classic_train, classic_val, classic_test = create_epiano_datasets('./dataset/octave_fusion_absolute_e_piano', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave, fusion = args.fusion_encoding, absolute = args.absolute) pop909_dataset = create_pop909_datasets('./dataset/pop909_absolute', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave, fusion = args.fusion_encoding, absolute = args.absolute) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) elif args.interval and not args.octave: print("interval dataset!!") classic_train, classic_val, classic_test = create_epiano_datasets('./dataset/logscale_e_piano', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave) pop909_dataset = create_pop909_datasets('./dataset/logscale_pop909', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) elif args.octave and args.fusion_encoding: print("Octave_fusion dataset!!") classic_train, classic_val, classic_test = create_epiano_datasets('./dataset/octave_fusion_e_piano', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave, fusion = args.fusion_encoding) pop909_dataset = create_pop909_datasets('./dataset/logscale_pop909', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave, fusion = args.fusion_encoding) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) elif not args.interval and args.octave and not args.fusion_encoding: print("Octave dataset!!") classic_train, classic_val, classic_test = create_epiano_datasets('./dataset/octave_e_piano', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave) pop909_dataset = create_pop909_datasets('./dataset/pop909_octave', args.max_sequence, condition_token=args.condition_token, interval = args.interval, octave = args.octave) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) elif args.logscale: print("logscvale dataset") classic_train, classic_val, classic_test = create_epiano_datasets('./dataset/logscale_epiano0420', args.max_sequence, random_seq=True, condition_token=args.condition_token, interval = args.interval, octave = args.octave, logscale=args.logscale, absolute = args.absolute) pop909_dataset = create_pop909_datasets('./dataset/logscale_pop0420', args.max_sequence, random_seq=True, condition_token=args.condition_token, interval = args.interval, octave = args.octave, logscale=args.logscale, absolute = args.absolute) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) else: classic_train, classic_val, classic_test = create_epiano_datasets(args.classic_input_dir, args.max_sequence, condition_token = args.condition_token, octave = args.octave) pop909_dataset = create_pop909_datasets('dataset/pop_pickle/', args.max_sequence, condition_token = args.condition_token, octave = args.octave) pop_train, pop_valid, pop_test = torch.utils.data.random_split(pop909_dataset, [int(len(pop909_dataset) * 0.8), int(len(pop909_dataset) * 0.1), len(pop909_dataset) - int(len(pop909_dataset) * 0.8) - int(len(pop909_dataset) * 0.1)], generator=torch.Generator().manual_seed(42)) if args.data == 'both': print("Dataset: both") train_dataset = torch.utils.data.ConcatDataset([ classic_train, pop_train]) val_dataset = torch.utils.data.ConcatDataset([ classic_val, pop_valid]) elif args.data == 'classic': print("Dataset: classic") train_dataset = torch.utils.data.ConcatDataset([classic_train]) val_dataset = torch.utils.data.ConcatDataset([classic_val]) else: print("Dataset: pop") train_dataset = torch.utils.data.ConcatDataset([pop_train]) val_dataset = torch.utils.data.ConcatDataset([pop_valid]) test_dataset = torch.utils.data.ConcatDataset([classic_test, pop_test]) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.n_workers, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.n_workers) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.n_workers) model = MusicTransformer(n_layers=args.n_layers, num_heads=args.num_heads, d_model=args.d_model, dim_feedforward=args.dim_feedforward, dropout=args.dropout, max_sequence=args.max_sequence, rpr=args.rpr, condition_token = args.condition_token, interval = args.interval, octave = args.octave, fusion = args.fusion_encoding, absolute = args.absolute, logscale=args.logscale).to(get_device()) # EY critic # num_prime = args.num_prime critic = MusicDiscriminator(n_layers=args.n_layers // 2, num_heads=args.num_heads // 2, d_model=args.d_model // 2, dim_feedforward=args.dim_feedforward // 2, dropout=args.dropout, max_sequence=args.max_sequence, rpr=args.rpr).to(get_device()) classifier = MusicDiscriminator(n_layers=args.n_layers // 2, num_heads=args.num_heads // 2, d_model=args.d_model // 2, dim_feedforward=args.dim_feedforward // 2, dropout=args.dropout, max_sequence=args.max_sequence, rpr=args.rpr).to(get_device()) if args.creative: classifier.load_state_dict(torch.load('best_classifier_acc_0.9883.pickle')) ##### Continuing from previous training session ##### start_epoch = BASELINE_EPOCH if(args.continue_weights is not None): if(args.continue_epoch is None): print("ERROR: Need epoch number to continue from (-continue_epoch) when using continue_weights") return else: model.load_state_dict(torch.load(args.continue_weights)) start_epoch = args.continue_epoch elif(args.continue_epoch is not None): print("ERROR: Need continue weights (-continue_weights) when using continue_epoch") return ##### Lr Scheduler vs static lr ##### if(args.lr is None): if(args.continue_epoch is None): init_step = 0 else: init_step = args.continue_epoch * len(train_loader) lr = LR_DEFAULT_START lr_stepper = LrStepTracker(args.d_model, SCHEDULER_WARMUP_STEPS, init_step) else: lr = args.lr ##### Not smoothing evaluation loss ##### if args.interval and args.octave: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD_OCTAVE_INTERVAL) elif args.interval and not args.octave: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD_INTERVAL) elif args.octave and args.fusion_encoding and args.absolute: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD_OCTAVE_FUSION_ABSOLUTE) elif args.octave and args.fusion_encoding: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD_OCTAVE_FUSION) elif not args.interval and args.octave and not args.fusion_encoding: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD_OCTAVE) elif args.logscale: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD_RELATIVE) else: eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD) ##### SmoothCrossEntropyLoss or CrossEntropyLoss for training ##### if(args.ce_smoothing is None): train_loss_func = eval_loss_func else: if args.interval and args.octave: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE_OCTAVE_INTERVAL, ignore_index=TOKEN_PAD_INTERVAL) elif args.interval and not args.octave: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE_INTERVAL, ignore_index=TOKEN_PAD_INTERVAL) elif not args.interval and args.octave and args.fusion_encoding and args.absolute: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE_OCTAVE_FUSION_ABSOLUTE, ignore_index=TOKEN_PAD_OCTAVE_FUSION_ABSOLUTE) elif not args.interval and args.octave and args.fusion_encoding: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE_OCTAVE_FUSION, ignore_index=TOKEN_PAD_OCTAVE_FUSION) elif not args.interval and args.octave and not args.fusion_encoding: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE_OCTAVE, ignore_index=TOKEN_PAD_OCTAVE) elif args.logscale: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE_RELATIVE, ignore_index=TOKEN_PAD_RELATIVE) else: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, VOCAB_SIZE, ignore_index=TOKEN_PAD) ##### EY - WGAN Loss ##### classifier_loss_func = nn.MSELoss() ##### Optimizer ##### opt = Adam(model.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON) critic_opt = Adam(critic.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON) classifier_opt = Adam(classifier.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON) if(args.lr is None): lr_scheduler = LambdaLR(opt, lr_stepper.step) critic_lr_scheduler = LambdaLR(critic_opt, lr_stepper.step) classifier_lr_scheduler = LambdaLR(classifier_opt, lr_stepper.step) else: lr_scheduler = None ##### Tracking best evaluation accuracy ##### best_eval_acc = 0.0 best_eval_acc_epoch = -1 best_eval_loss = float("inf") best_eval_loss_epoch = -1 ##### Results reporting ##### if(not os.path.isfile(results_file)): with open(results_file, "w", newline="") as o_stream: writer = csv.writer(o_stream) writer.writerow(CSV_HEADER) ##### TRAIN LOOP ##### for epoch in range(start_epoch, args.epochs): # Baseline has no training and acts as a base loss and accuracy (epoch 0 in a sense) if(epoch >= BASELINE_EPOCH): print(SEPERATOR) print("NEW EPOCH:", epoch+1) print(SEPERATOR) print("") # Train # EY 고쳐야 할 부분의 시작 train_loss, train_acc, dis_loss, gen_loss, cre_loss, gan_accuracy, class_accuracy, creativity = train_epoch(epoch+1, model, critic, classifier, train_loader, train_loss_func, classifier_loss_func, opt, critic_opt, classifier_opt, lr_scheduler, critic_lr_scheduler, classifier_lr_scheduler, args) print(SEPERATOR) print("Evaluating:") else: print(SEPERATOR) print("Baseline model evaluation (Epoch 0):") # Eval # train_loss, train_acc = eval_model(model, train_loader, train_loss_func) eval_loss, eval_acc = eval_model(model, val_loader, eval_loss_func, args) # Learn rate lr = get_lr(opt) print("Epoch:", epoch+1) print("Avg train loss:", train_loss) print("Avg train acc:", train_acc) print("Avg eval loss:", eval_loss) print("Avg eval acc:", eval_acc) print(SEPERATOR) print("") new_best = False if(eval_acc > best_eval_acc): best_eval_acc = eval_acc best_eval_acc_epoch = epoch+1 torch.save(model.state_dict(), best_acc_file) torch.save(critic.state_dict(), best_acc_critic_file) torch.save(classifier.state_dict(), best_acc_classifier_file) new_best = True if(eval_loss < best_eval_loss): best_eval_loss = eval_loss best_eval_loss_epoch = epoch+1 torch.save(model.state_dict(), best_loss_file) torch.save(critic.state_dict(), best_loss_critic_file) torch.save(classifier.state_dict(), best_loss_classifier_file) new_best = True # Writing out new bests if(new_best): with open(best_text, "w") as o_stream: print("Best eval acc epoch:", best_eval_acc_epoch, file=o_stream) print("Best eval acc:", best_eval_acc, file=o_stream) print("") print("Best eval loss epoch:", best_eval_loss_epoch, file=o_stream) print("Best eval loss:", best_eval_loss, file=o_stream) if(not args.no_tensorboard): tensorboard_summary.add_scalar("Avg_CE_loss/train", train_loss, global_step=epoch+1) tensorboard_summary.add_scalar("Avg_CE_loss/eval", eval_loss, global_step=epoch+1) tensorboard_summary.add_scalar("Accuracy/train", train_acc, global_step=epoch+1) tensorboard_summary.add_scalar("Accuracy/eval", eval_acc, global_step=epoch+1) tensorboard_summary.add_scalar("Learn_rate/train", lr, global_step=epoch+1) tensorboard_summary.add_scalar("Critic_loss/train", dis_loss, global_step=epoch+1) tensorboard_summary.add_scalar("Gen_loss/train", gen_loss, global_step=epoch+1) tensorboard_summary.add_scalar("Creativity_loss/train", cre_loss, global_step=epoch+1) tensorboard_summary.add_scalar("GAN_accuracy/train", gan_accuracy, global_step=epoch+1) tensorboard_summary.add_scalar("Class_accuracy/train", class_accuracy, global_step=epoch+1) tensorboard_summary.add_scalar("Creativity/train", creativity, global_step=epoch+1) tensorboard_summary.flush() if((epoch+1) % args.weight_modulus == 0): epoch_str = str(epoch+1).zfill(PREPEND_ZEROS_WIDTH) path = os.path.join(weights_folder, "epoch_" + epoch_str + ".pickle") torch.save(model.state_dict(), path) with open(results_file, "a", newline="") as o_stream: writer = csv.writer(o_stream) writer.writerow([epoch+1, lr, train_loss, train_acc, eval_loss, eval_acc]) # Sanity check just to make sure everything is gone if(not args.no_tensorboard): tensorboard_summary.flush() return if __name__ == "__main__": main()
56.356021
307
0.645113
[ "MIT" ]
yeong35/MusicTransformer-Pytorch
train.py
21,588
Python
# Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This code accompanies this codelab: https://codelabs.developers.google.com/codelabs/pyspark-bigquery/. # This is a script for backfilling a set of data from Reddit into Google Cloud Storage # Python imports import re import time import sys # A Spark Session is how we interact with Spark SQL to create Dataframes from pyspark.sql import SparkSession # PySpark function for replacing characters using a regex. We'll use this to remove newline characters. from pyspark.sql.functions import regexp_replace, col # Library for interacting with Google Cloud Storage from google.cloud import storage # This will help catch some PySpark errors from py4j.protocol import Py4JJavaError # Create a SparkSession under the name "reddit". Viewable via the Spark UI spark = SparkSession.builder.appName("reddit").getOrCreate() # Establish a set of years and months to iterate over year = sys.argv[1] month = sys.argv[2] bucket_name = sys.argv[3] # Establish a subreddit to process subreddit = 'food' # Set Google Cloud Storage temp location path = "tmp" + str(time.time()) # Keep track of all tables accessed via the job tables_read = [] # In the form of <project-id>.<dataset>.<table> table = f"fh-bigquery.reddit_posts.{year}_{month}" # If the table doesn't exist we will simply continue and not # log it into our "tables_read" list try: df = spark.read.format('bigquery').option('table', table).load() except Py4JJavaError: print(f"{table} does not exist. ") sys.exit(0) print(f"Processing {table}.") # Select the "title", "selftext" and "created_utc" columns of the designated subreddit and # replace newline characters with a single space subreddit_timestamps = ( df .select( regexp_replace(col("title"), "\n", " "), regexp_replace(col("selftext"), "\n", " "), "created_utc" ) .where(df.subreddit == subreddit) ) tmp_output_path = "gs://" + bucket_name + "/" + path + "/" + year + "/" + month # Write output to our temp GCS bucket. Spark jobs can be written out to multiple files # and partitions. By using coalesce, we ensure the output is consolidated to a single file. # We then use .options to tell Spark to write out in a gzip format, and .csv to do the write. ( subreddit_timestamps # Data can get written out to multiple files / partition. # This ensures it will only write to 1. .coalesce(1) .write # Gzip the output file .options(codec="org.apache.hadoop.io.compress.GzipCodec") # Write out to csv .csv(tmp_output_path) ) # Lastly, we'll move the temp file to a new bucket and delete the temp directory. regex = "part-[0-9a-zA-Z\-]*.csv.gz" new_path = "/".join(["reddit_posts", year, month, subreddit + ".csv.gz"]) # Create the storage client storage_client = storage.Client() # Create an object representing the original bucket source_bucket = storage_client.get_bucket(bucket_name) # Grab all files in the source bucket. Typically there is also a _SUCCESS file, inside of the # directory, so we'll make sure to find our single csv file. buckets = list(source_bucket.list_blobs(prefix=path)) for bucket in buckets: name = bucket.name # Locate the file that represents our partition. Copy to new location and # delete temp directory. if re.search(regex, name): blob = source_bucket.blob(name) source_bucket.copy_blob(blob, source_bucket, new_path) blob.delete()
35.561404
105
0.715836
[ "Apache-2.0" ]
aosterloh/cloud-dataproc
codelabs/spark-bigquery/backfill.py
4,054
Python
def sample_mean(a, b, c): try: a = int(a) b = int(b) c = int(c) mean_numbers = [a, b, c] d = len(mean_numbers) result_mean = (a + b + c)/d return float(result_mean) except ZeroDivisionError: print("Error: Number Not Valid") except ValueError: print("Error: Only Numeric Values")
25.928571
43
0.53168
[ "MIT" ]
brittrubil/miniProject2-601
Statistics/SampleMean.py
363
Python
import random import unittest from domain_tree.tree import DomainTree, DomainNode, NodeNotFoundException from domain_tree.domain import RealDomain, RealInterval class TestDomainTree(unittest.TestCase): @classmethod def setUpClass(cls) -> None: pass @classmethod def tearDownClass(cls) -> None: pass def setUp(self): # self.d0 = {"x0": (0, 1)} self.d0 = RealDomain({"x0": RealInterval((0, 1), (True, False))}) def tearDown(self) -> None: pass def test_npartition(self): tree = DomainTree(domains=self.d0, min_split=0.5) self.assertEqual(len(tree.leaves), 2) tree = DomainTree(domains=self.d0, min_split=0.3) self.assertIn(len(tree.leaves), [2, 3]) tree = DomainTree(domains=self.d0, min_split=0.2) self.assertIn(len(tree.leaves), [3, 4, 5]) tree = DomainTree(domains=self.d0, min_split=0, depth_max=5) n = (2 ** 5) / 2 self.assertEqual(len(tree.leaves), n) def test_stress_functions(self): for _ in range(10000): tree = DomainTree(domains=self.d0, min_split=0, depth_max=5) tree = DomainTree(domains=self.d0, min_split=0, depth_max=10) for _ in range(10000): tree.compute_f({"x0": random.random()}) with self.assertRaises(NodeNotFoundException): for _ in range(10000): tree.compute_f({"x0": random.random() + 1}) def test_contains(self): tree = DomainTree(domains=self.d0, min_split=0.5) x = {"x0": 0} self.assertTrue(tree.contains(x)) x = {"x0": 1} self.assertFalse(tree.contains(x)) x = {"x0": 0.5} self.assertTrue(tree.contains(x)) #d = {"x0": (0, 1), "x1": (2, 3)} d = RealDomain({"x0": RealInterval((0, 1), (True, False)), "x1": RealInterval((2, 3), (True, False))}) tree = DomainTree(domains=d, min_split=0.5) x = {"x0": 0, "x1": 2} self.assertTrue(tree.contains(x)) x = {"x0": 1, "x1": 2} self.assertFalse(tree.contains(x)) x = {"x0": 0.5, "x1": 2.99} self.assertTrue(tree.contains(x)) d = RealDomain({"x0": RealInterval((0, 1), (True, True)), "x1": RealInterval((2, 3), (False, False))}) tree = DomainTree(domains=d, min_split=0.5) #tree.print_tree() x = {"x0": 0, "x1": 2} self.assertFalse(tree.contains(x)) x = {"x0": 0, "x1": 2.5} self.assertTrue(tree.contains(x)) def test_compute_f(self): tree = DomainTree(domains=self.d0, min_split=0.5) with self.assertRaises(NodeNotFoundException): tree.node_which_contains({"x0": -12}) x = {"x0": 0} node = tree.node_which_contains(x) self.assertIsNotNone(node.regression) b = node.regression.coef_[0] c = node.regression.intercept_ self.assertEqual(node.regression.predict([list(x.values())]), b * x[list(x.keys())[0]] + c) self.assertEqual(tree.compute_f(x), node.regression.predict([list(x.values())])) class TestDomainNode(unittest.TestCase): def setUp(self): self.val = 10 d = RealDomain({"x0": RealInterval((0, 1), (True, False)), "x1": RealInterval((2, 3), (True, False))}) self.node = DomainNode(name="nome", domains=d, val=self.val) def tearDown(self) -> None: pass def test_generate_regression(self): self.node.generate_regression() self.assertIsNotNone(self.node.regression) self.assertIsNotNone(self.node.regression.coef_) self.assertIsNotNone(self.node.regression.intercept_) def test_contains(self): self.assertTrue(self.node.contains({"x0": 0, "x1": 2})) self.assertTrue(self.node.contains({"x0": 0.5, "x1": 2.5})) self.assertFalse(self.node.contains({"x0": 1, "x1": 2})) self.assertFalse(self.node.contains({"x0": 1, "x1": 3})) self.assertFalse(self.node.contains({"x0": 0.2, "x1": 3})) def test_kill(self): self.node.dostuff(random=0.5) self.assertIn(self.node.val, [self.val - 2, self.val - 1]) self.node.kill() self.assertEqual(self.node.val, 0) if __name__ == "__main__": unittest.main()
33.48855
111
0.57488
[ "BSD-3-Clause" ]
virtualms/DomainTree
test/test_tree.py
4,387
Python
from django.contrib import admin from django.urls import path from django.contrib.auth import views as auth_views from dashboard.views import index from visitantes.views import registrar_visitante, informacoes_visitante, finalizar_visita urlpatterns = [ path('admin/', admin.site.urls), path('', index, name='index'), path('registrar-visitante/', registrar_visitante, name='registrar_visitante'), path('visitantes/<int:id>/', informacoes_visitante, name='informacoes_visitante'), path('visitantes/<int:id>/finalizar-visita/', finalizar_visita, name='finalizar_visita'), path('login/', auth_views.LoginView.as_view(template_name='login.html'), name='login'), path('logout/', auth_views.LogoutView.as_view(template_name='logout.html'), name='logout'), ]
46
95
0.757033
[ "MIT" ]
lucasazevedo/visitor-control
project/urls.py
782
Python
# Copyright 2014, Doug Wiegley, A10 Networks. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_config import fixture as oslo_fixture import octavia.common.config as config import octavia.tests.unit.base as base class TestConfig(base.TestCase): def test_sanity(self): config.init([]) config.setup_logging(cfg.CONF) # Resetting because this will cause inconsistent errors when run with # other tests self.addCleanup(cfg.CONF.reset) def test_validate_server_certs_key_passphrase(self): conf = self.useFixture(oslo_fixture.Config(config.cfg.CONF)) conf.config( group="certificates", server_certs_key_passphrase="insecure-key-do-not-use-this-key" ) # Test too short self.assertRaises(ValueError, conf.config, group="certificates", server_certs_key_passphrase="short_passphrase") # Test too long self.assertRaises( ValueError, conf.config, group="certificates", server_certs_key_passphrase="long-insecure-key-do-not-use-this") # Test invalid characters self.assertRaises( ValueError, conf.config, group="certificates", server_certs_key_passphrase="insecure-key-do-not-u$e-this-key")
37.423077
79
0.660843
[ "Apache-2.0" ]
yi-cloud/octavia
octavia/tests/unit/common/test_config.py
1,946
Python
import math numero_turmas = int(input('Qual o número de turmas? ')) for _ in range(numero_turmas): numero_alunos = int(input('Qual o número de alunos? ')) soma = 0 menor = math.inf maior = 0 for i in range(numero_alunos): nota = float(input(f'Qual a nota do aluno {i + 1}? ')) soma += nota if menor > nota: menor = nota if maior < nota: maior = nota print(f'A média é {soma / numero_alunos}. A menor nota é {menor}, e a maior é {maior}.')
30.588235
92
0.578846
[ "Unlicense" ]
profamaroca/Lista3-1
14.py
526
Python
import getpass, platform, sys, threading from .. util import log from . control import ExtractedControl # See https://stackoverflow.com/questions/42603000 DARWIN_ROOT_WARNING = """ In MacOS, pynput must to be running as root in order to get keystrokes. Try running your program like this: sudo %s <your commands here> """ INSTALL_ERROR = """ Please install the pynput library with $ pip install pynput """ try: import pynput except ImportError: pynput = Listener = None else: class Listener(pynput.keyboard.Listener): def join(self, timeout=None): # join() on pynput.keyboard.Listener waits on a queue... self._queue.put(None) return super().join(timeout) def keyname(key): return getattr(key, 'name', None) or getattr(key, 'char') class Keyboard(ExtractedControl): EXTRACTOR = { 'keys_by_type': { 'press': ['type', 'key'], 'release': ['type', 'key'], }, 'normalizers': { 'key': keyname, }, } def _press(self, key): self.receive({'type': 'press', 'key': key}) def _release(self, key): self.receive({'type': 'release', 'key': key}) def _make_thread(self): if not pynput: raise ValueError(INSTALL_ERROR) if platform.platform().startswith('Darwin'): if getpass.getuser() != 'root': log.warning(DARWIN_ROOT_WARNING, sys.argv[0]) log.info('Starting to listen for keyboard input') return Listener(self._press, self._release)
23.279412
71
0.60897
[ "MIT" ]
8cH9azbsFifZ/BiblioPixel
bibliopixel/control/keyboard.py
1,583
Python
# # Autogenerated by Frugal Compiler (3.4.7) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from frugal.util import make_hashable from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol class base_health_condition(int): PASS = 1 WARN = 2 FAIL = 3 UNKNOWN = 4 _VALUES_TO_NAMES = { 1: "PASS", 2: "WARN", 3: "FAIL", 4: "UNKNOWN", } _NAMES_TO_VALUES = { "PASS": 1, "WARN": 2, "FAIL": 3, "UNKNOWN": 4, } class thing(object): """ Attributes: - an_id - a_string """ def __init__(self, an_id=None, a_string=None): self.an_id = an_id self.a_string = a_string def read(self, iprot): iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.an_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.a_string = iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.validate() def write(self, oprot): self.validate() oprot.writeStructBegin('thing') if self.an_id is not None: oprot.writeFieldBegin('an_id', TType.I32, 1) oprot.writeI32(self.an_id) oprot.writeFieldEnd() if self.a_string is not None: oprot.writeFieldBegin('a_string', TType.STRING, 2) oprot.writeString(self.a_string) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(make_hashable(self.an_id)) value = (value * 31) ^ hash(make_hashable(self.a_string)) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class nested_thing(object): """ Attributes: - things """ def __init__(self, things=None): self.things = things def read(self, iprot): iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.things = [] (_, elem78) = iprot.readListBegin() for _ in range(elem78): elem79 = thing() elem79.read(iprot) self.things.append(elem79) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.validate() def write(self, oprot): self.validate() oprot.writeStructBegin('nested_thing') if self.things is not None: oprot.writeFieldBegin('things', TType.LIST, 1) oprot.writeListBegin(TType.STRUCT, len(self.things)) for elem80 in self.things: elem80.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(make_hashable(self.things)) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class api_exception(TException): def read(self, iprot): iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.validate() def write(self, oprot): self.validate() oprot.writeStructBegin('api_exception') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __str__(self): return repr(self) def __hash__(self): value = 17 return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
27.463054
84
0.535785
[ "Apache-2.0" ]
dustyholmes-wf/frugal
test/expected/python.asyncio/actual_base/ttypes.py
5,575
Python
from fastapi_utils.inferring_router import InferringRouter from . import views router = InferringRouter() router.include_router(views.router, prefix='/api', tags=['api'])
25.571429
65
0.765363
[ "MIT" ]
zhaojiejoe/fastapi-friendly-response-demo
api/__init__.py
179
Python
import komand from .schema import CreateRecordInput, CreateRecordOutput # Custom imports below class CreateRecord(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="create_record", description="Create a new SObject record", input=CreateRecordInput(), output=CreateRecordOutput(), ) def run(self, params={}): object_name = params.get("object_name", "Account") object_data = params.get("object_data") record = self.connection.api.create_record(object_name, object_data) try: id_ = record["id"] except KeyError: self.logger.error("Error: id key is missing from record.") id_ = "Not available" if record.get("success"): return {"id": id_} else: return {}
27.34375
76
0.595429
[ "MIT" ]
GreyNoise-Intelligence/insightconnect-plugins
salesforce/komand_salesforce/actions/create_record/action.py
875
Python
import os import numpy as np import pandas as pd from sklearn.preprocessing import OneHotEncoder,LabelEncoder,StandardScaler from sklearn.decomposition import TruncatedSVD,PCA from sklearn.metrics.pairwise import cosine_similarity,pairwise_distances from sklearn.feature_extraction.text import TfidfVectorizer SEED = 2048 np.random.seed(SEED) PATH = os.path.expanduser("~") + "/data/quora/" train = pd.read_csv(PATH + "train_porter.csv")#, nrows=5000) test = pd.read_csv(PATH + "test_porter.csv")#, nrows=5000) test['is_duplicated'] = [-1]*test.shape[0] len_train = train.shape[0] data_all = pd.concat([train,test]) def calc_set_intersection(obj,target): a = set(obj.split()) b = set(target.split()) return (len(a.intersection(b))*1.0) / (len(a)*1.0) print('Generate intersection') train_interaction = train.astype(str).apply(lambda x: calc_set_intersection(x['question1'],x['question2']),axis=1) test_interaction = test.astype(str).apply(lambda x: calc_set_intersection(x['question1'],x['question2']),axis=1) pd.to_pickle(train_interaction,PATH+"train_interaction.pkl") pd.to_pickle(test_interaction,PATH+"test_interaction.pkl") print('Generate porter intersection') train_porter_interaction = train.astype(str).apply(lambda x:calc_set_intersection(x['question1_porter'],x['question2_porter']),axis=1) test_porter_interaction = test.astype(str).apply(lambda x:calc_set_intersection(x['question1_porter'],x['question2_porter']),axis=1) pd.to_pickle(train_porter_interaction, PATH+"train_porter_interaction.pkl") pd.to_pickle(test_porter_interaction, PATH+"test_porter_interaction.pkl")
45.542857
134
0.788582
[ "MIT" ]
zonemercy/Kaggle
quora/pyfm/generate_interaction.py
1,594
Python
class Animal: _number_of_legs = 0 _pairs_of_eyes = 0 def __init__(self, age): self._age = age print("Animal created") @property def age(self): return self._age @age.setter def age(self, age): self._age = age def print_legs_and_eyes(self): print("I have " + str(self._number_of_legs) + " legs and " + str(self._pairs_of_eyes * 2) + " eyes.") def print_age(self): print("I am " + str(self._age) + " years old.") class Mammal(Animal): _pairs_of_eyes = 1 def __init__(self, age, is_pregnant=False): super().__init__(age) self._is_pregnant = is_pregnant print("Mammal created") @property def is_pregnant(self): return self._is_pregnant @is_pregnant.setter def is_pregnant(self, is_pregnant): self._is_pregnant = is_pregnant class DomesticMammal(Mammal): def __init__(self, name, age, favorite_toy, is_pregnant=False): super().__init__(age, is_pregnant) self._name = name self._favorite_toy = favorite_toy print("DomesticMammal created") @property def name(self): return self._name @property def favorite_toy(self): return self._favorite_toy @favorite_toy.setter def favorite_toy(self, favorite_toy): self._favorite_toy = favorite_toy def talk(self): print(self._name + ": talks") class Dog(DomesticMammal): _number_of_legs = 4 _breed = "Just a dog" _breed_family = "Dog" def __init__(self, name, age, favorite_toy, is_pregnant=False): super().__init__(name, age, favorite_toy, is_pregnant) print("Dog created") def bark(self, times=1, other_domestic_mammal=None, is_angry=False): message = self.name if other_domestic_mammal is not None: message += " to " + other_domestic_mammal.name + ": " else: message += ": " if is_angry: message += "Grr " message += "Woof " * times print(message) def talk(self): self.bark() @classmethod def print_breed(cls): print(cls._breed) @classmethod def print_breed_family(cls): print(cls._breed_family) class TerrierDog(Dog): _breed = "Terrier dog" _breed_family = "Terrier" def __init__(self, name, age, favorite_toy, is_pregnant=False): super().__init__(name, age, favorite_toy, is_pregnant) print("TerrierDog created") class SmoothFoxTerrier(TerrierDog): _breed = "Smooth Fox Terrier" def __init__(self, name, age, favorite_toy, is_pregnant=False): super().__init__(name, age, favorite_toy, is_pregnant) print("SmoothFoxTerrier created") class Animal: _number_of_legs = 0 _pairs_of_eyes = 0 def __init__(self, age): self._age = age print("Animal created") @property def age(self): return self._age @age.setter def age(self, age): self._age = age def print_legs_and_eyes(self): print("I have " + str(self._number_of_legs) + " legs and " + str(self._pairs_of_eyes * 2) + " eyes.") def print_age(self): print("I am " + str(self._age) + " years old.") def __lt__(self, other): return self.age < other.age def __le__(self, other): return self.age <= other.age def __gt__(self, other): return self.age > other.age def __ge__(self, other): return self.age >= other.age SmoothFoxTerrier.print_breed() SmoothFoxTerrier.print_breed_family() tom = SmoothFoxTerrier("Tom", 5, "Sneakers") print(isinstance(tom, Animal)) print(isinstance(tom, Mammal)) print(isinstance(tom, DomesticMammal)) print(isinstance(tom, Dog)) print(isinstance(tom, TerrierDog)) print(isinstance(tom, SmoothFoxTerrier)) pluto = SmoothFoxTerrier("Pluto", 6, "Tennis ball") goofy = SmoothFoxTerrier("Goofy", 8, "Soda bottle") print(tom > pluto) print(tom < pluto) print(goofy >= tom) print(tom <= goofy) tom.bark() tom.bark(2) tom.bark(2, pluto) tom.bark(3, pluto, True)
23.097297
110
0.608238
[ "MIT" ]
Archive-42/Lambda-Resource-Static-Assets
2-resources/_External-learning-resources/00-Javascript/Object-oriented-programming-for-JavaScript/Module 2/B04710_CodeBundle/Chapter 4/B04170_04_Python_Draft_01.py
4,273
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import base64 import lzma from ... import TestUnitBase from refinery.units.formats.office.xlxtr import _ref2rc, _rc2ref class TestCellIndexConverter(TestUnitBase): def test_concistency(self): for row in range(1, 12): for col in range(1, 12): ref = _rc2ref(row, col) r, c = _ref2rc(ref) self.assertEqual((r, c), (row, col), F'({row},{col}) -> {ref} -> ({r}, {c}) != ({row},{col})') class TestExcelExtractor(TestUnitBase): def test_regular_xlsx(self): data = self.TEST_XLSX unit = self.load() self.assertEqual(unit(data), B'Binary\nRefinery.\nBinary Refinery.') xl1 = self.load('A1', 'R33', squeeze=True)(data) xl2 = self.load('2#E10')(data) xl3 = self.load('Refinery#E10')(data) self.assertEqual(xl2, xl3) self.assertEqual(xl1, b'BinaryRefinery.') self.assertEqual(xl2, b'Binary Refinery.') TEST_XLSX = lzma.decompress(base64.b85decode( '{Wp48S^xk9=GL@E0stWa8~^|S5YJf5;3PvDAzc6{61-q2m(dT*lz$@h&uisO-M2S>G=qQEROhS?T`LVCl<0*Kr;j=qGZrTMa1_{74oZ0B;H_q6z{0fO2`#4p' 'Z(%@Rrb2l^+DIK4qbHHF_tmNDpz&Y$NlI-C6c(59S<hkLEM^A)s!{gk@qKO#f!<CU&7G31h2%4o%gM*%hC-@#t>rmqA<7aPOjP!YEkx*jkYln_Gs2{7ZcSSp' 'k%^+f{8_0fK#=AnGd4nKnS~b32=88*Gzk18vHibqY6IP;P8rsEd*hi%t(hYl<vzGV#mly+rRuPU?H$RjiOhkC&_Y^=3@n*lF-L-p{&*dA>A$-1cYhlULYXE~' '9lRf#_`OFa&uH^H|E#>F1+<slwderZG)kz>f=O+S%CnbmT=-*EXvyp=?C!#p@e|yqJFol$s>T6*DyGIxp^}#q4f#_*{FEDNWty4CtIr9?l}dTd2ZvRe4c(lw' 'DABO4`<xHUA!rFO$CY0pMP$7Ch|~lYzBzW26csva+1m`if>ts<6(kc$R^2wfYI_u<Q|ve2LG39foqnwf%7wRQd2S-u4FHQJN@YT;52pT!6{VrFCidv$Fyf;}' 'rH559u)j4P7JILO$#(5+ZYcGMZALFyO?bVadG%NCWt)~F^p=Pm29lCFbYt)Fedzu<1zSy|M+}&@hOGrpf$f_=Y#DSA@|#f687|=g$UxDWWJKOTp)mW6TzZ=^' 'p2l)f#+eE2G<HArbYwZE!pb>bRES(cfK<g8_b)!Kft2?rXK}=vK3~G(CX^_QX)BQi&gU31F}4c4VcB7TrBk^r&0ca1okiuv1q4^388j~{y%RNKdMWD;q7$3l' '#C;mMydS27!Koh*Bsd(dJ8m~*nz#&cRltJuz`RD02l;!L145|lg~%t7)#pZ6bT%^@aB5v|Mx2gU?|0@qMh{gR9r!(5QDnF8uc&l@Th{F@viY>d61j#TIyb8X' '61@K*a|ghIpbVLNf7H)(W5>emQ41R#dw<#Af~ZpQO|)JqOd_Vj*kk+pzMMj@w+^G{FQH|dL4#ia(qX?XVK!~^yYHeq(&}Ngxfz31xqCY)rD*@_3Pyn>pc~Wn' 'MYDkF4kdF2tAi&B|JQ~s4)B9`NTUl4qos<(L1M+~{2d!BjkqBUb0%v1*kgIrF+ptfh}s0W$bSkIfJEba^sYW_lhRuUo-$5(Fftuy6p{|&N2JPAGBvqFg`%Q)' '1cB<NMLt8qVvugS&hO*6_B9Kg?C_=TOZyGd>o8}DAXwo}7%+6|%=!Q&@h){<N`TgzUUJ67cJdcdXo;y#hyb@#8t&HY8P=kV)6}2jZhORE^Qab?zfQf7B_xQV' 'RK!+xABFg{33KMQ{4`>l&=iyiPUfI)c<LSMZ$G<RZa2rC=p3JGN`2;6a?#<4(EV$(=VK)cnGq^2NNZgPm;XW_n&r%)Tv0l1<R+xEEgpr*wA|*#_J_;WjMhx*' '2_V1cq6SWKO|ImPFM#_s4uUlRF5$o<bxhE8EI!Cp;wWYl$Rwb5FtH|uR2(*WCRKe{RcePa){nOIYL{IHzSvbnG=TE4j4@A1=U$eDy?6P-nQ|;;P(T(jnSv=m' 'A&Rh1<Lz=W1J+!8u%iw8-_zZAtJcr2%@WV=+r{F4QyRi-NYdmBUk!FaGe5&&sf5vL_S1fe>CT`VFqQJ@BYH?72AFt;%Y}5m9zy2-<(iY_-&tjDSa4w0OtaO1' '8tKtv_^&+^2ur(e<A~BD=}W({XC6cTLgOQNXL9dl25Uj~y?U_xM??>jmwHU+ICMbW#mHy;%;FmR7XxDT&|UA)JmOx6IY-%2Nzf6u%Ak^&L#DrA=cJ-qL+2V4' 'QaEix%b9zxe1xNE5#G23ON{#;_>8Kk9uORLt@ysrPLTL;n@tE%n;XrSU|Lbfw)ow=_ou8?#%|lEmF1WDbL}FKuGMr+{x400xau(;+mVCbvi;c!7;xGT@yFdV' 'O%KZ3Zd7>8k{6`<kvAq=;*cc=8so}&t<|n@0JZ0ilyz;t_j^nrUr_nSS-~|bLvwY%)Eezn(t5`=4(yJ3=C)R^NZ7aBvqw##zY<>uu=C59T>6kOvA{kgk@|v`' 's>pkG(&hxNnj-cSvL;G~#$Ew`FZiF$IM+7ut?;osAW_o%bvrhoYq6nZm9@=HAw>h4Pp#i=u)I}zReJI81}J1NlhYYmCJI!K?zcp6@Y#8Z3MQwQRUxzknnlp5' 'Rl_cFj`Wt<CU*@+s1`HvyHy~l=e_`sA<(R)nIRh{g7LFc>#eyLlRNK~<0x(GE1^FLwOTD6)j;!)u7?|Ed8uB8efa1bHZN)eQzTas@ce)BAOmvmldGs|(&vx<' '5<<8Fy}}2W=u;!65A`@sm;bxZvSJ7?a@dwF?Hm9qA<e_Li%pFt+<IhChQmdjO{g%kg(jDtI-dwJFT9Gy@;{Nj;_p=$7QGZ6J(<db_mP^Z0@hL`fMm~^emi-<' '#U}<C;1S7UX&q{)L&*;Bb4F4&hy!RF0|TGtm9!CB-zUI~7+XmC5f#gR?25`_79+(~-tv8S?S4f!r4*c$F!XRrO<4{vh^|w`l%t?0J>547bF1x6nFKL1FZME8' 'x>xF18ESM1s;wm*-x&m$NDpw?@x=<tlcE)STJnr9{NuK;#i6_2MYCPl%4Zq^9*$^R372ua6jwv>oH^mR0ioqk%%)Awns;#lrjXkIhYB_Vt*Pr*oTgse6Uazr' 'd)yUnaZ|Z`9?Q6aTHa2@m4`pd_?E;;Re)&<*otbim^DZ!V{~?+t%H;U2&V8O9CkMdW*tOzBErCD-E}{=Nl%~-`;W#E5$bMF8A-TOVDt09^K)tTG2cvWxLh%9' 'cuC?O7rL(QbGlAASV!M6dTB)pfy|#N5k4(Mdd*7+Mb<Fc^fR3BfFeEzF^|<<jpBXBM&T8{-77eX)1)UjzwbB1E&LZ4khDM^66En##rJ{5FB;62)1u0P(WW!?' 'lQ>ewk;iuv3T5ya!?u25bnj7}T|JgGJ#9v?s8&4#t^H+#psB8+5X2Nb(T)9WO*Vt|gLB|i#r-n1JMfe$j%Ph5SXMv_Tanlh$I>cVX}KMHqanK)`S{y}?Q*p%' 'q?-9=^4NCH4UFSGW?!(CtBYJuyypt+p0$nV^cK}KotkY2nSQndYOQFUvFVS3FW3?x>5yfLCco*5cW<@V1M^*WZG|(A0JM*3=9Sna%;2QH>md}mDc9$Mt3&b<' '9G4eqoW1wvVYXkau#+Amms%7l0aoEO^`4|P4TnM0ZoXb_xoe`WfYVjGR)VLd+Q_@wE=eFJLr%5%w|=*hWf977@eZKekfJ3;&92d7q=M_xzybcYrXD3rWUx7T' 'YtP}VErR+Qx_;gt-vsQ=`UR=~2p9|w1mvGLTHTzpFy}ehnsV!-@9w;Br-4Iy$oZ!4*Ll%|=GkY0?kD^ebMpDWalI!>y!qU=-PH<$+%SHQox|bdqM~E30Lu?y' 'n3PZbZ?~4RkXMF4T;wYcr7pG)Y;}^m^8PA7N*9B(6278}V(4CuTj{g8cnHCBjFEVl$#zR(-FckDWBH2kXxgM8VN!zSNkFRsiLX1J0e7IR-ok22b<Fh{0Zygn' 'a->J1Tx<^V>tdmaeJ-AACUvHtR6ZqlAQc@|nfUvSjY9l8N}O1iL6tlkQNk$0EBJwV(D`Rl=MKmb{EZ(M+d9%;77%vNLbvj%X;Q>8k8h<6zf-kMENA;DDq9?9' '-c<)(XUOK-37=JI@*2_!1<`E;#sXJ^h*;4qBLW;_Mqdg3;l@sO8%u?U%P9drSYd47l>^xT9m~sM>V(|XYphyEM=oa(c$R$_SoS+4>&;O_fr;olaT?C<i;vRU' '>Z8O<b2dxzIAJbmw!O!q;jOe}<&^u*MaLUU@LxD!+r5~a9H*A^$_=p#3ZXmDXf(Ty2c+E9sKficRn4c|8+AF4uuF9VhW4%}>6syvgejhm`t$tpvg6Jz^Mj8-' 'eJGh$HQ4_nYI6{Gq5tdgPaPK)6ehDCQ26}`@0(w}Y^jsD<S<4|2sfQd4)8g&VMHyPnhehJDk?3y@tj=^?fTchQ<Z_k7Q{seld!f7y2Ywsq3-BjBL~RJ=5!>)' 'HrxQ9A#UUcI9OGd_dxu$A@8Czd8m&#<QJ`NMc2=__EFY=>wz*j8D_g9qx!^5p-44yDeVK-*Gq+h`Egsr8Zykb6#8*Md3@|MQtCqirE)!j#`xE3#3A;CNhhW6' '@xeBsNwb7OLeXHM-mx$+KjZN~rhI!XRzXlWcBNb!0{QQkA>m)Ta~ke$Z)|_T1I7V2h|AKhLTNs87A1I@LGcUyR57K}(+;tyyC8y-FEcM0@?iXGNBemODlLlH' 'Mr&W(;)1Rbej$uqHn(yDH1F0kV@~eFf?-tYTXATJy75xajc$TygYO-K*F4I#iR*jVbT#0Sdc1yVJ~!nF1^f>mIxj#WHstZO4$~XMjt_&5m)E?ylIEe-l>(D!' 'Mw7{vPF6HG$F-4mG8(?dUrM(jcMhCc>w~{Ex93TcYS@D19c^KVJU^TjPDbY1#=Uo*b{(Gv7n|GEQI?et?&_b)@xjCL01(3wMnc**8<dg)VsKfN?;QKq*-WZ)' 'q@;?J7@QA^o5@YrEzLRbqL85Xn}ts4#pD44_rq|5fCqw#p~C9+4;y)=Dp3c|*;ZXTMF8FuRosDAR|5(w(ZGuW>E%_fgyG!r7?lqe3%xP?6V05D$y(VTsvUOT' 'RQ^YFF+kR~czqgECf1UH;jIk8r2hg10EZw_%qg1HJbY!EE)z8(=N8PB9wvri&LcM3CAHa~Zirs4h%N)MGC{rV+dfuhiX)QYc8+1rR=`2V+zGHRbmllDEAxHp' '5<BjB;1rT_p7x*Z(v-bV+>i}0tw8REAnOZTGG7W$nnx$)6{BQ+R|g58X;%wAPn`#jR3qZx53X`$$S}|bEg91k*?nTro+A~2&E&c8bAL%TiOH-=B0Dj={_BRs' 'zN_c*A9%woCER;T-@U)QT6Y*KB@#oPZMMU^)_cLl=aG57!=?!dINhxjR`Ad2cib22ZA>g)GQ}!oy<&=n)X-%0d%FsL#aNFDW*P*JZ{;gPC=bY4!wS)S?l&6g' 'P6jM($%?=15;a!OkD@n`fxgQD^$w&KfMrNsA$(M<5bG)@`poZAgOs7zR6<b(_4gthE?vWQx9oH$gktbx6#eVoF&Xe5SGj?`c4Ao`3W{RMIdubs0e`X_6hiFK' '>wynbkbfB+=3+_Q?eSa6QO0d~q7yubxNApHZEG1Hp||VtF*`Epn)YU>IO$zG_leh1K>qkB&wVr6gi`E{(q4nMnP9&;s(RCZ@vfO7zGg>mK5c_Y1Sg6{rCRjF' '>nlWlf=PT6<0yV|00WvnG1-5Un}Qq#53Bat2Q+!&tPTzivUE>N5ydL&9B19kAevrDy(wr<id^TwwLC1O<k;_iWc3Al{%JZBDtYK^2QRE%g{XBQK>RO)dC9ur' '@dAER%=sun5g7ZDw^S%4sIPS^s2JBddi`&zG>k9cE<1bsW}oa3e?YeDQ&KX<O;c9qMe=CF{Aa$9kInQ9TT5DSP>=GYt(Gg*5b{QCyON-vRaXXK>xC<i&$tt2' '8|53#7Dg@~Q`bM<Zrh)ti1;$!Az6zi<f(9>`#JA?QiV1cR(HH_v>Ov#2ANK_#yB+M?#;Nxp?jzw_nBF?R|2yAURu=_MNoe$F@vzOw_rP{es)Mih4nvYQqY%f' '>%2udb2Id;8z%n8M|N}@WUOK6lk%1+62-uL>X?x0^(=9Y%o;c`$8#a?kCmpiihl|Q+S^8)dNsvuEqmd)J<2`*U_(F9{q6Sj<v84blBU_=ikeoN_)5W<J!VAw' 'Sv$Ibl}+*I)>Qi(5y*2+-JLaxaUo`dNhioHs31)Ge(_tp+tQA>$|Gm~rxc`xRrz3dgbl<pfRlVz)6nvzGF>2$pK9lNm6NZx+A;1hh!Y^wq`e~y=n}-<6<e4<' '`*ul_NDY@>-g1WZ7hMwR?&tw9dyu+yY)xfY(Dxz$RK4(dU`!)mqVpN&qWD~f^V+}I=fWT<KC$YC_833-rC&s|-&P@2ne_N3A*te>b=X=Eek@lN46s;fVDhJ3' '^0`2@#<^2lA)H$6PSfhS?T3)G^?2IsKn{*Dcx9GZ>V1;)^ERS%jQdawwN@DFWmV_f?Max{4e??;&;7K<!{h(WPyGD{+@L*u(wzmx;X?xF{eUiKds($%ES*Ym' '@~7q)`@30*YJ|TX!8tw+6+2AlC{V-75h&3sf|h$oyap$59-bkLE$lBVKy1<dt?%3gfzvf!xPmrvI?%b7BV-?+9fzF(^>Rh&lc!B=7&O#O89HJ}8FtKJ8;*`G' '#oG&ackie*nZ<;gf4|RfL;3yJAyqllmLUY|?+yJh`Mg~?S^7{RY=Fzu=lz$Qg`QXCXTenb*>MO)qZKpGp?w@Wfo$u4oGUgZBL8~f!=1#)#f($a&NhjkJ@-g*' '+|f`#ugApNgEbuU`g6DMU9FM%e5J^mP;<ieN^1hy#Qk2#I>7|+b#|2|XaIX$?zVFH1@WR&)QzgwuL-#U&fG=uM=T9yeNcpwB+pV^h(zB$ZU5<M5gGqvOeN#N' 'yVgbJ5<P11H}3-iK3WH)3&P%7HtVj_bQtmFcv{$s2yL*)Ii>v+ikrq*68vX=BgM4X#SvNA<ltrz-GE}KFtMrB(_&Z~V@}q;HCn15$x(Pijd=!-;U6Z~PoF&^' '0bkjt88le{rYSw?&3;UjOaX^gf3jGo@-xA5b()&3rH;aQgcyLDn(s~vim6}iRS{UhiHDj6J>u2XPyEZpPa~5t#8t}Zs&SnD&E{>^&$saZ?Mq`u7T-2s^Y-Ng' '5)+D+M@{nPIEmmA7yZb?N<>N0X_d)2EVrU~e?CqMCxLH~R^AVFzT{4dEXfA5k3DvQzw3Hs$VEW)xg^+5DPt<^7U9(JiWKa~nq2hxULBb*a&Y))x)#rQM8Z`j' '5Mmpf+M1+Y+jwRI6l<q@v9rV32JHH@XZtkinW?VkC)c278{WH8UyCuUxSAM<df#~$a<VV$$*tKVxAvl{Ax%2MO(8?<9gzDAuo(}9Y#e<svKuK1bD~XdngQEg' 'L7nRHl|{{+DiK><=XU8^(;|agSqoyRyOB8*W9)6x|2vRE#7gKSkO^)4rPK~0v0)}fs&ZswK%<HY$uk`?OTLu>pD>T&rdIcf)>1>~PWqh-w8JOS&+-VlyMsOK' '<$oB)VeHgqUh%v_4krv{i6I|6O&`lof_mK2O+00|a#}BwG(2&@xM;48<nSGP3J~DqIBzs?Qy5Q-@Kyh&!Fl6@HL+`8)!~4;G)Oa=ex1SlfM$5+Zs#1`37rEW' '!z>3k19J|3fFOu?xIDa~SwA9%l3cKzCXIk>O75p|Bg)~|2;&k|mVGr+)MWRWCz;vY*&2yR97bK*S$>Ualdz*yplSY%%`-Yj!e!v%y*ROG3UlCsxgRcY70fqQ' 'I+EX+tv<@*&DUsq7bbCHUntXdFs5vDGP@MDqpto`ZT!$seb}vPzciItw_Z$+jnO(0Q5Ge{`CApXVtSioC!~KF;1mjl7zHO2z0YfqFLzph`avY-bbj?E;T^30' 'M0>~Bqjf8;WegI*+rs3kK<7hqTBy|v&jIUCfY+C*1mZJJbyU4ZEF!~_=0L~)Q#G|Ii{z+<I;P6A(s1E(@9b>FumB7oBm>X(NL!?}$KeF2{j3Ul)B_f84h4M5' 'r9)#GV2+28fa6fK6R4CHHh)K#0Fad@oZV4_Gua#}uAjxJ*>@g%+T|%ID!}k^BS2Je^`Ky*>aIoivXvF>-dgPgyt#In;bPorwRyWMLjuMWcW+c-9boYE)8iS>' 'q!Em8IIPsA1Y|^Xc@jro(IP&#10y0;na@27uAd3Z1T<ga0jjkKx&+RWCtm!fw0>lEr)3m(rj-=U)Zw-<dl;K4GSxkTx(VhK(SI=UN7dA?Lv=#D>Qsd{nfTXm' 'pxA`o(dC=F2E!ILT@*bC=AU*b$fz9Y`RM+&%tUiKh(1zr0b-tBkC^=#vjh`Aw~`^(Z}03wRH!x87TD<`J_|NamNx>q96dEcpLR`+0~*>P<hAWD^Q;hQo+5F<' 'jkThMTR3~)t79?MN$7I(KMPx$mkUjhroGlDzyqi{sBeG_$w)uw3xyWMeG8?|PVNM@^!iEg8ZFVzg+!q|&_T%AV79u_NzR%3;O-V&1mRqcD2rPxeHk7RDVwj+' 'TW~`L2g!$~bL55kst*mQ@YGUoVM@Q%(QGB!3x%5Ts?P*J5jLjM`8si3@#uU;K+U@o3R88*v$BeZFy>Z6<)6zkIfDg$P{F3Tl%R;1Iy!4f7pFwT{pda1v(L5Y' 'UAt4vr3g<_cO7kXPR6q&HzDpZU9JzHml~E4e~KjPSIg1zc8JX3ffWqT3X9rhxdhiZcI14+hrSC3geN)~9kc)SH6NaPEv7|+!C8lhOJHLhpn<#SnL<zbQ`F1d' 'F7z+X3NUnd;Cc@zZzz1@J)*=%vm5Kr|KqESpnKN`SrPmK$ZOI60Z#t#%ak|7wNPLIs_$bSRqYTpZCMnKd^q}R>)k?yVOgo)24Y*7v8)rsT^@GGq}6!!?oE!^' 'd+U-g60>iG7RE;8d~$5Nais62-MIq@rRX&o)QtxeW#N_%7vMGGro#IN7SIar0k*UrI@bNMf~JE^W&+Qnet4Kt7e#+qzFUEV{w~l8@%_@&J<W=gc7p!^u7cs7' '000006<H{x300yM00F%;#7F=D8E*!*vBYQl0ssI200dcD' ))
96.943396
130
0.672635
[ "BSD-3-Clause" ]
baderj/refinery
test/units/formats/office/test_xlxtr.py
10,276
Python
from argparse import ArgumentParser from typing import Any from zerver.lib.management import ZulipBaseCommand from zerver.models import Service, UserProfile class Command(ZulipBaseCommand): help = """Given an existing bot, converts it into an outgoing webhook bot.""" def add_arguments(self, parser: ArgumentParser) -> None: self.add_realm_args(parser) parser.add_argument('bot_email', metavar='<bot_email>', type=str, help='email of bot') parser.add_argument('service_name', metavar='<service_name>', type=str, help='name of Service object to create') parser.add_argument('base_url', metavar='<base_url>', type=str, help='Endpoint URL of outgoing webhook') # TODO: Add token and interface as arguments once OutgoingWebhookWorker # uses these fields on the Service object. def handle(self, *args: Any, **options: str) -> None: bot_email = options['bot_email'] service_name = options['service_name'] base_url = options['base_url'] realm = self.get_realm(options) if not bot_email: print('Email of existing bot must be provided') exit(1) if not service_name: print('Name for Service object must be provided') exit(1) if not base_url: print('Endpoint URL of outgoing webhook must be provided') exit(1) # TODO: Normalize email? bot_profile = self.get_user(email=bot_email, realm=realm) if not bot_profile.is_bot: print('User %s is not a bot' % (bot_email,)) exit(1) if bot_profile.is_outgoing_webhook_bot: print('%s is already marked as an outgoing webhook bot' % (bot_email,)) exit(1) Service.objects.create(name=service_name, user_profile=bot_profile, base_url=base_url, token='', interface=1) bot_profile.bot_type = UserProfile.OUTGOING_WEBHOOK_BOT bot_profile.save() print('Successfully converted %s into an outgoing webhook bot' % (bot_email,))
37.783333
86
0.599912
[ "Apache-2.0" ]
abhigyank/zulip
zerver/management/commands/convert_bot_to_outgoing_webhook.py
2,267
Python
# -*- coding: utf-8 -*- # Copyright (C) 2014-2016 Andrey Antukh <[email protected]> # Copyright (C) 2014-2016 Jesús Espino <[email protected]> # Copyright (C) 2014-2016 David Barragán <[email protected]> # Copyright (C) 2014-2016 Alejandro Alonso <[email protected]> # Copyright (C) 2014-2016 Anler Hernández <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import pytest from .. import factories as f from tests.utils import disconnect_signals, reconnect_signals from taiga.projects.services.stats import get_stats_for_project pytestmark = pytest.mark.django_db def setup_module(module): disconnect_signals() def teardown_module(module): reconnect_signals() @pytest.fixture def data(): m = type("Models", (object,), {}) m.user = f.UserFactory.create() m.project = f.ProjectFactory(is_private=False, owner=m.user) m.role1 = f.RoleFactory(project=m.project) m.role2 = f.RoleFactory(project=m.project) m.null_points = f.PointsFactory(project=m.project, value=None) m.default_points = f.PointsFactory(project=m.project, value=0) m.points1 = f.PointsFactory(project=m.project, value=1) m.points2 = f.PointsFactory(project=m.project, value=2) m.points3 = f.PointsFactory(project=m.project, value=4) m.points4 = f.PointsFactory(project=m.project, value=8) m.points5 = f.PointsFactory(project=m.project, value=16) m.points6 = f.PointsFactory(project=m.project, value=32) m.open_status = f.UserStoryStatusFactory(is_closed=False) m.closed_status = f.UserStoryStatusFactory(is_closed=True) m.project.default_points = m.default_points m.project.save() m.user_story1 = f.UserStoryFactory(project=m.project, status=m.open_status, milestone=None) m.user_story1.role_points.filter(role=m.role1).update(points=m.points1) m.user_story2 = f.UserStoryFactory(project=m.project, status=m.open_status, milestone=None) m.user_story2.role_points.filter(role=m.role1).update(points=m.points2) m.user_story3 = f.UserStoryFactory(project=m.project, status=m.open_status, milestone=None) m.user_story3.role_points.filter(role=m.role1).update(points=m.points3) m.user_story4 = f.UserStoryFactory(project=m.project, status=m.open_status, milestone=None) m.user_story4.role_points.filter(role=m.role1).update(points=m.points4) # 5 and 6 are inclosed milestones m.user_story5 = f.UserStoryFactory(project=m.project, status=m.open_status, milestone__closed=True, milestone__project=m.project) m.user_story5.role_points.filter(role=m.role1).update(points=m.points5) m.user_story6 = f.UserStoryFactory(project=m.project, status=m.open_status, milestone__closed=True, milestone__project=m.project) m.user_story6.role_points.filter(role=m.role1).update(points=m.points6) return m def test_project_defined_points(client, data): project_stats = get_stats_for_project(data.project) assert project_stats["defined_points_per_role"] == {data.role1.pk: 63, data.role2.pk: 0} data.user_story1.role_points.filter(role=data.role1).update(points=data.default_points) data.user_story1.role_points.filter(role=data.role2).update(points=data.points1) project_stats = get_stats_for_project(data.project) assert project_stats["defined_points_per_role"] == {data.role1.pk: 62, data.role2.pk: 1} def test_project_closed_points(client, data): project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {} data.user_story1.is_closed = True data.user_story1.save() project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {data.role1.pk: 1, data.role2.pk: 0} data.user_story2.is_closed = True data.user_story2.save() project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {data.role1.pk: 3, data.role2.pk: 0} data.user_story3.is_closed = True data.user_story3.save() project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {data.role1.pk: 7, data.role2.pk: 0} data.user_story4.is_closed = True data.user_story4.save() project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {data.role1.pk: 15, data.role2.pk: 0} data.user_story5.is_closed = True data.user_story5.save() project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {data.role1.pk: 31, data.role2.pk: 0} data.user_story6.is_closed = True data.user_story6.save() project_stats = get_stats_for_project(data.project) assert project_stats["closed_points_per_role"] == {data.role1.pk: 63, data.role2.pk: 0} project_stats = get_stats_for_project(data.project) assert project_stats["closed_points"] == 63 assert project_stats["speed"] == 24 def test_project_assigned_points(client, data): project_stats = get_stats_for_project(data.project) assert project_stats["assigned_points_per_role"] == {data.role1.pk: 48, data.role2.pk: 0} data.user_story1.milestone = data.user_story6.milestone data.user_story1.save() project_stats = get_stats_for_project(data.project) assert project_stats["assigned_points_per_role"] == {data.role1.pk: 49, data.role2.pk: 0} data.user_story2.milestone = data.user_story6.milestone data.user_story2.save() project_stats = get_stats_for_project(data.project) assert project_stats["assigned_points_per_role"] == {data.role1.pk: 51, data.role2.pk: 0} data.user_story3.milestone = data.user_story6.milestone data.user_story3.save() project_stats = get_stats_for_project(data.project) assert project_stats["assigned_points_per_role"] == {data.role1.pk: 55, data.role2.pk: 0} data.user_story4.milestone = data.user_story6.milestone data.user_story4.save() project_stats = get_stats_for_project(data.project) assert project_stats["assigned_points_per_role"] == {data.role1.pk: 63, data.role2.pk: 0}
44.447853
93
0.696894
[ "MIT" ]
mattcongy/itshop
docker-images/taigav2/taiga-back/tests/integration/test_stats.py
7,248
Python
import sys import compileall import importlib.util import test.test_importlib.util import os import pathlib import py_compile import shutil import struct import tempfile import time import unittest import io from unittest import mock, skipUnless try: from concurrent.futures import ProcessPoolExecutor _have_multiprocessing = True except ImportError: _have_multiprocessing = False from test import support from test.support import script_helper from .test_py_compile import without_source_date_epoch from .test_py_compile import SourceDateEpochTestMeta class CompileallTestsBase: def setUp(self): self.directory = tempfile.mkdtemp() self.source_path = os.path.join(self.directory, '_test.py') self.bc_path = importlib.util.cache_from_source(self.source_path) with open(self.source_path, 'w') as file: file.write('x = 123\n') self.source_path2 = os.path.join(self.directory, '_test2.py') self.bc_path2 = importlib.util.cache_from_source(self.source_path2) shutil.copyfile(self.source_path, self.source_path2) self.subdirectory = os.path.join(self.directory, '_subdir') os.mkdir(self.subdirectory) self.source_path3 = os.path.join(self.subdirectory, '_test3.py') shutil.copyfile(self.source_path, self.source_path3) def tearDown(self): shutil.rmtree(self.directory) def add_bad_source_file(self): self.bad_source_path = os.path.join(self.directory, '_test_bad.py') with open(self.bad_source_path, 'w') as file: file.write('x (\n') def timestamp_metadata(self): with open(self.bc_path, 'rb') as file: data = file.read(12) mtime = int(os.stat(self.source_path).st_mtime) compare = struct.pack('<4sll', importlib.util.MAGIC_NUMBER, 0, mtime) return data, compare def recreation_check(self, metadata): """Check that compileall recreates bytecode when the new metadata is used.""" if os.environ.get('SOURCE_DATE_EPOCH'): raise unittest.SkipTest('SOURCE_DATE_EPOCH is set') py_compile.compile(self.source_path) self.assertEqual(*self.timestamp_metadata()) with open(self.bc_path, 'rb') as file: bc = file.read()[len(metadata):] with open(self.bc_path, 'wb') as file: file.write(metadata) file.write(bc) self.assertNotEqual(*self.timestamp_metadata()) compileall.compile_dir(self.directory, force=False, quiet=True) self.assertTrue(*self.timestamp_metadata()) def test_mtime(self): # Test a change in mtime leads to a new .pyc. self.recreation_check(struct.pack('<4sll', importlib.util.MAGIC_NUMBER, 0, 1)) def test_magic_number(self): # Test a change in mtime leads to a new .pyc. self.recreation_check(b'\0\0\0\0') def test_compile_files(self): # Test compiling a single file, and complete directory for fn in (self.bc_path, self.bc_path2): try: os.unlink(fn) except: pass self.assertTrue(compileall.compile_file(self.source_path, force=False, quiet=True)) self.assertTrue(os.path.isfile(self.bc_path) and not os.path.isfile(self.bc_path2)) os.unlink(self.bc_path) self.assertTrue(compileall.compile_dir(self.directory, force=False, quiet=True)) self.assertTrue(os.path.isfile(self.bc_path) and os.path.isfile(self.bc_path2)) os.unlink(self.bc_path) os.unlink(self.bc_path2) # Test against bad files self.add_bad_source_file() self.assertFalse(compileall.compile_file(self.bad_source_path, force=False, quiet=2)) self.assertFalse(compileall.compile_dir(self.directory, force=False, quiet=2)) def test_compile_file_pathlike(self): self.assertFalse(os.path.isfile(self.bc_path)) # we should also test the output with support.captured_stdout() as stdout: self.assertTrue(compileall.compile_file(pathlib.Path(self.source_path))) self.assertRegex(stdout.getvalue(), r'Compiling ([^WindowsPath|PosixPath].*)') self.assertTrue(os.path.isfile(self.bc_path)) def test_compile_file_pathlike_ddir(self): self.assertFalse(os.path.isfile(self.bc_path)) self.assertTrue(compileall.compile_file(pathlib.Path(self.source_path), ddir=pathlib.Path('ddir_path'), quiet=2)) self.assertTrue(os.path.isfile(self.bc_path)) def test_compile_path(self): with test.test_importlib.util.import_state(path=[self.directory]): self.assertTrue(compileall.compile_path(quiet=2)) with test.test_importlib.util.import_state(path=[self.directory]): self.add_bad_source_file() self.assertFalse(compileall.compile_path(skip_curdir=False, force=True, quiet=2)) def test_no_pycache_in_non_package(self): # Bug 8563 reported that __pycache__ directories got created by # compile_file() for non-.py files. data_dir = os.path.join(self.directory, 'data') data_file = os.path.join(data_dir, 'file') os.mkdir(data_dir) # touch data/file with open(data_file, 'w'): pass compileall.compile_file(data_file) self.assertFalse(os.path.exists(os.path.join(data_dir, '__pycache__'))) def test_optimize(self): # make sure compiling with different optimization settings than the # interpreter's creates the correct file names optimize, opt = (1, 1) if __debug__ else (0, '') compileall.compile_dir(self.directory, quiet=True, optimize=optimize) cached = importlib.util.cache_from_source(self.source_path, optimization=opt) self.assertTrue(os.path.isfile(cached)) cached2 = importlib.util.cache_from_source(self.source_path2, optimization=opt) self.assertTrue(os.path.isfile(cached2)) cached3 = importlib.util.cache_from_source(self.source_path3, optimization=opt) self.assertTrue(os.path.isfile(cached3)) def test_compile_dir_pathlike(self): self.assertFalse(os.path.isfile(self.bc_path)) with support.captured_stdout() as stdout: compileall.compile_dir(pathlib.Path(self.directory)) line = stdout.getvalue().splitlines()[0] self.assertRegex(line, r'Listing ([^WindowsPath|PosixPath].*)') self.assertTrue(os.path.isfile(self.bc_path)) @mock.patch('concurrent.futures.ProcessPoolExecutor') def test_compile_pool_called(self, pool_mock): compileall.compile_dir(self.directory, quiet=True, workers=5) self.assertTrue(pool_mock.called) def test_compile_workers_non_positive(self): with self.assertRaisesRegex(ValueError, "workers must be greater or equal to 0"): compileall.compile_dir(self.directory, workers=-1) @mock.patch('concurrent.futures.ProcessPoolExecutor') def test_compile_workers_cpu_count(self, pool_mock): compileall.compile_dir(self.directory, quiet=True, workers=0) self.assertEqual(pool_mock.call_args[1]['max_workers'], None) @mock.patch('concurrent.futures.ProcessPoolExecutor') @mock.patch('compileall.compile_file') def test_compile_one_worker(self, compile_file_mock, pool_mock): compileall.compile_dir(self.directory, quiet=True) self.assertFalse(pool_mock.called) self.assertTrue(compile_file_mock.called) @mock.patch('concurrent.futures.ProcessPoolExecutor', new=None) @mock.patch('compileall.compile_file') def test_compile_missing_multiprocessing(self, compile_file_mock): compileall.compile_dir(self.directory, quiet=True, workers=5) self.assertTrue(compile_file_mock.called) class CompileallTestsWithSourceEpoch(CompileallTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=True): pass class CompileallTestsWithoutSourceEpoch(CompileallTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=False): pass class EncodingTest(unittest.TestCase): """Issue 6716: compileall should escape source code when printing errors to stdout.""" def setUp(self): self.directory = tempfile.mkdtemp() self.source_path = os.path.join(self.directory, '_test.py') with open(self.source_path, 'w', encoding='utf-8') as file: file.write('# -*- coding: utf-8 -*-\n') file.write('print u"\u20ac"\n') def tearDown(self): shutil.rmtree(self.directory) def test_error(self): try: orig_stdout = sys.stdout sys.stdout = io.TextIOWrapper(io.BytesIO(),encoding='ascii') compileall.compile_dir(self.directory) finally: sys.stdout = orig_stdout class CommandLineTestsBase: """Test compileall's CLI.""" @classmethod def setUpClass(cls): for path in filter(os.path.isdir, sys.path): directory_created = False directory = pathlib.Path(path) / '__pycache__' path = directory / 'test.try' try: if not directory.is_dir(): directory.mkdir() directory_created = True with path.open('w') as file: file.write('# for test_compileall') except OSError: sys_path_writable = False break finally: support.unlink(str(path)) if directory_created: directory.rmdir() else: sys_path_writable = True cls._sys_path_writable = sys_path_writable def _skip_if_sys_path_not_writable(self): if not self._sys_path_writable: raise unittest.SkipTest('not all entries on sys.path are writable') def _get_run_args(self, args): return [*support.optim_args_from_interpreter_flags(), '-S', '-m', 'compileall', *args] def assertRunOK(self, *args, **env_vars): rc, out, err = script_helper.assert_python_ok( *self._get_run_args(args), **env_vars) self.assertEqual(b'', err) return out def assertRunNotOK(self, *args, **env_vars): rc, out, err = script_helper.assert_python_failure( *self._get_run_args(args), **env_vars) return rc, out, err def assertCompiled(self, fn): path = importlib.util.cache_from_source(fn) self.assertTrue(os.path.exists(path)) def assertNotCompiled(self, fn): path = importlib.util.cache_from_source(fn) self.assertFalse(os.path.exists(path)) def setUp(self): self.directory = tempfile.mkdtemp() self.addCleanup(support.rmtree, self.directory) self.pkgdir = os.path.join(self.directory, 'foo') os.mkdir(self.pkgdir) self.pkgdir_cachedir = os.path.join(self.pkgdir, '__pycache__') # Create the __init__.py and a package module. self.initfn = script_helper.make_script(self.pkgdir, '__init__', '') self.barfn = script_helper.make_script(self.pkgdir, 'bar', '') def test_no_args_compiles_path(self): # Note that -l is implied for the no args case. self._skip_if_sys_path_not_writable() bazfn = script_helper.make_script(self.directory, 'baz', '') self.assertRunOK(PYTHONPATH=self.directory) self.assertCompiled(bazfn) self.assertNotCompiled(self.initfn) self.assertNotCompiled(self.barfn) @without_source_date_epoch # timestamp invalidation test def test_no_args_respects_force_flag(self): self._skip_if_sys_path_not_writable() bazfn = script_helper.make_script(self.directory, 'baz', '') self.assertRunOK(PYTHONPATH=self.directory) pycpath = importlib.util.cache_from_source(bazfn) # Set atime/mtime backward to avoid file timestamp resolution issues os.utime(pycpath, (time.time()-60,)*2) mtime = os.stat(pycpath).st_mtime # Without force, no recompilation self.assertRunOK(PYTHONPATH=self.directory) mtime2 = os.stat(pycpath).st_mtime self.assertEqual(mtime, mtime2) # Now force it. self.assertRunOK('-f', PYTHONPATH=self.directory) mtime2 = os.stat(pycpath).st_mtime self.assertNotEqual(mtime, mtime2) def test_no_args_respects_quiet_flag(self): self._skip_if_sys_path_not_writable() script_helper.make_script(self.directory, 'baz', '') noisy = self.assertRunOK(PYTHONPATH=self.directory) self.assertIn(b'Listing ', noisy) quiet = self.assertRunOK('-q', PYTHONPATH=self.directory) self.assertNotIn(b'Listing ', quiet) # Ensure that the default behavior of compileall's CLI is to create # PEP 3147/PEP 488 pyc files. for name, ext, switch in [ ('normal', 'pyc', []), ('optimize', 'opt-1.pyc', ['-O']), ('doubleoptimize', 'opt-2.pyc', ['-OO']), ]: def f(self, ext=ext, switch=switch): script_helper.assert_python_ok(*(switch + ['-m', 'compileall', '-q', self.pkgdir])) # Verify the __pycache__ directory contents. self.assertTrue(os.path.exists(self.pkgdir_cachedir)) expected = sorted(base.format(sys.implementation.cache_tag, ext) for base in ('__init__.{}.{}', 'bar.{}.{}')) self.assertEqual(sorted(os.listdir(self.pkgdir_cachedir)), expected) # Make sure there are no .pyc files in the source directory. self.assertFalse([fn for fn in os.listdir(self.pkgdir) if fn.endswith(ext)]) locals()['test_pep3147_paths_' + name] = f def test_legacy_paths(self): # Ensure that with the proper switch, compileall leaves legacy # pyc files, and no __pycache__ directory. self.assertRunOK('-b', '-q', self.pkgdir) # Verify the __pycache__ directory contents. self.assertFalse(os.path.exists(self.pkgdir_cachedir)) expected = sorted(['__init__.py', '__init__.pyc', 'bar.py', 'bar.pyc']) self.assertEqual(sorted(os.listdir(self.pkgdir)), expected) def test_multiple_runs(self): # Bug 8527 reported that multiple calls produced empty # __pycache__/__pycache__ directories. self.assertRunOK('-q', self.pkgdir) # Verify the __pycache__ directory contents. self.assertTrue(os.path.exists(self.pkgdir_cachedir)) cachecachedir = os.path.join(self.pkgdir_cachedir, '__pycache__') self.assertFalse(os.path.exists(cachecachedir)) # Call compileall again. self.assertRunOK('-q', self.pkgdir) self.assertTrue(os.path.exists(self.pkgdir_cachedir)) self.assertFalse(os.path.exists(cachecachedir)) @without_source_date_epoch # timestamp invalidation test def test_force(self): self.assertRunOK('-q', self.pkgdir) pycpath = importlib.util.cache_from_source(self.barfn) # set atime/mtime backward to avoid file timestamp resolution issues os.utime(pycpath, (time.time()-60,)*2) mtime = os.stat(pycpath).st_mtime # without force, no recompilation self.assertRunOK('-q', self.pkgdir) mtime2 = os.stat(pycpath).st_mtime self.assertEqual(mtime, mtime2) # now force it. self.assertRunOK('-q', '-f', self.pkgdir) mtime2 = os.stat(pycpath).st_mtime self.assertNotEqual(mtime, mtime2) def test_recursion_control(self): subpackage = os.path.join(self.pkgdir, 'spam') os.mkdir(subpackage) subinitfn = script_helper.make_script(subpackage, '__init__', '') hamfn = script_helper.make_script(subpackage, 'ham', '') self.assertRunOK('-q', '-l', self.pkgdir) self.assertNotCompiled(subinitfn) self.assertFalse(os.path.exists(os.path.join(subpackage, '__pycache__'))) self.assertRunOK('-q', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) def test_recursion_limit(self): subpackage = os.path.join(self.pkgdir, 'spam') subpackage2 = os.path.join(subpackage, 'ham') subpackage3 = os.path.join(subpackage2, 'eggs') for pkg in (subpackage, subpackage2, subpackage3): script_helper.make_pkg(pkg) subinitfn = os.path.join(subpackage, '__init__.py') hamfn = script_helper.make_script(subpackage, 'ham', '') spamfn = script_helper.make_script(subpackage2, 'spam', '') eggfn = script_helper.make_script(subpackage3, 'egg', '') self.assertRunOK('-q', '-r 0', self.pkgdir) self.assertNotCompiled(subinitfn) self.assertFalse( os.path.exists(os.path.join(subpackage, '__pycache__'))) self.assertRunOK('-q', '-r 1', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) self.assertNotCompiled(spamfn) self.assertRunOK('-q', '-r 2', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) self.assertCompiled(spamfn) self.assertNotCompiled(eggfn) self.assertRunOK('-q', '-r 5', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) self.assertCompiled(spamfn) self.assertCompiled(eggfn) def test_quiet(self): noisy = self.assertRunOK(self.pkgdir) quiet = self.assertRunOK('-q', self.pkgdir) self.assertNotEqual(b'', noisy) self.assertEqual(b'', quiet) def test_silent(self): script_helper.make_script(self.pkgdir, 'crunchyfrog', 'bad(syntax') _, quiet, _ = self.assertRunNotOK('-q', self.pkgdir) _, silent, _ = self.assertRunNotOK('-qq', self.pkgdir) self.assertNotEqual(b'', quiet) self.assertEqual(b'', silent) def test_regexp(self): self.assertRunOK('-q', '-x', r'ba[^\\/]*$', self.pkgdir) self.assertNotCompiled(self.barfn) self.assertCompiled(self.initfn) def test_multiple_dirs(self): pkgdir2 = os.path.join(self.directory, 'foo2') os.mkdir(pkgdir2) init2fn = script_helper.make_script(pkgdir2, '__init__', '') bar2fn = script_helper.make_script(pkgdir2, 'bar2', '') self.assertRunOK('-q', self.pkgdir, pkgdir2) self.assertCompiled(self.initfn) self.assertCompiled(self.barfn) self.assertCompiled(init2fn) self.assertCompiled(bar2fn) def test_d_compile_error(self): script_helper.make_script(self.pkgdir, 'crunchyfrog', 'bad(syntax') rc, out, err = self.assertRunNotOK('-q', '-d', 'dinsdale', self.pkgdir) self.assertRegex(out, b'File "dinsdale') def test_d_runtime_error(self): bazfn = script_helper.make_script(self.pkgdir, 'baz', 'raise Exception') self.assertRunOK('-q', '-d', 'dinsdale', self.pkgdir) fn = script_helper.make_script(self.pkgdir, 'bing', 'import baz') pyc = importlib.util.cache_from_source(bazfn) os.rename(pyc, os.path.join(self.pkgdir, 'baz.pyc')) os.remove(bazfn) rc, out, err = script_helper.assert_python_failure(fn, __isolated=False) self.assertRegex(err, b'File "dinsdale') def test_include_bad_file(self): rc, out, err = self.assertRunNotOK( '-i', os.path.join(self.directory, 'nosuchfile'), self.pkgdir) self.assertRegex(out, b'rror.*nosuchfile') self.assertNotRegex(err, b'Traceback') self.assertFalse(os.path.exists(importlib.util.cache_from_source( self.pkgdir_cachedir))) def test_include_file_with_arg(self): f1 = script_helper.make_script(self.pkgdir, 'f1', '') f2 = script_helper.make_script(self.pkgdir, 'f2', '') f3 = script_helper.make_script(self.pkgdir, 'f3', '') f4 = script_helper.make_script(self.pkgdir, 'f4', '') with open(os.path.join(self.directory, 'l1'), 'w') as l1: l1.write(os.path.join(self.pkgdir, 'f1.py')+os.linesep) l1.write(os.path.join(self.pkgdir, 'f2.py')+os.linesep) self.assertRunOK('-i', os.path.join(self.directory, 'l1'), f4) self.assertCompiled(f1) self.assertCompiled(f2) self.assertNotCompiled(f3) self.assertCompiled(f4) def test_include_file_no_arg(self): f1 = script_helper.make_script(self.pkgdir, 'f1', '') f2 = script_helper.make_script(self.pkgdir, 'f2', '') f3 = script_helper.make_script(self.pkgdir, 'f3', '') f4 = script_helper.make_script(self.pkgdir, 'f4', '') with open(os.path.join(self.directory, 'l1'), 'w') as l1: l1.write(os.path.join(self.pkgdir, 'f2.py')+os.linesep) self.assertRunOK('-i', os.path.join(self.directory, 'l1')) self.assertNotCompiled(f1) self.assertCompiled(f2) self.assertNotCompiled(f3) self.assertNotCompiled(f4) def test_include_on_stdin(self): f1 = script_helper.make_script(self.pkgdir, 'f1', '') f2 = script_helper.make_script(self.pkgdir, 'f2', '') f3 = script_helper.make_script(self.pkgdir, 'f3', '') f4 = script_helper.make_script(self.pkgdir, 'f4', '') p = script_helper.spawn_python(*(self._get_run_args(()) + ['-i', '-'])) p.stdin.write((f3+os.linesep).encode('ascii')) script_helper.kill_python(p) self.assertNotCompiled(f1) self.assertNotCompiled(f2) self.assertCompiled(f3) self.assertNotCompiled(f4) def test_compiles_as_much_as_possible(self): bingfn = script_helper.make_script(self.pkgdir, 'bing', 'syntax(error') rc, out, err = self.assertRunNotOK('nosuchfile', self.initfn, bingfn, self.barfn) self.assertRegex(out, b'rror') self.assertNotCompiled(bingfn) self.assertCompiled(self.initfn) self.assertCompiled(self.barfn) def test_invalid_arg_produces_message(self): out = self.assertRunOK('badfilename') self.assertRegex(out, b"Can't list 'badfilename'") def test_pyc_invalidation_mode(self): script_helper.make_script(self.pkgdir, 'f1', '') pyc = importlib.util.cache_from_source( os.path.join(self.pkgdir, 'f1.py')) self.assertRunOK('--invalidation-mode=checked-hash', self.pkgdir) with open(pyc, 'rb') as fp: data = fp.read() self.assertEqual(int.from_bytes(data[4:8], 'little'), 0b11) self.assertRunOK('--invalidation-mode=unchecked-hash', self.pkgdir) with open(pyc, 'rb') as fp: data = fp.read() self.assertEqual(int.from_bytes(data[4:8], 'little'), 0b01) @skipUnless(_have_multiprocessing, "requires multiprocessing") def test_workers(self): bar2fn = script_helper.make_script(self.directory, 'bar2', '') files = [] for suffix in range(5): pkgdir = os.path.join(self.directory, 'foo{}'.format(suffix)) os.mkdir(pkgdir) fn = script_helper.make_script(pkgdir, '__init__', '') files.append(script_helper.make_script(pkgdir, 'bar2', '')) self.assertRunOK(self.directory, '-j', '0') self.assertCompiled(bar2fn) for file in files: self.assertCompiled(file) @mock.patch('compileall.compile_dir') def test_workers_available_cores(self, compile_dir): with mock.patch("sys.argv", new=[sys.executable, self.directory, "-j0"]): compileall.main() self.assertTrue(compile_dir.called) self.assertEqual(compile_dir.call_args[-1]['workers'], 0) class CommmandLineTestsWithSourceEpoch(CommandLineTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=True): pass class CommmandLineTestsNoSourceEpoch(CommandLineTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=False): pass if __name__ == "__main__": unittest.main()
43.419732
87
0.611708
[ "MIT" ]
jasam/ciclo_vida_datos_scraping
python/Lib/test/test_compileall.py
25,965
Python
from PIL import Image def img_to_binary(img: Image, min_value=100) -> Image: return img.convert('L').point(lambda p: p > min_value and 255).convert('1')
26.5
79
0.704403
[ "BSD-3-Clause" ]
Amjad50/Fyp
utils/image.py
159
Python
# -*- coding: utf-8 -*- """ Created on Sat Jun 6 22:41:54 2020 @author: mahjaf Automatic sleep scoring implemented for Zmax headband. """ #%% Reading EDF section #####===================== Importiung libraries =========================##### import mne import numpy as np from numpy import loadtxt import h5py import time import os from ssccoorriinngg import ssccoorriinngg import matplotlib.pyplot as plt import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import confusion_matrix, make_scorer, accuracy_score, precision_score, recall_score, f1_score, classification_report import pandas as pd import tensorflow as tf from scipy import signal #####==================== Defining required paths r=======================##### Main_path = "P:/3013080.01/" subject_Id_folder = Main_path + "Autoscoring/ssccoorriinngg/" Data_folder = Main_path + "Zmax_Data/" Hypnogram_folder = Main_path + "somno_scorings/Rathiga/" #####===================== Reading EDF data files=========================##### subject_ids = loadtxt(subject_Id_folder+"Zmax/Subject_ids_excluding 22_2.txt", dtype = 'str',delimiter='\n') #####============= create an object of ssccoorriinngg class ==============##### Object = ssccoorriinngg(filename='', channel='', fs = 256, T = 30) #%% Load featureset and labels path = "P:/3013080.01/Autoscoring/features/" filename = "Zmax_Rathiga_scorings_ch-ch2+AccFeats_190620" subjects_dic, hyp_dic = Object.load_dictionary(path, filename) #%% ================================Training part============================== # Training perentage train_size = .7 n_train = round(train_size * len(subject_ids)) #######=== Randomly shuffle subjects to choose train and test splits ===####### subject_ids = np.random.RandomState(seed=0).permutation(subject_ids) #######=============== Initialize train and test arrays ================####### sample_subject = "subjectP_12_night1_scoring.csv.spisop.new - Copy" sample_hyp = "hypP_12_night1_scoring.csv.spisop.new - Copy" X_train = np.empty((0, np.shape(subjects_dic[sample_subject])[1])) X_test = np.empty((0, np.shape(subjects_dic[sample_subject])[1])) y_train = np.empty((0, np.shape(hyp_dic[sample_hyp])[1])) y_test = np.empty((0, np.shape(hyp_dic[sample_hyp])[1])) ########======= Picking the train subjetcs and concatenate them =======######## tic = time.time() train_subjects_list = ["P_12_night1_scoring.csv.spisop.new - Copy", "P_13_night2_scoring.csv.spisop.new - Copy", "P_15_night2_scoring.csv.spisop.new - Copy", "P_16_night1_scoring.csv.spisop.new - Copy", "P_18_night1_scoring.csv.spisop.new - Copy", "P_20_night1_scoring.csv.spisop.new - Copy", "P_21_night1_scoring.csv.spisop.new - Copy", "P_23_night1_scoring.csv.spisop.new - Copy"] for c_subj in train_subjects_list: # train hypnogram str_train_hyp = 'hyp' + str(c_subj) # train featureset str_train_feat = 'subject' + str(c_subj) # create template arrays for featurs and label tmp_x = subjects_dic[str_train_feat] tmp_y = hyp_dic[str_train_hyp] # Concatenate features and labels X_train = np.row_stack((X_train, tmp_x)) y_train = np.row_stack((y_train, tmp_y)) del tmp_x, tmp_y print('Training set was successfully created in : {} secs'.format(time.time()-tic)) #%% ================================Test part==============================%%# ########======== Picking the test subjetcs and concatenate them =======######## tic = time.time() test_subjects_list = [] tst_subj_list = ["P_12_night2_scoring.csv.spisop.new - Copy", "P_12_night3_scoring.csv.spisop.new - Copy", "P_13_night3_scoring.csv.spisop.new - Copy", "P_14_night3_scoring.csv.spisop.new - Copy", "P_15_night3_scoring.csv.spisop.new - Copy", "P_16_night3_scoring.csv.spisop.new - Copy", "P_18_night2_scoring.csv.spisop.new - Copy", "P_18_night3_scoring.csv.spisop.new - Copy", "P_20_night2_scoring.csv.spisop.new - Copy", "P_20_night3_scoring.csv.spisop.new - Copy", "P_21_night2_scoring.csv.spisop.new - Copy", "P_21_night3_scoring.csv.spisop.new - Copy"] for c_subj in tst_subj_list: # test hypnogram str_test_hyp = 'hyp' + str(c_subj) # test featureset str_test_feat = 'subject' + str(c_subj) # create template arrays for featurs and label tmp_x = subjects_dic[str_test_feat] tmp_y = hyp_dic[str_test_hyp] # Concatenate features and labels X_test = np.row_stack((X_test, tmp_x)) y_test = np.row_stack((y_test, tmp_y)) # keep the subject id test_subjects_list.append(str_test_feat) # remove for next iteration del tmp_x, tmp_y, str_test_feat, str_test_hyp print('Test set was successfully created in : {} secs'.format(time.time()-tic)) print(f'Raw train and test data were created.') ########================== Replace any probable NaN ===================######## X_train = Object.replace_NaN_with_mean(X_train) X_test = Object.replace_NaN_with_mean(X_test) ########================== Replace any probable inf ===================######## X_train = Object.replace_inf_with_mean(X_train) X_test = Object.replace_inf_with_mean(X_test) ########==================== Z-score of features ======================######## X_train, X_test = Object.Standardadize_features(X_train, X_test) ########========== select features only on first iteration ============######## td = 5 # Time dependence: number of epochs of memory X_train_td = Object.add_time_dependence_backward(X_train, n_time_dependence=td, padding_type = 'sequential') X_test_td = Object.add_time_dependence_backward(X_test, n_time_dependence=td, padding_type = 'sequential') ########====================== Feature Selection ======================######## y_train_td = Object.binary_to_single_column_label(y_train) ########========== select features only on first iteration ============######## # ============================================================================= # ranks, Feat_selected, selected_feats_ind = Object.FeatSelect_Boruta(X_train_td, # y_train_td[:,0], max_iter = 50, max_depth = 7) # # #######===================== Save selected feats =======================####### # # path = "P:/3013080.01/Autoscoring/features/" # filename = "Selected_Features_BoturaNoTimeDependency_5_Backward_Zmax_ch1-ch2+Acc_200620" # with open(path+filename+'.pickle',"wb") as f: # pickle.dump(selected_feats_ind, f) # ============================================================================= ########################### Load selected feats ############################### path = "P:/3013080.01/Autoscoring/features/" filename = "Selected_Features_BoturaAfterTD=5_Backward_Zmax_ch1-ch2+Acc_200620" #filename = "sleep_scoring_NoArousal_8channels_selected_feats_NEW" with open(path + filename + '.pickle', "rb") as f: selected_feats_ind = pickle.load(f) ########=================== Apply selected features ===================######## X_train = X_train_td[:, selected_feats_ind] X_test = X_test_td[:, selected_feats_ind] ########============== Define classifier of interest ==================######## y_pred = Object.XGB_Modelling(X_train, y_train,X_test, y_test, n_estimators = 500) #y_pred = Object.KernelSVM_Modelling(X_train, y_train,X_test, y_test, kernel='rbf') y_pred = Object.ANN_classifier(X_train, y_train, X_test, units_h1=600, units_h2 = 300, units_output = 5, activation_out = 'softmax', init = 'uniform', activation = 'relu', optimizer = 'adam', loss = 'categorical_crossentropy', metrics=[tf.keras.metrics.Recall()], h3_status = 'deactive', units_h3 = 50, epochs = 100, batch_size = 100) ########===== Metrics to assess the model performance on test data ====######## Acc, Recall, prec, f1_sc, kappa, mcm= Object.multi_label_confusion_matrix(y_test, y_pred) ########================= Creating subjective outputs =================######## Object.create_subjecive_results(y_true=y_test, y_pred=y_pred, test_subjects_list = test_subjects_list, subjects_data_dic = subjects_dic, fname_save = "results") ########============= find number of epochs per stage =================######## Object.find_number_of_samples_per_class(y_test, including_artefact = False) ########================== Comparative hypnogram ======================######## hyp_true = Object.binary_to_single_column_label(y_test) Object.plot_comparative_hyp(hyp_true = hyp_true, hyp_pred = y_pred, mark_REM = 'active') ########==================== Plot subjectve hypnos ====================######## Object.plot_subjective_hypno(y_true=y_test, y_pred=y_pred, test_subjects_list=test_subjects_list, subjects_data_dic=subjects_dic, save_fig = False, directory="P:/3013080.01/Autoscoring/ssccoorriinngg/") ########=================== Plot overall conf-mat =======================###### Object.plot_confusion_matrix(y_test,y_pred, target_names = ['Wake','N1','N2','SWS','REM'], title='Confusion matrix of ssccoorriinngg algorithm', cmap = None, normalize=True) ########================== Plot subjective conf-mat ==================######## Object.plot_confusion_mat_subjective(y_true=y_test, y_pred=y_pred, test_subjects_list=test_subjects_list, subjects_data_dic=subjects_dic) ########========================== Save figure =======================######### Object.save_figure(saving_format = '.png', directory="P:/3013080.02/Mahdad/Github/ssccoorriinngg/", saving_name = 'test_subject_all' + str(c_subj), dpi = 900, full_screen = False)
41.956693
137
0.569016
[ "MIT" ]
MahdadJafarzadeh/ssccoorriinngg
Zmax_autoscoring_controlled_train_test_split.py
10,657
Python
import warnings from mlprimitives.utils import import_object _RESAMPLE_AGGS = [ 'mean', 'median', 'prod', 'quantile', 'std', 'sum', 'var', ] def resample(df, rule, on=None, groupby=(), aggregation='mean', reset_index=True, time_index=None): """pd.DataFrame.resample adapter. Call the `df.resample` method on the given time_index and afterwards call the indicated aggregation. Optionally group the dataframe by the indicated columns before performing the resampling. If groupby option is used, the result is a multi-index datagrame. Args: df (pandas.DataFrame): DataFrame to resample. rule (str or int): The offset string or object representing target conversion or an integer value that will be interpreted as the number of seconds. on (str or None): Name of the column to use as the time index. If ``None`` is given, the DataFrame index is used. groupby (list): Optional list of columns to group by. aggregation (callable or str): Function or name of the function to use for the aggregation. If a name is given, it can either be one of the standard pandas aggregation functions or the fully qualified name of a python function that will be imported and used. reset_index (bool): Whether to reset the index after aggregating time_index (str or None): Deprecated: This has been renamed to `on`. Name of the column to use as the time index. If ``None`` is given, the DataFrame is index is used. Returns: pandas.Dataframe: resampled dataframe """ if on is None and time_index is not None: message = ( 'resample `time_series` argument deprecated and will be removed' ' in future versions of MLPrimitives. Please use `on` instead.' ) warnings.warn(message, DeprecationWarning, stacklevel=2) on = time_index if groupby: df = df.groupby(groupby) if isinstance(rule, int): rule = '{}s'.format(rule) dtir = df.resample(rule, on=on) if not callable(aggregation) and aggregation not in _RESAMPLE_AGGS: try: aggregation = import_object(aggregation) except (AttributeError, ImportError, ValueError): pass df = dtir.aggregate(aggregation) for name in df.index.names: if name in df: del df[name] if reset_index: df.reset_index(inplace=True) return df def _join_names(names): """Join the names of a multi-level index with an underscore.""" levels = (str(name) for name in names if name != '') return '_'.join(levels) def unstack(df, level=-1, reset_index=True): """pd.DataFrame.unstack adapter. Call the `df.unstack` method using the indicated level and afterwards join the column names using an underscore. Args: df (pandas.DataFrame): DataFrame to unstack. level (str, int or list): Level(s) of index to unstack, can pass level name reset_index (bool): Whether to reset the index after unstacking Returns: pandas.Dataframe: unstacked dataframe """ df = df.unstack(level=level) if reset_index: df = df.reset_index() df.columns = df.columns.map(_join_names) return df
30.333333
97
0.633314
[ "MIT" ]
AlexanderGeiger/MLPrimitives
mlprimitives/adapters/pandas.py
3,458
Python
"""Rectify function""" import torch from torch.autograd import Function from encoding import cpu if torch.cuda.device_count() > 0: from encoding import gpu __all__ = ['rectify'] class _rectify(Function): @staticmethod def forward(ctx, y, x, kernel_size, stride, padding, dilation, average): ctx.save_for_backward(x) # assuming kernel_size is 3 kernel_size = [k + 2 * (d - 1) for k,d in zip(kernel_size, dilation)] ctx.kernel_size = kernel_size ctx.stride = stride ctx.padding = padding ctx.dilation = dilation ctx.average = average if x.is_cuda: gpu.conv_rectify(y, x, kernel_size, stride, padding, dilation, average) else: cpu.conv_rectify(y, x, kernel_size, stride, padding, dilation, average) ctx.mark_dirty(y) return y @staticmethod def backward(ctx, grad_y): x, = ctx.saved_variables if x.is_cuda: gpu.conv_rectify(grad_y, x, ctx.kernel_size, ctx.stride, ctx.padding, ctx.dilation, ctx.average) else: cpu.conv_rectify(grad_y, x, ctx.kernel_size, ctx.stride, ctx.padding, ctx.dilation, ctx.average) ctx.mark_dirty(grad_y) return grad_y, None, None, None, None, None, None rectify = _rectify.apply
32.023256
83
0.6122
[ "MIT" ]
Womcos/SCARF
encoding/functions/rectify.py
1,377
Python
from pyspark.sql import SparkSession def get_spark(): return (SparkSession.builder .appName("simpleapp") .master("local") .getOrCreate()) from pyspark import SparkConf, SparkContext import sys def main(sc, args): print("SimpleApp Arguments") for x in args: print x simple_data = [ ("Group A", "Section 1", 50), ("Group B", "Section 2", 75), ("Group A", "Section 1", 25), ("Group C", "section 2", 75) ] simple_df = get_spark().createDataFrame( simple_data, ["Group", "Section", "Amount"] ) simple_df.show() if __name__ == "__main__": # Configure Spark sc = get_spark() # Execute Main functionality main(sc, sys.argv)
20.891892
44
0.564036
[ "Apache-2.0" ]
MediaIQ/databricks-client-java
src/test/resources/simpleapp.py
773
Python
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from itertools import product from sklearn.preprocessing import LabelEncoder # ============================================================================= # The lines where we processed our data # ============================================================================= def lag_feature(df, lags, col): tmp = df[['date_block_num','shop_id','item_id',col]] for i in lags: shifted = tmp.copy() shifted.columns = ['date_block_num','shop_id','item_id', col+'_lag_'+str(i)] shifted['date_block_num'] += i df = pd.merge(df, shifted, on=['date_block_num','shop_id','item_id'], how='left') return df items = pd.read_csv(r'dataset\items.csv') shops = pd.read_csv(r'dataset\shops.csv') cats = pd.read_csv(r'dataset\item_categories.csv') train = pd.read_csv(r'dataset\sales_train.csv') test = pd.read_csv(r'dataset\test.csv').set_index('ID') train = train[train.item_price<100000] train = train[train.item_cnt_day<1001] median = train[(train.shop_id==32)&(train.item_id==2973)&(train.date_block_num==4)&(train.item_price>0)].item_price.median() train.loc[train.item_price<0, 'item_price'] = median train.loc[train.shop_id == 0, 'shop_id'] = 57 test.loc[test.shop_id == 0, 'shop_id'] = 57 train.loc[train.shop_id == 1, 'shop_id'] = 58 test.loc[test.shop_id == 1, 'shop_id'] = 58 train.loc[train.shop_id == 10, 'shop_id'] = 11 test.loc[test.shop_id == 10, 'shop_id'] = 11 shops['shop_name'] = shops['shop_name'].apply(lambda x: x.lower()).str.replace('[^\w\s]', '').str.replace('\d+','').str.strip() shops['city'] = shops['shop_name'].str.partition(' ')[0] shops['city_code'] = LabelEncoder().fit_transform(shops['city']) shops['shop_type'] = shops['shop_name'].apply(lambda x: 'мтрц' if 'мтрц' in x else 'трц' if 'трц' in x else 'трк' if 'трк' in x else 'тц' if 'тц' in x else 'тк' if 'тк' in x else 'NO_DATA') shops['shop_type'] = LabelEncoder().fit_transform(shops['shop_type']) shops = shops[['shop_id','city_code','shop_type']] cats['split'] = cats['item_category_name'].str.split('-') cats['type'] = cats['split'].map(lambda x: x[0].strip()) cats['type_code'] = LabelEncoder().fit_transform(cats['type']) # if subtype is nan then type cats['subtype'] = cats['split'].map(lambda x: x[1].strip() if len(x) > 1 else x[0].strip()) cats['subtype_code'] = LabelEncoder().fit_transform(cats['subtype']) cats = cats[['item_category_id','type_code', 'subtype_code']] items.drop(['item_name'], axis=1, inplace=True) matrix = [] cols = ['date_block_num','shop_id','item_id'] for i in range(34): sales = train[train.date_block_num==i] matrix.append(np.array(list(product([i], sales.shop_id.unique(), sales.item_id.unique())), dtype='int16')) matrix = pd.DataFrame(np.vstack(matrix), columns=cols) matrix['date_block_num'] = matrix['date_block_num'].astype(np.int8) matrix['shop_id'] = matrix['shop_id'].astype(np.int8) matrix['item_id'] = matrix['item_id'].astype(np.int16) matrix.sort_values(cols,inplace=True) train['revenue'] = train['item_price'] * train['item_cnt_day'] item_price_lag = train.groupby(['date_block_num','item_id']).agg({'item_price':['mean']}) item_price_lag.columns = ['average_item_price'] item_price_by_shop_lag = train.groupby(['date_block_num','shop_id', 'item_id']).agg({'item_price':['mean']}) item_price_by_shop_lag.columns = ['average_item_price_by_shop'] group = train.groupby(['date_block_num','shop_id','item_id']).agg({'item_cnt_day': ['sum']}) group.columns = ['item_cnt_month'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=cols, how='left') matrix['item_cnt_month'] = (matrix['item_cnt_month'].fillna(0).clip(0,20).astype(np.float16)) test['date_block_num'] = 34 test['date_block_num'] = test['date_block_num'].astype(np.int8) test['shop_id'] = test['shop_id'].astype(np.int8) test['item_id'] = test['item_id'].astype(np.int16) matrix = pd.concat([matrix, test], ignore_index=True, sort=False, keys=cols) matrix.fillna(0, inplace=True) # 34 month matrix = pd.merge(matrix, item_price_lag, on=['date_block_num','item_id'], how='left') matrix['average_item_price'] = matrix['average_item_price'].astype(np.float16) matrix = lag_feature(matrix, [1,2,3], 'average_item_price') matrix.drop(['average_item_price'], axis=1, inplace=True) matrix = pd.merge(matrix, item_price_by_shop_lag, on=['date_block_num','shop_id','item_id'], how='left') matrix['average_item_price_by_shop'] = matrix['average_item_price_by_shop'].astype(np.float16) matrix = lag_feature(matrix, [1,2,3], 'average_item_price_by_shop') matrix.drop(['average_item_price_by_shop'], axis=1, inplace=True) matrix = pd.merge(matrix, shops, on=['shop_id'], how='left') matrix = pd.merge(matrix, items, on=['item_id'], how='left') matrix = pd.merge(matrix, cats, on=['item_category_id'], how='left') matrix['city_code'] = matrix['city_code'].astype(np.int8) matrix['shop_type'] = matrix['shop_type'].astype(np.int8) matrix['item_category_id'] = matrix['item_category_id'].astype(np.int8) matrix['type_code'] = matrix['type_code'].astype(np.int8) matrix['subtype_code'] = matrix['subtype_code'].astype(np.int8) shop_mean = matrix.groupby(['shop_id']).agg({'item_cnt_month': ['mean']}) shop_mean.columns = ['shop_mean'] shop_mean.reset_index(inplace=True) shop_item_mean = matrix.groupby(['item_id','shop_id']).agg({'item_cnt_month': ['mean']}) shop_item_mean.columns = ['shop_item_mean'] shop_item_mean.reset_index(inplace=True) group = matrix.groupby(['date_block_num', 'item_id']).agg({'item_cnt_month': ['mean']}) group.columns = [ 'date_item_avg_item_cnt' ] group.reset_index(inplace=True) matrix = pd.merge(matrix, shop_mean, on=['shop_id'], how='left') matrix = pd.merge(matrix, shop_item_mean, on=['item_id','shop_id'], how='left') matrix = pd.merge(matrix, group, on=['date_block_num','item_id'], how='left') matrix['date_item_avg_item_cnt'] = matrix['date_item_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1,2,3], 'date_item_avg_item_cnt') matrix.drop(['date_item_avg_item_cnt'], axis=1, inplace=True) matrix = lag_feature(matrix, [1,2,3], 'item_cnt_month') matrix_last = matrix[matrix.date_block_num > 2] def fill_na(df): for col in df.columns: if ('_lag_' in col) & (df[col].isnull().any()): if ('item_cnt' in col): df[col].fillna(0, inplace=True) if ('shop_mean' in col): df[col].fillna(0, inplace=True) if ('average_item_price' in col): df[col].fillna(0, inplace=True) return df matrix = fill_na(matrix_last) matrix_last.to_pickle('dataset/traintest.pkl') # ============================================================================= # correlation Matrix # ============================================================================= cor_data = matrix_last[['shop_item_mean','date_block_num','date_item_avg_item_cnt_lag_1','item_category_id','average_item_price_lag_2','average_item_price_lag_1','item_cnt_month_lag_1','item_cnt_month']] corr = cor_data.corr() mask = np.zeros_like(corr, dtype=np.bool) f,ax = plt.subplots(figsize=(15, 20)) cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5},annot=True) plt.savefig('outputdata/correlation.png')
44.529412
204
0.660238
[ "MIT" ]
enkaranfiles/bil476_predict-future-sales
preprocessing.py
7,598
Python
from nepc import nepc from nepc.util import util import pandas as pd import os import pytest import platform # TODO: remove dependence on csv; put function in scraper that uses built-in # readlines function import csv # TODO: test that all values in [nepc]/tests/data are in the nepc database @pytest.mark.usefixtures("data_config", "nepc_connect") def test_states_table_has_species_metadata(data_config, nepc_connect): """ check that the states table has a species_id column """ NEPC_DATA = data_config[0] number_of_states = util.wc_fxn(NEPC_DATA + 'states.tsv') - 1 df_states = nepc.table_as_df(nepc_connect[1], 'states') assert len(df_states) == number_of_states assert 'species_id' in list(df_states.columns) @pytest.mark.usefixtures("data_config", "nepc_connect") def test_csdata_lines(data_config, nepc_connect): DIR_NAMES = data_config[1] cs_lines = 0 for directoryname in DIR_NAMES: directory = os.fsencode(directoryname) for file in os.listdir(directory): filename = os.fsdecode(file) if filename.endswith(".met") or filename.endswith(".mod"): continue else: # subtract 1 to account for header cs_lines += util.wc_fxn(directoryname + filename) - 1 assert cs_lines == nepc.count_table_rows(nepc_connect[1], "csdata") @pytest.mark.usefixtures("data_config", "nepc_connect") def test_data_entered(data_config, nepc_connect, local): NEPC_DATA = data_config[0] if local is False or platform.node() == 'ppdadamsonlinux': cs_dat_files = pd.read_csv(NEPC_DATA + 'cs_datfile_prod.tsv', delimiter='\t') else: cs_dat_files = pd.read_csv(NEPC_DATA + 'cs_datfile_local.tsv', delimiter='\t') for index, row in cs_dat_files.iterrows(): cs_id = row['cs_id'] dat_file = row['filename'] df = pd.read_csv(NEPC_DATA + dat_file + '.dat', delimiter='\t', usecols=['e_energy', 'sigma']) e_energy, sigma = nepc.cs_e_sigma(nepc_connect[1], cs_id) # assert e_energy == pytest.approx(df['e_energy'].tolist()) assert sigma == pytest.approx(df['sigma'].tolist()) @pytest.mark.usefixtures("data_config", "nepc_connect") def test_meta_entered(data_config, nepc_connect, local, dbug): NEPC_DATA = data_config[0] if local is False or platform.node() == 'ppdadamsonlinux': cs_dat_files = pd.read_csv(NEPC_DATA + 'cs_datfile_prod.tsv', delimiter='\t') else: cs_dat_files = pd.read_csv(NEPC_DATA + 'cs_datfile_local.tsv', delimiter='\t') for index, row in cs_dat_files.iterrows(): cs_id = row['cs_id'] met_file = row['filename'] if dbug: print(cs_id, met_file) e, sigma = nepc.cs_e_sigma(nepc_connect[1], cs_id) meta_cols = ['cs_id', 'process', 'units_e', 'units_sigma', 'ref', 'lhsA', 'lhsB', 'rhsA', 'rhsB', 'threshold', 'wavelength', 'lhs_v', 'rhs_v', 'lhs_j', 'rhs_j', 'background', 'lpu', 'upu'] with open(NEPC_DATA + met_file + ".met", 'r', newline='') as f: reader = csv.reader(f, delimiter='\t') next(reader) meta_disk = list(reader)[0] meta_disk = [meta_disk[i] for i in list(range(len(meta_cols)))] for i in [0, 11, 12, 13, 14]: meta_disk[i] = (int(meta_disk[i]) if meta_disk[i] != '\\N' else meta_disk[i]) for i in [2, 3, 9, 10, 16, 17]: meta_disk[i] = (float(meta_disk[i]) if meta_disk[i] != '\\N' else meta_disk[i]) meta_db = [nepc.cs_metadata(nepc_connect[1], cs_id)[i] for i in list(range(0, len(meta_cols)))] if dbug: print('meta_db: {}\t from {}'.format(meta_db, met_file)) for i in range(len(meta_cols)): if dbug: print('meta_db[{}]: {}\t from {}'.format(str(i), str(meta_db[i]), met_file)) if (type(meta_db[i]) is float): assert (pytest.approx(meta_disk[i]) == pytest.approx(meta_db[i])) elif meta_db[i] is None: assert meta_disk[i] == '\\N' else: assert meta_disk[i] == meta_db[i]
39.552632
92
0.578399
[ "CC0-1.0" ]
USNavalResearchLaboratory/nepc
tests/test_mysql_build.py
4,509
Python
# encoding: utf-8 import unittest from cool.core import constants class IntConstants(constants.Constants): TEST0 = (0, 'test0') TEST1 = (1, 'test1') class IntStringCodeConstants(constants.Constants): TEST = ('test', 'test0') TEST1 = (1, 'test1') class ConstantsTests(unittest.TestCase): def test_unique(self): with self.assertRaises(ValueError): class TestUniqueConstants(constants.Constants): TEST0 = (0, 'test0') TEST1 = (0, 'test1') def test_code(self): self.assertEqual(IntConstants.TEST0, 0) self.assertEqual(IntConstants.TEST1, 1) def test_desc(self): class TestDescConstants(constants.Constants): TEST0 = (0, 'test') TEST1 = (1, 'test') TEST2 = (2, 'test2') self.assertEqual(TestDescConstants.TEST0.desc, 'test') self.assertEqual(TestDescConstants.TEST1.desc, 'test') self.assertEqual(TestDescConstants.TEST2.desc, 'test2') def test_equal(self): class TestEqualConstants(constants.Constants): TEST = (0, 'test') class TestEqualConstants2(constants.Constants): TEST = (0, 'test') self.assertEqual(TestEqualConstants.TEST, TestEqualConstants.TEST) self.assertNotEqual(TestEqualConstants.TEST, TestEqualConstants2.TEST) self.assertEqual(TestEqualConstants.TEST, 0) self.assertEqual(TestEqualConstants2.TEST, 0) def test_string_code(self): self.assertEqual(IntStringCodeConstants.TEST, 'test') self.assertEqual(IntStringCodeConstants.TEST.code, 'test') def test_choices_list(self): self.assertListEqual(IntStringCodeConstants.get_choices_list(), [('test', 'test0'), (1, 'test1')]) def test_desc_dict(self): self.assertListEqual(IntStringCodeConstants.get_desc_dict(name_key='name'), [ {'name': 'TEST', 'code': 'test', 'desc': 'test0'}, {'name': 'TEST1', 'code': 1, 'desc': 'test1'}, ])
33.114754
106
0.641584
[ "BSD-3-Clause" ]
007gzs/django-cool
tests/core/test_constants.py
2,020
Python
from pomodoro import main if __name__ == "__main__": main()
11
26
0.666667
[ "MIT" ]
Dev3XOR/pomodoro
src/pomodoro/__main__.py
66
Python
import pytest from icepyx.core.visualization import Visualize import icepyx.core.visualization as vis @pytest.mark.parametrize( "n, exp", [ ( 1, [ "ATL06_20200702014158_01020810_004_01.h5", "ATL06_20200703011618_01170810_004_01.h5", ], ), ( 2, [ "ATL06_20200612151119_11920712_004_01.h5", "ATL06_20200616021517_12450710_004_01.h5", "ATL06_20200702014158_01020810_004_01.h5", "ATL06_20200703011618_01170810_004_01.h5", ], ), ( 3, [ "ATL06_20200612151119_11920712_004_01.h5", "ATL06_20200616021517_12450710_004_01.h5", "ATL06_20200702014158_01020810_004_01.h5", "ATL06_20200703011618_01170810_004_01.h5", ], ), ], ) def test_files_in_latest_cycles(n, exp): files = [ "ATL06_20190710071617_01860412_004_01.h5", "ATL06_20190713182016_02390410_004_01.h5", "ATL06_20200612151119_11920712_004_01.h5", "ATL06_20200616021517_12450710_004_01.h5", "ATL06_20200702014158_01020810_004_01.h5", "ATL06_20200703011618_01170810_004_01.h5", ] cycles = [8, 7, 4] obs = vis.files_in_latest_n_cycles(files, cycles=cycles, n=n) assert obs == exp @pytest.mark.parametrize( "filename, expect", [ ('ATL06_20190525202604_08790310_004_01.h5', [879, 3, '2019-05-25']), ('ATL06_20190614194425_11840310_004_01.h5', [1184, 3, '2019-06-14']), ('ATL07-02_20190624063616_13290301_004_01.h5', [1329, 3, '2019-06-24']), ('ATL07-02_20190602190916_10010301_004_01.h5', [1001, 3, '2019-06-02']), ('ATL10-02_20190611072656_11310301_004_01.h5', [1131, 3, '2019-06-11']), ('ATL10-02_20190731045538_05060401_004_01.h5', [506, 4, '2019-07-31']), ('ATL12_20190615023544_11890301_004_01.h5', [1189, 3, '2019-06-15']), ('ATL12_20190721170332_03610401_004_01.h5', [361, 4, '2019-07-21']), ], ) def test_gran_paras(filename, expect): para_list = vis.gran_paras(filename) assert para_list == expect @pytest.mark.parametrize( "product, date_range, bbox, expect", [ ("ATL06", ["2019-6-15", "2019-7-1"], [-64.5, -66, -63.5, -65], 3240), ("ATL07", ["2019-7-1", "2019-8-1"], [-65, -66, -64.5, -65], 7160), ("ATL08", ["2019-6-15", "2019-7-1"], [-18, 63, -17, 64], 852), ("ATL10", ["2019-8-1", "2019-9-1"], [-64, -67, -60, -60], 7375), ("ATL12", ["2019-7-1", "2019-10-1"], [-65.5, -65.5, -64.5, -65], 95), ("ATL13", ["2019-6-1", "2019-12-1"], [-75, -51, -74, -50], 20), ], ) def test_visualization_date_range(product, date_range, bbox, expect): region_viz = Visualize(product=product, spatial_extent=bbox, date_range=date_range) data_size = region_viz.parallel_request_OA().size assert data_size == expect @pytest.mark.parametrize( "product, bbox, cycles, tracks, expect", [ ("ATL06", [-64.5, -66, -63.5, -65], ["03"], ["1306"], 3240), ("ATL07", [-65, -66, -64.5, -65], ["04"], ["0186"], 7130), ("ATL08", [-18, 63, -17, 64], ["03"], ["1320"], 852), ("ATL10", [-64, -67, -60, -60], ["04"], ["0681"], 6015), ("ATL12", [-65.5, -65.5, -64.5, -65], ["05"], ["0041"], 95), ("ATL13", [-75, -51, -74, -50], ["05"], ["0293"], 20), ], ) def test_visualization_orbits(product, bbox, cycles, tracks, expect): region_viz = Visualize( product=product, spatial_extent=bbox, cycles=cycles, tracks=tracks ) data_size = region_viz.parallel_request_OA().size assert data_size == expect
34.504587
87
0.576442
[ "BSD-3-Clause" ]
ICESat2-SlideRule/icepyx
icepyx/tests/test_visualization.py
3,761
Python
#CODE1---For preparing the list of DRUG side-effect relation from SIDER database--- #Python 3.6.5 |Anaconda, Inc. import sys import glob import errno import csv path = '/home/16AT72P01/Excelra/SIDER1/output/adverse_effects.tsv' files = glob.glob(path) unique_sideeffect = set() unique_drug = set() unique_pair = set() with open(path) as f1: reader = csv.DictReader(f1, quotechar='"', delimiter='\t', quoting=csv.QUOTE_ALL, skipinitialspace=True) print(reader) for row in reader: unique_drug.add(row['drug_name']) unique_sideeffect.add(row['adverse_effect']) val = row['drug_name']+"|"+row['adverse_effect'] unique_pair.add(val) f1.close() print(len(unique_drug)) print(len(unique_sideeffect)) print(len(unique_pair))
25.551724
105
0.735493
[ "MIT" ]
ankita094/BioIntMed
src/dictionaryCode/other/siderData1.py
741
Python
import csv def save_statistics(experiment_name, line_to_add): with open("{}.csv".format(experiment_name), 'a') as f: writer = csv.writer(f) writer.writerow(line_to_add) def load_statistics(experiment_name): data_dict = dict() with open("{}.csv".format(experiment_name), 'r') as f: lines = f.readlines() data_labels = lines[0].replace("\n","").split(",") del lines[0] for label in data_labels: data_dict[label] = [] for line in lines: data = line.replace("\n","").split(",") for key, item in zip(data_labels, data): data_dict[key].append(item) return data_dict
25.62963
58
0.58237
[ "MIT" ]
likesiwell/DL_Code_Repos
MetaLearning/MatchingNetworks/storage.py
692
Python
""" ASGI config for apiproject project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'apiproject.settings') application = get_asgi_application()
23.352941
78
0.788413
[ "MIT" ]
vasulimited123/Django-Repository
apiproject/apiproject/asgi.py
397
Python
""" This module provides an interface for reading and writing to a HackPSU RaspberryPi Scanner config file Methods: getProperty(configFile, prop) Get a property from a config file by reading the config file until the desired property is found setProperty(configFile, prop, value) Set a property by updating the config file (requries a total rewrite of the config file) getProperties(configFile) Read all properties into a dictionary, which is returned to the user setProperties(configFile, dict) Overwrite the configFile with a new configFile generated from the dictionary provided """ def getProperties(configFile): """ dictionary getProperties(str) This funciton reads the entire config file and builds a dictionary from the config file Args: configFile: The configuration file to read from Returns: dictionary: A list of key value pairs from the config file """ dict = {} #For each line in the file with open(configFile) as file: for line in file: #Remove leading and trailing whitespace line = line.strip() #If the line is a comment, skip if line.startswith('#'): continue #Find the equals sign, if not present, skip the line loc = line.find('=') if loc == -1: continue #parse out the key and value key = line[:loc] value = line[loc+1:] dict[key] = value return dict def setProperties(configFile, dict): """ void setProperties (str, dictionary) This function iterates over the entire dictionary and saves each dictionary entry to the specified config file Args: configFile: The file to overwrite with the new configuration dict: The dictionary to write """ #Overwrite the file #Foreach key in dictionary write a new line with open(configFile, 'w') as file: for key in dict: file.write(key + '=' + dict[key] + '\n') def getProperty(configFile, prop): """ str getProperty(str, str) This function searches a configFile for a specific property and returns its value Args: configFile: The configuration file to open prop: The property to search for Returns: string: The property value if found or None for no value found """ retVal = None #Foreach line in the file with open(configFile) as file: for line in file: #Remove leading and trailing whitespace line = line.strip() #Ignore comment lines if line.startswith('#'): continue #If the line is the desired property, parse and return if line.startswith(prop): retVal = line.replace(prop, '') retVal = retVal.strip() retVal = retVal[1:] retVal = retVal.lstrip() break return retVal def setProperty(configFile, prop, value): """ void setProperty(str, str, str) This function searches a config file for the specified propery and updates its value if found. If the specified property is not found, then a new line for the property will be created Args: configFile: The configuration file to open and update prop: The property key to update value: The new value for the property """ written = False with open(configFile) as inFile: #Create a temp file to copy into tmpHandle, outPath = mkstemp() with fdopen(tmpHandle, 'w') as outFile: #Foreach line in the original file for line in inFile: #If it's the prop line, rewrite the prop line if line.startswith(prop): outFile.write(prop + '=' + value + '\n') written = True #Otherwise keep the line as is else: outFile.write(line) #If no update was performed, then add a new line for the prop if not written: outFile.write(prop + ':' + value + '\n') #Move from tmp to actual file remove(configFile) move(outPath, configFile)
27.676692
111
0.710676
[ "MIT" ]
hackpsu-tech/hackPSUS2018-rfid
HackPSUconfig.py
3,681
Python
from django.test import TestCase from django.contrib.auth import get_user_model from core import models def sample_user(email='[email protected]', password='testpass'): '''Creating sample user''' return get_user_model().objects.create_user(email, password) class ModelTests(TestCase): def test_create_user_with_email_successful(self): """Test creating a new user with an email is successful""" email = '[email protected]' password = 'Password123' user = get_user_model().objects.create_user( email=email, password=password ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_email_normalize(self): """Testing weather email is in normalize form or not""" email = "[email protected]" user = get_user_model().objects.create_user(email, "test123") self.assertEqual(user.email, email.lower()) def test_email_validation(self): with self.assertRaises(ValueError): get_user_model().objects.create_user(None, 'test123') def test_create_superuser(self): """Test for creating super user""" email = '[email protected]' password = 'Password123' user = get_user_model().objects.create_superuser( email=email, password=password ) self.assertTrue(user.is_staff) self.assertTrue(user.is_superuser) def test_tag_str(self): tag = models.Tag.objects.create(user=sample_user(), name='vegan') self.assertEqual(str(tag), tag.name)
33.102041
73
0.658446
[ "MIT" ]
Rish1711/recipe-app-api
app/core/tests/test_models.py
1,622
Python
import copy import dask import dask.array as da from dask.distributed import Client import datetime import logging import math from multiprocessing.pool import ThreadPool import numpy as np from pathlib import Path from tqdm.auto import tqdm from typing import Union, TypeVar, Tuple import xarray as xr import shutil import warnings import zarr from .utils import infer_chunks from .readers import DirectoryImageReader Reader = TypeVar("Reader") def write_transposed_dataset( reader: Reader, outfname: Union[Path, str], start: datetime.datetime = None, end: datetime.datetime = None, chunks: dict = None, memory: float = 2, n_threads: int = 4, zlib: bool = True, complevel: int = 4, distributed: Union[bool, Client] = False, use_dask: bool = True, ): """ Creates a stacked and transposed netCDF file from a given reader. WARNING: very experimental! Parameters ---------- reader : XarrayImageReaderBase Reader for the dataset. outfname : str or Path Output filename. Must end with ".nc" for netCDF output or with ".zarr" for zarr output. start : datetime.datetime, optional If not given, start at first timestamp in dataset. end : datetime.datetime, optional If not given, end at last timestamp in dataset. chunks : dictionary, optional The chunk sizes that are used for the transposed file. If none are given, chunks with a size of 1MB are used for netCDF, and chunks with a size of 50MB are used for zarr output. memory : float, optional The amount of memory to be used for buffering in GB. Default is 2. Higher is faster. n_threads : int, optional The amount of threads to use. Default is 4. zlib : bool, optional Whether to use compression when storing the files. Reduces file size, but strongly increases write time, and maybe also access time. Default is ``False``. complevel : int, optional Compression level to use. Default is 4. Range is from 1 (low) to 9 (high). distributed : bool or Client, optional Whether to use the local or the distributed dask scheduler. If a client for a distributed scheduler is used, this is used instead. use_dask : bool, optional Whether to use dask for the transposing. Default is True, but sometimes (especially with large datasets) this fails. If set to False, the data is written to an intermediate zarr store. """ dask_config = { "array.slicing.split_large_chunks": False, } args = (reader, outfname) kwargs = { "start": start, "end": end, "memory": memory, "zlib": zlib, "complevel": complevel, "chunks": chunks, } if not use_dask: _transpose_no_dask(*args, **kwargs) elif isinstance(distributed, Client) or not distributed: if not distributed: dask_config.update( {"scheduler": "threads", "pool": ThreadPool(n_threads)} ) with dask.config.set(**dask_config): _transpose(*args, **kwargs) elif distributed: with dask.config.set(**dask_config), Client( n_workers=1, threads_per_worker=n_threads, memory_limit=f"{memory}GB", ) as client: print("Dask dashboard accessible at:", client.dashboard_link) _transpose(*args, **kwargs) def _get_intermediate_chunks(array, chunks, new_last_dim, zarr_output, memory): """ Calculates chunk sizes for the given array for the intermediate output files. Parameters ---------- array : xr.DataArray Array to rechunk and transpose chunks : dict or None Chunks passed to write_transposed_dataset, None if none were given. new_last_dim : str Name of the new last dimension, normally "time". zarr_output : bool Whether the final file will be a zarr file (True) or a netCDf (False). memory : float The amount of memory to be used for buffering in GB. Returns ------- tmp_chunks : dict Chunks to be used for rechunking the array to a temporary file. The order of keys corresponds to the order of dimensions in the transposed array. """ dtype = array.dtype dims = dict(zip(array.dims, array.shape)) transposed_shape = [ length for dim, length in dims.items() if dim != new_last_dim ] transposed_shape.append(dims[new_last_dim]) # If the chunks argument was not given, we have to infer the spatial # and temporal chunks for the intermediate file. # The spatial chunks will be set such that for a continuous time # dimension the chunk size is still reasonable. if chunks is None: if zarr_output: chunksizes = infer_chunks(transposed_shape, 100, dtype)[:-1] else: chunksizes = infer_chunks(transposed_shape, 1, dtype)[:-1] chunks = dict( zip([dim for dim in dims if dim != new_last_dim], chunksizes) ) chunks[new_last_dim] = -1 else: chunks = copy.copy(chunks) tmp_chunks = {dim: chunks[dim] for dim in dims if dim != new_last_dim} # figure out temporary chunk sizes based on image size and available memory size = dtype.itemsize chunksizes = [size if size != -1 else dims[dim] for dim, size in chunks.items()] chunksize_MB = np.prod(chunksizes) * size / 1024 ** 2 img_shape = transposed_shape[:-1] len_time = transposed_shape[-1] imagesize_GB = np.prod(img_shape) * size / 1024 ** 3 # we need to divide by two, because we need intermediate storage for # the transposing stepsize = int(math.floor(memory / imagesize_GB)) // 2 stepsize = min(stepsize, len_time) tmp_chunks[new_last_dim] = stepsize tmp_chunks_str = str(tuple(tmp_chunks.values())) logging.info( f"write_transposed_dataset: Creating chunks {tmp_chunks_str}" f" with chunksize {chunksize_MB:.2f} MB" ) return tmp_chunks def _transpose( reader: Reader, outfname: Union[Path, str], start: datetime.datetime = None, end: datetime.datetime = None, chunks: dict = None, memory: float = 2, zlib: bool = True, complevel: int = 4, ): zarr_output = str(outfname).endswith(".zarr") new_last_dim = reader.timename if isinstance(reader, DirectoryImageReader) and reader.chunks is None: logging.info( "You are using DirectoryImageReader without dask. If you run into" " memory issues or have large datasets to transpose, consider" " setting use_dask=True in the constructor of DirectoryImageReader." ) ds = reader.read_block(start, end) # We process each variable separately and store them as intermediately # chunked temporary files. The chunk size in time dimension is inferred # from the given memory. variable_chunks = {} variable_intermediate_fnames = {} for var in reader.varnames: tmp_outfname = str(outfname) + f".{var}.zarr" variable_intermediate_fnames[var] = tmp_outfname if Path(tmp_outfname).exists(): logging.info( "Skipping generating intermediate file {tmp_outfname}" " because it exists" ) continue tmp_chunks = _get_intermediate_chunks( ds[var], chunks, new_last_dim, zarr_output, memory ) # make sure that the time dimension will be continuous in the final # output chunks = copy.copy(tmp_chunks) chunks[new_last_dim] = len(ds[var].time) variable_chunks[var] = chunks # now we can rechunk and transpose using xarray rechunked_transposed = ds[var].chunk(tmp_chunks).transpose( ..., new_last_dim ) rechunked_transposed.to_dataset().to_zarr( tmp_outfname, consolidated=True ) # Now we have to reassemble all variables to a single dataset and write the # final chunks variable_ds = [] variable_chunksizes = {} for var in reader.varnames: ds = xr.open_zarr(variable_intermediate_fnames[var], consolidated=True) variable_ds.append(ds) # for the encoding variable below we need the chunks as tuple in the # right order, it's easier to get this here were we have easy access to # the transposed DataArray transposed_dims = ds[var].dims variable_chunksizes[var] = tuple( chunks[dim] for dim in transposed_dims ) ds = xr.merge( variable_ds, compat="override", join="override", combine_attrs="override", ) ds.attrs.update(reader.global_attrs) encoding = { var: { "chunksizes": variable_chunksizes[var], "zlib": zlib, "complevel": complevel, } for var in reader.varnames } if not zarr_output: ds.to_netcdf(outfname, encoding=encoding) else: for var in reader.varnames: del ds[var].encoding["chunks"] del ds[var].encoding["preferred_chunks"] ds[var] = ds[var].chunk(variable_chunksizes[var]) ds.to_zarr(outfname, mode="w", consolidated=True) for var in reader.varnames: shutil.rmtree(variable_intermediate_fnames[var]) logging.info("write_transposed_dataset: Finished writing transposed file.") def _transpose_no_dask( reader: Reader, outfname: Union[Path, str], start: datetime.datetime = None, end: datetime.datetime = None, chunks: Tuple = None, memory: float = 2, zlib: bool = True, complevel: int = 4, ): warnings.warn( "This is an experimental function and not yet ready for public use!" ) zarr_output = str(outfname).endswith(".zarr") new_last_dim = reader.timename timestamps = reader.tstamps_for_daterange(start, end) variable_fnames = {} variable_dims = {} for varname in reader.varnames: tmp_outfname = str(outfname) + f".{varname}.zarr" variable_fnames[varname] = tmp_outfname # first, get some info about structure of the input file first_img = reader.read_block(start=timestamps[0], end=timestamps[0])[ varname ] tmp_chunks = _get_intermediate_chunks( first_img, chunks, new_last_dim, zarr_output, memory ) # get new dim names in the correct order new_dim_names = list(tmp_chunks) variable_dims[varname] = new_dim_names # this happens this late because we need to set # `variable_dims[varname]` in any case if Path(tmp_outfname).exists(): logging.info(f"{str(tmp_outfname)} already exists, skipping.") continue logging.debug( f"write_transposed_dataset: starting zarr array creation" f" for {len(timestamps)} timestamps" ) # get shape of transposed target array dims = dict(zip(first_img.dims, first_img.shape)) transposed_shape = tuple(dims[dim] for dim in tmp_chunks.keys()) zarr_array = zarr.create( tuple(new_dim_sizes), chunks=tuple(size for size in tmp_chunks.values()), store=tmp_outfname, overwrite=True, fill_value=np.nan, ) logging.debug(f"write_transposed_dataset: Writing {tmp_outfname}") print(f"Constructing array stack for {varname}:") pbar = tqdm(range(0, len(timestamps), stepsize)) stepsize = tmp_chunks[new_last_dim] for start_idx in pbar: pbar.set_description("Reading") end_idx = min(start_idx + stepsize - 1, len(timestamps) - 1) block = reader.read_block( timestamps[start_idx], timestamps[end_idx] )[varname] block = block.transpose(..., new_last_dim) pbar.set_description("Writing") zarr_array[..., start_idx : end_idx + 1] = block.values variable_arrays = {} encoding = {} for varname, fname in variable_fnames.items(): logging.debug(f"Reading {str(fname)}") arr = da.from_zarr(fname) dims = variable_dims[varname] metadata = reader.array_attrs[varname] if chunks is None: if zarr_output: chunks = infer_chunks(new_dim_sizes, 100, dtype) else: # netCDF chunks should be about 1MB chunks = infer_chunks(new_dim_sizes, 1, dtype) encoding[varname] = { "chunksizes": chunks, "zlib": zlib, "complevel": complevel, } chunk_dict = dict(zip(dims, chunks)) arr = xr.DataArray(data=arr, dims=dims, attrs=metadata) arr = arr.chunk(chunk_dict) arr.encoding = encoding[varname] # we're writing again to a temporary file, because otherwise the # dataset creation fails because dask sucks # arr.to_dataset(name=varname).to_zarr(fname + ".tmp", consolidated=True) # variable_arrays[varname] = xr.open_zarr(fname + ".tmp", consolidated=True) variable_arrays[varname] = arr logging.debug("Reading test image") test_img = reader.read_block(start=timestamps[0], end=timestamps[0])[ reader.varnames[0] ] coords = { c: test_img.coords[c] for c in test_img.coords if c != reader.timename } coords[reader.timename] = timestamps logging.debug("Creating dataset") ds = xr.Dataset( variable_arrays, coords=coords, ) ds.attrs.update(reader.global_attrs) logging.info( f"write_transposed_dataset: Writing combined file to {str(outfname)}" ) if not zarr_output: ds.to_netcdf(outfname, encoding=encoding) else: ds.to_zarr(outfname, mode="w", consolidated=True) for fname in variable_fnames.values(): shutil.rmtree(fname) logging.info("write_transposed_dataset: Finished writing transposed file.")
34.681373
84
0.637597
[ "MIT" ]
awst-austria/qa4sm-preprocessing
src/qa4sm_preprocessing/nc_image_reader/transpose.py
14,150
Python
#!/usr/bin/python import sys from PIL import Image import argparse parser = argparse.ArgumentParser(description='Convert animated or static images to CampZone2019 badge code') parser.add_argument('image', help='The path to an image to read from (e.g. .gif, .jpg, .png)') parser.add_argument('--start_x', type=int, default=0, help='The X offset in the image to start reading from') parser.add_argument('--start_y', type=int, default=0, help='The Y offset in the image to start reading from') parser.add_argument('--length_x', type=int, default=32, help='The width to read from the image, starting at start_x') parser.add_argument('--length_y', type=int, default=8, help='The height to read from the image, starting at start_y') parser.add_argument('--start_at_frame', type=int, default=0, help='The frame to start from, if the image is animated') parser.add_argument('--lim_frames', type=int, default=16, help='The number of frames to parse, if the image is animated') parser.add_argument('--skip_frames', type=int, default=1, help='The number of frames to parse, if the image is animated') parser.add_argument('--is_icon', type=bool, default=False, help='Set to "true" to output rgb.image() instead of rgb.gif()') args = parser.parse_args() start_x = args.start_x start_y = args.start_y length_x = args.length_x length_y = args.length_y start_at_frame = args.start_at_frame lim_frames = args.lim_frames skip_frames = args.skip_frames is_icon = args.is_icon frames = [] image = Image.open(sys.argv[1]) n_frames, width, height = image.n_frames if hasattr(image, 'n_frames') else 1, image.width, image.height used_frames = min((n_frames - start_at_frame) / skip_frames, lim_frames) used_width = min(length_x, image.width) used_height = min(length_y, image.height) for frame_no in range(start_at_frame, start_at_frame + used_frames): image.seek(frame_no) frame = list(image.convert('RGBA').getdata()) cut_frame = [] for y in range(start_y, start_y + used_height): for x in range(start_x, start_x + used_width): cut_frame.append(frame[x + width * y]) frames.append(cut_frame) if is_icon: print('icon = ([0x' + ', 0x'.join([', 0x'.join([format(r << 24 | g << 16 | b << 8 | a, '08x') for r, g, b, a in frame]) for frame in frames]) + '], %d)' % used_frames) else: print('rgb.gif([0x' + ', 0x'.join([', 0x'.join([format(r << 24 | g << 16 | b << 8 | a, '08x') for r, g, b, a in frame]) for frame in frames]) + '], %d, %d, %d, %d, %d)' % (0, 0, used_width, used_height, used_frames))
45.912281
123
0.680168
[ "MIT" ]
tjclement/cz19-badge
tools/convert.py
2,617
Python
import asyncio from pathlib import Path from secrets import token_bytes from typing import Optional import aiosqlite import pytest from clvm_tools import binutils from ceres.types.blockchain_format.coin import Coin from ceres.types.blockchain_format.program import Program, SerializedProgram from ceres.types.blockchain_format.sized_bytes import bytes32 from ceres.types.coin_spend import CoinSpend from ceres.util.db_wrapper import DBWrapper from ceres.util.ints import uint64 from ceres.wallet.wallet_pool_store import WalletPoolStore @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop def make_child_solution(coin_spend: CoinSpend, new_coin: Optional[Coin] = None) -> CoinSpend: new_puzzle_hash: bytes32 = token_bytes(32) solution = "()" puzzle = f"(q . ((51 0x{new_puzzle_hash.hex()} 1)))" puzzle_prog = Program.to(binutils.assemble(puzzle)) solution_prog = Program.to(binutils.assemble(solution)) if new_coin is None: new_coin = coin_spend.additions()[0] sol: CoinSpend = CoinSpend( new_coin, SerializedProgram.from_program(puzzle_prog), SerializedProgram.from_program(solution_prog), ) return sol class TestWalletPoolStore: @pytest.mark.asyncio async def test_store(self): db_filename = Path("wallet_store_test.db") if db_filename.exists(): db_filename.unlink() db_connection = await aiosqlite.connect(db_filename) db_wrapper = DBWrapper(db_connection) store = await WalletPoolStore.create(db_wrapper) try: await db_wrapper.begin_transaction() coin_0 = Coin(token_bytes(32), token_bytes(32), uint64(12312)) coin_0_alt = Coin(token_bytes(32), token_bytes(32), uint64(12312)) solution_0: CoinSpend = make_child_solution(None, coin_0) solution_0_alt: CoinSpend = make_child_solution(None, coin_0_alt) solution_1: CoinSpend = make_child_solution(solution_0) assert store.get_spends_for_wallet(0) == [] assert store.get_spends_for_wallet(1) == [] await store.add_spend(1, solution_1, 100) assert store.get_spends_for_wallet(1) == [(100, solution_1)] # Idempotent await store.add_spend(1, solution_1, 100) assert store.get_spends_for_wallet(1) == [(100, solution_1)] with pytest.raises(ValueError): await store.add_spend(1, solution_1, 101) # Rebuild cache, no longer present await db_wrapper.rollback_transaction() await store.rebuild_cache() assert store.get_spends_for_wallet(1) == [] await store.rebuild_cache() await store.add_spend(1, solution_1, 100) assert store.get_spends_for_wallet(1) == [(100, solution_1)] solution_1_alt: CoinSpend = make_child_solution(solution_0_alt) with pytest.raises(ValueError): await store.add_spend(1, solution_1_alt, 100) assert store.get_spends_for_wallet(1) == [(100, solution_1)] solution_2: CoinSpend = make_child_solution(solution_1) await store.add_spend(1, solution_2, 100) await store.rebuild_cache() solution_3: CoinSpend = make_child_solution(solution_2) await store.add_spend(1, solution_3, 100) solution_4: CoinSpend = make_child_solution(solution_3) with pytest.raises(ValueError): await store.add_spend(1, solution_4, 99) await store.rebuild_cache() await store.add_spend(1, solution_4, 101) await store.rebuild_cache() await store.rollback(101, 1) await store.rebuild_cache() assert store.get_spends_for_wallet(1) == [ (100, solution_1), (100, solution_2), (100, solution_3), (101, solution_4), ] await store.rebuild_cache() await store.rollback(100, 1) await store.rebuild_cache() assert store.get_spends_for_wallet(1) == [ (100, solution_1), (100, solution_2), (100, solution_3), ] with pytest.raises(ValueError): await store.add_spend(1, solution_1, 105) await store.add_spend(1, solution_4, 105) solution_5: CoinSpend = make_child_solution(solution_4) await store.add_spend(1, solution_5, 105) await store.rollback(99, 1) assert store.get_spends_for_wallet(1) == [] finally: await db_connection.close() db_filename.unlink()
36.557252
93
0.640426
[ "Apache-2.0" ]
ales/ceres-combineharvester
tests/pools/test_wallet_pool_store.py
4,789
Python
import time import torch import numpy as np from collections import deque from graphnas.trainer import Trainer class Evolution_Trainer(Trainer): """ This class implements the Asyncronous Aging Evolution, proposed by Real et. al. on: Regularized Evolution for Image Classifier Architecture Search available on: https://arxiv.org/abs/1802.01548 """ def __init__(self, args): super(Evolution_Trainer, self).__init__(args) self.args = args self.random_seed = args.random_seed self.population = deque() self.accuracies = deque() self.population_size = args.population_size self.sample_size = args.sample_size self.cycles = args.cycles self.init_time = 0 print('initializing population on evolution_trainer init, maybe not the best strategy') self.__initialize_population() def derive_from_population(self): population = self._construct_action(self.population) best_score_index, _ = \ self._get_best_individual_accuracy(self.accuracies) best_structure = self.form_gnn_info(population[best_score_index]) print("[DERIVE] Best Structure:", str(best_structure)) # train from scratch to get the final score np.random.seed(self.random_seed) torch.manual_seed(self.random_seed) torch.cuda.manual_seed_all(self.random_seed) test_scores_list = [] for i in range(10): # run 10 times to get Mean and Stddev val_acc, test_acc = self.submodel_manager.evaluate(best_structure) test_scores_list.append(test_acc) print("[DERIVE] Best Results: ", best_structure, ": ", np.mean(test_scores_list), "+/-", np.std(test_scores_list)) def _mutate_individual(self, indiv): # Choose a random position on the individual to mutate position_to_mutate = np.random.randint(len(indiv)) # This position will receive a randomly chosen index # of the search_spaces's list # for the action corresponding to that position in the individual sp_list = self.search_space[self.action_list[position_to_mutate]] indiv[position_to_mutate] = \ np.random.randint(0, len(sp_list)) return indiv def _get_best_individual_accuracy(self, accs): max_acc_index = 0 max_acc = -1 for index, acc in enumerate(accs): if acc > max_acc: max_acc = acc max_acc_index = index return max_acc_index, max_acc def __initialize_population(self): print("\n\n===== Evaluating initial random population =====") start_initial_population_time = time.time() while len(self.population) < self.population_size: # print('adding individual #:', len(population)) individual = self._generate_random_individual() ind_actions = self._construct_action([individual]) gnn = self.form_gnn_info(ind_actions[0]) _, ind_acc = \ self.submodel_manager.train(gnn, format=self.args.format) print("individual:", individual, " val_score:", ind_acc) self.accuracies.append(ind_acc) self.population.append(individual) end_initial_pop_time = time.time() self.init_time = end_initial_pop_time - start_initial_population_time print("Time elapsed initializing population: " + str(self.init_time)) print("===== Evaluating initial random population DONE ====") def train(self): print("\n\n===== Evolution ====") start_evolution_time = time.time() while self.cycles > 0: sample = [] # list with indexes to population individuals sample_accs = [] # accuracies of the sampled individuals while len(sample) < self.sample_size: candidate = np.random.randint(0, len(self.population)) sample.append(self.population[candidate]) sample_accs.append(self.accuracies[candidate]) # Get best individual on sample to serve as parent max_sample_acc_index, max_sample_acc = \ self._get_best_individual_accuracy(sample_accs) parent = sample[max_sample_acc_index] # print('parent: ', parent) child = parent.copy() child = self._mutate_individual(child) # print('child: ', child) child_actions = self._construct_action([child]) gnn = self.form_gnn_info(child_actions[0]) _, child_acc = \ self.submodel_manager.train(gnn, format=self.args.format) # print('child acc: ', child_acc) print("parent: ", str(parent), " val_score: ", str(max_sample_acc), "| child: ", str(child), ", val_score: ", str(child_acc)) self.accuracies.append(child_acc) self.population.append(child) if self.cycles % self.args.eval_cycle == 0: self.derive_from_population() # Remove oldest individual (Aging/Regularized evolution) self.population.popleft() self.accuracies.popleft() print("[POPULATION STATS] Mean/Median/Best: ", np.mean(self.accuracies), np.median(self.accuracies), np.max(self.accuracies)) self.cycles -= 1 end_evolution_time = time.time() total_evolution_time = end_evolution_time - start_evolution_time print('Time spent on evolution: ' + str(total_evolution_time)) print('Total elapsed time: ' + str(total_evolution_time + self.init_time)) print("===== Evolution DONE ====") def derive(self, sample_num=None): self.derive_from_population()
43.622222
95
0.626083
[ "Apache-2.0" ]
mhnnunes/nas_gnn
graphnas/evolution_trainer.py
5,889
Python
# Generated by Django 2.1.4 on 2018-12-28 02:51 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('content', models.TextField()), ('date_posted', models.DateTimeField(default=django.utils.timezone.now)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
31.275862
120
0.637266
[ "MIT" ]
uzzal71/Django_blog
mysite/blog/migrations/0001_initial.py
907
Python
# Make SweetPea visible regardless of whether it's been installed. import sys sys.path.append("..") from sweetpea.primitives import Factor, DerivedLevel, WithinTrial, Transition from sweetpea.constraints import no_more_than_k_in_a_row from sweetpea import fully_cross_block, synthesize_trials_non_uniform, print_experiments """ Padmala & Pessoa (2011) design *********************** factors (levels): - reward (rewarded, non-rewarded) - response (left, right) - response Transition (repetition, switch). Factor dependent on response: - congruency (congruent, incongruent, neutral) - congruency Transition (congruent-congruent, congruent-incongruent, congruent-neutral, incongruent-congruent, incongruent-incongruent, incongruent-neutral, neutral-congruent, neutral-incongruent, neutral-neutral) design: - counterbalancing reward x response x response_transition x congruency_transition """ # DEFINE REWARD, RESPONSE and CONGRUENCY FACTORS reward = Factor("reward", ["rewarded", "non-rewarded"]) response = Factor("response", ["building", "house"]) congruency = Factor("congruency", ["congruent", "incongruent", "neutral"]) # DEFINE CONGRUENCY TRANSITION FACTOR def con_con(congruency): return congruency[0] == "congruent" and congruency[1] == "congruent" def con_inc(congruency): return congruency[0] == "congruent" and congruency[1] == "incongruent" def con_ntr(congruency): return congruency[0] == "congruent" and congruency[1] == "neutral" def inc_con(congruency): return congruency[0] == "incongruent" and congruency[1] == "congruent" def inc_inc(congruency): return congruency[0] == "incongruent" and congruency[1] == "incongruent" def inc_ntr(congruency): return congruency[0] == "incongruent" and congruency[1] == "neutral" def ntr_con(congruency): return congruency[0] == "neutral" and congruency[1] == "congruent" def ntr_inc(congruency): return congruency[0] == "neutral" and congruency[1] == "incongruent" def ntr_ntr(congruency): return congruency[0] == "neutral" and congruency[1] == "neutral" congruency_transition = Factor("congruency_transition", [ DerivedLevel("congruent-congruent", Transition(con_con, [congruency])), DerivedLevel("congruent-incongruent", Transition(con_inc, [congruency])), DerivedLevel("congruent-neutral", Transition(con_ntr, [congruency])), DerivedLevel("incongruent-congruent", Transition(inc_con, [congruency])), DerivedLevel("incongruent-incongruent", Transition(inc_inc, [congruency])), DerivedLevel("incongruent-neutral", Transition(inc_ntr, [congruency])), DerivedLevel("neutral-congruent", Transition(ntr_con, [congruency])), DerivedLevel("neutral-incongruent", Transition(ntr_inc, [congruency])), DerivedLevel("neutral-neutral", Transition(ntr_ntr, [congruency])) ]) # DEFINE RESPONSE TRANSITION FACTOR def response_repeat(responses): return responses[0] == responses[1] def response_switch(responses): return not response_repeat(responses) response_transition = Factor("resp_transition", [ DerivedLevel("repeat", Transition(response_repeat, [response])), DerivedLevel("switch", Transition(response_switch, [response])) ]) # DEFINE SEQUENCE CONSTRAINTS constraints = [] # DEFINE EXPERIMENT design = [congruency, reward, response, congruency_transition, response_transition] crossing = [reward, response, congruency_transition, response_transition] block = fully_cross_block(design, crossing, constraints) # SOLVE experiments = synthesize_trials_non_uniform(block, 5) print_experiments(block, experiments)
38.634409
213
0.748678
[ "MIT" ]
ahsanbutt95/sweetpea-py
example_programs/PadmalaPessoa2011.py
3,593
Python
# coding: utf-8 import pprint import re import six class KeyStatusInfo: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'key_id': 'str', 'key_state': 'str' } attribute_map = { 'key_id': 'key_id', 'key_state': 'key_state' } def __init__(self, key_id=None, key_state=None): """KeyStatusInfo - a model defined in huaweicloud sdk""" self._key_id = None self._key_state = None self.discriminator = None if key_id is not None: self.key_id = key_id if key_state is not None: self.key_state = key_state @property def key_id(self): """Gets the key_id of this KeyStatusInfo. 密钥ID :return: The key_id of this KeyStatusInfo. :rtype: str """ return self._key_id @key_id.setter def key_id(self, key_id): """Sets the key_id of this KeyStatusInfo. 密钥ID :param key_id: The key_id of this KeyStatusInfo. :type: str """ self._key_id = key_id @property def key_state(self): """Gets the key_state of this KeyStatusInfo. 密钥状态: - 2为启用状态 - 3为禁用状态 - 4为计划删除状态 - 5为等待导入状态 - 7为冻结状态 :return: The key_state of this KeyStatusInfo. :rtype: str """ return self._key_state @key_state.setter def key_state(self, key_state): """Sets the key_state of this KeyStatusInfo. 密钥状态: - 2为启用状态 - 3为禁用状态 - 4为计划删除状态 - 5为等待导入状态 - 7为冻结状态 :param key_state: The key_state of this KeyStatusInfo. :type: str """ self._key_state = key_state def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, KeyStatusInfo): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
24.884058
74
0.534945
[ "Apache-2.0" ]
Adek06/huaweicloud-sdk-python-v3
huaweicloud-sdk-kms/huaweicloudsdkkms/v1/model/key_status_info.py
3,578
Python
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : [email protected] @site : https://github.com/zhuyuanxiang/tensorflow_cookbook --------------------------- @Software : PyCharm @Project : TensorFlow_Machine_Learning_Cookbook @File : C0106_operations.py @Version : v0.1 @Time : 2019-10-29 14:11 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《TensorFlow机器学习实战指南,Nick McClure》, Sec0106,P110 @Desc : TensorFlow 基础,声明操作 """ # common imports import os import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import sklearn import tensorflow as tf import winsound from tensorflow.python.framework import ops from tools import show_values # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 8, suppress = True, threshold = np.inf, linewidth = 200) # 利用随机种子,保证随机数据的稳定性,使得每次随机测试的结果一样 np.random.seed(42) # 初始化默认的计算图 ops.reset_default_graph() # Python ≥3.5 is required assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required assert sklearn.__version__ >= "0.20" # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Open graph session sess = tf.Session() show_values(tf.div(3, 4), "tf.div(3,4) = 整数除") show_values(tf.truediv(3, 4), "tf.truediv(3,4) = 浮点除") show_values(tf.floordiv(3.0, 4.0), "tf.floordiv(3.0,4.0) = 浮点取整除") show_values(tf.mod(22.0, 5.0), "tf.mod(22.0,5.0) = 取模") # 张量点积--Compute the pairwise cross product # 张量点积:即两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。 # 两个向量的点积与这两个向量组成的坐标平面垂直。 show_values(tf.cross([1., 0., 0.], [0., 1., 0.]), "tf.cross([1., 0., 0.], [0., 1., 0.]) = 张量点积") # 张量点积必须是三维的 # show_values(tf.cross([1., 0., 0., 0.], [0., 1., 0., 0.]), # "tf.cross([1., 0., 0.,0.], [0., 1., 0.,0.]) = 张量点积") # ToSee:P11,数学函数列表 show_values(tf.div(tf.sin(3.1416 / 4.), tf.cos(3.1416 / 4.)), "tan(pi/4) = 1 = tf.div(tf.sin(3.1416/4.),tf.cos(3.1416/4.))") test_nums = range(15) # What should we get with list comprehension expected_output = [3 * x * x - x + 10 for x in test_nums] print('-' * 50) print("[3 * x ^ 2 - x + 10 for x in test_nums] = ") print(expected_output) # 自定义函数 # 3x^2-x+10,x=11,=> def custom_polynomial(value): # return tf.subtract(3 * tf.square(value), value) + 10 return 3 * tf.square(value) - value + 10 show_values(custom_polynomial(11), "custom_polynomial(11) = 3x^2-x+10,x=11=>") for num in test_nums: show_values(custom_polynomial(num), "custom_polynomial({})".format(num)) # ----------------------------------------------------------------- # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
30.842697
99
0.637887
[ "MIT" ]
zhuyuanxiang/tensorflow_cookbook
01_Introduction/C0106_operations.py
3,173
Python
import numpy # FIXME: copy the functions here from sklearn.mixture.gmm import log_multivariate_normal_density, logsumexp def sample_gaussian2(means, cv, size, random_state, mins, maxes): def once(size1): g = random_state.multivariate_normal(means, cv, size1).T g = g.reshape(len(means), -1) mask = (g >= mins[:, None]).all(axis=0) mask &= (g <= maxes[:, None]).all(axis=0) return g[:, mask] g = once(size) generated = size while g.shape[1] < size: fac = 1.0 * g.shape[1] / size togen = (size - g.shape[1]) * generated // g.shape[1] g1 = once(togen) generated = generated + togen g = numpy.append(g, g1, axis=1) return g[:, :size] class GMM(object): def __init__(self, weights, means, covs, lims): self.weights = numpy.array(weights) self.means = numpy.array(means) self.covs = numpy.array(covs) self.lims = numpy.array(lims) [nc] = self.weights.shape assert self.means.shape[0] == nc [nc, nf] = self.means.shape assert self.covs.shape[0] == nc assert self.covs.shape[1] == nf assert self.covs.shape[2] == nf [nc, nf, nf] = self.covs.shape assert self.lims.shape[0] == nf assert self.lims.shape[1] == 2 def score(self, X, return_responsibilities=False): nc = len(self.weights) X = numpy.array(X) if X.ndim == 1: X = X[:, None] if X.shape[1] != self.means.shape[1]: raise ValueError('The shape of X is not compatible with self') mins = self.lims[:, 0] maxes = self.lims[:, 1] lpr = numpy.log(self.weights) + \ log_multivariate_normal_density(X, self.means, self.covs, 'full') mask = (X >= mins[None, :]).all(axis=-1) mask &= (X <= maxes[None, :]).all(axis=-1) logprob = logsumexp(lpr, axis=1) logprob[~mask] = -numpy.inf if return_responsibilities: responsibilities = numpy.exp(lpr - logprob[:, None]) responsibilities[~mask] = 0 return logprob, responsibilities return logprob def marginalize(self, axes): return GMM(self.weights, self.means[..., axes], self.covs[..., axes][..., axes, :], self.lims[axes]) def sample(self, size, random_state=None): """Generate random samples from the model. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ if random_state is None: random_state = numpy.random mins = self.lims[:, 0] maxes = self.lims[:, 1] X = numpy.empty(size, ('f8', (self.means.shape[1],))) # decide which component to use for each sample comps = random_state.choice(len(self.weights), p=self.weights, size=size) # for each component, generate all needed samples for comp in range(len(self.weights)): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: cv = self.covs[comp] g = sample_gaussian2( self.means[comp], cv, num_comp_in_X, random_state, mins, maxes).T X[comp_in_X] = g return X @classmethod def fit(kls, nc, X, lims): # FIXME: get rid of this and add weights support from sklearn import mixture # XXX: Do not use DPGMM because the normalization is buggy # https://github.com/scikit-learn/scikit-learn/issues/7371 model = mixture.GMM(nc, covariance_type='full', n_iter=1000) model.fit(X) if not model.converged_: raise ValueError("Your data is strange. Gaussian mixture failed to converge") return kls(model.weights_, model.means_, model.covars_, lims) class Confidence(object): def __init__(self, model, confidence_table): self.model = model self.confidence_table = confidence_table def score(self, sc): x, y = self.confidence_table return numpy.interp(sc, x, y, left=1., right=0.) @classmethod def fit(kls, model, nsample=4*1024, vmin=-5, vmax=0, nb=100): X = model.sample(nsample) sc = model.score(X) confidence_levels = 1 - numpy.logspace(vmin, vmax, num=nb) # FIXME: add weight support here sc_cl = numpy.percentile(sc, 100. - confidence_levels * 100.) confidence_table = numpy.array([sc_cl, confidence_levels]) return kls(model, confidence_table) class CombinedModel(object): def __init__(self, models): self.models = models def score(self, X): return sum([model.score(X) for model in self.models]) def marginalize(self, axes): return CombinedModel([ model.marginalize(axes) for model in self.models]) def sample(self, nsample, random_state=None): if random_state is None: random_state = numpy.random def once(size): X = self.models[0].sample(size, random_state) nf = X.shape[-1] lnprob = sum([model.score(X) for model in self.models[1:]]) prob = numpy.exp(lnprob) prob /= prob.max() keep = random_state.rand(len(X)) < prob return X[keep].reshape(-1, nf) g = once(nsample) ng = nsample while len(g) < nsample: togen = (nsample - len(g)) * ng // len(g) g1 = once(togen) ng = ng + togen g = numpy.append(g, g1, axis=0) return g[:nsample]
33.859649
108
0.56943
[ "Apache-2.0" ]
bccp/bananaplots
bananas/model.py
5,790
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import wagtail.wagtailcore.fields import modelcluster.fields class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0020_add_index_on_page_first_published_at'), ('tests', '0013_iconsetting_notyetregisteredsetting_testsetting'), ] operations = [ migrations.CreateModel( name='BlogCategory', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('name', models.CharField(unique=True, max_length=80)), ], ), migrations.CreateModel( name='BlogCategoryBlogPage', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('category', models.ForeignKey(to='tests.BlogCategory', related_name='+')), ], ), migrations.CreateModel( name='ManyToManyBlogPage', fields=[ ( 'page_ptr', models.OneToOneField( primary_key=True, serialize=False, parent_link=True, auto_created=True, to='wagtailcore.Page' ) ), ('body', wagtail.wagtailcore.fields.RichTextField(blank=True)), ('adverts', models.ManyToManyField(to='tests.Advert', blank=True)), ( 'blog_categories', models.ManyToManyField( to='tests.BlogCategory', through='tests.BlogCategoryBlogPage', blank=True ) ), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.AddField( model_name='blogcategoryblogpage', name='page', field=modelcluster.fields.ParentalKey(to='tests.ManyToManyBlogPage', related_name='categories'), ), ]
34.606061
114
0.510508
[ "BSD-3-Clause" ]
razisayyed/wagtail
wagtail/tests/testapp/migrations/0014_m2m_blog_page.py
2,284
Python
import loquis import subprocess @loquis.command def run(query,*args): try: L=[query.lower()]+list(args) print(L) return [subprocess.check_output(L)] except: return ["Failed to run command"] languages={'en':{'run':run}}
15.533333
37
0.686695
[ "MIT" ]
Steve132/loquis
modules/process.py
233
Python
import _plotly_utils.basevalidators class NamelengthsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='namelengthsrc', parent_name='violin.hoverlabel', **kwargs ): super(NamelengthsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class NamelengthValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__( self, plotly_name='namelength', parent_name='violin.hoverlabel', **kwargs ): super(NamelengthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'none'), min=kwargs.pop('min', -1), role=kwargs.pop('role', 'style'), **kwargs ) import _plotly_utils.basevalidators class FontValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name='font', parent_name='violin.hoverlabel', **kwargs ): super(FontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop('data_class_str', 'Font'), data_docs=kwargs.pop( 'data_docs', """ color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . """ ), **kwargs ) import _plotly_utils.basevalidators class BordercolorsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='bordercolorsrc', parent_name='violin.hoverlabel', **kwargs ): super(BordercolorsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='bordercolor', parent_name='violin.hoverlabel', **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'style'), **kwargs ) import _plotly_utils.basevalidators class BgcolorsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='bgcolorsrc', parent_name='violin.hoverlabel', **kwargs ): super(BgcolorsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class BgcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='bgcolor', parent_name='violin.hoverlabel', **kwargs ): super(BgcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'style'), **kwargs ) import _plotly_utils.basevalidators class AlignsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='alignsrc', parent_name='violin.hoverlabel', **kwargs ): super(AlignsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs ) import _plotly_utils.basevalidators class AlignValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name='align', parent_name='violin.hoverlabel', **kwargs ): super(AlignValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop('array_ok', True), edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'style'), values=kwargs.pop('values', ['left', 'right', 'auto']), **kwargs )
28.8
78
0.590112
[ "MIT" ]
Jo-Con-El/plotly.py
plotly/validators/violin/hoverlabel/__init__.py
6,048
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest from pytest import raises, approx def test(): import pytq_crawlib pass if __name__ == "__main__": import os basename = os.path.basename(__file__) pytest.main([basename, "-s", "--tb=native"])
15.388889
48
0.638989
[ "MIT" ]
MacHu-GWU/pytq_crawlib-project
tests/test_import.py
277
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (print_function, unicode_literals, absolute_import, with_statement) import os import sys if __name__ == '__main__': if __package__ is None: dir_name = os.path.dirname(__file__) sys.path.append( os.path.abspath( os.path.join(dir_name, '..'))) from excel2mysql.migrate import migrate migrate()
20.363636
57
0.609375
[ "Apache-2.0" ]
zxjsdp/excel2mysql
excel2mysql/__main__.py
448
Python
import biathlonresults as api def test_cups(): res = api.cups(1819) assert isinstance(res, list) assert len(res) == 37 def test_cup_results(): res = api.cup_results("BT1819SWRLCP__SMTS") assert isinstance(res, dict) assert isinstance(res["Rows"], list) assert res["Rows"][0]["Name"] == "BOE Johannes Thingnes" def test_athletes(): res = api.athletes("boe", "johannes") assert isinstance(res, dict) assert isinstance(res["Athletes"], list) assert "boe" in res["Athletes"][0]["FamilyName"].lower() assert "johannes" in res["Athletes"][0]["GivenName"].lower() def test_cisbios(): res = api.cisbios("BTNOR11605199301") assert isinstance(res, dict) assert res["FullName"] == "Johannes Thingnes BOE" def test_all_results(): # Raphael Poiree res = api.all_results("BTFRA10908197401") assert isinstance(res, dict) assert isinstance(res["Results"], list) assert res["Results"][0]["SO"] == 2 assert len(res["Results"]) == 329 def test_events(): res = api.events(1819, 1) assert isinstance(res, list) assert len(res) == 10 assert res[0]["Level"] == 1 assert res[-1]["ShortDescription"] == "Oslo Holmenkollen" def test_competitions(): # Pokljuka 1819 res = api.competitions("BT1819SWRLCP01") assert isinstance(res, list) assert len(res) == 8 assert res[-1]["ShortDescription"] == "Women 10km Pursuit" def test_results(): # Pokljuka 1819 W PU res = api.results("BT1819SWRLCP01SWPU") assert isinstance(res, dict) assert isinstance(res["Results"], list) assert len(res["Results"]) == 60 assert res["Results"][0]["ResultOrder"] == 1 assert res["Results"][0]["Name"] == "MAKARAINEN Kaisa" def test_stats(): # podiums men stat res = api.stats("WCPOD_M", "WCPOD", "ATH", "M") assert isinstance(res, dict) assert isinstance(res["Rows"], list) # in case someone breaks Bjoerndalen's record assert int(res["Rows"][0]["Value"]) >= 199
27.479452
64
0.649053
[ "MIT" ]
prtkv/biathlonresults
tests/test_api.py
2,006
Python
from django.conf.urls.defaults import patterns from satchmo_store.shop.satchmo_settings import get_satchmo_setting ssl = get_satchmo_setting('SSL', default_value=False) urlpatterns = patterns('', (r'^$', 'payment.modules.cod.views.pay_ship_info', {'SSL':ssl}, 'COD_satchmo_checkout-step2'), (r'^confirm/$', 'payment.modules.cod.views.confirm_info', {'SSL':ssl}, 'COD_satchmo_checkout-step3'), (r'^success/$', 'payment.views.checkout.success', {'SSL':ssl}, 'COD_satchmo_checkout-success'), )
46.181818
106
0.732283
[ "BSD-3-Clause" ]
dokterbob/satchmo
satchmo/apps/payment/modules/cod/urls.py
508
Python
# Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. """ Run a job from hdf5. """ from pyiron.base.job.wrapper import job_wrapper_function def register(parser): parser.add_argument( "-d", "--debug", action = "store_true", help = "enable debug mode" # TODO: what's that mean? ) parser.add_argument( "-j", "--job-id", help = "job id to run" ) parser.add_argument( "-p", "--project", help = "directory where the HDF5 file of the job is located" ) parser.add_argument( "-f", "--file-path", help = "path to the HDF5 file" ) parser.add_argument( "-s", "--submit", action = "store_true", help = "submit to queuing system on remote host" ) def main(args): job_wrapper_function( working_directory=args.project, job_id=args.job_id, file_path=args.file_path, debug=args.debug, submit_on_remote=args.submit )
29.179487
108
0.593146
[ "BSD-3-Clause" ]
srmnitc/pyiron
pyiron/cli/wrapper.py
1,139
Python
import numpy as np import wmf import batched_inv import batched_inv_mp import solve_mp import solve_gpu np.random.seed(123) B = np.load("test_matrix.pkl") S = wmf.log_surplus_confidence_matrix(B, alpha=2.0, epsilon=1e-6) num_factors = 40 + 1 num_iterations = 1 batch_size = 1000 solve = batched_inv.solve_sequential # solve = solve_mp.solve_mp # solve = solve_gpu.solve_gpu U, V = wmf.factorize(S, num_factors=num_factors, lambda_reg=1e-5, num_iterations=num_iterations, init_std=0.01, verbose=True, dtype='float32', recompute_factors=batched_inv_mp.recompute_factors_bias_batched_mp, batch_size=batch_size, solve=solve)
24.346154
142
0.793049
[ "MIT" ]
Phdntom/wmf
test_batched_inv_mp.py
633
Python
""" ASGI config for cryptocurrency project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'cryptocurrency.settings') application = get_asgi_application()
23.823529
78
0.792593
[ "Apache-2.0" ]
deepanshu-jain1999/cryptocurrencytracking
cryptocurrency/asgi.py
405
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-function-args # pylint: disable=too-many-statements, unused-argument, too-many-arguments """Tensorcore template for cuda backend""" import numpy as np import tvm from tvm import te from tvm import autotvm from ..util import get_const_tuple, traverse_inline, simplify from ..nn.pad import pad from ..nn.util import get_pad_tuple from .tensor_intrin import intrin_wmma_load_matrix_A from .tensor_intrin import intrin_wmma_load_matrix_W from .tensor_intrin import intrin_wmma_store_matrix from .tensor_intrin import intrin_wmma_gemm def nhwc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtype): """Compute declaration for tensorcore""" assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation batch, in_height, in_width, in_channel = get_const_tuple(Input.shape) kernel_h, kernel_w, _, num_filter = get_const_tuple(Filter.shape) assert (batch % 16 == 0 and in_channel % 16 == 0 and num_filter % 16 == 0) or \ (batch % 8 == 0 and in_channel % 16 == 0 and num_filter % 32 == 0) or \ (batch % 32 == 0 and in_channel % 16 == 0 and num_filter % 8 == 0), \ "The shape of (batch, in_channel, num_filter) "\ "must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) for now" # compute the output shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w)) out_channel = num_filter out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1) pad_before = [0, pad_top, pad_left, 0] pad_after = [0, pad_down, pad_right, 0] PaddedInput = pad(Input, pad_before, pad_after, name="PaddedInput") rc = te.reduce_axis((0, in_channel), name='rc') ry = te.reduce_axis((0, kernel_h), name='ry') rx = te.reduce_axis((0, kernel_w), name='rx') # convert data type of input feature maps and weights TransPaddedInput = te.compute( PaddedInput.shape, lambda n, h, w, c: PaddedInput[n, h, w, c].astype('float16')) TransFilter = te.compute( Filter.shape, lambda h, w, i, o: Filter[h, w, i, o].astype('float16')) Output = te.compute( (batch, out_height, out_width, out_channel), lambda nn, yy, xx, ff: te.sum( TransPaddedInput[nn, yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, rc].astype(out_dtype) * TransFilter[ry, rx, rc, ff].astype(out_dtype), axis=[ry, rx, rc]), name="Conv2dOutput", tag="conv2d_nhwc_tensorcore") return Output def schedule_nhwc_tensorcore_cuda(cfg, s, Conv): """Schedule tensorcore template""" kh, kw, ic = s[Conv].op.reduce_axis out_dtype = Conv.dtype trans_paddata, kernel = s[Conv].op.input_tensors in_dtype = trans_paddata.dtype batch, _, _, _ = get_const_tuple(Conv.shape) _, _, _, out_channels = get_const_tuple(kernel.shape) paddata = s[trans_paddata].op.input_tensors # inline the pad and dtype transform s[trans_paddata].compute_inline() s[kernel].compute_inline() s[paddata[0]].compute_inline() # Designate the memory hierarchy AS = s.cache_read(trans_paddata, 'shared', [Conv]) WS = s.cache_read(kernel, 'shared', [Conv]) AF = s.cache_read(AS, 'wmma.matrix_a', [Conv]) WF = s.cache_read(WS, 'wmma.matrix_b', [Conv]) ConvF = s.cache_write(Conv, 'wmma.accumulator') if Conv.op in s.outputs: output = Conv ConvS = s.cache_read(ConvF, 'shared', [Conv]) OL = ConvS else: output = s.outputs[0].output(0) s[Conv].set_scope('shared') OL = Conv # Schedule for autotvm cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4]) cfg.define_knob("warp_col_tiles", [1, 2, 4]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("offset", [0, 8]) cfg.define_knob("vector_width", [1, 2, 4, 8]) if (batch % 16 == 0 and out_channels % 16 == 0): cfg.define_knob("wmma_m", [16, 8, 32]) elif (batch % 8 == 0 and out_channels % 32 == 0): cfg.define_knob("wmma_m", [8, 16, 32]) elif (batch % 32 == 0 and out_channels % 8 == 0): cfg.define_knob("wmma_m", [32, 16, 8]) # fallback support target = tvm.target.Target.current() if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.target_name, target.model, 'conv2d_nhwc_tensorcore.cuda') cfg.fallback_with_reference_log(ref_log) block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val offset = cfg["offset"].val wmma_m = cfg["wmma_m"].val vector_width = cfg["vector_width"].val wmma_k = 16 if wmma_m == 16: wmma_n = 16 elif wmma_m == 8: wmma_n = 32 elif wmma_m == 32: wmma_n = 8 warp_size = 32 block_x = te.thread_axis('blockIdx.x') block_y = te.thread_axis('blockIdx.y') block_z = te.thread_axis('blockIdx.z') thread_x = te.thread_axis('threadIdx.x') thread_y = te.thread_axis('threadIdx.y') thread_z = te.thread_axis('threadIdx.z') # Define the intrin strides def get_strides(extents): return [np.prod(extents[i:]).tolist() for i in range(len(extents))] AS_align = chunk * wmma_k + offset WS_align = warp_col_tiles * block_col_warps * wmma_n + offset block_factor_n = wmma_m * warp_row_tiles * block_row_warps block_factor_o = wmma_n * warp_col_tiles * block_col_warps CS_align = block_factor_o + offset AS_strides = get_strides([1, 1, AS_align, 1]) AL_strides = get_strides([1, 1, wmma_k, 1]) WS_strides = get_strides([WS_align, 1]) WL_strides = get_strides([wmma_n * warp_col_tiles, 1]) CL_strides = get_strides([1, 1, wmma_n * warp_col_tiles, 1]) CS_strides = get_strides([1, 1, CS_align, 1]) # Schedule for output nc, hc, wc, oc = output.op.axis block_k = s[output].fuse(hc, wc) s[output].bind(block_k, block_z) block_i, nc = s[output].split(nc, factor=block_factor_n) block_j, oc = s[output].split(oc, factor=block_factor_o) s[output].reorder(block_k, block_i, block_j, nc, oc) t = s[output].fuse(nc, oc) t, ti = s[output].split(t, factor=vector_width) t, tx = s[output].split(t, factor=warp_size) t, ty = s[output].split(t, factor=block_row_warps) t, tz = s[output].split(t, factor=block_col_warps) s[output].bind(block_i, block_x) s[output].bind(block_j, block_y) s[output].bind(tz, thread_z) s[output].bind(ty, thread_y) s[output].bind(tx, thread_x) s[output].vectorize(ti) # Schedule wmma store s[OL].compute_at(s[output], block_j) nc, hc, wc, oc = OL.op.axis s[OL].reorder(hc, wc, nc, oc) s[OL].storage_align(wc, CS_align - 1, CS_align) oc, ooc = s[OL].split(oc, factor=wmma_n) oc, oci = s[OL].split(oc, factor=warp_col_tiles) _, oc = s[OL].split(oc, factor=block_col_warps) nc, nnc = s[OL].split(nc, factor=wmma_m) nc, nci = s[OL].split(nc, factor=warp_row_tiles) _, nc = s[OL].split(nc, factor=block_row_warps) s[OL].reorder(nc, oc, nci, oci, nnc, ooc) s[OL].bind(nc, thread_y) s[OL].bind(oc, thread_z) # Schedule wmma computation s[ConvF].compute_at(s[OL], oc) n, h, w, o = ConvF.op.axis n, nnf = s[ConvF].split(n, factor=wmma_m) o, oof = s[ConvF].split(o, factor=wmma_n) ic, ii = s[ConvF].split(ic, factor=wmma_k) ko, ki = s[ConvF].split(ic, factor=chunk) s[ConvF].reorder(kh, kw, ko, ki, n, o, nnf, oof, ii) s[AF].compute_at(s[ConvF], ki) s[WF].compute_at(s[ConvF], ki) # Schedule wmma load n, h, w, i = AF.op.axis n, nn = s[AF].split(n, factor=wmma_m) i, ii = s[AF].split(i, factor=wmma_k) s[AF].reorder(n, i, nn, ii) kh, kw, i, o = WF.op.axis i, ii = s[WF].split(i, factor=wmma_k) o, oo = s[WF].split(o, factor=wmma_n) s[WF].reorder(o, i, oo) s[WF].reorder(i, o, ii, oo) s[WS].compute_at(s[ConvF], ko) s[AS].compute_at(s[ConvF], ko) # Schedule for data's share memory n, h, w, i = AS.op.axis s[AS].reorder(h, w, n, i) s[AS].storage_align(w, AS_align - 1, AS_align) t = s[AS].fuse(n, i) t, ti = s[AS].split(t, factor=vector_width) t, tx = s[AS].split(t, factor=warp_size) t, ty = s[AS].split(t, factor=block_row_warps) _, tz = s[AS].split(t, factor=block_col_warps) s[AS].bind(ty, thread_y) s[AS].bind(tz, thread_z) s[AS].bind(tx, thread_x) s[AS].vectorize(ti) # Schedule for kernel's share memory kh, kw, ic, o = WS.op.axis t = s[WS].fuse(ic, o) s[WS].storage_align(ic, WS_align - 1, WS_align) t, ti = s[WS].split(t, factor=vector_width) t, tx = s[WS].split(t, factor=warp_size) t, ty = s[WS].split(t, factor=block_row_warps) _, tz = s[WS].split(t, factor=block_col_warps) s[WS].bind(ty, thread_y) s[WS].bind(tz, thread_z) s[WS].bind(tx, thread_x) s[WS].vectorize(ti) shape = (wmma_m, wmma_n, wmma_k) # tensorize the wmma process AS_shape = (wmma_m, 1, 1, wmma_k) AL_shape = (wmma_m, 1, 1, wmma_k) WS_shape = (wmma_k, wmma_n) WL_shape = (wmma_k, wmma_n) CL_shape = (wmma_m, 1, 1, wmma_n) CS_shape = (wmma_m, 1, 1, wmma_n) AL_gemm = te.placeholder(AL_shape, name='A', dtype=in_dtype) WL_gemm = te.placeholder(WL_shape, name='B', dtype=in_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k") CL_compute = te.compute(CL_shape, lambda ii, t0, t1, jj: te.sum(AL_gemm[ii, t0, t1, k_gemm].astype(out_dtype) * \ WL_gemm[k_gemm, jj].astype(out_dtype), axis=k_gemm), name='C') s[AF].tensorize(nn, intrin_wmma_load_matrix_A(AL_strides, AS_strides, shape, "row_major", AS_shape, AL_shape, in_dtype)) s[WF].tensorize(ii, intrin_wmma_load_matrix_W(WL_strides, WS_strides, shape, "row_major", WS_shape, WL_shape, in_dtype)) s[OL].tensorize(nnc, intrin_wmma_store_matrix(CS_strides, CL_strides, shape, out_dtype, CL_shape, CS_shape)) s[ConvF].tensorize(nnf, intrin_wmma_gemm(AL_gemm, WL_gemm, CL_compute, AL_strides, WL_strides, CL_strides, shape)) N, OH, OW, CO = get_const_tuple(output.shape) KH, KW, CI, _ = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OH * OW * CO * CI * KH * KW) @autotvm.register_topi_compute("conv2d_nhwc_tensorcore.cuda") def conv2d_nhwc_tensorcore(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute conv2d with tensorcore for NCHW layout""" return nhwc_tensorcore_cuda(cfg, data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv2d_nhwc_tensorcore.cuda") def schedule_conv2d_nhwc_tensorcore(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if 'conv2d_nhwc_tensorcore' in op.tag: schedule_nhwc_tensorcore_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
40.068966
94
0.643561
[ "Apache-2.0" ]
HatsuneMiku4/incubator-tvm
topi/python/topi/cuda/conv2d_nhwc_tensorcore.py
12,782
Python
# Generated by Django 2.1.5 on 2019-05-03 15:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0035_post_video'), ] operations = [ migrations.AlterField( model_name='post', name='video', field=models.FileField(blank=True, null=True, upload_to='uploads/'), ), ]
21.157895
80
0.59204
[ "MIT" ]
akindele214/181hub_2
blog/migrations/0036_auto_20190503_1645.py
402
Python
import asyncio import os import warnings from datetime import date from secedgar.cik_lookup import CIKLookup from secedgar.client import NetworkClient from secedgar.core._base import AbstractFiling from secedgar.core.filing_types import FilingType from secedgar.exceptions import FilingTypeError from secedgar.utils import sanitize_date class CompanyFilings(AbstractFiling): """Base class for receiving EDGAR filings. Args: cik_lookup (str): Central Index Key (CIK) for company of interest. filing_type (Union[secedgar.core.filing_types.FilingType, None]): Valid filing type enum. Defaults to None. If None, then all filing types for CIKs will be returned. start_date (Union[str, datetime.datetime, datetime.date], optional): Date before which not to fetch reports. Stands for "date after." Defaults to None (will fetch all filings before ``end_date``). end_date (Union[str, datetime.datetime, datetime.date], optional): Date after which not to fetch reports. Stands for "date before." Defaults to today. count (int): Number of filings to fetch. Will fetch up to `count` if that many filings are available. Defaults to all filings available. ownership (str): Must be in {"include", "exclude"}. Whether or not to include ownership filings. match_format (str): Must be in {"EXACT", "AMEND", "ALL"}. kwargs: See kwargs accepted for :class:`secedgar.client.network_client.NetworkClient`. .. versionadded:: 0.1.5 """ def __init__(self, cik_lookup, filing_type=None, start_date=None, end_date=date.today(), client=None, count=None, ownership="include", match_format="ALL", **kwargs): # Leave params before other setters self._params = { "action": "getcompany", "output": "xml", "owner": ownership, "start": 0, } self.start_date = start_date self.end_date = end_date self.filing_type = filing_type self.count = count self.match_format = match_format # Make default client NetworkClient and pass in kwargs self._client = client if client is not None else NetworkClient(**kwargs) # make CIKLookup object for users if not given self.cik_lookup = cik_lookup @property def path(self): """str: Path added to client base.""" return "cgi-bin/browse-edgar" @property def params(self): """:obj:`dict`: Parameters to include in requests.""" return self._params @property def client(self): """``secedgar.client._base``: Client to use to make requests.""" return self._client @property def start_date(self): """Union([datetime.date, datetime.datetime, str]): Date before which no filings fetched.""" return self._start_date @property def match_format(self): """The match format to use when searching for filings.""" return self._match_format @match_format.setter def match_format(self, val): if val in ["EXACT", "AMEND", "ALL"]: self._match_format = val else: raise ValueError("Format must be one of EXACT,AMEND,ALL") @start_date.setter def start_date(self, val): if val is not None: self._params["datea"] = sanitize_date(val) self._start_date = val else: self._start_date = None @property def end_date(self): """Union([datetime.date, datetime.datetime, str]): Date after which no filings fetched.""" return self._end_date @end_date.setter def end_date(self, val): self._params["dateb"] = sanitize_date(val) self._end_date = val @property def filing_type(self): """``secedgar.core.FilingType``: FilingType enum of filing.""" return self._filing_type @filing_type.setter def filing_type(self, filing_type): if isinstance(filing_type, FilingType): self._params["type"] = filing_type.value elif filing_type is not None: raise FilingTypeError self._filing_type = filing_type @property def count(self): """Number of filings to fetch.""" return self._count @count.setter def count(self, val): if val is None: self._count = None elif not isinstance(val, int): raise TypeError("Count must be positive integer or None.") elif val < 1: raise ValueError("Count must be positive integer or None.") else: self._count = val self._params["count"] = val @property def cik_lookup(self): """``secedgar.cik_lookup.CIKLookup``: CIKLookup object.""" return self._cik_lookup @cik_lookup.setter def cik_lookup(self, val): if not isinstance(val, CIKLookup): val = CIKLookup(val, client=self.client) self._cik_lookup = val def get_urls(self, **kwargs): """Get urls for all CIKs given to Filing object. Args: **kwargs: Anything to be passed to requests when making get request. See keyword arguments accepted for ``secedgar.client._base.AbstractClient.get_soup``. Returns: urls (list): List of urls for txt files to download. """ return { key: self._get_urls_for_cik(cik, **kwargs) for key, cik in self.cik_lookup.lookup_dict.items() } # TODO: Change this to return accession numbers that are turned into URLs later def _get_urls_for_cik(self, cik, **kwargs): """Get all urls for specific company according to CIK. Must match start date, end date, filing_type, and count parameters. Args: cik (str): CIK for company. **kwargs: Anything to be passed to requests when making get request. See keyword arguments accepted for ``secedgar.client._base.AbstractClient.get_soup``. Returns: txt_urls (list of str): Up to the desired number of URLs for that specific company if available. """ self.params["CIK"] = cik links = [] self.params["start"] = 0 # set start back to 0 before paginating while self.count is None or len(links) < self.count: data = self.client.get_soup(self.path, self.params, **kwargs) links.extend([link.string for link in data.find_all("filinghref")]) self.params["start"] += self.client.batch_size if len(data.find_all("filinghref")) == 0: # no more filings break txt_urls = [link[:link.rfind("-")].strip() + ".txt" for link in links] if isinstance(self.count, int) and len(txt_urls) < self.count: warnings.warn( "Only {num} of {count} filings were found for {cik}.".format( num=len(txt_urls), count=self.count, cik=cik)) # Takes `count` filings at most return txt_urls[:self.count] def save(self, directory, dir_pattern=None, file_pattern=None): """Save files in specified directory. Each txt url looks something like: https://www.sec.gov/Archives/edgar/data/1018724/000101872419000043/0001018724-19-000043.txt Args: directory (str): Path to directory where files should be saved. dir_pattern (str): Format string for subdirectories. Default is "{cik}/{type}". Valid options are {cik} and/or {type}. file_pattern (str): Format string for files. Default is "{accession_number}". Valid options are {accession_number}. Returns: None Raises: ValueError: If no text urls are available for given filing object. """ urls = self.get_urls_safely() if dir_pattern is None: dir_pattern = os.path.join("{cik}", "{type}") if file_pattern is None: file_pattern = "{accession_number}" inputs = [] for cik, links in urls.items(): formatted_dir = dir_pattern.format(cik=cik, type=self.filing_type.value) for link in links: formatted_file = file_pattern.format( accession_number=self.get_accession_number(link)) path = os.path.join(directory, formatted_dir, formatted_file) inputs.append((link, path)) loop = asyncio.get_event_loop() loop.run_until_complete(self.client.wait_for_download_async(inputs))
36.359184
99
0.60586
[ "Apache-2.0" ]
Ahrvo-Trading-Systems/sec-edgar
secedgar/core/company.py
8,908
Python
from asolut.main import *
13
25
0.769231
[ "MIT" ]
Marios-Mamalis/asolut
asolut/__init__.py
26
Python