content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
"""Test UniFi config flow.""" from unittest.mock import patch import aiounifi from homeassistant import config_entries, data_entry_flow, setup from homeassistant.components.unifi.const import ( CONF_ALLOW_BANDWIDTH_SENSORS, CONF_ALLOW_UPTIME_SENSORS, CONF_BLOCK_CLIENT, CONF_CONTROLLER, CONF_DETECTION_TIME, CONF_DPI_RESTRICTIONS, CONF_IGNORE_WIRED_BUG, CONF_POE_CLIENTS, CONF_SITE_ID, CONF_SSID_FILTER, CONF_TRACK_CLIENTS, CONF_TRACK_DEVICES, CONF_TRACK_WIRED_CLIENTS, DOMAIN as UNIFI_DOMAIN, ) from homeassistant.config_entries import SOURCE_REAUTH, SOURCE_USER from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_PORT, CONF_USERNAME, CONF_VERIFY_SSL, CONTENT_TYPE_JSON, ) from .test_controller import setup_unifi_integration from tests.common import MockConfigEntry CLIENTS = [{"mac": "00:00:00:00:00:01"}] DEVICES = [ { "board_rev": 21, "device_id": "mock-id", "ip": "10.0.1.1", "last_seen": 0, "mac": "00:00:00:00:01:01", "model": "U7PG2", "name": "access_point", "state": 1, "type": "uap", "version": "4.0.80.10875", "wlan_overrides": [ { "name": "SSID 3", "radio": "na", "radio_name": "wifi1", "wlan_id": "012345678910111213141516", }, { "name": "", "radio": "na", "radio_name": "wifi1", "wlan_id": "012345678910111213141516", }, { "radio": "na", "radio_name": "wifi1", "wlan_id": "012345678910111213141516", }, ], } ] WLANS = [ {"name": "SSID 1"}, {"name": "SSID 2", "name_combine_enabled": False, "name_combine_suffix": "_IOT"}, ] DPI_GROUPS = [ { "_id": "5ba29dd8e3c58f026e9d7c4a", "name": "Default", "site_id": "5ba29dd4e3c58f026e9d7c38", }, ] async def test_flow_works(hass, aioclient_mock, mock_discovery): """Test config flow.""" mock_discovery.return_value = "1" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" assert result["data_schema"]({CONF_USERNAME: "", CONF_PASSWORD: ""}) == { CONF_HOST: "unifi", CONF_USERNAME: "", CONF_PASSWORD: "", CONF_PORT: 443, CONF_VERIFY_SSL: False, } aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [{"desc": "Site name", "name": "site_id", "role": "admin"}], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "Site name" assert result["data"] == { CONF_CONTROLLER: { CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_SITE_ID: "site_id", CONF_VERIFY_SSL: True, } } async def test_flow_works_multiple_sites(hass, aioclient_mock): """Test config flow works when finding multiple sites.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [ {"name": "default", "role": "admin", "desc": "site name"}, {"name": "site2", "role": "admin", "desc": "site2 name"}, ], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "site" assert result["data_schema"]({"site": "default"}) assert result["data_schema"]({"site": "site2"}) async def test_flow_raise_already_configured(hass, aioclient_mock): """Test config flow aborts since a connected config entry already exists.""" await setup_unifi_integration(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [{"desc": "Site name", "name": "site_id", "role": "admin"}], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "already_configured" async def test_flow_aborts_configuration_updated(hass, aioclient_mock): """Test config flow aborts since a connected config entry already exists.""" entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"controller": {"host": "1.2.3.4", "site": "office"}} ) entry.add_to_hass(hass) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"controller": {"host": "1.2.3.4", "site": "site_id"}} ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [{"desc": "Site name", "name": "site_id", "role": "admin"}], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) with patch("homeassistant.components.unifi.async_setup_entry"): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "configuration_updated" async def test_flow_fails_user_credentials_faulty(hass, aioclient_mock): """Test config flow.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) with patch("aiounifi.Controller.login", side_effect=aiounifi.errors.Unauthorized): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "faulty_credentials"} async def test_flow_fails_controller_unavailable(hass, aioclient_mock): """Test config flow.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) with patch("aiounifi.Controller.login", side_effect=aiounifi.errors.RequestError): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "service_unavailable"} async def test_reauth_flow_update_configuration(hass, aioclient_mock): """Verify reauth flow can update controller configuration.""" controller = await setup_unifi_integration(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": SOURCE_REAUTH}, data=controller.config_entry, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == SOURCE_USER aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [{"desc": "Site name", "name": "site_id", "role": "admin"}], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "new_name", CONF_PASSWORD: "new_pass", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "reauth_successful" assert controller.host == "1.2.3.4" assert controller.config_entry.data[CONF_CONTROLLER][CONF_USERNAME] == "new_name" assert controller.config_entry.data[CONF_CONTROLLER][CONF_PASSWORD] == "new_pass" async def test_advanced_option_flow(hass): """Test advanced config flow options.""" controller = await setup_unifi_integration( hass, clients_response=CLIENTS, devices_response=DEVICES, wlans_response=WLANS, dpigroup_response=DPI_GROUPS, dpiapp_response=[], ) result = await hass.config_entries.options.async_init( controller.config_entry.entry_id, context={"show_advanced_options": True} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "device_tracker" assert set( result["data_schema"].schema[CONF_SSID_FILTER].options.keys() ).intersection(("SSID 1", "SSID 2", "SSID 2_IOT", "SSID 3")) result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_TRACK_CLIENTS: False, CONF_TRACK_WIRED_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_SSID_FILTER: ["SSID 1", "SSID 2_IOT", "SSID 3"], CONF_DETECTION_TIME: 100, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "client_control" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], CONF_POE_CLIENTS: False, CONF_DPI_RESTRICTIONS: False, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "statistics_sensors" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_ALLOW_BANDWIDTH_SENSORS: True, CONF_ALLOW_UPTIME_SENSORS: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_TRACK_CLIENTS: False, CONF_TRACK_WIRED_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_SSID_FILTER: ["SSID 1", "SSID 2_IOT", "SSID 3"], CONF_DETECTION_TIME: 100, CONF_IGNORE_WIRED_BUG: False, CONF_POE_CLIENTS: False, CONF_DPI_RESTRICTIONS: False, CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], CONF_ALLOW_BANDWIDTH_SENSORS: True, CONF_ALLOW_UPTIME_SENSORS: True, } async def test_simple_option_flow(hass): """Test simple config flow options.""" controller = await setup_unifi_integration( hass, clients_response=CLIENTS, wlans_response=WLANS, dpigroup_response=DPI_GROUPS, dpiapp_response=[], ) result = await hass.config_entries.options.async_init( controller.config_entry.entry_id, context={"show_advanced_options": False} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "simple_options" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_TRACK_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_TRACK_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], } async def test_form_ssdp(hass): """Test we get the form with ssdp source.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://192.168.208.1:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} context = next( flow["context"] for flow in hass.config_entries.flow.async_progress() if flow["flow_id"] == result["flow_id"] ) assert context["title_placeholders"] == { "host": "192.168.208.1", "site": "default", } async def test_form_ssdp_aborts_if_host_already_exists(hass): """Test we abort if the host is already configured.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"controller": {"host": "192.168.208.1", "site": "site_id"}}, ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://192.168.208.1:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_form_ssdp_aborts_if_serial_already_exists(hass): """Test we abort if the serial is already configured.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"controller": {"host": "1.2.3.4", "site": "site_id"}}, unique_id="e0:63:da:20:14:a9", ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://192.168.208.1:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_form_ssdp_gets_form_with_ignored_entry(hass): """Test we can still setup if there is an ignored entry.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"not_controller_key": None}, source=config_entries.SOURCE_IGNORE, ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine New", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://1.2.3.4:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} context = next( flow["context"] for flow in hass.config_entries.flow.async_progress() if flow["flow_id"] == result["flow_id"] ) assert context["title_placeholders"] == { "host": "1.2.3.4", "site": "default", }
31.936455
88
0.60221
[ "Apache-2.0" ]
Nixon506E/home-assistant
tests/components/unifi/test_config_flow.py
19,098
Python
import math import random import time import argparse from sklearn import preprocessing from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, auc import pandas as pd import numpy as np import torch.nn as nn import torch from LR import LR from DBN import DBN parser = argparse.ArgumentParser() parser.add_argument('-project', type=str, default='qt') parser.add_argument('-data', type=str, default='k') parser.add_argument('-algorithm', type=str, default='lr') parser.add_argument('-drop', type=str, default='') parser.add_argument('-only', nargs='+', default=[]) def evaluation_metrics(y_true, y_pred): fpr, tpr, thresholds = roc_curve(y_true=y_true, y_score=y_pred, pos_label=1) auc_ = auc(fpr, tpr) y_pred = [1 if p >= 0.5 else 0 for p in y_pred] acc = accuracy_score(y_true=y_true, y_pred=y_pred) prc = precision_score(y_true=y_true, y_pred=y_pred) rc = recall_score(y_true=y_true, y_pred=y_pred) # f1 = 2 * prc * rc / (prc + rc) f1 = 0 return acc, prc, rc, f1, auc_ def replace_value_dataframe(df): df = df.replace({True: 1, False: 0}) df = df.fillna(df.mean()) if args.drop: df = df.drop(columns=[args.drop]) elif args.only: df = df[['Unnamed: 0','_id','date','bug','__'] + args.only] return df.values def get_features(data): # return the features of yasu data return data[:, 5:] def get_ids(data): # return the labels of yasu data return data[:, 1:2].flatten().tolist() def get_label(data): data = data[:, 3:4].flatten().tolist() data = [1 if int(d) > 0 else 0 for d in data] return data def load_df_yasu_data(path_data): data = pd.read_csv(path_data) data = replace_value_dataframe(df=data) ids, labels, features = get_ids(data=data), get_label(data=data), get_features(data=data) indexes = list() cnt_noexits = 0 for i in range(0, len(ids)): try: indexes.append(i) except FileNotFoundError: print('File commit id no exits', ids[i], cnt_noexits) cnt_noexits += 1 ids = [ids[i] for i in indexes] labels = [labels[i] for i in indexes] features = features[indexes] return (ids, np.array(labels), features) def load_yasu_data(args): train_path_data = 'data/{}/{}_train.csv'.format(args.project, args.data) test_path_data = 'data/{}/{}_test.csv'.format(args.project, args.data) train, test = load_df_yasu_data(train_path_data), load_df_yasu_data(test_path_data) return train, test def train_and_evl(data, label, args): size = int(label.shape[0]*0.2) auc_ = [] for i in range(5): idx = size * i X_e = data[idx:idx+size] y_e = label[idx:idx+size] X_t = np.vstack((data[:idx], data[idx+size:])) y_t = np.hstack((label[:idx], label[idx+size:])) model = LogisticRegression(max_iter=7000).fit(X_t, y_t) y_pred = model.predict_proba(X_e)[:, 1] fpr, tpr, thresholds = roc_curve(y_true=y_e, y_score=y_pred, pos_label=1) auc_.append(auc(fpr, tpr)) return np.mean(auc_) def mini_batches_update(X, Y, mini_batch_size=64, seed=0): m = X.shape[0] # number of training examples mini_batches = list() np.random.seed(seed) # Step 1: No shuffle (X, Y) shuffled_X, shuffled_Y = X, Y Y = Y.tolist() Y_pos = [i for i in range(len(Y)) if Y[i] == 1] Y_neg = [i for i in range(len(Y)) if Y[i] == 0] # Step 2: Randomly pick mini_batch_size / 2 from each of positive and negative labels num_complete_minibatches = int(math.floor(m / float(mini_batch_size))) + 1 for k in range(0, num_complete_minibatches): indexes = sorted( random.sample(Y_pos, int(mini_batch_size / 2)) + random.sample(Y_neg, int(mini_batch_size / 2))) mini_batch_X, mini_batch_Y = shuffled_X[indexes], shuffled_Y[indexes] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def mini_batches(X, Y, mini_batch_size=64, seed=0): m = X.shape[0] # number of training examples mini_batches = list() np.random.seed(seed) # Step 1: No shuffle (X, Y) shuffled_X, shuffled_Y = X, Y # Step 2: Partition (X, Y). Minus the end case. # number of mini batches of size mini_batch_size in your partitioning num_complete_minibatches = int(math.floor(m / float(mini_batch_size))) for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] if len(Y.shape) == 1: mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size] else: mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size: m, :] if len(Y.shape) == 1: mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m] else: mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m, :] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def DBN_JIT(train_features, train_labels, test_features, test_labels, hidden_units=[20, 12, 12], num_epochs_LR=200): # training DBN model ################################################################################################# starttime = time.time() dbn_model = DBN(visible_units=train_features.shape[1], hidden_units=hidden_units, use_gpu=False) dbn_model.train_static(train_features, train_labels, num_epochs=10) # Finishing the training DBN model # print('---------------------Finishing the training DBN model---------------------') # using DBN model to construct features DBN_train_features, _ = dbn_model.forward(train_features) DBN_test_features, _ = dbn_model.forward(test_features) DBN_train_features = DBN_train_features.numpy() DBN_test_features = DBN_test_features.numpy() train_features = np.hstack((train_features, DBN_train_features)) test_features = np.hstack((test_features, DBN_test_features)) if len(train_labels.shape) == 1: num_classes = 1 else: num_classes = train_labels.shape[1] # lr_model = LR(input_size=hidden_units, num_classes=num_classes) lr_model = LR(input_size=train_features.shape[1], num_classes=num_classes) optimizer = torch.optim.Adam(lr_model.parameters(), lr=0.00001) steps = 0 batches_test = mini_batches(X=test_features, Y=test_labels) for epoch in range(1, num_epochs_LR + 1): # building batches for training model batches_train = mini_batches_update(X=train_features, Y=train_labels) for batch in batches_train: x_batch, y_batch = batch x_batch, y_batch = torch.tensor(x_batch).float(), torch.tensor(y_batch).float() optimizer.zero_grad() predict = lr_model.forward(x_batch) loss = nn.BCELoss() loss = loss(predict, y_batch) loss.backward() optimizer.step() # steps += 1 # if steps % 100 == 0: # print('\rEpoch: {} step: {} - loss: {:.6f}'.format(epoch, steps, loss.item())) endtime = time.time() dtime = endtime - starttime print("Train Time: %.8s s" % dtime) #显示到微秒 starttime = time.time() y_pred, lables = lr_model.predict(data=batches_test) endtime = time.time() dtime = endtime - starttime print("Eval Time: %.8s s" % dtime) #显示到微秒 return y_pred def baseline_algorithm(train, test, algorithm, only=False): _, y_train, X_train = train _, y_test, X_test = test X_train, X_test = preprocessing.scale(X_train), preprocessing.scale(X_test) acc, prc, rc, f1, auc_ = 0, 0, 0, 0, 0 if algorithm == 'lr': starttime = time.time() model = LogisticRegression(max_iter=7000).fit(X_train, y_train) endtime = time.time() dtime = endtime - starttime print("Train Time: %.8s s" % dtime) #显示到微秒 starttime = time.time() y_pred = model.predict_proba(X_test)[:, 1] endtime = time.time() dtime = endtime - starttime print("Eval Time: %.8s s" % dtime) #显示到微秒 acc, prc, rc, f1, auc_ = evaluation_metrics(y_true=y_test, y_pred=y_pred) if only and not "cross" in args.data: auc_ = train_and_evl(X_train, y_train, args) print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_)) elif algorithm =='dbn': y_pred = DBN_JIT(X_train, y_train, X_test, y_test) acc, prc, rc, f1, auc_ = evaluation_metrics(y_true=y_test, y_pred=y_pred) acc, prc, rc, f1 = 0, 0, 0, 0 print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_)) else: print('You need to give the correct algorithm name') return return y_test, y_pred def save_result(labels, predicts, path): results = [] for lable, predict in zip(labels, predicts): results.append('{}\t{}\n'.format(lable, predict)) with open(path, 'w', encoding='utf-8') as f: f.writelines(results) if __name__ == '__main__': args = parser.parse_args() save_path = 'result/{}/{}_{}_{}.result'.format(args.project, args.project, args.algorithm, args.data.replace("/","_")) only = True if args.only else False if args.algorithm == 'la': args.algorithm = 'lr' args.only = ['la'] if "all" in args.only: args.only.remove("all") train, test = load_yasu_data(args) labels, predicts = baseline_algorithm(train=train, test=test, algorithm=args.algorithm, only=only) if not only: save_result(labels, predicts, save_path)
35.402062
122
0.631722
[ "MIT" ]
ZZR0/ISSTA21-JIT-DP
JIT_Baseline/baseline.py
10,342
Python
""" Support the sensor of a BloomSky weather station. For more details about this component, please refer to the documentation at https://home-assistant.io/components/sensor.bloomsky/ """ import logging from homeassistant.const import TEMP_FAHRENHEIT from homeassistant.helpers.entity import Entity from homeassistant.loader import get_component DEPENDENCIES = ["bloomsky"] # These are the available sensors SENSOR_TYPES = ["Temperature", "Humidity", "Pressure", "Luminance", "UVIndex"] # Sensor units - these do not currently align with the API documentation SENSOR_UNITS = {"Temperature": TEMP_FAHRENHEIT, "Humidity": "%", "Pressure": "inHg", "Luminance": "cd/m²"} # Which sensors to format numerically FORMAT_NUMBERS = ["Temperature", "Pressure"] # pylint: disable=unused-argument def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the available BloomSky weather sensors.""" logger = logging.getLogger(__name__) bloomsky = get_component('bloomsky') sensors = config.get('monitored_conditions', SENSOR_TYPES) for device in bloomsky.BLOOMSKY.devices.values(): for variable in sensors: if variable in SENSOR_TYPES: add_devices([BloomSkySensor(bloomsky.BLOOMSKY, device, variable)]) else: logger.error("Cannot find definition for device: %s", variable) class BloomSkySensor(Entity): """Representation of a single sensor in a BloomSky device.""" def __init__(self, bs, device, sensor_name): """Initialize a bloomsky sensor.""" self._bloomsky = bs self._device_id = device["DeviceID"] self._sensor_name = sensor_name self._name = "{} {}".format(device["DeviceName"], sensor_name) self._unique_id = "bloomsky_sensor {}".format(self._name) self.update() @property def name(self): """The name of the BloomSky device and this sensor.""" return self._name @property def unique_id(self): """Return the unique ID for this sensor.""" return self._unique_id @property def state(self): """The current state, eg. value, of this sensor.""" return self._state @property def unit_of_measurement(self): """Return the sensor units.""" return SENSOR_UNITS.get(self._sensor_name, None) def update(self): """Request an update from the BloomSky API.""" self._bloomsky.refresh_devices() state = \ self._bloomsky.devices[self._device_id]["Data"][self._sensor_name] if self._sensor_name in FORMAT_NUMBERS: self._state = "{0:.2f}".format(state) else: self._state = state
31.663043
79
0.625472
[ "MIT" ]
1lann/home-assistant
homeassistant/components/sensor/bloomsky.py
2,914
Python
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ducktape.mark import parametrize from ducktape.utils.util import wait_until from ducktape.mark.resource import cluster from kafkatest.services.console_consumer import ConsoleConsumer from kafkatest.services.kafka import KafkaService from kafkatest.services.verifiable_producer import VerifiableProducer from kafkatest.services.zookeeper import ZookeeperService from kafkatest.tests.produce_consume_validate import ProduceConsumeValidateTest from kafkatest.utils import is_int from kafkatest.version import LATEST_0_9, LATEST_0_10, LATEST_0_11, DEV_BRANCH, KafkaVersion class MessageFormatChangeTest(ProduceConsumeValidateTest): def __init__(self, test_context): super(MessageFormatChangeTest, self).__init__(test_context=test_context) def setUp(self): self.topic = "test_topic" self.zk = ZookeeperService(self.test_context, num_nodes=1) self.zk.start() # Producer and consumer self.producer_throughput = 10000 self.num_producers = 1 self.num_consumers = 1 self.messages_per_producer = 100 def produce_and_consume(self, producer_version, consumer_version, group): self.producer = VerifiableProducer(self.test_context, self.num_producers, self.kafka, self.topic, throughput=self.producer_throughput, message_validator=is_int, version=KafkaVersion(producer_version)) self.consumer = ConsoleConsumer(self.test_context, self.num_consumers, self.kafka, self.topic, consumer_timeout_ms=30000, message_validator=is_int, version=KafkaVersion(consumer_version)) self.consumer.group_id = group self.run_produce_consume_validate(lambda: wait_until( lambda: self.producer.each_produced_at_least(self.messages_per_producer) == True, timeout_sec=120, backoff_sec=1, err_msg="Producer did not produce all messages in reasonable amount of time")) @cluster(num_nodes=12) @parametrize(producer_version=str(DEV_BRANCH), consumer_version=str(DEV_BRANCH)) @parametrize(producer_version=str(LATEST_0_10), consumer_version=str(LATEST_0_10)) @parametrize(producer_version=str(LATEST_0_9), consumer_version=str(LATEST_0_9)) def test_compatibility(self, producer_version, consumer_version): """ This tests performs the following checks: The workload is a mix of 0.9.x, 0.10.x and 0.11.x producers and consumers that produce to and consume from a DEV_BRANCH cluster 1. initially the topic is using message format 0.9.0 2. change the message format version for topic to 0.10.0 on the fly. 3. change the message format version for topic to 0.11.0 on the fly. 4. change the message format version for topic back to 0.10.0 on the fly (only if the client version is 0.11.0 or newer) - The producers and consumers should not have any issue. Note regarding step number 4. Downgrading the message format version is generally unsupported as it breaks older clients. More concretely, if we downgrade a topic from 0.11.0 to 0.10.0 after it contains messages with version 0.11.0, we will return the 0.11.0 messages without down conversion due to an optimisation in the handling of fetch requests. This will break any consumer that doesn't support 0.11.0. So, in practice, step 4 is similar to step 2 and it didn't seem worth it to increase the cluster size to in order to add a step 5 that would change the message format version for the topic back to 0.9.0.0. """ self.kafka = KafkaService(self.test_context, num_nodes=3, zk=self.zk, version=DEV_BRANCH, topics={self.topic: { "partitions": 3, "replication-factor": 3, 'configs': {"min.insync.replicas": 2}}}) self.kafka.start() self.logger.info("First format change to 0.9.0") self.kafka.alter_message_format(self.topic, str(LATEST_0_9)) self.produce_and_consume(producer_version, consumer_version, "group1") self.logger.info("Second format change to 0.10.0") self.kafka.alter_message_format(self.topic, str(LATEST_0_10)) self.produce_and_consume(producer_version, consumer_version, "group2") self.logger.info("Third format change to 0.11.0") self.kafka.alter_message_format(self.topic, str(LATEST_0_11)) self.produce_and_consume(producer_version, consumer_version, "group3") if producer_version == str(DEV_BRANCH) and consumer_version == str(DEV_BRANCH): self.logger.info("Fourth format change back to 0.10.0") self.kafka.alter_message_format(self.topic, str(LATEST_0_10)) self.produce_and_consume(producer_version, consumer_version, "group4")
55.504854
128
0.682526
[ "Apache-2.0" ]
1810824959/kafka
tests/kafkatest/tests/client/message_format_change_test.py
5,717
Python
# -*- coding: utf-8 -*- """ [googleSearch.py] Google Search Plugin [Author] Justin Walker [About] Returns the first three links from a google search. [Commands] >>> .google <<search term>> returns search links """ try: from googlesearch import search except ImportError: print("No module named 'google' found") class Plugin: def __init__(self): pass def __google(search_term): # start is what link to start with, stop is how many links to get # only_standard limits it to normal links instead of ads and extra # links. return search(search_term, start=1, stop=3, \ only_standard=True) def run(self, incoming, methods, info): try: msgs = info['args'][1:][0].split() if info['command'] == 'PRIVMSG' and msgs[0] == '.google': # All further messages, if there are any are added to search term. term = '' if len(msgs) > 1: for msg in msgs[1:]: term += msg for link in Plugin.__google(term): methods['send'](info['address'], link) else: methods['send'](info['address'], "Input error. '.google search_term'.") except Exception as e: print('woops plugin error: ', e)
28.7
92
0.524739
[ "MIT" ]
IronPenguin4179/honeybot
honeybot/plugins/google.py
1,435
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """End-to-end tests that check model correctness.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import unittest import numpy as np import tensorflow as tf from tensorflow.compat import v1 as tfv1 # pylint: disable=g-bad-import-order from tfltransfer import bases from tfltransfer import optimizers from tfltransfer import heads from tfltransfer import tflite_transfer_converter # pylint: enable=g-bad-import-order IMAGE_SIZE = 224 BATCH_SIZE = 128 NUM_CLASSES = 5 VALIDATION_SPLIT = 0.2 LEARNING_RATE = 0.001 BOTTLENECK_SHAPE = (7, 7, 1280) DATASET_URL = 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz' class TransferModel(object): """Test consumer of models generated by the converter.""" def __init__(self, dataset_dir, base_model, head_model, optimizer): """Creates a wrapper for a set of models and a data set.""" self.dataset_dir = dataset_dir datagen = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1. / 255, validation_split=VALIDATION_SPLIT) self.train_img_generator = datagen.flow_from_directory( self.dataset_dir, target_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE, subset='training') self.val_img_generator = datagen.flow_from_directory( self.dataset_dir, target_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE, subset='validation') converter = tflite_transfer_converter.TFLiteTransferConverter( NUM_CLASSES, base_model, head_model, optimizer, BATCH_SIZE) models = converter._convert() self.initialize_model = models['initialize'] self.bottleneck_model = models['bottleneck'] self.train_head_model = models['train_head'] self.inference_model = models['inference'] self.optimizer_model = models['optimizer'] self.variables = self._generate_initial_variables() optim_state_shapes = self._optimizer_state_shapes() self.optim_state = [ np.zeros(shape, dtype=np.float32) for shape in optim_state_shapes ] def _generate_initial_variables(self): """Generates the initial model variables.""" interpreter = tf.lite.Interpreter(model_content=self.initialize_model) zero_in = interpreter.get_input_details()[0] variable_outs = interpreter.get_output_details() interpreter.allocate_tensors() interpreter.set_tensor(zero_in['index'], np.float32(0.)) interpreter.invoke() return [interpreter.get_tensor(var['index']) for var in variable_outs] def _optimizer_state_shapes(self): """Reads the shapes of the optimizer parameters (mutable state).""" interpreter = tf.lite.Interpreter(model_content=self.optimizer_model) num_variables = len(self.variables) optim_state_inputs = interpreter.get_input_details()[num_variables * 2:] return [input_['shape'] for input_ in optim_state_inputs] def prepare_bottlenecks(self): """Passes all images through the base model and save the bottlenecks. This method has to be called before any training or inference. """ self.train_bottlenecks, self.train_labels = ( self._collect_and_generate_bottlenecks(self.train_img_generator)) self.val_bottlenecks, self.val_labels = ( self._collect_and_generate_bottlenecks(self.val_img_generator)) def _collect_and_generate_bottlenecks(self, image_gen): """Consumes a generator and converts all images to bottlenecks. Args: image_gen: A Keras data generator for images to process Returns: Two NumPy arrays: (bottlenecks, labels). """ collected_bottlenecks = np.zeros( (image_gen.samples,) + BOTTLENECK_SHAPE, dtype=np.float32) collected_labels = np.zeros((image_gen.samples, NUM_CLASSES), dtype=np.float32) next_idx = 0 for bottlenecks, truth in self._generate_bottlenecks( make_finite(image_gen)): batch_size = bottlenecks.shape[0] collected_bottlenecks[next_idx:next_idx + batch_size] = bottlenecks collected_labels[next_idx:next_idx + batch_size] = truth next_idx += batch_size return collected_bottlenecks, collected_labels def _generate_bottlenecks(self, image_gen): """Generator adapter that passes images through the bottleneck model. Args: image_gen: A generator that returns images to be processed. Images are paired with ground truth labels. Yields: Bottlenecks from input images, paired with ground truth labels. """ interpreter = tf.lite.Interpreter(model_content=self.bottleneck_model) [x_in] = interpreter.get_input_details() [bottleneck_out] = interpreter.get_output_details() for (x, y) in image_gen: batch_size = x.shape[0] interpreter.resize_tensor_input(x_in['index'], (batch_size, IMAGE_SIZE, IMAGE_SIZE, 3)) interpreter.allocate_tensors() interpreter.set_tensor(x_in['index'], x) interpreter.invoke() bottleneck = interpreter.get_tensor(bottleneck_out['index']) yield bottleneck, y def train_head(self, num_epochs): """Trains the head model for a given number of epochs. SGD is used as an optimizer. Args: num_epochs: how many epochs should be trained Returns: A list of train_loss values after every epoch trained. Raises: RuntimeError: when prepare_bottlenecks() has not been called. """ if not hasattr(self, 'train_bottlenecks'): raise RuntimeError('prepare_bottlenecks has not been called') results = [] for _ in range(num_epochs): loss = self._train_one_epoch( self._generate_batches(self.train_bottlenecks, self.train_labels)) results.append(loss) return results def _generate_batches(self, x, y): """Creates a generator that iterates over the data in batches.""" num_total = x.shape[0] for begin in range(0, num_total, BATCH_SIZE): end = min(begin + BATCH_SIZE, num_total) yield x[begin:end], y[begin:end] def _train_one_epoch(self, train_gen): """Performs one training epoch.""" interpreter = tf.lite.Interpreter(model_content=self.train_head_model) interpreter.allocate_tensors() x_in, y_in = interpreter.get_input_details()[:2] variable_ins = interpreter.get_input_details()[2:] loss_out = interpreter.get_output_details()[0] gradient_outs = interpreter.get_output_details()[1:] epoch_loss = 0. num_processed = 0 for bottlenecks, truth in train_gen: batch_size = bottlenecks.shape[0] if batch_size < BATCH_SIZE: bottlenecks = pad_batch(bottlenecks, BATCH_SIZE) truth = pad_batch(truth, BATCH_SIZE) interpreter.set_tensor(x_in['index'], bottlenecks) interpreter.set_tensor(y_in['index'], truth) for variable_in, variable_value in zip(variable_ins, self.variables): interpreter.set_tensor(variable_in['index'], variable_value) interpreter.invoke() loss = interpreter.get_tensor(loss_out['index']) gradients = [ interpreter.get_tensor(gradient_out['index']) for gradient_out in gradient_outs ] self._apply_gradients(gradients) epoch_loss += loss * batch_size num_processed += batch_size epoch_loss /= num_processed return epoch_loss def _apply_gradients(self, gradients): """Applies the optimizer to the model parameters.""" interpreter = tf.lite.Interpreter(model_content=self.optimizer_model) interpreter.allocate_tensors() num_variables = len(self.variables) variable_ins = interpreter.get_input_details()[:num_variables] gradient_ins = interpreter.get_input_details()[num_variables:num_variables * 2] state_ins = interpreter.get_input_details()[num_variables * 2:] variable_outs = interpreter.get_output_details()[:num_variables] state_outs = interpreter.get_output_details()[num_variables:] for variable, gradient, variable_in, gradient_in in zip( self.variables, gradients, variable_ins, gradient_ins): interpreter.set_tensor(variable_in['index'], variable) interpreter.set_tensor(gradient_in['index'], gradient) for optim_state_elem, state_in in zip(self.optim_state, state_ins): interpreter.set_tensor(state_in['index'], optim_state_elem) interpreter.invoke() self.variables = [ interpreter.get_tensor(variable_out['index']) for variable_out in variable_outs ] self.optim_state = [ interpreter.get_tensor(state_out['index']) for state_out in state_outs ] def measure_inference_accuracy(self): """Runs the inference model and measures accuracy on the validation set.""" interpreter = tf.lite.Interpreter(model_content=self.inference_model) bottleneck_in = interpreter.get_input_details()[0] variable_ins = interpreter.get_input_details()[1:] [y_out] = interpreter.get_output_details() inference_accuracy = 0. num_processed = 0 for bottleneck, truth in self._generate_batches(self.val_bottlenecks, self.val_labels): batch_size = bottleneck.shape[0] interpreter.resize_tensor_input(bottleneck_in['index'], (batch_size,) + BOTTLENECK_SHAPE) interpreter.allocate_tensors() interpreter.set_tensor(bottleneck_in['index'], bottleneck) for variable_in, variable_value in zip(variable_ins, self.variables): interpreter.set_tensor(variable_in['index'], variable_value) interpreter.invoke() preds = interpreter.get_tensor(y_out['index']) acc = (np.argmax(preds, axis=1) == np.argmax(truth, axis=1)).sum() / batch_size inference_accuracy += acc * batch_size num_processed += batch_size inference_accuracy /= num_processed return inference_accuracy def make_finite(data_gen): """An adapter for Keras data generators that makes them finite. The default behavior in Keras is to keep looping infinitely through the data. Args: data_gen: An infinite Keras data generator. Yields: Same values as the parameter generator. """ num_samples = data_gen.samples num_processed = 0 for batch in data_gen: batch_size = batch[0].shape[0] if batch_size + num_processed > num_samples: batch_size = num_samples - num_processed should_stop = True else: should_stop = False if batch_size == 0: return batch = tuple(x[:batch_size] for x in batch) yield batch num_processed += batch_size if should_stop: return # TODO(b/135138207) investigate if we can get rid of this. def pad_batch(batch, batch_size): """Resize batch to a given size, tiling present samples over missing. Example: Suppose batch_size is 5, batch is [1, 2]. Then the return value is [1, 2, 1, 2, 1]. Args: batch: An ndarray with first dimension size <= batch_size. batch_size: Desired size for first dimension. Returns: An ndarray of the same shape, except first dimension has the desired size. """ padded = np.zeros((batch_size,) + batch.shape[1:], dtype=batch.dtype) next_idx = 0 while next_idx < batch_size: fill_len = min(batch.shape[0], batch_size - next_idx) padded[next_idx:next_idx + fill_len] = batch[:fill_len] next_idx += fill_len return padded class ModelCorrectnessTest(unittest.TestCase): @classmethod def setUpClass(cls): super(ModelCorrectnessTest, cls).setUpClass() zip_file = tf.keras.utils.get_file( origin=DATASET_URL, fname='flower_photos.tgz', extract=True) cls.dataset_dir = os.path.join(os.path.dirname(zip_file), 'flower_photos') mobilenet_dir = tempfile.mkdtemp('tflite-transfer-test') mobilenet_keras = tf.keras.applications.MobileNetV2( input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, weights='imagenet') tfv1.keras.experimental.export_saved_model(mobilenet_keras, mobilenet_dir) cls.mobilenet_dir = mobilenet_dir def setUp(self): super(ModelCorrectnessTest, self).setUp() self.mobilenet_dir = ModelCorrectnessTest.mobilenet_dir self.dataset_dir = ModelCorrectnessTest.dataset_dir def test_mobilenet_v2_saved_model_and_softmax_classifier(self): base_model = bases.SavedModelBase(self.mobilenet_dir) head_model = heads.SoftmaxClassifierHead(BATCH_SIZE, BOTTLENECK_SHAPE, NUM_CLASSES) optimizer = optimizers.SGD(LEARNING_RATE) model = TransferModel(self.dataset_dir, base_model, head_model, optimizer) self.assertModelAchievesAccuracy(model, 0.80) def test_mobilenet_v2_saved_model_quantized_and_softmax_classifier(self): base_model = bases.SavedModelBase(self.mobilenet_dir, quantize=True) head_model = heads.SoftmaxClassifierHead(BATCH_SIZE, BOTTLENECK_SHAPE, NUM_CLASSES) optimizer = optimizers.SGD(LEARNING_RATE) model = TransferModel(self.dataset_dir, base_model, head_model, optimizer) self.assertModelAchievesAccuracy(model, 0.80) def test_mobilenet_v2_base_and_softmax_classifier(self): base_model = bases.MobileNetV2Base() head_model = heads.SoftmaxClassifierHead(BATCH_SIZE, BOTTLENECK_SHAPE, NUM_CLASSES) optimizer = optimizers.SGD(LEARNING_RATE) model = TransferModel(self.dataset_dir, base_model, head_model, optimizer) self.assertModelAchievesAccuracy(model, 0.80) def test_mobilenet_v2_base_and_softmax_classifier_l2(self): base_model = bases.MobileNetV2Base() head_model = heads.SoftmaxClassifierHead( BATCH_SIZE, BOTTLENECK_SHAPE, NUM_CLASSES, l2_reg=0.1) optimizer = optimizers.SGD(LEARNING_RATE) model = TransferModel(self.dataset_dir, base_model, head_model, optimizer) self.assertModelAchievesAccuracy(model, 0.80) def test_mobilenet_v2_base_quantized_and_softmax_classifier(self): base_model = bases.MobileNetV2Base(quantize=True) head_model = heads.SoftmaxClassifierHead(BATCH_SIZE, BOTTLENECK_SHAPE, NUM_CLASSES) optimizer = optimizers.SGD(LEARNING_RATE) model = TransferModel(self.dataset_dir, base_model, head_model, optimizer) self.assertModelAchievesAccuracy(model, 0.80) def test_mobilenet_v2_base_and_softmax_classifier_adam(self): base_model = bases.MobileNetV2Base() head_model = heads.SoftmaxClassifierHead(BATCH_SIZE, BOTTLENECK_SHAPE, NUM_CLASSES) optimizer = optimizers.Adam() model = TransferModel(self.dataset_dir, base_model, head_model, optimizer) self.assertModelAchievesAccuracy(model, 0.80) def assertModelAchievesAccuracy(self, model, target_accuracy, num_epochs=30): model.prepare_bottlenecks() print('Bottlenecks prepared') history = model.train_head(num_epochs) print('Training completed, history = {}'.format(history)) accuracy = model.measure_inference_accuracy() print('Final accuracy = {:.2f}'.format(accuracy)) self.assertGreater(accuracy, target_accuracy) if __name__ == '__main__': unittest.main()
38.059524
103
0.714983
[ "Apache-2.0" ]
121Y/examples
lite/examples/model_personalization/converter/tfltransfer/model_correctness_test.py
15,985
Python
def get_the_ith_largest(s1: list, s2: list, i: int): m = len(s1) n = len(s2) if i > m + n: raise IndexError('list index out of range') i -= 1 l1 = 0 r1 = i if m - 1 >= i else m - 1 while l1 <= r1: c1 = (l1 + r1) // 2 c1_f = i - c1 - 1 c1_b = i - c1 if c1_f >= 0 and (c1_f >= n or s2[c1_f] > s1[c1]): l1 = c1 + 1 elif 0 <= c1_b < n and s2[c1_b] < s1[c1]: r1 = c1 - 1 else: return s1[c1] return get_the_ith_largest(s2, s1, i + 1) if __name__ == '__main__': s1_test = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] s2_test = [2, 3, 4, 6, 10, 20, 100] print(get_the_ith_largest(s2_test, s1_test, 8))
25.586207
65
0.467655
[ "MIT" ]
keybrl/xdu-coursework
projects/g3h2-algorithm/practice1/4.py
742
Python
# -*- coding: utf-8 -*- # # Copyright © 2009-2010 Pierre Raybaut # Licensed under the terms of the MIT License # (see spyderlib/__init__.py for details) """ spyderlib.widgets ================= Widgets defined in this module may be used in any other Qt-based application They are also used in Spyder through the Plugin interface (see spyderlib.plugins) """
23.375
77
0.679144
[ "MIT" ]
MarlaJahari/Marve
spyderlib/widgets/__init__.py
375
Python
from math import ceil from time import sleep from config import * from servo import * from camera import * from pid import * # Init servo1 = Servo(2) servo2 = Servo(3) servo_count = 0 #servo1.setAngle(90) #sleep(1) #servo2.setAngle(90) #sleep(1) camera = Camera() PID = PID() # Loop while True: data = camera.getBallPos() #data = None if not (data[0] and data[1]): print("No ball found") else: # Calculate PID move = PID.calculate(data[0], data[1]) # Print result #print("x", round(move[0]), "y", round(move[1]), round(move[2]*600)) # Move servos #move_x = ( (move[0] - conf.cam_x_min) / (conf.cam_x_max - conf.cam_x_min) ) * (conf.servo_max - conf.servo_min) + conf.servo_min #move_y = ( (move[1] - conf.cam_y_min) / (conf.cam_y_max - conf.cam_y_min) ) * (conf.servo_max - conf.servo_min) + conf.servo_min move_x = ((move[0])/2)+90 move_y = ((-move[1])/2)+90 print(move_x, move_y) servo_count += 1 if servo_count > 3: servo1.setAngle(move_x) servo2.setAngle(move_y) servo_count = 0 #servo.moveTo(2, move[1]) # Show frame cv2.imshow("Frame", data[2]) key = cv2.waitKey(1) & 0xFF # Stop if 'q' is pressed if key == ord("q"): servo1.stop() servo2.stop() camera.stop()
17.72619
137
0.534587
[ "MIT" ]
alvarlagerlof/ball-pid
run.py
1,489
Python
# -*- coding: utf-8 -*- # @Author: Jie # @Date: 2017-06-15 14:11:08 # @Last Modified by: Jie Yang, Contact: [email protected] # @Last Modified time: 2019-02-13 12:41:44 from __future__ import print_function import time import sys import argparse import random import torch import gc import torch.nn as nn import torch.optim as optim import numpy as np from utils.metric import get_ner_fmeasure from model.seqlabel import SeqLabel from model.sentclassifier import SentClassifier from utils.data import Data import seaborn as sns import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap try: import cPickle as pickle except ImportError: import pickle DEFAULT_TRAINED_FILE = 'test_data/lstmtestglove50.9.model' seed_num = 46 random.seed(seed_num) torch.manual_seed(seed_num) np.random.seed(seed_num) def importance_matrix(sensitivities, data, print_imp=True, show_table=True, tag_to_ablate=None): ''' Builds a matrix of tag sensitivities :param sensitivities: This is a matrix of [num_tags, num_neurons], which is [10 x 50] in our experimental configuration. :return: ''' important_lists = [] important_nps = np.zeros(50, dtype=int) sensitivities = sensitivities[1:] # omit padding tag for i in range(len(sensitivities)): important_list = [] important_np = np.zeros(50, dtype=int) tag_sensitivity_row = sensitivities[i] for j in range(len(tag_sensitivity_row)): most_important = np.argmax(tag_sensitivity_row) important_list.append(most_important) important_np[j] = most_important index = [most_important] tag_sensitivity_row[most_important] = np.NINF important_lists.append(important_list) important_nps = np.vstack((important_nps, important_np)) important_nps = np.delete(important_nps, 0, axis=0) # delete padding tag np.save("imps.npy",important_nps) # save importance rows for other scripts to use important_nps = np.transpose(important_nps) if show_table: sns.set() # Smaller than normal fonts sns.set(font_scale=0.5) x_tick = [data.label_alphabet.get_instance(tag) for tag in sorted(data.tag_counts)] del(x_tick[0]) ax = sns.heatmap(important_nps, annot=True, xticklabels=x_tick, cmap=ListedColormap(['white']), cbar=False, yticklabels=False, linecolor='gray', linewidths=0.4) title = "Importance rankings of neurons per tag" plt.title(title, fontsize=18) ttl = ax.title ttl.set_position([0.5, 1.05]) plt.show() def trim_model_dir(model_dir): model_dir = model_dir.replace('/','-') return model_dir ax.figure.savefig("ImportanceRankings-{}.png".format(trim_model_dir(data.model_dir))) if print_imp: imp_file = open("Importance-{}.txt".format(trim_model_dir(data.model_dir)), "w+") print('Neuron importance ranking for each NER tag:') for i, l in enumerate(important_lists): tags = [data.label_alphabet.get_instance(tag) for tag in sorted(data.tag_counts)] del(tags[0]) # remove PAD tag print ("\t{}\t{}".format(tags[i], l)) imp_file.write("{}\t{}\n".format(tags[i], l)) imp_file.write("\n") np.savetxt("Importance-{}.tsv".format(trim_model_dir(data.model_dir)), important_nps, fmt='%2.0d', delimiter='\t') return important_nps def heatmap_sensitivity(sensitivities, modelname=DEFAULT_TRAINED_FILE, testname="", show_pad=False, show_vals=True, disable=False): ''' Shows a heatmap for the sensitivity values, saves the heatmap to a PNG file, and also saves the sensitivity matrix to an .npy file, which we use for calculating correlations between models later. :param sensitivities: This is a matrix of [num_tags, num_neurons], which is [10 x 50] in our experimental configuration. :param disable: disable is just to turn off for debugging :return: ''' # transpose to match chart in Figure 7. of paper sensitivities = np.transpose(sensitivities) # column 0 is the padding tag start = 1 if show_pad: start = 0 sensitivities = sensitivities[0:50, start:10] sns.set() # Smaller than normal fonts sns.set(font_scale=0.5) x_tick = [data.label_alphabet.get_instance(tag) for tag in sorted(data.tag_counts)] if show_pad: x_tick[0] = 'PAD' else: del(x_tick[0]) # change tags' order to use in downstream correlation diagrams sensitivities_temp = np.zeros((50, 9)) x_tick_output = ['B-PER', 'I-PER', 'B-LOC', 'I-LOC', 'B-ORG', 'I-ORG', 'B-MISC', 'I-MISC', 'O'] for i in range(len(x_tick_output)): sensitivities_temp[:, i] = sensitivities[:, x_tick.index(x_tick_output[i])] np.save(modelname+'_sensitivities.npy', sensitivities_temp) # put sensititivites in heat map if not disable: ax = sns.heatmap(sensitivities, xticklabels=x_tick, annot=show_vals, fmt=".2g") title = "({}): ".format(testname) + modelname plt.title(title, fontsize=18) ttl = ax.title ttl.set_position([0.5, 1.05]) plt.show() ax.figure.savefig(modelname+"_heatmap.png") def get_sensitivity_matrix(label, debug=True): ''' Given a tag like 4: (B-PER), return the sensitivity matrix :param label: :return: ''' avg_for_label = data.tag_contributions[label]/data.tag_counts[label] sum_other_counts = 0 # data.tag_contributions[0] is for the padding label and can be ignored sum_other_contributions = np.zeros((10, 50)) for l in data.tag_counts: if l != label and l != 0: # if l != label: (to consider the padding label which is 0) sum_other_counts += data.tag_counts[l] sum_other_contributions += data.tag_contributions[l] avg_for_others = sum_other_contributions/sum_other_counts s_ij = avg_for_label - avg_for_others s_ij_label = s_ij[label] return s_ij_label # was return s_ij def data_initialization(data): data.initial_feature_alphabets() data.build_alphabet(data.train_dir) data.build_alphabet(data.dev_dir) data.build_alphabet(data.test_dir) data.fix_alphabet() def predict_check(pred_variable, gold_variable, mask_variable, sentence_classification=False): """ input: pred_variable (batch_size, sent_len): pred tag result, in numpy format gold_variable (batch_size, sent_len): gold result variable mask_variable (batch_size, sent_len): mask variable """ pred = pred_variable.cpu().data.numpy() gold = gold_variable.cpu().data.numpy() mask = mask_variable.cpu().data.numpy() overlaped = (pred == gold) if sentence_classification: # print(overlaped) # print(overlaped*pred) right_token = np.sum(overlaped) total_token = overlaped.shape[0] ## =batch_size else: right_token = np.sum(overlaped * mask) total_token = mask.sum() # print("right: %s, total: %s"%(right_token, total_token)) return right_token, total_token def recover_label(pred_variable, gold_variable, mask_variable, label_alphabet, word_recover, sentence_classification=False): """ input: pred_variable (batch_size, sent_len): pred tag result gold_variable (batch_size, sent_len): gold result variable mask_variable (batch_size, sent_len): mask variable """ pred_variable = pred_variable[word_recover] # print("reordered labels: {}".format(pred_variable)) gold_variable = gold_variable[word_recover] mask_variable = mask_variable[word_recover] batch_size = gold_variable.size(0) if sentence_classification: pred_tag = pred_variable.cpu().data.numpy().tolist() gold_tag = gold_variable.cpu().data.numpy().tolist() pred_label = [label_alphabet.get_instance(pred) for pred in pred_tag] gold_label = [label_alphabet.get_instance(gold) for gold in gold_tag] else: seq_len = gold_variable.size(1) mask = mask_variable.cpu().data.numpy() pred_tag = pred_variable.cpu().data.numpy() gold_tag = gold_variable.cpu().data.numpy() batch_size = mask.shape[0] pred_label = [] gold_label = [] for idx in range(batch_size): pred = [label_alphabet.get_instance(pred_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0] gold = [label_alphabet.get_instance(gold_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0] assert(len(pred)==len(gold)) pred_label.append(pred) gold_label.append(gold) return pred_label, gold_label def recover_nbest_label(pred_variable, mask_variable, label_alphabet, word_recover): """ input: pred_variable (batch_size, sent_len, nbest): pred tag result mask_variable (batch_size, sent_len): mask variable word_recover (batch_size) output: nbest_pred_label list: [batch_size, nbest, each_seq_len] """ # exit(0) pred_variable = pred_variable[word_recover] mask_variable = mask_variable[word_recover] batch_size = pred_variable.size(0) seq_len = pred_variable.size(1) nbest = pred_variable.size(2) mask = mask_variable.cpu().data.numpy() pred_tag = pred_variable.cpu().data.numpy() batch_size = mask.shape[0] pred_label = [] for idx in range(batch_size): pred = [] for idz in range(nbest): each_pred = [label_alphabet.get_instance(pred_tag[idx][idy][idz]) for idy in range(seq_len) if mask[idx][idy] != 0] pred.append(each_pred) pred_label.append(pred) return pred_label def lr_decay(optimizer, epoch, decay_rate, init_lr): lr = init_lr/(1+decay_rate*epoch) print(" Learning rate is set as:", lr) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def evaluate(data, model, name, nbest=None, print_tag_counts=False, tag_to_ablate=None): ''' :param data: :param model: :param name: :param nbest: :param print_tag_counts: :param tag_to_ablate: if this is set to a tag name, like 'B-ORG', then in the LSTM layer's forward() we ablate the number of neurons specified by data.ablate_num :return: ''' ablate_list_for_tag = None if tag_to_ablate: data.ablate_tag = tag_to_ablate ablate_list_for_tag = data.ablate_list[tag_to_ablate] print("\nEVALUATE file: {}, set={}, \n\t ablate_num={} tag: {} \nablate_list_for_tag={}".format( data.model_dir, name, data.current_ablate_ind, tag_to_ablate, ablate_list_for_tag)) if name == "train": instances = data.train_Ids elif name == "dev": instances = data.dev_Ids elif name == 'test': instances = data.test_Ids elif name == 'raw': instances = data.raw_Ids else: print("Error: wrong evaluate name,", name) exit(1) right_token = 0 whole_token = 0 nbest_pred_results = [] pred_scores = [] pred_results = [] gold_results = [] ## set model in eval model model.eval() ''' Get count of model parameters ''' # print("COUNT PARAMETERS: {}".format(count_parameters(model))) batch_size = data.HP_batch_size start_time = time.time() train_num = len(instances) total_batch = train_num//batch_size+1 for batch_id in range(total_batch): start = batch_id*batch_size end = (batch_id+1)*batch_size if end > train_num: end = train_num instance = instances[start:end] if not instance: continue batch_word, batch_features, batch_wordlen, batch_wordrecover, batch_char, batch_charlen, batch_charrecover, batch_label, mask = batchify_with_label(instance, data.HP_gpu, False, data.sentence_classification) if nbest and not data.sentence_classification: scores, nbest_tag_seq = model.decode_nbest(batch_word,batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, mask, nbest) nbest_pred_result = recover_nbest_label(nbest_tag_seq, mask, data.label_alphabet, batch_wordrecover) nbest_pred_results += nbest_pred_result pred_scores += scores[batch_wordrecover].cpu().data.numpy().tolist() ## select the best sequence to evalurate tag_seq = nbest_tag_seq[:,:,0] else: tag_seq = model(batch_word, batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, mask) pred_label, gold_label = recover_label(tag_seq, batch_label, mask, data.label_alphabet, batch_wordrecover, data.sentence_classification) pred_results += pred_label gold_results += gold_label decode_time = time.time() - start_time speed = len(instances)/decode_time acc, p, r, f = get_ner_fmeasure(gold_results, pred_results, data.tagScheme, data=data) if nbest and not data.sentence_classification: return speed, acc, p, r, f, nbest_pred_results, pred_scores ''' Get per-tag sensitivity ''' ## print("TOTAL BATCH ITERATIONS: {}".format(data.iteration)) sensitivity_matrices = [] # This will hold a row for each tag's sensitivity for tag in sorted(data.tag_counts): if print_tag_counts: if tag == 0: print("Padding {}: {} instances.".format('0', data.tag_counts[tag])) else: print("Tag {}: {} instances.".format(data.label_alphabet.get_instance(tag), data.tag_counts[tag])) sensitivity_tag = get_sensitivity_matrix(tag) sensitivity_matrices.append(sensitivity_tag) sensitivity_combined = np.squeeze(np.stack([sensitivity_matrices])) # TODO: the following line would stack multiple models' sensitivity, # but we don't need it unless running many different models for stats # data.sensitivity_matrices_combined.append(sensitivity_combined) return speed, acc, p, r, f, pred_results, pred_scores, sensitivity_combined def batchify_with_label(input_batch_list, gpu, if_train=True, sentence_classification=False): if sentence_classification: return batchify_sentence_classification_with_label(input_batch_list, gpu, if_train) else: return batchify_sequence_labeling_with_label(input_batch_list, gpu, if_train) def batchify_sequence_labeling_with_label(input_batch_list, gpu, if_train=True): """ input: list of words, chars and labels, various length. [[words, features, chars, labels],[words, features, chars,labels],...] words: word ids for one sentence. (batch_size, sent_len) features: features ids for one sentence. (batch_size, sent_len, feature_num) chars: char ids for on sentences, various length. (batch_size, sent_len, each_word_length) labels: label ids for one sentence. (batch_size, sent_len) output: zero padding for word and char, with their batch length word_seq_tensor: (batch_size, max_sent_len) Variable feature_seq_tensors: [(batch_size, max_sent_len),...] list of Variable word_seq_lengths: (batch_size,1) Tensor char_seq_tensor: (batch_size*max_sent_len, max_word_len) Variable char_seq_lengths: (batch_size*max_sent_len,1) Tensor char_seq_recover: (batch_size*max_sent_len,1) recover char sequence order label_seq_tensor: (batch_size, max_sent_len) mask: (batch_size, max_sent_len) """ batch_size = len(input_batch_list) words = [sent[0] for sent in input_batch_list] features = [np.asarray(sent[1]) for sent in input_batch_list] feature_num = len(features[0][0]) chars = [sent[2] for sent in input_batch_list] labels = [sent[3] for sent in input_batch_list] word_seq_lengths = torch.LongTensor(list(map(len, words))) max_seq_len = word_seq_lengths.max().item() word_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).long() label_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).long() feature_seq_tensors = [] for idx in range(feature_num): feature_seq_tensors.append(torch.zeros((batch_size, max_seq_len),requires_grad = if_train).long()) # ' ''' 517 ''' # mask = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).byte() mask = torch.zeros((batch_size, max_seq_len), requires_grad=if_train).bool() for idx, (seq, label, seqlen) in enumerate(zip(words, labels, word_seq_lengths)): seqlen = seqlen.item() word_seq_tensor[idx, :seqlen] = torch.LongTensor(seq) label_seq_tensor[idx, :seqlen] = torch.LongTensor(label) mask[idx, :seqlen] = torch.Tensor([1]*seqlen) for idy in range(feature_num): feature_seq_tensors[idy][idx,:seqlen] = torch.LongTensor(features[idx][:,idy]) word_seq_lengths, word_perm_idx = word_seq_lengths.sort(0, descending=True) word_seq_tensor = word_seq_tensor[word_perm_idx] for idx in range(feature_num): feature_seq_tensors[idx] = feature_seq_tensors[idx][word_perm_idx] label_seq_tensor = label_seq_tensor[word_perm_idx] mask = mask[word_perm_idx] ### deal with char # pad_chars (batch_size, max_seq_len) pad_chars = [chars[idx] + [[0]] * (max_seq_len-len(chars[idx])) for idx in range(len(chars))] length_list = [list(map(len, pad_char)) for pad_char in pad_chars] max_word_len = max(map(max, length_list)) char_seq_tensor = torch.zeros((batch_size, max_seq_len, max_word_len), requires_grad = if_train).long() char_seq_lengths = torch.LongTensor(length_list) for idx, (seq, seqlen) in enumerate(zip(pad_chars, char_seq_lengths)): for idy, (word, wordlen) in enumerate(zip(seq, seqlen)): # print len(word), wordlen char_seq_tensor[idx, idy, :wordlen] = torch.LongTensor(word) char_seq_tensor = char_seq_tensor[word_perm_idx].view(batch_size*max_seq_len,-1) char_seq_lengths = char_seq_lengths[word_perm_idx].view(batch_size*max_seq_len,) char_seq_lengths, char_perm_idx = char_seq_lengths.sort(0, descending=True) char_seq_tensor = char_seq_tensor[char_perm_idx] _, char_seq_recover = char_perm_idx.sort(0, descending=False) _, word_seq_recover = word_perm_idx.sort(0, descending=False) if gpu: word_seq_tensor = word_seq_tensor.cuda() for idx in range(feature_num): feature_seq_tensors[idx] = feature_seq_tensors[idx].cuda() word_seq_lengths = word_seq_lengths.cuda() word_seq_recover = word_seq_recover.cuda() label_seq_tensor = label_seq_tensor.cuda() char_seq_tensor = char_seq_tensor.cuda() char_seq_recover = char_seq_recover.cuda() mask = mask.cuda() return word_seq_tensor,feature_seq_tensors, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, label_seq_tensor, mask def batchify_sentence_classification_with_label(input_batch_list, gpu, if_train=True): """ input: list of words, chars and labels, various length. [[words, features, chars, labels],[words, features, chars,labels],...] words: word ids for one sentence. (batch_size, sent_len) features: features ids for one sentence. (batch_size, feature_num), each sentence has one set of feature chars: char ids for on sentences, various length. (batch_size, sent_len, each_word_length) labels: label ids for one sentence. (batch_size,), each sentence has one set of feature output: zero padding for word and char, with their batch length word_seq_tensor: (batch_size, max_sent_len) Variable feature_seq_tensors: [(batch_size,), ... ] list of Variable word_seq_lengths: (batch_size,1) Tensor char_seq_tensor: (batch_size*max_sent_len, max_word_len) Variable char_seq_lengths: (batch_size*max_sent_len,1) Tensor char_seq_recover: (batch_size*max_sent_len,1) recover char sequence order label_seq_tensor: (batch_size, ) mask: (batch_size, max_sent_len) """ batch_size = len(input_batch_list) words = [sent[0] for sent in input_batch_list] features = [np.asarray(sent[1]) for sent in input_batch_list] feature_num = len(features[0]) chars = [sent[2] for sent in input_batch_list] labels = [sent[3] for sent in input_batch_list] word_seq_lengths = torch.LongTensor(list(map(len, words))) max_seq_len = word_seq_lengths.max().item() word_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).long() label_seq_tensor = torch.zeros((batch_size, ), requires_grad = if_train).long() feature_seq_tensors = [] for idx in range(feature_num): feature_seq_tensors.append(torch.zeros((batch_size, max_seq_len),requires_grad = if_train).long()) ''' 517 ''' # mask = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).byte() mask = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).bool() label_seq_tensor = torch.LongTensor(labels) # exit(0) for idx, (seq, seqlen) in enumerate(zip(words, word_seq_lengths)): seqlen = seqlen.item() word_seq_tensor[idx, :seqlen] = torch.LongTensor(seq) mask[idx, :seqlen] = torch.Tensor([1]*seqlen) for idy in range(feature_num): feature_seq_tensors[idy][idx,:seqlen] = torch.LongTensor(features[idx][:,idy]) word_seq_lengths, word_perm_idx = word_seq_lengths.sort(0, descending=True) word_seq_tensor = word_seq_tensor[word_perm_idx] for idx in range(feature_num): feature_seq_tensors[idx] = feature_seq_tensors[idx][word_perm_idx] label_seq_tensor = label_seq_tensor[word_perm_idx] mask = mask[word_perm_idx] ### deal with char # pad_chars (batch_size, max_seq_len) pad_chars = [chars[idx] + [[0]] * (max_seq_len-len(chars[idx])) for idx in range(len(chars))] length_list = [list(map(len, pad_char)) for pad_char in pad_chars] max_word_len = max(map(max, length_list)) char_seq_tensor = torch.zeros((batch_size, max_seq_len, max_word_len), requires_grad = if_train).long() char_seq_lengths = torch.LongTensor(length_list) for idx, (seq, seqlen) in enumerate(zip(pad_chars, char_seq_lengths)): for idy, (word, wordlen) in enumerate(zip(seq, seqlen)): # print len(word), wordlen char_seq_tensor[idx, idy, :wordlen] = torch.LongTensor(word) char_seq_tensor = char_seq_tensor[word_perm_idx].view(batch_size*max_seq_len,-1) char_seq_lengths = char_seq_lengths[word_perm_idx].view(batch_size*max_seq_len,) char_seq_lengths, char_perm_idx = char_seq_lengths.sort(0, descending=True) char_seq_tensor = char_seq_tensor[char_perm_idx] _, char_seq_recover = char_perm_idx.sort(0, descending=False) _, word_seq_recover = word_perm_idx.sort(0, descending=False) if gpu: word_seq_tensor = word_seq_tensor.cuda() for idx in range(feature_num): feature_seq_tensors[idx] = feature_seq_tensors[idx].cuda() word_seq_lengths = word_seq_lengths.cuda() word_seq_recover = word_seq_recover.cuda() label_seq_tensor = label_seq_tensor.cuda() char_seq_tensor = char_seq_tensor.cuda() char_seq_recover = char_seq_recover.cuda() mask = mask.cuda() return word_seq_tensor,feature_seq_tensors, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, label_seq_tensor, mask def load_model_to_test(data, train=False, dev=True, test=False, tag=None): ''' Set any ONE of train, dev, test to true, in order to evaluate on that set. :param data: :param train: :param dev: Default set to test, because that was what the original experiment did :param test: :return: ''' print("Load pretrained model...") if data.sentence_classification: model = SentClassifier(data) else: model = SeqLabel(data) model.load_state_dict(torch.load(data.pretrained_model_path)) '''----------------TESTING----------------''' if (train): speed, acc, p, r, f, _,_, train_sensitivities = evaluate(data, model, "train") heatmap_sensitivity(train_sensitivities, data.pretrained_model_path, testname="train") if data.seg: current_score = f print("Speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(speed, acc, p, r, f)) else: current_score = acc print("Speed: %.2fst/s; acc: %.4f"%(speed, acc)) if (dev): # for tag in data.ablate_list: speed, acc, p, r, f, _,_, sensitivities = evaluate( data, model, "dev", tag_to_ablate=tag) if data.seg: current_score = f print("Speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f" % (speed, acc, p, r, f)) else: current_score = acc print("Speed: %.2fst/s; acc: %.4f" % (speed, acc)) if (data.ablate_num == 0): heatmap_sensitivity(sensitivities, data.pretrained_model_path, testname="dev") importance_matrix(sensitivities, data) if (test): speed, acc, p, r, f, _,_ = evaluate(data, model, "test") if data.seg: print("Speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(speed, acc, p, r, f)) else: print("Speed: %.2fst/s; acc: %.4f"%(speed, acc)) return def train(data): print("Training model...") data.show_data_summary() save_data_name = data.model_dir +".dset" data.save(save_data_name) if data.sentence_classification: model = SentClassifier(data) else: model = SeqLabel(data) if data.optimizer.lower() == "sgd": optimizer = optim.SGD(model.parameters(), lr=data.HP_lr, momentum=data.HP_momentum,weight_decay=data.HP_l2) elif data.optimizer.lower() == "adagrad": optimizer = optim.Adagrad(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) elif data.optimizer.lower() == "adadelta": optimizer = optim.Adadelta(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) elif data.optimizer.lower() == "rmsprop": optimizer = optim.RMSprop(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) elif data.optimizer.lower() == "adam": optimizer = optim.Adam(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) else: print("Optimizer illegal: %s"%(data.optimizer)) exit(1) best_dev = -10 # data.HP_iteration = 1 ## start training for idx in range(data.HP_iteration): epoch_start = time.time() temp_start = epoch_start print("Epoch: %s/%s" %(idx,data.HP_iteration)) if data.optimizer == "SGD": optimizer = lr_decay(optimizer, idx, data.HP_lr_decay, data.HP_lr) instance_count = 0 sample_id = 0 sample_loss = 0 total_loss = 0 right_token = 0 whole_token = 0 random.shuffle(data.train_Ids) print("Shuffle: first input word list:", data.train_Ids[0][0]) ## set model in train model model.train() model.zero_grad() batch_size = data.HP_batch_size batch_id = 0 train_num = len(data.train_Ids) total_batch = train_num//batch_size+1 for batch_id in range(total_batch): start = batch_id*batch_size end = (batch_id+1)*batch_size if end >train_num: end = train_num instance = data.train_Ids[start:end] if not instance: continue batch_word, batch_features, batch_wordlen, batch_wordrecover, batch_char, batch_charlen, batch_charrecover, batch_label, mask = batchify_with_label(instance, data.HP_gpu, True, data.sentence_classification) instance_count += 1 loss, tag_seq = model.calculate_loss(batch_word, batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, batch_label, mask) right, whole = predict_check(tag_seq, batch_label, mask, data.sentence_classification) right_token += right whole_token += whole # print("loss:",loss.item()) sample_loss += loss.item() total_loss += loss.item() if end%500 == 0: temp_time = time.time() temp_cost = temp_time - temp_start temp_start = temp_time print(" Instance: %s; Time: %.2fs; loss: %.4f; acc: %s/%s=%.4f"%(end, temp_cost, sample_loss, right_token, whole_token,(right_token+0.)/whole_token)) if sample_loss > 1e8 or str(sample_loss) == "nan": print("ERROR: LOSS EXPLOSION (>1e8) ! PLEASE SET PROPER PARAMETERS AND STRUCTURE! EXIT....") exit(1) sys.stdout.flush() sample_loss = 0 loss.backward() optimizer.step() model.zero_grad() temp_time = time.time() temp_cost = temp_time - temp_start print(" Instance: %s; Time: %.2fs; loss: %.4f; acc: %s/%s=%.4f"%(end, temp_cost, sample_loss, right_token, whole_token,(right_token+0.)/whole_token)) epoch_finish = time.time() epoch_cost = epoch_finish - epoch_start print("Epoch: %s training finished. Time: %.2fs, speed: %.2fst/s, total loss: %s"%(idx, epoch_cost, train_num/epoch_cost, total_loss)) print("totalloss:", total_loss) if total_loss > 1e8 or str(total_loss) == "nan": print("ERROR: LOSS EXPLOSION (>1e8) ! PLEASE SET PROPER PARAMETERS AND STRUCTURE! EXIT....") exit(1) # continue speed, acc, p, r, f, _,_ , sensitivities = evaluate(data, model, "dev") dev_finish = time.time() dev_cost = dev_finish - epoch_finish if data.seg: current_score = f print("Dev: time: %.2fs, speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(dev_cost, speed, acc, p, r, f)) else: current_score = acc print("Dev: time: %.2fs speed: %.2fst/s; acc: %.4f"%(dev_cost, speed, acc)) if current_score > best_dev: if data.seg: print("Exceed previous best f score:", best_dev) else: print("Exceed previous best acc score:", best_dev) model_name = data.model_dir +'.'+ str(idx) + ".model" print("Save current best model in file:", model_name) torch.save(model.state_dict(), model_name) best_dev = current_score # ## decode test speed, acc, p, r, f, _,_ , sensitivities = evaluate(data, model, "test") test_finish = time.time() test_cost = test_finish - dev_finish if data.seg: print("Test: time: %.2fs, speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(test_cost, speed, acc, p, r, f)) else: print("Test: time: %.2fs, speed: %.2fst/s; acc: %.4f"%(test_cost, speed, acc)) gc.collect() def load_model_decode(data, name): print("Load Model from file: {}, name={}".format(data.model_dir, name) ) if data.sentence_classification: model = SentClassifier(data) else: model = SeqLabel(data) # model = SeqModel(data) ## load model need consider if the model trained in GPU and load in CPU, or vice versa # if not gpu: # model.load_state_dict(torch.load(model_dir)) # # model.load_state_dict(torch.load(model_dir), map_location=lambda storage, loc: storage) # # model = torch.load(model_dir, map_location=lambda storage, loc: storage) # else: # model.load_state_dict(torch.load(model_dir)) # # model = torch.load(model_dir) model.load_state_dict(torch.load(data.load_model_dir)) print("Decode %s data, nbest: %s ..."%(name, data.nbest)) start_time = time.time() speed, acc, p, r, f, pred_results, pred_scores = evaluate(data, model, name, data.nbest) end_time = time.time() time_cost = end_time - start_time if data.seg: print("%s: time:%.2fs, speed:%.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(name, time_cost, speed, acc, p, r, f)) else: print("%s: time:%.2fs, speed:%.2fst/s; acc: %.4f"%(name, time_cost, speed, acc)) return pred_results, pred_scores def load_ablation_file(): filename = ("Importance-" + data.model_dir + ".txt").replace('/','-') ablate_lists = {} ''' B-ORG [4, 24, 14, 15, 19, 46, 36, 22, 27, 9, 13, 20, 25, 33, 45, 0, 35, 40, 48, 42, 44, 18, 37, 21, 32, 29, 16, 26, 11, 7, 23, 49, 12, 5, 8, 38, 2, 47, 1, 43, 31, 30, 41, 6, 28, 3, 34, 39, 10, 17]''' with open(filename, 'r+') as file: lines = file.readlines() for line in lines: line = line.strip() if len(line) > 0: (tag, list) = line.split('[')[0].strip(), line.split('[')[1].strip().replace(']','') list = list.split(',') ablate_lists[tag] = [int(i) for i in list] return ablate_lists def clear_sensitivity_data(): data.iteration = 0 data.batch_contributions = [] data.tag_contributions = {} data.tag_counts = {} data.sensitivity_matrices = [] data.sensitivity_matrices_combined = [] if __name__ == '__main__': parser = argparse.ArgumentParser(description='Tuning with NCRF++') # parser.add_argument('--status', choices=['train', 'decode'], help='update algorithm', default='train') parser.add_argument('--config', help='Configuration File', default='None') parser.add_argument('--wordemb', help='Embedding for words', default='None') parser.add_argument('--charemb', help='Embedding for chars', default='None') parser.add_argument('--status', choices=['train', 'decode'], help='update algorithm', default='train') parser.add_argument('--savemodel', default="data/model/saved_model.lstmcrf.") parser.add_argument('--savedset', help='Dir of saved data setting') parser.add_argument('--train', default="data/conll03/train.bmes") parser.add_argument('--dev', default="data/conll03/dev.bmes" ) parser.add_argument('--test', default="data/conll03/test.bmes") parser.add_argument('--seg', default="True") parser.add_argument('--raw') parser.add_argument('--loadmodel') parser.add_argument('--output') parser.add_argument('--loadtotest', help='Load the model just to test it') parser.add_argument('--pretrainedmodelpath', help='Path to a pretrained model that you just want to test', default=DEFAULT_TRAINED_FILE) parser.add_argument('--ablate', help='how many neurons to ablate', default=0) # indicate number of neurons to ablate # Importance.txt is generated by importance_matrix() (automatically reading this file is a TODO) parser.add_argument('--ablate_file', help='list of neurons to ablate') args = parser.parse_args() data = Data() data.HP_gpu = torch.cuda.is_available() if args.config == 'None': data.train_dir = args.train data.dev_dir = args.dev data.test_dir = args.test data.model_dir = args.savemodel data.dset_dir = args.savedset print("Save dset directory:",data.dset_dir) save_model_dir = args.savemodel data.word_emb_dir = args.wordemb data.char_emb_dir = args.charemb if args.seg.lower() == 'true': data.seg = True else: data.seg = False print("Seed num:",seed_num) else: data.read_config(args.config) # adding arg for pretrained model path data.pretrained_model_path = args.pretrainedmodelpath data.ablate_num = int(args.ablate) # data.show_data_summary() status = data.status.lower() print("Seed num:",seed_num) if status == 'train': print("MODEL: train") data_initialization(data) # set up alphabets data.generate_instance('train') data.generate_instance('dev') data.generate_instance('test') data.build_pretrain_emb() if not args.loadtotest: print("Training model, not just testing because --loadtotest is {}".format(args.loadtotest)) print("Loading ablation file even though it's just a placeholder") debug_ablation = False if debug_ablation: data.ablate_list = load_ablation_file() # TODO: file not found tag_list = data.ablate_list.keys() train(data) else: if args.ablate: data.ablate_num = int(args.ablate) print("Loading model to test.") data.ablate_list = load_ablation_file() tag_list = data.ablate_list.keys() # todo: command line arg for specific current ablate index # todo: command line arg for intervals for tag in tag_list: data.ablate_tag = tag data.current_ablate_ind[tag] = 0 data.acc_chart[data.ablate_tag] = {} # clear accuracy dict of lists for the tag for i in range(0, data.ablate_num + 1): data.current_ablate_ind[tag] = i #+= 1 # todo: option to skip by different interval like every 5 clear_sensitivity_data() load_model_to_test(data, tag=tag) # print out acc_chart #for tag in data.ablate_list: print ('{} ABLATION RESULTS:'.format(tag)) degradations = {} for t in tag_list: print("\tTag: {}, Decr. Accs: {}".format(t, data.acc_chart[tag][t])) degradations[t] = \ [data.acc_chart[tag][t][ind] - data.acc_chart[tag][t][0] for ind in range (0, data.ablate_num+1)] print("\t\tDegradation={})".format(degradations[t])) if (t==tag): # ablation tag, so use bolder symbol plt.plot(degradations[t], 'bs', label=t) else: plt.plot(degradations[t], label=t) plt.title(tag, fontsize=18) plt.legend() plt.savefig("{}_chart.png".format(tag)) plt.clf() # clear the plot -was plot.show() elif status == 'decode': print("MODEL: decode") data.load(data.dset_dir) data.read_config(args.config) print(data.raw_dir) # exit(0) data.show_data_summary() data.generate_instance('raw') print("nbest: %s"%(data.nbest)) decode_results, pred_scores = load_model_decode(data, 'raw') if data.nbest and not data.sentence_classification: data.write_nbest_decoded_results(decode_results, pred_scores, 'raw') else: data.write_decoded_results(decode_results, 'raw') else: print("Invalid argument! Please use valid arguments! (train/test/decode)")
44.199554
219
0.645749
[ "Apache-2.0" ]
DeniseMak/ner-neuron
main.py
39,647
Python
import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import plotly.graph_objs as go from pymongo import MongoClient import json import os client = MongoClient(os.environ.get("DATABASE")) db = client.politics.brexit external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) data = list(db.find({}, {"_id": 0})) data_df = pd.json_normalize(data).set_index('timestamp') top_columns = data_df.sum().sort_values(ascending=False) top_10 = top_columns[0:10].index.tolist() top10df = data_df[top_10].fillna(0).astype(int) df = top10df[-12:] cols = list(df.columns) # Set up plot fig = go.Figure() colors = { 'background': '#111111', 'text': '#7FDBFF' } app.layout = html.Div(children=[ html.H1( children='#brexit', style={ 'textAlign': 'center', 'color': colors['text'] } ), html.Div(children='Top Keywords used with the #brexit hashtag in the last 12 hours', style={ 'textAlign': 'center', 'color': colors['text'] }), dcc.Graph( id='test-plot', figure={ 'data': [ go.Scatter( x=df.index, y=df[i], name=i.replace('words.', ''), line=dict(shape='spline', width=2), opacity=0.8 ) for i in cols[0:10] ], 'layout': go.Layout( xaxis={'title': 'Time'}, yaxis={'title': 'Frequency'}, margin={'l': 40, 'b': 80, 't': 10, 'r': 10}, legend={'x': 0, 'y': 1}, hovermode='closest' ) }, ), dcc.Interval( id='interval-component', interval=60*1000, # in milliseconds n_intervals=0 ) ]) if __name__ == '__main__': app.run_server(debug=True)
24.432099
96
0.547246
[ "MIT" ]
brittwitham/brexit-word-freq
brexit-word-freq/app.py
1,979
Python
import pytest from nbformat import notebooknode from nb2hugo.preprocessors import FixLatexPreprocessor @pytest.fixture def preprocessor(): """Return an instance of FixLatexPreprocessor.""" return FixLatexPreprocessor() source = ( 'Some text with an inline equality $escaped\_0 = lower_0$.\n' 'And a display equality:\n' '$$escaped\_1 = subscript_1.$$\n' 'And a second one on multiple lines:\n' '$$\n' 'escaped\_2\n' '$$\n' ) dollars_processed = ( 'Some text with an inline equality \\\\(escaped\_0 = lower_0\\\\).\n' 'And a display equality:\n' '\\\\[escaped\_1 = subscript_1.\\\\]\n' 'And a second one on multiple lines:\n' '\\\\[\n' 'escaped\_2\n' '\\\\]\n' ) fully_processed = ( 'Some text with an inline equality \\\\(escaped\\\\_0 = lower_0\\\\).\n' 'And a display equality:\n' '\\\\[escaped\\\\_1 = subscript_1.\\\\]\n' 'And a second one on multiple lines:\n' '\\\\[\n' 'escaped\\\\_2\n' '\\\\]\n' ) def test_replace_latex_enclosing_dollars(preprocessor): result = preprocessor._replace_latex_enclosing_dollars(source) assert result == dollars_processed def test_fix_latex_escaped_underscores(preprocessor): result = preprocessor._fix_latex_escaped_underscores(dollars_processed) assert result == fully_processed raw_cell, code_cell, markdown_cell, expected_markdown_cell = [ notebooknode.from_dict({"cell_type": cell_type, "metadata": {}, "source": source}) for cell_type, source in [('raw', source), ('code', source), ('markdown', source), ('markdown', fully_processed)] ] @pytest.mark.parametrize("input_cell, expected_cell", [ (raw_cell, raw_cell), (code_cell, code_cell), (markdown_cell, expected_markdown_cell), ]) def test_preprocess_cell(preprocessor, input_cell, expected_cell): assert preprocessor.preprocess_cell(input_cell, None, None) == (expected_cell, None)
30.940299
88
0.630005
[ "MIT" ]
IMTorgDemo/hugo-nb2hugo
tests/preprocessors/test_fixlatex.py
2,073
Python
"""WARNING: This code is not recommanded. It is not finished, it is slower then the version in sandbox/neighbours.py, and it do not work on the GPU. We only keep this version here as it is a little bit more generic, so it cover more cases. But thoses cases aren't needed frequently, so you probably don't want to use this version, go see neighbours.py!!!!!!! """ import numpy from six.moves import xrange import six.moves.builtins as builtins import theano from theano import gof, Op class NeighbourhoodsFromImages(Op): __props__ = ("n_dims_before", "dims_neighbourhoods", "strides", "ignore_border", "inverse") def __init__(self, n_dims_before, dims_neighbourhoods, strides=None, ignore_border=False, inverse=False): """ This extracts neighbourhoods from "images", but in a dimension-generic manner. In the 2D case, this is similar to downsampling, but instead of reducing a group of 2x2 pixels (for example) to a single new pixel in the output, you place those 4 pixels in a row. For example, say you have this 2x4 image:: [ [ 0.5, 0.6, 0.7, 0.8 ], [ 0.1, 0.2, 0.3, 0.4 ] ] and you want to extract 2x2 neighbourhoods. This op would then produce:: [ [ [ 0.5, 0.6, 0.1, 0.2 ] ], # the first 2x2 group of pixels [ [ 0.7, 0.8, 0.3, 0.4 ] ] ] # the second one so think of a 2D downsampling where each pixel of the resulting array is replaced by an array containing the (flattened) pixels of the corresponding neighbourhood. If you provide a stack of 2D image, or multiple stacks, each image will be treated independently, and the first dimensions of the array will be preserved as such. This also makes sense in the 1D or 3D case. Below I'll still be calling those "images", by analogy. In the 1D case, you're extracting subsequences from the original sequence. In the 3D case, you're extracting cuboids. If you ever find a 4D use, tell me! It should be possible, anyhow. Parameters ---------- n_dims_before : int Number of dimensions preceding the "images". dims_neighbourhoods : tuple of ints Exact shape of windows to be extracted (e.g. (2,2) in the case above). n_dims_before + len(dims_neighbourhoods) should be equal to the number of dimensions in the input given to the op. strides : tuple of int Number of elements to skip when moving to the next neighbourhood, for each dimension of dims_neighbourhoods. There can be overlap between neighbourhoods, or gaps. ignore_border : bool If the dimensions of the neighbourhoods don't exactly divide the dimensions of the "images", you can either fill the last neighbourhood with zeros (False) or drop it entirely (True). inverse : bool You shouldn't have to use this. Only used by child class ImagesFromNeighbourhoods which simply reverses the assignment. """ self.n_dims_before = n_dims_before self.dims_neighbourhoods = dims_neighbourhoods if strides is not None: self.strides = strides else: self.strides = dims_neighbourhoods self.ignore_border = ignore_border self.inverse = inverse self.code_string, self.code = self.make_py_code() def __str__(self): return '%s{%s,%s,%s,%s}' % (self.__class__.__name__, self.n_dims_before, self.dims_neighbourhoods, self.strides, self.ignore_border) def out_shape(self, input_shape): dims = list(input_shape[:self.n_dims_before]) num_strides = [0 for i in xrange(len(self.strides))] neigh_flattened_dim = 1 for i, ds in enumerate(self.dims_neighbourhoods): cur_stride = self.strides[i] input_dim = input_shape[i + self.n_dims_before] target_dim = input_dim // cur_stride if not self.ignore_border and (input_dim % cur_stride) != 0: target_dim += 1 num_strides[i] = target_dim dims.append(target_dim) neigh_flattened_dim *= ds dims.append(neigh_flattened_dim) return dims, num_strides # for inverse mode # "output" here actually referes to the Op's input shape (but it's inverse mode) def in_shape(self, output_shape): out_dims = list(output_shape[:self.n_dims_before]) num_strides = [] # in the inverse case we don't worry about borders: # they either have been filled with zeros, or have been cropped for i, ds in enumerate(self.dims_neighbourhoods): # the number of strides performed by NeighFromImg is # directly given by this shape num_strides.append(output_shape[self.n_dims_before + i]) # our Op's output image must be at least this wide at_least_width = num_strides[i] * self.strides[i] # ... which gives us this number of neighbourhoods num_neigh = at_least_width // ds if at_least_width % ds != 0: num_neigh += 1 # making the final Op's output dimension this wide out_dims.append(num_neigh * ds) return out_dims, num_strides def make_node(self, x): x = theano.tensor.as_tensor_variable(x) if self.inverse: # +1 in the inverse case if x.type.ndim != (self.n_dims_before + len(self.dims_neighbourhoods) + 1): raise TypeError() else: if x.type.ndim != (self.n_dims_before + len(self.dims_neighbourhoods)): raise TypeError() return gof.Apply(self, [x], [x.type()]) def perform(self, node, inp, out): x, = inp z, = out if self.inverse: # +1 in the inverse case if len(x.shape) != (self.n_dims_before + len(self.dims_neighbourhoods) + 1): raise ValueError("Images passed as input don't match the " "dimensions passed when this (inversed) " "Apply node was created") prod = 1 for dim in self.dims_neighbourhoods: prod *= dim if x.shape[-1] != prod: raise ValueError("Last dimension of neighbourhoods (%s) is not" " the product of the neighbourhoods dimensions" " (%s)" % (str(x.shape[-1]), str(prod))) else: if len(x.shape) != (self.n_dims_before + len(self.dims_neighbourhoods)): raise ValueError("Images passed as input don't match the " "dimensions passed when this Apply node " "was created") if self.inverse: input_shape, num_strides = self.in_shape(x.shape) out_shape, dummy = self.out_shape(input_shape) else: input_shape = x.shape out_shape, num_strides = self.out_shape(input_shape) if z[0] is None: if self.inverse: z[0] = numpy.zeros(input_shape) else: z[0] = numpy.zeros(out_shape) z[0] = theano._asarray(z[0], dtype=x.dtype) exec(self.code) def make_py_code(self): code = self._py_outerloops() for i in xrange(len(self.strides)): code += self._py_innerloop(i) code += self._py_assignment() return code, builtins.compile(code, '<string>', 'exec') def _py_outerloops(self): code_before = "" for dim_idx in xrange(self.n_dims_before): code_before += ('\t' * (dim_idx)) + \ "for outer_idx_%d in xrange(input_shape[%d]):\n" % \ (dim_idx, dim_idx) return code_before def _py_innerloop(self, inner_dim_no): base_indent = ('\t' * (self.n_dims_before + inner_dim_no * 2)) code_before = base_indent + \ "for stride_idx_%d in xrange(num_strides[%d]):\n" % \ (inner_dim_no, inner_dim_no) base_indent += '\t' code_before += base_indent + \ "dim_%d_offset = stride_idx_%d * self.strides[%d]\n" %\ (inner_dim_no, inner_dim_no, inner_dim_no) code_before += base_indent + \ "max_neigh_idx_%d = input_shape[%d] - dim_%d_offset\n" % \ (inner_dim_no, self.n_dims_before + inner_dim_no, inner_dim_no) code_before += base_indent + \ ("for neigh_idx_%d in xrange(min(max_neigh_idx_%d," " self.dims_neighbourhoods[%d])):\n") %\ (inner_dim_no, inner_dim_no, inner_dim_no) return code_before def _py_flattened_idx(self): return "+".join(["neigh_strides[%d]*neigh_idx_%d" % (i, i) for i in xrange(len(self.strides))]) def _py_assignment(self): input_idx = "".join(["outer_idx_%d," % (i,) for i in xrange(self.n_dims_before)]) input_idx += "".join(["dim_%d_offset+neigh_idx_%d," % (i, i) for i in xrange(len(self.strides))]) out_idx = "".join( ["outer_idx_%d," % (i,) for i in xrange(self.n_dims_before)] + ["stride_idx_%d," % (i,) for i in xrange(len(self.strides))]) out_idx += self._py_flattened_idx() # return_val = '\t' * (self.n_dims_before + len(self.strides)*2) # return_val += "print "+input_idx+"'\\n',"+out_idx+"\n" return_val = '\t' * (self.n_dims_before + len(self.strides) * 2) if self.inverse: # remember z and x are inversed: # z is the Op's output, but has input_shape # x is the Op's input, but has out_shape return_val += "z[0][%s] = x[%s]\n" % (input_idx, out_idx) else: return_val += "z[0][%s] = x[%s]\n" % (out_idx, input_idx) return return_val class ImagesFromNeighbourhoods(NeighbourhoodsFromImages): def __init__(self, n_dims_before, dims_neighbourhoods, strides=None, ignore_border=False): NeighbourhoodsFromImages.__init__(self, n_dims_before, dims_neighbourhoods, strides=strides, ignore_border=ignore_border, inverse=True) # and that's all there is to it
40.869403
84
0.570711
[ "BSD-3-Clause" ]
jych/Theano
theano/sandbox/neighbourhoods.py
10,953
Python
# ======🙋🙋🙋实现了 1个函数fn 映射 为1个URL处理函数!!! import asyncio, os, inspect, logging, functools from urllib import parse from aiohttp import web from apis import APIError def get(path): ''' Define decorator @get('/path') ''' def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): return func(*args, **kw) wrapper.__method__ = 'GET' wrapper.__route__ = path return wrapper return decorator def post(path): ''' Define decorator @post('/path') ''' def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): return func(*args, **kw) wrapper.__method__ = 'POST' wrapper.__route__ = path return wrapper return decorator def get_required_kw_args(fn): args = [] params = inspect.signature(fn).parameters for name, param in params.items(): if param.kind == inspect.Parameter.KEYWORD_ONLY and param.default == inspect.Parameter.empty: args.append(name) return tuple(args) def get_named_kw_args(fn): args = [] params = inspect.signature(fn).parameters for name, param in params.items(): if param.kind == inspect.Parameter.KEYWORD_ONLY: args.append(name) return tuple(args) def has_named_kw_args(fn): params = inspect.signature(fn).parameters for name, param in params.items(): if param.kind == inspect.Parameter.KEYWORD_ONLY: return True def has_var_kw_arg(fn): params = inspect.signature(fn).parameters for name, param in params.items(): if param.kind == inspect.Parameter.VAR_KEYWORD: return True def has_request_arg(fn): sig = inspect.signature(fn) params = sig.parameters found = False for name, param in params.items(): if name == 'request': found = True continue if found and (param.kind != inspect.Parameter.VAR_POSITIONAL and param.kind != inspect.Parameter.KEYWORD_ONLY and param.kind != inspect.Parameter.VAR_KEYWORD): raise ValueError('request parameter must be the last named parameter in function: %s%s' % (fn.__name__, str(sig))) return found class RequestHandler(object): def __init__(self, app, fn): self._app = app self._func = fn self._has_request_arg = has_request_arg(fn) self._has_var_kw_arg = has_var_kw_arg(fn) self._has_named_kw_args = has_named_kw_args(fn) self._named_kw_args = get_named_kw_args(fn) self._required_kw_args = get_required_kw_args(fn) @asyncio.coroutine def __call__(self, request): kw = None if self._has_var_kw_arg or self._has_named_kw_args or self._required_kw_args: if request.method == 'POST': if not request.content_type: return web.HTTPBadRequest('Missing Content-Type.') ct = request.content_type.lower() if ct.startswith('application/json'): params = yield from request.json() if not isinstance(params, dict): return web.HTTPBadRequest('JSON body must be object.') kw = params elif ct.startswith('application/x-www-form-urlencoded') or ct.startswith('multipart/form-data'): params = yield from request.post() kw = dict(**params) else: return web.HTTPBadRequest('Unsupported Content-Type: %s' % request.content_type) if request.method == 'GET': qs = request.query_string if qs: kw = dict() for k, v in parse.parse_qs(qs, True).items(): kw[k] = v[0] if kw is None: kw = dict(**request.match_info) else: if not self._has_var_kw_arg and self._named_kw_args: # remove all unamed kw: copy = dict() for name in self._named_kw_args: if name in kw: copy[name] = kw[name] kw = copy # check named arg: for k, v in request.match_info.items(): if k in kw: logging.warning('Duplicate arg name in named arg and kw args: %s' % k) kw[k] = v if self._has_request_arg: kw['request'] = request # check required kw: if self._required_kw_args: for name in self._required_kw_args: if not name in kw: return web.HTTPBadRequest('Missing argument: %s' % name) logging.info('call with args: %s' % str(kw)) try: r = yield from self._func(**kw) return r except APIError as e: return dict(error=e.error, data=e.data, message=e.message) def add_static(app): path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'static') app.router.add_static('/static/', path) logging.info('add static %s => %s' % ('/static/', path)) def add_route(app, fn): method = getattr(fn, '__method__', None) path = getattr(fn, '__route__', None) if path is None or method is None: raise ValueError('@get or @post not defined in %s.' % str(fn)) if not asyncio.iscoroutinefunction(fn) and not inspect.isgeneratorfunction(fn): fn = asyncio.coroutine(fn) logging.info('add route %s %s => %s(%s)' % (method, path, fn.__name__, ', '.join(inspect.signature(fn).parameters.keys()))) app.router.add_route(method, path, RequestHandler(app, fn)) def add_routes(app, module_name): n = module_name.rfind('.') if n == (-1): mod = __import__(module_name, globals(), locals()) else: name = module_name[n+1:] mod = getattr(__import__(module_name[:n], globals(), locals(), [name]), name) for attr in dir(mod): if attr.startswith('_'): continue fn = getattr(mod, attr) if callable(fn): method = getattr(fn, '__method__', None) path = getattr(fn, '__route__', None) if method and path: add_route(app, fn)
36.567251
167
0.581481
[ "MIT" ]
qsyPython/Python_play_now
qiushaoyi/programs/qsy_program_codes/python3-webapp/www/coroweb.py
6,296
Python
import uuid def get_unique_filename(instance, filename): ext = filename.split('.')[-1] filename = '{}.{}'.format(uuid.uuid4(), ext) return 'user_{0}/{1}'.format(instance.author.id, filename)
25.625
62
0.653659
[ "Apache-2.0" ]
yuramorozov01/courses_system
courses/src/base_app/utils.py
205
Python
import torch.nn as nn import torch import torch.nn.functional as F class CombinationModule(nn.Module): def __init__(self, c_low, c_up, batch_norm=False, group_norm=False, instance_norm=False): super(CombinationModule, self).__init__() if batch_norm: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.BatchNorm2d(c_up), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up*2, c_up, kernel_size=1, stride=1), nn.BatchNorm2d(c_up), nn.ReLU(inplace=True)) elif group_norm: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.GroupNorm(num_groups=32, num_channels=c_up), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up * 2, c_up, kernel_size=1, stride=1), nn.GroupNorm(num_groups=32, num_channels=c_up), nn.ReLU(inplace=True)) elif instance_norm: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.InstanceNorm2d(num_features=c_up),#track_running_stats=True), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up * 2, c_up, kernel_size=1, stride=1), nn.InstanceNorm2d(num_features=c_up),# track_running_stats=True), nn.ReLU(inplace=True)) else: self.up = nn.Sequential(nn.Conv2d(c_low, c_up, kernel_size=3, padding=1, stride=1), nn.ReLU(inplace=True)) self.cat_conv = nn.Sequential(nn.Conv2d(c_up*2, c_up, kernel_size=1, stride=1), nn.ReLU(inplace=True)) def forward(self, x_low, x_up): x_low = self.up(F.interpolate(x_low, x_up.shape[2:], mode='bilinear', align_corners=False)) # if self.up[1].running_mean is not None: # print(self.up[1].running_mean.shape) return self.cat_conv(torch.cat((x_up, x_low), 1))
60.025
107
0.52853
[ "MIT" ]
yijingru/ObjGuided-Instance-Segmentation
models/layers.py
2,401
Python
# encoding: utf-8 # module Autodesk.Civil.Settings calls itself Settings # from AeccDbMgd, Version=13.3.854.0, Culture=neutral, PublicKeyToken=null, AeccPressurePipesMgd, Version=13.3.854.0, Culture=neutral, PublicKeyToken=null # by generator 1.145 # no doc # no imports # no functions # classes class AbbreviationAlignmentEnhancedType(Enum): """ enum AbbreviationAlignmentEnhancedType, values: AlignmentBeginningPoint (402706556), AlignmentEndPoint (402706557), CompoundSpiralLargeRadiusAtBeginning (402706566), CompoundSpiralLargeRadiusAtEnd (402706567), CompoundSpiralSmallRadiusAtBeginning (402706568), CompoundSpiralSmallRadiusAtEnd (402706569), CurveBeginning (402706560), CurveEnd (402706561), LineBeginning (402706558), LineEnd (402706559), SimpleSpiralLargeRadiusAtBeginning (402706562), SimpleSpiralLargeRadiusAtEnd (402706563), SimpleSpiralSmallRadiusAtBeginning (402706564), SimpleSpiralSmallRadiusAtEnd (402706565) """ AlignmentBeginningPoint = None AlignmentEndPoint = None CompoundSpiralLargeRadiusAtBeginning = None CompoundSpiralLargeRadiusAtEnd = None CompoundSpiralSmallRadiusAtBeginning = None CompoundSpiralSmallRadiusAtEnd = None CurveBeginning = None CurveEnd = None LineBeginning = None LineEnd = None SimpleSpiralLargeRadiusAtBeginning = None SimpleSpiralLargeRadiusAtEnd = None SimpleSpiralSmallRadiusAtBeginning = None SimpleSpiralSmallRadiusAtEnd = None value__ = None class AbbreviationAlignmentType(Enum): """ enum AbbreviationAlignmentType, values: AlignmentBeginning (67162235), AlignmentEnd (67162234), CompoundCurveCurveIntersect (67162197), CurveSpiralIntersect (67162201), CurveTangentIntersect (67162196), MidCurvePoint (67162254), ReverseCurveCurveIntersect (67162198), ReverseSpiralIntersect (67162204), SpiralCurveIntersect (67162202), SpiralSpiralIntersect (67162203), SpiralTangentIntersect (67162200), StationEquationDecreasing (67162253), StationEquationIncreasing (67162252), TangentCurveIntersect (67162195), TangentSpiralIntersect (67162199), TangentTangentIntersect (67162194) """ AlignmentBeginning = None AlignmentEnd = None CompoundCurveCurveIntersect = None CurveSpiralIntersect = None CurveTangentIntersect = None MidCurvePoint = None ReverseCurveCurveIntersect = None ReverseSpiralIntersect = None SpiralCurveIntersect = None SpiralSpiralIntersect = None SpiralTangentIntersect = None StationEquationDecreasing = None StationEquationIncreasing = None TangentCurveIntersect = None TangentSpiralIntersect = None TangentTangentIntersect = None value__ = None class AbbreviationCantType(Enum): """ enum AbbreviationCantType, values: BeginAlignment (67163513), BeginFullCant (67163510), BeginLevelRail (67163509), EndAlignment (67163514), EndFullCant (67163511), EndLevelRail (67163508), Manual (67163512) """ BeginAlignment = None BeginFullCant = None BeginLevelRail = None EndAlignment = None EndFullCant = None EndLevelRail = None Manual = None value__ = None class AbbreviationProfileType(Enum): """ enum AbbreviationProfileType, values: BeginVerticalCurve (67173890), BeginVerticalCurveElevation (67173892), BeginVerticalCurveStation (67173891), CurveCoefficient (67173898), EndVerticalCurve (67173893), EndVerticalCurveElevation (67173895), EndVerticalCurveStation (67173894), GradeBreak (67173889), GradeChange (67173899), HighPoint (67173896), LowPoint (67173897), OverallHighPoint (67173909), OverallLowPoint (67173910), PointOfVerticalIntersection (67173888), ProfileEnd (67173902), ProfileStart (67173901), VerticalCompoundCurveIntersect (67173903), VerticalCompoundCurveIntersectElevation (67173906), VerticalCompoundCurveIntersectStation (67173905), VerticalReverseCurveIntersect (67173904), VerticalReverseCurveIntersectElevation (67173908), VerticalReverseCurveIntersectStation (67173907) """ BeginVerticalCurve = None BeginVerticalCurveElevation = None BeginVerticalCurveStation = None CurveCoefficient = None EndVerticalCurve = None EndVerticalCurveElevation = None EndVerticalCurveStation = None GradeBreak = None GradeChange = None HighPoint = None LowPoint = None OverallHighPoint = None OverallLowPoint = None PointOfVerticalIntersection = None ProfileEnd = None ProfileStart = None value__ = None VerticalCompoundCurveIntersect = None VerticalCompoundCurveIntersectElevation = None VerticalCompoundCurveIntersectStation = None VerticalReverseCurveIntersect = None VerticalReverseCurveIntersectElevation = None VerticalReverseCurveIntersectStation = None class AbbreviationSuperelevationType(Enum): """ enum AbbreviationSuperelevationType, values: BeginFullSuper (67163478), BeginNormalCrown (67163476), BeginNormalShoulder (67163480), BeginOfAlignment (67163474), BeginShoulderRollover (67163506), EndFullSuper (67163479), EndNormalCrown (67163477), EndNormalShoulder (67163481), EndOfAlignment (67163475), EndShoulderRollover (67163507), LevelCrown (67163482), LowShoulderMatch (67163483), Manual (67163486), ReverseCrown (67163484), ShoulderBreakover (67163485) """ BeginFullSuper = None BeginNormalCrown = None BeginNormalShoulder = None BeginOfAlignment = None BeginShoulderRollover = None EndFullSuper = None EndNormalCrown = None EndNormalShoulder = None EndOfAlignment = None EndShoulderRollover = None LevelCrown = None LowShoulderMatch = None Manual = None ReverseCrown = None ShoulderBreakover = None value__ = None class AutomaticManual(Enum): """ enum AutomaticManual, values: Automatic (0), AutomaticObject (1), Manual (2), None (3) """ Automatic = None AutomaticObject = None Manual = None None = None value__ = None class DrawingUnitType(Enum): """ enum DrawingUnitType, values: Feet (30), Meters (2) """ Feet = None Meters = None value__ = None class GeographicCoordinateType(Enum): """ enum GeographicCoordinateType, values: LatLong (0), LongLat (1) """ LatLong = None LongLat = None value__ = None class GridCoordinateType(Enum): """ enum GridCoordinateType, values: EastingNorthing (0), NorthingEasting (1) """ EastingNorthing = None NorthingEasting = None value__ = None class GridScaleFactorType(Enum): """ enum GridScaleFactorType, values: PrismodialFormula (3), ReferencePoint (2), Unity (0), UserDefined (1) """ PrismodialFormula = None ReferencePoint = None Unity = None UserDefined = None value__ = None class ImperialToMetricConversionType(Enum): """ enum ImperialToMetricConversionType, values: InternationalFoot (536870912), UsSurveyFoot (1073741824) """ InternationalFoot = None UsSurveyFoot = None value__ = None class LandXMLAngularUnits(Enum): """ enum LandXMLAngularUnits, values: DegreesDecimal (0), DegreesDms (1), Grads (2), Radians (3) """ DegreesDecimal = None DegreesDms = None Grads = None Radians = None value__ = None class LandXMLAttributeExportType(Enum): """ enum LandXMLAttributeExportType, values: Disabled (0), FullDescription (2), RawDescription (1) """ Disabled = None FullDescription = None RawDescription = None value__ = None class LandXMLConflictResolutionType(Enum): """ enum LandXMLConflictResolutionType, values: Append (2), Skip (0), Update (1) """ Append = None Skip = None Update = None value__ = None class LandXMLImperialUnitType(Enum): """ enum LandXMLImperialUnitType, values: Foot (30), Inch (31), Mile (44), Yard (33) """ Foot = None Inch = None Mile = None value__ = None Yard = None class LandXMLLinearUnits(Enum): """ enum LandXMLLinearUnits, values: InternationalFoot (30), SurveyFoot (54) """ InternationalFoot = None SurveyFoot = None value__ = None class LandXMLMetricUnitType(Enum): """ enum LandXMLMetricUnitType, values: CentiMeter (24), DeciMeter (23), KiloMeter (20), Meter (2), MilliMeter (25) """ CentiMeter = None DeciMeter = None KiloMeter = None Meter = None MilliMeter = None value__ = None class LandXMLPointDescriptionType(Enum): """ enum LandXMLPointDescriptionType, values: UseCodeThenDesc (2), UseCodeValue (0), UseDescThenCode (3), UseDescValue (1) """ UseCodeThenDesc = None UseCodeValue = None UseDescThenCode = None UseDescValue = None value__ = None class LandXMLSurfaceDataExportType(Enum): """ enum LandXMLSurfaceDataExportType, values: PointsAndFaces (1), PointsOnly (0) """ PointsAndFaces = None PointsOnly = None value__ = None class LandXMLSurfaceDataImportType(Enum): """ enum LandXMLSurfaceDataImportType, values: FullImport (1), QuickImport (0) """ FullImport = None QuickImport = None value__ = None class LocalCoordinateType(Enum): """ enum LocalCoordinateType, values: EastingNorthing (0), NorthingEasting (1), XY (2), YX (3) """ EastingNorthing = None NorthingEasting = None value__ = None XY = None YX = None class MapcheckAngleType(Enum): """ enum MapcheckAngleType, values: Angle (1), DeflectionAngle (2), Direction (0) """ Angle = None DeflectionAngle = None Direction = None value__ = None class MapcheckCurveDirectionType(Enum): """ enum MapcheckCurveDirectionType, values: Clockwise (0), CounterClockwise (1) """ Clockwise = None CounterClockwise = None value__ = None class MapcheckSideType(Enum): """ enum MapcheckSideType, values: Curve (1), Line (0) """ Curve = None Line = None value__ = None class MapcheckTraverseMethodType(Enum): """ enum MapcheckTraverseMethodType, values: AcrossChord (0), ThroughRadius (1) """ AcrossChord = None ThroughRadius = None value__ = None class ObjectLayerModifierType(Enum): """ enum ObjectLayerModifierType, values: None (0), Prefix (1), Suffix (2) """ None = None Prefix = None Suffix = None value__ = None class SectionViewAnchorType(Enum): """ enum SectionViewAnchorType, values: BottomCenter (7), BottomLeft (6), BottomRight (8), MiddleCenter (4), MiddleLeft (3), MiddleRight (5), TopCenter (1), TopLeft (0), TopRight (2) """ BottomCenter = None BottomLeft = None BottomRight = None MiddleCenter = None MiddleLeft = None MiddleRight = None TopCenter = None TopLeft = None TopRight = None value__ = None class SettingsAbbreviation(CivilWrapper<AcDbDatabase>): # no doc def Dispose(self): """ Dispose(self: CivilWrapper<AcDbDatabase>, A_0: bool) """ pass AlignmentGeoPointEntityData = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentGeoPointEntityData(self: SettingsAbbreviation) -> SettingsAbbreviationAlignmentEnhanced """ AlignmentGeoPointText = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentGeoPointText(self: SettingsAbbreviation) -> SettingsAbbreviationAlignment """ Cant = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Cant(self: SettingsAbbreviation) -> SettingsAbbreviationCant """ GeneralText = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GeneralText(self: SettingsAbbreviation) -> SettingsAbbreviationGeneral """ Profile = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Profile(self: SettingsAbbreviation) -> SettingsAbbreviationProfile """ Superelevation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Superelevation(self: SettingsAbbreviation) -> SettingsAbbreviationSuperelevation """ class SettingsAbbreviationAlignment(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetAlignmentAbbreviation(self, type): """ GetAlignmentAbbreviation(self: SettingsAbbreviationAlignment, type: AbbreviationAlignmentType) -> str """ pass def SetAlignmentAbbreviation(self, type, value): """ SetAlignmentAbbreviation(self: SettingsAbbreviationAlignment, type: AbbreviationAlignmentType, value: str) """ pass class SettingsAbbreviationAlignmentEnhanced(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetAlignmentEnhancedAbbreviation(self, type): """ GetAlignmentEnhancedAbbreviation(self: SettingsAbbreviationAlignmentEnhanced, type: AbbreviationAlignmentEnhancedType) -> str """ pass def SetAlignmentEnhancedAbbreviation(self, type, newValue): """ SetAlignmentEnhancedAbbreviation(self: SettingsAbbreviationAlignmentEnhanced, type: AbbreviationAlignmentEnhancedType, newValue: str) """ pass class SettingsAbbreviationCant(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetCantAbbreviation(self, type): """ GetCantAbbreviation(self: SettingsAbbreviationCant, type: AbbreviationCantType) -> str """ pass def SetCantAbbreviation(self, type, newValue): """ SetCantAbbreviation(self: SettingsAbbreviationCant, type: AbbreviationCantType, newValue: str) """ pass class SettingsAbbreviationGeneral(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Infinity = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Infinity(self: SettingsAbbreviationGeneral) -> str Set: Infinity(self: SettingsAbbreviationGeneral) = value """ Left = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Left(self: SettingsAbbreviationGeneral) -> str Set: Left(self: SettingsAbbreviationGeneral) = value """ Right = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Right(self: SettingsAbbreviationGeneral) -> str Set: Right(self: SettingsAbbreviationGeneral) = value """ class SettingsAbbreviationProfile(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetProfileAbbreviation(self, type): """ GetProfileAbbreviation(self: SettingsAbbreviationProfile, type: AbbreviationProfileType) -> str """ pass def SetProfileAbbreviation(self, type, newValue): """ SetProfileAbbreviation(self: SettingsAbbreviationProfile, type: AbbreviationProfileType, newValue: str) """ pass class SettingsAbbreviationSuperelevation(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetSuperelevationAbbreviation(self, type): """ GetSuperelevationAbbreviation(self: SettingsAbbreviationSuperelevation, type: AbbreviationSuperelevationType) -> str """ pass def SetSuperelevationAbbreviation(self, type, newValue): """ SetSuperelevationAbbreviation(self: SettingsAbbreviationSuperelevation, type: AbbreviationSuperelevationType, newValue: str) """ pass class SettingsAmbient(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass @staticmethod # known case of __new__ def __new__(self, *args): #cannot find CLR constructor """ __new__(cls: type, root: SettingsRoot, path: str) """ pass Acceleration = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Acceleration(self: SettingsAmbient) -> SettingsAcceleration """ Angle = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Angle(self: SettingsAmbient) -> SettingsAngle """ Area = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Area(self: SettingsAmbient) -> SettingsArea """ Coordinate = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Coordinate(self: SettingsAmbient) -> SettingsCoordinate """ DegreeOfCurvature = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DegreeOfCurvature(self: SettingsAmbient) -> SettingsDegreeOfCurvature """ Dimension = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Dimension(self: SettingsAmbient) -> SettingsDimension """ Direction = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Direction(self: SettingsAmbient) -> SettingsDirection """ Distance = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Distance(self: SettingsAmbient) -> SettingsDistance """ Elevation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Elevation(self: SettingsAmbient) -> SettingsElevation """ General = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: General(self: SettingsAmbient) -> SettingsGeneral """ Grade = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Grade(self: SettingsAmbient) -> SettingsGrade """ GradeSlope = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GradeSlope(self: SettingsAmbient) -> SettingsGradeSlope """ GridCoordinate = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridCoordinate(self: SettingsAmbient) -> SettingsGridCoordinate """ Labeling = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Labeling(self: SettingsAmbient) -> SettingsLabeling """ LatLong = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LatLong(self: SettingsAmbient) -> SettingsLatLong """ Pressure = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Pressure(self: SettingsAmbient) -> SettingsPressure """ Slope = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Slope(self: SettingsAmbient) -> SettingsSlope """ Speed = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Speed(self: SettingsAmbient) -> SettingsSpeed """ Station = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Station(self: SettingsAmbient) -> SettingsStation """ Time = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Time(self: SettingsAmbient) -> SettingsTime """ TransparentCommands = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TransparentCommands(self: SettingsAmbient) -> SettingsTransparentCommands """ Unitless = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Unitless(self: SettingsAmbient) -> SettingsUnitless """ Volume = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Volume(self: SettingsAmbient) -> SettingsVolume """ SettingsAcceleration = None SettingsAngle = None SettingsArea = None SettingsCoordinate = None SettingsDegreeOfCurvature = None SettingsDimension = None SettingsDirection = None SettingsDistance = None SettingsElevation = None SettingsFormatNumber`1 = None SettingsGeneral = None SettingsGrade = None SettingsGradeSlope = None SettingsGridCoordinate = None SettingsLabeling = None SettingsLatLong = None SettingsPressure = None SettingsSlope = None SettingsSpeed = None SettingsStation = None SettingsTime = None SettingsTransparentCommands = None SettingsUnitFormatNumber`2 = None SettingsUnitless = None SettingsUnitlessNumber = None SettingsUnitNumber`1 = None SettingsVolume = None class SettingsAlignment(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AutomaticWideningAroundCurves = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AutomaticWideningAroundCurves(self: SettingsAlignment) -> SettingsAutomaticWideningAroundCurves """ CantOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CantOptions(self: SettingsAlignment) -> SettingsCantOptions """ ConstraintEditing = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ConstraintEditing(self: SettingsAlignment) -> SettingsConstraintEditing """ CriteriaBasedDesignOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CriteriaBasedDesignOptions(self: SettingsAlignment) -> SettingsCriteriaBasedDesignOptions """ Data = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Data(self: SettingsAlignment) -> SettingsData """ DefaultNameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultNameFormat(self: SettingsAlignment) -> SettingsDefaultNameFormat """ DynamicAlignmentHighlight = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DynamicAlignmentHighlight(self: SettingsAlignment) -> SettingsDynamicAlignmentHighlight """ ImpliedPointOfIntersection = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ImpliedPointOfIntersection(self: SettingsAlignment) -> SettingsImpliedPointOfIntersection """ RailOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RailOptions(self: SettingsAlignment) -> SettingsRailAlignmentOptions """ StationIndexing = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: StationIndexing(self: SettingsAlignment) -> SettingsStationIndexing """ StyleSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: StyleSettings(self: SettingsAlignment) -> SettingsStyles """ SuperelevationOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SuperelevationOptions(self: SettingsAlignment) -> SettingsSuperelevationOptions """ SettingsAutomaticWideningAroundCurves = None SettingsCantOptions = None SettingsConstraintEditing = None SettingsCriteriaBasedDesignOptions = None SettingsData = None SettingsDefaultNameFormat = None SettingsDynamicAlignmentHighlight = None SettingsImpliedPointOfIntersection = None SettingsRailAlignmentOptions = None SettingsStationIndexing = None SettingsStyles = None SettingsSuperelevationOptions = None class SettingsAssembly(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsAssembly) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsAssembly) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsBuildingSite(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsBuildingSite) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsBuildingSite) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCantView(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsCantView) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsCantView) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCatchment(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameTemplate = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameTemplate(self: SettingsCatchment) -> PropertyString """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsCatchment) -> SettingsStyles """ SettingsStyles = None class SettingsCmdAddAlignmentCurveTable(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddAlignmentCurveTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddAlignmentLineTable(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddAlignmentLineTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddAlignmentOffLbl(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignmentOffXYLbl(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignmentSegmentTable(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddAlignmentSegmentTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddAlignmentSpiralTable(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddAlignmentSpiralTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddAlignPointOfIntLbl(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignPointOfIntLbls(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignSegLbl(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignSegLbls(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignTagentLbl(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddAlignTagentLbls(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsPressureNetwork(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Cover = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Cover(self: SettingsPressureNetwork) -> SettingsDepthOfCover """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsPressureNetwork) -> SettingsNameFormat """ ProfileLabelPlacement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ProfileLabelPlacement(self: SettingsPressureNetwork) -> SettingsProfileLabelPlacement """ SectionLabelPlacement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SectionLabelPlacement(self: SettingsPressureNetwork) -> SettingsSectionLabelPlacement """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsPressureNetwork) -> SettingsStyles """ SettingsDepthOfCover = None SettingsNameFormat = None SettingsProfileLabelPlacement = None SettingsSectionLabelPlacement = None SettingsStyles = None class SettingsCmdAddAppurtTable(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddAppurtTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsSurface(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ContourLabeling = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ContourLabeling(self: SettingsSurface) -> SettingsContourLabeling """ Defaults = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Defaults(self: SettingsSurface) -> SettingsDefaults """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsSurface) -> SettingsStyles """ SettingsContourLabeling = None SettingsDefaults = None SettingsStyles = None class SettingsCmdAddContourLabeling(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddContourLabelingGroup(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AddContourLabeling = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AddContourLabeling(self: SettingsCmdAddContourLabelingGroup) -> SettingsCmdAddContourLabeling """ SettingsCmdAddContourLabeling = None class SettingsCmdAddContourLabelingSingle(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddFittingTable(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddFittingTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsIntersection(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsIntersection) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsIntersection) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCmdAddIntersectionLabel(SettingsIntersection): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsGeneral(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsGeneral) -> SettingsStyles """ SettingsStyles = None class SettingsCmdAddLineBetweenPoints(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsQuantityTakeoff(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsQuantityTakeoff) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsQuantityTakeoff) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCmdAddMaterialVolumeTable(SettingsQuantityTakeoff): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddMaterialVolumeTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsPipeNetwork(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Default = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Default(self: SettingsPipeNetwork) -> SettingsDefault """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsPipeNetwork) -> SettingsNameFormat """ ProfileLabelPlacement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ProfileLabelPlacement(self: SettingsPipeNetwork) -> SettingsProfileLabelPlacement """ Rules = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Rules(self: SettingsPipeNetwork) -> SettingsRules """ SectionLabelPlacement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SectionLabelPlacement(self: SettingsPipeNetwork) -> SettingsSectionLabelPlacement """ StormSewersMigration = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: StormSewersMigration(self: SettingsPipeNetwork) -> SettingsStormSewersMigration """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsPipeNetwork) -> SettingsStyles """ SettingsDefault = None SettingsNameFormat = None SettingsProfileLabelPlacement = None SettingsRules = None SettingsSectionLabelPlacement = None SettingsStormSewersMigration = None SettingsStyles = None class SettingsCmdAddNetworkPartPlanLabel(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkPartProfLabel(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkPartSectLabel(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkPartsToProf(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkPipeTable(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddNetworkPipeTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddNetworkPlanLabels(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkProfLabels(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkSectLabels(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddNetworkStructTable(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddNetworkStructTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddNoteLabel(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsParcel(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsParcel) -> SettingsStyles """ SettingsStyles = None class SettingsCmdAddParcelAreaLabel(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddParcelCurveTable(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddParcelCurveTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddParcelLineLabel(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddParcelLineTable(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddParcelLineTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddParcelSegmentLabels(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Options = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Options(self: SettingsCmdAddParcelSegmentLabels) -> SettingsCmdOptions """ SettingsCmdOptions = None class SettingsCmdAddParcelSegmentTable(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddParcelSegmentTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddParcelTable(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddParcelTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsPointCloud(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DefaultNameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultNameFormat(self: SettingsPointCloud) -> SettingsDefaultNameFormat """ StyleSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: StyleSettings(self: SettingsPointCloud) -> SettingsStyles """ SettingsDefaultNameFormat = None SettingsStyles = None class SettingsCmdAddPointCloudPoints(SettingsPointCloud): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DefaultFileFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultFileFormat(self: SettingsCmdAddPointCloudPoints) -> PropertyEnum[PointCloudDefaultFileExtensionType] """ class SettingsCmdAddPointsToSurface(SettingsPointCloud): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass MidOrdinateDistance = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MidOrdinateDistance(self: SettingsCmdAddPointsToSurface) -> PropertyDouble """ RegionOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegionOption(self: SettingsCmdAddPointsToSurface) -> PropertyEnum[PointCloudRegionType] """ SurfaceOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SurfaceOption(self: SettingsCmdAddPointsToSurface) -> PropertyEnum[PointCloudSurfaceType] """ class SettingsPoint(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsPoint) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsPoint) -> SettingsStyles """ UpdatePoints = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: UpdatePoints(self: SettingsPoint) -> SettingsUpdatePoints """ SettingsNameFormat = None SettingsStyles = None SettingsUpdatePoints = None class SettingsCmdAddPointTable(SettingsPoint): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddPointTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddPressurePartPlanLabel(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddPressurePartProfLabel(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddPressurePartsToProf(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddPressurePipeTable(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddPressurePipeTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddPressurePlanLabels(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddPressureProfLabels(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsProfileView(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Creation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Creation(self: SettingsProfileView) -> SettingsCreation """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsProfileView) -> SettingsNameFormat """ ProjectionLabelPlacement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ProjectionLabelPlacement(self: SettingsProfileView) -> SettingsProjectionLabelPlacement """ SplitOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SplitOptions(self: SettingsProfileView) -> SettingsSplitOptions """ StackedOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: StackedOptions(self: SettingsProfileView) -> SettingsStackedOptions """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsProfileView) -> SettingsStyles """ SettingsCreation = None SettingsNameFormat = None SettingsProjectionLabelPlacement = None SettingsSplitOptions = None SettingsStackedOptions = None SettingsStyles = None class SettingsCmdAddProfileViewDepthLbl(SettingsProfileView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddProfileViewStaElevLbl(SettingsProfileView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsSectionView(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsSectionView) -> SettingsNameFormat """ ProjectionLabelPlacement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ProjectionLabelPlacement(self: SettingsSectionView) -> SettingsProjectionLabelPlacement """ SectionViewCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SectionViewCreation(self: SettingsSectionView) -> SettingsSectionViewCreation """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsSectionView) -> SettingsStyles """ SettingsNameFormat = None SettingsProjectionLabelPlacement = None SettingsSectionViewCreation = None SettingsStyles = None class SettingsCmdAddSectionViewGradeLbl(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSectionViewOffElevLbl(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSegmentLabel(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSegmentLabels(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSpanningPipePlanLabel(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSpanningPipeProfLabel(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSpotElevLabelsOnGrid(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSurfaceBoundaries(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DataOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DataOptions(self: SettingsCmdAddSurfaceBoundaries) -> SettingsCmdAddDataOptions """ SettingsCmdAddDataOptions = None class SettingsCmdAddSurfaceBreaklines(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DataOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DataOptions(self: SettingsCmdAddSurfaceBreaklines) -> SettingsCmdAddDataOptions """ SettingsCmdAddDataOptions = None class SettingsCmdAddSurfaceContours(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AddDataOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AddDataOptions(self: SettingsCmdAddSurfaceContours) -> SettingsCmdAddDataOptions """ SettingsCmdAddDataOptions = None class SettingsCmdAddSurfaceDemFile(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ImportOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ImportOptions(self: SettingsCmdAddSurfaceDemFile) -> SettingsCmdImportOptions """ SettingsCmdImportOptions = None class SettingsCmdAddSurfaceDrawingObjects(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DataOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DataOptions(self: SettingsCmdAddSurfaceDrawingObjects) -> SettingsCmdAddDataOptions """ SettingsCmdAddDataOptions = None class SettingsCmdAddSurfaceFigSurveyQuery(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DataOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DataOptions(self: SettingsCmdAddSurfaceFigSurveyQuery) -> SettingsCmdAddDataOptions """ SettingsCmdAddDataOptions = None class SettingsCmdAddSurfacePointSurveyQuery(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSurfaceSlopeLabel(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSurfaceSpotElevLabel(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsSurvey(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsSurvey) -> SettingsStyles """ SettingsStyles = None class SettingsCmdAddSvFigureLabel(SettingsSurvey): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSvFigureSegmentLabel(SettingsSurvey): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddSvFigureSegmentLabels(SettingsSurvey): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdAddTotalVolumeTable(SettingsQuantityTakeoff): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdAddTotalVolumeTable) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsCmdAddWidening(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass LinearTransitionAroundCurves = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LinearTransitionAroundCurves(self: SettingsCmdAddWidening) -> SettingsCmdLinearTransitionAroundCurves """ WideningOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: WideningOptions(self: SettingsCmdAddWidening) -> SettingsCmdWideningOptions """ SettingsCmdLinearTransitionAroundCurves = None SettingsCmdWideningOptions = None class SettingsCmdAssignPayItemToArea(SettingsQuantityTakeoff): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AssignPayItemToAreaOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AssignPayItemToAreaOption(self: SettingsCmdAssignPayItemToArea) -> SettingsCmdAssignPayItemToAreaOptions """ SettingsCmdAssignPayItemToAreaOptions = None class SettingsCmdCatchmentArea(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DischargePointStyle = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DischargePointStyle(self: SettingsCmdCatchmentArea) -> PropertyString """ DischargePointStyleId = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DischargePointStyleId(self: SettingsCmdCatchmentArea) -> PropertyObjectId """ DisplayDisChargePoint = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DisplayDisChargePoint(self: SettingsCmdCatchmentArea) -> PropertyBoolean """ Layer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Layer(self: SettingsCmdCatchmentArea) -> PropertyLayer """ ObjectType = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ObjectType(self: SettingsCmdCatchmentArea) -> PropertyEnum[CatchmentObjectType] """ class SettingsCmdComputeMaterials(SettingsQuantityTakeoff): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DefineMaterialOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefineMaterialOption(self: SettingsCmdComputeMaterials) -> SettingsCmdDefineMaterial """ SettingsCmdDefineMaterial = None class SettingsCmdConvertPointstoSdskPoints(SettingsPoint): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Layer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Layer(self: SettingsCmdConvertPointstoSdskPoints) -> SettingsCmdLayer """ SettingsCmdLayer = None class SettingsCorridor(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsCorridor) -> SettingsNameFormat """ RegionHighlightGraphics = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegionHighlightGraphics(self: SettingsCorridor) -> SettingsRegionHighlightGraphics """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsCorridor) -> SettingsStyles """ SettingsNameFormat = None SettingsRegionHighlightGraphics = None SettingsStyles = None class SettingsCmdCorridorExtractSurfaces(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateAlignFromCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentTypeOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentTypeOption(self: SettingsCmdCreateAlignFromCorridor) -> SettingsCmdAlignmentTypeOption """ CriteriaBasedDesignOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CriteriaBasedDesignOptions(self: SettingsCmdCreateAlignFromCorridor) -> SettingsCmdCriteriaBasedDesignOptions """ ProfileCreationOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ProfileCreationOption(self: SettingsCmdCreateAlignFromCorridor) -> SettingsCmdProfileCreationOption """ SettingsCmdAlignmentTypeOption = None SettingsCmdCriteriaBasedDesignOptions = None SettingsCmdProfileCreationOption = None class SettingsCmdCreateAlignFromNetwork(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentTypeOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentTypeOption(self: SettingsCmdCreateAlignFromNetwork) -> SettingsCmdAlignmentTypeOption """ SettingsCmdAlignmentTypeOption = None class SettingsCmdCreateAlignFromPressureNW(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentTypeOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentTypeOption(self: SettingsCmdCreateAlignFromPressureNW) -> SettingsCmdAlignmentTypeOption """ SettingsCmdAlignmentTypeOption = None class SettingsCmdCreateAlignmentEntities(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentTypeOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentTypeOption(self: SettingsCmdCreateAlignmentEntities) -> SettingsCmdAlignmentTypeOption """ CreateFromEntities = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CreateFromEntities(self: SettingsCmdCreateAlignmentEntities) -> SettingsCmdCreateFromEntities """ SettingsCmdAlignmentTypeOption = None SettingsCmdCreateFromEntities = None class SettingsCmdCreateAlignmentLayout(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentTypeOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentTypeOption(self: SettingsCmdCreateAlignmentLayout) -> SettingsCmdAlignmentTypeOption """ CurveAndSpiralSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurveAndSpiralSettings(self: SettingsCmdCreateAlignmentLayout) -> SettingsCmdCurveAndSpiralSettings """ CurveTessellationOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurveTessellationOption(self: SettingsCmdCreateAlignmentLayout) -> SettingsCmdCurveTessellationOption """ RegressionGraphOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegressionGraphOption(self: SettingsCmdCreateAlignmentLayout) -> SettingsCmdRegressionGraphOption """ SettingsCmdAlignmentTypeOption = None SettingsCmdCurveAndSpiralSettings = None SettingsCmdCurveTessellationOption = None SettingsCmdRegressionGraphOption = None class SettingsCmdCreateAlignmentReference(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateArcByBestFit(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CurveTessellationOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurveTessellationOption(self: SettingsCmdCreateArcByBestFit) -> SettingsCmdCurveTessellationOption """ RegressionGraphOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegressionGraphOption(self: SettingsCmdCreateArcByBestFit) -> SettingsCmdRegressionGraphOption """ SettingsCmdCurveTessellationOption = None SettingsCmdRegressionGraphOption = None class SettingsCmdCreateAssembly(SettingsAssembly): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateAssemblyTool(SettingsAssembly): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateCantView(SettingsCantView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateCatchmentFromObject(SettingsCatchment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Catchment = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Catchment(self: SettingsCmdCreateCatchmentFromObject) -> SettingsCmdCatchment """ ChannelFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ChannelFlow(self: SettingsCmdCreateCatchmentFromObject) -> SettingsCmdChannelFlow """ HydrologicalProperties = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: HydrologicalProperties(self: SettingsCmdCreateCatchmentFromObject) -> SettingsCmdHydrologicalProperties """ ShallowConcentratedFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ShallowConcentratedFlow(self: SettingsCmdCreateCatchmentFromObject) -> SettingsCmdShallowConcentratedFlow """ SheetFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SheetFlow(self: SettingsCmdCreateCatchmentFromObject) -> SettingsCmdSheetFlow """ TimeOfConcentrationMethod = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TimeOfConcentrationMethod(self: SettingsCmdCreateCatchmentFromObject) -> PropertyEnum[CatchmentTimeOfConcentrationMethodType] """ SettingsCmdCatchment = None SettingsCmdChannelFlow = None SettingsCmdHydrologicalProperties = None SettingsCmdShallowConcentratedFlow = None SettingsCmdSheetFlow = None class SettingsCmdCreateCatchmentFromSurface(SettingsCatchment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Catchment = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Catchment(self: SettingsCmdCreateCatchmentFromSurface) -> SettingsCmdCatchment """ ChannelFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ChannelFlow(self: SettingsCmdCreateCatchmentFromSurface) -> SettingsCmdChannelFlow """ HydrologicalProperties = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: HydrologicalProperties(self: SettingsCmdCreateCatchmentFromSurface) -> SettingsCmdHydrologicalProperties """ ShallowConcentratedFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ShallowConcentratedFlow(self: SettingsCmdCreateCatchmentFromSurface) -> SettingsCmdShallowConcentratedFlow """ SheetFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SheetFlow(self: SettingsCmdCreateCatchmentFromSurface) -> SettingsCmdSheetFlow """ TimeOfConcentrationMethod = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TimeOfConcentrationMethod(self: SettingsCmdCreateCatchmentFromSurface) -> PropertyEnum[CatchmentTimeOfConcentrationMethodType] """ SettingsCmdCatchment = None SettingsCmdChannelFlow = None SettingsCmdHydrologicalProperties = None SettingsCmdShallowConcentratedFlow = None SettingsCmdSheetFlow = None class SettingsCmdCreateCatchmentGroup(SettingsCatchment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AssemblyInsertion = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AssemblyInsertion(self: SettingsCmdCreateCorridor) -> SettingsCmdAssemblyInsertion """ SettingsCmdAssemblyInsertion = None class SettingsGrading(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsGrading) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsGrading) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCmdCreateFeatureLineFromAlign(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineCreation(self: SettingsCmdCreateFeatureLineFromAlign) -> SettingsCmdFeatureLineCreation """ SettingsCmdFeatureLineCreation = None class SettingsCmdCreateFeatureLines(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineCreation(self: SettingsCmdCreateFeatureLines) -> SettingsCmdFeatureLineCreation """ SettingsCmdFeatureLineCreation = None class SettingsCmdCreateFlowSegment(SettingsCatchment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ChannelFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ChannelFlow(self: SettingsCmdCreateFlowSegment) -> SettingsCmdChannelFlow """ ShallowConcentratedFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ShallowConcentratedFlow(self: SettingsCmdCreateFlowSegment) -> SettingsCmdShallowConcentratedFlow """ SheetFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SheetFlow(self: SettingsCmdCreateFlowSegment) -> SettingsCmdSheetFlow """ SettingsCmdChannelFlow = None SettingsCmdShallowConcentratedFlow = None SettingsCmdSheetFlow = None class SettingsCmdCreateGrading(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass GradingCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GradingCreation(self: SettingsCmdCreateGrading) -> SettingsCmdGradingCreation """ SettingsCmdGradingCreation = None class SettingsCmdCreateGradingGroup(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass GradingGroupCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GradingGroupCreation(self: SettingsCmdCreateGradingGroup) -> SettingsCmdGradingGroupCreation """ SettingsCmdGradingGroupCreation = None class SettingsCmdCreateInterferenceCheck(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass InterferenceCriteria = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: InterferenceCriteria(self: SettingsCmdCreateInterferenceCheck) -> SettingsCmdInterferenceCriteria """ SettingsCmdInterferenceCriteria = None class SettingsCmdCreateIntersection(SettingsIntersection): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AssemblyInsertion = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AssemblyInsertion(self: SettingsCmdCreateIntersection) -> SettingsCmdAssemblyInsertion """ CrossSlopes = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CrossSlopes(self: SettingsCmdCreateIntersection) -> SettingsCmdCrossSlopes """ CurbReturnParameters = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurbReturnParameters(self: SettingsCmdCreateIntersection) -> SettingsCmdCurbReturnParameters """ CurbReturnProfileRules = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurbReturnProfileRules(self: SettingsCmdCreateIntersection) -> SettingsCmdCurbReturnProfileRules """ IntersectionOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: IntersectionOptions(self: SettingsCmdCreateIntersection) -> SettingsCmdIntersectionOptions """ Offsets = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Offsets(self: SettingsCmdCreateIntersection) -> SettingsCmdOffsets """ SecondaryRoadProfileRules = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SecondaryRoadProfileRules(self: SettingsCmdCreateIntersection) -> SettingsCmdSecondaryRoadProfileRules """ WideningParameters = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: WideningParameters(self: SettingsCmdCreateIntersection) -> SettingsCmdWideningParameters """ SettingsCmdAssemblyInsertion = None SettingsCmdCrossSlopes = None SettingsCmdCurbReturnParameters = None SettingsCmdCurbReturnProfileRules = None SettingsCmdIntersectionOptions = None SettingsCmdOffsets = None SettingsCmdSecondaryRoadProfileRules = None SettingsCmdWideningParameters = None class SettingsCmdCreateLineByBestFit(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CurveTessellationOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurveTessellationOption(self: SettingsCmdCreateLineByBestFit) -> SettingsCmdCurveTessellationOption """ RegressionGraphOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegressionGraphOption(self: SettingsCmdCreateLineByBestFit) -> SettingsCmdRegressionGraphOption """ SettingsCmdCurveTessellationOption = None SettingsCmdRegressionGraphOption = None class SettingsMassHaulView(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass MassHaulCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MassHaulCreation(self: SettingsMassHaulView) -> SettingsMassHaulCreation """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsMassHaulView) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsMassHaulView) -> SettingsStyles """ SettingsMassHaulCreation = None SettingsNameFormat = None SettingsStyles = None class SettingsCmdCreateMassHaulDiagram(SettingsMassHaulView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass MassHaulCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MassHaulCreation(self: SettingsCmdCreateMassHaulDiagram) -> SettingsCmdMassHaulCreation """ SettingsCmdMassHaulCreation = None class SettingsCmdCreateMultipleProfileView(SettingsProfileView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass MultipleProfileViewCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MultipleProfileViewCreation(self: SettingsCmdCreateMultipleProfileView) -> SettingsCmdMultipleProfileViewCreation """ SettingsCmdMultipleProfileViewCreation = None class SettingsCmdCreateMultipleSectionView(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass MultipleSectionViewCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MultipleSectionViewCreation(self: SettingsCmdCreateMultipleSectionView) -> SettingsCmdMultipleSectionViewCreation """ TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdCreateMultipleSectionView) -> SettingsCmdTableCreation """ SettingsCmdMultipleSectionViewCreation = None SettingsCmdTableCreation = None class SettingsCmdCreateNetwork(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DefaultLayoutCommand = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultLayoutCommand(self: SettingsCmdCreateNetwork) -> PropertyEnum[NetworkDefaultLayoutCommandType] """ LabelNewParts = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LabelNewParts(self: SettingsCmdCreateNetwork) -> SettingsCmdLabelNewParts """ SettingsCmdLabelNewParts = None class SettingsCmdCreateNetworkFromObject(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateNetworkPartsList(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateNetworkPartsListFull(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateNetworkReference(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateOffsetAlignment(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass OffsetAlignmentOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: OffsetAlignmentOptions(self: SettingsCmdCreateOffsetAlignment) -> SettingsCmdOffsetAlignmentOptions """ SettingsCmdOffsetAlignmentOptions = None class SettingsCmdCreateParabolaByBestFit(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CurveTessellationOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurveTessellationOption(self: SettingsCmdCreateParabolaByBestFit) -> SettingsCmdCurveTessellationOption """ RegressionGraphOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegressionGraphOption(self: SettingsCmdCreateParabolaByBestFit) -> SettingsCmdRegressionGraphOption """ SettingsCmdCurveTessellationOption = None SettingsCmdRegressionGraphOption = None class SettingsCmdCreateParcelByLayout(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AutomaticLayout = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AutomaticLayout(self: SettingsCmdCreateParcelByLayout) -> SettingsCmdAutomaticLayout """ ConvertFromEntities = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ConvertFromEntities(self: SettingsCmdCreateParcelByLayout) -> SettingsCmdConvertFromEntities """ ParcelSizing = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ParcelSizing(self: SettingsCmdCreateParcelByLayout) -> SettingsCmdParcelSizing """ PreviewGraphics = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PreviewGraphics(self: SettingsCmdCreateParcelByLayout) -> SettingsCmdPreviewGraphics """ SettingsCmdAutomaticLayout = None SettingsCmdConvertFromEntities = None SettingsCmdParcelSizing = None SettingsCmdPreviewGraphics = None class SettingsCmdCreateParcelFromObjects(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ConvertFromEntities = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ConvertFromEntities(self: SettingsCmdCreateParcelFromObjects) -> SettingsCmdConvertFromEntities """ SettingsCmdConvertFromEntities = None class SettingsCmdCreateParcelROW(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CleanupAtAlignmentIntersections = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CleanupAtAlignmentIntersections(self: SettingsCmdCreateParcelROW) -> SettingsCmdCleanupAtAlignmentIntersections """ CleanupAtParcelBoundaries = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CleanupAtParcelBoundaries(self: SettingsCmdCreateParcelROW) -> SettingsCmdCleanupAtParcelBoundaries """ CreateParcelRightOfWay = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CreateParcelRightOfWay(self: SettingsCmdCreateParcelROW) -> SettingsCmdCreateParcelRightOfWay """ SettingsCmdCleanupAtAlignmentIntersections = None SettingsCmdCleanupAtParcelBoundaries = None SettingsCmdCreateParcelRightOfWay = None class SettingsCmdCreatePointCloud(SettingsPointCloud): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DefaultLayer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultLayer(self: SettingsCmdCreatePointCloud) -> SettingsCmdDefaultLayer """ FileFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FileFormat(self: SettingsCmdCreatePointCloud) -> PropertyEnum[PointCloudDefaultFileExtensionType] """ SettingsCmdDefaultLayer = None class SettingsCmdCreatePointGroup(SettingsPoint): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreatePoints(SettingsPoint): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Layer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Layer(self: SettingsCmdCreatePoints) -> SettingsCmdLayer """ PointIdentity = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PointIdentity(self: SettingsCmdCreatePoints) -> SettingsCmdPointIdentity """ PointsCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PointsCreation(self: SettingsCmdCreatePoints) -> SettingsCmdPointsCreation """ SettingsCmdLayer = None SettingsCmdPointIdentity = None SettingsCmdPointsCreation = None class SettingsCmdCreatePointsFromCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreatePolylineFromCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsSuperelevationView(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsSuperelevationView) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsSuperelevationView) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCmdCreatePolylineFromSuper(SettingsSuperelevationView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreatePressureFromIndModel(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreatePressureNetwork(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DepthOfCover = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DepthOfCover(self: SettingsCmdCreatePressureNetwork) -> SettingsCmdDepthOfCover """ LabelNewParts = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LabelNewParts(self: SettingsCmdCreatePressureNetwork) -> SettingsCmdLabelNewParts """ SettingsCmdDepthOfCover = None SettingsCmdLabelNewParts = None class SettingsCmdCreatePressurePartList(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreatePressurePartListFull(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateProfileFromCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CriteriaBasedDesignOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CriteriaBasedDesignOptions(self: SettingsCmdCreateProfileFromCorridor) -> SettingsCmdCriteriaBasedDesignOptions """ SettingsCmdCriteriaBasedDesignOptions = None class SettingsProfile(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CriteriaBasedDesignOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CriteriaBasedDesignOptions(self: SettingsProfile) -> SettingsCriteriaBasedDesignOptions """ DefaultNameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultNameFormat(self: SettingsProfile) -> SettingsDefaultNameFormat """ ProfilesCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ProfilesCreation(self: SettingsProfile) -> SettingsProfileCreation """ StyleSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: StyleSettings(self: SettingsProfile) -> SettingsStyles """ SettingsCriteriaBasedDesignOptions = None SettingsDefaultNameFormat = None SettingsProfileCreation = None SettingsStyles = None class SettingsCmdCreateProfileFromFile(SettingsProfile): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateProfileFromSurface(SettingsProfile): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Geometry = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Geometry(self: SettingsCmdCreateProfileFromSurface) -> SettingsCmdGeometry """ SettingsCmdGeometry = None class SettingsCmdCreateProfileLayout(SettingsProfile): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CurveTessellationOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CurveTessellationOption(self: SettingsCmdCreateProfileLayout) -> SettingsCmdCurveTessellationOption """ RegressionGraphOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegressionGraphOption(self: SettingsCmdCreateProfileLayout) -> SettingsCmdRegressionGraphOption """ SettingsCmdCurveTessellationOption = None SettingsCmdRegressionGraphOption = None class SettingsCmdCreateProfileReference(SettingsProfile): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateProfileView(SettingsProfileView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateQuickProfile(SettingsProfile): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass QuickProfile = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: QuickProfile(self: SettingsCmdCreateQuickProfile) -> SettingsCmdQuickProfile """ SettingsCmdQuickProfile = None class SettingsSampleLine(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsSampleLine) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsSampleLine) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsCmdCreateSampleLines(SettingsSampleLine): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AdditionalSampleControls = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AdditionalSampleControls(self: SettingsCmdCreateSampleLines) -> SettingsCmdAdditionalSampleControls """ Miscellaneous = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Miscellaneous(self: SettingsCmdCreateSampleLines) -> SettingsCmdMiscellaneous """ SamplingIncrements = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SamplingIncrements(self: SettingsCmdCreateSampleLines) -> SettingsCmdSamplingIncrements """ SwathWidths = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SwathWidths(self: SettingsCmdCreateSampleLines) -> SettingsCmdSwathWidths """ SettingsCmdAdditionalSampleControls = None SettingsCmdMiscellaneous = None SettingsCmdSamplingIncrements = None SettingsCmdSwathWidths = None class SettingsCmdCreateSectionSheets(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass SheetCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SheetCreation(self: SettingsCmdCreateSectionSheets) -> SettingsCmdSheetCreation """ SettingsCmdSheetCreation = None class SettingsCmdCreateSectionView(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass TableCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TableCreation(self: SettingsCmdCreateSectionView) -> SettingsCmdTableCreation """ SettingsCmdTableCreation = None class SettingsViewFrameGroup(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Information = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Information(self: SettingsViewFrameGroup) -> SettingsInformation """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsViewFrameGroup) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsViewFrameGroup) -> SettingsStyles """ SettingsInformation = None SettingsNameFormat = None SettingsStyles = None class SettingsCmdCreateSheets(SettingsViewFrameGroup): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass SheetCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SheetCreation(self: SettingsCmdCreateSheets) -> SettingsCmdSheetCreation """ SettingsCmdSheetCreation = None class SettingsCmdCreateSimpleCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AssemblyInsertion = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AssemblyInsertion(self: SettingsCmdCreateSimpleCorridor) -> SettingsCmdAssemblyInsertion """ SettingsCmdAssemblyInsertion = None class SettingsCmdCreateSite(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Alignment = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Alignment(self: SettingsCmdCreateSite) -> SettingsCmdAlignment """ FeatureLine = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLine(self: SettingsCmdCreateSite) -> SettingsCmdFeatureLine """ Parcel = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Parcel(self: SettingsCmdCreateSite) -> SettingsCmdParcel """ SettingsCmdAlignment = None SettingsCmdFeatureLine = None SettingsCmdParcel = None class SettingsSubassembly(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DefaultStyles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DefaultStyles(self: SettingsSubassembly) -> SettingsDefaultStyles """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsSubassembly) -> SettingsNameFormat """ SettingsDefaultStyles = None SettingsNameFormat = None class SettingsCmdCreateSubassemblyTool(SettingsSubassembly): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass SubassemblyOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SubassemblyOptions(self: SettingsCmdCreateSubassemblyTool) -> SettingsCmdSubassemblyOptions """ SettingsCmdSubassemblyOptions = None class SettingsCmdCreateSubFromPline(SettingsSubassembly): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass CreateFromEntities = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CreateFromEntities(self: SettingsCmdCreateSubFromPline) -> SettingsCmdCreateFromEntities """ SettingsCmdCreateFromEntities = None class SettingsCmdCreateSuperelevationView(SettingsSuperelevationView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateSurface(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass BuildOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: BuildOptions(self: SettingsCmdCreateSurface) -> SettingsCmdBuildOptions """ NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsCmdCreateSurface) -> SettingsNameFormat """ SurfaceCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SurfaceCreation(self: SettingsCmdCreateSurface) -> SettingsCmdSurfaceCreation """ SettingsCmdBuildOptions = None SettingsCmdSurfaceCreation = None SettingsNameFormat = None class SettingsCmdCreateSurfaceFromTIN(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdCreateSurfaceGridFromDEM(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass BuildOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: BuildOptions(self: SettingsCmdCreateSurfaceGridFromDEM) -> SettingsCmdBuildOptions """ ImportOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ImportOptions(self: SettingsCmdCreateSurfaceGridFromDEM) -> SettingsCmdImportOptions """ SettingsCmdBuildOptions = None SettingsCmdImportOptions = None class SettingsCmdCreateSurfaceReference(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsCmdCreateSurfaceReference) -> SettingsNameFormat """ SettingsNameFormat = None class SettingsCmdCreateSurfaceWaterdrop(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass WaterdropMarker = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: WaterdropMarker(self: SettingsCmdCreateSurfaceWaterdrop) -> SettingsCmdWaterdropMarker """ WaterdropPath = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: WaterdropPath(self: SettingsCmdCreateSurfaceWaterdrop) -> SettingsCmdWaterdropPath """ SettingsCmdWaterdropMarker = None SettingsCmdWaterdropPath = None class SettingsCmdCreateViewFrames(SettingsViewFrameGroup): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ViewFrameCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ViewFrameCreation(self: SettingsCmdCreateViewFrames) -> SettingsCmdViewFrameCreation """ SettingsCmdViewFrameCreation = None class SettingsCmdDrawFeatureLine(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineCreation(self: SettingsCmdDrawFeatureLine) -> SettingsCmdFeatureLineCreation """ SettingsCmdFeatureLineCreation = None class SettingsCmdEditFlowSegments(SettingsCatchment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ChannelFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ChannelFlow(self: SettingsCmdEditFlowSegments) -> SettingsCmdChannelFlow """ ShallowConcentratedFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ShallowConcentratedFlow(self: SettingsCmdEditFlowSegments) -> SettingsCmdShallowConcentratedFlow """ SheetFlow = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SheetFlow(self: SettingsCmdEditFlowSegments) -> SettingsCmdSheetFlow """ SettingsCmdChannelFlow = None SettingsCmdShallowConcentratedFlow = None SettingsCmdSheetFlow = None class SettingsCmdEditInStormSewers(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdEditSVGroupStyle(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdExportParcelAnalysis(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ParcelAnalysis = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ParcelAnalysis(self: SettingsCmdExportParcelAnalysis) -> SettingsCmdParcelAnalysis """ SettingsCmdParcelAnalysis = None class SettingsCmdExportStormSewerData(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdFeatureLinesFromCorridor(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineCreation(self: SettingsCmdFeatureLinesFromCorridor) -> SettingsCmdFeatureLineCreation """ SettingsCmdFeatureLineCreation = None class SettingsCmdFitCurveFeature(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineFitCurve = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineFitCurve(self: SettingsCmdFitCurveFeature) -> SettingsCmdFeatureLineFitCurve """ SettingsCmdFeatureLineFitCurve = None class SettingsCmdGenerateQuantitiesReport(SettingsQuantityTakeoff): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DisplayXmlReport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DisplayXmlReport(self: SettingsCmdGenerateQuantitiesReport) -> PropertyBoolean """ class SettingsCmdGradingElevEditor(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass GradingElevationEditor = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GradingElevationEditor(self: SettingsCmdGradingElevEditor) -> SettingsCmdGradingElevationEditor """ SettingsCmdGradingElevationEditor = None class SettingsCmdGradingTools(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass GradingLayoutTools = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GradingLayoutTools(self: SettingsCmdGradingTools) -> SettingsCmdGradingLayoutTools """ SettingsCmdGradingLayoutTools = None class SettingsCmdGradingVolumeTools(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass LimitFeatureSelectionToCurrentGroup = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LimitFeatureSelectionToCurrentGroup(self: SettingsCmdGradingVolumeTools) -> PropertyBoolean """ RaiseLowerElevationIncrement = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RaiseLowerElevationIncrement(self: SettingsCmdGradingVolumeTools) -> PropertyDouble """ class SettingsCmdImportBuildingSite(SettingsBuildingSite): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdImportGISData(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass PipeNetwork = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PipeNetwork(self: SettingsCmdImportGISData) -> SettingsCmdPipeNetwork """ SettingsCmdPipeNetwork = None class SettingsCmdImportStormSewerData(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdJoinFeatures(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineJoin = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineJoin(self: SettingsCmdJoinFeatures) -> SettingsCmdFeatureLineJoin """ SettingsCmdFeatureLineJoin = None class SettingsCmdLayoutSectionViewGroup(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdMapCheck(SettingsGeneral): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Mapcheck = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Mapcheck(self: SettingsCmdMapCheck) -> SettingsCmdMapcheck """ SettingsCmdMapcheck = None class SettingsCmdMinimizeSurfaceFlatAreas(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AddPointsToFlatEdges = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AddPointsToFlatEdges(self: SettingsCmdMinimizeSurfaceFlatAreas) -> PropertyBoolean """ AddPointsToFlatTriangles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AddPointsToFlatTriangles(self: SettingsCmdMinimizeSurfaceFlatAreas) -> PropertyBoolean """ FillGapsInContour = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FillGapsInContour(self: SettingsCmdMinimizeSurfaceFlatAreas) -> PropertyBoolean """ SwapEdges = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SwapEdges(self: SettingsCmdMinimizeSurfaceFlatAreas) -> PropertyBoolean """ class SettingsCmdMoveBlockstoAttribElev(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdMoveBlocksToSurface(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdMoveTextToElevation(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdProjectObjectsToMultiSect(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ObjectSelectionOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ObjectSelectionOptions(self: SettingsCmdProjectObjectsToMultiSect) -> SettingsCmdObjectSelectionOptions """ SettingsCmdObjectSelectionOptions = None class SettingsCmdProjectObjectsToProf(SettingsProfileView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdProjectObjectsToSect(SettingsSectionView): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdReAddParcelAreaLabel(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdReAddParcelSegmentLabels(SettingsParcel): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdRenamePipeNetworkParts(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdResetAnchorPipe(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdReverseAlignmentDirection(SettingsAlignment): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdRunDepthCheck(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DepthCheckOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DepthCheckOption(self: SettingsCmdRunDepthCheck) -> SettingsCmdDepthCheckOption """ SettingsCmdDepthCheckOption = None class SettingsCmdRunDesignCheck(SettingsPressureNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass DesignCheckOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DesignCheckOption(self: SettingsCmdRunDesignCheck) -> SettingsCmdDesignCheckOption """ SettingsCmdDesignCheckOption = None class SettingsCmdShowGeodeticCalculator(SettingsPoint): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdShowPointGroupProperties(SettingsPoint): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdShowSpanningPipes(SettingsPipeNetwork): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdSimplifySurface(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass MaximumChangeInElevation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MaximumChangeInElevation(self: SettingsCmdSimplifySurface) -> PropertyDouble """ PercentageOfPointsToRemove = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PercentageOfPointsToRemove(self: SettingsCmdSimplifySurface) -> PropertyDouble """ RegionOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RegionOptions(self: SettingsCmdSimplifySurface) -> PropertyEnum[SurfaceRegionOptionsType] """ SimplifyMethod = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SimplifyMethod(self: SettingsCmdSimplifySurface) -> PropertyEnum[SurfaceSimplifyType] """ UseMaximumChangeInElevation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: UseMaximumChangeInElevation(self: SettingsCmdSimplifySurface) -> PropertyBoolean """ UsePercentageOfPointsToRemove = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: UsePercentageOfPointsToRemove(self: SettingsCmdSimplifySurface) -> PropertyBoolean """ class SettingsCmdSuperimposeProfile(SettingsProfile): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass SuperimposeProfile = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SuperimposeProfile(self: SettingsCmdSuperimposeProfile) -> SettingsCmdSuperimposeProfileOption """ SettingsCmdSuperimposeProfileOption = None class SettingsCmdSurfaceExportToDem(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ExportOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ExportOptions(self: SettingsCmdSurfaceExportToDem) -> SettingsCmdExportOptions """ SettingsCmdExportOptions = None class SettingsCmdSurfaceExtractObjects(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsCmdTakeOff(SettingsQuantityTakeoff): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ComputeTakeOffOption = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ComputeTakeOffOption(self: SettingsCmdTakeOff) -> SettingsCmdComputeTakeOff """ SettingsCmdComputeTakeOff = None class SettingsCmdViewEditCorridorSection(SettingsCorridor): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass GridSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridSettings(self: SettingsCmdViewEditCorridorSection) -> SettingsCmdGridSettings """ GridTextSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridTextSettings(self: SettingsCmdViewEditCorridorSection) -> SettingsCmdGridTextSettings """ SectionSliderInMultipleViewports = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SectionSliderInMultipleViewports(self: SettingsCmdViewEditCorridorSection) -> SettingsCmdSectionSliderInMultipleViewports """ ViewEditOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ViewEditOptions(self: SettingsCmdViewEditCorridorSection) -> SettingsCmdViewEditOptions """ SettingsCmdGridSettings = None SettingsCmdGridTextSettings = None SettingsCmdSectionSliderInMultipleViewports = None SettingsCmdViewEditOptions = None class SettingsCmdVolumesDashboard(SettingsSurface): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass BoundedVolumeCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: BoundedVolumeCreation(self: SettingsCmdVolumesDashboard) -> SettingsCmdBoundedVolumeCreation """ BuildOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: BuildOptions(self: SettingsCmdVolumesDashboard) -> SettingsCmdBuildOptions """ DynamicHighlightOptions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DynamicHighlightOptions(self: SettingsCmdVolumesDashboard) -> SettingsCmdDynamicHighlightOptions """ VolumeSurfaceCreation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: VolumeSurfaceCreation(self: SettingsCmdVolumesDashboard) -> SettingsCmdVolumeSurfaceCreation """ SettingsCmdBoundedVolumeCreation = None SettingsCmdBuildOptions = None SettingsCmdDynamicHighlightOptions = None SettingsCmdVolumeSurfaceCreation = None class SettingsCmdWeedFeatures(SettingsGrading): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass FeatureLineWeed = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineWeed(self: SettingsCmdWeedFeatures) -> SettingsCmdFeatureLineWeed """ SettingsCmdFeatureLineWeed = None class SettingsCoordinateSystem(object): # no doc Category = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Category(self: SettingsCoordinateSystem) -> str """ Code = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Code(self: SettingsCoordinateSystem) -> str """ Datum = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Datum(self: SettingsCoordinateSystem) -> str """ Description = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Description(self: SettingsCoordinateSystem) -> str """ Projection = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Projection(self: SettingsCoordinateSystem) -> str """ Unit = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Unit(self: SettingsCoordinateSystem) -> str """ class SettingsDrawing(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AbbreviationsSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AbbreviationsSettings(self: SettingsDrawing) -> SettingsAbbreviation """ AmbientSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AmbientSettings(self: SettingsDrawing) -> SettingsAmbient """ ApplyTransformSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ApplyTransformSettings(self: SettingsDrawing) -> bool Set: ApplyTransformSettings(self: SettingsDrawing) = value """ ObjectLayerSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ObjectLayerSettings(self: SettingsDrawing) -> SettingsObjectLayers """ TransformationSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TransformationSettings(self: SettingsDrawing) -> SettingsTransformation """ UnitZoneSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: UnitZoneSettings(self: SettingsDrawing) -> SettingsUnitZone """ class SettingsLandXML(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Export = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Export(self: SettingsLandXML) -> SettingsLandXMLExport """ Import = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Import(self: SettingsLandXML) -> SettingsLandXMLImport """ class SettingsLandXMLExport(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentExport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentExport(self: SettingsLandXMLExport) -> SettingsAlignmentExport """ Data = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Data(self: SettingsLandXMLExport) -> SettingsData """ FeatureLineExport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineExport(self: SettingsLandXMLExport) -> SettingsFeatureLineExport """ Identification = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Identification(self: SettingsLandXMLExport) -> SettingsIdentification """ ParcelExport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ParcelExport(self: SettingsLandXMLExport) -> SettingsParcelExport """ PointExport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PointExport(self: SettingsLandXMLExport) -> SettingsPointExport """ SurfaceExport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SurfaceExport(self: SettingsLandXMLExport) -> SettingsSurfaceExport """ SettingsAlignmentExport = None SettingsData = None SettingsFeatureLineExport = None SettingsIdentification = None SettingsParcelExport = None SettingsPointExport = None SettingsSurfaceExport = None class SettingsLandXMLImport(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass AlignmentImport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AlignmentImport(self: SettingsLandXMLImport) -> SettingsAlignmentImport """ ConflictResolution = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ConflictResolution(self: SettingsLandXMLImport) -> SettingsConflictResolution """ DiameterUnits = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DiameterUnits(self: SettingsLandXMLImport) -> SettingsDiameterUnits """ FeatureLineImport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: FeatureLineImport(self: SettingsLandXMLImport) -> SettingsFeatureLineImport """ PipeNetwork = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PipeNetwork(self: SettingsLandXMLImport) -> SettingsPipeNetwork """ PointImport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PointImport(self: SettingsLandXMLImport) -> SettingsPointImport """ PropertySetData = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: PropertySetData(self: SettingsLandXMLImport) -> SettingsPropertySetData """ Rotation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Rotation(self: SettingsLandXMLImport) -> SettingsRotation """ SurfaceImport = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SurfaceImport(self: SettingsLandXMLImport) -> SettingsSurfaceImport """ Translation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Translation(self: SettingsLandXMLImport) -> SettingsTranslation """ SettingsAlignmentImport = None SettingsConflictResolution = None SettingsDiameterUnits = None SettingsFeatureLineImport = None SettingsPipeNetwork = None SettingsPointImport = None SettingsPropertySetData = None SettingsRotation = None SettingsSurfaceImport = None SettingsTranslation = None class SettingsMassHaulLine(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsMatchLine(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsObjectLayer(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass LayerId = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LayerId(self: SettingsObjectLayer) -> ObjectId Set: LayerId(self: SettingsObjectLayer) = value """ LayerName = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LayerName(self: SettingsObjectLayer) -> str Set: LayerName(self: SettingsObjectLayer) = value """ Locked = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Locked(self: SettingsObjectLayer) -> bool Set: Locked(self: SettingsObjectLayer) = value """ Modifier = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Modifier(self: SettingsObjectLayer) -> ObjectLayerModifierType Set: Modifier(self: SettingsObjectLayer) = value """ ModifierValue = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ModifierValue(self: SettingsObjectLayer) -> str Set: ModifierValue(self: SettingsObjectLayer) = value """ ObjectType = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ObjectType(self: SettingsObjectLayer) -> SettingsObjectLayerType """ class SettingsObjectLayers(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetObjectLayerSetting(self, settingsType): """ GetObjectLayerSetting(self: SettingsObjectLayers, settingsType: SettingsObjectLayerType) -> SettingsObjectLayer """ pass ObjectControlledByLayer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ObjectControlledByLayer(self: SettingsObjectLayers) -> bool Set: ObjectControlledByLayer(self: SettingsObjectLayers) = value """ class SettingsObjectLayerType(Enum): """ enum SettingsObjectLayerType, values: Alignment (0), AlignmentLabeling (1), AlignmentTable (2), Appurtenance (56), AppurtenanceLabeling (57), Assembly (3), BuildingSite (53), CantView (58), Catchment (59), CatchmentLabeling (60), Corridor (4), CorridorSection (5), FeatureLine (6), Fitting (61), FittingLabeling (62), GeneralNoteLabel (7), GeneralSegmentLabel (8), Grading (9), GradingLabeling (10), GridSurface (11), GridSurfaceLabeling (12), Interference (13), Intersection (54), IntersectionLabeling (55), MassHaulLine (14), MassHaulView (15), MatchLine (16), MatchLineLabeling (17), MaterialSection (18), MaterialTable (19), Parcel (20), ParcelLabeling (21), ParcelSegment (22), ParcelSegmentLabeling (23), ParcelTable (24), Pipe (25), PipeAndStructureTable (27), PipeLabeling (26), PipeNetworkSection (28), PipeOrStructureProfile (29), PointTable (30), PressureNetworkSection (63), PressurePartProfile (64), PressurePartTable (65), PressurePipe (66), PressurePipeLabeling (67), Profile (31), ProfileLabeling (32), ProfileView (33), ProfileViewLabeling (34), SampleLine (35), SampleLineLabeling (36), Section (37), SectionLabeling (38), SectionView (39), SectionViewLabeling (40), SectionViewQuantityTakeoffTable (41), Sheet (42), Structure (43), StructureLabeling (44), Subassembly (45), SuperelevationView (68), SurfaceLegendTable (46), SurveyFigure (47), SurveyFigureLabeling (69), SurveyFigureSegmentLable (70), SurveyNetwork (48), TinSurface (49), TinSurfaceLabeling (50), ViewFrame (51), ViewFrameLabeling (52) """ Alignment = None AlignmentLabeling = None AlignmentTable = None Appurtenance = None AppurtenanceLabeling = None Assembly = None BuildingSite = None CantView = None Catchment = None CatchmentLabeling = None Corridor = None CorridorSection = None FeatureLine = None Fitting = None FittingLabeling = None GeneralNoteLabel = None GeneralSegmentLabel = None Grading = None GradingLabeling = None GridSurface = None GridSurfaceLabeling = None Interference = None Intersection = None IntersectionLabeling = None MassHaulLine = None MassHaulView = None MatchLine = None MatchLineLabeling = None MaterialSection = None MaterialTable = None Parcel = None ParcelLabeling = None ParcelSegment = None ParcelSegmentLabeling = None ParcelTable = None Pipe = None PipeAndStructureTable = None PipeLabeling = None PipeNetworkSection = None PipeOrStructureProfile = None PointTable = None PressureNetworkSection = None PressurePartProfile = None PressurePartTable = None PressurePipe = None PressurePipeLabeling = None Profile = None ProfileLabeling = None ProfileView = None ProfileViewLabeling = None SampleLine = None SampleLineLabeling = None Section = None SectionLabeling = None SectionView = None SectionViewLabeling = None SectionViewQuantityTakeoffTable = None Sheet = None Structure = None StructureLabeling = None Subassembly = None SuperelevationView = None SurfaceLegendTable = None SurveyFigure = None SurveyFigureLabeling = None SurveyFigureSegmentLable = None SurveyNetwork = None TinSurface = None TinSurfaceLabeling = None value__ = None ViewFrame = None ViewFrameLabeling = None class SettingsPipe(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsPressureAppurtenance(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsPressureFitting(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsPressurePipe(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsRoot(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass def GetSettings(self): # Error generating skeleton for function GetSettings: Method must be called on a Type for which Type.IsGenericParameter is false. AssociateShortcutProjectId = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AssociateShortcutProjectId(self: SettingsRoot) -> str Set: AssociateShortcutProjectId(self: SettingsRoot) = value """ DrawingSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DrawingSettings(self: SettingsRoot) -> SettingsDrawing """ LandXMLSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LandXMLSettings(self: SettingsRoot) -> SettingsLandXML """ TagSettings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: TagSettings(self: SettingsRoot) -> SettingsTag """ class SettingsSection(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass NameFormat = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: NameFormat(self: SettingsSection) -> SettingsNameFormat """ Styles = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Styles(self: SettingsSection) -> SettingsStyles """ SettingsNameFormat = None SettingsStyles = None class SettingsStructure(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SettingsTag(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass Creation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Creation(self: SettingsTag) -> SettingsCreation """ Renumbering = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Renumbering(self: SettingsTag) -> SettingsRenumbering """ SettingsCreation = None SettingsRenumbering = None class SettingsTransformation(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass ApplySeaLevelScaleFactor = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ApplySeaLevelScaleFactor(self: SettingsTransformation) -> bool Set: ApplySeaLevelScaleFactor(self: SettingsTransformation) = value """ GridReferencePoint = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridReferencePoint(self: SettingsTransformation) -> Point2d Set: GridReferencePoint(self: SettingsTransformation) = value """ GridRotationPoint = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridRotationPoint(self: SettingsTransformation) -> Point2d Set: GridRotationPoint(self: SettingsTransformation) = value """ GridScaleFactor = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridScaleFactor(self: SettingsTransformation) -> float Set: GridScaleFactor(self: SettingsTransformation) = value """ GridScaleFactorComputation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: GridScaleFactorComputation(self: SettingsTransformation) -> GridScaleFactorType Set: GridScaleFactorComputation(self: SettingsTransformation) = value """ LocalReferencePoint = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LocalReferencePoint(self: SettingsTransformation) -> Point2d Set: LocalReferencePoint(self: SettingsTransformation) = value """ LocalRotationPoint = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: LocalRotationPoint(self: SettingsTransformation) -> Point2d Set: LocalRotationPoint(self: SettingsTransformation) = value """ RotationToGridAzimuth = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RotationToGridAzimuth(self: SettingsTransformation) -> float Set: RotationToGridAzimuth(self: SettingsTransformation) = value """ RotationToGridNorth = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: RotationToGridNorth(self: SettingsTransformation) -> float Set: RotationToGridNorth(self: SettingsTransformation) = value """ SeaLevelScaleElevation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SeaLevelScaleElevation(self: SettingsTransformation) -> float Set: SeaLevelScaleElevation(self: SettingsTransformation) = value """ SpecifyRotationType = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SpecifyRotationType(self: SettingsTransformation) -> SpecifyRotationType Set: SpecifyRotationType(self: SettingsTransformation) = value """ SpheroidRadius = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: SpheroidRadius(self: SettingsTransformation) -> float """ class SettingsUnitZone(TreeOidWrapper): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass @staticmethod def GetAllCodes(): """ GetAllCodes() -> Array[str] """ pass @staticmethod def GetCoordinateSystemByCode(code): """ GetCoordinateSystemByCode(code: str) -> SettingsCoordinateSystem """ pass AngularUnits = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: AngularUnits(self: SettingsUnitZone) -> AngleUnitType Set: AngularUnits(self: SettingsUnitZone) = value """ CoordinateSystemCode = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: CoordinateSystemCode(self: SettingsUnitZone) -> str Set: CoordinateSystemCode(self: SettingsUnitZone) = value """ DrawingScale = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DrawingScale(self: SettingsUnitZone) -> float Set: DrawingScale(self: SettingsUnitZone) = value """ DrawingUnits = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: DrawingUnits(self: SettingsUnitZone) -> DrawingUnitType Set: DrawingUnits(self: SettingsUnitZone) = value """ ImperialToMetricConversion = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ImperialToMetricConversion(self: SettingsUnitZone) -> ImperialToMetricConversionType Set: ImperialToMetricConversion(self: SettingsUnitZone) = value """ MatchAutoCADVariables = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: MatchAutoCADVariables(self: SettingsUnitZone) -> bool Set: MatchAutoCADVariables(self: SettingsUnitZone) = value """ ScaleObjectsFromOtherDrawings = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: ScaleObjectsFromOtherDrawings(self: SettingsUnitZone) -> bool Set: ScaleObjectsFromOtherDrawings(self: SettingsUnitZone) = value """ class SettingsViewFrame(SettingsAmbient): # no doc def Dispose(self): """ Dispose(self: DisposableWrapper, A_0: bool) """ pass class SpecifyRotationType(Enum): """ enum SpecifyRotationType, values: GridRotationAngle (1), RotationPoint (0) """ GridRotationAngle = None RotationPoint = None value__ = None class TableAnchorType(Enum): """ enum TableAnchorType, values: BottomCenter (7), BottomLeft (6), BottomRight (8), MiddleCenter (4), MiddleLeft (3), MiddleRight (5), TopCenter (1), TopLeft (0), TopRight (2) """ BottomCenter = None BottomLeft = None BottomRight = None MiddleCenter = None MiddleLeft = None MiddleRight = None TopCenter = None TopLeft = None TopRight = None value__ = None class TableLayoutType(Enum): """ enum TableLayoutType, values: Horizontal (0), Vertical (1) """ Horizontal = None value__ = None Vertical = None class TileDirectionType(Enum): """ enum TileDirectionType, values: Across (0), Down (1) """ Across = None Down = None value__ = None
32.170963
1,533
0.679776
[ "MIT" ]
paoloemilioserra/ironpython-stubs
release/stubs/Autodesk/Civil/Settings.py
142,260
Python
""" Utilities for training, testing and caching results for HICO-DET and V-COCO evaluations. Fred Zhang <[email protected]> The Australian National University Australian Centre for Robotic Vision """ import os import sys import torch import random import warnings import argparse import numpy as np import torch.distributed as dist import torch.multiprocessing as mp from torch.utils.data import DataLoader, DistributedSampler from upt import build_detector from utils import custom_collate, CustomisedDLE, DataFactory warnings.filterwarnings("ignore") def main(rank, args): dist.init_process_group( backend="nccl", init_method="env://", world_size=args.world_size, rank=rank ) # Fix seed seed = args.seed + dist.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.cuda.set_device(rank) trainset = DataFactory(name=args.dataset, partition=args.partitions[0], data_root=args.data_root) testset = DataFactory(name=args.dataset, partition=args.partitions[1], data_root=args.data_root) train_loader = DataLoader( dataset=trainset, collate_fn=custom_collate, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=True, sampler=DistributedSampler( trainset, num_replicas=args.world_size, rank=rank) ) test_loader = DataLoader( dataset=testset, collate_fn=custom_collate, batch_size=1, num_workers=args.num_workers, pin_memory=True, drop_last=False, sampler=torch.utils.data.SequentialSampler(testset) ) args.human_idx = 0 if args.dataset == 'hicodet': object_to_target = train_loader.dataset.dataset.object_to_verb args.num_classes = 117 elif args.dataset == 'vcoco': object_to_target = list(train_loader.dataset.dataset.object_to_action.values()) args.num_classes = 24 upt = build_detector(args, object_to_target) if os.path.exists(args.resume): print(f"=> Rank {rank}: continue from saved checkpoint {args.resume}") checkpoint = torch.load(args.resume, map_location='cpu') upt.load_state_dict(checkpoint['model_state_dict']) else: print(f"=> Rank {rank}: start from a randomly initialised model") engine = CustomisedDLE( upt, train_loader, max_norm=args.clip_max_norm, num_classes=args.num_classes, print_interval=args.print_interval, find_unused_parameters=True, cache_dir=args.output_dir ) if args.cache: if args.dataset == 'hicodet': engine.cache_hico(test_loader, args.output_dir) elif args.dataset == 'vcoco': engine.cache_vcoco(test_loader, args.output_dir) return if args.eval: if args.dataset == 'vcoco': raise NotImplementedError(f"Evaluation on V-COCO has not been implemented.") ap = engine.test_hico(test_loader) # Fetch indices for rare and non-rare classes num_anno = torch.as_tensor(trainset.dataset.anno_interaction) rare = torch.nonzero(num_anno < 10).squeeze(1) non_rare = torch.nonzero(num_anno >= 10).squeeze(1) print( f"The mAP is {ap.mean():.4f}," f" rare: {ap[rare].mean():.4f}," f" none-rare: {ap[non_rare].mean():.4f}" ) return for p in upt.detector.parameters(): p.requires_grad = False param_dicts = [{ "params": [p for n, p in upt.named_parameters() if "interaction_head" in n and p.requires_grad] }] optim = torch.optim.AdamW( param_dicts, lr=args.lr_head, weight_decay=args.weight_decay ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, args.lr_drop) # Override optimiser and learning rate scheduler engine.update_state_key(optimizer=optim, lr_scheduler=lr_scheduler) engine(args.epochs) @torch.no_grad() def sanity_check(args): dataset = DataFactory(name='hicodet', partition=args.partitions[0], data_root=args.data_root) args.human_idx = 0; args.num_classes = 117 object_to_target = dataset.dataset.object_to_verb upt = build_detector(args, object_to_target) if args.eval: upt.eval() image, target = dataset[0] outputs = upt([image], [target]) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--lr-head', default=1e-4, type=float) parser.add_argument('--batch-size', default=2, type=int) parser.add_argument('--weight-decay', default=1e-4, type=float) parser.add_argument('--epochs', default=20, type=int) parser.add_argument('--lr-drop', default=10, type=int) parser.add_argument('--clip-max-norm', default=0.1, type=float) parser.add_argument('--backbone', default='resnet50', type=str) parser.add_argument('--dilation', action='store_true') parser.add_argument('--position-embedding', default='sine', type=str, choices=('sine', 'learned')) parser.add_argument('--repr-dim', default=512, type=int) parser.add_argument('--hidden-dim', default=256, type=int) parser.add_argument('--enc-layers', default=6, type=int) parser.add_argument('--dec-layers', default=6, type=int) parser.add_argument('--dim-feedforward', default=2048, type=int) parser.add_argument('--dropout', default=0.1, type=float) parser.add_argument('--nheads', default=8, type=int) parser.add_argument('--num-queries', default=100, type=int) parser.add_argument('--pre-norm', action='store_true') parser.add_argument('--no-aux-loss', dest='aux_loss', action='store_false') parser.add_argument('--set-cost-class', default=1, type=float) parser.add_argument('--set-cost-bbox', default=5, type=float) parser.add_argument('--set-cost-giou', default=2, type=float) parser.add_argument('--bbox-loss-coef', default=5, type=float) parser.add_argument('--giou-loss-coef', default=2, type=float) parser.add_argument('--eos-coef', default=0.1, type=float, help="Relative classification weight of the no-object class") parser.add_argument('--alpha', default=0.5, type=float) parser.add_argument('--gamma', default=0.2, type=float) parser.add_argument('--dataset', default='hicodet', type=str) parser.add_argument('--partitions', nargs='+', default=['train2015', 'test2015'], type=str) parser.add_argument('--num-workers', default=2, type=int) parser.add_argument('--data-root', default='./hicodet') # training parameters parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--port', default='1234', type=str) parser.add_argument('--seed', default=66, type=int) parser.add_argument('--pretrained', default='', help='Path to a pretrained detector') parser.add_argument('--resume', default='', help='Resume from a model') parser.add_argument('--output-dir', default='checkpoints') parser.add_argument('--print-interval', default=500, type=int) parser.add_argument('--world-size', default=1, type=int) parser.add_argument('--eval', action='store_true') parser.add_argument('--cache', action='store_true') parser.add_argument('--sanity', action='store_true') parser.add_argument('--box-score-thresh', default=0.2, type=float) parser.add_argument('--fg-iou-thresh', default=0.5, type=float) parser.add_argument('--min-instances', default=3, type=int) parser.add_argument('--max-instances', default=15, type=int) args = parser.parse_args() print(args) if args.sanity: sanity_check(args) sys.exit() os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = args.port mp.spawn(main, nprocs=args.world_size, args=(args,))
37.875598
102
0.676983
[ "BSD-3-Clause" ]
RomeroBarata/upt
main.py
7,916
Python
def assert_rounded_correct_num_decimals(on_offset_arr, decimals): __tracebackhide__ = True assert all( [len(str(float(boundary_s)).split('.')[-1]) <= decimals for boundary_s in on_offset_arr] )
31.857143
65
0.681614
[ "BSD-3-Clause" ]
NickleDave/conbirt
tests/test_formats/test_seq/asserts.py
223
Python
#!/usr/bin/python import os, sys # low level handling, such as command line stuff import string # string methods available import re # regular expressions import getopt # comand line argument handling import math # match functions from low import * # custom functions, written by myself # ============================================================================= def show_help( ): """ displays the program parameter list and usage information """ stdout( "usage: " + sys.argv[0] + " -f <path>" ) stdout( " " ) stdout( " option description" ) stdout( " -h help (this text here)" ) stdout( " -f fasta file to import" ) stdout( " -g map file, tab delimited, regex to name (one per line) to group sequences into distinct bins" ) stdout( " " ) sys.exit(1) # ============================================================================= def handle_arguments(): """ verifies the presence of all necessary arguments and returns the data dir """ if len ( sys.argv ) == 1: stderr( "no arguments provided." ) show_help() try: # check for the right arguments keys, values = getopt.getopt( sys.argv[1:], "hf:g:" ) except getopt.GetoptError: stderr( "invalid arguments provided." ) show_help() args = {} for key, value in keys: if key == '-f': args['file'] = value if key == '-g': args['group'] = value if not args.has_key('file'): stderr( "import file argument missing." ) show_help() elif not file_exists( args.get('file') ): stderr( "import file does not exist." ) show_help() return args # ============================================================================= def read_groups( file ): groups = {} fo = open( file ) for line in fo: line = line.rstrip() regex, name = line.split("\t") groups[name] = re.compile(regex) fo.close() return groups # ============================================================================= def read_sequences( file, groups ): def add_entry( hash, groups, id, seq ): group = "*all*" for name, regex in groups.iteritems(): if re.search(regex, id): group = name break if hash[group].has_key(id): sys.stderr.write("WARNING: overwriting entry with the same ID (%s) in group %s...\n" %(id, group)) hash[group][id] = seq return hash hash = {} for name, regex in groups.iteritems(): hash[name] = {} if hash.has_key('*all*'): sys.stderr.write("WARNING: you used \"*all*\" as a group name. This name refers to all non-group-matching entries as well!\n") hash['*all*'] = {} id, seq = "", "" fo = open( file ) for line in fo: line = line.rstrip() if line.startswith(">"): if id != "": add_entry( hash, groups, id, seq ) id = line[1:] seq = "" else: seq += line if id != "": add_entry( hash, groups, id, seq ) fo.close() return hash # ============================================================================= def eval_seq_lengths(hash): for group, seqhash in hash.iteritems(): for id, seq in seqhash.iteritems(): print string.join([group, id, str(len(seq))], "\t") # ============================================================================= # === MAIN ==================================================================== # ============================================================================= def main( args ): groups = {} if args.has_key('group'): groups = read_groups( args.get('group') ) seqhash = read_sequences( args.get('file'), groups ) eval_seq_lengths(seqhash) # ============================================================================= args = handle_arguments() main( args )
33.044248
154
0.497054
[ "MIT" ]
lotharwissler/bioinformatics
python/fasta/seqlength.py
3,734
Python
# -*- coding: utf-8 -*- """ Tests the speed of image updates for an ImageItem and RawImageWidget. The speed will generally depend on the type of data being shown, whether it is being scaled and/or converted by lookup table, and whether OpenGL is used by the view widget """ ## Add path to library (just for examples; you do not need this) import initExample import argparse import sys import numpy as np import pyqtgraph as pg import pyqtgraph.ptime as ptime from pyqtgraph.Qt import QtGui, QtCore, QT_LIB pg.setConfigOption('imageAxisOrder', 'row-major') import importlib ui_template = importlib.import_module(f'VideoTemplate_{QT_LIB.lower()}') try: import cupy as cp pg.setConfigOption("useCupy", True) _has_cupy = True except ImportError: cp = None _has_cupy = False try: import numba _has_numba = True except ImportError: numba = None _has_numba = False try: from pyqtgraph.widgets.RawImageWidget import RawImageGLWidget except ImportError: RawImageGLWidget = None parser = argparse.ArgumentParser(description="Benchmark for testing video performance") parser.add_argument('--cuda', default=False, action='store_true', help="Use CUDA to process on the GPU", dest="cuda") parser.add_argument('--dtype', default='uint8', choices=['uint8', 'uint16', 'float'], help="Image dtype (uint8, uint16, or float)") parser.add_argument('--frames', default=3, type=int, help="Number of image frames to generate (default=3)") parser.add_argument('--image-mode', default='mono', choices=['mono', 'rgb'], help="Image data mode (mono or rgb)", dest='image_mode') parser.add_argument('--levels', default=None, type=lambda s: tuple([float(x) for x in s.split(',')]), help="min,max levels to scale monochromatic image dynamic range, or rmin,rmax,gmin,gmax,bmin,bmax to scale rgb") parser.add_argument('--lut', default=False, action='store_true', help="Use color lookup table") parser.add_argument('--lut-alpha', default=False, action='store_true', help="Use alpha color lookup table", dest='lut_alpha') parser.add_argument('--size', default='512x512', type=lambda s: tuple([int(x) for x in s.split('x')]), help="WxH image dimensions default='512x512'") args = parser.parse_args(sys.argv[1:]) if RawImageGLWidget is not None: # don't limit frame rate to vsync sfmt = QtGui.QSurfaceFormat() sfmt.setSwapInterval(0) QtGui.QSurfaceFormat.setDefaultFormat(sfmt) app = pg.mkQApp("Video Speed Test Example") win = QtGui.QMainWindow() win.setWindowTitle('pyqtgraph example: VideoSpeedTest') ui = ui_template.Ui_MainWindow() ui.setupUi(win) win.show() if RawImageGLWidget is None: ui.rawGLRadio.setEnabled(False) ui.rawGLRadio.setText(ui.rawGLRadio.text() + " (OpenGL not available)") else: ui.rawGLImg = RawImageGLWidget() ui.stack.addWidget(ui.rawGLImg) # read in CLI args ui.cudaCheck.setChecked(args.cuda and _has_cupy) ui.cudaCheck.setEnabled(_has_cupy) ui.numbaCheck.setChecked(_has_numba and pg.getConfigOption("useNumba")) ui.numbaCheck.setEnabled(_has_numba) ui.framesSpin.setValue(args.frames) ui.widthSpin.setValue(args.size[0]) ui.heightSpin.setValue(args.size[1]) ui.dtypeCombo.setCurrentText(args.dtype) ui.rgbCheck.setChecked(args.image_mode=='rgb') ui.maxSpin1.setOpts(value=255, step=1) ui.minSpin1.setOpts(value=0, step=1) levelSpins = [ui.minSpin1, ui.maxSpin1, ui.minSpin2, ui.maxSpin2, ui.minSpin3, ui.maxSpin3] if args.cuda and _has_cupy: xp = cp else: xp = np if args.levels is None: ui.scaleCheck.setChecked(False) ui.rgbLevelsCheck.setChecked(False) else: ui.scaleCheck.setChecked(True) if len(args.levels) == 2: ui.rgbLevelsCheck.setChecked(False) ui.minSpin1.setValue(args.levels[0]) ui.maxSpin1.setValue(args.levels[1]) elif len(args.levels) == 6: ui.rgbLevelsCheck.setChecked(True) for spin,val in zip(levelSpins, args.levels): spin.setValue(val) else: raise ValueError("levels argument must be 2 or 6 comma-separated values (got %r)" % (args.levels,)) ui.lutCheck.setChecked(args.lut) ui.alphaCheck.setChecked(args.lut_alpha) #ui.graphicsView.useOpenGL() ## buggy, but you can try it if you need extra speed. vb = pg.ViewBox() ui.graphicsView.setCentralItem(vb) vb.setAspectLocked() img = pg.ImageItem() vb.addItem(img) LUT = None def updateLUT(): global LUT, ui dtype = ui.dtypeCombo.currentText() if dtype == 'uint8': n = 256 else: n = 4096 LUT = ui.gradient.getLookupTable(n, alpha=ui.alphaCheck.isChecked()) if _has_cupy and xp == cp: LUT = cp.asarray(LUT) ui.gradient.sigGradientChanged.connect(updateLUT) updateLUT() ui.alphaCheck.toggled.connect(updateLUT) def updateScale(): global ui, levelSpins if ui.rgbLevelsCheck.isChecked(): for s in levelSpins[2:]: s.setEnabled(True) else: for s in levelSpins[2:]: s.setEnabled(False) updateScale() ui.rgbLevelsCheck.toggled.connect(updateScale) cache = {} def mkData(): with pg.BusyCursor(): global data, cache, ui, xp frames = ui.framesSpin.value() width = ui.widthSpin.value() height = ui.heightSpin.value() cacheKey = (ui.dtypeCombo.currentText(), ui.rgbCheck.isChecked(), frames, width, height) if cacheKey not in cache: if cacheKey[0] == 'uint8': dt = xp.uint8 loc = 128 scale = 64 mx = 255 elif cacheKey[0] == 'uint16': dt = xp.uint16 loc = 4096 scale = 1024 mx = 2**16 - 1 elif cacheKey[0] == 'float': dt = xp.float32 loc = 1.0 scale = 0.1 mx = 1.0 else: raise ValueError(f"unable to handle dtype: {cacheKey[0]}") chan_shape = (height, width) if ui.rgbCheck.isChecked(): frame_shape = chan_shape + (3,) else: frame_shape = chan_shape data = xp.empty((frames,) + frame_shape, dtype=dt) view = data.reshape((-1,) + chan_shape) for idx in range(view.shape[0]): subdata = xp.random.normal(loc=loc, scale=scale, size=chan_shape) # note: gaussian filtering has been removed as it slows down array # creation greatly. if cacheKey[0] != 'float': xp.clip(subdata, 0, mx, out=subdata) view[idx] = subdata data[:, 10:50, 10] = mx data[:, 48, 9:12] = mx data[:, 47, 8:13] = mx cache = {cacheKey: data} # clear to save memory (but keep one to prevent unnecessary regeneration) data = cache[cacheKey] updateLUT() updateSize() def updateSize(): global ui, vb frames = ui.framesSpin.value() width = ui.widthSpin.value() height = ui.heightSpin.value() dtype = xp.dtype(str(ui.dtypeCombo.currentText())) rgb = 3 if ui.rgbCheck.isChecked() else 1 ui.sizeLabel.setText('%d MB' % (frames * width * height * rgb * dtype.itemsize / 1e6)) vb.setRange(QtCore.QRectF(0, 0, width, height)) def noticeCudaCheck(): global xp, cache cache = {} if ui.cudaCheck.isChecked(): if _has_cupy: xp = cp else: xp = np ui.cudaCheck.setChecked(False) else: xp = np mkData() def noticeNumbaCheck(): pg.setConfigOption('useNumba', _has_numba and ui.numbaCheck.isChecked()) mkData() ui.dtypeCombo.currentIndexChanged.connect(mkData) ui.rgbCheck.toggled.connect(mkData) ui.widthSpin.editingFinished.connect(mkData) ui.heightSpin.editingFinished.connect(mkData) ui.framesSpin.editingFinished.connect(mkData) ui.widthSpin.valueChanged.connect(updateSize) ui.heightSpin.valueChanged.connect(updateSize) ui.framesSpin.valueChanged.connect(updateSize) ui.cudaCheck.toggled.connect(noticeCudaCheck) ui.numbaCheck.toggled.connect(noticeNumbaCheck) ptr = 0 lastTime = ptime.time() fps = None def update(): global ui, ptr, lastTime, fps, LUT, img if ui.lutCheck.isChecked(): useLut = LUT else: useLut = None downsample = ui.downsampleCheck.isChecked() if ui.scaleCheck.isChecked(): if ui.rgbLevelsCheck.isChecked(): useScale = [ [ui.minSpin1.value(), ui.maxSpin1.value()], [ui.minSpin2.value(), ui.maxSpin2.value()], [ui.minSpin3.value(), ui.maxSpin3.value()]] else: useScale = [ui.minSpin1.value(), ui.maxSpin1.value()] else: useScale = None if ui.rawRadio.isChecked(): ui.rawImg.setImage(data[ptr%data.shape[0]], lut=useLut, levels=useScale) ui.stack.setCurrentIndex(1) elif ui.rawGLRadio.isChecked(): ui.rawGLImg.setImage(data[ptr%data.shape[0]], lut=useLut, levels=useScale) ui.stack.setCurrentIndex(2) else: img.setImage(data[ptr%data.shape[0]], autoLevels=False, levels=useScale, lut=useLut, autoDownsample=downsample) ui.stack.setCurrentIndex(0) #img.setImage(data[ptr%data.shape[0]], autoRange=False) ptr += 1 now = ptime.time() dt = now - lastTime lastTime = now if fps is None: fps = 1.0/dt else: s = np.clip(dt*3., 0, 1) fps = fps * (1-s) + (1.0/dt) * s ui.fpsLabel.setText('%0.2f fps' % fps) app.processEvents() ## force complete redraw for every plot timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(0) if __name__ == '__main__': pg.exec()
32.21
214
0.651868
[ "MIT" ]
3DAlgoLab/pyqtgraph
examples/VideoSpeedTest.py
9,663
Python
from __future__ import absolute_import, unicode_literals from django.conf import settings from django.core.urlresolvers import reverse from django.test import TestCase from django.test.utils import override_settings from wagtail.tests.testapp.models import SingleEventPage from wagtail.tests.testapp.rich_text import CustomRichTextArea from wagtail.tests.utils import WagtailTestUtils from wagtail.wagtailadmin.rich_text import HalloRichTextArea, get_rich_text_editor_widget from wagtail.wagtailcore.models import Page, get_page_models from wagtail.wagtailcore.rich_text import RichText class BaseRichTextEditHandlerTestCase(TestCase): def _clear_edit_handler_cache(self): """ These tests generate new EditHandlers with different settings. The cached edit handlers should be cleared before and after each test run to ensure that no changes leak through to other tests. """ from wagtail.tests.testapp.models import DefaultRichBlockFieldPage block_page_edit_handler = DefaultRichBlockFieldPage.get_edit_handler() if block_page_edit_handler._form_class: rich_text_block = block_page_edit_handler._form_class.base_fields['body'].block.child_blocks['rich_text'] if hasattr(rich_text_block, 'field'): del rich_text_block.field for page_class in get_page_models(): page_class.get_edit_handler.cache_clear() def setUp(self): super(BaseRichTextEditHandlerTestCase, self).setUp() self._clear_edit_handler_cache() def tearDown(self): self._clear_edit_handler_cache() super(BaseRichTextEditHandlerTestCase, self).tearDown() class TestGetRichTextEditorWidget(TestCase): @override_settings() def test_default(self): # Simulate the absence of a setting if hasattr(settings, 'WAGTAILADMIN_RICH_TEXT_EDITORS'): del settings.WAGTAILADMIN_RICH_TEXT_EDITORS self.assertIsInstance(get_rich_text_editor_widget(), HalloRichTextArea) @override_settings(WAGTAILADMIN_RICH_TEXT_EDITORS={ 'default': { 'WIDGET': 'wagtail.tests.testapp.rich_text.CustomRichTextArea' }, }) def test_overridden_default_editor(self): self.assertIsInstance(get_rich_text_editor_widget(), CustomRichTextArea) @override_settings(WAGTAILADMIN_RICH_TEXT_EDITORS={ 'custom': { 'WIDGET': 'wagtail.tests.testapp.rich_text.CustomRichTextArea' }, }) def test_custom_editor_without_default(self): self.assertIsInstance(get_rich_text_editor_widget('custom'), CustomRichTextArea) @override_settings(WAGTAILADMIN_RICH_TEXT_EDITORS={ 'default': { 'WIDGET': 'wagtail.wagtailadmin.rich_text.HalloRichTextArea' }, 'custom': { 'WIDGET': 'wagtail.tests.testapp.rich_text.CustomRichTextArea' }, }) def test_custom_editor_with_default(self): self.assertIsInstance(get_rich_text_editor_widget(), HalloRichTextArea) self.assertIsInstance(get_rich_text_editor_widget('custom'), CustomRichTextArea) @override_settings() class TestDefaultRichText(BaseRichTextEditHandlerTestCase, WagtailTestUtils): def setUp(self): super(TestDefaultRichText, self).setUp() # Find root page self.root_page = Page.objects.get(id=2) self.login() # Simulate the absence of a setting if hasattr(settings, 'WAGTAILADMIN_RICH_TEXT_EDITORS'): del settings.WAGTAILADMIN_RICH_TEXT_EDITORS def test_default_editor_in_rich_text_field(self): response = self.client.get(reverse( 'wagtailadmin_pages:add', args=('tests', 'defaultrichtextfieldpage', self.root_page.id) )) # Check status code self.assertEqual(response.status_code, 200) # Check that hallo (default editor by now) self.assertContains(response, 'makeHalloRichTextEditable("id_body");') def test_default_editor_in_rich_text_block(self): response = self.client.get(reverse( 'wagtailadmin_pages:add', args=('tests', 'defaultrichblockfieldpage', self.root_page.id) )) # Check status code self.assertEqual(response.status_code, 200) # Check that hallo (default editor by now) self.assertContains(response, 'makeHalloRichTextEditable("__PREFIX__-value");') @override_settings(WAGTAILADMIN_RICH_TEXT_EDITORS={ 'default': { 'WIDGET': 'wagtail.tests.testapp.rich_text.CustomRichTextArea' }, }) class TestOverriddenDefaultRichText(BaseRichTextEditHandlerTestCase, WagtailTestUtils): def setUp(self): super(TestOverriddenDefaultRichText, self).setUp() # Find root page self.root_page = Page.objects.get(id=2) self.login() def test_overridden_default_editor_in_rich_text_field(self): response = self.client.get(reverse( 'wagtailadmin_pages:add', args=('tests', 'defaultrichtextfieldpage', self.root_page.id) )) # Check status code self.assertEqual(response.status_code, 200) # Check that hallo (default editor by now) was replaced with fake editor self.assertNotContains(response, 'makeHalloRichTextEditable("id_body");') self.assertContains(response, 'customEditorInitScript("id_body");') def test_overridden_default_editor_in_rich_text_block(self): response = self.client.get(reverse( 'wagtailadmin_pages:add', args=('tests', 'defaultrichblockfieldpage', self.root_page.id) )) # Check status code self.assertEqual(response.status_code, 200) # Check that hallo (default editor by now) was replaced with fake editor self.assertNotContains(response, 'makeHalloRichTextEditable("__PREFIX__-value");') self.assertContains(response, 'customEditorInitScript("__PREFIX__-value");') @override_settings(WAGTAILADMIN_RICH_TEXT_EDITORS={ 'default': { 'WIDGET': 'wagtail.wagtailadmin.rich_text.HalloRichTextArea' }, 'custom': { 'WIDGET': 'wagtail.tests.testapp.rich_text.CustomRichTextArea' }, }) class TestCustomDefaultRichText(BaseRichTextEditHandlerTestCase, WagtailTestUtils): def setUp(self): super(TestCustomDefaultRichText, self).setUp() # Find root page self.root_page = Page.objects.get(id=2) self.login() def test_custom_editor_in_rich_text_field(self): response = self.client.get(reverse( 'wagtailadmin_pages:add', args=('tests', 'customrichtextfieldpage', self.root_page.id) )) # Check status code self.assertEqual(response.status_code, 200) # Check that hallo (default editor by now) was replaced with fake editor self.assertNotContains(response, 'makeHalloRichTextEditable("id_body");') self.assertContains(response, 'customEditorInitScript("id_body");') def test_custom_editor_in_rich_text_block(self): response = self.client.get(reverse( 'wagtailadmin_pages:add', args=('tests', 'customrichblockfieldpage', self.root_page.id) )) # Check status code self.assertEqual(response.status_code, 200) # Check that hallo (default editor by now) was replaced with fake editor self.assertNotContains(response, 'makeHalloRichTextEditable("__PREFIX__-value");') self.assertContains(response, 'customEditorInitScript("__PREFIX__-value");') class TestRichTextValue(TestCase): def setUp(self): self.root_page = Page.objects.get(id=2) self.single_event_page = SingleEventPage( title="foo", location='the moon', audience='public', cost='free', date_from='2001-01-01', ) self.root_page.add_child(instance=self.single_event_page) def test_render(self): text = '<p>To the <a linktype="page" id="{}">moon</a>!</p>'.format( self.single_event_page.id ) value = RichText(text) result = str(value) expected = ( '<div class="rich-text"><p>To the <a href="' '/foo/pointless-suffix/">moon</a>!</p></div>') self.assertEqual(result, expected)
36.90625
117
0.697835
[ "BSD-3-Clause" ]
Girbons/wagtail
wagtail/wagtailadmin/tests/test_rich_text.py
8,267
Python
#!/usr/bin/env python # Copyright (c) 2018, The Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the University of California nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import math import serial import sys import threading import rospy import std_msgs.msg import tf class PololuSerial(object): def __init__(self, tty_device='/dev/ttyACM0'): self._serial = serial.Serial(tty_device, timeout=0.2) self._lock = threading.Lock() def _SendCommand(self, command_sequence, reply_length=0): # TODO(shengye): Check command_sequence is an iterable of integers [0, 255] buf_out = bytearray(command_sequence) with self._lock: self._serial.write(buf_out) if reply_length > 0: buf_in = bytearray(self._serial.read(reply_length)) assert len(buf_in) == reply_length else: buf_in = None return buf_in def Close(self): with self._lock: self._serial.close() self._serial = None def SetTarget(self, target_val, channel=0): command = [0x84, channel, target_val & 0x7F, (target_val >> 7) & 0x7F] self._SendCommand(command) def SetSpeed(self, speed_val, channel=0): command = [0x87, channel, speed_val & 0x7F, (speed_val >> 7) & 0x7F] self._SendCommand(command) def SetAcceleration(self, acc_val, channel=0): command = [0x89, channel, acc_val & 0x7F, (acc_val >> 7) & 0x7F] self._SendCommand(command) def GetPos(self, channel=0): command = [0x90, channel] result = self._SendCommand(command, 2) return_val = (result[1] << 8) | result[0] return return_val def main(argv): rospy.init_node("head_laser_servo_tf") # Parameters tty_device = rospy.get_param("~tty_device", "/dev/ttyACM0") acceleration = rospy.get_param("~acceleration", 20) speed = rospy.get_param("~speed", 10) min_val = rospy.get_param("~min_val", 885 * 4) min_deg = rospy.get_param("~min_deg", -90) max_val = rospy.get_param("~max_val", 1900 * 4) max_deg = rospy.get_param("~max_deg", 0) default_deg = rospy.get_param("~default_deg", -90) fixed_frame = rospy.get_param("~fixed_frame", "head_laser_servo_base") rotating_frame = rospy.get_param("~rotating_frame", "head_laser_servo_mount") time_adj = rospy.get_param("~time_adj", 0.125) tf_pub_rate = rospy.get_param("~tf_pub_rate", 20) dev = PololuSerial(tty_device) dev.SetAcceleration(acceleration) dev.SetSpeed(speed) tf_broadcaster = tf.TransformBroadcaster() disable_tf_publisher = [False] latest_deg = [min_deg] def MoveToDeg(target_deg): target = int((target_deg - min_deg) / (max_deg - min_deg) * (max_val - min_val) + min_val) dev.SetTarget(target) pos = float(dev.GetPos()) disable_tf_publisher[0] = True while pos != target: deg = ((pos - min_val) / (max_val - min_val) * (max_deg - min_deg) + min_deg) tf_broadcaster.sendTransform( (0, 0, 0), tf.transformations.quaternion_from_euler( 0, -deg / 180.0 * math.pi, 0), rospy.Time.now() + rospy.Duration(time_adj), rotating_frame, fixed_frame) latest_deg[0] = deg rospy.loginfo("Degree: %f, Value: %f", deg, pos) pos = float(dev.GetPos()) disable_tf_publisher[0] = False def HeadLaserAngleCallback(data): angle = data.data if angle < min_deg or angle > max_deg: rospy.logerr("%f is not between [%f, %f]", angle, min_deg, max_deg) else: MoveToDeg(angle) MoveToDeg(min_deg) MoveToDeg(max_deg) MoveToDeg(default_deg) rospy.Subscriber("/head_laser/angle", std_msgs.msg.Float64, HeadLaserAngleCallback) rospy.loginfo("Ready to serve.") tf_pub_rate_rospy_rate = rospy.Rate(tf_pub_rate) while not rospy.is_shutdown(): if not disable_tf_publisher[0]: tf_broadcaster.sendTransform( (0, 0, 0), tf.transformations.quaternion_from_euler( 0, -latest_deg[0] / 180.0 * math.pi, 0), rospy.Time.now() + rospy.Duration(time_adj), rotating_frame, fixed_frame) tf_pub_rate_rospy_rate.sleep() dev.Close() if __name__ == "__main__": main(sys.argv)
33.205882
79
0.692117
[ "BSD-3-Clause" ]
CogRob/TritonBot
cogrob_ros/cogrob_pololu_lidar/scripts/cogrob_pololu_lidar.py
5,645
Python
""" The main purpose of this module is to expose LinkCollector.collect_links(). """ import cgi import functools import itertools import logging import mimetypes import os import re from collections import OrderedDict from pip._vendor import html5lib, requests from pip._vendor.distlib.compat import unescape from pip._vendor.requests.exceptions import HTTPError, RetryError, SSLError from pip._vendor.six.moves.urllib import parse as urllib_parse from pip._vendor.six.moves.urllib import request as urllib_request from pip._internal.models.link import Link from pip._internal.utils.filetypes import ARCHIVE_EXTENSIONS from pip._internal.utils.misc import pairwise, redact_auth_from_url from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.urls import path_to_url, url_to_path from pip._internal.vcs import is_url, vcs if MYPY_CHECK_RUNNING: from typing import ( Callable, Iterable, List, MutableMapping, Optional, Protocol, Sequence, Tuple, TypeVar, Union, ) import xml.etree.ElementTree from pip._vendor.requests import Response from pip._internal.models.search_scope import SearchScope from pip._internal.network.session import PipSession HTMLElement = xml.etree.ElementTree.Element ResponseHeaders = MutableMapping[str, str] # Used in the @lru_cache polyfill. F = TypeVar('F') class LruCache(Protocol): def __call__(self, maxsize=None): # type: (Optional[int]) -> Callable[[F], F] raise NotImplementedError logger = logging.getLogger(__name__) # Fallback to noop_lru_cache in Python 2 # TODO: this can be removed when python 2 support is dropped! def noop_lru_cache(maxsize=None): # type: (Optional[int]) -> Callable[[F], F] def _wrapper(f): # type: (F) -> F return f return _wrapper _lru_cache = getattr(functools, "lru_cache", noop_lru_cache) # type: LruCache def _match_vcs_scheme(url): # type: (str) -> Optional[str] """Look for VCS schemes in the URL. Returns the matched VCS scheme, or None if there's no match. """ for scheme in vcs.schemes: if url.lower().startswith(scheme) and url[len(scheme)] in '+:': return scheme return None def _is_url_like_archive(url): # type: (str) -> bool """Return whether the URL looks like an archive. """ filename = Link(url).filename for bad_ext in ARCHIVE_EXTENSIONS: if filename.endswith(bad_ext): return True return False class _NotHTML(Exception): def __init__(self, content_type, request_desc): # type: (str, str) -> None super(_NotHTML, self).__init__(content_type, request_desc) self.content_type = content_type self.request_desc = request_desc def _ensure_html_header(response): # type: (Response) -> None """Check the Content-Type header to ensure the response contains HTML. Raises `_NotHTML` if the content type is not text/html. """ content_type = response.headers.get("Content-Type", "") if not content_type.lower().startswith("text/html"): raise _NotHTML(content_type, response.request.method) class _NotHTTP(Exception): pass def _ensure_html_response(url, session): # type: (str, PipSession) -> None """Send a HEAD request to the URL, and ensure the response contains HTML. Raises `_NotHTTP` if the URL is not available for a HEAD request, or `_NotHTML` if the content type is not text/html. """ scheme, netloc, path, query, fragment = urllib_parse.urlsplit(url) if scheme not in {'http', 'https'}: raise _NotHTTP() resp = session.head(url, allow_redirects=True) resp.raise_for_status() _ensure_html_header(resp) def _get_html_response(url, session): # type: (str, PipSession) -> Response """Access an HTML page with GET, and return the response. This consists of three parts: 1. If the URL looks suspiciously like an archive, send a HEAD first to check the Content-Type is HTML, to avoid downloading a large file. Raise `_NotHTTP` if the content type cannot be determined, or `_NotHTML` if it is not HTML. 2. Actually perform the request. Raise HTTP exceptions on network failures. 3. Check the Content-Type header to make sure we got HTML, and raise `_NotHTML` otherwise. """ if _is_url_like_archive(url): _ensure_html_response(url, session=session) logger.debug('Getting page %s', redact_auth_from_url(url)) resp = session.get( url, headers={ "Accept": "text/html", # We don't want to blindly returned cached data for # /simple/, because authors generally expecting that # twine upload && pip install will function, but if # they've done a pip install in the last ~10 minutes # it won't. Thus by setting this to zero we will not # blindly use any cached data, however the benefit of # using max-age=0 instead of no-cache, is that we will # still support conditional requests, so we will still # minimize traffic sent in cases where the page hasn't # changed at all, we will just always incur the round # trip for the conditional GET now instead of only # once per 10 minutes. # For more information, please see pypa/pip#5670. "Cache-Control": "max-age=0", }, ) resp.raise_for_status() # The check for archives above only works if the url ends with # something that looks like an archive. However that is not a # requirement of an url. Unless we issue a HEAD request on every # url we cannot know ahead of time for sure if something is HTML # or not. However we can check after we've downloaded it. _ensure_html_header(resp) return resp def _get_encoding_from_headers(headers): # type: (ResponseHeaders) -> Optional[str] """Determine if we have any encoding information in our headers. """ if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: return params['charset'] return None def _determine_base_url(document, page_url): # type: (HTMLElement, str) -> str """Determine the HTML document's base URL. This looks for a ``<base>`` tag in the HTML document. If present, its href attribute denotes the base URL of anchor tags in the document. If there is no such tag (or if it does not have a valid href attribute), the HTML file's URL is used as the base URL. :param document: An HTML document representation. The current implementation expects the result of ``html5lib.parse()``. :param page_url: The URL of the HTML document. """ for base in document.findall(".//base"): href = base.get("href") if href is not None: return href return page_url def _clean_url_path_part(part): # type: (str) -> str """ Clean a "part" of a URL path (i.e. after splitting on "@" characters). """ # We unquote prior to quoting to make sure nothing is double quoted. return urllib_parse.quote(urllib_parse.unquote(part)) def _clean_file_url_path(part): # type: (str) -> str """ Clean the first part of a URL path that corresponds to a local filesystem path (i.e. the first part after splitting on "@" characters). """ # We unquote prior to quoting to make sure nothing is double quoted. # Also, on Windows the path part might contain a drive letter which # should not be quoted. On Linux where drive letters do not # exist, the colon should be quoted. We rely on urllib.request # to do the right thing here. return urllib_request.pathname2url(urllib_request.url2pathname(part)) # percent-encoded: / _reserved_chars_re = re.compile('(@|%2F)', re.IGNORECASE) def _clean_url_path(path, is_local_path): # type: (str, bool) -> str """ Clean the path portion of a URL. """ if is_local_path: clean_func = _clean_file_url_path else: clean_func = _clean_url_path_part # Split on the reserved characters prior to cleaning so that # revision strings in VCS URLs are properly preserved. parts = _reserved_chars_re.split(path) cleaned_parts = [] for to_clean, reserved in pairwise(itertools.chain(parts, [''])): cleaned_parts.append(clean_func(to_clean)) # Normalize %xx escapes (e.g. %2f -> %2F) cleaned_parts.append(reserved.upper()) return ''.join(cleaned_parts) def _clean_link(url): # type: (str) -> str """ Make sure a link is fully quoted. For example, if ' ' occurs in the URL, it will be replaced with "%20", and without double-quoting other characters. """ # Split the URL into parts according to the general structure # `scheme://netloc/path;parameters?query#fragment`. result = urllib_parse.urlparse(url) # If the netloc is empty, then the URL refers to a local filesystem path. is_local_path = not result.netloc path = _clean_url_path(result.path, is_local_path=is_local_path) return urllib_parse.urlunparse(result._replace(path=path)) def _create_link_from_element( anchor, # type: HTMLElement page_url, # type: str base_url, # type: str ): # type: (...) -> Optional[Link] """ Convert an anchor element in a simple repository page to a Link. """ href = anchor.get("href") if not href: return None url = _clean_link(urllib_parse.urljoin(base_url, href)) pyrequire = anchor.get('data-requires-python') pyrequire = unescape(pyrequire) if pyrequire else None yanked_reason = anchor.get('data-yanked') if yanked_reason: # This is a unicode string in Python 2 (and 3). yanked_reason = unescape(yanked_reason) link = Link( url, comes_from=page_url, requires_python=pyrequire, yanked_reason=yanked_reason, ) return link class CacheablePageContent(object): def __init__(self, page): # type: (HTMLPage) -> None assert page.cache_link_parsing self.page = page def __eq__(self, other): # type: (object) -> bool return (isinstance(other, type(self)) and self.page.url == other.page.url) def __hash__(self): # type: () -> int return hash(self.page.url) def with_cached_html_pages( fn, # type: Callable[[HTMLPage], Iterable[Link]] ): # type: (...) -> Callable[[HTMLPage], List[Link]] """ Given a function that parses an Iterable[Link] from an HTMLPage, cache the function's result (keyed by CacheablePageContent), unless the HTMLPage `page` has `page.cache_link_parsing == False`. """ @_lru_cache(maxsize=None) def wrapper(cacheable_page): # type: (CacheablePageContent) -> List[Link] return list(fn(cacheable_page.page)) @functools.wraps(fn) def wrapper_wrapper(page): # type: (HTMLPage) -> List[Link] if page.cache_link_parsing: return wrapper(CacheablePageContent(page)) return list(fn(page)) return wrapper_wrapper @with_cached_html_pages def parse_links(page): # type: (HTMLPage) -> Iterable[Link] """ Parse an HTML document, and yield its anchor elements as Link objects. """ document = html5lib.parse( page.content, transport_encoding=page.encoding, namespaceHTMLElements=False, ) url = page.url base_url = _determine_base_url(document, url) for anchor in document.findall(".//a"): link = _create_link_from_element( anchor, page_url=url, base_url=base_url, ) if link is None: continue yield link class HTMLPage(object): """Represents one page, along with its URL""" def __init__( self, content, # type: bytes encoding, # type: Optional[str] url, # type: str cache_link_parsing=True, # type: bool ): # type: (...) -> None """ :param encoding: the encoding to decode the given content. :param url: the URL from which the HTML was downloaded. :param cache_link_parsing: whether links parsed from this page's url should be cached. PyPI index urls should have this set to False, for example. """ self.content = content self.encoding = encoding self.url = url self.cache_link_parsing = cache_link_parsing def __str__(self): # type: () -> str return redact_auth_from_url(self.url) def _handle_get_page_fail( link, # type: Link reason, # type: Union[str, Exception] meth=None # type: Optional[Callable[..., None]] ): # type: (...) -> None if meth is None: meth = logger.debug meth("Could not fetch URL %s: %s - skipping", link, reason) def _make_html_page(response, cache_link_parsing=True): # type: (Response, bool) -> HTMLPage encoding = _get_encoding_from_headers(response.headers) return HTMLPage( response.content, encoding=encoding, url=response.url, cache_link_parsing=cache_link_parsing) def _get_html_page(link, session=None): # type: (Link, Optional[PipSession]) -> Optional[HTMLPage] if session is None: raise TypeError( "_get_html_page() missing 1 required keyword argument: 'session'" ) url = link.url.split('#', 1)[0] # Check for VCS schemes that do not support lookup as web pages. vcs_scheme = _match_vcs_scheme(url) if vcs_scheme: logger.debug('Cannot look at %s URL %s', vcs_scheme, link) return None # Tack index.html onto file:// URLs that point to directories scheme, _, path, _, _, _ = urllib_parse.urlparse(url) if (scheme == 'file' and os.path.isdir(urllib_request.url2pathname(path))): # add trailing slash if not present so urljoin doesn't trim # final segment if not url.endswith('/'): url += '/' url = urllib_parse.urljoin(url, 'index.html') logger.debug(' file: URL is directory, getting %s', url) try: resp = _get_html_response(url, session=session) except _NotHTTP: logger.debug( 'Skipping page %s because it looks like an archive, and cannot ' 'be checked by HEAD.', link, ) except _NotHTML as exc: logger.warning( 'Skipping page %s because the %s request got Content-Type: %s.' 'The only supported Content-Type is text/html', link, exc.request_desc, exc.content_type, ) except HTTPError as exc: _handle_get_page_fail(link, exc) except RetryError as exc: _handle_get_page_fail(link, exc) except SSLError as exc: reason = "There was a problem confirming the ssl certificate: " reason += str(exc) _handle_get_page_fail(link, reason, meth=logger.info) except requests.ConnectionError as exc: _handle_get_page_fail(link, "connection error: {}".format(exc)) except requests.Timeout: _handle_get_page_fail(link, "timed out") else: return _make_html_page(resp, cache_link_parsing=link.cache_link_parsing) return None def _remove_duplicate_links(links): # type: (Iterable[Link]) -> List[Link] """ Return a list of links, with duplicates removed and ordering preserved. """ # We preserve the ordering when removing duplicates because we can. return list(OrderedDict.fromkeys(links)) def group_locations(locations, expand_dir=False): # type: (Sequence[str], bool) -> Tuple[List[str], List[str]] """ Divide a list of locations into two groups: "files" (archives) and "urls." :return: A pair of lists (files, urls). """ files = [] urls = [] # puts the url for the given file path into the appropriate list def sort_path(path): # type: (str) -> None url = path_to_url(path) if mimetypes.guess_type(url, strict=False)[0] == 'text/html': urls.append(url) else: files.append(url) for url in locations: is_local_path = os.path.exists(url) is_file_url = url.startswith('file:') if is_local_path or is_file_url: if is_local_path: path = url else: path = url_to_path(url) if os.path.isdir(path): if expand_dir: path = os.path.realpath(path) for item in os.listdir(path): sort_path(os.path.join(path, item)) elif is_file_url: urls.append(url) else: logger.warning( "Path '{0}' is ignored: " "it is a directory.".format(path), ) elif os.path.isfile(path): sort_path(path) else: logger.warning( "Url '%s' is ignored: it is neither a file " "nor a directory.", url, ) elif is_url(url): # Only add url with clear scheme urls.append(url) else: logger.warning( "Url '%s' is ignored. It is either a non-existing " "path or lacks a specific scheme.", url, ) return files, urls class CollectedLinks(object): """ Encapsulates the return value of a call to LinkCollector.collect_links(). The return value includes both URLs to project pages containing package links, as well as individual package Link objects collected from other sources. This info is stored separately as: (1) links from the configured file locations, (2) links from the configured find_links, and (3) urls to HTML project pages, as described by the PEP 503 simple repository API. """ def __init__( self, files, # type: List[Link] find_links, # type: List[Link] project_urls, # type: List[Link] ): # type: (...) -> None """ :param files: Links from file locations. :param find_links: Links from find_links. :param project_urls: URLs to HTML project pages, as described by the PEP 503 simple repository API. """ self.files = files self.find_links = find_links self.project_urls = project_urls class LinkCollector(object): """ Responsible for collecting Link objects from all configured locations, making network requests as needed. The class's main method is its collect_links() method. """ def __init__( self, session, # type: PipSession search_scope, # type: SearchScope ): # type: (...) -> None self.search_scope = search_scope self.session = session @property def find_links(self): # type: () -> List[str] return self.search_scope.find_links def fetch_page(self, location): # type: (Link) -> Optional[HTMLPage] """ Fetch an HTML page containing package links. """ return _get_html_page(location, session=self.session) def collect_links(self, project_name): # type: (str) -> CollectedLinks """Find all available links for the given project name. :return: All the Link objects (unfiltered), as a CollectedLinks object. """ search_scope = self.search_scope index_locations = search_scope.get_index_urls_locations(project_name) index_file_loc, index_url_loc = group_locations(index_locations) fl_file_loc, fl_url_loc = group_locations( self.find_links, expand_dir=True, ) file_links = [ Link(url) for url in itertools.chain(index_file_loc, fl_file_loc) ] # We trust every directly linked archive in find_links find_link_links = [Link(url, '-f') for url in self.find_links] # We trust every url that the user has given us whether it was given # via --index-url or --find-links. # We want to filter out anything that does not have a secure origin. url_locations = [ link for link in itertools.chain( # Mark PyPI indices as "cache_link_parsing == False" -- this # will avoid caching the result of parsing the page for links. (Link(url, cache_link_parsing=False) for url in index_url_loc), (Link(url) for url in fl_url_loc), ) if self.session.is_secure_origin(link) ] url_locations = _remove_duplicate_links(url_locations) lines = [ '{} location(s) to search for versions of {}:'.format( len(url_locations), project_name, ), ] for link in url_locations: lines.append('* {}'.format(link)) logger.debug('\n'.join(lines)) return CollectedLinks( files=file_links, find_links=find_link_links, project_urls=url_locations, )
32.59276
79
0.630941
[ "MIT" ]
FFY00/pip
src/pip/_internal/index/collector.py
21,609
Python
import tarfile import re import logging from dipper.sources.Source import Source from dipper.models.assoc.OrthologyAssoc import OrthologyAssoc from dipper.models.Model import Model from dipper.models.Dataset import Dataset from dipper import config from dipper import curie_map __author__ = 'nicole' logger = logging.getLogger(__name__) class Panther(Source): """ The pairwise orthology calls from Panther DB: http://pantherdb.org/ encompass 22 species, from the RefGenome and HCOP projects. Here, we map the orthology classes to RO homology relationships This resource may be extended in the future with additional species. This currently makes a graph of orthologous relationships between genes, with the assumption that gene metadata (labels, equivalent ids) are provided from other sources. Gene families are nominally created from the orthology files, though these are incomplete with no hierarchical (subfamily) information. This will get updated from the HMM files in the future. Note that there is a fair amount of identifier cleanup performed to align with our standard CURIE prefixes. The test graph of data is output based on configured "protein" identifiers in conf.json. By default, this will produce a file with ALL orthologous relationships. IF YOU WANT ONLY A SUBSET, YOU NEED TO PROVIDE A FILTER UPON CALLING THIS WITH THE TAXON IDS """ PNTHDL = 'ftp://ftp.pantherdb.org/ortholog/current_release' files = { 'refgenome': { 'file': 'RefGenomeOrthologs.tar.gz', 'url': PNTHDL+'/RefGenomeOrthologs.tar.gz'}, 'hcop': { 'file': 'Orthologs_HCOP.tar.gz', 'url': PNTHDL+'/Orthologs_HCOP.tar.gz'} } def __init__(self, graph_type, are_bnodes_skolemized, tax_ids=None): super().__init__(graph_type, are_bnodes_skolemized, 'panther') self.tax_ids = tax_ids self.dataset = Dataset( 'panther', 'Protein ANalysis THrough Evolutionary Relationships', 'http://pantherdb.org/', None, 'http://www.pantherdb.org/terms/disclaimer.jsp') # # Defaults # if self.tax_ids is None: # self.tax_ids = [9606, 10090, 7955] if 'test_ids' not in config.get_config() \ or 'protein' not in config.get_config()['test_ids']: logger.warning("not configured with gene test ids.") else: self.test_ids = config.get_config()['test_ids']['protein'] return def fetch(self, is_dl_forced=False): """ :return: None """ self.get_files(is_dl_forced) # TODO the version number is tricky to get # we can't get it from redirects of the url # TODO use the remote timestamp of the file? return def parse(self, limit=None): """ :return: None """ if self.testOnly: self.testMode = True if self.tax_ids is None: logger.info( "No taxon filter set; Dumping all orthologous associations.") else: logger.info( "Only the following taxa will be dumped: %s", str(self.tax_ids)) self._get_orthologs(limit) return def _get_orthologs(self, limit): """ This will process each of the specified pairwise orthology files, creating orthology associations based on the specified orthology code. this currently assumes that each of the orthology files is identically formatted. Relationships are made between genes here. There is also a nominal amount of identifier re-formatting: MGI:MGI --> MGI Ensembl --> ENSEMBL we skip any genes where we don't know how to map the gene identifiers. For example, Gene:Huwe1 for RAT is not an identifier, so we skip any mappings to this identifier. Often, the there are two entries for the same gene (base on equivalent Uniprot id), and so we are not actually losing any information. We presently have a hard-coded filter to select only orthology relationships where one of the pair is in our species of interest (Mouse and Human, for the moment). This will be added as a configurable parameter in the future. Genes are also added to a grouping class defined with a PANTHER id. Triples: <gene1_id> RO:othologous <gene2_id> <assoc_id> :hasSubject <gene1_id> <assoc_id> :hasObject <gene2_id> <assoc_id> :hasPredicate <RO:orthologous> <assoc_id> dc:evidence ECO:phylogenetic_evidence <panther_id> a DATA:gene_family <panther_id> RO:has_member <gene1_id> <panther_id> RO:has_member <gene2_id> :param limit: :return: """ logger.info("getting orthologs") if self.testMode: g = self.testgraph else: g = self.graph model = Model(g) unprocessed_gene_ids = set() for k in self.files.keys(): f = '/'.join((self.rawdir, self.files[k]['file'])) matchcounter = 0 mytar = tarfile.open(f, 'r:gz') # assume that the first entry is the item fname = mytar.getmembers()[0] logger.info("Parsing %s", fname.name) line_counter = 0 with mytar.extractfile(fname) as csvfile: for line in csvfile: # skip comment lines if re.match(r'^#', line.decode()): logger.info("Skipping header line") continue line_counter += 1 # a little feedback to the user since there's so many if line_counter % 1000000 == 0: logger.info( "Processed %d lines from %s", line_counter, fname.name) line = line.decode().strip() # parse each row. ancestor_taxon is unused # HUMAN|Ensembl=ENSG00000184730|UniProtKB=Q0VD83 # MOUSE|MGI=MGI=2176230|UniProtKB=Q8VBT6 # LDO Euarchontoglires PTHR15964 (a, b, orthology_class, ancestor_taxon, panther_id) = line.split('\t') (species_a, gene_a, protein_a) = a.split('|') (species_b, gene_b, protein_b) = b.split('|') # skip the entries that don't have homolog relationships # with the test ids if self.testMode and not ( re.sub(r'UniProtKB=', '', protein_a) in self.test_ids or re.sub(r'UniProtKB=', '', protein_b) in self.test_ids): continue # map the taxon abbreviations to ncbi taxon ids taxon_a = self._map_taxon_abbr_to_id(species_a) taxon_b = self._map_taxon_abbr_to_id(species_b) # ###uncomment the following code block # if you want to filter based on taxid of favorite animals # taxids = [9606,10090,10116,7227,7955,6239,8355] # taxids = [9606] #human only # retain only those orthologous relationships to genes # in the specified taxids # using AND will get you only those associations where # gene1 AND gene2 are in the taxid list (most-filter) # using OR will get you any associations where # gene1 OR gene2 are in the taxid list (some-filter) if ( self.tax_ids is not None and (int(re.sub(r'NCBITaxon:', '', taxon_a.rstrip())) not in self.tax_ids) and (int(re.sub( r'NCBITaxon:', '', taxon_b.rstrip())) not in self.tax_ids)): continue else: matchcounter += 1 if limit is not None and matchcounter > limit: break # ### end code block for filtering on taxon # fix the gene identifiers gene_a = re.sub(r'=', ':', gene_a) gene_b = re.sub(r'=', ':', gene_b) clean_gene = self._clean_up_gene_id(gene_a, species_a) if clean_gene is None: unprocessed_gene_ids.add(gene_a) gene_a = clean_gene clean_gene = self._clean_up_gene_id(gene_b, species_b) if clean_gene is None: unprocessed_gene_ids.add(gene_b) gene_b = clean_gene # a special case here; mostly some rat genes # they use symbols instead of identifiers. will skip if gene_a is None or gene_b is None: continue rel = self._map_orthology_code_to_RO(orthology_class) evidence_id = 'ECO:0000080' # phylogenetic evidence # add the association and relevant nodes to graph assoc = OrthologyAssoc(g, self.name, gene_a, gene_b, rel) assoc.add_evidence(evidence_id) # add genes to graph; # assume labels will be taken care of elsewhere model.addClassToGraph(gene_a, None) model.addClassToGraph(gene_b, None) # might as well add the taxon info for completeness g.addTriple( gene_a, model.object_properties['in_taxon'], taxon_a) g.addTriple( gene_b, model.object_properties['in_taxon'], taxon_b) assoc.add_association_to_graph() # note this is incomplete... # it won't construct the full family hierarchy, # just the top-grouping assoc.add_gene_family_to_graph( ':'.join(('PANTHER', panther_id))) if not self.testMode \ and limit is not None and line_counter > limit: break logger.info("finished processing %s", f) logger.warning( "The following gene ids were unable to be processed: %s", str(unprocessed_gene_ids)) return @staticmethod def _map_taxon_abbr_to_id(ptax): """ Will map the panther-specific taxon abbreviations to NCBI taxon numbers :param ptax: :return: NCBITaxon id """ taxid = None ptax_to_taxid_map = { 'ANOCA': 28377, # green lizard 'ARATH': 3702, # arabadopsis 'BOVIN': 9913, # cow 'CAEEL': 6239, # worm 'CANFA': 9615, # dog 'CHICK': 9031, # chicken 'DANRE': 7955, # zebrafish 'DICDI': 44689, # discodium 'DROME': 7227, # drosophila melanogaster 'ECOLI': 562, 'HORSE': 9796, # horses 'HUMAN': 9606, # humans 'MACMU': 9544, # macaque 'MONDO': 13616, # opossum 'MOUSE': 10090, # mouse 'ORNAN': 9258, # orangutan 'PANTR': 9598, # chimp 'PIG': 9823, 'RAT': 10116, 'SCHPO': 4896, # pombe yeast 'TAKRU': 31033, # pufferfish 'XENTR': 8364, # xenopus 'YEAST': 4932, # yeast } if ptax in ptax_to_taxid_map: taxid = ':'.join(('NCBITaxon', str(ptax_to_taxid_map.get(ptax)))) else: logger.error("unmapped taxon code %s", ptax) return taxid @staticmethod def _map_orthology_code_to_RO(ortho): """ Map the panther-specific orthology code (P,O,LDO,X,LDX) to relationship-ontology identifiers. :param ortho: orthology code :return: RO identifier """ ortho_rel = OrthologyAssoc.ortho_rel ro_id = ortho_rel['orthologous'] # in orthology relationship with ortho_to_ro_map = { 'P': ortho_rel['paralogous'], 'O': ortho_rel['orthologous'], 'LDO': ortho_rel['least_diverged_orthologous'], 'X': ortho_rel['xenologous'], 'LDX': ortho_rel['xenologous'] } if ortho in ortho_to_ro_map: ro_id = ortho_to_ro_map.get(ortho) else: logger.warning( "unmapped orthology code %s. Defaulting to 'orthology'", ortho) return ro_id @staticmethod def _clean_up_gene_id(geneid, sp): """ A series of identifier rewriting to conform with standard gene identifiers. :param geneid: :param sp: :return: """ # special case for MGI geneid = re.sub(r'MGI:MGI:', 'MGI:', geneid) # rewrite Ensembl --> ENSEMBL geneid = re.sub(r'Ensembl', 'ENSEMBL', geneid) # rewrite Gene:CELE --> WormBase # these are old-school cosmid identifier geneid = re.sub(r'Gene:CELE', 'WormBase:', geneid) if sp == 'CAEEL': if re.match(r'(Gene|ENSEMBLGenome):\w+\.\d+', geneid): geneid = re.sub( r'(?:Gene|ENSEMBLGenome):(\w+\.\d+)', r'WormBase:\1', geneid) if sp == 'DROME': if re.match(r'(ENSEMBLGenome):\w+\.\d+', geneid): geneid = re.sub( r'(?:ENSEMBLGenome):(\w+\.\d+)', r'FlyBase:\1', geneid) # rewrite GeneID --> NCBIGene geneid = re.sub(r'GeneID', 'NCBIGene', geneid) # rewrite Gene:Dmel --> FlyBase geneid = re.sub(r'Gene:Dmel_', 'FlyBase:', geneid) # rewrite Gene:CG --> FlyBase:CG geneid = re.sub(r'Gene:CG', 'FlyBase:CG', geneid) # rewrite ENSEMBLGenome:FBgn --> FlyBase:FBgn geneid = re.sub(r'ENSEMBLGenome:FBgn', 'FlyBase:FBgn', geneid) # rewrite Gene:<ensembl ids> --> ENSEMBL:<id> geneid = re.sub(r'Gene:ENS', 'ENSEMBL:ENS', geneid) # rewrite Gene:<Xenbase ids> --> Xenbase:<id> geneid = re.sub(r'Gene:Xenbase:', 'Xenbase:', geneid) # TODO this would be much better done as # if foo not in curie_map: # if re.match(r'(Gene|ENSEMBLGenome):', geneid) or \ # re.match(r'Gene_ORFName', geneid) or \ # re.match(r'Gene_Name', geneid): # # logger.warning( # #"Found an identifier I don't know how to fix (species %s): %s", # # sp, geneid) pfxlcl = re.split(r':', geneid) pfx = pfxlcl[0] if pfx is None or pfx not in curie_map.get(): logger.warning("No curie prefix for (species %s): %s", sp, geneid) geneid = None return geneid def getTestSuite(self): import unittest from tests.test_panther import PantherTestCase test_suite = unittest.TestLoader().loadTestsFromTestCase( PantherTestCase) return test_suite
37.037825
79
0.544329
[ "BSD-3-Clause" ]
putmantime/dipper
dipper/sources/Panther.py
15,667
Python
# -*- coding: utf-8 -*- #------------------------------------------------------------------------- # Vulkan CTS # ---------- # # Copyright (c) 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------- import os import re import sys import copy from itertools import chain from collections import OrderedDict sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..", "scripts")) from build.common import DEQP_DIR from khr_util.format import indentLines, writeInlFile VULKAN_H = os.path.join(os.path.dirname(__file__), "src", "vulkan.h.in") VULKAN_DIR = os.path.join(os.path.dirname(__file__), "..", "framework", "vulkan") INL_HEADER = """\ /* WARNING: This is auto-generated file. Do not modify, since changes will * be lost! Modify the generating script instead. */\ """ DEFINITIONS = [ ("VK_API_VERSION_1_0", "deUint32"), ("VK_API_VERSION_1_1", "deUint32"), ("VK_MAX_PHYSICAL_DEVICE_NAME_SIZE", "size_t"), ("VK_MAX_EXTENSION_NAME_SIZE", "size_t"), ("VK_MAX_DRIVER_NAME_SIZE_KHR", "size_t"), ("VK_MAX_DRIVER_INFO_SIZE_KHR", "size_t"), ("VK_UUID_SIZE", "size_t"), ("VK_LUID_SIZE", "size_t"), ("VK_MAX_MEMORY_TYPES", "size_t"), ("VK_MAX_MEMORY_HEAPS", "size_t"), ("VK_MAX_DESCRIPTION_SIZE", "size_t"), ("VK_MAX_DEVICE_GROUP_SIZE", "size_t"), ("VK_ATTACHMENT_UNUSED", "deUint32"), ("VK_SUBPASS_EXTERNAL", "deUint32"), ("VK_QUEUE_FAMILY_IGNORED", "deUint32"), ("VK_QUEUE_FAMILY_EXTERNAL", "deUint32"), ("VK_REMAINING_MIP_LEVELS", "deUint32"), ("VK_REMAINING_ARRAY_LAYERS", "deUint32"), ("VK_WHOLE_SIZE", "vk::VkDeviceSize"), ("VK_TRUE", "vk::VkBool32"), ("VK_FALSE", "vk::VkBool32"), ] PLATFORM_TYPES = [ # VK_KHR_xlib_surface (["Display","*"], ["XlibDisplayPtr"], "void*"), (["Window"], ["XlibWindow"], "deUintptr",), (["VisualID"], ["XlibVisualID"], "deUint32"), # VK_KHR_xcb_surface (["xcb_connection_t", "*"], ["XcbConnectionPtr"], "void*"), (["xcb_window_t"], ["XcbWindow"], "deUintptr"), (["xcb_visualid_t"], ["XcbVisualid"], "deUint32"), # VK_KHR_wayland_surface (["struct", "wl_display","*"], ["WaylandDisplayPtr"], "void*"), (["struct", "wl_surface", "*"], ["WaylandSurfacePtr"], "void*"), # VK_KHR_mir_surface (["MirConnection", "*"], ["MirConnectionPtr"], "void*"), (["MirSurface", "*"], ["MirSurfacePtr"], "void*"), # VK_KHR_android_surface (["ANativeWindow", "*"], ["AndroidNativeWindowPtr"], "void*"), # VK_KHR_win32_surface (["HINSTANCE"], ["Win32InstanceHandle"], "void*"), (["HWND"], ["Win32WindowHandle"], "void*"), (["HANDLE"], ["Win32Handle"], "void*"), (["const", "SECURITY_ATTRIBUTES", "*"], ["Win32SecurityAttributesPtr"], "const void*"), (["AHardwareBuffer", "*"], ["AndroidHardwareBufferPtr"], "void*"), # VK_EXT_acquire_xlib_display (["RROutput"], ["RROutput"], "void*") ] PLATFORM_TYPE_NAMESPACE = "pt" TYPE_SUBSTITUTIONS = [ ("uint8_t", "deUint8"), ("uint16_t", "deUint16"), ("uint32_t", "deUint32"), ("uint64_t", "deUint64"), ("int8_t", "deInt8"), ("int16_t", "deInt16"), ("int32_t", "deInt32"), ("int64_t", "deInt64"), ("bool32_t", "deUint32"), ("size_t", "deUintptr"), # Platform-specific ("DWORD", "deUint32"), ("HANDLE*", PLATFORM_TYPE_NAMESPACE + "::" + "Win32Handle*"), ("LPCWSTR", "char*"), ] EXTENSION_POSTFIXES = ["KHR", "EXT", "NV", "NVX", "KHX", "NN", "MVK"] EXTENSION_POSTFIXES_STANDARD = ["KHR"] def prefixName (prefix, name): name = re.sub(r'([a-z0-9])([A-Z])', r'\1_\2', name[2:]) name = re.sub(r'([a-zA-Z])([0-9])', r'\1_\2', name) name = name.upper() name = name.replace("YCB_CR_", "YCBCR_") name = name.replace("WIN_32_", "WIN32_") name = name.replace("8_BIT_", "8BIT_") name = name.replace("16_BIT_", "16BIT_") name = name.replace("INT_64_", "INT64_") name = name.replace("D_3_D_12_", "D3D12_") name = name.replace("IOSSURFACE_", "IOS_SURFACE_") name = name.replace("MAC_OS", "MACOS_") name = name.replace("TEXTURE_LOD", "TEXTURE_LOD_") name = name.replace("VIEWPORT_W", "VIEWPORT_W_") name = name.replace("_IDPROPERTIES", "_ID_PROPERTIES") name = name.replace("PHYSICAL_DEVICE_FLOAT_16_INT_8_FEATURES", "PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES") return prefix + name class Version: def __init__ (self, versionTuple): self.major = versionTuple[0] self.minor = versionTuple[1] self.patch = versionTuple[2] def getInHex (self): if self.major == 1 and self.minor == 0 and self.patch == 0: return "VK_API_VERSION_1_0" elif self.major == 1 and self.minor == 1 and self.patch == 0: return "VK_API_VERSION_1_1" else: hex = (self.major << 22) | (self.minor << 12) | self.patch return '0x%Xu' % (hex) def isStandardVersion (self): if self.patch != 0: return False if self.major != 1: return False if self.minor != 1 and self.minor != 0: return False return True def getBestRepresentation (self): if self.isStandardVersion(): return self.getInHex() return self.getDefineName() def getDefineName (self): return 'VERSION_%d_%d_%d' % (self.major, self.minor, self.patch) def __hash__ (self): return (self.major << 22) | (self.minor << 12) | self.patch def __eq__ (self, other): return self.major == other.major and self.minor == other.minor and self.patch == other.patch def __str__ (self): return self.getBestRepresentation() class Handle: TYPE_DISP = 0 TYPE_NONDISP = 1 def __init__ (self, type, name): self.type = type self.name = name self.alias = None self.isAlias = False def getHandleType (self): return prefixName("HANDLE_TYPE_", self.name) def checkAliasValidity (self): pass def __repr__ (self): return '%s (%s, %s)' % (self.name, self.alias, self.isAlias) class Definition: def __init__ (self, type, name, value): self.type = type self.name = name self.value = value self.alias = None self.isAlias = False def __repr__ (self): return '%s = %s (%s)' % (self.name, self.value, self.type) class Enum: def __init__ (self, name, values): self.name = name self.values = values self.alias = None self.isAlias = False def checkAliasValidity (self): if self.alias != None: if len(self.values) != len(self.alias.values): raise Exception("%s has different number of flags than its alias %s." % (self.name, self.alias.name)) for index, value in enumerate(self.values): aliasVal = self.alias.values[index] if value[1] != aliasVal[1] or not (value[0].startswith(aliasVal[0]) or aliasVal[0].startswith(value[0])): raise Exception("Flag %s of %s has different value than %s of %s." % (self.alias.values[index], self.alias.name, value, self.name)) def __repr__ (self): return '%s (%s) %s' % (self.name, self.alias, self.values) class Bitfield: def __init__ (self, name, values): self.name = name self.values = values self.alias = None self.isAlias = False def checkAliasValidity (self): if self.alias != None: if len(self.values) != len(self.alias.values): raise Exception("%s has different number of flags than its alias %s." % (self.name, self.alias.name)) for index, value in enumerate(self.values): aliasVal = self.alias.values[index] if value[1] != aliasVal[1] or not (value[0].startswith(aliasVal[0]) or aliasVal[0].startswith(value[0])): raise Exception("Flag %s of %s has different value than %s of %s." % (self.alias.values[index], self.alias.name, value, self.name)) def __repr__ (self): return '%s (%s)' % (self.name, self.alias) class Variable: def __init__ (self, type, name, arraySize): type = type.replace('*',' *').replace('&',' &') for src, dst in TYPE_SUBSTITUTIONS: type = type.replace(src, dst) self.type = type.split(' ') for platformType, substitute, compat in PLATFORM_TYPES: range = self.contains(self.type, platformType) if range != None: self.type = self.type[:range[0]]+[PLATFORM_TYPE_NAMESPACE + '::' + substitute[0]] + substitute[1:] + self.type[range[1]:] break self.name = name self.arraySize = arraySize def contains(self, big, small): for i in xrange(len(big)-len(small)+1): for j in xrange(len(small)): if big[i+j] != small[j]: break else: return i, i+len(small) return None def getType (self): return ' '.join(self.type).replace(' *','*').replace(' &','&') def getAsString (self, separator): return '%s%s%s%s' % (self.getType(), separator, self.name, self.arraySize) def __repr__ (self): return '<%s> <%s> <%s>' % (self.type, self.name, self.arraySize) def __eq__ (self, other): if len(self.type) != len(other.type): return False for index, type in enumerate(self.type): if "*" == type or "&" == type or "const" == type or "volatile" == type: if type != other.type[index]: return False elif type != other.type[index] and \ type not in map(lambda ext: other.type[index] + ext, EXTENSION_POSTFIXES_STANDARD) and \ other.type[index] not in map(lambda ext: type + ext, EXTENSION_POSTFIXES_STANDARD): return False return self.arraySize == other.arraySize def __ne__ (self, other): return not self == other class CompositeType: CLASS_STRUCT = 0 CLASS_UNION = 1 def __init__ (self, typeClass, name, members): self.typeClass = typeClass self.name = name self.members = members self.alias = None self.isAlias = False def getClassName (self): names = {CompositeType.CLASS_STRUCT: 'struct', CompositeType.CLASS_UNION: 'union'} return names[self.typeClass] def checkAliasValidity (self): if self.alias != None: if len(self.members) != len(self.alias.members): raise Exception("%s has different number of members than its alias %s." % (self.name, self.alias.name)) for index, member in enumerate(self.members ): break #if member != self.alias.members[index]: #raise Exception("Member %s of %s is different than core member %s in %s." % (self.alias.members[index], self.alias.name, member, self.name)) #raise Exception("Member ",str(self.alias.members[index])," of ", str(self.alias.name)," is different than core member ", str(member)," in ", str(self.name),".") def __repr__ (self): return '%s (%s)' % (self.name, self.alias) class Function: TYPE_PLATFORM = 0 # Not bound to anything TYPE_INSTANCE = 1 # Bound to VkInstance TYPE_DEVICE = 2 # Bound to VkDevice def __init__ (self, name, returnType, arguments, apiVersion = None): self.name = name self.returnType = returnType self.arguments = arguments self.alias = None self.isAlias = False self.apiVersion = apiVersion def getType (self): # Special functions if self.name == "vkGetInstanceProcAddr": return Function.TYPE_PLATFORM assert len(self.arguments) > 0 firstArgType = self.arguments[0].getType() if firstArgType in ["VkInstance", "VkPhysicalDevice"]: return Function.TYPE_INSTANCE elif firstArgType in ["VkDevice", "VkCommandBuffer", "VkQueue"]: return Function.TYPE_DEVICE else: return Function.TYPE_PLATFORM def checkAliasValidity (self): if self.alias != None: if len(self.arguments) != len(self.alias.arguments): raise Exception("%s has different number of arguments than its alias %s." % (self.name, self.alias.name)) if self.returnType != self.alias.returnType or not (self.returnType.startswith(self.alias.returnType) or self.alias.returnType.startswith(self.returnType)): raise Exception("%s has different return value's type than its alias %s." % (self.name, self.alias.name)) for index, argument in enumerate(self.arguments): if argument != self.alias.arguments[index]: raise Exception("argument %s: \"%s\" of %s is different than \"%s\" of %s." % (index, self.alias.arguments[index].getAsString(' '), self.alias.name, argument.getAsString(' '), self.name)) def __repr__ (self): return '%s (%s)' % (self.name, self.alias) class Extension: def __init__ (self, name, handles, enums, bitfields, compositeTypes, functions, definitions, additionalDefinitions, versionInCore): self.name = name self.definitions = definitions self.additionalDefs = additionalDefinitions self.handles = handles self.enums = enums self.bitfields = bitfields self.compositeTypes = compositeTypes self.functions = functions self.versionInCore = versionInCore def __repr__ (self): return 'EXT:\n%s ->\nENUMS:\n%s\nCOMPOS:\n%s\nFUNCS:\n%s\nBITF:\n%s\nHAND:\n%s\nDEFS:\n%s\n' % (self.name, self.enums, self.compositeTypes, self.functions, self.bitfields, self.handles, self.definitions, self.versionInCore) class API: def __init__ (self, definitions, handles, enums, bitfields, compositeTypes, functions, extensions): self.definitions = definitions self.handles = handles self.enums = enums self.bitfields = bitfields self.compositeTypes = compositeTypes self.functions = functions # \note contains extension functions as well self.extensions = extensions def readFile (filename): with open(filename, 'rb') as f: return f.read() IDENT_PTRN = r'[a-zA-Z_][a-zA-Z0-9_]*' TYPE_PTRN = r'[a-zA-Z_][a-zA-Z0-9_ \t*&]*' def fixupEnumValues (values): fixed = [] for name, value in values: if "_BEGIN_RANGE" in name or "_END_RANGE" in name: continue fixed.append((name, value)) return fixed def getInterfaceName (function): assert function.name[:2] == "vk" return function.name[2].lower() + function.name[3:] def getFunctionTypeName (function): assert function.name[:2] == "vk" return function.name[2:] + "Func" def endsWith (str, postfix): return str[-len(postfix):] == postfix def splitNameExtPostfix (name): knownExtPostfixes = EXTENSION_POSTFIXES for postfix in knownExtPostfixes: if endsWith(name, postfix): return (name[:-len(postfix)], postfix) return (name, "") def getBitEnumNameForBitfield (bitfieldName): bitfieldName, postfix = splitNameExtPostfix(bitfieldName) assert bitfieldName[-1] == "s" return bitfieldName[:-1] + "Bits" + postfix def getBitfieldNameForBitEnum (bitEnumName): bitEnumName, postfix = splitNameExtPostfix(bitEnumName) assert bitEnumName[-4:] == "Bits" return bitEnumName[:-4] + "s" + postfix def parsePreprocDefinedValue (src, name): value = parsePreprocDefinedValueOptional(src, name) if value is None: raise Exception("No such definition: %s" % name) return value def parsePreprocDefinedValueOptional (src, name): definition = re.search(r'#\s*define\s+' + name + r'\s+([^\n]+)\n', src) if definition is None: return None value = definition.group(1).strip() if value == "UINT32_MAX": value = "(~0u)" return value def parseEnum (name, src): keyValuePtrn = '(' + IDENT_PTRN + r')\s*=\s*([^\s,}]+)\s*[,}]' matches = re.findall(keyValuePtrn, src) return Enum(name, fixupEnumValues(matches)) # \note Parses raw enums, some are mapped to bitfields later def parseEnums (src): matches = re.findall(r'typedef enum(\s*' + IDENT_PTRN + r')?\s*{([^}]*)}\s*(' + IDENT_PTRN + r')\s*;', src) enums = [] for enumname, contents, typename in matches: enums.append(parseEnum(typename, contents)) return enums def parseCompositeType (type, name, src): typeNamePtrn = r'(' + TYPE_PTRN + r')(\s+' + IDENT_PTRN + r')((\[[^\]]+\])*)\s*;' matches = re.findall(typeNamePtrn, src) members = [Variable(t.strip(), n.strip(), a.strip()) for t, n, a, _ in matches] return CompositeType(type, name, members) def parseCompositeTypes (src): typeMap = { 'struct': CompositeType.CLASS_STRUCT, 'union': CompositeType.CLASS_UNION } matches = re.findall(r'typedef (struct|union)(\s*' + IDENT_PTRN + r')?\s*{([^}]*)}\s*(' + IDENT_PTRN + r')\s*;', src) types = [] for type, structname, contents, typename in matches: types.append(parseCompositeType(typeMap[type], typename, contents)) return types def parseHandles (src): matches = re.findall(r'VK_DEFINE(_NON_DISPATCHABLE|)_HANDLE\((' + IDENT_PTRN + r')\)[ \t]*[\n\r]', src) handles = [] typeMap = {'': Handle.TYPE_DISP, '_NON_DISPATCHABLE': Handle.TYPE_NONDISP} for type, name in matches: handle = Handle(typeMap[type], name) handles.append(handle) return handles def parseArgList (src): typeNamePtrn = r'(' + TYPE_PTRN + r')(\s+' + IDENT_PTRN + r')((\[[^\]]+\])*)\s*' args = [] for rawArg in src.split(','): m = re.search(typeNamePtrn, rawArg) args.append(Variable(m.group(1).strip(), m.group(2).strip(), m.group(3))) return args def removeTypeExtPostfix (name): for extPostfix in EXTENSION_POSTFIXES_STANDARD: if endsWith(name, extPostfix): return name[0:-len(extPostfix)] return None def populateAliases (objects): objectsByName = {} for object in objects: objectsByName[object.name] = object for object in objects: withoutPostfix = removeTypeExtPostfix(object.name) if withoutPostfix != None and withoutPostfix in objectsByName: objectsByName[withoutPostfix].alias = object object.isAlias = True for object in objects: object.checkAliasValidity() def populateAliasesWithTypedefs (objects, src): objectsByName = {} for object in objects: objectsByName[object.name] = object ptrn = r'\s*typedef\s+' + object.name + r'\s+([^;]+)' stash = re.findall(ptrn, src) if len(stash) == 1: objExt = copy.deepcopy(object) objExt.name = stash[0] object.alias = objExt objExt.isAlias = True objects.append(objExt) def removeAliasedValues (enum): valueByName = {} for name, value in enum.values: valueByName[name] = value def removeDefExtPostfix (name): for extPostfix in EXTENSION_POSTFIXES: if endsWith(name, "_" + extPostfix): return name[0:-(len(extPostfix)+1)] return None newValues = [] for name, value in enum.values: withoutPostfix = removeDefExtPostfix(name) if withoutPostfix != None and withoutPostfix in valueByName and valueByName[withoutPostfix] == value: continue newValues.append((name, value)) enum.values = newValues def parseFunctions (src): ptrn = r'VKAPI_ATTR\s+(' + TYPE_PTRN + ')\s+VKAPI_CALL\s+(' + IDENT_PTRN + r')\s*\(([^)]*)\)\s*;' matches = re.findall(ptrn, src) functions = [] for returnType, name, argList in matches: functions.append(Function(name.strip(), returnType.strip(), parseArgList(argList))) return functions def parseFunctionsByVersion (src): ptrnVer10 = 'VK_VERSION_1_0 1' ptrnVer11 = 'VK_VERSION_1_1 1' matchVer10 = re.search(ptrnVer10, src) matchVer11 = re.search(ptrnVer11, src) ptrn = r'VKAPI_ATTR\s+(' + TYPE_PTRN + ')\s+VKAPI_CALL\s+(' + IDENT_PTRN + r')\s*\(([^)]*)\)\s*;' regPtrn = re.compile(ptrn) matches = regPtrn.findall(src, matchVer10.start(), matchVer11.start()) functions = [] for returnType, name, argList in matches: functions.append(Function(name.strip(), returnType.strip(), parseArgList(argList), 'VK_VERSION_1_0')) matches = regPtrn.findall(src, matchVer11.start()) for returnType, name, argList in matches: functions.append(Function(name.strip(), returnType.strip(), parseArgList(argList), 'VK_VERSION_1_1')) return functions def splitByExtension (src): ptrn = r'#define\s+[A-Z0-9_]+_EXTENSION_NAME\s+"([^"]+)"' match = "#define\s+(" for part in re.finditer(ptrn, src): match += part.group(1)+"|" match = match[:-1] + ")\s+1" parts = re.split(match, src) # First part is core byExtension = [(None, parts[0])] for ndx in range(1, len(parts), 2): byExtension.append((parts[ndx], parts[ndx+1])) return byExtension def parseDefinitions (extensionName, src): def skipDefinition (extensionName, definition): if extensionName == None: return True # SPEC_VERSION enums if definition[0].startswith(extensionName.upper()) and definition[1].isdigit(): return False if definition[0].startswith(extensionName.upper()): return True if definition[1].isdigit(): return True return False ptrn = r'#define\s+([^\s]+)\s+([^\r\n]+)' matches = re.findall(ptrn, src) return [Definition(None, match[0], match[1]) for match in matches if not skipDefinition(extensionName, match)] def parseExtensions (src, allFunctions, allCompositeTypes, allEnums, allBitfields, allHandles, allDefinitions): def getCoreVersion (extensionTuple): if not extensionTuple[0]: return None ptrn = r'\/\/\s*' + extensionTuple[0] + r'\s+(DEVICE|INSTANCE)\s+([0-9_]+)' coreVersion = re.search(ptrn, extensionTuple[1], re.I) if coreVersion != None: return [coreVersion.group(1)] + [int(number) for number in coreVersion.group(2).split('_')[:3]] return None splitSrc = splitByExtension(src) extensions = [] functionsByName = {function.name: function for function in allFunctions} compositeTypesByName = {compType.name: compType for compType in allCompositeTypes} enumsByName = {enum.name: enum for enum in allEnums} bitfieldsByName = {bitfield.name: bitfield for bitfield in allBitfields} handlesByName = {handle.name: handle for handle in allHandles} definitionsByName = {definition.name: definition for definition in allDefinitions} for extensionName, extensionSrc in splitSrc: definitions = [Definition(type, name, parsePreprocDefinedValueOptional(extensionSrc, name)) for name, type in DEFINITIONS] definitions = [definition for definition in definitions if definition.value != None] additionalDefinitions = parseDefinitions(extensionName, extensionSrc) handles = parseHandles(extensionSrc) functions = parseFunctions(extensionSrc) compositeTypes = parseCompositeTypes(extensionSrc) rawEnums = parseEnums(extensionSrc) bitfieldNames = parseBitfieldNames(extensionSrc) enumBitfieldNames = [getBitEnumNameForBitfield(name) for name in bitfieldNames] enums = [enum for enum in rawEnums if enum.name not in enumBitfieldNames] extCoreVersion = getCoreVersion((extensionName, extensionSrc)) extFunctions = [functionsByName[function.name] for function in functions] extCompositeTypes = [compositeTypesByName[compositeType.name] for compositeType in compositeTypes] extEnums = [enumsByName[enum.name] for enum in enums] extBitfields = [bitfieldsByName[bitfieldName] for bitfieldName in bitfieldNames] extHandles = [handlesByName[handle.name] for handle in handles] extDefinitions = [definitionsByName[definition.name] for definition in definitions] extensions.append(Extension(extensionName, extHandles, extEnums, extBitfields, extCompositeTypes, extFunctions, extDefinitions, additionalDefinitions, extCoreVersion)) return extensions def parseBitfieldNames (src): ptrn = r'typedef\s+VkFlags\s(' + IDENT_PTRN + r')\s*;' matches = re.findall(ptrn, src) return matches def parseAPI (src): definitions = [Definition(type, name, parsePreprocDefinedValue(src, name)) for name, type in DEFINITIONS] handles = parseHandles(src) rawEnums = parseEnums(src) bitfieldNames = parseBitfieldNames(src) enums = [] bitfields = [] bitfieldEnums = set([getBitEnumNameForBitfield(n) for n in bitfieldNames if getBitEnumNameForBitfield(n) in [enum.name for enum in rawEnums]]) compositeTypes = parseCompositeTypes(src) allFunctions = parseFunctionsByVersion(src) for enum in rawEnums: if enum.name in bitfieldEnums: bitfields.append(Bitfield(getBitfieldNameForBitEnum(enum.name), enum.values)) else: enums.append(enum) for bitfieldName in bitfieldNames: if not bitfieldName in [bitfield.name for bitfield in bitfields]: # Add empty bitfield bitfields.append(Bitfield(bitfieldName, [])) # Populate alias fields populateAliasesWithTypedefs(compositeTypes, src) populateAliasesWithTypedefs(enums, src) populateAliasesWithTypedefs(bitfields, src) populateAliases(allFunctions) populateAliases(handles) populateAliases(enums) populateAliases(bitfields) populateAliases(compositeTypes) for enum in enums: removeAliasedValues(enum) extensions = parseExtensions(src, allFunctions, compositeTypes, enums, bitfields, handles, definitions) return API( definitions = definitions, handles = handles, enums = enums, bitfields = bitfields, compositeTypes = compositeTypes, functions = allFunctions, extensions = extensions) def splitUniqueAndDuplicatedEntries (handles): listOfUniqueHandles = [] duplicates = OrderedDict() for handle in handles: if handle.alias != None: duplicates[handle.alias] = handle if not handle.isAlias: listOfUniqueHandles.append(handle) return listOfUniqueHandles, duplicates def writeHandleType (api, filename): uniqeHandles, duplicatedHandles = splitUniqueAndDuplicatedEntries(api.handles) def genHandles (): yield "\t%s\t= 0," % uniqeHandles[0].getHandleType() for handle in uniqeHandles[1:]: yield "\t%s," % handle.getHandleType() for duplicate in duplicatedHandles: yield "\t%s\t= %s," % (duplicate.getHandleType(), duplicatedHandles[duplicate].getHandleType()) yield "\tHANDLE_TYPE_LAST\t= %s + 1" % (uniqeHandles[-1].getHandleType()) def genHandlesBlock (): yield "enum HandleType" yield "{" for line in indentLines(genHandles()): yield line yield "};" yield "" writeInlFile(filename, INL_HEADER, genHandlesBlock()) def getEnumValuePrefix (enum): prefix = enum.name[0] for i in range(1, len(enum.name)): if enum.name[i].isupper() and not enum.name[i-1].isupper(): prefix += "_" prefix += enum.name[i].upper() return prefix def parseInt (value): if value[:2] == "0x": return int(value, 16) else: return int(value, 10) def areEnumValuesLinear (enum): curIndex = 0 for name, value in enum.values: if parseInt(value) != curIndex: return False curIndex += 1 return True def genEnumSrc (enum): yield "enum %s" % enum.name yield "{" for line in indentLines(["\t%s\t= %s," % v for v in enum.values]): yield line if areEnumValuesLinear(enum): yield "" yield "\t%s_LAST" % getEnumValuePrefix(enum) yield "};" def genBitfieldSrc (bitfield): if len(bitfield.values) > 0: yield "enum %s" % getBitEnumNameForBitfield(bitfield.name) yield "{" for line in indentLines(["\t%s\t= %s," % v for v in bitfield.values]): yield line yield "};" yield "typedef deUint32 %s;" % bitfield.name def genCompositeTypeSrc (type): yield "%s %s" % (type.getClassName(), type.name) yield "{" for line in indentLines(['\t'+m.getAsString('\t')+';' for m in type.members]): yield line yield "};" def genHandlesSrc (handles): uniqeHandles, duplicatedHandles = splitUniqueAndDuplicatedEntries(handles) def genLines (handles): for handle in uniqeHandles: if handle.type == Handle.TYPE_DISP: yield "VK_DEFINE_HANDLE\t(%s,\t%s);" % (handle.name, handle.getHandleType()) elif handle.type == Handle.TYPE_NONDISP: yield "VK_DEFINE_NON_DISPATCHABLE_HANDLE\t(%s,\t%s);" % (handle.name, handle.getHandleType()) for duplicate in duplicatedHandles: if duplicate.type == Handle.TYPE_DISP: yield "VK_DEFINE_HANDLE\t(%s,\t%s);" % (duplicate.name, duplicatedHandles[duplicate].getHandleType()) elif duplicate.type == Handle.TYPE_NONDISP: yield "VK_DEFINE_NON_DISPATCHABLE_HANDLE\t(%s,\t%s);" % (duplicate.name, duplicatedHandles[duplicate].getHandleType()) for line in indentLines(genLines(handles)): yield line def genDefinitionsSrc (definitions): for line in ["#define %s\t(static_cast<%s>\t(%s))" % (definition.name, definition.type, definition.value) for definition in definitions]: yield line def genDefinitionsAliasSrc (definitions): for line in ["#define %s\t%s" % (definition.name, definitions[definition].name) for definition in definitions]: if definition.value != definitions[definition].value and definition.value != definitions[definition].name: raise Exception("Value of %s (%s) is different than core definition value %s (%s)." % (definition.name, definition.value, definitions[definition].name, definitions[definition].value)) yield line def writeBasicTypes (api, filename): def gen (): definitionsCore, definitionDuplicates = splitUniqueAndDuplicatedEntries(api.definitions) for line in indentLines(chain(genDefinitionsSrc(definitionsCore), genDefinitionsAliasSrc(definitionDuplicates))): yield line yield "" for line in genHandlesSrc(api.handles): yield line yield "" for enum in api.enums: if not enum.isAlias: for line in genEnumSrc(enum): yield line yield "" for bitfield in api.bitfields: if not bitfield.isAlias: for line in genBitfieldSrc(bitfield): yield line yield "" for line in indentLines(["VK_DEFINE_PLATFORM_TYPE(%s,\t%s);" % (s[0], c) for n, s, c in PLATFORM_TYPES]): yield line for ext in api.extensions: if ext.additionalDefs != None: for definition in ext.additionalDefs: yield "#define " + definition.name + " " + definition.value writeInlFile(filename, INL_HEADER, gen()) def writeCompositeTypes (api, filename): def gen (): for type in api.compositeTypes: type.checkAliasValidity() if not type.isAlias: for line in genCompositeTypeSrc(type): yield line yield "" writeInlFile(filename, INL_HEADER, gen()) def argListToStr (args): return ", ".join(v.getAsString(' ') for v in args) def writeInterfaceDecl (api, filename, functionTypes, concrete): def genProtos (): postfix = "" if concrete else " = 0" for function in api.functions: if not function.getType() in functionTypes: continue if not function.isAlias: yield "virtual %s\t%s\t(%s) const%s;" % (function.returnType, getInterfaceName(function), argListToStr(function.arguments), postfix) writeInlFile(filename, INL_HEADER, indentLines(genProtos())) def writeFunctionPtrTypes (api, filename): def genTypes (): for function in api.functions: yield "typedef VKAPI_ATTR %s\t(VKAPI_CALL* %s)\t(%s);" % (function.returnType, getFunctionTypeName(function), argListToStr(function.arguments)) writeInlFile(filename, INL_HEADER, indentLines(genTypes())) def writeFunctionPointers (api, filename, functionTypes): def FunctionsYielder (): for function in api.functions: if function.getType() in functionTypes: if function.isAlias: if function.getType() == Function.TYPE_INSTANCE and function.arguments[0].getType() == "VkPhysicalDevice": yield "%s\t%s;" % (getFunctionTypeName(function), getInterfaceName(function)) else: yield "%s\t%s;" % (getFunctionTypeName(function), getInterfaceName(function)) writeInlFile(filename, INL_HEADER, indentLines(FunctionsYielder())) def writeInitFunctionPointers (api, filename, functionTypes, cond = None): def makeInitFunctionPointers (): for function in api.functions: if function.getType() in functionTypes and (cond == None or cond(function)): interfaceName = getInterfaceName(function) if function.isAlias: if function.getType() == Function.TYPE_INSTANCE and function.arguments[0].getType() == "VkPhysicalDevice": yield "m_vk.%s\t= (%s)\tGET_PROC_ADDR(\"%s\");" % (getInterfaceName(function), getFunctionTypeName(function), function.name) else: yield "m_vk.%s\t= (%s)\tGET_PROC_ADDR(\"%s\");" % (getInterfaceName(function), getFunctionTypeName(function), function.name) if function.alias != None: yield "if (!m_vk.%s)" % (getInterfaceName(function)) yield " m_vk.%s\t= (%s)\tGET_PROC_ADDR(\"%s\");" % (getInterfaceName(function), getFunctionTypeName(function), function.alias.name) lines = [line.replace(' ', '\t') for line in indentLines(makeInitFunctionPointers())] writeInlFile(filename, INL_HEADER, lines) def writeFuncPtrInterfaceImpl (api, filename, functionTypes, className): def makeFuncPtrInterfaceImpl (): for function in api.functions: if function.getType() in functionTypes and not function.isAlias: yield "" yield "%s %s::%s (%s) const" % (function.returnType, className, getInterfaceName(function), argListToStr(function.arguments)) yield "{" if function.name == "vkEnumerateInstanceVersion": yield " if (m_vk.enumerateInstanceVersion)" yield " return m_vk.enumerateInstanceVersion(pApiVersion);" yield "" yield " *pApiVersion = VK_API_VERSION_1_0;" yield " return VK_SUCCESS;" elif function.getType() == Function.TYPE_INSTANCE and function.arguments[0].getType() == "VkPhysicalDevice" and function.alias != None: yield " vk::VkPhysicalDeviceProperties props;" yield " m_vk.getPhysicalDeviceProperties(physicalDevice, &props);" yield " if (props.apiVersion >= VK_API_VERSION_1_1)" yield " %sm_vk.%s(%s);" % ("return " if function.returnType != "void" else "", getInterfaceName(function), ", ".join(a.name for a in function.arguments)) yield " else" yield " %sm_vk.%s(%s);" % ("return " if function.returnType != "void" else "", getInterfaceName(function.alias), ", ".join(a.name for a in function.arguments)) else: yield " %sm_vk.%s(%s);" % ("return " if function.returnType != "void" else "", getInterfaceName(function), ", ".join(a.name for a in function.arguments)) yield "}" writeInlFile(filename, INL_HEADER, makeFuncPtrInterfaceImpl()) def writeStrUtilProto (api, filename): def makeStrUtilProto (): for line in indentLines(["const char*\tget%sName\t(%s value);" % (enum.name[2:], enum.name) for enum in api.enums if not enum.isAlias]): yield line yield "" for line in indentLines(["inline tcu::Format::Enum<%s>\tget%sStr\t(%s value)\t{ return tcu::Format::Enum<%s>(get%sName, value);\t}" % (e.name, e.name[2:], e.name, e.name, e.name[2:]) for e in api.enums if not e.isAlias]): yield line yield "" for line in indentLines(["inline std::ostream&\toperator<<\t(std::ostream& s, %s value)\t{ return s << get%sStr(value);\t}" % (e.name, e.name[2:]) for e in api.enums if not e.isAlias]): yield line yield "" for line in indentLines(["tcu::Format::Bitfield<32>\tget%sStr\t(%s value);" % (bitfield.name[2:], bitfield.name) for bitfield in api.bitfields if not bitfield.isAlias]): yield line yield "" for line in indentLines(["std::ostream&\toperator<<\t(std::ostream& s, const %s& value);" % (s.name) for s in api.compositeTypes if not s.isAlias]): yield line writeInlFile(filename, INL_HEADER, makeStrUtilProto()) def writeStrUtilImpl (api, filename): def makeStrUtilImpl (): for line in indentLines(["template<> const char*\tgetTypeName<%s>\t(void) { return \"%s\";\t}" % (handle.name, handle.name) for handle in api.handles if not handle.isAlias]): yield line yield "" yield "namespace %s" % PLATFORM_TYPE_NAMESPACE yield "{" for line in indentLines("std::ostream& operator<< (std::ostream& s, %s\tv) { return s << tcu::toHex(v.internal); }" % ''.join(s) for n, s, c in PLATFORM_TYPES): yield line yield "}" for enum in api.enums: if enum.isAlias: continue yield "" yield "const char* get%sName (%s value)" % (enum.name[2:], enum.name) yield "{" yield "\tswitch (value)" yield "\t{" for line in indentLines(["\t\tcase %s:\treturn \"%s\";" % (n, n) for n, v in enum.values] + ["\t\tdefault:\treturn DE_NULL;"]): yield line yield "\t}" yield "}" for bitfield in api.bitfields: if bitfield.isAlias: continue yield "" yield "tcu::Format::Bitfield<32> get%sStr (%s value)" % (bitfield.name[2:], bitfield.name) yield "{" if len(bitfield.values) > 0: yield "\tstatic const tcu::Format::BitDesc s_desc[] =" yield "\t{" for line in indentLines(["\t\ttcu::Format::BitDesc(%s,\t\"%s\")," % (n, n) for n, v in bitfield.values]): yield line yield "\t};" yield "\treturn tcu::Format::Bitfield<32>(value, DE_ARRAY_BEGIN(s_desc), DE_ARRAY_END(s_desc));" else: yield "\treturn tcu::Format::Bitfield<32>(value, DE_NULL, DE_NULL);" yield "}" bitfieldTypeNames = set([bitfield.name for bitfield in api.bitfields]) for type in api.compositeTypes: if not type.isAlias: yield "" yield "std::ostream& operator<< (std::ostream& s, const %s& value)" % type.name yield "{" yield "\ts << \"%s = {\\n\";" % type.name for member in type.members: memberName = member.name valFmt = None newLine = "" if member.getType() in bitfieldTypeNames: valFmt = "get%sStr(value.%s)" % (member.getType()[2:], member.name) elif member.getType() == "const char*" or member.getType() == "char*": valFmt = "getCharPtrStr(value.%s)" % member.name elif member.arraySize != '': if member.name in ["extensionName", "deviceName", "layerName", "description"]: valFmt = "(const char*)value.%s" % member.name elif member.getType() == 'char' or member.getType() == 'deUint8': newLine = "'\\n' << " valFmt = "tcu::formatArray(tcu::Format::HexIterator<%s>(DE_ARRAY_BEGIN(value.%s)), tcu::Format::HexIterator<%s>(DE_ARRAY_END(value.%s)))" % (member.getType(), member.name, member.getType(), member.name) else: if member.name == "memoryTypes" or member.name == "memoryHeaps": endIter = "DE_ARRAY_BEGIN(value.%s) + value.%sCount" % (member.name, member.name[:-1]) else: endIter = "DE_ARRAY_END(value.%s)" % member.name newLine = "'\\n' << " valFmt = "tcu::formatArray(DE_ARRAY_BEGIN(value.%s), %s)" % (member.name, endIter) memberName = member.name else: valFmt = "value.%s" % member.name yield ("\ts << \"\\t%s = \" << " % memberName) + newLine + valFmt + " << '\\n';" yield "\ts << '}';" yield "\treturn s;" yield "}" writeInlFile(filename, INL_HEADER, makeStrUtilImpl()) class ConstructorFunction: def __init__ (self, type, name, objectType, ifaceArgs, arguments): self.type = type self.name = name self.objectType = objectType self.ifaceArgs = ifaceArgs self.arguments = arguments def getConstructorFunctions (api): funcs = [] ifacesDict = { Function.TYPE_PLATFORM: [Variable("const PlatformInterface&", "vk", "")], Function.TYPE_INSTANCE: [Variable("const InstanceInterface&", "vk", "")], Function.TYPE_DEVICE: [Variable("const DeviceInterface&", "vk", "")] } for function in api.functions: if function.isAlias: continue if (function.name[:8] == "vkCreate" or function.name == "vkAllocateMemory") and not "createInfoCount" in [a.name for a in function.arguments]: if function.name == "vkCreateDisplayModeKHR": continue # No way to delete display modes (bug?) # \todo [pyry] Rather hacky ifaceArgs = ifacesDict[function.getType()] if function.name == "vkCreateDevice": ifaceArgs = [Variable("const PlatformInterface&", "vkp", ""), Variable("VkInstance", "instance", "")] + ifaceArgs assert (function.arguments[-2].type == ["const", "VkAllocationCallbacks", "*"]) objectType = function.arguments[-1].type[0] #not getType() but type[0] on purpose arguments = function.arguments[:-1] funcs.append(ConstructorFunction(function.getType(), getInterfaceName(function), objectType, ifaceArgs, arguments)) return funcs def addVersionDefines(versionSpectrum): output = ["#define " + ver.getDefineName() + " " + ver.getInHex() for ver in versionSpectrum if not ver.isStandardVersion()] return output def removeVersionDefines(versionSpectrum): output = ["#undef " + ver.getDefineName() for ver in versionSpectrum if not ver.isStandardVersion()] return output def writeRefUtilProto (api, filename): functions = getConstructorFunctions(api) def makeRefUtilProto (): unindented = [] for line in indentLines(["Move<%s>\t%s\t(%s = DE_NULL);" % (function.objectType, function.name, argListToStr(function.ifaceArgs + function.arguments)) for function in functions]): yield line writeInlFile(filename, INL_HEADER, makeRefUtilProto()) def writeRefUtilImpl (api, filename): functions = getConstructorFunctions(api) def makeRefUtilImpl (): yield "namespace refdetails" yield "{" yield "" for function in api.functions: if function.getType() == Function.TYPE_DEVICE \ and (function.name[:9] == "vkDestroy" or function.name == "vkFreeMemory") \ and not function.name == "vkDestroyDevice" \ and not function.isAlias: objectType = function.arguments[-2].getType() yield "template<>" yield "void Deleter<%s>::operator() (%s obj) const" % (objectType, objectType) yield "{" yield "\tm_deviceIface->%s(m_device, obj, m_allocator);" % (getInterfaceName(function)) yield "}" yield "" yield "} // refdetails" yield "" dtorDict = { Function.TYPE_PLATFORM: "object", Function.TYPE_INSTANCE: "instance", Function.TYPE_DEVICE: "device" } for function in functions: deleterArgsString = '' if function.name == "createDevice": # createDevice requires two additional parameters to setup VkDevice deleter deleterArgsString = "vkp, instance, object, " + function.arguments[-1].name else: deleterArgsString = "vk, %s, %s" % (dtorDict[function.type], function.arguments[-1].name) yield "Move<%s> %s (%s)" % (function.objectType, function.name, argListToStr(function.ifaceArgs + function.arguments)) yield "{" yield "\t%s object = 0;" % function.objectType yield "\tVK_CHECK(vk.%s(%s));" % (function.name, ", ".join([a.name for a in function.arguments] + ["&object"])) yield "\treturn Move<%s>(check<%s>(object), Deleter<%s>(%s));" % (function.objectType, function.objectType, function.objectType, deleterArgsString) yield "}" yield "" writeInlFile(filename, INL_HEADER, makeRefUtilImpl()) def writeStructTraitsImpl (api, filename): def gen (): for type in api.compositeTypes: if type.getClassName() == "struct" and type.members[0].name == "sType" and not type.isAlias: yield "template<> VkStructureType getStructureType<%s> (void)" % type.name yield "{" yield "\treturn %s;" % prefixName("VK_STRUCTURE_TYPE_", type.name) yield "}" yield "" writeInlFile(filename, INL_HEADER, gen()) def writeNullDriverImpl (api, filename): def genNullDriverImpl (): specialFuncNames = [ "vkCreateGraphicsPipelines", "vkCreateComputePipelines", "vkGetInstanceProcAddr", "vkGetDeviceProcAddr", "vkEnumeratePhysicalDevices", "vkEnumerateInstanceExtensionProperties", "vkEnumerateDeviceExtensionProperties", "vkGetPhysicalDeviceFeatures", "vkGetPhysicalDeviceFeatures2KHR", "vkGetPhysicalDeviceProperties", "vkGetPhysicalDeviceProperties2KHR", "vkGetPhysicalDeviceQueueFamilyProperties", "vkGetPhysicalDeviceMemoryProperties", "vkGetPhysicalDeviceFormatProperties", "vkGetPhysicalDeviceImageFormatProperties", "vkGetDeviceQueue", "vkGetBufferMemoryRequirements", "vkGetBufferMemoryRequirements2KHR", "vkGetImageMemoryRequirements", "vkGetImageMemoryRequirements2KHR", "vkAllocateMemory", "vkMapMemory", "vkUnmapMemory", "vkAllocateDescriptorSets", "vkFreeDescriptorSets", "vkResetDescriptorPool", "vkAllocateCommandBuffers", "vkFreeCommandBuffers", "vkCreateDisplayModeKHR", "vkCreateSharedSwapchainsKHR", "vkGetPhysicalDeviceExternalBufferPropertiesKHR", "vkGetPhysicalDeviceImageFormatProperties2KHR", "vkGetMemoryAndroidHardwareBufferANDROID", ] coreFunctions = [f for f in api.functions if not f.isAlias] specialFuncs = [f for f in coreFunctions if f.name in specialFuncNames] createFuncs = [f for f in coreFunctions if (f.name[:8] == "vkCreate" or f.name == "vkAllocateMemory") and not f in specialFuncs] destroyFuncs = [f for f in coreFunctions if (f.name[:9] == "vkDestroy" or f.name == "vkFreeMemory") and not f in specialFuncs] dummyFuncs = [f for f in coreFunctions if f not in specialFuncs + createFuncs + destroyFuncs] def getHandle (name): for handle in api.handles: if handle.name == name[0]: return handle raise Exception("No such handle: %s" % name) for function in createFuncs: objectType = function.arguments[-1].type[:-1] argsStr = ", ".join([a.name for a in function.arguments[:-1]]) yield "VKAPI_ATTR %s VKAPI_CALL %s (%s)" % (function.returnType, getInterfaceName(function), argListToStr(function.arguments)) yield "{" yield "\tDE_UNREF(%s);" % function.arguments[-2].name if getHandle(objectType).type == Handle.TYPE_NONDISP: yield "\tVK_NULL_RETURN((*%s = allocateNonDispHandle<%s, %s>(%s)));" % (function.arguments[-1].name, objectType[0][2:], objectType[0], argsStr) else: yield "\tVK_NULL_RETURN((*%s = allocateHandle<%s, %s>(%s)));" % (function.arguments[-1].name, objectType[0][2:], objectType[0], argsStr) yield "}" yield "" for function in destroyFuncs: objectArg = function.arguments[-2] yield "VKAPI_ATTR %s VKAPI_CALL %s (%s)" % (function.returnType, getInterfaceName(function), argListToStr(function.arguments)) yield "{" for arg in function.arguments[:-2]: yield "\tDE_UNREF(%s);" % arg.name if getHandle(objectArg.type).type == Handle.TYPE_NONDISP: yield "\tfreeNonDispHandle<%s, %s>(%s, %s);" % (objectArg.getType()[2:], objectArg.getType(), objectArg.name, function.arguments[-1].name) else: yield "\tfreeHandle<%s, %s>(%s, %s);" % (objectArg.getType()[2:], objectArg.getType(), objectArg.name, function.arguments[-1].name) yield "}" yield "" for function in dummyFuncs: yield "VKAPI_ATTR %s VKAPI_CALL %s (%s)" % (function.returnType, getInterfaceName(function), argListToStr(function.arguments)) yield "{" for arg in function.arguments: yield "\tDE_UNREF(%s);" % arg.name if function.returnType != "void": yield "\treturn VK_SUCCESS;" yield "}" yield "" def genFuncEntryTable (type, name): funcs = [f for f in api.functions if f.getType() == type] refFuncs = {} for f in api.functions: if f.alias != None: refFuncs[f.alias] = f yield "static const tcu::StaticFunctionLibrary::Entry %s[] =" % name yield "{" for line in indentLines(["\tVK_NULL_FUNC_ENTRY(%s,\t%s)," % (function.name, getInterfaceName(function if not function.isAlias else refFuncs[function])) for function in funcs]): yield line yield "};" yield "" # Func tables for line in genFuncEntryTable(Function.TYPE_PLATFORM, "s_platformFunctions"): yield line for line in genFuncEntryTable(Function.TYPE_INSTANCE, "s_instanceFunctions"): yield line for line in genFuncEntryTable(Function.TYPE_DEVICE, "s_deviceFunctions"): yield line writeInlFile(filename, INL_HEADER, genNullDriverImpl()) def writeTypeUtil (api, filename): # Structs filled by API queries are not often used in test code QUERY_RESULT_TYPES = set([ "VkPhysicalDeviceFeatures", "VkPhysicalDeviceLimits", "VkFormatProperties", "VkImageFormatProperties", "VkPhysicalDeviceSparseProperties", "VkQueueFamilyProperties", "VkMemoryType", "VkMemoryHeap", ]) COMPOSITE_TYPES = set([t.name for t in api.compositeTypes if not t.isAlias]) def isSimpleStruct (type): def hasArrayMember (type): for member in type.members: if member.arraySize != '': return True return False def hasCompositeMember (type): for member in type.members: if member.getType() in COMPOSITE_TYPES: return True return False return type.typeClass == CompositeType.CLASS_STRUCT and \ type.members[0].getType() != "VkStructureType" and \ not type.name in QUERY_RESULT_TYPES and \ not hasArrayMember(type) and \ not hasCompositeMember(type) def gen (): for type in api.compositeTypes: if not isSimpleStruct(type) or type.isAlias: continue yield "" yield "inline %s make%s (%s)" % (type.name, type.name[2:], argListToStr(type.members)) yield "{" yield "\t%s res;" % type.name for line in indentLines(["\tres.%s\t= %s;" % (m.name, m.name) for m in type.members]): yield line yield "\treturn res;" yield "}" writeInlFile(filename, INL_HEADER, gen()) def writeSupportedExtenions(api, filename): def writeExtensionsForVersions(map): result = [] for version in map: result.append(" if (coreVersion >= " + str(version) + ")") result.append(" {") for extension in map[version]: result.append(' dst.push_back("' + extension.name + '");') result.append(" }") return result instanceMap = {} deviceMap = {} versionSet = set() for ext in api.extensions: if ext.versionInCore != None: if ext.versionInCore[0] == 'INSTANCE': list = instanceMap.get(Version(ext.versionInCore[1:])) instanceMap[Version(ext.versionInCore[1:])] = list + [ext] if list else [ext] else: list = deviceMap.get(Version(ext.versionInCore[1:])) deviceMap[Version(ext.versionInCore[1:])] = list + [ext] if list else [ext] versionSet.add(Version(ext.versionInCore[1:])) lines = addVersionDefines(versionSet) + [ "", "void getCoreDeviceExtensionsImpl (deUint32 coreVersion, ::std::vector<const char*>&%s)" % (" dst" if len(deviceMap) != 0 else ""), "{"] + writeExtensionsForVersions(deviceMap) + [ "}", "", "void getCoreInstanceExtensionsImpl (deUint32 coreVersion, ::std::vector<const char*>&%s)" % (" dst" if len(instanceMap) != 0 else ""), "{"] + writeExtensionsForVersions(instanceMap) + [ "}", ""] + removeVersionDefines(versionSet) writeInlFile(filename, INL_HEADER, lines) def writeCoreFunctionalities(api, filename): functionOriginValues = ["FUNCTIONORIGIN_PLATFORM", "FUNCTIONORIGIN_INSTANCE", "FUNCTIONORIGIN_DEVICE"] lines = addVersionDefines([Version((1, 0, 0)), Version((1, 1, 0))]) + [ "", 'enum FunctionOrigin', '{'] + [line for line in indentLines([ '\t' + functionOriginValues[0] + '\t= 0,', '\t' + functionOriginValues[1] + ',', '\t' + functionOriginValues[2]])] + [ "};", "", "typedef ::std::pair<const char*, FunctionOrigin> FunctionInfo;", "typedef ::std::vector<FunctionInfo> FunctionInfosList;", "typedef ::std::map<deUint32, FunctionInfosList> ApisMap;", "", "void initApisMap (ApisMap& apis)", "{", " apis.clear();", " apis.insert(::std::pair<deUint32, FunctionInfosList>(" + str(Version((1, 0, 0))) + ", FunctionInfosList()));", " apis.insert(::std::pair<deUint32, FunctionInfosList>(" + str(Version((1, 1, 0))) + ", FunctionInfosList()));", ""] def list10Funcs (): for fun in api.functions: if fun.apiVersion == 'VK_VERSION_1_0': insert = ' apis[' + str(Version((1, 0, 0))) + '].push_back(FunctionInfo("' + fun.name + '",\t' + functionOriginValues[fun.getType()] + '));' yield insert def listAllFuncs (): for fun in api.extensions[0].functions: insert = ' apis[' + str(Version((1, 1, 0))) + '].push_back(FunctionInfo("' + fun.name + '",\t' + functionOriginValues[fun.getType()] + '));' yield insert lines = lines + [line for line in indentLines(list10Funcs())] lines.append("") lines = lines + [line for line in indentLines(listAllFuncs())] lines.append("}") lines.append("") lines = lines + removeVersionDefines([Version((1, 0, 0)), Version((1, 1, 0))]) writeInlFile(filename, INL_HEADER, lines) if __name__ == "__main__": src = readFile(VULKAN_H) api = parseAPI(src) platformFuncs = [Function.TYPE_PLATFORM] instanceFuncs = [Function.TYPE_INSTANCE] deviceFuncs = [Function.TYPE_DEVICE] writeHandleType (api, os.path.join(VULKAN_DIR, "vkHandleType.inl")) writeBasicTypes (api, os.path.join(VULKAN_DIR, "vkBasicTypes.inl")) writeCompositeTypes (api, os.path.join(VULKAN_DIR, "vkStructTypes.inl")) writeInterfaceDecl (api, os.path.join(VULKAN_DIR, "vkVirtualPlatformInterface.inl"), platformFuncs, False) writeInterfaceDecl (api, os.path.join(VULKAN_DIR, "vkVirtualInstanceInterface.inl"), instanceFuncs, False) writeInterfaceDecl (api, os.path.join(VULKAN_DIR, "vkVirtualDeviceInterface.inl"), deviceFuncs, False) writeInterfaceDecl (api, os.path.join(VULKAN_DIR, "vkConcretePlatformInterface.inl"), platformFuncs, True) writeInterfaceDecl (api, os.path.join(VULKAN_DIR, "vkConcreteInstanceInterface.inl"), instanceFuncs, True) writeInterfaceDecl (api, os.path.join(VULKAN_DIR, "vkConcreteDeviceInterface.inl"), deviceFuncs, True) writeFunctionPtrTypes (api, os.path.join(VULKAN_DIR, "vkFunctionPointerTypes.inl")) writeFunctionPointers (api, os.path.join(VULKAN_DIR, "vkPlatformFunctionPointers.inl"), platformFuncs) writeFunctionPointers (api, os.path.join(VULKAN_DIR, "vkInstanceFunctionPointers.inl"), instanceFuncs) writeFunctionPointers (api, os.path.join(VULKAN_DIR, "vkDeviceFunctionPointers.inl"), deviceFuncs) writeInitFunctionPointers (api, os.path.join(VULKAN_DIR, "vkInitPlatformFunctionPointers.inl"), platformFuncs, lambda f: f.name != "vkGetInstanceProcAddr") writeInitFunctionPointers (api, os.path.join(VULKAN_DIR, "vkInitInstanceFunctionPointers.inl"), instanceFuncs) writeInitFunctionPointers (api, os.path.join(VULKAN_DIR, "vkInitDeviceFunctionPointers.inl"), deviceFuncs) writeFuncPtrInterfaceImpl (api, os.path.join(VULKAN_DIR, "vkPlatformDriverImpl.inl"), platformFuncs, "PlatformDriver") writeFuncPtrInterfaceImpl (api, os.path.join(VULKAN_DIR, "vkInstanceDriverImpl.inl"), instanceFuncs, "InstanceDriver") writeFuncPtrInterfaceImpl (api, os.path.join(VULKAN_DIR, "vkDeviceDriverImpl.inl"), deviceFuncs, "DeviceDriver") writeStrUtilProto (api, os.path.join(VULKAN_DIR, "vkStrUtil.inl")) writeStrUtilImpl (api, os.path.join(VULKAN_DIR, "vkStrUtilImpl.inl")) writeRefUtilProto (api, os.path.join(VULKAN_DIR, "vkRefUtil.inl")) writeRefUtilImpl (api, os.path.join(VULKAN_DIR, "vkRefUtilImpl.inl")) writeStructTraitsImpl (api, os.path.join(VULKAN_DIR, "vkGetStructureTypeImpl.inl")) writeNullDriverImpl (api, os.path.join(VULKAN_DIR, "vkNullDriverImpl.inl")) writeTypeUtil (api, os.path.join(VULKAN_DIR, "vkTypeUtil.inl")) writeSupportedExtenions (api, os.path.join(VULKAN_DIR, "vkSupportedExtensions.inl")) writeCoreFunctionalities (api, os.path.join(VULKAN_DIR, "vkCoreFunctionalities.inl"))
37.729239
225
0.694281
[ "Apache-2.0" ]
LGWingEmulator/external-deqp
external/vulkancts/scripts/gen_framework.py
54,066
Python
# -*- coding: utf-8 -*- """Title translate module.""" # # (C) Rob W.W. Hooft, 2003 # (C) Yuri Astrakhan, 2005 # (C) Pywikibot team, 2003-2015 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals __version__ = '$Id: 790e17e8c0da2027ad0cb511c168c353056583aa $' # import re import pywikibot import pywikibot.date as date from pywikibot import config from pywikibot.tools import deprecated_args @deprecated_args(family=None) def translate(page=None, hints=None, auto=True, removebrackets=False, site=None): """ Return a list of links to pages on other sites based on hints. Entries for single page titles list those pages. Page titles for entries such as "all:" or "xyz:" or "20:" are first built from the page title of 'page' and then listed. When 'removebrackets' is True, a trailing pair of brackets and the text between them is removed from the page title. If 'auto' is true, known year and date page titles are autotranslated to all known target languages and inserted into the list. """ result = set() assert page or site if site is None and page: site = page.site if hints: for h in hints: if ':' not in h: # argument given as -hint:xy where xy is a language code codes = h newname = '' else: codes, newname = h.split(':', 1) if newname == '': # if given as -hint:xy or -hint:xy:, assume that there should # be a page in language xy with the same title as the page # we're currently working on ... if page is None: continue newname = page.title(withNamespace=False) # ... unless we do want brackets if removebrackets: newname = re.sub(re.compile(r"\W*?\(.*?\)\W*?", re.UNICODE), u" ", newname) try: number = int(codes) codes = site.family.languages_by_size[:number] except ValueError: if codes == 'all': codes = site.family.languages_by_size elif codes in site.family.language_groups: codes = site.family.language_groups[codes] else: codes = codes.split(',') for newcode in codes: if newcode in site.languages(): if newcode != site.code: ns = page.namespace() if page else 0 x = pywikibot.Link(newname, site.getSite(code=newcode), defaultNamespace=ns) result.add(x) else: if config.verbose_output: pywikibot.output(u"Ignoring unknown language code %s" % newcode) # Autotranslate dates into all other languages, the rest will come from # existing interwiki links. if auto and page: # search inside all dictionaries for this link sitelang = page.site.code dictName, value = date.getAutoFormat(sitelang, page.title()) if dictName: if True: pywikibot.output( u'TitleTranslate: %s was recognized as %s with value %d' % (page.title(), dictName, value)) for entryLang, entry in date.formats[dictName].items(): if entryLang not in site.languages(): continue if entryLang != sitelang: if True: newname = entry(value) x = pywikibot.Link( newname, pywikibot.Site(code=entryLang, fam=site.family)) result.add(x) return list(result)
37.504505
77
0.515974
[ "MIT" ]
h4ck3rm1k3/pywikibot-core
pywikibot/titletranslate.py
4,120
Python
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.components.pusher.executor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from google.protobuf import json_format from tfx.components.pusher import executor from tfx.proto import pusher_pb2 from tfx.types import standard_artifacts class ExecutorTest(tf.test.TestCase): def setUp(self): super(ExecutorTest, self).setUp() self._source_data_dir = os.path.join( os.path.dirname(os.path.dirname(__file__)), 'testdata') self._output_data_dir = os.path.join( os.environ.get('TEST_UNDECLARED_OUTPUTS_DIR', self.get_temp_dir()), self._testMethodName) tf.io.gfile.makedirs(self._output_data_dir) self._model_export = standard_artifacts.Model() self._model_export.uri = os.path.join(self._source_data_dir, 'trainer/current/') self._model_blessing = standard_artifacts.ModelBlessing() self._input_dict = { 'model_export': [self._model_export], 'model_blessing': [self._model_blessing], } self._model_push = standard_artifacts.PushedModel() self._model_push.uri = os.path.join(self._output_data_dir, 'model_push') tf.io.gfile.makedirs(self._model_push.uri) self._output_dict = { 'model_push': [self._model_push], } self._serving_model_dir = os.path.join(self._output_data_dir, 'serving_model_dir') tf.io.gfile.makedirs(self._serving_model_dir) self._exec_properties = { 'push_destination': json_format.MessageToJson( pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=self._serving_model_dir)), preserving_proto_field_name=True), } self._executor = executor.Executor() def testDoBlessed(self): self._model_blessing.uri = os.path.join(self._source_data_dir, 'model_validator/blessed/') self._model_blessing.set_int_custom_property('blessed', 1) self._executor.Do(self._input_dict, self._output_dict, self._exec_properties) self.assertNotEqual(0, len(tf.io.gfile.listdir(self._serving_model_dir))) self.assertNotEqual(0, len(tf.io.gfile.listdir(self._model_push.uri))) self.assertEqual( 1, self._model_push.artifact.custom_properties['pushed'].int_value) def testDoNotBlessed(self): self._model_blessing.uri = os.path.join(self._source_data_dir, 'model_validator/not_blessed/') self._model_blessing.set_int_custom_property('blessed', 0) self._executor.Do(self._input_dict, self._output_dict, self._exec_properties) self.assertEqual(0, len(tf.io.gfile.listdir(self._serving_model_dir))) self.assertEqual(0, len(tf.io.gfile.listdir(self._model_push.uri))) self.assertEqual( 0, self._model_push.artifact.custom_properties['pushed'].int_value) if __name__ == '__main__': tf.test.main()
40.967391
77
0.694879
[ "Apache-2.0" ]
etarakci-hvl/tfx
tfx/components/pusher/executor_test.py
3,769
Python
""" Create a flat plate of length 1.0 with aspect ratio 2.0 and a 30-degree inclination. The plate is discretized with spacing 0.04 in the x-y plane and with spacing 0.04 along the z-direction. """ import math import pathlib import numpy # Flat-plate's parameters. L = 1.0 # chord length AR = 2.0 # aspect ratio xc, yc, zc = 0.0, 0.0, 0.0 # center's coordinates aoa = 30.0 # angle of inclination in degrees ds = 0.04 # mesh spacing simu_dir = pathlib.Path(__file__).absolute().parents[1] # Generate coordinates of the flat plate. n = math.ceil(L / ds) s = numpy.linspace(xc - L / 2, xc + L / 2, num=n + 1) x = xc + numpy.cos(numpy.radians(-aoa)) * s y = yc + numpy.sin(numpy.radians(-aoa)) * s nz = math.ceil(L * AR / ds) z = numpy.linspace(zc - L * AR / 2, zc + L * AR / 2, num=nz + 1) # Write coordinates into file. filepath = simu_dir / 'flatplate.body' with open(filepath, 'w') as outfile: outfile.write('{}\n'.format(x.size * z.size)) for zi in z: with open(filepath, 'ab') as outfile: numpy.savetxt(outfile, numpy.c_[x, y, zi * numpy.ones(x.size)])
27.794872
76
0.657749
[ "BSD-3-Clause" ]
CFD-lab-ZJU/PetIBM
examples/decoupledibpm/flatplate3dRe100AoA30_GPU/scripts/createBody.py
1,084
Python
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for utils.random_py_environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tf_agents.environments import random_py_environment from tf_agents.specs import array_spec from tf_agents.utils import test_utils class RandomPyEnvironmentTest(parameterized.TestCase, test_utils.TestCase): def testEnvResetAutomatically(self): obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment(obs_spec) time_step = env.step([0]) self.assertTrue(np.all(time_step.observation >= -10)) self.assertTrue(np.all(time_step.observation <= 10)) self.assertTrue(time_step.is_first()) while not time_step.is_last(): time_step = env.step([0]) self.assertTrue(np.all(time_step.observation >= -10)) self.assertTrue(np.all(time_step.observation <= 10)) time_step = env.step([0]) self.assertTrue(np.all(time_step.observation >= -10)) self.assertTrue(np.all(time_step.observation <= 10)) self.assertTrue(time_step.is_first()) @parameterized.named_parameters([ ('OneStep', 1), ('FiveSteps', 5), ]) def testEnvMinDuration(self, min_duration): obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( obs_spec, episode_end_probability=0.9, min_duration=min_duration) num_episodes = 100 for _ in range(num_episodes): time_step = env.step([0]) self.assertTrue(time_step.is_first()) num_steps = 0 while not time_step.is_last(): time_step = env.step([0]) num_steps += 1 self.assertGreaterEqual(num_steps, min_duration) @parameterized.named_parameters([ ('OneStep', 1), ('FiveSteps', 5), ]) def testEnvMaxDuration(self, max_duration): obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( obs_spec, episode_end_probability=0.1, max_duration=max_duration) num_episodes = 100 for _ in range(num_episodes): time_step = env.step([0]) self.assertTrue(time_step.is_first()) num_steps = 0 while not time_step.is_last(): time_step = env.step([0]) num_steps += 1 self.assertLessEqual(num_steps, max_duration) def testEnvChecksActions(self): obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) action_spec = array_spec.BoundedArraySpec((2, 2), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( obs_spec, action_spec=action_spec) env.step(np.array([[0, 0], [0, 0]])) with self.assertRaises(ValueError): env.step([0]) def testRewardFnCalled(self): def reward_fn(unused_step_type, action, unused_observation): return action action_spec = array_spec.BoundedArraySpec((1,), np.int32, -10, 10) observation_spec = array_spec.BoundedArraySpec((1,), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( observation_spec, action_spec, reward_fn=reward_fn) time_step = env.step(1) # No reward in first time_step self.assertEqual(0.0, time_step.reward) time_step = env.step(1) self.assertEqual(1, time_step.reward) def testRendersImage(self): action_spec = array_spec.BoundedArraySpec((1,), np.int32, -10, 10) observation_spec = array_spec.BoundedArraySpec((1,), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( observation_spec, action_spec, render_size=(4, 4, 3)) env.reset() img = env.render() self.assertTrue(np.all(img < 256)) self.assertTrue(np.all(img >= 0)) self.assertEqual((4, 4, 3), img.shape) self.assertEqual(np.uint8, img.dtype) def testBatchSize(self): batch_size = 3 obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment(obs_spec, batch_size=batch_size) time_step = env.step([0]) self.assertEqual(time_step.observation.shape, (3, 2, 3)) self.assertEqual(time_step.reward.shape[0], batch_size) self.assertEqual(time_step.discount.shape[0], batch_size) def testCustomRewardFn(self): obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) batch_size = 3 env = random_py_environment.RandomPyEnvironment( obs_spec, reward_fn=lambda *_: np.ones(batch_size), batch_size=batch_size) env._done = False env.reset() time_step = env.step([0]) self.assertSequenceAlmostEqual([1.0] * 3, time_step.reward) def testRewardCheckerBatchSizeOne(self): # Ensure batch size 1 with scalar reward works obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( obs_spec, reward_fn=lambda *_: np.array([1.0]), batch_size=1) env._done = False env.reset() time_step = env.step([0]) self.assertEqual(time_step.reward, 1.0) def testRewardCheckerSizeMismatch(self): # Ensure custom scalar reward with batch_size greater than 1 raises # ValueError obs_spec = array_spec.BoundedArraySpec((2, 3), np.int32, -10, 10) env = random_py_environment.RandomPyEnvironment( obs_spec, reward_fn=lambda *_: 1.0, batch_size=5) env.reset() env._done = False with self.assertRaises(ValueError): env.step([0]) if __name__ == '__main__': test_utils.main()
34.77095
75
0.696497
[ "Apache-2.0" ]
ChengshuLi/agents
tf_agents/environments/random_py_environment_test.py
6,224
Python
# Copyright 2017 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_service import service from oslo_utils import timeutils from sqlalchemy.orm import exc as orm_exc from apmec.common import topics from apmec import context as t_context from apmec.db.common_services import common_services_db from apmec.db.meo import meo_db from apmec.extensions import meo from apmec import manager from apmec.plugins.common import constants from apmec import service as apmec_service from apmec import version LOG = logging.getLogger(__name__) class Conductor(manager.Manager): def __init__(self, host, conf=None): if conf: self.conf = conf else: self.conf = cfg.CONF super(Conductor, self).__init__(host=self.conf.host) def update_vim(self, context, vim_id, status): t_admin_context = t_context.get_admin_context() update_time = timeutils.utcnow() with t_admin_context.session.begin(subtransactions=True): try: query = t_admin_context.session.query(meo_db.Vim) query.filter( meo_db.Vim.id == vim_id).update( {'status': status, 'updated_at': update_time}) except orm_exc.NoResultFound: raise meo.VimNotFoundException(vim_id=vim_id) event_db = common_services_db.Event( resource_id=vim_id, resource_type=constants.RES_TYPE_VIM, resource_state=status, event_details="", event_type=constants.RES_EVT_MONITOR, timestamp=update_time) t_admin_context.session.add(event_db) return status def init(args, **kwargs): cfg.CONF(args=args, project='apmec', version='%%prog %s' % version.version_info.release_string(), **kwargs) # FIXME(ihrachys): if import is put in global, circular import # failure occurs from apmec.common import rpc as n_rpc n_rpc.init(cfg.CONF) def main(manager='apmec.conductor.conductor_server.Conductor'): init(sys.argv[1:]) logging.setup(cfg.CONF, "apmec") oslo_messaging.set_transport_defaults(control_exchange='apmec') logging.setup(cfg.CONF, "apmec") cfg.CONF.log_opt_values(LOG, logging.DEBUG) server = apmec_service.Service.create( binary='apmec-conductor', topic=topics.TOPIC_CONDUCTOR, manager=manager) service.launch(cfg.CONF, server).wait()
34.597826
78
0.678291
[ "Apache-2.0" ]
openMECPlatform/apmec
apmec/conductor/conductor_server.py
3,183
Python
# -*- coding: utf-8 -*- import argparse from GoogleScraper.version import __version__ def get_command_line(only_print_help=False): """ Parse command line arguments when GoogleScraper is used as a CLI application. Returns: The configuration as a dictionary that determines the behaviour of the app. """ parser = argparse.ArgumentParser(prog='GoogleScraper', description='Scrapes the Google, Yandex, Bing and many other search engines by ' 'forging http requests that imitate browser searches or by using real ' 'browsers controlled by the selenium framework. ' 'Multithreading support.', epilog='GoogleScraper {version}. This program might infringe the TOS of the ' 'search engines. Please use it on your own risk. (c) by Nikolai Tschacher' ', 2012-2018. incolumitas.com'.format(version=__version__)) parser.add_argument('-m', '--scrape-method', type=str, default='http', help='The scraping type. There are currently three types: "http", "selenium" and "http-async". ' '"Http" scrapes with raw http requests, whereas "selenium" uses the selenium framework to ' 'remotely control browsers. "http-async" makes use of gevent and is well suited for ' 'extremely fast and explosive scraping jobs. You may search more than 1000 requests per ' 'second if you have the necessary number of proxies available. ', choices=('http', 'selenium', 'http-async')) parser.add_argument('--sel-browser', choices=['firefox', 'chrome'], default='chrome', help='The browser frontend for selenium scraping mode. Takes only effect if --scrape-method is set to "selenium"') parser.add_argument('--browser-mode', choices=['normal', 'headless'], default='normal', help='In which mode the browser is started. Valid values = (normal, headless)') keyword_group = parser.add_mutually_exclusive_group() keyword_group.add_argument('-q', '--keyword', type=str, action='store', dest='keyword', help='The search keyword to scrape for. If you need to scrape multiple keywords, use ' 'the --keyword-file flag') keyword_group.add_argument('--keyword-file', type=str, action='store', default='', help='Keywords to search for. One keyword per line. Empty lines are ignored. ' 'Alternatively, you may specify the path to an python module (must end with the ' '.py suffix) where the keywords must be held in a dictionary with the name "scrape_' 'jobs".') parser.add_argument('-o-', '--output-filename', type=str, action='store', default='', help='The name of the output file. If the file ending is "json", write a json file, if the ' 'ending is "csv", write a csv file.') parser.add_argument('--shell', action='store_true', default=False, help='Fire up a shell with a loaded sqlalchemy session.') parser.add_argument('-n', '--num-results-per-page', type=int, action='store', default=10, help='The number of results per page. Must be smaller than 100, by default 50 for raw mode and ' '10 for selenium mode. Some search engines ignore this setting.') parser.add_argument('-p', '--num-pages-for-keyword', type=int, action='store', default=1, help='The number of pages to request for each keyword. Each page is requested by a unique ' 'connection and if possible by a unique IP (at least in "http" mode).') parser.add_argument('-z', '--num-workers', type=int, default=1, action='store', help='This arguments sets the number of browser instances for selenium mode or the number of ' 'worker threads in http mode.') parser.add_argument('-t', '--search-type', type=str, action='store', default='normal', help='The searchtype to launch. May be normal web search, image search, news search or video ' 'search.') parser.add_argument('--proxy-file', type=str, dest='proxy_file', action='store', required=False, help='A filename for a list of proxies (supported are HTTP PROXIES, SOCKS4/5) ' 'with the following format: "Proxyprotocol (proxy_ip|proxy_host):Port\n"' 'Example file: socks4 127.0.0.1:99\nsocks5 33.23.193.22:1080\n') parser.add_argument('--config-file', type=str, dest='config_file', action='store', help='The path to the configuration file for GoogleScraper. Normally you won\'t need this, ' 'because GoogleScrape comes shipped with a thoroughly commented configuration file named ' '"scrape_config.py"') parser.add_argument('--check-detection', type=str, dest='check_detection', action='store', help='Check if the given search engine blocked you from scrapign. Often detection can be determined' 'if you have to solve a captcha.') parser.add_argument('--simulate', action='store_true', default=False, required=False, help='''If this flag is set, the scrape job and its estimated length will be printed.''') loglevel_help = ''' Set the debug level of the application. Use the string representation instead of the numbers. High numbers will output less, low numbers more. CRITICAL = 50, FATAL = CRITICAL, ERROR = 40, WARNING = 30, WARN = WARNING, INFO = 20, DEBUG = 10, NOTSET = 0 ''' parser.add_argument('-v', '--verbosity', '--loglevel', dest='log_level', default='INFO', type = str.lower, choices=['debug', 'info', 'warning', 'warn', 'error', 'critical', 'fatal'], help=loglevel_help) parser.add_argument('--print-results', choices=['all', 'summarize'], default='all', help='Whether to print all results ("all"), or only print a summary ("summarize")') parser.add_argument('--view-config', action='store_true', default=False, help="Print the current configuration to stdout. You may use it to create and tweak your own " "config file from it.") parser.add_argument('-V', '--v', '--version', action='store_true', default=False, dest='version', help='Prints the version of GoogleScraper') parser.add_argument('--clean', action='store_true', default=False, help='Cleans all stored data. Please be very careful when you use this flag.') parser.add_argument('--mysql-proxy-db', action='store', help="A mysql connection string for proxies to use. Format: mysql://<username>:<password>@" "<host>/<dbname>. Has precedence over proxy files.") parser.add_argument('-s', '--search-engines', action='store', default=['google'], help='What search engines to use (See GoogleScraper --config for the all supported). If you ' 'want to use more than one at the same time, just separate with commatas: "google, bing, ' 'yandex". If you want to use all search engines that are available, give \'*\' as ' 'argument.') #custom arguments parser.add_argument('--proxy_chain_ips', type=str, action='store', default="local", help='proxy_chain_ips to forward requests') parser.add_argument('--strict', action='store_true', default=False, help='Defines strict google / bing search') parser.add_argument('--no-cache', action='store_true', default=False, help='Disable caching') if only_print_help: parser.print_help() else: args = parser.parse_args() return vars(args)
58.302013
138
0.574191
[ "Apache-2.0" ]
hnhnarek/GoogleScraper
GoogleScraper/commandline.py
8,687
Python
# -*- coding: utf-8 -*- """ auto rule template ~~~~ :author: LoRexxar <[email protected]> :homepage: https://github.com/LoRexxar/Kunlun-M :license: MIT, see LICENSE for more details. :copyright: Copyright (c) 2017 LoRexxar. All rights reserved """ from utils.api import * class CVI_3003(): """ rule class """ def __init__(self): self.svid = 3003 self.language = "javascript" self.author = "LoRexxar" self.vulnerability = "RCE" self.description = "remote? code exec" # status self.status = True # 部分配置 self.match_mode = "function-param-regex" self.match = r"eval|setTimeout" # for solidity self.match_name = None self.black_list = None # for chrome ext self.keyword = None # for regex self.unmatch = None self.vul_function = None def main(self, regex_string): """ regex string input :regex_string: regex match string :return: """ pass
20.185185
64
0.555046
[ "MIT" ]
Afant1/Kunlun-M
rules/javascript/CVI_3003.py
1,098
Python
''' Exercise 5: Vectors A vector of dimension 𝑛𝑛 can be represented by a list in Python. For example, a vector of dimension 3 could represent a point in space, and a vector of dimension 4 could represent a point in space and time (the fourth dimension being the time). In mathematical notation, a vector of dimension 3 is represented as follow: � 𝑎𝑎 𝑏𝑏 𝑐𝑐 � The vector could be stored in a Python list [a, b, c]. There are two simple operations that can be done on vector, and the result of the two operation is also a vector. The two operations are: Scalar product: 𝜆𝜆 ∙ � 𝑎𝑎 𝑏𝑏 𝑐𝑐 � = � 𝜆𝜆 ∙ 𝑎𝑎 𝜆𝜆 ∙ 𝑏𝑏 𝜆𝜆 ∙ 𝑐𝑐 � Addition: � 𝑎𝑎 𝑏𝑏 𝑐𝑐 � + � 𝑑𝑑 𝑒𝑒 𝑓𝑓 � = � 𝑎𝑎 + 𝑑𝑑 𝑏𝑏 + 𝑒𝑒 𝑐𝑐 + 𝑓𝑓 � Implement two functions: 1. scalar_product(scalar, vector) where scalar is a float and vector is a list of float. The function returns the scalar product of the two parameters. 2. vector_addition(vector1, vector2) where vector1 and vector2 are lists of float. The function returns the vector addition of the two parameters. If vector1 and vector2 don’t have the same dimension, you should print an error message and return None. ''' def scalar_product(scalar, vector): for x in range(len(vector)): vector[x]*=scalar return vector def vector_addition(vector1, vector2): if(len(vector2)!=len(vector1)): return 'Error' for x in range(len(vector1)): vector1[x]=int(vector1[x])+int(vector2[x]) return vector1 print(scalar_product(int(input('Enter Scalar Value: ')),input('Enter a Matrix seperated by coma: ').split(',') )) print(vector_addition( input('Enter first Matrix to add: ').split(',') , input('Enter second Matrix to add: ').split(',') ))
27.442623
124
0.717443
[ "Apache-2.0" ]
dragoonfirestormar/SOFT1
week4/week4_additionalexercice_5.py
1,864
Python
from nose.tools import assert_equals from framework.pages.loginPage import loginPage from framework.pages.headerPage import headerPage from framework.core.webdriverfactory import WebDriverFactory from framework.core.configuration import webdriver_configuration class testLogin(): baseUrl = "http://twiindan.pythonanywhere.com/admin" @classmethod def setup_class(self): wdf = WebDriverFactory(webdriver_configuration) self.driver = wdf.getWebDriverInstance() self.login_page = loginPage(self.driver) def setup(self): self.login_page.navigate() def test_correct_login(self): self.login_page.locate_elements() self.login_page.fillUsername('user1') self.login_page.fillPassword('selenium') self.login_page.submitClick() @classmethod def teardown_class(self): self.driver.quit()
26.029412
64
0.732203
[ "Apache-2.0" ]
twiindan/selenium_lessons
04_Selenium/framework/tests/testLogin.py
885
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas as pd class Index(object): def __init__(self, idx): self.idx = idx @classmethod def to_pandas(indices): if isinstance(indices[0], pd.RangeIndex): merged = indices[0] for index in indices[1:]: merged = merged.union(index) return merged else: return indices[0].append(indices[1:])
23.045455
49
0.625247
[ "Apache-2.0" ]
cathywu/ray
python/ray/dataframe/index.py
507
Python
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Stc(AutotoolsPackage): """STC: The Swift-Turbine Compiler""" homepage = 'http://swift-lang.org/Swift-T' url = 'http://swift-lang.github.io/swift-t-downloads/spack/stc-0.8.3.tar.gz' git = "https://github.com/swift-lang/swift-t.git" version('master', branch='master') version('0.8.3', sha256='d61ca80137a955b12e84e41cb8a78ce1a58289241a2665076f12f835cf68d798') version('0.8.2', sha256='13f0f03fdfcca3e63d2d58d7e7dbdddc113d5b9826c9357ab0713b63e8e42c5e') depends_on('java', type=('build', 'run')) depends_on('ant', type='build') depends_on('turbine', type=('build', 'run')) depends_on('turbine@master', type=('build', 'run'), when='@master') depends_on('zsh', type=('build', 'run')) depends_on('autoconf', type='build') depends_on('automake', type='build') depends_on('libtool', type='build') @property def configure_directory(self): if self.version == Version('master'): return 'stc/code' else: return '.' def configure_args(self): args = ['--with-turbine=' + self.spec['turbine'].prefix] return args
34.175
95
0.659108
[ "ECL-2.0", "Apache-2.0", "MIT" ]
0t1s1/spack
var/spack/repos/builtin/packages/stc/package.py
1,367
Python
from aws_cdk import ( aws_autoscaling as autoscaling, aws_ec2 as ec2, aws_ecs as ecs, core, ) class ECSCluster(core.Stack): def __init__(self, scope: core.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, *kwargs) vpc = ec2.Vpc( self, "MyVpc", max_azs=2 ) asg = autoscaling.AutoScalingGroup( self, "MyFleet", instance_type=ec2.InstanceType("t2.xlarge"), machine_image=ecs.EcsOptimizedAmi(), associate_public_ip_address=True, update_type=autoscaling.UpdateType.REPLACING_UPDATE, desired_capacity=3, vpc=vpc, vpc_subnets={ 'subnet_type': ec2.SubnetType.PUBLIC }, ) cluster = ecs.Cluster( self, 'EcsCluster', vpc=vpc ) cluster.add_auto_scaling_group(asg) cluster.add_capacity("DefaultAutoScalingGroup", instance_type=ec2.InstanceType("t2.micro")) app = core.App() ECSCluster(app, "MyFirstEcsCluster") app.synth()
26.190476
73
0.583636
[ "Apache-2.0" ]
1digicoder/aws-cdk-examples
python/ecs/cluster/app.py
1,100
Python
#!/usr/bin/env python """ Add docstring """ from datetime import datetime from protorpc import messages from google.appengine.ext import ndb # Define game objects class Game(ndb.Model): """Game object""" deck = ndb.StringProperty(repeated=True) disp_deck = ndb.StringProperty(repeated=True) attempts_allowed = ndb.IntegerProperty(required=True) attempts_remaining = ndb.IntegerProperty(required=True, default=30) game_over = ndb.BooleanProperty(required=True, default=False) attempts_made = ndb.IntegerProperty(required=True) match_list = ndb.StringProperty(repeated=True) match_list_int = ndb.IntegerProperty(repeated=True) matches_found = ndb.IntegerProperty(required=True) guess1_or_guess2 = ndb.IntegerProperty() cancelled = ndb.BooleanProperty(required=True, default=False) guess_history = ndb.StringProperty(repeated=True) time_created = ndb.StringProperty(required=True) user = ndb.KeyProperty(required=True, kind='User') @classmethod def new_game(cls, user, attempts, deck, disp_deck, attempts_made, match_list, match_list_int, matches_found, guess1_or_guess2, guess_history): """Create and return a new game""" if attempts < 30 or attempts > 60: raise ValueError( 'Number of attempts must be more than 29 and less than 61') game = Game( user=user, deck=deck, attempts_allowed=attempts, attempts_remaining=attempts, disp_deck=disp_deck, attempts_made=attempts_made, match_list=match_list, match_list_int=match_list_int, matches_found=matches_found, guess1_or_guess2=guess1_or_guess2, game_over=False, cancelled=False, guess_history=guess_history, time_created=str(datetime.now())) game.put() return game def to_form(self, message): """Return a GameForm representation of the game""" form = GameForm() form.urlsafe_key = self.key.urlsafe() form.user_name = self.user.get().name form.attempts_remaining = self.attempts_remaining form.game_over = self.game_over form.cancelled = self.cancelled form.disp_deck = self.disp_deck form.attempts_made = self.attempts_made form.match_list = self.match_list form.matches_found = self.matches_found form.time_created = self.time_created form.message = message return form def to_form_user_games(self): """Return a GameFormUserGame representation of the game; this form displays a custom list of the game entities and is used in the get_user_games endpoint""" return GameFormUserGame( urlsafe_key=self.key.urlsafe(), user_name=self.user.get().name, attempts_remaining=self.attempts_remaining, game_over=self.game_over, disp_deck=self.disp_deck, attempts_made=self.attempts_made, match_list=self.match_list, matches_found=self.matches_found, time_created=self.time_created) def to_form_game_history(self, message): """Return a GameHistory representation of the game; this form displays a custom list of the game entities and is used in the get_game_history endpoint""" return GameHistory( user_name=self.user.get().name, guess_history=self.guess_history, attempts_made=self.attempts_made, match_list=self.match_list, matches_found=self.matches_found, deck=self.deck, time_created=self.time_created, message=message) def end_game(self, won=False): """End the game; if won is True, the player won; if won is False, the player lost""" self.game_over = True self.put() # Add the game to the score board # (a score is only returned when a game ends) points = self.points = ( 500 - ((self.attempts_made - self.matches_found) * 10)) score = Score( user=self.user, time_completed=str(datetime.now()), won=won, attempts_made=self.attempts_made, game_deck=self.deck, matches_found=self.matches_found, points=points) score.put() # Message definitions class GameForm(messages.Message): """Used for outbound game information""" urlsafe_key = messages.StringField(1, required=True) attempts_remaining = messages.IntegerField(2, required=True) game_over = messages.BooleanField(3, required=True) message = messages.StringField(4, required=True) user_name = messages.StringField(5, required=True) disp_deck = messages.StringField(6, repeated=True) attempts_made = messages.IntegerField(7, required=True) match_list = messages.StringField(8, repeated=True) matches_found = messages.IntegerField(9, required=True, default=0) cancelled = messages.BooleanField(10, required=True) time_created = messages.StringField(11, required=True) class GameFormUserGame(messages.Message): """Used for outbound information on the state of a user's active game""" urlsafe_key = messages.StringField(1, required=True) attempts_remaining = messages.IntegerField(2, required=True) game_over = messages.BooleanField(3, required=True) user_name = messages.StringField(4, required=True) disp_deck = messages.StringField(5, repeated=True) attempts_made = messages.IntegerField(6, required=True) match_list = messages.StringField(7, repeated=True) matches_found = messages.IntegerField(8, required=True) time_created = messages.StringField(9, required=True) class GameForms(messages.Message): """Outbound container for a list of GameFormUserGame forms""" items = messages.MessageField(GameFormUserGame, 1, repeated=True) class NewGameForm(messages.Message): """Inbound form used to create a new game""" user_name = messages.StringField(1, required=True) attempts = messages.IntegerField(2, required=True) class MakeMoveForm(messages.Message): """Inbound form used to make a move""" guess = messages.IntegerField(1, required=True) class ScoreForm(messages.Message): """Used for outbound score information for finished games""" user_name = messages.StringField(1, required=True) time_completed = messages.StringField(2, required=True) won = messages.BooleanField(3, required=True) attempts_made = messages.IntegerField(4, required=True) game_deck = messages.StringField(5, repeated=True) matches_found = messages.IntegerField(6, required=True, default=0) points = messages.IntegerField(7, required=True, default=0) class ScoreForms(messages.Message): """Outbound container for a list of ScoreForm forms""" items = messages.MessageField(ScoreForm, 1, repeated=True) class GameHistory(messages.Message): """Used for outbound information on each guess made and the outcome of a game""" user_name = messages.StringField(1, required=True) guess_history = messages.StringField(2, repeated=True) attempts_made = messages.IntegerField(3, required=True) match_list = messages.StringField(4, repeated=True) matches_found = messages.IntegerField(5, required=True) deck = messages.StringField(6, repeated=True) time_created = messages.StringField(7, required=True) message = messages.StringField(8) class StringMessage(messages.Message): """A single outbound string message""" message = messages.StringField(1, required=True)
38.019608
75
0.685405
[ "MIT" ]
bencam/pelmanism
models/game.py
7,756
Python
import argparse argparser = argparse.ArgumentParser() argparser.add_argument("-m", "--map", dest="map_id", help="checks the leaderboard on the given beatmap id against each other") argparser.add_argument("-u", "--user", dest="user_id", help="checks only the given user against the other leaderboard replays. Must be set with -m") argparser.add_argument("-l", "--local", help=("compare scores under the replays/ directory to a beatmap leaderboard (if set with -m), " "a score set by a user on a beatmap (if set with -m and -u) or the other scores in the folder " "(default behavior)"), action="store_true") argparser.add_argument("-t", "--threshold", help="sets the similarity threshold to print results that score under it. Defaults to 20", type=int, default=18) argparser.add_argument("-a", "--auto", help="Sets the threshold to a number of standard deviations below the average similarity", type=float, dest="stddevs") argparser.add_argument("-n", "--number", help="how many replays to get from a beatmap. No effect if not set with -m. Must be between 2 and 100 inclusive," "defaults to 50. NOTE: THE TIME COMPLEXITY OF THE COMPARISONS WILL SCALE WITH O(n^2).", type=int, default=50) argparser.add_argument("-c", "--cache", help="If set, locally caches replays so they don't have to be redownloaded when checking the same map multiple times.", action="store_true") argparser.add_argument("-s", "--silent", help="If set, you will not be prompted for a visualization of comparisons under the threshold", action="store_true") argparser.add_argument("-v", "--verify", help="Takes 3 positional arguments - map id, user1 id and user2 id. Verifies that the scores are steals of each other", nargs=3) argparser.add_argument("--version", help="Prints the program version", action="store_true")
68.433333
169
0.649294
[ "MIT" ]
wmpmiles/circleguard
circleguard/argparser.py
2,053
Python
'''Tests about the gzippy top-level functions.''' import unittest from test import scratch_file import gzippy class GzippyTest(unittest.TestCase): '''Tests about the gzippy top-level functions.''' def test_open_with_plus(self): '''Opening with r+ is not allowed.''' with scratch_file('example.gz') as path: with open(path, 'w+') as fout: pass with self.assertRaises(ValueError): with gzippy.open(path, 'r+') as fin: pass def test_open_with_append(self): '''Opening in append mode is not allowed.''' with scratch_file('example.gz') as path: with open(path, 'w+') as fout: pass with self.assertRaises(ValueError): with gzippy.open(path, 'ab') as fout: pass
26.454545
53
0.561283
[ "MIT" ]
seomoz/gzippy
test/test_gzippy.py
873
Python
import copy import json import logging import warnings import requests from elastalert.alerter import Alerter from elastalert.exceptions import EAException from elastalert.utils.time import DateTimeEncoder from elastalert.utils.util import lookup_es_key from requests import RequestException log = logging.getLogger(__name__) class SlackAlerter(Alerter): """ Creates a Slack room message for each alert """ required_options = frozenset(["slack_webhook_url"]) def __init__(self, rule): super(SlackAlerter, self).__init__(rule) self.slack_webhook_url = self.rule["slack_webhook_url"] if isinstance(self.slack_webhook_url, str): self.slack_webhook_url = [self.slack_webhook_url] self.slack_proxy = self.rule.get("slack_proxy", None) self.slack_username_override = self.rule.get( "slack_username_override", "elastalert" ) self.slack_channel_override = self.rule.get("slack_channel_override", "") if isinstance(self.slack_channel_override, str): self.slack_channel_override = [self.slack_channel_override] self.slack_title_link = self.rule.get("slack_title_link", "") self.slack_title = self.rule.get("slack_title", "") self.slack_emoji_override = self.rule.get("slack_emoji_override", ":ghost:") self.slack_icon_url_override = self.rule.get("slack_icon_url_override", "") self.slack_msg_color = self.rule.get("slack_msg_color", "danger") self.slack_parse_override = self.rule.get("slack_parse_override", "none") self.slack_text_string = self.rule.get("slack_text_string", "") self.slack_alert_fields = self.rule.get("slack_alert_fields", "") self.slack_ignore_ssl_errors = self.rule.get("slack_ignore_ssl_errors", False) self.slack_timeout = self.rule.get("slack_timeout", 10) self.slack_ca_certs = self.rule.get("slack_ca_certs") self.slack_attach_kibana_discover_url = self.rule.get( "slack_attach_kibana_discover_url", False ) self.slack_kibana_discover_color = self.rule.get( "slack_kibana_discover_color", "#ec4b98" ) self.slack_kibana_discover_title = self.rule.get( "slack_kibana_discover_title", "Discover in Kibana" ) def format_body(self, body): # https://api.slack.com/docs/formatting return body def get_aggregation_summary_text__maximum_width(self): width = super(SlackAlerter, self).get_aggregation_summary_text__maximum_width() # Reduced maximum width for prettier Slack display. return min(width, 75) def get_aggregation_summary_text(self, matches): text = super(SlackAlerter, self).get_aggregation_summary_text(matches) if text: text = "```\n{0}```\n".format(text) return text def populate_fields(self, matches): alert_fields = [] for arg in self.slack_alert_fields: arg = copy.copy(arg) arg["value"] = lookup_es_key(matches[0], arg["value"]) alert_fields.append(arg) return alert_fields def alert(self, matches): body = self.create_alert_body(matches) body = self.format_body(body) # post to slack headers = {"content-type": "application/json"} # set https proxy, if it was provided proxies = {"https": self.slack_proxy} if self.slack_proxy else None payload = { "username": self.slack_username_override, "parse": self.slack_parse_override, "text": self.slack_text_string, "attachments": [ { "color": self.slack_msg_color, "title": self.create_title(matches), "text": body, "mrkdwn_in": ["text", "pretext"], "fields": [], } ], } # if we have defined fields, populate noteable fields for the alert if self.slack_alert_fields != "": payload["attachments"][0]["fields"] = self.populate_fields(matches) if self.slack_icon_url_override != "": payload["icon_url"] = self.slack_icon_url_override else: payload["icon_emoji"] = self.slack_emoji_override if self.slack_title != "": payload["attachments"][0]["title"] = self.slack_title if self.slack_title_link != "": payload["attachments"][0]["title_link"] = self.slack_title_link if self.slack_attach_kibana_discover_url: kibana_discover_url = lookup_es_key(matches[0], "kibana_discover_url") if kibana_discover_url: payload["attachments"].append( { "color": self.slack_kibana_discover_color, "title": self.slack_kibana_discover_title, "title_link": kibana_discover_url, } ) for url in self.slack_webhook_url: for channel_override in self.slack_channel_override: try: if self.slack_ca_certs: verify = self.slack_ca_certs else: verify = not self.slack_ignore_ssl_errors if self.slack_ignore_ssl_errors: requests.packages.urllib3.disable_warnings() payload["channel"] = channel_override response = requests.post( url, data=json.dumps(payload, cls=DateTimeEncoder), headers=headers, verify=verify, proxies=proxies, timeout=self.slack_timeout, ) warnings.resetwarnings() response.raise_for_status() except RequestException as e: raise EAException("Error posting to slack: %s" % e) log.info("Alert '%s' sent to Slack" % self.rule["name"]) def get_info(self): return { "type": "slack", "slack_username_override": self.slack_username_override, }
40.606452
87
0.601525
[ "Apache-2.0" ]
JasperJuergensen/elastalert
elastalert/alerter/slack_alerter.py
6,294
Python
# -*- coding: utf-8 -*- """ Created on Tue Mar 29 11:46:26 2022 @author: Pedro """ def search(lista, target) -> int: for i in range(len(lista)): if lista [i] == target: return i return -1 def search2(lista, target) -> int: for i, element in enumerate(lista): if element == target: return i return -1
19.888889
39
0.553073
[ "MIT" ]
pgentil/PC
teoria/clase 29-03/algoritmos.py
358
Python
from .agent import Figaro from .handlers.arithmetichandler import ArithmeticHandler from .handlers.elizastatementhandler import ElizaStatementHandler
30.2
65
0.880795
[ "Apache-2.0" ]
rylans/figaro
figaro/__init__.py
151
Python
"""Constants used to ensure topic consistantancy.""" STANDARD_RECEIVED = "standard_received" EXTENDED_RECEIVED = "extended_received" X10_RECEIVED = "x10_received" ALL_LINKING_COMPLETED = "all_linking_completed" BUTTON_EVENT_REPORT = "button_event_report" USER_RESET_DETECTED = "user_reset_detected" ALL_LINK_CLEANUP_FAILURE_REPORT = "all_link_cleanup_failure_report" ALL_LINK_RECORD_RESPONSE = "all_link_record_response" ALL_LINK_CLEANUP_STATUS_REPORT = "all_link_cleanup_status_report" GET_IM_INFO = "get_im_info" SEND_ALL_LINK_COMMAND = "send_all_link_command" SEND_STANDARD = "send_standard" SEND_EXTENDED = "send_extended" X10_SEND = "x10_send" START_ALL_LINKING = "start_all_linking" CANCEL_ALL_LINKING = "cancel_all_linking" SET_HOST_DEV_CAT = "set_host_dev_cat" RESET_IM = "reset_im" SET_ACK_MESSAGE_BYTE = "set_ack_message_byte" GET_FIRST_ALL_LINK_RECORD = "get_first_all_link_record" GET_NEXT_ALL_LINK_RECORD = "get_next_all_link_record" SET_IM_CONFIGURATION = "set_im_configuration" GET_ALL_LINK_RECORD_FOR_SENDER = "get_all_link_record_for_sender" LED_ON = "led_on" LED_OFF = "led_off" MANAGE_ALL_LINK_RECORD = "manage_all_link_record" SET_NAK_MESSAGE_BYTE = "set_nak_message_byte" SET_ACK_MESSAGE_TWO_BYTES = "set_ack_message_two_bytes" RF_SLEEP = "rf_sleep" GET_IM_CONFIGURATION = "get_im_configuration" # Command Topics ASSIGN_TO_ALL_LINK_GROUP = "assign_to_all_link_group" DELETE_FROM_ALL_LINK_GROUP = "delete_from_all_link_group" PRODUCT_DATA_REQUEST = "product_data_request" FX_USERNAME = "fx_username" DEVICE_TEXT_STRING_REQUEST = "device_text_string_request" SET_DEVICE_TEXT_STRING = "set_device_text_string" SET_ALL_LINK_COMMAND_ALIAS = "set_all_link_command_alias" SET_ALL_LINK = "set_all_link" ENTER_LINKING_MODE = "enter_linking_mode" ENTER_UNLINKING_MODE = "enter_unlinking_mode" GET_INSTEON_ENGINE_VERSION = "get_insteon_engine_version" PING = "ping" ID_REQUEST = "id_request" ID_REQUEST_RESPONSE = "id_request_response" ON = "on" ON_FAST = "on_fast" OFF = "off" OFF_FAST = "off_fast" BRIGHTEN_ONE_STEP = "brighten_one_step" DIM_ONE_STEP = "dim_one_step" START_MANUAL_CHANGE_DOWN = "start_manual_change_down" START_MANUAL_CHANGE_UP = "start_manual_change_up" STOP_MANUAL_CHANGE = "stop_manual_change" STATUS_REQUEST = "status_request" GET_OPERATING_FLAGS = "get_operating_flags" SET_OPERATING_FLAGS = "set_operating_flags" INSTANT_CHANGE = "instant_change" MANUALLY_TURNED_OFF = "manually_turned_off" MANUALLY_TURNED_ON = "manually_turned_on" REMOTE_SET_BUTTON_TAP1_TAP = "remote_set_button_tap1_tap" REMOTE_SET_BUTTON_TAP2_TAP = "remote_set_button_tap2_tap" SET_STATUS = "set_status" SET_ADDRESS_MSB = "set_address_msb" POKE_ONE_BYTE = "poke_one_byte" PEEK_ONE_BYTE = "peek_one_byte" PEEK_ONE_BYTE_INTERNAL = "peek_one_byte_internal" POKE_ONE_BYTE_INTERNAL = "poke_one_byte_internal" ON_AT_RAMP_RATE = "on_at_ramp_rate" EXTENDED_GET_SET = "extended_get_set" EXTENDED_GET_RESPONSE = "extended_get_response" THERMOSTAT_SET_POINT_RESPONSE = "thermostat_set_point_response" THERMOSTAT_STATUS_RESPONSE = "thermostat_status_response" EXTENDED_GET_SET_2 = "extended_get_set_2" OFF_AT_RAMP_RATE = "off_at_ramp_rate" EXTENDED_READ_WRITE_ALDB = "extended_read_write_aldb" EXTENDED_TRIGGER_ALL_LINK = "extended_trigger_all_link" BEEP = "beep" SPRINKLER_VALVE_ON = "sprinkler_valve_on" SPRINKLER_VALVE_OFF = "sprinkler_valve_off" SPRINKLER_PROGRAM_ON = "sprinkler_program_on" SPRINKLER_PROGRAM_OFF = "sprinkler_program_off" SPRINKLER_LOAD_INITIALIZATION_VALUES = "sprinkler_load_initialization_values" SPRINKLER_LOAD_EEPROM_FROM_RAM = "sprinkler_load_eeprom_from_ram" SPRINKLER_GET_VALVE_STATUS = "sprinkler_get_valve_status" SPRINKLER_INHIBIT_COMMAND_ACCEPTANCE = "sprinkler_inhibit_command_acceptance" SPRINKLER_RESUME_COMMAND_ACCEPTANCE = "sprinkler_resume_command_acceptance" SPRINKLER_SKIP_FORWARD = "sprinkler_skip_forward" SPRINKLER_SKIP_BACK = "sprinkler_skip_back" SPRINKLER_ENABLE_PUMP_ON_V8 = "sprinkler_enable_pump_on_v8" SPRINKLER_DISABLE_PUMP_ON_V8 = "sprinkler_disable_pump_on_v8" SPRINKLER_BROADCAST_ON = "sprinkler_broadcast_on" SPRINKLER_BROADCAST_OFF = "sprinkler_broadcast_off" SPRINKLER_LOAD_RAM_FROM_EEPROM = "sprinkler_load_ram_from_eeprom" SPRINKLER_SENSOR_ON = "sprinkler_sensor_on" SPRINKLER_SENSOR_OFF = "sprinkler_sensor_off" SPRINKLER_DIAGNOSTICS_ON = "sprinkler_diagnostics_on" SPRINKLER_DIAGNOSTICS_OFF = "sprinkler_diagnostics_off" SPRINKLER_GET_PROGRAM_REQUEST = "sprinkler_get_program_request" IO_OUTPUT_ON = "io_output_on" IO_OUTPUT_OFF = "io_output_off" IO_ALARM_DATA_REQUEST = "io_alarm_data_request" IO_WRITE_OUTPUT_PORT = "io_write_output_port" IO_READ_INPUT_PORT = "io_read_input_port" IO_GET_SENSOR_VALUE = "io_get_sensor_value" IO_SET_SENSOR_1_NOMINAL_VALUE = "io_set_sensor_1_nominal_value" IO_GET_SENSOR_ALARM_DELTA = "io_get_sensor_alarm_delta" FAN_STATUS_REPORT = "fan_status_report" IO_WRITE_CONFIGURATION_PORT = "io_write_configuration_port" IO_READ_CONFIGURATION_PORT = "io_read_configuration_port" IO_MODULE_LOAD_INITIALIZATION_VALUES = "io_module_load_initialization_values" IO_MODULE_LOAD_EEPROM_FROM_RAM = "io_module_load_eeprom_from_ram" IO_MODULE_STATUS_REQUEST = "io_module_status_request" IO_MODULE_READ_ANALOG_ONCE = "io_module_read_analog_once" IO_MODULE_READ_ANALOG_ALWAYS = "io_module_read_analog_always" IO_MODULE_ENABLE_STATUS_CHANGE_MESSAGE = "io_module_enable_status_change_message" IO_MODULE_DISABLE_STATUS_CHANGE_MESSAGE = "io_module_disable_status_change_message" IO_MODULE_LOAD_RAM_FROM_EEPROM = "io_module_load_ram_from_eeprom" IO_MODULE_SENSOR_ON = "io_module_sensor_on" IO_MODULE_SENSOR_OFF = "io_module_sensor_off" IO_MODULE_DIAGNOSTICS_ON = "io_module_diagnostics_on" IO_MODULE_DIAGNOSTICS_OFF = "io_module_diagnostics_off" POOL_DEVICE_ON = "pool_device_on" POOL_DEVICE_OFF = "pool_device_off" POOL_TEMPERATURE_UP = "pool_temperature_up" POOL_TEMPERATURE_DOWN = "pool_temperature_down" POOL_LOAD_INITIALIZATION_VALUES = "pool_load_initialization_values" POOL_LOAD_EEPROM_FROM_RAM = "pool_load_eeprom_from_ram" POOL_GET_POOL_MODE = "pool_get_pool_mode" POOL_GET_AMBIENT_TEMPERATURE = "pool_get_ambient_temperature" POOL_GET_WATER_TEMPERATURE = "pool_get_water_temperature" POOL_GET_PH = "pool_get_ph" DOOR_MOVE_RAISE_DOOR = "door_move_raise_door" DOOR_MOVE_LOWER_DOOR = "door_move_lower_door" DOOR_MOVE_OPEN_DOOR = "door_move_open_door" DOOR_MOVE_CLOSE_DOOR = "door_move_close_door" DOOR_MOVE_STOP_DOOR = "door_move_stop_door" DOOR_MOVE_SINGLE_DOOR_OPEN = "door_move_single_door_open" DOOR_MOVE_SINGLE_DOOR_CLOSE = "door_move_single_door_close" DOOR_STATUS_REPORT_RAISE_DOOR = "door_status_report_raise_door" DOOR_STATUS_REPORT_LOWER_DOOR = "door_status_report_lower_door" DOOR_STATUS_REPORT_OPEN_DOOR = "door_status_report_open_door" DOOR_STATUS_REPORT_CLOSE_DOOR = "door_status_report_close_door" DOOR_STATUS_REPORT_STOP_DOOR = "door_status_report_stop_door" DOOR_STATUS_REPORT_SINGLE_DOOR_OPEN = "door_status_report_single_door_open" DOOR_STATUS_REPORT_SINGLE_DOOR_CLOSE = "door_status_report_single_door_close" WINDOW_COVERING_OPEN = "window_covering_open" WINDOW_COVERING_CLOSE = "window_covering_close" WINDOW_COVERING_STOP = "window_covering_stop" WINDOW_COVERING_PROGRAM = "window_covering_program" WINDOW_COVERING_POSITION = "window_covering_position" THERMOSTAT_TEMPERATURE_UP = "thermostat_temperature_up" THERMOSTAT_TEMPERATURE_DOWN = "thermostat_temperature_down" THERMOSTAT_GET_ZONE_INFORMATION = "thermostat_get_zone_information" THERMOSTAT_CONTROL = "thermostat_control" THERMOSTAT_SET_COOL_SETPOINT = "thermostat_set_cool_setpoint" THERMOSTAT_SET_HEAT_SETPOINT = "thermostat_set_heat_setpoint" THERMOSTAT_EXTENDED_STATUS = "thermostat_extended_status" THERMOSTAT_TEMPERATURE_STATUS = "thermostat_temperature_status" THERMOSTAT_HUMIDITY_STATUS = "thermostat_humidity_status" THERMOSTAT_MODE_STATUS = "thermostat_mode_status" THERMOSTAT_COOL_SET_POINT_STATUS = "thermostat_cool_set_point_status" THERMOSTAT_HEAT_SET_POINT_STATUS = "thermostat_heat_set_point_status" LEAK_DETECTOR_ANNOUNCE = "leak_detector_announce" ASSIGN_TO_COMPANION_GROUP = "assign_to_companion_group" SET_SPRINKLER_PROGRAM = "set_sprinkler_program" SPRINKLER_GET_PROGRAM_RESPONSE = "sprinkler_get_program_response" IO_SET_SENSOR_NOMINAL_VALUE = "io_set_sensor_nominal_value" IO_ALARM_DATA_RESPONSE = "io_alarm_data_response" POOL_SET_DEVICE_TEMPERATURE = "pool_set_device_temperature" POOL_SET_DEVICE_HYSTERESIS = "pool_set_device_hysteresis" THERMOSTAT_ZONE_TEMPERATURE_UP = "thermostat_zone_temperature_up" THERMOSTAT_ZONE_TEMPERATURE_DOWN = "thermostat_zone_temperature_down" THERMOSTAT_SET_ZONE_HEAT_SETPOINT = "thermostat_set_zone_heat_setpoint" THERMOSTAT_SET_ZONE_COOL_SETPOINT = "thermostat_set_zone_cool_setpoint" DEVICE_LINK_CONTROLLER_CREATED = "device_link_controller_created" DEVICE_LINK_CONTROLLER_REMOVED = "device_link_controller_removed" DEVICE_LINK_RESPONDER_CREATED = "device_link_responder_created" DEVICE_LINK_RESPONDER_REMOVED = "device_link_responder_removed" ALDB_VERSION = "aldb_version" ALDB_STATUS_CHANGED = "aldb_status_changed"
48.564516
83
0.878224
[ "MIT" ]
bshep/pyinsteon
pyinsteon/topics.py
9,033
Python
import numpy as np import dem as d from numpy.fft import fft2, ifft2, ifftshift def calc_cdf(ks_grids, area_grids, vmax=400, R2_cutoff = 0.0, area_cutoff = 2E6, density_weighting_distance = False): ks_vals = np.array([]) n_vals = np.array([]) R2_vals = np.array([]) density_vals = np.array([]) for (ks_grid, area_grid) in zip(ks_grids, area_grids): i = np.where(~np.isnan(ks_grid._griddata) & (ks_grid._griddata >= 0) & (area_grid._griddata >= area_cutoff)) ks_vals = np.concatenate((ks_vals, ks_grid._griddata[i])) n_vals = np.concatenate((n_vals, ks_grid._n[i])) R2_vals = np.concatenate((R2_vals, ks_grid._r2[i])) if density_weighting_distance is not False: template_grid = np.zeros_like(ks_grid._griddata) (ny, nx) = template_grid.shape (cy, cx) = (ny/2.0, nx/2.0) dy, dx = np.meshgrid(np.arange(0,ny)-cy, np.arange(0,nx)-cx, indexing = 'ij') d = np.sqrt(np.power(dx,2) + np.power(dy,2)) j = np.where(d <= density_weighting_distance) template_grid[j] = 1.0 de = area_grid._area_per_pixel() ks_bin = (~np.isnan(ks_grid._griddata) & (area_grid >= area_cutoff)).astype(float)*de template_F = fft2(template_grid) density_weight = np.real(ifftshift(ifft2(template_F*fft2(de))) / ifftshift(ifft2(template_F*fft2(ks_bin)))) density_vals = np.concatenate((density_vals, density_weight[i])) i = np.where(R2_vals >= R2_cutoff) ks_vals = ks_vals[i] n_vals = n_vals[i] if density_weighting_distance is not False: density_vals = density_vals[i] i = np.argsort(ks_vals) ks_vals = ks_vals[i] n_vals = n_vals[i] weights = 1 / n_vals if density_weighting_distance is not False: density_vals = density_vals[i] weights *= density_vals bins = np.concatenate((np.array([-0.5]), np.arange(0.5, vmax, 1),np.array([vmax])+0.5, np.array([np.max(ks_vals[:])]))) hist, _ = np.histogram(ks_vals, bins = bins, weights = weights) bin_centers = np.concatenate((np.arange(0,vmax,1),np.array([vmax]))) cdf = np.cumsum(hist) cdf /= cdf[-1] cdf = cdf[0:-1] return bin_centers, cdf
44.076923
123
0.617801
[ "MIT" ]
gehilley/GlobalSteepness
GlobalDataset/bin/steepness_cdf.py
2,292
Python
"""Interfaces for interactively entering guesses.""" import curses import time import click from wordle_cheater.interface_base import WordleCheaterUI class CursesInterface(WordleCheaterUI): """Interface for using the curses library to enter guesses and display solutions. Attributes ---------- guesses : list of WordleLetter objects The currently entered guesses. entering_letters : bool Whether or not we are currently entering guesses. """ @classmethod def init_and_run(cls, *args, **kwargs): """Instantiate and run `self.main()` using `curses.wrapper`. Parameters ---------- *args : tuple Positional arguments to be passed to the CursesInterface constructor. **kwargs : dict, optional Keyword arguments to be passed to the CursesInterface constructor. Returns ------- CursesInterface object An instance of the CursesInterface class. """ ui = cls(*args, **kwargs) curses.wrapper(ui.main) return ui def main(self, stdscr): """Run the interface. Should typically be called using `curses.wrapper`. Parameters ---------- stdscr : curses.Window object The curses screen which the user interacts with. """ self.stdscr = stdscr curses.use_default_colors() curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_BLACK) # White on black curses.init_pair(2, curses.COLOR_BLACK, curses.COLOR_YELLOW) # Black on yellow curses.init_pair(3, curses.COLOR_BLACK, curses.COLOR_GREEN) # Black on green curses.init_pair(4, curses.COLOR_BLACK, curses.COLOR_RED) # Black on red height, width = stdscr.getmaxyx() self.results_window = curses.newwin( height - 12, width, 12, 0 ) # window for printing results x0 = width // 2 - 3 y0 = 5 self.print_title() self.enter_letters(x0=x0, y0=y0) self.print_results() self.set_cursor_visibility(False) self.get_key() def center_print(self, y, string, *args, **kwargs): """Print in the center of the screen. Parameters ---------- y : int The vertical location at which to print. string : str The string to print. *args : tuple Additional arguments to be passed to `stdscr.addstr`. **kwargs : dict, optional Keyword arguments to be passed to `stdscr.addstr`. """ height, width = self.stdscr.getmaxyx() str_length = len(string) x_mid = width // 2 self.stdscr.addstr(y, x_mid - str_length // 2, string, *args, **kwargs) def print_title(self): """Print title and instructions.""" self.center_print(1, "Wordle Cheater :(", curses.A_BOLD) self.center_print(2, "Enter guesses below.") self.center_print(3, "spacebar: change color", curses.A_DIM) def print_results(self, sep=" "): """Print possible solutions given guesses. Parameters ---------- sep : str, optional The string to display between each possible solution. """ height, width = self.results_window.getmaxyx() max_rows = height - 1 # -1 to account for "Possible solutions" header cols = width // (5 + len(sep)) out_str = self.get_results_string(max_rows=max_rows, max_cols=cols, sep=sep) self.results_window.clear() self.results_window.addstr(0, 0, "Possible solutions:", curses.A_UNDERLINE) self.results_window.addstr(1, 0, out_str) self.results_window.refresh() def print(self, x, y, string, c=None): """Print `string` at coordinates `x`, `y`. Parameters ---------- x : int Horizontal position at which to print the string. y : int Height at which to print the string. string : str The string to print. c : str, {None, 'black', 'yellow', 'green', 'red'} The color in which to print. Must be one of ['black', 'yellow', 'green', 'red'] or None. If `c` is None, it should print in the default color pair. """ if c is None: self.stdscr.addstr(y, x, string) elif c == "black": self.stdscr.addstr(y, x, string, curses.color_pair(1)) elif c == "yellow": self.stdscr.addstr(y, x, string, curses.color_pair(2)) elif c == "green": self.stdscr.addstr(y, x, string, curses.color_pair(3)) elif c == "red": self.stdscr.addstr(y, x, string, curses.color_pair(4)) else: raise ValueError( "`c` must be one of ['black', 'yellow', 'green', 'red'] or none." ) def sleep(self, ms): """Temporarily suspend execution. Parameters ---------- ms : int Number of miliseconds before execution resumes. """ curses.napms(ms) self.stdscr.refresh() def move_cursor(self, x, y): """Move cursor to position `x`, `y`. Parameters ---------- x : int Desired horizontal position of cursor. y : int Desired vertical position of cursor. """ self.stdscr.move(y, x) def set_cursor_visibility(self, visible): """Set cursor visibility. Parameters ---------- visible : bool Whether or not the cursor is visible. """ curses.curs_set(visible) def get_key(self): """Get a key press. Returns ------- key : str The key that was pressed. """ return self.stdscr.getkey() def is_enter(self, key): """Check if `key` is the enter/return key. Parameters ---------- key : str The key to check. Returns ------- is_enter : bool True if `key` is the enter or return key, False otherwise. """ if key == curses.KEY_ENTER or key == "\n" or key == "\r": return True else: return False def is_backspace(self, key): """Check if `key` is the backspace/delete key. Parameters ---------- key : str The key to check. Returns ------- is_backspace : bool True if `key` is the backspace or delete key, False otherwise. """ if key == curses.KEY_BACKSPACE or key == "\b" or key == "\x7f": return True else: return False class ClickInterface(WordleCheaterUI): """Interface for using Click alone to enter letters and see solutions. Parameters ---------- max_rows : int, optional The maximum rows of possible solutions to print. max_cols : int, optional The maximum columns of possible solutions to print. x0 : int, optional The leftmost position where guesses will be entered. y0 : int, optional The topmost position where guesses will be entered. esc : str, optional The ANSI escape code for the terminal. Attributes ---------- guesses : list of WordleLetter The currently entered guesses. entering_letters : bool Whether or not we are currently entering guesses. max_rows : int, optional The maximum rows of possible solutions to print. max_cols : int, optional The maximum columns of possible solutions to print. x0 : int, optional The leftmost position where guesses will be entered. y0 : int, optional The topmost position where guesses will be entered. esc : str, optional The ANSI escape code for the terminal. line_lengths : list of int The highest x value we've printed to per line. For example, if we've printed two lines, the first one up to x=5 and the second up to x=3, then `line_lengths = [5, 3]`. curs_xy """ def __init__(self, max_rows=10, max_cols=8, x0=4, y0=4, esc="\033"): self.max_rows = max_rows # Maximum rows of results to print self.max_cols = max_cols # Maximum columns of results to print self.x0 = x0 # Initial x position of guesses self.y0 = y0 # Initial y position of guesses self.esc = esc # ANSI escape code self._curs_xy = (0, 0) # cursor position self.line_lengths = [0] # Highest x values we've hit per line super().__init__() @property def curs_xy(self): """Location of cursor.""" return self._curs_xy @curs_xy.setter def curs_xy(self, xy): """Update max line lengths when we update cursor position.""" x, y = xy if y > len(self.line_lengths) - 1: self.line_lengths += [0 for i in range(y - len(self.line_lengths) + 1)] if x > self.line_lengths[y]: self.line_lengths[y] = x self._curs_xy = xy def main(self): """Run the interface.""" try: self.print_title() self.enter_letters(x0=self.x0, y0=self.y0) self.print_results() finally: self.set_cursor_visibility(True) def print_title(self): """Print title and instructions.""" self.print(0, 0, "Wordle Cheater :(", bold=True) self.print(0, 1, "Enter guesses below.") self.print(0, 2, "spacebar: change color", dim=True) def print_results(self): """Print possible solutions given guesses.""" # If we're still entering letters, don't do anything if self.entering_letters: return out_str = self.get_results_string( max_rows=self.max_rows, max_cols=self.max_cols, sep=" " ) self.move_cursor(0, self.curs_xy[1] + 1) click.secho("Possible solutions:", underline=True) click.echo(out_str) def print(self, x, y, string, c=None, *args, **kwargs): """Print `string` at coordinates `x`, `y`. Parameters ---------- x : int Horizontal position at which to print the string. y : int Height at which to print the string. string : str The string to print. c : str, {None, 'black', 'yellow', 'green', 'red'} The color in which to print. Must be one of ['black', 'yellow', 'green', 'red'] or None. If `c` is None, it should print in the default color pair. *args : tuple Additional arguments to be passed to `click.secho`. **kwargs : dict, optional Keyword arguments to be passed to `click.secho`. """ # Move cursor to x, y so we can print there self.move_cursor(x, y) if c is None: click.secho(string, nl=False, *args, **kwargs) elif c == "black": click.secho(string, fg="white", bg="black", nl=False) elif c == "yellow": click.secho(string, fg="black", bg="yellow", nl=False) elif c == "green": click.secho(string, fg="black", bg="green", nl=False) elif c == "red": click.secho(string, fg="black", bg="red", nl=False) else: raise ValueError( "`c` must be one of ['black', 'yellow', 'green', 'red'] or none." ) self.curs_xy = (self.curs_xy[0] + len(string), self.curs_xy[1]) def sleep(self, ms): """Temporarily suspend execution. Parameters ---------- ms : int Number of miliseconds before execution resumes. """ time.sleep(ms / 1000) def move_cursor(self, x, y): """Move cursor to position `x`, `y`. Parameters ---------- x : int Desired horizontal position of cursor. y : int Desired vertical position of cursor. """ # Check if we want to move cursor up (decreasing y) if self.curs_xy[1] > y: click.echo(f"{self.esc}[{self.curs_xy[1] - y}A", nl=False) # Check if we want to move cursor down (increasing y) elif self.curs_xy[1] < y: # Check if we need to add new lines to screen if len(self.line_lengths) - 1 < y: # First arrow down as far as possible click.echo( f"{self.esc}[{(len(self.line_lengths) - 1) - self.curs_xy[1]}B", nl=False, ) # Now add blank lines click.echo("\n" * (y - (len(self.line_lengths) - 1)), nl=False) # New line, so definitely need to print spaces to move x click.echo(" " * x, nl=False) self.curs_xy = (x, y) return else: # Should just arrow down to not overwrite stuff click.echo(f"{self.esc}[{y - self.curs_xy[1]}B", nl=False) # Check if we want to move cursor left (decreasing x) if self.curs_xy[0] > x: click.echo(f"{self.esc}[{self.curs_xy[0] - x}D", nl=False) # Check if we want to move cursor right (increasing x) elif self.curs_xy[0] < x: # Check if we need to add space to right of cursor if self.line_lengths[y] > x: # First arrow to the right as far as possible click.echo( f"{self.esc}[{self.line_lengths[y] - self.curs_xy[0]}C", nl=False ) # Now add blank spaces click.echo(" " * (x - self.line_lengths[y]), nl=False) else: # Should just arrow to right to not overwrite stuff click.echo(f"{self.esc}[{x - self.curs_xy[0]}C", nl=False) self.curs_xy = (x, y) def set_cursor_visibility(self, visible): """Set cursor visibility. Parameters ---------- visible : bool Whether or not the cursor is visible. """ if visible: click.echo(f"{self.esc}[?25h", nl=False) else: click.echo(f"{self.esc}[?25l", nl=False) def get_key(self): """Get a key press. Returns ------- key : str The key that was pressed. """ return click.getchar() def is_enter(self, key): """Check if `key` is the enter/return key. Parameters ---------- key : str The key to check. Returns ------- is_enter : bool True if `key` is the enter or return key, False otherwise. """ if key == "\r" or key == "\n": return True else: return False def is_backspace(self, key): """Check if `key` is the backspace/delete key. Parameters ---------- key : str The key to check. Returns ------- is_backspace : bool True if `key` is the backspace or delete key, False otherwise. """ if key == "\b" or key == "\x7f": return True else: return False if __name__ == "__main__": # curses_ui = CursesInterface() # curses.wrapper(curses_ui.main) click_ui = ClickInterface() click_ui.main()
30.447266
87
0.545641
[ "MIT" ]
edsq/wordle-cheater
src/wordle_cheater/interface.py
15,589
Python
import asyncio import functools import operator from typing import ( cast, Iterable, NamedTuple, Sequence, Type, Tuple, ) from cached_property import cached_property from eth_utils import ( ExtendedDebugLogger, to_tuple, ) from eth_utils.toolz import groupby, valmap from eth_keys import keys from p2p._utils import duplicates, get_logger from p2p.abc import ( ConnectionAPI, HandshakerAPI, HandshakeReceiptAPI, MultiplexerAPI, NodeAPI, TransportAPI, TProtocol, ProtocolAPI, ) from p2p.connection import Connection from p2p.constants import DEVP2P_V5 from p2p.disconnect import DisconnectReason from p2p.exceptions import ( HandshakeFailure, HandshakeFailureTooManyPeers, NoMatchingPeerCapabilities, ) from p2p.multiplexer import ( stream_transport_messages, Multiplexer, ) from p2p.p2p_proto import ( DevP2PReceipt, Disconnect, Hello, HelloPayload, BaseP2PProtocol, P2PProtocolV4, P2PProtocolV5, ) from p2p.protocol import get_cmd_offsets from p2p.transport import Transport from p2p.typing import ( Capabilities, Capability, ) class Handshaker(HandshakerAPI[TProtocol]): """ Base class that handles the handshake for a given protocol. The primary justification for this class's existence is to house parameters that are needed for the protocol handshake. """ @cached_property def logger(self) -> ExtendedDebugLogger: return get_logger('p2p.handshake.Handshaker') class DevP2PHandshakeParams(NamedTuple): client_version_string: str listen_port: int version: int def get_base_protocol_class(self) -> Type[BaseP2PProtocol]: if self.version == 5: return P2PProtocolV5 elif self.version == 4: return P2PProtocolV4 else: raise Exception( f"Unknown protocol version: {self.version}. Expected one of " f"`4` or `5`" ) @to_tuple def _select_capabilities(remote_capabilities: Capabilities, local_capabilities: Capabilities) -> Iterable[Capability]: """ Select the appropriate shared capabilities between local and remote. https://github.com/ethereum/devp2p/blob/master/rlpx.md#capability-messaging """ # Determine the remote capabilities that intersect with our own. matching_capabilities = tuple(sorted( set(local_capabilities).intersection(remote_capabilities), key=operator.itemgetter(0), )) # generate a dictionary of each capability grouped by name and sorted by # version in descending order. sort_by_version = functools.partial(sorted, key=operator.itemgetter(1), reverse=True) capabilities_by_name = valmap( tuple, valmap( sort_by_version, groupby(operator.itemgetter(0), matching_capabilities), ), ) # now we loop over the names that have a matching capability and return the # *highest* version one. for name in sorted(capabilities_by_name.keys()): yield capabilities_by_name[name][0] async def _do_p2p_handshake(transport: TransportAPI, capabilities: Capabilities, p2p_handshake_params: DevP2PHandshakeParams, base_protocol: BaseP2PProtocol, ) -> Tuple[DevP2PReceipt, BaseP2PProtocol]: client_version_string, listen_port, p2p_version = p2p_handshake_params base_protocol.send(Hello(HelloPayload( client_version_string=client_version_string, capabilities=capabilities, listen_port=listen_port, version=p2p_version, remote_public_key=transport.public_key.to_bytes(), ))) # The base `p2p` protocol handshake directly streams the messages as it has # strict requirements about receiving the `Hello` message first. async for _, cmd in stream_transport_messages(transport, base_protocol): if isinstance(cmd, Disconnect): if cmd.payload == DisconnectReason.TOO_MANY_PEERS: raise HandshakeFailureTooManyPeers(f"Peer disconnected because it is already full") if not isinstance(cmd, Hello): raise HandshakeFailure( f"First message across the DevP2P connection must be a Hello " f"msg, got {cmd}, disconnecting" ) protocol: BaseP2PProtocol if base_protocol.version >= DEVP2P_V5: # Check whether to support Snappy Compression or not # based on other peer's p2p protocol version snappy_support = cmd.payload.version >= DEVP2P_V5 if snappy_support: # Now update the base protocol to support snappy compression # This is needed so that Trinity is compatible with parity since # parity sends Ping immediately after handshake protocol = P2PProtocolV5( transport, command_id_offset=0, snappy_support=True, ) else: protocol = base_protocol else: protocol = base_protocol devp2p_receipt = DevP2PReceipt( protocol=protocol, version=cmd.payload.version, client_version_string=cmd.payload.client_version_string, capabilities=cmd.payload.capabilities, remote_public_key=cmd.payload.remote_public_key, listen_port=cmd.payload.listen_port, ) break else: raise HandshakeFailure("DevP2P message stream exited before finishing handshake") return devp2p_receipt, protocol async def negotiate_protocol_handshakes(transport: TransportAPI, p2p_handshake_params: DevP2PHandshakeParams, protocol_handshakers: Sequence[HandshakerAPI[ProtocolAPI]], ) -> Tuple[MultiplexerAPI, DevP2PReceipt, Tuple[HandshakeReceiptAPI, ...]]: # noqa: E501 """ Negotiate the handshakes for both the base `p2p` protocol and the appropriate sub protocols. The basic logic follows the following steps. * perform the base `p2p` handshake. * using the capabilities exchanged during the `p2p` handshake, select the appropriate sub protocols. * allow each sub-protocol to perform its own handshake. * return the established `Multiplexer` as well as the `HandshakeReceipt` objects from each handshake. """ # The `p2p` Protocol class that will be used. p2p_protocol_class = p2p_handshake_params.get_base_protocol_class() # Collect our local capabilities, the set of (name, version) pairs for all # of the protocols that we support. local_capabilities = tuple( handshaker.protocol_class.as_capability() for handshaker in protocol_handshakers ) # Verify that there are no duplicated local or remote capabilities duplicate_capabilities = duplicates(local_capabilities) if duplicate_capabilities: raise Exception(f"Duplicate local capabilities: {duplicate_capabilities}") # We create an *ephemeral* version of the base `p2p` protocol with snappy # compression disabled for the handshake. As part of the handshake, a new # instance of this protocol will be created with snappy compression enabled # if it is supported by the protocol version. ephemeral_base_protocol = p2p_protocol_class( transport, command_id_offset=0, snappy_support=False, ) # Perform the actual `p2p` protocol handshake. We need the remote # capabilities data from the receipt to select the appropriate sub # protocols. devp2p_receipt, base_protocol = await _do_p2p_handshake( transport, local_capabilities, p2p_handshake_params, ephemeral_base_protocol, ) # This data structure is simply for easy retrieval of the proper # `Handshaker` for each selected protocol. protocol_handshakers_by_capability = dict(zip(local_capabilities, protocol_handshakers)) # Using our local capabilities and the ones transmitted by the remote # select the highest shared version of each shared protocol. selected_capabilities = _select_capabilities( devp2p_receipt.capabilities, local_capabilities, ) # If there are no capability matches throw an exception. if len(selected_capabilities) < 1: raise NoMatchingPeerCapabilities( "Found no matching capabilities between self and peer:\n" f" - local : {tuple(sorted(local_capabilities))}\n" f" - remote: {devp2p_receipt.capabilities}" ) # Retrieve the handshakers which correspond to the selected protocols. # These are needed to perform the actual handshake logic for each protocol. selected_handshakers = tuple( protocol_handshakers_by_capability[capability] for capability in selected_capabilities ) # Grab the `Protocol` class for each of the selected protocols. We need # this to compute the offsets for each protocol's command ids, as well as # for instantiation of the protocol instances. selected_protocol_types = tuple( handshaker.protocol_class for handshaker in selected_handshakers ) # Compute the offsets for each protocol's command ids protocol_cmd_offsets = get_cmd_offsets(selected_protocol_types) # Now instantiate instances of each of the protocol classes. selected_protocols = tuple( protocol_class(transport, command_id_offset, base_protocol.snappy_support) for protocol_class, command_id_offset in zip(selected_protocol_types, protocol_cmd_offsets) ) # Create `Multiplexer` to abstract all of the protocols into a single # interface to stream only messages relevant to the given protocol. multiplexer = Multiplexer(transport, base_protocol, selected_protocols) # This context manager runs a background task which reads messages off of # the `Transport` and feeds them into protocol specific queues. Each # protocol is responsible for reading its own messages from that queue via # the `Multiplexer.stream_protocol_messages` API. await multiplexer.stream_in_background() # Concurrently perform the handshakes for each protocol, gathering up # the returned receipts. try: protocol_receipts = cast(Tuple[HandshakeReceiptAPI, ...], await asyncio.gather(*( handshaker.do_handshake(multiplexer, protocol) for handshaker, protocol in zip(selected_handshakers, selected_protocols) ))) except BaseException as handshake_err: # If the multiplexer has a streaming error, that will certainly be the cause of # whatever handshake error we got, so raise that instead. multiplexer.raise_if_streaming_error() # Ok, no streaming error from the multiplexer, so stop it and raise the handshake error. await multiplexer.stop_streaming() raise handshake_err else: # The handshake was successful, but there's a chance the multiplexer's streaming stopped # after that, so we may raise that here to prevent an attempt to use a stopped multiplexer # further. multiplexer.raise_if_streaming_error() # Return the `Multiplexer` object as well as the handshake receipts. The # `Multiplexer` object acts as a container for the individual protocol # instances. return multiplexer, devp2p_receipt, protocol_receipts async def dial_out(remote: NodeAPI, private_key: keys.PrivateKey, p2p_handshake_params: DevP2PHandshakeParams, protocol_handshakers: Sequence[HandshakerAPI[ProtocolAPI]], ) -> ConnectionAPI: """ Perform the auth and P2P handshakes with the given remote. Return a `Connection` object housing all of the negotiated sub protocols. Raises UnreachablePeer if we cannot connect to the peer or HandshakeFailure if the remote disconnects before completing the handshake or if none of the sub-protocols supported by us is also supported by the remote. """ transport = await Transport.connect( remote, private_key, ) transport.logger.debug2("Initiating p2p handshake with %s", remote) try: multiplexer, devp2p_receipt, protocol_receipts = await negotiate_protocol_handshakes( transport=transport, p2p_handshake_params=p2p_handshake_params, protocol_handshakers=protocol_handshakers, ) except BaseException: # Note: This is one of two places where we manually handle closing the # reader/writer connection pair in the event of an error during the # peer connection and handshake process. # See `p2p.auth.handshake` for the other. try: await transport.close() except ConnectionResetError: transport.logger.debug("Could not wait for transport to close") raise transport.logger.debug2("Completed p2p handshake with %s", remote) connection = Connection( multiplexer=multiplexer, devp2p_receipt=devp2p_receipt, protocol_receipts=protocol_receipts, is_dial_out=True, ) return connection async def receive_dial_in(reader: asyncio.StreamReader, writer: asyncio.StreamWriter, private_key: keys.PrivateKey, p2p_handshake_params: DevP2PHandshakeParams, protocol_handshakers: Sequence[HandshakerAPI[ProtocolAPI]], ) -> Connection: transport = await Transport.receive_connection( reader=reader, writer=writer, private_key=private_key, ) try: multiplexer, devp2p_receipt, protocol_receipts = await negotiate_protocol_handshakes( transport=transport, p2p_handshake_params=p2p_handshake_params, protocol_handshakers=protocol_handshakers, ) except BaseException: # Note: This is one of two places where we manually handle closing the # reader/writer connection pair in the event of an error during the # peer connection and handshake process. # See `p2p.auth.handshake` for the other. try: await transport.close() except ConnectionResetError: transport.logger.debug("Could not wait for transport to close") raise connection = Connection( multiplexer=multiplexer, devp2p_receipt=devp2p_receipt, protocol_receipts=protocol_receipts, is_dial_out=False, ) return connection
37.890863
129
0.681224
[ "MIT" ]
g-r-a-n-t/trinity
p2p/handshake.py
14,929
Python
""" A module that contains utility functions to load the 'classical' workspace configuration. This configuration may have three meaningful files: .remote (required) - information about the connection options .remoteindex (optional) - information about which connection from options above to use .remoteignore (optional) - information about files that should be ignore when syncing files """ import os import re from collections import defaultdict from dataclasses import asdict from pathlib import Path from typing import Dict, List, Tuple from remote.exceptions import ConfigurationError from . import ConfigurationMedium, RemoteConfig, SyncRules, WorkspaceConfig from .shared import DEFAULT_REMOTE_ROOT, hash_path CONFIG_FILE_NAME = ".remote" INDEX_FILE_NAME = ".remoteindex" IGNORE_FILE_NAME = ".remoteignore" IGNORE_SECTION_REGEX = re.compile(r"^(push|pull|both)\s*:$") BASE_IGNORES = (CONFIG_FILE_NAME, INDEX_FILE_NAME, IGNORE_FILE_NAME) DEFAULT_SHELL = "sh" DEFAULT_SHELL_OPTIONS = "" def _extract_shell_info(line: str, env_vars: List[str]) -> Tuple[str, str]: if not env_vars: return DEFAULT_SHELL, DEFAULT_SHELL_OPTIONS vars_string = env_vars[0] env = {} items = vars_string.split() index = 0 while index < len(items): key, value = items[index].split("=") if value.startswith("'") or value.startswith('"'): control_character = value[0] while index < len(items) - 1: if value[-1] == control_character: break index += 1 value += " " + items[index] if not value[-1] == control_character: raise ConfigurationError(f"Config line {line} is corrupted. Cannot parse end {key}={value}") env[key] = value.strip("\"'") index += 1 print(env) # TODO: these shell types are not used in new implementation, need to remove them shell = env.pop("RSHELL", DEFAULT_SHELL) shell_options = env.pop("RSHELL_OPTS", DEFAULT_SHELL_OPTIONS) if env: raise ConfigurationError( f"Config line {line} contains unexpected env variables: {env}. Only RSHELL and RSHELL_OPTS can be used" ) return shell, shell_options def parse_config_line(line: str) -> RemoteConfig: # The line should look like this: # sdas-ld2:.remotes/814f27f15f4e7a0842cada353dfc765a RSHELL=zsh entry, *env_items = line.split(maxsplit=1) shell, shell_options = _extract_shell_info(line, env_items) parts = entry.split(":") if len(parts) != 2: raise ConfigurationError( f"The configuration string is malformed: {parts}. Please use host-name:remote_dir format" ) host, directory = parts return RemoteConfig(host=host, directory=Path(directory), shell=shell, shell_options=shell_options) def load_configurations(workspace_root: Path) -> List[RemoteConfig]: config_file = workspace_root / CONFIG_FILE_NAME configurations = [] for line in config_file.read_text().splitlines(): line = line.strip() if not line or line.startswith("#"): continue configurations.append(parse_config_line(line)) return configurations def load_default_configuration_num(workspace_root: Path) -> int: # If REMOTE_HOST_INDEX is set, that overrides settings in .remoteindex env_index = os.environ.get("REMOTE_HOST_INDEX") if env_index: try: return int(env_index) except ValueError: raise ConfigurationError( f"REMOTE_HOST_INDEX env variable contains symbols other than numbers: '{env_index}'. " "Please set the coorect index value to continue" ) index_file = workspace_root / INDEX_FILE_NAME if not index_file.exists(): return 0 # Configuration uses 1-base index and we need to have 0-based text = index_file.read_text().strip() try: return int(text) - 1 except ValueError: raise ConfigurationError( f"File {index_file} contains symbols other than numbers: '{text}'. " "Please remove it or replace the value to continue" ) def _postprocess(ignores): pull = ignores.pop("pull", []) push = ignores.pop("push", []) both = ignores.pop("both", []) if ignores: raise ConfigurationError( f"{IGNORE_FILE_NAME} file has unexpected sections: {', '.join(ignores.keys())}. Please remove them" ) return SyncRules(pull=pull, push=push, both=both) def load_ignores(workspace_root: Path) -> SyncRules: ignores: Dict[str, List[str]] = defaultdict(list) ignores["both"].extend(BASE_IGNORES) ignore_file = workspace_root / IGNORE_FILE_NAME if not ignore_file.exists(): return _postprocess(ignores) active_section = "both" is_new_format = None for line in ignore_file.read_text().splitlines(): line = line.strip() if not line or line.startswith("#"): continue matcher = IGNORE_SECTION_REGEX.match(line) if matcher is None: if is_new_format is None: is_new_format = False ignores[active_section].append(line) else: if is_new_format is None: is_new_format = True elif not is_new_format: raise ConfigurationError( f"Few ignore patters were listed in {IGNORE_FILE_NAME} before the first section {matcher.group(1)} appeared. " "Please list all ignored files after a section declaration if you use new ignore format" ) active_section = matcher.group(1) return _postprocess(ignores) def save_general_config(config_file: Path, configurations: List[RemoteConfig]): with config_file.open("w") as f: for item in configurations: f.write(f"{item.host}:{item.directory}") if item.shell != "sh": f.write(f" RSHELL={item.shell}") if item.shell_options: f.write(f" RSHELL_OPTS='{item.shell_options}'") f.write("\n") def save_ignores(config_file: Path, ignores: SyncRules): ignores.both.extend(BASE_IGNORES) ignores.trim() if ignores.is_empty(): if config_file.exists(): config_file.unlink() return with config_file.open("w") as f: for key, value in asdict(ignores).items(): f.write(f"{key}:\n") for item in value: f.write(f"{item}\n") def save_index(config_file: Path, index: int): if index == 0: # We delete file when index is default if config_file.exists(): config_file.unlink() else: config_file.write_text(f"{index + 1}\n") class ClassicConfigurationMedium(ConfigurationMedium): """A medium class that knows how to load and save the 'classical' workspace configuration. This configuration may have three meaningful files: .remote (required) - information about the connection options .remoteindex (optional) - information about which connection from options above to use .remoteignore (optional) - information about files that should be ignore when syncing files """ def load_config(self, workspace_root: Path) -> WorkspaceConfig: configurations = load_configurations(workspace_root) configuration_index = load_default_configuration_num(workspace_root) if configuration_index > len(configurations) - 1: raise ConfigurationError( f"Configuration #{configuration_index + 1} requested but there are only {len(configurations)} declared" ) ignores = load_ignores(workspace_root) return WorkspaceConfig( root=workspace_root, configurations=configurations, default_configuration=configuration_index, ignores=ignores, includes=SyncRules.new(), ) def save_config(self, config: WorkspaceConfig) -> None: save_general_config(config.root / CONFIG_FILE_NAME, config.configurations) save_ignores(config.root / IGNORE_FILE_NAME, config.ignores) save_index(config.root / INDEX_FILE_NAME, config.default_configuration) def is_workspace_root(self, path: Path) -> bool: return (path / CONFIG_FILE_NAME).exists() def generate_remote_directory(self, config: WorkspaceConfig) -> Path: md5 = hash_path(config.root) return Path(f"{DEFAULT_REMOTE_ROOT}/{config.root.name}_{md5}")
36.02521
130
0.660718
[ "BSD-2-Clause" ]
cdoronc/remote
src/remote/configuration/classic.py
8,574
Python
import csv import logging import os import copy import re import random from functools import reduce import ast import pandas import pexpect import avi.migrationtools.netscaler_converter.ns_constants as ns_constants from pkg_resources import parse_version from xlsxwriter import Workbook from openpyxl import load_workbook from urllib.parse import urlparse from OpenSSL import crypto from socket import gethostname from avi.migrationtools.netscaler_converter.ns_constants \ import (STATUS_SKIPPED, STATUS_SUCCESSFUL, STATUS_INDIRECT, STATUS_NOT_APPLICABLE, STATUS_PARTIAL, STATUS_DATASCRIPT, STATUS_INCOMPLETE_CONFIGURATION, STATUS_COMMAND_NOT_SUPPORTED, OBJECT_TYPE_POOL_GROUP, OBJECT_TYPE_POOL, STATUS_NOT_IN_USE, OBJECT_TYPE_HTTP_POLICY_SET, STATUS_LIST, COMPLEXITY_ADVANCED, COMPLEXITY_BASIC, OBJECT_TYPE_APPLICATION_PERSISTENCE_PROFILE, OBJECT_TYPE_APPLICATION_PROFILE) from avi.migrationtools.avi_migration_utils import MigrationUtil, update_count LOG = logging.getLogger(__name__) csv_writer_dict_list = [] skipped_setting = { # 'virtual_service': '', # 'ssl key and cert': {}, # 'ssl profile': {}, # 'pool group': {}, # 'health monitor': {}, # 'Httppolicy': {} } # Added variable for checking progress and get overall object. progressbar_count = 0 total_count = 0 class NsUtil(MigrationUtil): def add_conv_status(self, line_no, cmd, object_type, full_command, conv_status, avi_object=None): """ Adds as status row in conversion status csv :param line_no: line number of command :param object_type: :param full_command: netscaler command :param conv_status: dict of conversion status :param avi_object: Converted objectconverted avi object """ row = { 'Line Number': line_no if line_no else '', 'Netscaler Command': cmd if cmd else '', 'Object Name': object_type if object_type else '', 'Full Command': full_command if full_command else '', 'Status': conv_status.get('status', ''), 'Skipped settings': str(conv_status.get('skipped', '')), 'Indirect mapping': str(conv_status.get('indirect', '')), 'Not Applicable': str(conv_status.get('na_list', '')), 'User Ignored': str(conv_status.get('user_ignore', '')), 'AVI Object': str(avi_object) if avi_object else '' } csv_writer_dict_list.append(row) def add_complete_conv_status(self, ns_config, output_dir, avi_config, report_name, vs_level_status): """ Adds as status row in conversion status csv :param ns_config: NS config dict :param output_dir: output directory :param avi_config: AVI config dict :param report_name: name of report :param vs_level_status: add vs level details in XL sheet """ global csv_writer_dict_list global progressbar_count global total_count print("Generating Report For Converted Configuration...") ptotal = len(ns_config) ppcount = 0 for config_key in ns_config: # increment progressbar count ppcount += 1 config_object = ns_config[config_key] msg = "Generating report" self.print_progress_bar(ppcount, ptotal, msg, prefix='Progress', suffix='') for element_key in config_object: element_object_list = config_object[element_key] if isinstance(element_object_list, dict): element_object_list = [element_object_list] for element_object in element_object_list: match = [match for match in csv_writer_dict_list if match['Line Number'] == element_object['line_no']] if not match: ns_complete_command = self.get_netscalar_full_command( config_key, element_object) # Add status incomplete configuration self.add_status_row( element_object['line_no'], config_key, element_object['attrs'][0], ns_complete_command, STATUS_INCOMPLETE_CONFIGURATION) unique_line_number_list = set() row_list = [] for dict_row in csv_writer_dict_list: if dict_row['Line Number'] not in unique_line_number_list: unique_line_number_list.add(dict_row['Line Number']) row_list.append(dict_row) else: row = [row for row in row_list if row['Line Number'] == dict_row['Line Number']] if str(dict_row['AVI Object']).startswith('Skipped'): continue if dict_row.get('AVI Object', None): # Added condition to check unique status. if str(row[0]['AVI Object']) != str(dict_row['AVI Object']): row[0]['AVI Object'] += '__/__%s' % dict_row[ 'AVI Object'] for status in STATUS_LIST: status_list = [row for row in row_list if row['Status'] == status] print('%s: %s' % (status, len(status_list))) # add skipped list of each object at vs level print("Writing Excel Sheet For Converted Configuration...") total_count = total_count + len(row_list) if vs_level_status: self.vs_per_skipped_setting_for_references(avi_config) self.correct_vs_ref(avi_config) else: # Call to calculate vs complexity self.vs_complexity_level() # Write status report and pivot table in xlsx report self.write_status_report_and_pivot_table_in_xlsx( row_list, output_dir, report_name, vs_level_status) def add_status_row(self, line_no, cmd, object_type, full_command, status, avi_object=None): """ Adds as status row in conversion status csv :param line_no: :param cmd: netscaler command :param object_type: :param full_command: :param status: conversion status :param avi_object: """ global csv_writer_dict_list row = { 'Line Number': line_no if line_no else '', 'Netscaler Command': cmd, 'Object Name': object_type, 'Full Command': full_command, 'Status': status, 'AVI Object': str(avi_object) if avi_object else '' } csv_writer_dict_list.append(row) def add_csv_headers(self, csv_file): """ Adds header line in conversion status file :param csv_file: File to which header is to be added """ global csv_writer fieldnames = ['Line Number', 'Netscaler Command', 'Object Name', 'Full Command', 'Status', 'Skipped settings', 'Indirect mapping', 'Not Applicable', 'User Ignored', 'AVI Object'] csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames, lineterminator='\n', ) csv_writer.writeheader() def get_avi_lb_algorithm(self, ns_algorithm): """ Converts NS LB algorithm to equivalent avi LB algorithm :param ns_algorithm: NS algorithm name :return: Avi LB algorithm enum value """ avi_algorithm = 'LB_ALGORITHM_LEAST_CONNECTIONS' if ns_algorithm == 'LEASTCONNECTIONS': avi_algorithm = 'LB_ALGORITHM_LEAST_CONNECTIONS' elif ns_algorithm == 'ROUNDROBIN': avi_algorithm = 'LB_ALGORITHM_ROUND_ROBIN' elif ns_algorithm in ['LEASTRESPONSETIME', 'LRTM']: avi_algorithm = 'LB_ALGORITHM_FASTEST_RESPONSE' elif ns_algorithm == 'SOURCEIPHASH': avi_algorithm = 'LB_ALGORITHM_CONSISTENT_HASH' elif ns_algorithm == 'URLHASH': avi_algorithm = 'LB_ALGORITHM_CONSISTENT_HASH_URI' return avi_algorithm def update_algo_for_pools(self, algo, pg_name, avi_config): pool_group = [pg for pg in avi_config['PoolGroup'] if pg['name'] == pg_name][0] for member in pool_group['members']: pool_name = self.get_name(member['pool_ref']) pool = [pool for pool in avi_config['Pool'] if pool['name'] == pool_name][0] pool['lb_algorithm'] = algo def get_avi_resp_code(self, respCode): """ This function used for getting appropriate response code for avi. :param respCode: response code :return: returns list of unique responses. """ avi_resp_codes = [] codes = [] for res_code in respCode.split(' '): if '-' in res_code: codes.extend(res_code.split('-')) else: codes.append(res_code) for code in codes: if code and code.strip().isdigit(): # Converted to int. code = int(code.strip()) if code < 200: avi_resp_codes.append("HTTP_1XX") elif code < 300: avi_resp_codes.append("HTTP_2XX") elif code < 400: avi_resp_codes.append("HTTP_3XX") elif code < 500: avi_resp_codes.append("HTTP_4XX") elif code < 600: avi_resp_codes.append("HTTP_5XX") # Get the unique dict from list. avi_resp_codes = list(set(avi_resp_codes)) if not avi_resp_codes: avi_resp_codes = ["HTTP_ANY"] return avi_resp_codes def get_conv_status(self, ns_object, skipped_list, na_list, indirect_list, ignore_for_val=None, indirect_commands=None, user_ignore_val=[]): """ This function used for getting status detail for command like skipped or indirect. :param ns_object: Netscaler parsed config :param skipped_list: list of skipped commands list. :param na_list: not applicable commands list. :param indirect_list: indirect command list :param ignore_for_val: optional field :param indirect_commands: indirect commands :param user_ignore_val: List of user ignore attributes :return: returns dict of coversion status. """ skipped = [attr for attr in ns_object.keys() if attr in skipped_list] na = [attr for attr in ns_object.keys() if attr in na_list] indirect = [attr for attr in ns_object.keys() if attr in indirect_list] # List of ignore attributes which are present in skipped user_ignore = [val for val in skipped if val in user_ignore_val] # Removed the attributes from skipped which are in user ignore list skipped = [attr for attr in skipped if attr not in user_ignore_val] if ignore_for_val: for key in ignore_for_val.keys(): if key not in ns_object: continue ns_val = ns_object.get(key) ignore_val = ignore_for_val.get(key) if key in skipped and str(ns_val) == str(ignore_val): skipped.remove(key) if skipped: status = STATUS_PARTIAL else: status = STATUS_SUCCESSFUL conv_status = { 'skipped': skipped, 'indirect': indirect, 'na_list': na, 'status': status, 'user_ignore': user_ignore } return conv_status def get_key_cert_obj(self, name, key_file_name, cert_file_name, input_dir): """ :param name:name of ssl cert. :param key_file_name: key file (ie.pem) :param cert_file_name: certificate file name :param input_dir: input directory for certificate file name :return: returns dict of ssl object """ folder_path = input_dir + os.path.sep key = self.upload_file(folder_path + key_file_name) cert = self.upload_file(folder_path + cert_file_name) ssl_kc_obj = None if key and cert: cert = {"certificate": cert} ssl_kc_obj = { 'name': name, 'key': key, 'certificate': cert, 'key_passphrase': '' } return ssl_kc_obj def get_command_from_line(self, line): """ This function is used for getting command and line number from conf file. :param line: line :return: returns command name and line """ cmd = '' line_no = 0 for member in line: if 'line_no' in member: line_no = member[1] continue if isinstance(member, str): cmd += ' %s' % member else: cmd += ' -%s' % ' '.join(member) return cmd, line_no def update_status_for_skipped(self, skipped_cmds): """ :param skipped_cmds: separation of non converted commands to NA, Indirect,DataScript,NotSupported :return: None """ na_cmds = ns_constants.netscalar_command_status['NotApplicableCommands'] indirect_cmds = ns_constants.netscalar_command_status[ 'IndirectCommands'] datascript_cmds = \ ns_constants.netscalar_command_status['DatascriptCommands'] not_supported = ns_constants.netscalar_command_status['NotSupported'] if not skipped_cmds: return for cmd in skipped_cmds: line_no = cmd['line_no'] cmd = cmd['cmd'] cmd = cmd.strip() for na_cmd in na_cmds: if cmd.startswith(na_cmd): # Add status not applicable in csv/report self.add_status_row(line_no, na_cmd, None, cmd, STATUS_NOT_APPLICABLE) break for id_cmd in indirect_cmds: if cmd.startswith(id_cmd): # Add status indirect in csv/report self.add_status_row(line_no, id_cmd, None, cmd, STATUS_INDIRECT) break for datascript_cmd in datascript_cmds: if cmd.startswith(datascript_cmd): # Add status datascript in csv/report self.add_status_row(line_no, datascript_cmd, None, cmd, STATUS_DATASCRIPT) break for not_commands in not_supported: if cmd.startswith(not_commands): # Add status not not supported in csv/report self.add_status_row(line_no, not_commands, None, cmd, STATUS_COMMAND_NOT_SUPPORTED) break def remove_duplicate_objects(self, obj_type, obj_list): """ Remove duplicate objects from list :param obj_type: Object type :param obj_list: list of all objects :return: return list which has no duplicates objects """ if len(obj_list) == 1: return obj_list for source_obj in obj_list: for index, tmp_obj in enumerate(obj_list): if tmp_obj["name"] == source_obj["name"]: continue src_cp = copy.deepcopy(source_obj) tmp_cp = copy.deepcopy(tmp_obj) del src_cp["name"] if "description" in src_cp: del src_cp["description"] del tmp_cp["name"] if "description" in tmp_cp: del tmp_cp["description"] if src_cp.items() == tmp_cp.items(): LOG.warn('Remove duplicate %s object : %s' % (obj_type, tmp_obj[ "name"])) del obj_list[index] self.remove_duplicate_objects(obj_type, obj_list) return obj_list def cleanup_config(self, config): """ This function is used for deleting temp variables created for conversion :param config: dict type :return: None """ del config def clone_pool(self, pool_name, cloned_for, avi_config, userprefix=None): """ This function used for cloning shared pools in netscaler. :param pool_name: name of pool :param cloned_for: cloned for :param avi_config: avi config dict :param userprefix: prefix for objects :return: None """ pools = [pool for pool in avi_config['Pool'] if pool['name'] == pool_name] if pools: pool_obj = copy.deepcopy(pools[0]) pname = pool_obj['name'] pool_name = re.sub('[:]', '-', '%s-%s' % (pname, cloned_for)) pool_obj['name'] = pool_name avi_config['Pool'].append(pool_obj) LOG.info( "Same pool reference to other object. Clone Pool %s for %s" % (pool_name, cloned_for)) return pool_obj['name'] return None def get_vs_if_shared_vip(self, avi_config, controller_version): """ This function checks if same vip is used for other vs :param avi_config: avi config dict :param controller_version: :return: None """ vs_list = [v for v in avi_config['VirtualService'] if 'port_range_end' in v['services'][0]] for vs in vs_list: # Get the list of vs which shared the same vip if parse_version(controller_version) >= parse_version('17.1'): vs_port_list = [int(v['services'][0]['port']) for v in avi_config['VirtualService'] if v['vsvip_ref'].split('name=')[1].split('-')[0] == vs['vsvip_ref'].split('name=')[1].split('-')[0] and 'port_range_end' not in v['services'][0]] else: vs_port_list = [int(v['services'][0]['port']) for v in avi_config['VirtualService'] if v['ip_address'][ 'addr'] == vs['ip_address']['addr'] and 'port_range_end' not in v['services'][0]] if vs_port_list: min_port = min(vs_port_list) max_port = max(vs_port_list) vs['services'][0]['port_range_end'] = str(min_port - 1) service = { 'enable_ssl': False, 'port': str(max_port + 1), 'port_range_end': '65535' } vs['services'].append(service) def add_prop_for_http_profile(self, profile_name, avi_config, sysdict, prop_dict): """ This method adds the additional attribute to application profile :param profile_name: name of application profile :param avi_config: avi config dict :param sysdict: system/baseline config dict :param prop_dict: property dict :return: """ profile = [p for p in (avi_config['ApplicationProfile'] + sysdict[ 'ApplicationProfile']) if p['name'] == profile_name] if profile: if prop_dict.get('clttimeout'): profile[0]['client_header_timeout'] = int(prop_dict[ 'clttimeout']) profile[0]['client_body_timeout'] = int(prop_dict['clttimeout']) if prop_dict.get('xff_enabled'): if profile[0].get('http_profile'): profile[0]['http_profile'].update( { 'xff_enabled': True, 'xff_alternate_name': 'X-Forwarded-For' } ) else: profile[0].update({'http_profile': { 'xff_enabled': True, 'xff_alternate_name': 'X-Forwarded-For' } }) if profile[0].get('http_profile'): profile[0]['http_profile'].update( { 'x_forwarded_proto_enabled': True, 'hsts_enabled': True, 'http_to_https': True, 'httponly_enabled': True, 'hsts_max_age': 365, 'server_side_redirect_to_https': True, 'secure_cookie_enabled': True } ) else: profile[0].update({'http_profile': { 'x_forwarded_proto_enabled': True, 'hsts_enabled': True, 'http_to_https': True, 'httponly_enabled': True, 'hsts_max_age': 365, 'server_side_redirect_to_https': True, 'secure_cookie_enabled': True } }) def object_exist(self, object_type, name, avi_config): ''' This method returns true if object exists in avi config dict else false :param object_type: :param name: :param avi_config: :return: ''' data = avi_config[object_type] obj_list = [obj for obj in data if obj['name'] == name] if obj_list: return True return False def is_shared_same_vip(self, vs, cs_vs_list, avi_config, tenant_name, cloud_name, tenant_ref, cloud_ref, controller_version, prefix, input_vrf=None): """ This function check for vs sharing same vip :param vs: Name of vs :param cs_vs_list: List of vs :param avi_config: avi config dict :param tenant_name: Name of tenant :param cloud_name: Name of cloud :param tenant_ref: Reference of tenant :param cloud_ref: Reference of cloud :param controller_version: controller version :param prefix: prefix for objects :param input_vrf: VRF name input :return: None """ if parse_version(controller_version) >= parse_version('17.1'): # Get the list of vs which shared the same vip shared_vip = [v for v in cs_vs_list if v['vsvip_ref' ].split('name=')[1].split('-')[0] == vs['vsvip_ref' ].split('name=')[1].split('-')[0] and v['services'][0][ 'port'] == vs['services'][0]['port']] else: shared_vip = [v for v in cs_vs_list if v['ip_address']['addr'] == vs['ip_address']['addr'] and v['services'][0][ 'port'] == vs['services'][0]['port']] if input_vrf: vrf_ref = self.get_object_ref(input_vrf, 'vrfcontext', cloud_name=cloud_name) else: vrf_ref = self.get_object_ref('global', 'vrfcontext', cloud_name=cloud_name) if shared_vip: return True elif parse_version(controller_version) >= parse_version('17.1'): vsvip = vs['vsvip_ref'].split('name=')[1].split('-')[0] self.create_update_vsvip(vsvip, avi_config['VsVip'], tenant_ref, cloud_ref, prefix=prefix, vrf_ref=vrf_ref) name = vsvip + '-vsvip' # Added prefix for objects if prefix: name = prefix + '-' + vsvip + '-vsvip' updated_vsvip_ref = self.get_object_ref( name, 'vsvip', tenant_name, cloud_name) vs['vsvip_ref'] = updated_vsvip_ref def clone_http_policy_set(self, policy, prefix, avi_config, tenant_name, cloud_name, used_poolgrp_ref, userprefix=None): """ This function clone pool reused in context switching rule :param policy: name of policy :param prefix: clone for :param avi_config: avi config dict :param tenant_name: :param cloud_name: :param used_poolgrp_ref: :param userprefix: prefix for objects :return:None """ policy_name = policy['name'] clone_policy = copy.deepcopy(policy) for rule in clone_policy['http_request_policy']['rules']: if rule.get('switching_action', None) and \ rule['switching_action'].get('pool_group_ref'): pool_group_ref = \ rule['switching_action']['pool_group_ref'].split('&')[ 1].split( '=')[1] if pool_group_ref in used_poolgrp_ref: LOG.debug('Cloned the pool group for policy %s', policy_name) pool_group_ref = self.clone_pool_group( pool_group_ref, policy_name, avi_config, tenant_name, cloud_name, userprefix=userprefix) if pool_group_ref: updated_pool_group_ref = self.get_object_ref( pool_group_ref, OBJECT_TYPE_POOL_GROUP, tenant_name, cloud_name) rule['switching_action']['pool_group_ref'] = \ updated_pool_group_ref clone_policy['name'] += '-%s-clone' % prefix return clone_policy def set_rules_index_for_http_policy_set(self, avi_config): """ Update index as per avi protobuf requirements :param avi_config: avi config dict :return: None """ http_policy_sets = avi_config['HTTPPolicySet'] for http_policy_set in http_policy_sets: rules = http_policy_set['http_request_policy']['rules'] rules = sorted(rules, key=lambda d: int(d['index'])) for index, rule in enumerate(rules): rule['index'] = index def get_netscalar_full_command(self, netscalar_command, obj): """ Generate netscaler command from the parse dict :param netscalar_command: name of command :param obj: object with attributes :return: Full command """ for attr in obj['attrs']: netscalar_command += ' %s' % attr for key in obj: if isinstance(obj[key], list): continue if key == 'line_no': continue netscalar_command += ' -%s %s' % (key, obj[key]) return netscalar_command def clone_pool_group(self, pg_name, cloned_for, avi_config, tenant_name, cloud_name, userprefix=None): """ Used for cloning shared pool group. :param pg_name: pool group name :param cloned_for: clone for :param avi_config: avi config dict :param tenant_name: :param cloud_name: :param userprefix: prefix for objects :return: None """ pool_groups = [pg for pg in avi_config['PoolGroup'] if pg['name'] == pg_name] if pool_groups: pool_group = copy.deepcopy(pool_groups[0]) pool_group_name = re.sub('[:]', '-', '%s-%s' % (pg_name, cloned_for)) pool_group['name'] = pool_group_name for member in pool_group.get('members', []): pool_ref = self.get_name(member['pool_ref']) pool_ref = self.clone_pool(pool_ref, cloned_for, avi_config, userprefix=userprefix) if pool_ref: updated_pool_ref = self.get_object_ref( pool_ref, OBJECT_TYPE_POOL, tenant_name, cloud_name) member['pool_ref'] = updated_pool_ref avi_config['PoolGroup'].append(pool_group) LOG.info( "Same pool group reference to other object. Clone Pool group " "%s for %s" % (pg_name, cloned_for)) return pool_group['name'] return None def remove_http_mon_from_pool(self, avi_config, pool, sysdict): """ This function is used for removing http type health monitor from https vs. :param avi_config: avi config dict :param pool: name of pool :param sysdict: baseline/system config dict :return: None """ if pool: hm_refs = copy.deepcopy(pool['health_monitor_refs']) for hm_ref in hm_refs: hm = [h for h in (sysdict['HealthMonitor'] + avi_config[ 'HealthMonitor']) if h['name'] == hm_ref] if hm and hm[0]['type'] == 'HEALTH_MONITOR_HTTP': pool['health_monitor_refs'].remove(hm_ref) LOG.warning( 'Skipping %s this reference from %s pool because ' 'of health monitor type is HTTP and VS has ssl ' 'profile.' % (hm_ref, pool['name'])) def remove_https_mon_from_pool(self, avi_config, pool, sysdict): """ This function is used for removing https type health monitor from http vs. :param avi_config: avi config dict :param pool: name of pool :param sysdict: baseline/system config dict :return: None """ if pool: hm_refs = copy.deepcopy(pool['health_monitor_refs']) for hm_ref in hm_refs: hm = [h for h in (sysdict['HealthMonitor'] + avi_config[ 'HealthMonitor']) if h['name'] == hm_ref] if hm and hm[0]['type'] == 'HEALTH_MONITOR_HTTPS': pool['health_monitor_refs'].remove(hm_ref) LOG.warning( 'Skipping %s this reference from %s pool because ' 'of health monitor type is HTTPS and VS has no ssl ' 'profile.' % (hm_ref, pool['name'])) def update_application_profile(self, profile_name, pki_profile_ref, tenant_ref, name, avi_config, sysdict): """ This functions defines to update application profile with pki profile if application profile exist if not create new http profile with pki profile :param profile_name: name of Http profile :param pki_profile_ref: ref of PKI profile :param tenant_ref: tenant ref :param name: name of virtual service :param avi_config: Dict of AVi config :param sysdict: baseline/system config :return: Http profile """ try: if profile_name: app_profile = [p for p in (sysdict['ApplicationProfile'] + avi_config['ApplicationProfile']) if p['name'] == profile_name] if app_profile: app_profile[0]["http_profile"]['pki_profile_ref'] = \ pki_profile_ref LOG.debug('Added PKI profile to application profile ' 'successfully : %s' % ( profile_name, pki_profile_ref)) else: app_profile = dict() app_profile['name'] = name + '-%s-%s' % ( random.randrange(0, 1000), ns_constants.PLACE_HOLDER_STR) app_profile['tenant_ref'] = tenant_ref app_profile['type'] = 'APPLICATION_PROFILE_TYPE_HTTP' http_profile = dict() http_profile['connection_multiplexing_enabled'] = False http_profile['xff_enabled'] = False # TODO: clientIpHdrExpr conversion to xff_alternate_name http_profile['websockets_enabled'] = False http_profile['pki_profile_ref'] = pki_profile_ref app_profile["http_profile"] = http_profile avi_config['ApplicationProfile'].append(app_profile) LOG.debug( "Conversion completed successfully for httpProfile: %s" % app_profile['name']) return app_profile['name'] except: update_count('error') LOG.error("Error in convertion of httpProfile", exc_info=True) def convert_persistance_prof(self, vs, name, tenant_ref): """ This function defines that it convert the persistent profile and return that profile :param vs: object of lb vs or pool :param name: name of application persteance profile :param tenant_ref: reference of tenant :return: application persistent profile """ profile = None persistenceType = vs.get('persistenceType', '') if persistenceType == 'COOKIEINSERT': timeout = vs.get('timeout', 2) profile = { "http_cookie_persistence_profile": { "always_send_cookie": False }, "persistence_type": "PERSISTENCE_TYPE_HTTP_COOKIE", "server_hm_down_recovery": "HM_DOWN_PICK_NEW_SERVER", "name": name, } # Added time if greater than zero if int(timeout) > 0: profile['http_cookie_persistence_profile']["timeout"] = timeout elif persistenceType == 'SOURCEIP': # Set timeout equal to 2 if not provided. timeout = vs.get('timeout', 120) timeout = int(timeout) / 60 if timeout < 1: timeout = 1 profile = { "server_hm_down_recovery": "HM_DOWN_PICK_NEW_SERVER", "persistence_type": "PERSISTENCE_TYPE_CLIENT_IP_ADDRESS", "ip_persistence_profile": { "ip_persistent_timeout": timeout }, "name": name } elif persistenceType == 'SSLSESSION': profile = { "server_hm_down_recovery": "HM_DOWN_PICK_NEW_SERVER", "persistence_type": "PERSISTENCE_TYPE_TLS", "name": name } profile['tenant_ref'] = tenant_ref return profile def update_status_target_lb_vs_to_indirect(self, larget_lb_vs): """ This function defines that update status for the target lb vserver as Indirect :param larget_lb_vs: name of target lb vserver :return: None """ global csv_writer_dict_list row = [row for row in csv_writer_dict_list if row['Object Name'] == larget_lb_vs and row['Netscaler Command'] == 'add lb vserver'] if row: row[0]['Status'] = STATUS_INDIRECT def create_http_policy_set_for_redirect_url(self, vs_obj, redirect_uri, avi_config, tenant_name, tenant_ref, enable_ssl): """ This function defines that create http policy for redirect url :param vs_obj: object of VS :param redirect_uri: redirect uri :param avi_config: dict of AVi :param tenant_name: name of tenant :param tenant_ref: tenant ref :param enable_ssl: flag for enabling ssl :return: None """ redirect_uri = str(redirect_uri).replace('"', '') action = self.build_redirect_action_dict(redirect_uri, enable_ssl) policy_obj = { 'name': vs_obj['name'] + '-redirect-policy', 'tenant_ref': tenant_ref, 'http_request_policy': { 'rules': [ { 'index': 0, 'name': vs_obj['name'] + '-redirect-policy-rule-0', 'match': { 'path': { 'match_case': 'INSENSITIVE', 'match_str': [ '/' ], 'match_criteria': 'EQUALS' } }, 'redirect_action': action } ] } } updated_http_policy_ref = self.get_object_ref(policy_obj['name'], OBJECT_TYPE_HTTP_POLICY_SET, tenant_name) http_policies = { 'index': 11, 'http_policy_set_ref': updated_http_policy_ref } if not vs_obj.get('http_policies'): vs_obj['http_policies'] = [] else: ind = max([policies['index'] for policies in vs_obj[ 'http_policies']]) http_policies['index'] = ind + 1 vs_obj['http_policies'].append(http_policies) avi_config['HTTPPolicySet'].append(policy_obj) def clean_virtual_service_from_avi_config(self, avi_config, controller_version): """ This function defines that clean up vs which has vip 0.0.0.0 :param avi_config: dict of AVI :param controller_version: :return: None """ vs_list = copy.deepcopy(avi_config['VirtualService']) avi_config['VirtualService'] = [] if parse_version(controller_version) >= parse_version('17.1'): avi_config['VirtualService'] = \ [vs for vs in vs_list if vs['vsvip_ref'].split('name=')[1].split('-')[0] != '0.0.0.0'] else: avi_config['VirtualService'] = \ [vs for vs in vs_list if vs['ip_address']['addr'] != '0.0.0.0'] def parse_url(self, url): """ This method returns the parsed url :param url: url that need to be parsed :return: """ parsed = urlparse(url) return parsed def format_string_to_json(self, avi_string): """ This function defines that it convert string into json format to convert into dict :param avi_string: string to be converted :return: Return converted string """ avi_string = avi_string.split('__/__')[0] return ast.literal_eval(avi_string) def get_csv_object_list(self, csv_writer_dict_list, command_list): """ This method is used for getting csv object :param csv_writer_dict_list: CSV row of object from xlsx report :param command_list: List of netscaler commands :return: List of CSV rows """ csv_object = [row for row in csv_writer_dict_list if row['Status'] in [STATUS_PARTIAL, STATUS_SUCCESSFUL] and row['Netscaler Command'] in command_list] return csv_object def get_csv_skipped_list(self, csv_object, name_of_object, vs_ref): """ This method is used for getting skipped list from vs. :param csv_object: CSV row of object from xlsx report :param name_of_object: Name of Object :param vs_ref: Reference of VS :return: List of skipped settings """ skipped_list = [] for each_partial in csv_object: avi_object_json = \ self.format_string_to_json(each_partial['AVI Object']) if avi_object_json.get('name') and \ avi_object_json['name'] == name_of_object: # Set the VS reference for Netscaler status row each_partial['VS Reference'] = vs_ref repls = ('[', ''), (']', '') skipped_setting_csv = reduce(lambda a, kv: a.replace(*kv), repls, each_partial['Skipped settings']) if skipped_setting_csv: skipped_list.append(skipped_setting_csv) return skipped_list def get_ssl_key_and_cert_refs_skipped(self, csv_writer_dict_list, object_name, vs_ref): """ This functions defines that get the skipped list of CSV row :param csv_writer_dict_list: CSV row of object from xlsx report :param object_name: like virtual service or pool name :param vs_ref: Reference of VS :return: List of skipped settings """ ssl_key_cert = \ self.get_name(object_name['ssl_key_and_certificate_refs'][0]) csv_object = self.get_csv_object_list( csv_writer_dict_list, ['bind ssl vserver', 'bind ssl service', 'bind ssl serviceGroup']) skipped_list = self.get_csv_skipped_list(csv_object, ssl_key_cert, vs_ref) return ssl_key_cert, skipped_list def get_ssl_profile_skipped(self, csv_writer_dict_list, ssl_profile_ref, vs_ref): """ This functions defines that get the skipped list of CSV row :param csv_writer_dict_list: CSV row of object from xlsx report :param ssl_profile_ref: reference of ssl profile object :param vs_ref: virtual service obj reference. :return: List of skipped settings """ ssl_profile_name = self.get_name(ssl_profile_ref) csv_object = \ self.get_csv_object_list(csv_writer_dict_list, ['set ssl vserver', 'set ssl service', 'set ssl serviceGroup']) skipped_list = self.get_csv_skipped_list(csv_object, ssl_profile_name, vs_ref) return ssl_profile_name, skipped_list def get_application_profile_skipped(self, csv_writer_dict_list, name_of_object, vs_ref): """ This functions defines that get the skipped list of CSV row :param csv_writer_dict_list: CSV row of object from xlsx report :param name_of_object: object name like pool name, etc :param vs_ref: virtual service obj reference. :return: List of skipped settings """ ssl_profile_name = self.get_name( name_of_object['application_profile_ref']) csv_object = self.get_csv_object_list( csv_writer_dict_list, ['add ns httpProfile']) skipped_list = self.get_csv_skipped_list(csv_object, ssl_profile_name, vs_ref) return ssl_profile_name, skipped_list def get_network_profile_skipped(self, csv_writer_dict_list, name_of_object, vs_ref): """ This functions defines that get the skipped list of CSV row :param csv_writer_dict_list:List of add ns tcpProfile netscaler command rows :param name_of_object: object name like pool name, etc :param vs_ref: virtual service obj reference. :return: List of skipped settings """ ssl_profile_name = self.get_name(name_of_object['network_profile_ref']) csv_object = self.get_csv_object_list( csv_writer_dict_list, ['add ns tcpProfile']) skipped_list = self.get_csv_skipped_list(csv_object, ssl_profile_name, vs_ref) return ssl_profile_name, skipped_list def get_app_persistence_profile_skipped(self, csv_writer_dict_list, name_of_object, vs_ref): """ This functions defines that get the skipped list of CSV row :param csv_writer_dict_list: List of set lb group netscaler command rows :param name_of_object: object name like pool name, etc :param vs_ref: virtual service obj reference. :return: List of skipped settings """ # Changed ssl profile name to ssl profile ref. app_persistence_profile_name = self.get_name( name_of_object['ssl_profile_ref']) csv_object = self.get_csv_object_list(csv_writer_dict_list, ['set lb group']) skipped_list = self.get_csv_skipped_list( csv_object, app_persistence_profile_name, vs_ref) return app_persistence_profile_name, skipped_list def get_pool_skipped_list(self, avi_config, pool_group_name, skipped_setting, csv_object, obj_name, csv_writer_dict_list, vs_ref): """ This method is used for getting pool skipped list. :param avi_config: AVI dict :param pool_group_name: Name of Pool group :param skipped_setting: List of skipped settings :param csv_object: CSV row :param obj_name: Name of Object :param csv_writer_dict_list: List of bind lb vserver netscaler command rows :param vs_ref: vs object reference :return: List of skipped settings """ pool_group_object_ref = [pool_group_object_ref for pool_group_object_ref in avi_config['PoolGroup'] if pool_group_object_ref[ 'name'] == pool_group_name] for pool_group in pool_group_object_ref: if 'members' in pool_group: for each_pool_ref in pool_group['members']: pool_name = self.get_name(each_pool_ref['pool_ref']) skipped_list = self.get_csv_skipped_list(csv_object, pool_name, vs_ref) if len(skipped_list) > 0: skipped_setting[obj_name] = {} skipped_setting[obj_name]['pool'] = {} skipped_setting[obj_name]['pool'][ 'pool_name'] = pool_name skipped_setting[obj_name]['pool']['pool_skipped_list'] \ = skipped_list for pool_partial in csv_object: avi_object_json = self.format_string_to_json( pool_partial['AVI Object']) if avi_object_json['name'] == pool_name: if 'health_monitor_refs' in avi_object_json and \ avi_object_json['health_monitor_refs']: monitor_refs = \ avi_object_json['health_monitor_refs'] for monitor_ref in monitor_refs: monitor_ref = self.get_name(monitor_ref) csv_object = self.get_csv_object_list( csv_writer_dict_list, ['add lb monitor']) skipped_list = self.get_csv_skipped_list( csv_object, monitor_ref, vs_ref) if skipped_list: skipped_setting[obj_name] = {} skipped_setting[obj_name]['pool'] = {} skipped_setting[obj_name]['pool'][ 'pool_name'] = pool_name skipped_setting[obj_name]['pool'][ 'health monitor'] = {} skipped_setting[obj_name]['pool'][ 'health monitor'][ 'name'] = monitor_ref skipped_setting[obj_name]['pool'][ 'health monitor']['skipped_list'] =\ skipped_list if 'ssl_key_and_certificate_refs' in avi_object_json: name, skipped = \ self.get_ssl_key_and_cert_refs_skipped( csv_writer_dict_list, avi_object_json, vs_ref) if skipped: skipped_setting[obj_name] = {} skipped_setting[obj_name]['pool'] = {} skipped_setting[obj_name]['pool'][ 'pool_name'] = pool_name skipped_setting[ obj_name]['pool'][ 'ssl key and cert'] = {} skipped_setting[ obj_name]['pool']['ssl key and cert'][ 'name'] = name skipped_setting[ obj_name]['pool']['ssl key and cert'][ 'skipped_list'] = skipped if 'ssl_profile_ref' in avi_object_json: name, skipped = \ self.get_ssl_profile_skipped( csv_writer_dict_list, avi_object_json[ 'ssl_profile_ref'], vs_ref) if skipped: skipped_setting[obj_name] = {} skipped_setting[obj_name]['pool'] = {} skipped_setting[obj_name]['pool'][ 'pool_name'] = pool_name skipped_setting[obj_name]['pool'][ 'ssl profile'] = {} skipped_setting[obj_name]['pool'][ 'ssl profile']['name'] = name skipped_setting[obj_name]['pool'][ 'ssl profile']['skipped_list'] = skipped # Get the skipped settings of application # persistence profile ref. if 'application_persistence_profile_ref' in \ avi_object_json: name, skipped = \ self.get_app_persistence_profile_skipped( csv_writer_dict_list, avi_object_json, vs_ref) if skipped: skipped_setting[obj_name] = {} skipped_setting[obj_name]['pool'] = {} skipped_setting[obj_name]['pool'][ 'pool_name'] = pool_name skipped_setting[obj_name]['pool'][ 'Application Persistence profile'] = {} skipped_setting[obj_name]['pool'][ 'Application Persistence profile'][ 'name'] = name skipped_setting[obj_name]['pool'][ 'Application Persistence profile'][ 'skipped_list'] = skipped # Get the skipped settings of application # persistence profile ref. if 'application_persistence_profile_ref' \ in avi_object_json: name, skipped = \ self.get_app_persistence_profile_skipped( csv_writer_dict_list, avi_object_json, vs_ref) if skipped: skipped_setting[obj_name] = {} skipped_setting[obj_name]['pool'] = {} skipped_setting[obj_name]['pool'][ 'pool_name'] = pool_name skipped_setting[obj_name]['pool'][ 'Application Persistence profile'] = {} skipped_setting[obj_name]['pool'][ 'Application Persistence profile'][ 'name'] = name skipped_setting[obj_name]['pool'][ 'Application Persistence profile'][ 'skipped_list'] = skipped def vs_complexity_level(self): """ This method calculate complexity of vs. :return: """ vs_csv_objects = [row for row in csv_writer_dict_list if row['Status'] in [STATUS_PARTIAL, STATUS_SUCCESSFUL] and row['Netscaler Command'] in [ 'add cs vserver', 'add lb vserver']] for vs_csv_object in vs_csv_objects: virtual_service = self.format_string_to_json( vs_csv_object['AVI Object']) # Update the complexity level of VS as Basic or Advanced self.update_vs_complexity_level(vs_csv_object, virtual_service) def vs_per_skipped_setting_for_references(self, avi_config): """ This functions defines that Add the skipped setting per VS CSV row :param avi_config: this methode use avi_config for checking vs skipped :return: None """ # Get the count of vs sucessfully migrated global fully_migrated global total_count global progressbar_count fully_migrated = 0 # Get the VS object list which is having status successful and partial. vs_csv_objects = [row for row in csv_writer_dict_list if row['Status'] in [STATUS_PARTIAL, STATUS_SUCCESSFUL] and row['Netscaler Command'] in [ 'add cs vserver', 'add lb vserver']] # calculate total count total_count = total_count + len(vs_csv_objects) for vs_csv_object in vs_csv_objects: progressbar_count += 1 skipped_setting = {} virtual_service = self.format_string_to_json( vs_csv_object['AVI Object']) # Update the complexity level of VS as Basic or Advanced self.update_vs_complexity_level(vs_csv_object, virtual_service) vs_ref = virtual_service['name'] repls = ('[', ''), (']', '') # Get list of skipped setting attributes skipped_setting_csv = reduce(lambda a, kv: a.replace(*kv), repls, vs_csv_object['Skipped settings']) if skipped_setting_csv: skipped_setting['virtual_service'] = [skipped_setting_csv] # Get the skipped list for ssl key and cert if 'ssl_key_and_certificate_refs' in virtual_service: name, skipped = self.get_ssl_key_and_cert_refs_skipped( csv_writer_dict_list, virtual_service, vs_ref) if skipped: skipped_setting['ssl key and cert'] = {} skipped_setting['ssl key and cert']['name'] = name skipped_setting['ssl key and cert'][ 'skipped_list'] = skipped # Get the skipped list for ssl profile name. # Changed ssl profile name to ssl profile ref. if 'ssl_profile_ref' in virtual_service: name, skipped = self.get_ssl_profile_skipped( csv_writer_dict_list, virtual_service['ssl_profile_ref'], vs_ref) if skipped: skipped_setting['ssl profile'] = {} skipped_setting['ssl profile']['name'] = name skipped_setting['ssl profile']['skipped_list'] = skipped # Get the skipped list for pool group. if 'pool_group_ref' in virtual_service: pool_group_name = self.get_name( virtual_service['pool_group_ref']) csv_object = self.get_csv_object_list( csv_writer_dict_list, ['bind lb vserver']) self.get_pool_skipped_list( avi_config, pool_group_name, skipped_setting, csv_object, 'pool group', csv_writer_dict_list, vs_ref) # Get the skipepd list for http policy. if 'http_policies' in virtual_service: csv_object = self.get_csv_object_list( csv_writer_dict_list, ['add cs policy', 'add responder policy', 'add rewrite policy']) for http_ref in virtual_service['http_policies']: http_name = self.get_name(http_ref['http_policy_set_ref']) skipped_list = self.get_csv_skipped_list(csv_object, http_name, vs_ref) if skipped_list: skipped_setting['Httppolicy'] = {} skipped_setting['Httppolicy']['name'] = http_name skipped_setting['Httppolicy'][ 'skipped_list'] = skipped_list # Get the http policy name for each_http_policy in avi_config['HTTPPolicySet']: if each_http_policy['name'] == http_name: for http_req in \ each_http_policy['http_request_policy'][ 'rules']: if http_req.get('switching_action', None) and \ http_req['switching_action'].get( 'pool_group_ref', None): pool_group_name = self.get_name( http_req['switching_action'] ['pool_group_ref']) self.get_pool_skipped_list( avi_config, pool_group_name, skipped_setting, csv_object, 'Httppolicy', csv_writer_dict_list, vs_ref) # Get the skipped list for application_profile_ref. if 'application_profile_ref' in virtual_service and \ 'admin:System' not in \ virtual_service['application_profile_ref']: name, skipped = self.get_application_profile_skipped( csv_writer_dict_list, virtual_service, vs_ref) if skipped: skipped_setting['Application profile'] = {} skipped_setting['Application profile'][ 'name'] = name skipped_setting['Application profile'][ 'skipped_list'] = skipped # Get the skipped list for network profile ref. if 'network_profile_ref' in virtual_service and \ 'admin:System' not in \ virtual_service['network_profile_ref']: name, skipped = self.get_network_profile_skipped( csv_writer_dict_list, virtual_service, vs_ref) if skipped: skipped_setting['Network profile'] = {} skipped_setting['Network profile'][ 'name'] = name skipped_setting['Network profile'][ 'skipped_list'] = skipped # Update overall skipped setting of VS csv row if skipped_setting: vs_csv_object.update( {'Overall skipped settings': str(skipped_setting)}) else: vs_csv_object.update( {'Overall skipped settings': "FULLY MIGRATION"}) fully_migrated += 1 msg = "Writing excel sheet started..." self.print_progress_bar(progressbar_count, total_count, msg, prefix='Progress', suffix='') csv_objects = [row for row in csv_writer_dict_list if row['Status'] in [STATUS_PARTIAL, STATUS_SUCCESSFUL] and row['Netscaler Command'] not in ['add cs vserver', 'add lb vserver'] and ( 'VS Reference' not in row or not row[ 'VS Reference'])] # Update the vs reference not in used if objects are not attached to # VS directly or indirectly for csv_object in csv_objects: csv_object['VS Reference'] = STATUS_NOT_IN_USE def write_status_report_and_pivot_table_in_xlsx(self, row_list, output_dir, report_name, vs_level_status): """ This method writes the status and make pivot table in excel sheet :param row_list: :param output_dir: :param report_name: :param vs_level_status: :return: """ global total_count global progressbar_count # List of fieldnames for headers if vs_level_status: fieldnames = ['Line Number', 'Netscaler Command', 'Object Name', 'Full Command', 'Status', 'Skipped settings', 'Indirect mapping', 'Not Applicable', 'User Ignored', 'Overall skipped settings', 'Complexity Level', 'VS Reference', 'AVI Object'] else: fieldnames = ['Line Number', 'Netscaler Command', 'Object Name', 'Full Command', 'Status', 'Skipped settings', 'Indirect mapping', 'Not Applicable', 'User Ignored', 'Complexity Level' , 'AVI Object'] xlsx_report = output_dir + os.path.sep + ("%s-ConversionStatus.xlsx" % report_name) # xlsx workbook status_wb = Workbook(xlsx_report) # xlsx worksheet status_ws = status_wb.add_worksheet("Status Sheet") # Lock the first row of xls report. status_ws.freeze_panes(1, 0) first_row = 0 for header in fieldnames: col = fieldnames.index(header) status_ws.write(first_row, col, header) row = 1 for row_data in row_list: progressbar_count += 1 for _key, _value in row_data.items(): if _key in fieldnames: col = fieldnames.index(_key) status_ws.write(row, col, _value) msg = "Writing excel sheet started..." self.print_progress_bar(progressbar_count, total_count, msg, prefix='Progress', suffix='') row += 1 status_wb.close() # create dataframe for row list df = pandas.DataFrame(row_list, columns=fieldnames) # create pivot table using pandas pivot_table = pandas.pivot_table(df, index=["Status", "Netscaler Command"], values=[], aggfunc=[len], fill_value=0) # create dataframe for pivot table using pandas pivot_df = pandas.DataFrame(pivot_table) master_book = load_workbook(xlsx_report) master_writer = pandas.ExcelWriter(xlsx_report, engine='openpyxl') master_writer.book = master_book # Add pivot table in Pivot sheet pivot_df.to_excel(master_writer, 'Pivot Sheet') master_writer.save() def update_skip_duplicates(self, obj, obj_list, obj_type, merge_object_mapping, name, ent_type, prefix, syslist): """ This method merge duplicate objects :param obj: Source object to find duplicates for :param obj_list: List of object to search duplicates in :param obj_type: Type of object to add in converted_objs status :param converted_objs: Converted avi object or merged object name :param name: Name of the object :param default_profile_name : Name of root parent default profile :return: """ dup_of = None merge_object_mapping[obj_type].update({name: name}) dup_of, old_name = self.check_for_duplicates(obj, obj_list, obj_type, merge_object_mapping, ent_type, prefix, syslist) if dup_of: LOG.info( "Duplicate profiles: %s merged in %s" % (obj['name'], dup_of)) # Update value of ssl profile with merged profile if old_name in merge_object_mapping[obj_type].keys(): merge_object_mapping[obj_type].update({old_name: dup_of}) merge_object_mapping[obj_type].update({name: dup_of}) return True return False def create_update_vsvip(self, vip, vsvip_config, tenant_ref, cloud_ref, prefix=None, vrf_ref=None): """ This functions defines that create or update VSVIP object. :param vip: vip of VS :param vsvip_config: List of vs object :param tenant_ref: tenant reference :param cloud_ref: cloud reference :param prefix: prefix for objects :param vrf_ref: VRF ref to be added in VIP object :return: None """ # Get the exsting vsvip object list if present name = vip + '-vsvip' # Added prefix for objects if prefix: name = prefix + '-' + name vsvip = [vip_obj for vip_obj in vsvip_config if vip_obj['name'] == name] if vsvip: diff_ten = [vips for vips in vsvip if vips['tenant_ref'] != tenant_ref] if diff_ten: LOG.debug('VsVip %s is repeated with vrf %s but different ' 'tenant %s', name, self.get_name(vrf_ref) if vrf_ref else 'None', self.get_name(tenant_ref)) name = '' # If VSVIP object not present then create new VSVIP object. else: vsvip_object = { "name": name, "tenant_ref": tenant_ref, "cloud_ref": cloud_ref, "vip": [ { "vip_id": "0", "ip_address": { "type": "V4", "addr": vip } } ], } if vrf_ref: vsvip_object["vrf_context_ref"] = vrf_ref vsvip_config.append(vsvip_object) def get_redirect_fail_action(self, url): """ This method returns the fail action dict :param url: url :return: """ parsed = urlparse(url) redirect_fail_action = { 'fail_action': { 'redirect': { 'host': parsed.hostname, 'protocol': str(parsed.scheme).upper(), 'status_code': "HTTP_REDIRECT_STATUS_CODE_302" }, "type": "FAIL_ACTION_HTTP_REDIRECT" } } if parsed.path: redirect_fail_action['fail_action']['redirect']['path'] = \ str(parsed.path).replace('"', '') if parsed.query: redirect_fail_action['fail_action']['redirect'][ 'query'] = parsed.query return redirect_fail_action def cleanup_dupof(self, avi_config): """ This method is used to clean up dup_of key from different AVI objects :param avi_config: :return: """ self.remove_dup_key(avi_config["ApplicationProfile"]) self.remove_dup_key(avi_config["NetworkProfile"]) self.remove_dup_key(avi_config["SSLProfile"]) self.remove_dup_key(avi_config['PKIProfile']) self.remove_dup_key(avi_config["ApplicationPersistenceProfile"]) self.remove_dup_key(avi_config['HealthMonitor']) def update_profile_ref(self, ref, avi_obj, merge_obj_list): """ This method is used to update the profile references which was attached at the time of creation :param ref: :param avi_obj: :param merge_obj_list: :return: """ for obj in avi_obj: obj_ref = obj.get(ref) tenant_ref = obj.get('tenant_ref') if obj_ref: name = self.get_name(obj_ref) tenant = self.get_name(tenant_ref) if name in merge_obj_list: updated_name = merge_obj_list[name] if ref == 'application_persistence_profile_ref': type_cons = OBJECT_TYPE_APPLICATION_PERSISTENCE_PROFILE if ref == 'application_profile_ref': type_cons = OBJECT_TYPE_APPLICATION_PROFILE obj[ref] = self.get_object_ref(updated_name, type_cons, tenant) def vs_redirect_http_to_https(self, avi_config, sysdict): """ Removes the VS which is redirected to another VS amd update the status and avi object for that VS :param avi_config: avi configuration after all conversion :param sysdict: system configuration :return: """ vsrem = {} LOG.debug("Check started for redirect from HTTP VS to HTTPS VS with " "no pool") for vs in avi_config['VirtualService']: if not vs.get('pool_group_ref') and not vs.get( 'application_profile_ref') and vs.get('services', []) and \ not all([s.get('enable_ssl', True)for s in vs['services']])\ and vs.get('http_policies',[]) and vs['http_policies'][ 0].get('http_policy_set_ref'): polname = self.get_name(vs['http_policies'][0][ 'http_policy_set_ref']) pol = [pl for pl in avi_config['HTTPPolicySet'] if pl['name'] == polname] if pol and pol[0].get('http_request_policy', {}).get('rules', []) and pol[0]['http_request_policy']['rules'][0].get( 'redirect_action'): iplist = [ip['ip_address']['addr'] for ip in vs.get('vip', []) if ip.get('ip_address',{}).get('addr')] or ( [vs['ip_address']['addr']] if vs.get( 'ip_address',{}).get('addr') else []) if iplist: for nvs in avi_config['VirtualService']: if vs['name'] != nvs['name'] and [ip for ip in iplist if ip in ([nip['ip_address']['addr'] for nip in nvs.get('vip', []) if nip.get( 'ip_address',{}).get('addr')] or [nvs[ 'ip_address']['addr'] if nvs.get( 'ip_address',{}).get('addr') else []])]: appname = self.get_name(nvs[ 'application_profile_ref']) if \ nvs.get('application_profile_ref') \ else None if appname == 'ns-migrate-http': LOG.debug("%s has redirect to %s, hence " "removing %s" % (vs['name'], nvs['name'], vs['name'])) vsrem[vs['name']] = nvs['name'] appprof = [pr for pr in (avi_config[ 'ApplicationProfile'] + sysdict[ 'ApplicationProfile']) if pr['name'] == appname] if appprof and appprof[0]['type'] == \ 'APPLICATION_PROFILE_TYPE_HTTP': if appprof[0].get('http_profile'): appprof[0]['http_profile'][ 'http_to_https'] = True else: appprof[0]['http_profile'] = { 'http_to_https': True} LOG.debug("%s has redirect to %s, hence " "setting 'http_to_https' as true " "and removing %s" %(vs['name'], nvs['name'], vs['name'])) vsrem[vs['name']] = nvs['name'] # Condition to merge http ports to https vs if [True for ssl in nvs['services'] if ssl[ 'enable_ssl']] and \ [True for ssl_vs in vs['services'] if not ssl_vs['enable_ssl']]: nvs['services'].append(vs['services'][0]) vsrem[vs['name']] = nvs['name'] LOG.debug("Check completed for redirect from HTTP VS to HTTPS VS with " "no pool") if vsrem: avi_config['VirtualService'] = [v for v in avi_config[ 'VirtualService'] if v['name'] not in vsrem.keys()] LOG.debug('%s VS got removed from AVI configuration' % str(len( vsrem))) for cl in csv_writer_dict_list: if cl['Object Name'] in vsrem.keys() and cl[ 'Netscaler Command'] in ['add lb vserver', 'add cs vserver']: cl['Status'] = STATUS_INDIRECT cl['AVI Object'] = 'Redirected to %s' % vsrem[cl[ 'Object Name']] def merge_pool(self, avi_config): """ This method merge the pools in AVI if HM is same :param avi_config: :return: """ mergelist=[] for poolgrp in avi_config['PoolGroup']: if poolgrp['name'] == 'lb-depoed1cdb.qai-pri-5984-poolgroup': print('found') # do not merge the pool if it is a backup pool in the group pool_member = [obj for obj in poolgrp['members'] if not obj.get('priority_label', '10') == '2'] length = len(pool_member) for count in range(length): pool_name = pool_member[count]['pool_ref'].split( '&')[1].split('=')[1] if pool_name in mergelist: continue pool = [pl for pl in avi_config['Pool'] if pl['name'] == pool_name] if not pool: LOG.debug("'%s' not present" % pool_name) continue for count2 in range(count+1, length): pname = pool_member[count2]['pool_ref'].split( '&')[1].split('=')[1] nextpool = [pol for pol in avi_config['Pool'] if pol['name'] == pname] if not nextpool: LOG.debug("'%s' not present" % pname) continue if pool[0]['health_monitor_refs'].sort() == nextpool[0][ 'health_monitor_refs'].sort(): LOG.debug("Merging pool '%s' in '%s'" % (nextpool[0][ 'name'], pool[0]['name'])) ip_port = set() for ser in pool[0]['servers']: ip_port.add(str(ser['ip']['addr']) + ':' + str( ser['port'])) for server in nextpool[0]['servers']: ipport = str(server['ip']['addr']) + ':' + str( server['port']) if ipport not in list(ip_port): pool[0]['servers'].append(server) for cl in csv_writer_dict_list: if cl['Object Name'] == (nextpool[0][ 'name'].replace('-pool','')) and cl[ 'Netscaler Command'] in ['add service', 'add serviceGroup']: cl['AVI Object'] = 'Merged to %s' % pool[0][ 'name'] mergelist.append(nextpool[0]['name']) for plg in avi_config['PoolGroup']: plg['members'] = [member for member in plg['members'] if member['pool_ref'].split('&')[1].split('=')[1] not in mergelist] avi_config['Pool'] = [pools for pools in avi_config['Pool'] if pools[ 'name'] not in mergelist] def add_policy(self, policy, updated_vs_name, avi_config, tmp_policy_ref, vs_obj, tenant_name, cloud_name, prefix, used_poolgrp_ref): """ This method is used to add policy objects to AVI and also add reference in VS :param policy: policy object :param updated_vs_name: vs name :param avi_config: avi config dict :param tmp_policy_ref: list of policy ref which are already used :param vs_obj: vs object :param tenant_name: name of tenant :param cloud_name: name of cloud :param prefix: prefix :param used_poolgrp_ref: list of used pool group ref :return: """ if policy['name'] in tmp_policy_ref: # clone the http policy set if it is referenced to other VS policy = self.clone_http_policy_set(policy, updated_vs_name, avi_config, tenant_name, cloud_name, used_poolgrp_ref, userprefix=prefix) updated_http_policy_ref = self.get_object_ref(policy['name'], OBJECT_TYPE_HTTP_POLICY_SET, tenant_name) tmp_policy_ref.append(policy['name']) http_policies = { 'index': 11, 'http_policy_set_ref': updated_http_policy_ref } if not vs_obj.get('http_policies'): vs_obj['http_policies'] = [] else: ind = max([policies['index'] for policies in vs_obj[ 'http_policies']]) http_policies['index'] = ind + 1 vs_obj['http_policies'].append(http_policies) avi_config['HTTPPolicySet'].append(policy) def build_redirect_action_dict(self, redirect_url, enable_ssl): """ This method returns a redirect action dict :param redirect_url: redirect url :param enable_ssl: flag for ssl enable :return: """ redirect_url = self.parse_url(redirect_url) protocol = str(redirect_url.scheme).upper() hostname = str(redirect_url.hostname) pathstring = str(redirect_url.path) querystring = str(redirect_url.query) full_path = '%s?%s' % (pathstring, querystring) if pathstring and \ querystring else pathstring protocol = enable_ssl and 'HTTPS' or 'HTTP' if not protocol else \ protocol action = { 'protocol': protocol } if hostname: action.update({'host': { 'type': 'URI_PARAM_TYPE_TOKENIZED', 'tokens': [{ 'type': 'URI_TOKEN_TYPE_STRING', 'str_value': hostname, 'start_index': '0', 'end_index': '65535' }] } }) if full_path: action.update({'path': { 'type': 'URI_PARAM_TYPE_TOKENIZED', 'tokens': [{ 'type': 'URI_TOKEN_TYPE_STRING', 'str_value': full_path, 'start_index': '0', 'end_index': '65535' }] } }) return action def create_http_to_https_custom_profile(self): ''' :return: custom application profile dict ''' return { 'name': "ns-migrate-http", 'type': "APPLICATION_PROFILE_TYPE_HTTP", 'tenant_ref': "/api/tenant/?name=admin", 'preserve_client_ip': False, 'http_profile': { 'max_rps_uri': 0, 'keepalive_header': False, 'max_rps_cip_uri': 0, 'x_forwarded_proto_enabled': False, 'connection_multiplexing_enabled': True, 'websockets_enabled': True, 'enable_request_body_buffering': False, 'hsts_enabled': False, 'xff_enabled': True, 'disable_keepalive_posts_msie6': True, 'keepalive_timeout': 30000, 'ssl_client_certificate_mode': "SSL_CLIENT_CERTIFICATE_NONE", 'http_to_https': True, 'max_bad_rps_cip_uri': 0, 'client_body_timeout': 30000, 'httponly_enabled': False, 'hsts_max_age': 365, 'max_bad_rps_cip': 0, 'server_side_redirect_to_https': False, 'client_max_header_size': 12, 'client_max_request_size': 48, 'max_rps_unknown_uri': 0, 'post_accept_timeout': 30000, 'client_header_timeout': 10000, 'secure_cookie_enabled': False, 'xff_alternate_name': "X-Forwarded-For", 'max_rps_cip': 0, 'client_max_body_size': 0, 'max_rps_unknown_cip': 0, 'allow_dots_in_header_name': False, 'max_bad_rps_uri': 0, 'use_app_keepalive_timeout': False }, 'dos_rl_profile': { 'rl_profile': { 'client_ip_connections_rate_limit': { 'explicit_tracking': False, 'action': { 'status_code': "HTTP_LOCAL_RESPONSE_STATUS_CODE_429", 'type': "RL_ACTION_NONE" }, 'fine_grain': False } }, 'dos_profile': { 'thresh_period': 5 } } } def correct_vs_ref(self, avi_config): """ This method corrects the reference of VS to different objects :param avi_config: avi configuration dict :return: """ global csv_writer_dict_list avi_graph = self.make_graph(avi_config) csv_dict_sub = [row for row in csv_writer_dict_list if row[ 'Netscaler Command'] not in ('add lb vserver', 'add cs vserver') and row[ 'Status'] in (STATUS_PARTIAL, STATUS_SUCCESSFUL)] for dict_row in csv_dict_sub: obj = dict_row['AVI Object'] if isinstance(obj, str) and obj.startswith('{'): vs = [] if '__/__' in obj: for dataobj in obj.split('__/__'): obj = eval(dataobj) self.add_vs_ref(obj, avi_graph, vs) else: obj = eval(obj) self.add_vs_ref(obj, avi_graph, vs) if vs: dict_row['VS Reference'] = str(list(set(vs))) else: dict_row['VS Reference'] = STATUS_NOT_IN_USE def add_vs_ref(self, obj, avi_graph, vs): """ Helper method for adding vs ref :param obj: object :param avi_graph: avi graph :param vs: VS list :return: """ obj_name = obj.get('name', obj.get('hostname')) if obj_name: if avi_graph.has_node(obj_name): LOG.debug("Checked predecessor for %s", obj_name) predecessor = list(avi_graph.predecessors(obj_name)) if predecessor: self.get_predecessor(predecessor, avi_graph, vs) else: LOG.debug("Object %s may be merged or orphaned", obj_name) def get_predecessor(self, predecessor, avi_graph, vs): """ This method gets the predecessor of the object :param predecessor: predecessor list :param avi_graph: avi graph :param vs: VS list :return: """ if len(predecessor) > 1: for node in predecessor: nodelist = [node] self.get_predecessor(nodelist, avi_graph, vs) elif len(predecessor): node_obj = [nod for nod in list(avi_graph.nodes().data()) if nod[0] == predecessor[0]] if node_obj and (node_obj[0][1]['type'] == 'VS' or 'VS' in node_obj[ 0][1]['type']): LOG.debug("Predecessor %s found", predecessor[0]) vs.extend(predecessor) else: LOG.debug("Checked predecessor for %s", predecessor[0]) nodelist = list(avi_graph.predecessors(predecessor[0])) self.get_predecessor(nodelist, avi_graph, vs) else: LOG.debug("No more predecessor")
45.734504
85
0.509453
[ "Apache-2.0" ]
avinetworks/alb-sdk
python/avi/migrationtools/netscaler_converter/ns_util.py
88,542
Python
"""BitMEX API Connector.""" from __future__ import absolute_import import requests import time import datetime import json import base64 import uuid from market_maker.auth import APIKeyAuthWithExpires from market_maker.utils import constants, errors, log from market_maker.ws.ws_thread import BitMEXWebsocket from threading import Timer logger = log.setup_custom_logger('root') # https://www.bitmex.com/api/explorer/ class BitMEX(object): """BitMEX API Connector.""" def __init__(self, base_url=None, symbol=None, apiKey=None, apiSecret=None, orderIDPrefix='mm_bitmex_', shouldWSAuth=True, postOnly=False, timeout=7): """Init connector.""" self.base_url = base_url self.symbol = symbol self.postOnly = postOnly self.shouldWSAuth = shouldWSAuth if (apiKey is None): raise Exception("Please set an API key and Secret to get started. See " + "https://github.com/BitMEX/sample-market-maker/#getting-started for more information." ) self.apiKey = apiKey self.apiSecret = apiSecret if len(orderIDPrefix) > 13: raise ValueError("settings.ORDERID_PREFIX must be at most 13 characters long!") self.orderIDPrefix = orderIDPrefix self.retries = 0 # initialize counter # Prepare HTTPS session self.session = requests.Session() # These headers are always sent self.session.headers.update({'user-agent': 'liquidbot-' + constants.VERSION}) self.session.headers.update({'content-type': 'application/json'}) self.session.headers.update({'accept': 'application/json'}) # Create websocket for streaming data self.ws = BitMEXWebsocket() self.ws.connect(base_url, symbol, shouldAuth=shouldWSAuth) self.__check_ws_alive() self.timeout = timeout def __check_ws_alive(self): if not self.ws.updated: self.ws = BitMEXWebsocket() self.ws.connect(self.base_url, self.symbol, shouldAuth=self.shouldWSAuth) self.ws.updated = False self.t = Timer(10, self.__check_ws_alive).start() def __del__(self): self.exit() def exit(self): self.ws.exit() # # Public methods # def ticker_data(self, symbol=None): """Get ticker data.""" if symbol is None: symbol = self.symbol return self.ws.get_ticker(symbol) def instrument(self, symbol): """Get an instrument's details.""" return self.ws.get_instrument(symbol) def instruments(self, filter=None): query = {} if filter is not None: query['filter'] = json.dumps(filter) return self._curl_bitmex(path='instrument', query=query, verb='GET') def market_depth(self): """Get market depth / orderbook.""" return self.ws.market_depth() def recent_trades(self): """Get recent trades. Returns ------- A list of dicts: {u'amount': 60, u'date': 1306775375, u'price': 8.7401099999999996, u'tid': u'93842'}, """ return self.ws.recent_trades() # # Authentication required methods # def authentication_required(fn): """Annotation for methods that require auth.""" def wrapped(self, *args, **kwargs): if not (self.apiKey): msg = "You must be authenticated to use this method" raise errors.AuthenticationError(msg) else: return fn(self, *args, **kwargs) return wrapped @authentication_required def funds(self): """Get your current balance.""" return self.ws.funds() @authentication_required def position(self, symbol): """Get your open position.""" return self.ws.position(symbol) @authentication_required def isolate_margin(self, symbol, leverage, rethrow_errors=False): """Set the leverage on an isolated margin position""" path = "position/leverage" postdict = { 'symbol': symbol, 'leverage': leverage } return self._curl_bitmex(path=path, postdict=postdict, verb="POST", rethrow_errors=rethrow_errors) @authentication_required def delta(self): return self.position(self.symbol)['homeNotional'] @authentication_required def buy(self, quantity, price): """Place a buy order. Returns order object. ID: orderID """ return self.place_order(quantity, price) @authentication_required def sell(self, quantity, price): """Place a sell order. Returns order object. ID: orderID """ return self.place_order(-quantity, price) @authentication_required def place_order(self, quantity, price): """Place an order.""" if price < 0: raise Exception("Price must be positive.") endpoint = "order" # Generate a unique clOrdID with our prefix so we can identify it. clOrdID = self.orderIDPrefix + base64.b64encode(uuid.uuid4().bytes).decode('utf8').rstrip('=\n') postdict = { 'symbol': self.symbol, 'orderQty': quantity, 'price': price, 'clOrdID': clOrdID } return self._curl_bitmex(path=endpoint, postdict=postdict, verb="POST") @authentication_required def amend_bulk_orders(self, orders): """Amend multiple orders.""" # Note rethrow; if this fails, we want to catch it and re-tick return self._curl_bitmex(path='order/bulk', postdict={'orders': orders}, verb='PUT', rethrow_errors=True) @authentication_required def create_bulk_orders(self, orders): """Create multiple orders.""" for order in orders: order['clOrdID'] = self.orderIDPrefix + base64.b64encode(uuid.uuid4().bytes).decode('utf8').rstrip('=\n') order['symbol'] = self.symbol if self.postOnly: order['execInst'] = 'ParticipateDoNotInitiate' return self._curl_bitmex(path='order/bulk', postdict={'orders': orders}, verb='POST') @authentication_required def open_orders(self): """Get open orders.""" return self.ws.open_orders(self.orderIDPrefix) @authentication_required def http_open_orders(self): """Get open orders via HTTP. Used on close to ensure we catch them all.""" path = "order" orders = self._curl_bitmex( path=path, query={ 'filter': json.dumps({'ordStatus.isTerminated': False, 'symbol': self.symbol}), 'count': 500 }, verb="GET" ) # Only return orders that start with our clOrdID prefix. return [o for o in orders if str(o['clOrdID']).startswith(self.orderIDPrefix)] @authentication_required def cancel(self, orderID): """Cancel an existing order.""" path = "order" postdict = { 'orderID': orderID, } return self._curl_bitmex(path=path, postdict=postdict, verb="DELETE") @authentication_required def withdraw(self, amount, fee, address): path = "user/requestWithdrawal" postdict = { 'amount': amount, 'fee': fee, 'currency': 'XBt', 'address': address } return self._curl_bitmex(path=path, postdict=postdict, verb="POST", max_retries=0) def _curl_bitmex(self, path, query=None, postdict=None, timeout=None, verb=None, rethrow_errors=False, max_retries=None): """Send a request to BitMEX Servers.""" # Handle URL url = self.base_url + path if timeout is None: timeout = self.timeout # Default to POST if data is attached, GET otherwise if not verb: verb = 'POST' if postdict else 'GET' # By default don't retry POST or PUT. Retrying GET/DELETE is okay because they are idempotent. # In the future we could allow retrying PUT, so long as 'leavesQty' is not used (not idempotent), # or you could change the clOrdID (set {"clOrdID": "new", "origClOrdID": "old"}) so that an amend # can't erroneously be applied twice. if max_retries is None: max_retries = 0 if verb in ['POST', 'PUT'] else 3 # Auth: API Key/Secret auth = APIKeyAuthWithExpires(self.apiKey, self.apiSecret) def exit_or_throw(e): if rethrow_errors: raise e else: exit(1) def retry(): self.retries += 1 if self.retries > max_retries: raise Exception("Max retries on %s (%s) hit, raising." % (path, json.dumps(postdict or ''))) return self._curl_bitmex(path, query, postdict, timeout, verb, rethrow_errors, max_retries) # Make the request response = None try: logger.info("sending req to %s: %s" % (url, json.dumps(postdict or query or ''))) req = requests.Request(verb, url, json=postdict, auth=auth, params=query) prepped = self.session.prepare_request(req) response = self.session.send(prepped, timeout=timeout) # Make non-200s throw response.raise_for_status() except requests.exceptions.HTTPError as e: if response is None: raise e # 401 - Auth error. This is fatal. if response.status_code == 401: logger.error("API Key or Secret incorrect, please check and restart.") logger.error("Error: " + response.text) if postdict: logger.error(postdict) # Always exit, even if rethrow_errors, because this is fatal exit(1) # 404, can be thrown if order canceled or does not exist. elif response.status_code == 404: if verb == 'DELETE': logger.error("Order not found: %s" % postdict['orderID']) return logger.error("Unable to contact the BitMEX API (404). " + "Request: %s \n %s" % (url, json.dumps(postdict))) exit_or_throw(e) # 429, ratelimit; cancel orders & wait until X-RateLimit-Reset elif response.status_code == 429: logger.error("Ratelimited on current request. Sleeping, then trying again. Try fewer " + "order pairs or contact [email protected] to raise your limits. " + "Request: %s \n %s" % (url, json.dumps(postdict))) # Figure out how long we need to wait. ratelimit_reset = response.headers['X-RateLimit-Reset'] to_sleep = int(ratelimit_reset) - int(time.time()) reset_str = datetime.datetime.fromtimestamp(int(ratelimit_reset)).strftime('%X') # We're ratelimited, and we may be waiting for a long time. Cancel orders. logger.warning("Canceling all known orders in the meantime.") self.cancel([o['orderID'] for o in self.open_orders()]) logger.error("Your ratelimit will reset at %s. Sleeping for %d seconds." % (reset_str, to_sleep)) time.sleep(to_sleep) # Retry the request. return retry() # 503 - BitMEX temporary downtime, likely due to a deploy. Try again elif response.status_code == 503: logger.warning("Unable to contact the BitMEX API (503), retrying. " + "Request: %s \n %s" % (url, json.dumps(postdict))) time.sleep(3) return retry() elif response.status_code == 400: error = response.json()['error'] message = error['message'].lower() if error else '' # Duplicate clOrdID: that's fine, probably a deploy, go get the order(s) and return it if 'duplicate clordid' in message: orders = postdict['orders'] if 'orders' in postdict else postdict IDs = json.dumps({'clOrdID': [order['clOrdID'] for order in orders]}) orderResults = self._curl_bitmex('/order', query={'filter': IDs}, verb='GET') for i, order in enumerate(orderResults): if ( order['orderQty'] != abs(postdict['orderQty']) or order['side'] != ('Buy' if postdict['orderQty'] > 0 else 'Sell') or order['price'] != postdict['price'] or order['symbol'] != postdict['symbol']): raise Exception('Attempted to recover from duplicate clOrdID, but order returned from API ' + 'did not match POST.\nPOST data: %s\nReturned order: %s' % ( json.dumps(orders[i]), json.dumps(order))) # All good return orderResults elif 'insufficient available balance' in message: logger.error('Account out of funds. The message: %s' % error['message']) exit_or_throw(Exception('Insufficient Funds')) # If we haven't returned or re-raised yet, we get here. logger.error("Unhandled Error: %s: %s" % (e, response.text)) logger.error("Endpoint was: %s %s: %s" % (verb, path, json.dumps(postdict))) exit_or_throw(e) except requests.exceptions.Timeout as e: # Timeout, re-run this request logger.warning("Timed out on request: %s (%s), retrying..." % (path, json.dumps(postdict or ''))) return retry() except requests.exceptions.ConnectionError as e: logger.warning("Unable to contact the BitMEX API (%s). Please check the URL. Retrying. " + "Request: %s %s \n %s" % (e, url, json.dumps(postdict))) time.sleep(1) return retry() # Reset retry counter on success self.retries = 0 return response.json()
38.780749
121
0.574049
[ "Apache-2.0" ]
veskokaradzhov/sample-market-maker
market_maker/bitmex.py
14,504
Python
""" Django settings for activitytracker project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os # import dj_database_url # from decouple import Csv, config BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # DATABASES['default'] = dj_database_url.config() # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=++yhol*$dghpolbn73tnifzx(bqdfk1on5i&8m9*-4!k)=8*k' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True # ALLOWED_HOSTS = ['*'] ALLOWED_HOSTS = [ ] # ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'accounts', 'activities', 'home', 'Custom', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'activitytracker.urls' WSGI_APPLICATION = 'activitytracker.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases #for heroku # DEBUG = config('DEBUG', default=False, cast=bool) # DATABASES = { # 'default': dj_database_url.config( # default=config('DATABASE_URL') # ) # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'activitytracker', 'USER': 'root', 'PASSWORD': 'root', } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Kolkata' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = 'staticfiles' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ "django.contrib.auth.context_processors.auth", ] } } ] TEMPLATE_CONTEXT_PROCESSORS = ( 'django.core.context_processors.request', ) EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = '[email protected]' #Must generate specific password for your app in [gmail settings][1] EMAIL_HOST_PASSWORD = 'app_specific_password' EMAIL_PORT = 587 #This did the trick DEFAULT_FROM_EMAIL = EMAIL_HOST_USER GITHUB_CLIENT = '' GITHUB_TOKEN = ''
23.608108
72
0.706926
[ "BSD-3-Clause" ]
codyowl/activitytracker
activitytracker/settings.py
3,494
Python
# -*- coding: utf-8 -*- # Copyright (c) 2014, 2015 Mitch Garnaat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.6.0'
37.294118
74
0.741325
[ "Apache-2.0" ]
BrunoCarrier/kappa
kappa/__init__.py
634
Python
import io import json import logging from pathlib import Path import boto3 from ..api import API from ..exceptions import ( SABaseException, SAExistingAnnotationClassNameException, SANonExistingAnnotationClassNameException ) from .project import get_project_metadata logger = logging.getLogger("superannotate-python-sdk") _api = API.get_instance() def create_annotation_class(project, name, color, attribute_groups=None): """Create annotation class in project :param project: project name or metadata of the project :type project: str or dict :param name: name for the class :type name: str :param color: RGB hex color value, e.g., "#FFFFAA" :type color: str :param attribute_groups: example: [ { "name": "tall", "is_multiselect": 0, "attributes": [ { "name": "yes" }, { "name": "no" } ] }, { "name": "age", "is_multiselect": 0, "attributes": [ { "name": "young" }, { "name": "old" } ] } ] :type attribute_groups: list of dicts :return: new class metadata :rtype: dict """ if not isinstance(project, dict): project = get_project_metadata(project) try: get_annotation_class_metadata(project, name) except SANonExistingAnnotationClassNameException: pass else: logger.warning( "Annotation class %s already in project. Skipping.", name ) return None team_id, project_id = project["team_id"], project["id"] logger.info( "Creating annotation class in project %s with name %s", project["name"], name ) params = { 'team_id': team_id, 'project_id': project_id, } data = { "classes": [ { "name": name, "color": color, "attribute_groups": attribute_groups if attribute_groups is not None else [] } ] } response = _api.send_request( req_type='POST', path='/classes', params=params, json_req=data ) if not response.ok: raise SABaseException( response.status_code, "Couldn't create class " + response.text ) res = response.json() new_class = res[0] return new_class def delete_annotation_class(project, annotation_class): """Deletes annotation class from project :param project: project name or metadata of the project :type project: str or dict :param project: annotation class name or metadata :type project: str or dict """ if not isinstance(project, dict): project = get_project_metadata(project) if not isinstance(annotation_class, dict): annotation_class = get_annotation_class_metadata( project, annotation_class ) team_id, project_id, name, class_id = _api.team_id, annotation_class[ "project_id"], annotation_class["name"], annotation_class["id"] logger.info( "Deleting annotation class from project %s with name %s", project["name"], name ) params = { 'team_id': team_id, 'project_id': project_id, } response = _api.send_request( req_type='DELETE', path=f'/class/{class_id}', params=params ) if not response.ok: raise SABaseException( response.status_code, "Couldn't delete annotation class " + response.text ) def create_annotation_classes_from_classes_json( project, classes_json, from_s3_bucket=None ): """Creates annotation classes in project from a SuperAnnotate format annotation classes.json. :param project: project name or metadata of the project :type project: str or dict :param classes_json: JSON itself or path to the JSON file :type classes_json: list or Pathlike (str or Path) :param from_s3_bucket: AWS S3 bucket to use. If None then classes_json is in local filesystem :type from_s3_bucket: str :return: list of created annotation class metadatas :rtype: list of dicts """ if not isinstance(project, dict): project = get_project_metadata(project) team_id, project_id = project["team_id"], project["id"] if not isinstance(classes_json, list): logger.info( "Creating annotation classes in project %s from %s.", project["name"], classes_json ) if from_s3_bucket is None: classes = json.load(open(classes_json)) else: from_session = boto3.Session() from_s3 = from_session.resource('s3') file = io.BytesIO() from_s3_object = from_s3.Object(from_s3_bucket, classes_json) from_s3_object.download_fileobj(file) file.seek(0) classes = json.load(file) else: classes = classes_json existing_classes = search_annotation_classes(project) new_classes = [] for cs in classes: if cs["name"] in existing_classes: logger.warning( "Annotation class %s already in project. Skipping.", cs["name"] ) else: new_classes.append(cs) res = [] def del_unn(d): for s in [ "updatedAt", "createdAt", "id", "project_id", "group_id", "class_id", "count" ]: if s in d: del d[s] for annotation_class in new_classes: del_unn(annotation_class) for attribute_group in annotation_class["attribute_groups"]: del_unn(attribute_group) for attribute in attribute_group["attributes"]: del_unn(attribute) CHUNK_SIZE = 2000 for i in range(0, len(new_classes), CHUNK_SIZE): params = { 'team_id': team_id, 'project_id': project_id, } data = {"classes": new_classes[i:i + CHUNK_SIZE]} response = _api.send_request( req_type='POST', path='/classes', params=params, json_req=data ) if not response.ok: raise SABaseException( response.status_code, "Couldn't create classes " + response.text ) res += response.json() assert len(res) == len(new_classes) return res def search_annotation_classes(project, name_prefix=None, return_metadata=False): """Searches annotation classes by name_prefix (case-insensitive) :param project: project name or metadata of the project :type project: str or dict :param name_prefix: name prefix for search. If None all annotation classes will be returned :type name_prefix: str :return: annotation classes of the project :rtype: list of dicts """ if not isinstance(project, dict): project = get_project_metadata(project) result_list = [] team_id, project_id = project["team_id"], project["id"] params = {'team_id': team_id, 'project_id': project_id, 'offset': 0} if name_prefix is not None: params['name'] = name_prefix while True: response = _api.send_request( req_type='GET', path='/classes', params=params ) if not response.ok: raise SABaseException( response.status_code, "Couldn't search classes " + response.text ) res = response.json() result_list += res["data"] new_len = len(result_list) # for r in result_list: # print(r) if res["count"] <= new_len: break params["offset"] = new_len if return_metadata: return result_list else: return [x["name"] for x in result_list] def get_annotation_class_metadata(project, annotation_class_name): """Returns annotation class metadata :param project: project name or metadata of the project :type project: str or dict :param annotation_class_name: annotation class name :type annotation_class_name: str :return: metadata of annotation class :rtype: dict """ annotation_classes = search_annotation_classes( project, annotation_class_name, return_metadata=True ) results = [] for annotation_class in annotation_classes: if annotation_class["name"] == annotation_class_name: results.append(annotation_class) if len(results) > 1: raise SAExistingAnnotationClassNameException( 0, "Annotation class name " + annotation_class_name + " is not unique. To use SDK please make annotation class names unique." ) elif len(results) == 1: return results[0] else: raise SANonExistingAnnotationClassNameException( 0, "Annotation class with name " + annotation_class_name + " doesn't exist." ) def download_annotation_classes_json(project, folder): """Downloads project classes.json to folder :param project: project name or metadata of the project :type project: str or dict :param folder: folder to download to :type folder: Pathlike (str or Path) :return: path of the download file :rtype: str """ if not isinstance(project, dict): project = get_project_metadata(project) logger.info( "Downloading classes.json from project %s to folder %s.", project["name"], folder ) clss = search_annotation_classes(project, return_metadata=True) filepath = Path(folder) / "classes.json" json.dump(clss, open(filepath, "w"), indent=4) return str(filepath) def fill_class_and_attribute_names(annotations_json, annotation_classes_dict): for r in annotations_json: if "classId" in r and r["classId"] in annotation_classes_dict: r["className"] = annotation_classes_dict[r["classId"]]["name"] if "attributes" in r: for attribute in r["attributes"]: if "groupId" in attribute and "id" in "attribute": attribute["groupName"] = annotation_classes_dict[ r["classId"]]["attribute_groups"][ attribute["groupId"]]["name"] attribute["name"] = annotation_classes_dict[ r["classId"]]["attribute_groups"][attribute[ "groupId"]]["attributes"][attribute["id"]] def fill_class_and_attribute_ids(annotation_json, annotation_classes_dict): for ann in annotation_json: if ( "userId" in ann and "type" in ann and ann["type"] == "meta" ) or "className" not in ann: continue annotation_class_name = ann["className"] if not annotation_class_name in annotation_classes_dict: logger.warning( "Couldn't find annotation class %s", annotation_class_name ) continue class_id = annotation_classes_dict[annotation_class_name]["id"] ann["classId"] = class_id for attribute in ann["attributes"]: if attribute["groupName"] in annotation_classes_dict[ annotation_class_name]["attribute_groups"]: attribute["groupId"] = annotation_classes_dict[ annotation_class_name]["attribute_groups"][ attribute["groupName"]]["id"] else: logger.warning( "Couldn't find annotation group %s", attribute["groupName"] ) continue if attribute["name"] in annotation_classes_dict[ annotation_class_name]["attribute_groups"][ attribute["groupName"]]["attributes"]: attribute["id"] = annotation_classes_dict[ annotation_class_name]["attribute_groups"][ attribute["groupName"]]["attributes"][attribute["name"]] else: logger.warning( "Couldn't find annotation name %s in annotation group %s", attribute["name"], attribute["groupName"] ) del attribute["groupId"] def get_annotation_classes_id_to_name(annotation_classes): annotation_classes_dict = {} for annotation_class in annotation_classes: class_id = annotation_class["id"] class_name = annotation_class["name"] class_info = {"name": class_name} class_info["attribute_groups"] = {} if "attribute_groups" in annotation_class: for attribute_group in annotation_class["attribute_groups"]: attribute_group_info = {} for attribute in attribute_group["attributes"]: attribute_group_info[attribute["id"]] = attribute["name"] class_info["attribute_groups"][attribute_group["id"]] = { "name": attribute_group["name"], "attributes": attribute_group_info } annotation_classes_dict[class_id] = class_info return annotation_classes_dict def get_annotation_classes_name_to_id(annotation_classes): annotation_classes_dict = {} for annotation_class in annotation_classes: class_id = annotation_class["id"] class_name = annotation_class["name"] class_info = {"id": class_id} class_info["attribute_groups"] = {} if "attribute_groups" in annotation_class: for attribute_group in annotation_class["attribute_groups"]: attribute_group_info = {} for attribute in attribute_group["attributes"]: if attribute["name"] in attribute_group_info: logger.warning( "Duplicate annotation class attribute name %s in attribute group %s. Only one of the annotation classe attributes will be used. This will result in errors in annotation upload.", attribute["name"], attribute_group["name"] ) attribute_group_info[attribute["name"]] = attribute["id"] if attribute_group["name"] in class_info["attribute_groups"]: logger.warning( "Duplicate annotation class attribute group name %s. Only one of the annotation classe attribute groups will be used. This will result in errors in annotation upload.", attribute_group["name"] ) class_info["attribute_groups"][attribute_group["name"]] = { "id": attribute_group["id"], "attributes": attribute_group_info } if class_name in annotation_classes_dict: logger.warning( "Duplicate annotation class name %s. Only one of the annotation classes will be used. This will result in errors in annotation upload.", class_name ) annotation_classes_dict[class_name] = class_info return annotation_classes_dict
37.118519
206
0.609526
[ "MIT" ]
yuki-inaho/superannotate-python-sdk
superannotate/db/annotation_classes.py
15,033
Python
from cmstack.hdfg import hdfgutils from cmstack.hdfg.hdfg_pb2 import Component, ValueInfo import logging from . import is_literal, is_number def flatten_graph(output_graph, graph, templates, context,edge_node_ids, arg_map): components = {} for e in graph.edge_info: copy_edge = ValueInfo() if is_literal(e): uid = str(e) copy_edge.CopyFrom(graph.edge_info[e]) copy_edge.name = uid elif e in arg_map.keys(): uid = context + e copy_edge.CopyFrom(arg_map[e]) copy_edge.attributes['alias'].CopyFrom(hdfgutils.make_attribute('alias', arg_map[e].name)) else: uid = context + e copy_edge.CopyFrom(graph.edge_info[e]) copy_edge.name = uid if e in graph.input and e not in output_graph.input: output_graph.input.extend([uid]) elif e in graph.state and e not in output_graph.state: output_graph.state.extend([uid]) elif e in graph.output and e not in output_graph.output: output_graph.output.extend([uid]) elif e in graph.parameters and e not in output_graph.parameters: output_graph.parameters.extend([uid]) if graph.name != 'main': ordered_args = hdfgutils.get_attribute_value(graph.attributes['ordered_args']) else: ordered_args = [] if 'dimensions' in list(copy_edge.attributes): dims = hdfgutils.get_attribute_value(copy_edge.attributes['dimensions']) new_dims = [] for d in dims: if d in arg_map.keys(): new_dims.append(arg_map[d].name) else: new_dims.append(d) copy_edge.attributes['dimensions'].CopyFrom(hdfgutils.make_attribute('dimensions', new_dims)) if uid not in edge_node_ids['edges'].keys(): edge_node_ids['edges'][uid] = str(len(edge_node_ids['edges'].keys())) output_graph.edge_info[uid].CopyFrom(copy_edge) if e not in arg_map.keys(): output_graph.edge_info[uid].gid = int(edge_node_ids['edges'][uid]) output_graph.edge_info[uid].attributes['component_type'].CopyFrom(hdfgutils.make_attribute('component_type', graph.op_type)) for n in graph.sub_graph: op_cat = n.op_cat if op_cat == 'component': if n.op_type in components.keys(): components[n.op_type] += 1 new_context = context + n.op_type + str(components[n.op_type]) + '/' else: components[n.op_type] = 0 new_context = context + n.op_type + str(components[n.op_type]) + '/' instance_args = hdfgutils.get_attribute_value(n.attributes['ordered_args']) ctemplate = templates[n.op_type] signature_args = hdfgutils.get_attribute_value(ctemplate.attributes['ordered_args']) carg_map = create_map(instance_args, signature_args,graph.edge_info, ctemplate.edge_info, templates[n.op_type]) update_statement_graphs(ctemplate, output_graph, new_context) flatten_graph(output_graph, ctemplate, templates, new_context , edge_node_ids, carg_map) else: new = update_node(n, context, arg_map) if new.name not in edge_node_ids['nodes'].keys(): edge_node_ids['nodes'][new.name] = str(len(edge_node_ids['nodes'].keys())) new.gid = int(edge_node_ids['nodes'][new.name]) output_graph.sub_graph.extend([new]) def update_statement_graphs(template, output_graph, context): for s in template.statement_graphs: statement_nodes = s.statement_node new_graph = output_graph.statement_graphs.add() nodes = [] for n in statement_nodes: nodes.append(context + n) new_graph.statement_node.extend(nodes) def create_map(instance_args, signature_args, instance_edges, signature_edges, op=None): carg_map = {} for i in range(len(instance_args)): iarg = instance_args[i] sarg = signature_args[i] if is_number(iarg): iarg = str(iarg) carg_map[sarg] = instance_edges[iarg] carg_map[sarg].name = iarg idims = hdfgutils.get_attribute_value(instance_edges[iarg].attributes['dimensions']) iid_literal = False if instance_edges[iarg].iid: inst_iid = instance_edges[iarg].iid iid_literal = is_literal(inst_iid) sdims = hdfgutils.get_attribute_value(signature_edges[sarg].attributes['dimensions']) if len(idims) != len(sdims) and not iid_literal: logging.error("Error! Dimensions between edges connecting components do not match:{} versus {} for {} and {}".format(idims, sdims, iarg, sarg)) elif not iid_literal: for d in range(len(idims)): inst_dim = idims[d] sig_dim = sdims[d] if is_number(inst_dim): inst_dim = str(inst_dim) carg_map[sig_dim] = instance_edges[inst_dim] carg_map[sig_dim].name = inst_dim carg_map[sig_dim].attributes['vtype'].CopyFrom(hdfgutils.make_attribute('vtype', 'scalar')) if len(signature_args) > len(instance_args): start = len(instance_args) for default in signature_args[start:]: sig_attr = list(signature_edges[default].attributes) if 'default' not in sig_attr: logging.error( "Error! No default value for unspecified arg: {}".format(default)) else: def_val = hdfgutils.get_attribute_value(signature_edges[default].attributes['default']) carg_map[default] = signature_edges[default] carg_map[default].attributes['value'].CopyFrom(hdfgutils.make_attribute('value', def_val)) if is_number(def_val): def_val = str(def_val) carg_map[default].name = def_val carg_map[default].attributes['vtype'].CopyFrom(hdfgutils.make_attribute('vtype', 'scalar')) for e in op.edge_info: vcat = hdfgutils.get_attribute_value(op.edge_info[e].attributes['vcat']) if vcat == 'declaration': dims = hdfgutils.get_attribute_value(op.edge_info[e].attributes['dimensions']) sig_name = op.edge_info[e].name.rsplit("/", 1)[-1] return carg_map def update_node(node, context, carg_map): new = Component(name=context + node.name) inputs = [] outputs = [] states = [] parameters = [] for inp in node.input: if is_number(inp): i = str(inp) else: i = inp if is_literal(i): inputs.append(i) elif i in carg_map.keys(): # inputs.append(carg_map[i]) inputs.append(carg_map[i].name) else: inputs.append(context + i) new.input.extend(inputs) for o in node.output: if is_number(o): out = str(o) else: out = o if is_literal(out): outputs.append(out) elif out in carg_map.keys(): # outputs.append(carg_map[out]) outputs.append(carg_map[out].name) else: outputs.append(context + out) new.output.extend(outputs) for st in node.state: if is_number(st): s = str(st) else: s = st if is_literal(s): states.append(s) elif s in carg_map.keys(): # states.append(carg_map[s]) states.append(carg_map[s].name) else: states.append(context + s) new.state.extend(states) for para in node.parameters: if is_number(para): p = str(para) else: p = para if is_literal(p): parameters.append(p) elif p in carg_map.keys(): # parameters.append(carg_map[p]) parameters.append(carg_map[p].name) else: parameters.append(context + p) new.parameters.extend(parameters) for attr in node.attributes: new.attributes[attr].CopyFrom(node.attributes[attr]) new.op_type = node.op_type return new
35.939655
155
0.598225
[ "Apache-2.0" ]
he-actlab/cdstack
cmstack/hdfg/passes/flatten.py
8,338
Python
"""FastAPI Project for CodeSpace. https://csdot.ml """
13.75
33
0.690909
[ "Apache-2.0" ]
codespacedot/CodeSpaceAPI
src/__init__.py
55
Python
import cv2 import os,shutil import numpy as np from Adb import Adb import time class Photo(): ''' 提取图片信息,比较图片 ''' def __init__(self,img_path) -> None: ''' 读取图片 ''' self.img = cv2.imread(img_path) class sourceData(): ''' 获取测试数据 ''' def __init__(self) -> None: pass @staticmethod def getScreenPhoto(): adb = Adb(device='d5c42b2a') for x in range(100): adb.screenCap() adb.pullBackScreenCap(os.path.join('.','photo',time.strftime("%Y-%m-%d_%H-%M-%S.png", time.localtime()) )) print("截图",time.asctime(time.localtime())) time.sleep(3) @staticmethod def calcOujilide(img): img_new = img[938:1035,1935:2247] img_new_num = np.sum(img_new)/(img_new.shape[0]*img_new.shape[1]*img_new.shape[2]) return img_new_num @staticmethod def calcFangcha(img): ''' 计算938:1035,1935:2247区域间图片的方差,用于比较图片见相似程度 计算过程,对图像每一行像素求平均,对所有行像素平均值求方差 return (int) ''' img_new = img[938:1013,1935:2247] img_avg = np.mean(img_new,axis=(0,2)) return np.var(img_avg) if __name__ is '__main__': static_num = sourceData.calcFangcha(cv2.imread(os.path.join("adb","screen.png"))) for img_name in os.listdir(os.path.join("photo")): img = cv2.imread(os.path.join("photo",img_name)) img_num = sourceData.calcFangcha(img) chazhi = abs(static_num-img_num) # chazhi = (abs(static_num**2-img_num**2))**0.5 print(img_name,"的差值为",chazhi) if chazhi<20: print("Copy this file: ",img_name) shutil.copyfile(os.path.join("photo",img_name),os.path.join("photo2",img_name)) print("Write this file: ",img_name) cv2.imwrite(os.path.join("photo3",img_name),img[938:1013,1935:2247]) # '''截图 400s''' # sourceData.getScreenPhoto()
28.114286
118
0.579776
[ "MIT" ]
Rougnt/ArkNightAutoClick
Photo.py
2,128
Python
#!/usr/bin/env python # this node will be implemented on the master node # this is a test script for drive motor # in function of stop and front lights detection # this script will be implemented in another node # import libraries import rospy,sys,time,atexit,numpy from std_msgs.msg import String,Int16MultiArray # define variables avoidingVehicle = False array = Int16MultiArray() array.data = [] controlPub = rospy.Publisher("cmd",Int16MultiArray,queue_size=1) def turnOffMotors(): array.data = [0,0,0,0] controlPub.publish(array) def setSpeed(motor1,motor2): if motor1 == 0 and motor2 == 0: turnOffMotors() else: array.data = [motor1,motor2,0,0] controlPub.publish(array) def avoidVehicle(): global avoidingVehicle turnOffMotors() avoidingVehicle = False def callback(data): global avoidingVehicle rospy.loginfo(rospy.get_caller_id() +" Led control String received: %s",data.data) if data.data == "stop" : turnOffMotors() elif (data.data == "front" and avoidingVehicle == False): avoidingVehicle = True avoidVehicle() elif data.data == "w": setSpeed(150,150) elif data.data == "s": turnOffMotors() def led_control(): rospy.init_node('led_control',anonymous=True) rospy.Subscriber('led_control_topic',String,callback) try: rospy.spin() except KeyboardInterrupt: print("Shutting down") if __name__ == '__main__': led_control()
23.844828
83
0.737527
[ "BSD-3-Clause" ]
isarlab-department-engineering/ros-stop-light-control
deprecated/led_control.py
1,383
Python
from dataclasses import dataclass, field from typing import List from bindings.wfs.range import Range __NAMESPACE__ = "http://www.opengis.net/ows/1.1" @dataclass class AllowedValues: """List of all the valid values and/or ranges of values for this quantity. For numeric quantities, signed values should be ordered from negative infinity to positive infinity. """ class Meta: namespace = "http://www.opengis.net/ows/1.1" value: List[str] = field( default_factory=list, metadata={ "name": "Value", "type": "Element", }, ) range: List[Range] = field( default_factory=list, metadata={ "name": "Range", "type": "Element", }, )
23.272727
78
0.598958
[ "Apache-2.0" ]
NIVANorge/s-enda-playground
catalog/bindings/wfs/allowed_values.py
768
Python
import importlib import inspect import os import sys import warnings from abc import ABCMeta, abstractmethod from collections import namedtuple import six from dagster import check from dagster.core.errors import DagsterInvariantViolationError from dagster.serdes import whitelist_for_serdes from dagster.seven import import_module_from_path from dagster.utils import alter_sys_path, load_yaml_from_path class CodePointer(six.with_metaclass(ABCMeta)): @abstractmethod def load_target(self): pass @abstractmethod def describe(self): pass @staticmethod def from_module(module_name, definition): check.str_param(module_name, 'module_name') check.str_param(definition, 'definition') return ModuleCodePointer(module_name, definition) @staticmethod def from_python_package(module_name, attribute): check.str_param(module_name, 'module_name') check.str_param(attribute, 'attribute') return PackageCodePointer(module_name, attribute) @staticmethod def from_python_file(python_file, definition, working_directory): check.str_param(python_file, 'python_file') check.str_param(definition, 'definition') check.opt_str_param(working_directory, 'working_directory') if working_directory: return FileInDirectoryCodePointer( python_file=python_file, fn_name=definition, working_directory=working_directory ) return FileCodePointer(python_file=python_file, fn_name=definition) @staticmethod def from_legacy_repository_yaml(file_path): check.str_param(file_path, 'file_path') config = load_yaml_from_path(file_path) repository_config = check.dict_elem(config, 'repository') module_name = check.opt_str_elem(repository_config, 'module') file_name = check.opt_str_elem(repository_config, 'file') fn_name = check.str_elem(repository_config, 'fn') return ( CodePointer.from_module(module_name, fn_name) if module_name # rebase file in config off of the path in the config file else CodePointer.from_python_file(rebase_file(file_name, file_path), fn_name, None) ) def rebase_file(relative_path_in_file, file_path_resides_in): ''' In config files, you often put file paths that are meant to be relative to the location of that config file. This does that calculation. ''' check.str_param(relative_path_in_file, 'relative_path_in_file') check.str_param(file_path_resides_in, 'file_path_resides_in') return os.path.join( os.path.dirname(os.path.abspath(file_path_resides_in)), relative_path_in_file ) def load_python_file(python_file, working_directory): ''' Takes a path to a python file and returns a loaded module ''' check.str_param(python_file, 'python_file') module_name = os.path.splitext(os.path.basename(python_file))[0] cwd = sys.path[0] if working_directory: with alter_sys_path(to_add=[working_directory], to_remove=[cwd]): return import_module_from_path(module_name, python_file) error = None sys_modules = {k: v for k, v in sys.modules.items()} with alter_sys_path(to_add=[], to_remove=[cwd]): try: module = import_module_from_path(module_name, python_file) except ImportError as ie: # importing alters sys.modules in ways that may interfere with the import below, even # if the import has failed. to work around this, we need to manually clear any modules # that have been cached in sys.modules due to the speculative import call # Also, we are mutating sys.modules instead of straight-up assigning to sys_modules, # because some packages will do similar shenanigans to sys.modules (e.g. numpy) to_delete = set(sys.modules) - set(sys_modules) for key in to_delete: del sys.modules[key] error = ie if not error: return module try: module = import_module_from_path(module_name, python_file) # if here, we were able to resolve the module with the working directory on the # path, but should error because we may not always invoke from the same directory # (e.g. from cron) warnings.warn( ( 'Module `{module}` was resolved using the working directory. The ability to ' 'implicitly load modules from the working directory is deprecated and ' 'will be removed in a future release. Please explicitly specify the ' '`working_directory` config option in your workspace.yaml or install `{module}` to ' 'your python environment.' ).format(module=error.name if hasattr(error, 'name') else module_name) ) return module except ImportError: raise error def load_python_module(module_name, warn_only=False, remove_from_path_fn=None): check.str_param(module_name, 'module_name') check.bool_param(warn_only, 'warn_only') check.opt_callable_param(remove_from_path_fn, 'remove_from_path_fn') error = None remove_paths = remove_from_path_fn() if remove_from_path_fn else [] # hook for tests remove_paths.insert(0, sys.path[0]) # remove the working directory with alter_sys_path(to_add=[], to_remove=remove_paths): try: module = importlib.import_module(module_name) except ImportError as ie: error = ie if error: try: module = importlib.import_module(module_name) # if here, we were able to resolve the module with the working directory on the path, # but should error because we may not always invoke from the same directory (e.g. from # cron) if warn_only: warnings.warn( ( 'Module {module} was resolved using the working directory. The ability to ' 'load uninstalled modules from the working directory is deprecated and ' 'will be removed in a future release. Please use the python-file based ' 'load arguments or install {module} to your python environment.' ).format(module=module_name) ) else: six.raise_from( DagsterInvariantViolationError( ( 'Module {module} not found. Packages must be installed rather than ' 'relying on the working directory to resolve module loading.' ).format(module=module_name) ), error, ) except ImportError as ie: raise error return module @whitelist_for_serdes class FileCodePointer(namedtuple('_FileCodePointer', 'python_file fn_name'), CodePointer): def __new__(cls, python_file, fn_name): return super(FileCodePointer, cls).__new__( cls, check.str_param(python_file, 'python_file'), check.str_param(fn_name, 'fn_name'), ) def load_target(self): module = load_python_file(self.python_file, None) if not hasattr(module, self.fn_name): raise DagsterInvariantViolationError( '{name} not found at module scope in file {file}.'.format( name=self.fn_name, file=self.python_file ) ) return getattr(module, self.fn_name) def describe(self): return '{self.python_file}::{self.fn_name}'.format(self=self) def get_cli_args(self): return '-f {python_file} -a {fn_name}'.format( python_file=os.path.abspath(os.path.expanduser(self.python_file)), fn_name=self.fn_name ) @whitelist_for_serdes class FileInDirectoryCodePointer( namedtuple('_FileInDirectoryCodePointer', 'python_file fn_name working_directory'), CodePointer ): ''' Same as FileCodePointer, but with an additional field `working_directory` to help resolve modules that are resolved from the python invocation directory. Required so other processes that need to resolve modules (e.g. cron scheduler) can do so. This could be merged with the `FileCodePointer` with `working_directory` as a None-able field, but not without changing the origin_id for schedules. This would require purging schedule storage to resolve. Should strongly consider merging when we need to do a storage migration. https://github.com/dagster-io/dagster/issues/2673 ''' def __new__(cls, python_file, fn_name, working_directory): return super(FileInDirectoryCodePointer, cls).__new__( cls, check.str_param(python_file, 'python_file'), check.str_param(fn_name, 'fn_name'), check.str_param(working_directory, 'working_directory'), ) def load_target(self): module = load_python_file(self.python_file, self.working_directory) if not hasattr(module, self.fn_name): raise DagsterInvariantViolationError( '{name} not found at module scope in file {file}.'.format( name=self.fn_name, file=self.python_file ) ) return getattr(module, self.fn_name) def describe(self): return '{self.python_file}::{self.fn_name} -- [dir {self.working_directory}]'.format( self=self ) def get_cli_args(self): return '-f {python_file} -a {fn_name} -d {directory}'.format( python_file=os.path.abspath(os.path.expanduser(self.python_file)), fn_name=self.fn_name, directory=self.working_directory, ) @whitelist_for_serdes class ModuleCodePointer(namedtuple('_ModuleCodePointer', 'module fn_name'), CodePointer): def __new__(cls, module, fn_name): return super(ModuleCodePointer, cls).__new__( cls, check.str_param(module, 'module'), check.str_param(fn_name, 'fn_name') ) def load_target(self): module = load_python_module(self.module, warn_only=True) if not hasattr(module, self.fn_name): raise DagsterInvariantViolationError( '{name} not found in module {module}. dir: {dir}'.format( name=self.fn_name, module=self.module, dir=dir(module) ) ) return getattr(module, self.fn_name) def describe(self): return 'from {self.module} import {self.fn_name}'.format(self=self) def get_cli_args(self): return '-m {module} -a {fn_name}'.format(module=self.module, fn_name=self.fn_name) @whitelist_for_serdes class PackageCodePointer(namedtuple('_PackageCodePointer', 'module attribute'), CodePointer): def __new__(cls, module, attribute): return super(PackageCodePointer, cls).__new__( cls, check.str_param(module, 'module'), check.str_param(attribute, 'attribute') ) def load_target(self): module = load_python_module(self.module) if not hasattr(module, self.attribute): raise DagsterInvariantViolationError( '{name} not found in module {module}. dir: {dir}'.format( name=self.attribute, module=self.module, dir=dir(module) ) ) return getattr(module, self.attribute) def describe(self): return 'from {self.module} import {self.attribute}'.format(self=self) def get_cli_args(self): return '-m {module} -a {attribute}'.format(module=self.module, attribute=self.attribute) def get_python_file_from_previous_stack_frame(): '''inspect.stack() lets us introspect the call stack; inspect.stack()[1] is the previous stack frame. In Python < 3.5, this is just a tuple, of which the python file of the previous frame is the 1st element. In Python 3.5+, this is a FrameInfo namedtuple instance; the python file of the previous frame remains the 1st element. ''' # Since this is now a function in this file, we need to go back two hops to find the # callsite file. previous_stack_frame = inspect.stack(0)[2] # See: https://docs.python.org/3/library/inspect.html if sys.version_info.major == 3 and sys.version_info.minor >= 5: check.inst(previous_stack_frame, inspect.FrameInfo) else: check.inst(previous_stack_frame, tuple) python_file = previous_stack_frame[1] return os.path.abspath(python_file)
39.030769
100
0.659361
[ "Apache-2.0" ]
idjevm/dagster
python_modules/dagster/dagster/core/code_pointer.py
12,685
Python
# -*- coding: utf-8 -*- import torch from supar.utils.common import MIN from supar.utils.fn import pad from torch.autograd import Function def tarjan(sequence): r""" Tarjan algorithm for finding Strongly Connected Components (SCCs) of a graph. Args: sequence (list): List of head indices. Yields: A list of indices making up a SCC. All self-loops are ignored. Examples: >>> next(tarjan([2, 5, 0, 3, 1])) # (1 -> 5 -> 2 -> 1) is a cycle [2, 5, 1] """ sequence = [-1] + sequence # record the search order, i.e., the timestep dfn = [-1] * len(sequence) # record the the smallest timestep in a SCC low = [-1] * len(sequence) # push the visited into the stack stack, onstack = [], [False] * len(sequence) def connect(i, timestep): dfn[i] = low[i] = timestep[0] timestep[0] += 1 stack.append(i) onstack[i] = True for j, head in enumerate(sequence): if head != i: continue if dfn[j] == -1: yield from connect(j, timestep) low[i] = min(low[i], low[j]) elif onstack[j]: low[i] = min(low[i], dfn[j]) # a SCC is completed if low[i] == dfn[i]: cycle = [stack.pop()] while cycle[-1] != i: onstack[cycle[-1]] = False cycle.append(stack.pop()) onstack[i] = False # ignore the self-loop if len(cycle) > 1: yield cycle timestep = [0] for i in range(len(sequence)): if dfn[i] == -1: yield from connect(i, timestep) def chuliu_edmonds(s): r""" ChuLiu/Edmonds algorithm for non-projective decoding :cite:`mcdonald-etal-2005-non`. Some code is borrowed from `tdozat's implementation`_. Descriptions of notations and formulas can be found in :cite:`mcdonald-etal-2005-non`. Notes: The algorithm does not guarantee to parse a single-root tree. Args: s (~torch.Tensor): ``[seq_len, seq_len]``. Scores of all dependent-head pairs. Returns: ~torch.Tensor: A tensor with shape ``[seq_len]`` for the resulting non-projective parse tree. .. _tdozat's implementation: https://github.com/tdozat/Parser-v3 """ s[0, 1:] = MIN # prevent self-loops s.diagonal()[1:].fill_(MIN) # select heads with highest scores tree = s.argmax(-1) # return the cycle finded by tarjan algorithm lazily cycle = next(tarjan(tree.tolist()[1:]), None) # if the tree has no cycles, then it is a MST if not cycle: return tree # indices of cycle in the original tree cycle = torch.tensor(cycle) # indices of noncycle in the original tree noncycle = torch.ones(len(s)).index_fill_(0, cycle, 0) noncycle = torch.where(noncycle.gt(0))[0] def contract(s): # heads of cycle in original tree cycle_heads = tree[cycle] # scores of cycle in original tree s_cycle = s[cycle, cycle_heads] # calculate the scores of cycle's potential dependents # s(c->x) = max(s(x'->x)), x in noncycle and x' in cycle s_dep = s[noncycle][:, cycle] # find the best cycle head for each noncycle dependent deps = s_dep.argmax(1) # calculate the scores of cycle's potential heads # s(x->c) = max(s(x'->x) - s(a(x')->x') + s(cycle)), x in noncycle and x' in cycle # a(v) is the predecessor of v in cycle # s(cycle) = sum(s(a(v)->v)) s_head = s[cycle][:, noncycle] - s_cycle.view(-1, 1) + s_cycle.sum() # find the best noncycle head for each cycle dependent heads = s_head.argmax(0) contracted = torch.cat((noncycle, torch.tensor([-1]))) # calculate the scores of contracted graph s = s[contracted][:, contracted] # set the contracted graph scores of cycle's potential dependents s[:-1, -1] = s_dep[range(len(deps)), deps] # set the contracted graph scores of cycle's potential heads s[-1, :-1] = s_head[heads, range(len(heads))] return s, heads, deps # keep track of the endpoints of the edges into and out of cycle for reconstruction later s, heads, deps = contract(s) # y is the contracted tree y = chuliu_edmonds(s) # exclude head of cycle from y y, cycle_head = y[:-1], y[-1] # fix the subtree with no heads coming from the cycle # len(y) denotes heads coming from the cycle subtree = y < len(y) # add the nodes to the new tree tree[noncycle[subtree]] = noncycle[y[subtree]] # fix the subtree with heads coming from the cycle subtree = ~subtree # add the nodes to the tree tree[noncycle[subtree]] = cycle[deps[subtree]] # fix the root of the cycle cycle_root = heads[cycle_head] # break the cycle and add the root of the cycle to the tree tree[cycle[cycle_root]] = noncycle[cycle_head] return tree def mst(scores, mask, multiroot=False): r""" MST algorithm for decoding non-projective trees. This is a wrapper for ChuLiu/Edmonds algorithm. The algorithm first runs ChuLiu/Edmonds to parse a tree and then have a check of multi-roots, If ``multiroot=True`` and there indeed exist multi-roots, the algorithm seeks to find best single-root trees by iterating all possible single-root trees parsed by ChuLiu/Edmonds. Otherwise the resulting trees are directly taken as the final outputs. Args: scores (~torch.Tensor): ``[batch_size, seq_len, seq_len]``. Scores of all dependent-head pairs. mask (~torch.BoolTensor): ``[batch_size, seq_len]``. The mask to avoid parsing over padding tokens. The first column serving as pseudo words for roots should be ``False``. multiroot (bool): Ensures to parse a single-root tree If ``False``. Returns: ~torch.Tensor: A tensor with shape ``[batch_size, seq_len]`` for the resulting non-projective parse trees. Examples: >>> scores = torch.tensor([[[-11.9436, -13.1464, -6.4789, -13.8917], [-60.6957, -60.2866, -48.6457, -63.8125], [-38.1747, -49.9296, -45.2733, -49.5571], [-19.7504, -23.9066, -9.9139, -16.2088]]]) >>> scores[:, 0, 1:] = MIN >>> scores.diagonal(0, 1, 2)[1:].fill_(MIN) >>> mask = torch.tensor([[False, True, True, True]]) >>> mst(scores, mask) tensor([[0, 2, 0, 2]]) """ batch_size, seq_len, _ = scores.shape scores = scores.cpu().unbind() preds = [] for i, length in enumerate(mask.sum(1).tolist()): s = scores[i][:length+1, :length+1] tree = chuliu_edmonds(s) roots = torch.where(tree[1:].eq(0))[0] + 1 if not multiroot and len(roots) > 1: s_root = s[:, 0] s_best = MIN s = s.index_fill(1, torch.tensor(0), MIN) for root in roots: s[:, 0] = MIN s[root, 0] = s_root[root] t = chuliu_edmonds(s) s_tree = s[1:].gather(1, t[1:].unsqueeze(-1)).sum() if s_tree > s_best: s_best, tree = s_tree, t preds.append(tree) return pad(preds, total_length=seq_len).to(mask.device) class SampledLogsumexp(Function): @staticmethod def forward(ctx, x, dim=-1): ctx.dim = dim ctx.save_for_backward(x) return x.logsumexp(dim=dim) @staticmethod def backward(ctx, grad_output): from torch.distributions import OneHotCategorical x, dim = ctx.saved_tensors, ctx.dim if ctx.needs_input_grad[0]: return grad_output.unsqueeze(dim).mul(OneHotCategorical(logits=x.movedim(dim, -1)).sample().movedim(-1, dim)), None return None, None class Sparsemax(Function): @staticmethod def forward(ctx, x, dim=-1): ctx.dim = dim sorted_x, _ = x.sort(dim, True) z = sorted_x.cumsum(dim) - 1 k = x.new_tensor(range(1, sorted_x.size(dim) + 1)).view(-1, *[1] * (x.dim() - 1)).transpose(0, dim) k = (k * sorted_x).gt(z).sum(dim, True) tau = z.gather(dim, k - 1) / k p = torch.clamp(x - tau, 0) ctx.save_for_backward(k, p) return p @staticmethod def backward(ctx, grad_output): k, p, dim = *ctx.saved_tensors, ctx.dim grad = grad_output.masked_fill(p.eq(0), 0) grad = torch.where(p.ne(0), grad - grad.sum(dim, True) / k, grad) return grad, None sampled_logsumexp = SampledLogsumexp.apply sparsemax = Sparsemax.apply
34.55814
127
0.574361
[ "MIT" ]
zysite/parser
supar/structs/fn.py
8,916
Python
# -*- coding: latin-1 -*- # ----------------------------------------------------------------------------- # Copyright 2009-2011 Stephen Tiedemann <[email protected]> # # Licensed under the EUPL, Version 1.1 or - as soon they # will be approved by the European Commission - subsequent # versions of the EUPL (the "Licence"); # You may not use this work except in compliance with the # Licence. # You may obtain a copy of the Licence at: # # http://www.osor.eu/eupl # # Unless required by applicable law or agreed to in # writing, software distributed under the Licence is # distributed on an "AS IS" basis, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. # See the Licence for the specific language governing # permissions and limitations under the Licence. # ----------------------------------------------------------------------------- import logging log = logging.getLogger(__name__) import time from types import * import threading import collections import random import nfc.clf import nfc.dep # local imports from tco import * from pdu import * from err import * from opt import * RAW_ACCESS_POINT, LOGICAL_DATA_LINK, DATA_LINK_CONNECTION = range(3) wks_map = { "urn:nfc:sn:sdp" : 1, "urn:nfc:sn:ip" : 2, "urn:nfc:sn:obex": 3, "urn:nfc:sn:snep": 4} class ServiceAccessPoint(object): def __init__(self, addr, llc): self.llc = llc self.addr = addr self.sock_list = collections.deque() self.send_list = collections.deque() def __str__(self): return "SAP {0:>2}".format(self.addr) @property def mode(self): with self.llc.lock: try: if isinstance(self.sock_list[0], RawAccessPoint): return RAW_ACCESS_POINT if isinstance(self.sock_list[0], LogicalDataLink): return LOGICAL_DATA_LINK if isinstance(self.sock_list[0], DataLinkConnection): return DATA_LINK_CONNECTION except IndexError: return 0 def insert_socket(self, socket): with self.llc.lock: try: insertable = type(socket) == type(self.sock_list[0]) except IndexError: insertable = True if insertable: socket.bind(self.addr) self.sock_list.appendleft(socket) else: log.error("can't insert socket of different type") return insertable def remove_socket(self, socket): assert socket.addr == self.addr socket.close() with self.llc.lock: try: self.sock_list.remove(socket) except ValueError: pass if len(self.sock_list) == 0: # completely remove this sap self.llc.sap[self.addr] = None def send(self, pdu): self.send_list.append(pdu) def shutdown(self): while True: try: socket = self.sock_list.pop() except IndexError: return log.debug("shutdown socket %s" % str(socket)) socket.bind(None); socket.close() # # enqueue() and dequeue() are called from llc run thread # def enqueue(self, pdu): with self.llc.lock: if isinstance(pdu, Connect): for socket in self.sock_list: if socket.state.LISTEN: socket.enqueue(pdu) return else: for socket in self.sock_list: if pdu.ssap == socket.peer or socket.peer is None: socket.enqueue(pdu) return if pdu.type in connection_mode_pdu_types: self.send(DisconnectedMode(pdu.ssap, pdu.dsap, reason=1)) def dequeue(self, max_size): with self.llc.lock: for socket in self.sock_list: #print "dequeue from", socket pdu = socket.dequeue(max_size) if pdu: return pdu else: try: return self.send_list.popleft() except IndexError: pass def sendack(self, max_size): with self.llc.lock: for socket in self.sock_list: pdu = socket.sendack(max_size) if pdu: return pdu class ServiceDiscovery(object): def __init__(self, llc): self.llc = llc self.snl = dict() self.tids = range(256) self.resp = threading.Condition(self.llc.lock) self.sent = dict() self.sdreq = collections.deque() self.sdres = collections.deque() self.dmpdu = collections.deque() def __str__(self): return "SAP 1" @property def mode(self): return LOGICAL_DATA_LINK def resolve(self, name): with self.resp: if self.snl is None: return None log.debug("resolve service name '{0}'".format(name)) try: return self.snl[name] except KeyError: pass tid = random.choice(self.tids) self.tids.remove(tid) self.sdreq.append((tid, name)) while not self.snl is None and not name in self.snl: self.resp.wait() return None if self.snl is None else self.snl[name] # # enqueue() and dequeue() are called from llc run thread # def enqueue(self, pdu): with self.llc.lock: if isinstance(pdu, ServiceNameLookup) and not self.snl is None: for tid, sap in pdu.sdres: try: name = self.sent[tid] except KeyError: pass else: log.debug("resolved '{0}' to remote addr {1}" .format(name, sap)) self.snl[name] = sap self.tids.append(tid) self.resp.notify_all() for tid, name in pdu.sdreq: try: sap = self.llc.snl[name] except KeyError: sap = 0 self.sdres.append((tid, sap)) def dequeue(self, max_size): if max_size < 2: return None with self.llc.lock: if len(self.sdres) > 0 or len(self.sdreq) > 0: pdu = ServiceNameLookup(dsap=1, ssap=1) max_size -= len(pdu) while max_size > 0: try: pdu.sdres.append(self.sdres.popleft()) except IndexError: break for i in range(len(self.sdreq)): tid, name = self.sdreq[0] if 1 + len(name) > max_size: self.sdreq.rotate(-1) else: pdu.sdreq.append(self.sdreq.popleft()) self.sent[tid] = name return pdu if len(self.dmpdu) > 0 and max_size >= 2: return self.dmpdu.popleft() def shutdown(self): with self.llc.lock: self.snl = None self.resp.notify_all() class LogicalLinkController(object): def __init__(self, recv_miu=248, send_lto=500, send_agf=True, symm_log=True): self.lock = threading.RLock() self.cfg = dict() self.cfg['recv-miu'] = recv_miu self.cfg['send-lto'] = send_lto self.cfg['send-agf'] = send_agf self.cfg['symm-log'] = symm_log self.snl = dict({"urn:nfc:sn:sdp" : 1}) self.sap = 64 * [None] self.sap[0] = ServiceAccessPoint(0, self) self.sap[1] = ServiceDiscovery(self) def __str__(self): local = "Local(MIU={miu}, LTO={lto}ms)".format( miu=self.cfg.get('recv-miu'), lto=self.cfg.get('send-lto')) remote = "Remote(MIU={miu}, LTO={lto}ms)".format( miu=self.cfg.get('send-miu'), lto=self.cfg.get('recv-lto')) return "LLC: {local} {remote}".format(local=local, remote=remote) def activate(self, mac): assert type(mac) in (nfc.dep.Initiator, nfc.dep.Target) self.mac = None miu = self.cfg['recv-miu'] lto = self.cfg['send-lto'] wks = 1+sum(sorted([1<<sap for sap in self.snl.values() if sap < 15])) pax = ParameterExchange(version=(1,1), miu=miu, lto=lto, wks=wks) if type(mac) == nfc.dep.Initiator: gb = mac.activate(gbi='Ffm'+pax.to_string()[2:]) self.run = self.run_as_initiator role = "Initiator" if type(mac) == nfc.dep.Target: gb = mac.activate(gbt='Ffm'+pax.to_string()[2:], wt=9) self.run = self.run_as_target role = "Target" if gb is not None and gb.startswith('Ffm') and len(gb) >= 6: info = ["LLCP Link established as NFC-DEP {0}".format(role)] info.append("Local LLCP Settings") info.append(" LLCP Version: {0[0]}.{0[1]}".format(pax.version)) info.append(" Link Timeout: {0} ms".format(pax.lto)) info.append(" Max Inf Unit: {0} octet".format(pax.miu)) info.append(" Service List: {0:016b}".format(pax.wks)) pax = ProtocolDataUnit.from_string("\x00\x40" + str(gb[3:])) info.append("Remote LLCP Settings") info.append(" LLCP Version: {0[0]}.{0[1]}".format(pax.version)) info.append(" Link Timeout: {0} ms".format(pax.lto)) info.append(" Max Inf Unit: {0} octet".format(pax.miu)) info.append(" Service List: {0:016b}".format(pax.wks)) log.info('\n'.join(info)) self.cfg['rcvd-ver'] = pax.version self.cfg['send-miu'] = pax.miu self.cfg['recv-lto'] = pax.lto self.cfg['send-wks'] = pax.wks self.cfg['send-lsc'] = pax.lsc log.debug("llc cfg {0}".format(self.cfg)) if type(mac) == nfc.dep.Initiator and mac.rwt is not None: max_rwt = 4096/13.56E6 * 2**10 if mac.rwt > max_rwt: log.warning("NFC-DEP RWT {0:.3f} exceeds max {1:.3f} sec" .format(mac.rwt, max_rwt)) self.mac = mac return bool(self.mac) def terminate(self, reason): log.debug("llcp link termination caused by {0}".format(reason)) if reason == "local choice": self.exchange(Disconnect(0, 0), timeout=0.1) self.mac.deactivate() elif reason == "remote choice": self.mac.deactivate() # shutdown local services for i in range(63, -1, -1): if not self.sap[i] is None: log.debug("closing service access point %d" % i) self.sap[i].shutdown() self.sap[i] = None def exchange(self, pdu, timeout): if not isinstance(pdu, Symmetry) or self.cfg.get('symm-log') is True: log.debug("SEND {0}".format(pdu)) data = pdu.to_string() if pdu else None try: data = self.mac.exchange(data, timeout) if data is None: return None except nfc.clf.DigitalProtocolError as error: log.debug("{0!r}".format(error)) return None pdu = ProtocolDataUnit.from_string(data) if not isinstance(pdu, Symmetry) or self.cfg.get('symm-log') is True: log.debug("RECV {0}".format(pdu)) return pdu def run_as_initiator(self, terminate=lambda: False): recv_timeout = 1E-3 * (self.cfg['recv-lto'] + 10) symm = 0 try: pdu = self.collect(delay=0.01) while not terminate(): if pdu is None: pdu = Symmetry() pdu = self.exchange(pdu, recv_timeout) if pdu is None: return self.terminate(reason="link disruption") if pdu == Disconnect(0, 0): return self.terminate(reason="remote choice") symm = symm + 1 if type(pdu) == Symmetry else 0 self.dispatch(pdu) pdu = self.collect(delay=0.001) if pdu is None and symm >= 10: pdu = self.collect(delay=0.05) else: self.terminate(reason="local choice") except KeyboardInterrupt: print # move to new line self.terminate(reason="local choice") raise KeyboardInterrupt except IOError: self.terminate(reason="input/output error") raise SystemExit finally: log.debug("llc run loop terminated on initiator") def run_as_target(self, terminate=lambda: False): recv_timeout = 1E-3 * (self.cfg['recv-lto'] + 10) symm = 0 try: pdu = None while not terminate(): pdu = self.exchange(pdu, recv_timeout) if pdu is None: return self.terminate(reason="link disruption") if pdu == Disconnect(0, 0): return self.terminate(reason="remote choice") symm = symm + 1 if type(pdu) == Symmetry else 0 self.dispatch(pdu) pdu = self.collect(delay=0.001) if pdu is None and symm >= 10: pdu = self.collect(delay=0.05) if pdu is None: pdu = Symmetry() else: self.terminate(reason="local choice") except KeyboardInterrupt: print # move to new line self.terminate(reason="local choice") raise KeyboardInterrupt except IOError: self.terminate(reason="input/output error") raise SystemExit finally: log.debug("llc run loop terminated on target") def collect(self, delay=None): if delay: time.sleep(delay) pdu_list = list() max_data = None with self.lock: active_sap_list = [sap for sap in self.sap if sap is not None] for sap in active_sap_list: #log.debug("query sap {0}, max_data={1}" # .format(sap, max_data)) pdu = sap.dequeue(max_data if max_data else 2179) if pdu is not None: if self.cfg['send-agf'] == False: return pdu pdu_list.append(pdu) if max_data is None: max_data = self.cfg["send-miu"] + 2 max_data -= len(pdu) if max_data < bool(len(pdu_list)==1) * 2 + 2 + 2: break else: max_data = self.cfg["send-miu"] + 2 for sap in active_sap_list: if sap.mode == DATA_LINK_CONNECTION: pdu = sap.sendack(max_data) if not pdu is None: if self.cfg['send-agf'] == False: return pdu pdu_list.append(pdu) max_data -= len(pdu) if max_data < bool(len(pdu_list)==1) * 2 + 2 + 3: break if len(pdu_list) > 1: return AggregatedFrame(aggregate=pdu_list) if len(pdu_list) == 1: return pdu_list[0] return None def dispatch(self, pdu): if isinstance(pdu, Symmetry): return if isinstance(pdu, AggregatedFrame): if pdu.dsap == 0 and pdu.ssap == 0: [log.debug(" " + str(p)) for p in pdu] [self.dispatch(p) for p in pdu] return if isinstance(pdu, Connect) and pdu.dsap == 1: # connect-by-name addr = self.snl.get(pdu.sn) if not addr or self.sap[addr] is None: log.debug("no service named '{0}'".format(pdu.sn)) pdu = DisconnectedMode(pdu.ssap, 1, reason=2) self.sap[1].dmpdu.append(pdu) return pdu = Connect(dsap=addr, ssap=pdu.ssap, rw=pdu.rw, miu=pdu.miu) with self.lock: sap = self.sap[pdu.dsap] if sap: sap.enqueue(pdu) return log.debug("discard PDU {0}".format(str(pdu))) return def resolve(self, name): return self.sap[1].resolve(name) def socket(self, socket_type): if socket_type == RAW_ACCESS_POINT: return RawAccessPoint(recv_miu=self.cfg["recv-miu"]) if socket_type == LOGICAL_DATA_LINK: return LogicalDataLink(recv_miu=self.cfg["recv-miu"]) if socket_type == DATA_LINK_CONNECTION: return DataLinkConnection(recv_miu=128, recv_win=1) def setsockopt(self, socket, option, value): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if option == SO_RCVMIU: value = min(value, self.cfg['recv-miu']) socket.setsockopt(option, value) return socket.getsockopt(option) def getsockopt(self, socket, option): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if isinstance(socket, LogicalDataLink): # FIXME: set socket send miu when activated socket.send_miu = self.cfg['send-miu'] if isinstance(socket, RawAccessPoint): # FIXME: set socket send miu when activated socket.send_miu = self.cfg['send-miu'] return socket.getsockopt(option) def bind(self, socket, addr_or_name=None): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if not socket.addr is None: raise Error(errno.EINVAL) if addr_or_name is None: self._bind_by_none(socket) elif type(addr_or_name) is IntType: self._bind_by_addr(socket, addr_or_name) elif type(addr_or_name) is StringType: self._bind_by_name(socket, addr_or_name) else: raise Error(errno.EFAULT) def _bind_by_none(self, socket): with self.lock: try: addr = 32 + self.sap[32:64].index(None) except ValueError: raise Error(errno.EAGAIN) else: socket.bind(addr) self.sap[addr] = ServiceAccessPoint(addr, self) self.sap[addr].insert_socket(socket) def _bind_by_addr(self, socket, addr): with self.lock: if addr in range(32, 64): if self.sap[addr] is None: socket.bind(addr) self.sap[addr] = ServiceAccessPoint(addr, self) self.sap[addr].insert_socket(socket) else: raise Error(errno.EADDRINUSE) else: raise Error(errno.EACCES) def _bind_by_name(self, socket, name): if not (name.startswith("urn:nfc:sn") or name.startswith("urn:nfc:xsn") or name == "com.android.npp"): # invalid name but legacy raise Error(errno.EFAULT) with self.lock: if self.snl.get(name) != None: raise Error(errno.EADDRINUSE) addr = wks_map.get(name) if addr is None: try: addr = 16 + self.sap[16:32].index(None) except ValueError: raise Error(errno.EADDRNOTAVAIL) socket.bind(addr) self.sap[addr] = ServiceAccessPoint(addr, self) self.sap[addr].insert_socket(socket) self.snl[name] = addr def connect(self, socket, dest): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if not socket.is_bound: self.bind(socket) socket.connect(dest) log.debug("connected ({0} ===> {1})".format(socket.addr, socket.peer)) def listen(self, socket, backlog): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if not isinstance(socket, DataLinkConnection): raise Error(errno.EOPNOTSUPP) if not type(backlog) == IntType: raise TypeError("backlog must be integer") if backlog < 0: raise ValueError("backlog mmust not be negative") backlog = min(backlog, 16) if not socket.is_bound: self.bind(socket) socket.listen(backlog) def accept(self, socket): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if not isinstance(socket, DataLinkConnection): raise Error(errno.EOPNOTSUPP) while True: client = socket.accept() if not client.is_bound: self.bind(client) if self.sap[client.addr].insert_socket(client): log.debug("new data link connection ({0} <=== {1})" .format(client.addr, client.peer)) return client else: pdu = DisconnectedMode(client.peer, socket.addr, reason=0x20) super(DataLinkConnection, socket).send(pdu) def send(self, socket, message): return self.sendto(socket, message, socket.peer) def sendto(self, socket, message, dest): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if isinstance(socket, RawAccessPoint): if not isinstance(message, ProtocolDataUnit): raise TypeError("message must be a pdu on raw access point") if not socket.is_bound: self.bind(socket) # FIXME: set socket send miu when activated socket.send_miu = self.cfg['send-miu'] return socket.send(message) if not type(message) == StringType: raise TypeError("sendto() argument *message* must be a string") if isinstance(socket, LogicalDataLink): if dest is None: raise Error(errno.EDESTADDRREQ) if not socket.is_bound: self.bind(socket) # FIXME: set socket send miu when activated socket.send_miu = self.cfg['send-miu'] return socket.sendto(message, dest) if isinstance(socket, DataLinkConnection): return socket.send(message) def recv(self, socket): message, sender = self.recvfrom(socket) return message def recvfrom(self, socket): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if not (socket.addr and self.sap[socket.addr]): raise Error(errno.EBADF) if isinstance(socket, RawAccessPoint): return (socket.recv(), None) if isinstance(socket, LogicalDataLink): return socket.recvfrom() if isinstance(socket, DataLinkConnection): return (socket.recv(), socket.peer) def poll(self, socket, event, timeout=None): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if not (socket.addr and self.sap[socket.addr]): raise Error(errno.EBADF) return socket.poll(event, timeout) def close(self, socket): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) if socket.is_bound: self.sap[socket.addr].remove_socket(socket) else: socket.close() def getsockname(self, socket): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) return socket.addr def getpeername(self, socket): if not isinstance(socket, TransmissionControlObject): raise Error(errno.ENOTSOCK) return socket.peer
38.011146
79
0.548071
[ "MIT" ]
javgh/bitpay-brick
src/nfc/llcp/llc.py
23,871
Python
import os import cv2 import numpy as np import time cap = cv2.VideoCapture(0) file_index = 0 if not os.path.exists("calibration_data/calibration_frames/"): os.makedirs("calibration_data/calibration_frames/") while True: ret, frame = cap.read() # display the resulting frame cv2.imshow("frame", frame) key = cv2.waitKey(100) & 0xFF if key == ord("q"): break if key == ord("s"): filename = "calibration_data/calibration_frames/frame_" + str(file_index) + str(time.time()) + ".png" cv2.imwrite(filename, frame) print(f"saved frame: {filename}") file_index += 1 cv2.destroyAllWindows() cap.release()
21.677419
109
0.654762
[ "MIT" ]
federicozappone/sun_sensor_heading_estimation
grab_calibration_frames.py
672
Python
# -*- coding: utf-8 -*- """ /*************************************************************************** QGIS plugin 'Graphium' /*************************************************************************** * * Copyright 2020 Simon Gröchenig @ Salzburg Research * eMail [email protected] * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************/ """ from enum import Enum class OsmHighwayTypes(Enum): MOTORWAY = 'motorway' MOTORWAY_LINK = 'motorway_link' TRUNK = 'trunk' TRUNK_LINK = 'trunk_link' PRIMARY = 'primary' PRIMARY_LINK = 'primary_link' SECONDARY = 'secondary' SECONDARY_LINK = 'secondary_link' TERTIARY = 'tertiary' TERTIARY_LINK = 'tertiary_link' UNCLASSIFIED = 'unclassified' RESIDENTIAL = 'residential' LIVING_STREET = 'living_street' SERVICE = 'service' PEDESTRIAN = 'pedestrian' TRACK = 'track' BUS_GUIDEWAY = 'bus_guideway' FOOTWAY = 'footway' BRIDLEWAY = 'bridleway' STEPS = 'steps' CORRIDOR = 'dorridor' PATH = 'path' SIDEWALK = 'sidewalk' CYCLEWAY = 'cycleway'
31.092593
77
0.59321
[ "Apache-2.0" ]
graphium-project/graphium-qgis-plugin
graphium/graph_management/model/osm_highway_types.py
1,680
Python
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Creates datasets from the NIST sdf files and makes experiment setup jsons. This module first breaks up the main NIST library dataset into a train/ validation/test set, and the replicates library into a validation and test set. As all the molecules in the replicates file are also in the main NIST library, the mainlib datasets will exclude inchikeys from the replicates library. All the molecules in both datasets are to be included in one of these datasets, unless an argument is passed for mainlib_maximum_num_molecules_to_use or replicates_maximum_num_molecules_to_use. The component datasets are saved as TFRecords, by the names defined in dataset_setup_constants and the library from which the data came (e.g. mainlib_train_from_mainlib.tfrecord). This will result in 7 TFRecord files total, one each for the train/validation/test splits from the main library, and two each for the replicates validation/test splits, one with its data from the mainlib NIST file, and the other from the replicates file. For each experiment setup included in dataset_setup_constants.EXPERIMENT_SETUPS_LIST, a json file is written. This json file name the files to be used for each part of the experiment, i.e. library matching, spectra prediction. Note: Reading sdf files from cns currently not supported. Example usage: make_train_test_split.py \ --main_sdf_name=testdata/test_14_mend.sdf --replicates_sdf_name=testdata/test_2_mend.sdf \ --output_master_dir=<output_dir_name> """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import random from absl import app from absl import flags import dataset_setup_constants as ds_constants import mass_spec_constants as ms_constants import parse_sdf_utils import train_test_split_utils import six import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_string( 'main_sdf_name', 'testdata/test_14_mend.sdf', 'specify full path of sdf file to parse, to be used for' ' training sets, and validation/test sets') flags.DEFINE_string( 'replicates_sdf_name', 'testdata/test_2_mend.sdf', 'specify full path of a second sdf file to parse, to be' ' used for the vaildation/test set. Molecules in this sdf' ' will be excluded from the main train/val/test sets.') # Note: For family based splitting, all molecules passing the filter will be # placed in validation/test datasets, and then split according to the relative # ratio between the validation/test fractions. If these are both equal to 0.0, # these values will be over written to 0.5 and 0.5. flags.DEFINE_list( 'main_train_val_test_fractions', '1.0,0.0,0.0', 'specify how large to make the train, val, and test sets' ' as a fraction of the whole dataset.') flags.DEFINE_integer('mainlib_maximum_num_molecules_to_use', None, 'specify how many total samples to use for parsing') flags.DEFINE_integer('replicates_maximum_num_molecules_to_use', None, 'specify how many total samples to use for parsing') flags.DEFINE_list( 'replicates_train_val_test_fractions', '0.0,0.5,0.5', 'specify fraction of replicates molecules to use for' ' for the three replicates sample files.') flags.DEFINE_enum( 'splitting_type', 'random', ['random', 'steroid', 'diazo'], 'specify splitting method to use for creating ' 'training/validation/test sets') flags.DEFINE_string('output_master_dir', '/tmp/output_dataset_dir', 'specify directory to save records') flags.DEFINE_integer('max_atoms', ms_constants.MAX_ATOMS, 'specify maximum number of atoms to allow') flags.DEFINE_integer('max_mass_spec_peak_loc', ms_constants.MAX_PEAK_LOC, 'specify greatest m/z spectrum peak to allow') INCHIKEY_FILENAME_END = '.inchikey.txt' TFRECORD_FILENAME_END = '.tfrecord' NP_LIBRARY_ARRAY_END = '.spectra_library.npy' FROM_MAINLIB_FILENAME_MODIFIER = '_from_mainlib' FROM_REPLICATES_FILENAME_MODIFIER = '_from_replicates' def make_mainlib_replicates_train_test_split( mainlib_mol_list, replicates_mol_list, splitting_type, mainlib_fractions, replicates_fractions, mainlib_maximum_num_molecules_to_use=None, replicates_maximum_num_molecules_to_use=None, rseed=42): """Makes train/validation/test inchikey lists from two lists of rdkit.Mol. Args: mainlib_mol_list : list of molecules from main library replicates_mol_list : list of molecules from replicates library splitting_type : type of splitting to use for validation splits. mainlib_fractions : TrainValTestFractions namedtuple holding desired fractions for train/val/test split of mainlib replicates_fractions : TrainValTestFractions namedtuple holding desired fractions for train/val/test split of replicates. For the replicates set, the train fraction should be set to 0. mainlib_maximum_num_molecules_to_use : Largest number of molecules to use when making datasets from mainlib replicates_maximum_num_molecules_to_use : Largest number of molecules to use when making datasets from replicates rseed : random seed for shuffling Returns: main_inchikey_dict : Dict that is keyed by inchikey, containing a list of rdkit.Mol objects corresponding to that inchikey from the mainlib replicates_inchikey_dict : Dict that is keyed by inchikey, containing a list of rdkit.Mol objects corresponding to that inchikey from the replicates library main_replicates_split_inchikey_lists_dict : dict with keys : 'mainlib_train', 'mainlib_validation', 'mainlib_test', 'replicates_train', 'replicates_validation', 'replicates_test' Values are lists of inchikeys corresponding to each dataset. """ random.seed(rseed) main_inchikey_dict = train_test_split_utils.make_inchikey_dict( mainlib_mol_list) main_inchikey_list = main_inchikey_dict.keys() if six.PY3: main_inchikey_list = list(main_inchikey_list) if mainlib_maximum_num_molecules_to_use is not None: main_inchikey_list = random.sample(main_inchikey_list, mainlib_maximum_num_molecules_to_use) replicates_inchikey_dict = train_test_split_utils.make_inchikey_dict( replicates_mol_list) replicates_inchikey_list = replicates_inchikey_dict.keys() if six.PY3: replicates_inchikey_list = list(replicates_inchikey_list) if replicates_maximum_num_molecules_to_use is not None: replicates_inchikey_list = random.sample( replicates_inchikey_list, replicates_maximum_num_molecules_to_use) # Make train/val/test splits for main dataset. main_train_validation_test_inchikeys = ( train_test_split_utils.make_train_val_test_split_inchikey_lists( main_inchikey_list, main_inchikey_dict, mainlib_fractions, holdout_inchikey_list=replicates_inchikey_list, splitting_type=splitting_type)) # Make train/val/test splits for replicates dataset. replicates_validation_test_inchikeys = ( train_test_split_utils.make_train_val_test_split_inchikey_lists( replicates_inchikey_list, replicates_inchikey_dict, replicates_fractions, splitting_type=splitting_type)) component_inchikey_dict = { ds_constants.MAINLIB_TRAIN_BASENAME: main_train_validation_test_inchikeys.train, ds_constants.MAINLIB_VALIDATION_BASENAME: main_train_validation_test_inchikeys.validation, ds_constants.MAINLIB_TEST_BASENAME: main_train_validation_test_inchikeys.test, ds_constants.REPLICATES_TRAIN_BASENAME: replicates_validation_test_inchikeys.train, ds_constants.REPLICATES_VALIDATION_BASENAME: replicates_validation_test_inchikeys.validation, ds_constants.REPLICATES_TEST_BASENAME: replicates_validation_test_inchikeys.test } train_test_split_utils.assert_all_lists_mutally_exclusive( list(component_inchikey_dict.values())) # Test that the set of the 5 component inchikey lists is equal to the set of # inchikeys in the main library. all_inchikeys_in_components = [] for ikey_list in list(component_inchikey_dict.values()): for ikey in ikey_list: all_inchikeys_in_components.append(ikey) assert set(main_inchikey_list + replicates_inchikey_list) == set( all_inchikeys_in_components ), ('The inchikeys in the original inchikey dictionary are not all included' ' in the train/val/test component libraries') return (main_inchikey_dict, replicates_inchikey_dict, component_inchikey_dict) def write_list_of_inchikeys(inchikey_list, base_name, output_dir): """Write list of inchikeys as a text file.""" inchikey_list_name = base_name + INCHIKEY_FILENAME_END with tf.gfile.Open(os.path.join(output_dir, inchikey_list_name), 'w') as writer: for inchikey in inchikey_list: writer.write('%s\n' % inchikey) def write_all_dataset_files(inchikey_dict, inchikey_list, base_name, output_dir, max_atoms, max_mass_spec_peak_loc, make_library_array=False): """Helper function for writing all the files associated with a TFRecord. Args: inchikey_dict : Full dictionary keyed by inchikey containing lists of rdkit.Mol objects inchikey_list : List of inchikeys to include in dataset base_name : Base name for the dataset output_dir : Path for saving all TFRecord files max_atoms : Maximum number of atoms to include for a given molecule max_mass_spec_peak_loc : Largest m/z peak to include in a spectra. make_library_array : Flag for whether to make library array Returns: Saves 3 files: basename.tfrecord : a TFRecord file, basename.inchikey.txt : a text file with all the inchikeys in the dataset basename.tfrecord.info: a text file with one line describing the length of the TFRecord file. Also saves if make_library_array is set: basename.npz : see parse_sdf_utils.write_dicts_to_example """ record_name = base_name + TFRECORD_FILENAME_END mol_list = train_test_split_utils.make_mol_list_from_inchikey_dict( inchikey_dict, inchikey_list) if make_library_array: library_array_pathname = base_name + NP_LIBRARY_ARRAY_END parse_sdf_utils.write_dicts_to_example( mol_list, os.path.join(output_dir, record_name), max_atoms, max_mass_spec_peak_loc, os.path.join(output_dir, library_array_pathname)) else: parse_sdf_utils.write_dicts_to_example( mol_list, os.path.join(output_dir, record_name), max_atoms, max_mass_spec_peak_loc) write_list_of_inchikeys(inchikey_list, base_name, output_dir) parse_sdf_utils.write_info_file(mol_list, os.path.join( output_dir, record_name)) def write_mainlib_split_datasets(component_inchikey_dict, mainlib_inchikey_dict, output_dir, max_atoms, max_mass_spec_peak_loc): """Write all train/val/test set TFRecords from main NIST sdf file.""" for component_kwarg in component_inchikey_dict.keys(): component_mainlib_filename = ( component_kwarg + FROM_MAINLIB_FILENAME_MODIFIER) if component_kwarg == ds_constants.MAINLIB_TRAIN_BASENAME: write_all_dataset_files( mainlib_inchikey_dict, component_inchikey_dict[component_kwarg], component_mainlib_filename, output_dir, max_atoms, max_mass_spec_peak_loc, make_library_array=True) else: write_all_dataset_files(mainlib_inchikey_dict, component_inchikey_dict[component_kwarg], component_mainlib_filename, output_dir, max_atoms, max_mass_spec_peak_loc) def write_replicates_split_datasets(component_inchikey_dict, replicates_inchikey_dict, output_dir, max_atoms, max_mass_spec_peak_loc): """Write replicates val/test set TFRecords from replicates sdf file.""" for component_kwarg in [ ds_constants.REPLICATES_VALIDATION_BASENAME, ds_constants.REPLICATES_TEST_BASENAME ]: component_replicates_filename = ( component_kwarg + FROM_REPLICATES_FILENAME_MODIFIER) write_all_dataset_files(replicates_inchikey_dict, component_inchikey_dict[component_kwarg], component_replicates_filename, output_dir, max_atoms, max_mass_spec_peak_loc) def combine_inchikey_sets(dataset_subdivision_list, dataset_split_dict): """A function to combine lists of inchikeys that are values from a dict. Args: dataset_subdivision_list: List of keys in dataset_split_dict to combine into one list dataset_split_dict: dict containing keys in dataset_subdivision_list, with lists of inchikeys as values. Returns: A list of inchikeys. """ dataset_inchikey_list = [] for dataset_subdivision_name in dataset_subdivision_list: dataset_inchikey_list.extend(dataset_split_dict[dataset_subdivision_name]) return dataset_inchikey_list def check_experiment_setup(experiment_setup_dict, component_inchikey_dict): """Validates experiment setup for given lists of inchikeys.""" # Check that the union of the library matching observed and library # matching predicted sets are equal to the set of inchikeys in the # mainlib_inchikey_dict all_inchikeys_in_library = ( combine_inchikey_sets( experiment_setup_dict[ds_constants.LIBRARY_MATCHING_OBSERVED_KEY], component_inchikey_dict) + combine_inchikey_sets( experiment_setup_dict[ds_constants.LIBRARY_MATCHING_PREDICTED_KEY], component_inchikey_dict)) all_inchikeys_in_use = [] for kwarg in component_inchikey_dict.keys(): all_inchikeys_in_use.extend(component_inchikey_dict[kwarg]) assert set(all_inchikeys_in_use) == set(all_inchikeys_in_library), ( 'Inchikeys in library for library matching does not match full dataset.') # Check that all inchikeys in query are found in full library of inchikeys. assert set( combine_inchikey_sets( experiment_setup_dict[ds_constants.LIBRARY_MATCHING_QUERY_KEY], component_inchikey_dict)).issubset(set(all_inchikeys_in_library)), ( 'Inchikeys in query set for library matching not' 'found in library.') def write_json_for_experiment(experiment_setup, output_dir): """Writes json for experiment, recording relevant files for each component. Writes a json containing a list of TFRecord file names to read for each experiment component, i.e. spectrum_prediction, library_matching. Args: experiment_setup: A dataset_setup_constants.ExperimentSetup tuple output_dir: directory to write json Returns: Writes json recording which files to load for each component of the experiment Raises: ValueError: if the experiment component is not specified to be taken from either the main NIST library or the replicates library. """ experiment_json_dict = {} for dataset_kwarg in experiment_setup.experiment_setup_dataset_dict: if dataset_kwarg in experiment_setup.data_to_get_from_mainlib: experiment_json_dict[dataset_kwarg] = [ (component_basename + FROM_MAINLIB_FILENAME_MODIFIER + TFRECORD_FILENAME_END) for component_basename in experiment_setup.experiment_setup_dataset_dict[dataset_kwarg] ] elif dataset_kwarg in experiment_setup.data_to_get_from_replicates: experiment_json_dict[dataset_kwarg] = [ (component_basename + FROM_REPLICATES_FILENAME_MODIFIER + TFRECORD_FILENAME_END) for component_basename in experiment_setup.experiment_setup_dataset_dict[dataset_kwarg] ] else: raise ValueError('Did not specify origin for {}.'.format(dataset_kwarg)) training_spectra_filename = ( ds_constants.MAINLIB_TRAIN_BASENAME + FROM_MAINLIB_FILENAME_MODIFIER + NP_LIBRARY_ARRAY_END) experiment_json_dict[ ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = training_spectra_filename with tf.gfile.Open(os.path.join(output_dir, experiment_setup.json_name), 'w') as writer: experiment_json = json.dumps(experiment_json_dict) writer.write(experiment_json) def main(_): tf.gfile.MkDir(FLAGS.output_master_dir) main_train_val_test_fractions_tuple = tuple( [float(elem) for elem in FLAGS.main_train_val_test_fractions]) main_train_val_test_fractions = train_test_split_utils.TrainValTestFractions( *main_train_val_test_fractions_tuple) replicates_train_val_test_fractions_tuple = tuple( [float(elem) for elem in FLAGS.replicates_train_val_test_fractions]) replicates_train_val_test_fractions = ( train_test_split_utils.TrainValTestFractions( *replicates_train_val_test_fractions_tuple)) mainlib_mol_list = parse_sdf_utils.get_sdf_to_mol( FLAGS.main_sdf_name, max_atoms=FLAGS.max_atoms) replicates_mol_list = parse_sdf_utils.get_sdf_to_mol( FLAGS.replicates_sdf_name, max_atoms=FLAGS.max_atoms) # Breaks the inchikeys lists into train/validation/test splits. (mainlib_inchikey_dict, replicates_inchikey_dict, component_inchikey_dict) = ( make_mainlib_replicates_train_test_split( mainlib_mol_list, replicates_mol_list, FLAGS.splitting_type, main_train_val_test_fractions, replicates_train_val_test_fractions, mainlib_maximum_num_molecules_to_use=FLAGS. mainlib_maximum_num_molecules_to_use, replicates_maximum_num_molecules_to_use=FLAGS. replicates_maximum_num_molecules_to_use)) # Writes TFRecords for each component using info from the main library file write_mainlib_split_datasets(component_inchikey_dict, mainlib_inchikey_dict, FLAGS.output_master_dir, FLAGS.max_atoms, FLAGS.max_mass_spec_peak_loc) # Writes TFRecords for each component using info from the replicates file write_replicates_split_datasets( component_inchikey_dict, replicates_inchikey_dict, FLAGS.output_master_dir, FLAGS.max_atoms, FLAGS.max_mass_spec_peak_loc) for experiment_setup in ds_constants.EXPERIMENT_SETUPS_LIST: # Check that experiment setup is valid. check_experiment_setup(experiment_setup.experiment_setup_dataset_dict, component_inchikey_dict) # Write a json for the experiment setups, pointing to local files. write_json_for_experiment(experiment_setup, FLAGS.output_master_dir) if __name__ == '__main__': app.run(main)
42.566449
80
0.749718
[ "Apache-2.0" ]
berlinguyinca/deep-molecular-massspec
make_train_test_split.py
19,538
Python
class Solution(object): def combinationSum(self, candidates, target): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ def recurhelper(nums,res,path,target,start): if target==0: res.append(path) return if target<0: return if target>0: for i in xrange(start,len(nums)): if nums[i]<=target: recurhelper(nums,res,path+[nums[i]],target-nums[i],i) res=[] candidates.sort() recurhelper(candidates,res,[],target,0) return res
29.434783
77
0.483013
[ "MIT" ]
Tanych/CodeTracking
39-Combination-Sum/solution.py
677
Python
playlists = """https://www.youtube.com/playlist?list=PLWOxuTkHhAq70Q4ZF1EcsRaW1uHs6zygL https://www.youtube.com/playlist?list=PLObmubSxSaRKdWB3BoyndydqDGkgbMlbC https://www.youtube.com/playlist?list=PLxN__ARc_RfpOAdnB14rBSF6xDHDySNE4 https://www.youtube.com/playlist?list=PLxN__ARc_Rfrsee6JJkU198Fa0rxjbTgQ https://www.youtube.com/playlist?list=PLxN__ARc_Rfr3AipUqXTqjbL990_pUBCd https://www.youtube.com/playlist?list=PLxN__ARc_RfrYYGV0uN9G79ASYNYHN5bi https://www.youtube.com/playlist?list=PLnyIUJZrQfakO0xkKPxceT4rOhzwd9NMU https://www.youtube.com/playlist?list=PLnyIUJZrQfam-mBL4Wq3qncy68DfeI_Op https://www.youtube.com/playlist?list=PLnyIUJZrQfalS8yK1K7NGWbZXiY6nnDxg https://www.youtube.com/playlist?list=PLnyIUJZrQfaluNlLUmbGoDJUUas4T7W_C https://www.youtube.com/playlist?list=PLjqsQycWIhFfKtcQlGgnGDQuUbUjSgqrB https://www.youtube.com/playlist?list=PLaK1z6C61upcg-fWsHoiWtDwsKP7Ti23r https://www.youtube.com/playlist?list=PLZ7Ye5d76T7j9l2BONR05FDyUaczK3NWP https://www.youtube.com/playlist?list=PLZ7Ye5d76T7gzXf6-_QdT3qRplcIODcs0 https://www.youtube.com/playlist?list=PLZ7Ye5d76T7j-QdeSLenweE_E_w2gWGDd https://www.youtube.com/playlist?list=PLcfHpRUOJGcOSIYV7UX0Fxb3N9aYiIeIX https://www.youtube.com/playlist?list=PLcfHpRUOJGcN3QcWyDJ9D6e_BDmkmRoaX https://www.youtube.com/playlist?list=PLcfHpRUOJGcN_q9JvR09_Wy4Yhl_9eG6r https://www.youtube.com/playlist?list=PL3R3ezbvlgNpyAxZzQ3vEIO3R6XYzX-Oa https://www.youtube.com/playlist?list=PLTufViCW8MklAol1CKXYFmWB-6LMS5cLS https://www.youtube.com/playlist?list=PL2kIyfRWfPs6UC--1IqcxcPSfXsNyGFiK https://www.youtube.com/playlist?list=PLSQCEkZEhfq9mra1sy7vI4Ra2kgPslVaX https://www.youtube.com/playlist?list=PL1ad0PFSaS7c0k5guh90oS-7csla07Or1 https://www.youtube.com/playlist?list=PLy_Iceng2X1A8MwZ8hWC9ITqz0fYU3Mau https://www.youtube.com/playlist?list=PLTufViCW8MknjUllPTnq5PtRlZTAJ2a-9 https://www.youtube.com/playlist?list=PLTufViCW8MknQc1Dgth6b0CyFhXWClDJs https://www.youtube.com/playlist?list=PLTufViCW8MkkAnqcreRA78ytpxuf2r8ac https://www.youtube.com/playlist?list=PLttdYH6hzg6fmQVkawJWxBKPRGVxvm11I https://www.youtube.com/playlist?list=PLAmqhEyEmobA1M3t4XjlAQthTRToIYku4 https://www.youtube.com/playlist?list=PLAmqhEyEmobBAo9FR9_8JRt9ykj2k92-e https://www.youtube.com/playlist?list=PLJJd8CUjfjZqb9tGMTfAYPfVcO-yMSiV3 https://www.youtube.com/playlist?list=PLJJd8CUjfjZqLKBBP0D_jqtG4OPYTTByR https://www.youtube.com/playlist?list=PLAmqhEyEmobDzbAqxuYjpjDLZFnhws7no https://www.youtube.com/playlist?list=PLgE5g9Ln1vGHGjsDr-4t-Jsw4C1mjWIQV""" playlists = playlists.split("\n")
70.388889
87
0.866219
[ "MIT" ]
portikCoder/yt-list-downloader
src/yt_list_downloader/input.py
2,534
Python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v3/proto/services/campaign_criterion_simulation_service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v3.proto.resources import campaign_criterion_simulation_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_resources_dot_campaign__criterion__simulation__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v3/proto/services/campaign_criterion_simulation_service.proto', package='google.ads.googleads.v3.services', syntax='proto3', serialized_options=_b('\n$com.google.ads.googleads.v3.servicesB\'CampaignCriterionSimulationServiceProtoP\001ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v3/services;services\242\002\003GAA\252\002 Google.Ads.GoogleAds.V3.Services\312\002 Google\\Ads\\GoogleAds\\V3\\Services\352\002$Google::Ads::GoogleAds::V3::Services'), serialized_pb=_b('\nRgoogle/ads/googleads_v3/proto/services/campaign_criterion_simulation_service.proto\x12 google.ads.googleads.v3.services\x1aKgoogle/ads/googleads_v3/proto/resources/campaign_criterion_simulation.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\"|\n%GetCampaignCriterionSimulationRequest\x12S\n\rresource_name\x18\x01 \x01(\tB<\xe0\x41\x02\xfa\x41\x36\n4googleads.googleapis.com/CampaignCriterionSimulation2\xc5\x02\n\"CampaignCriterionSimulationService\x12\x81\x02\n\x1eGetCampaignCriterionSimulation\x12G.google.ads.googleads.v3.services.GetCampaignCriterionSimulationRequest\x1a>.google.ads.googleads.v3.resources.CampaignCriterionSimulation\"V\x82\xd3\xe4\x93\x02@\x12>/v3/{resource_name=customers/*/campaignCriterionSimulations/*}\xda\x41\rresource_name\x1a\x1b\xca\x41\x18googleads.googleapis.comB\x8e\x02\n$com.google.ads.googleads.v3.servicesB\'CampaignCriterionSimulationServiceProtoP\x01ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v3/services;services\xa2\x02\x03GAA\xaa\x02 Google.Ads.GoogleAds.V3.Services\xca\x02 Google\\Ads\\GoogleAds\\V3\\Services\xea\x02$Google::Ads::GoogleAds::V3::Servicesb\x06proto3') , dependencies=[google_dot_ads_dot_googleads__v3_dot_proto_dot_resources_dot_campaign__criterion__simulation__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_api_dot_client__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,]) _GETCAMPAIGNCRITERIONSIMULATIONREQUEST = _descriptor.Descriptor( name='GetCampaignCriterionSimulationRequest', full_name='google.ads.googleads.v3.services.GetCampaignCriterionSimulationRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v3.services.GetCampaignCriterionSimulationRequest.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\002\372A6\n4googleads.googleapis.com/CampaignCriterionSimulation'), file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=312, serialized_end=436, ) DESCRIPTOR.message_types_by_name['GetCampaignCriterionSimulationRequest'] = _GETCAMPAIGNCRITERIONSIMULATIONREQUEST _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetCampaignCriterionSimulationRequest = _reflection.GeneratedProtocolMessageType('GetCampaignCriterionSimulationRequest', (_message.Message,), dict( DESCRIPTOR = _GETCAMPAIGNCRITERIONSIMULATIONREQUEST, __module__ = 'google.ads.googleads_v3.proto.services.campaign_criterion_simulation_service_pb2' , __doc__ = """Request message for [CampaignCriterionSimulationService.GetCampaignCriterionSimulation][google.ads.googleads.v3.services.CampaignCriterionSimulationService.GetCampaignCriterionSimulation]. Attributes: resource_name: Required. The resource name of the campaign criterion simulation to fetch. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v3.services.GetCampaignCriterionSimulationRequest) )) _sym_db.RegisterMessage(GetCampaignCriterionSimulationRequest) DESCRIPTOR._options = None _GETCAMPAIGNCRITERIONSIMULATIONREQUEST.fields_by_name['resource_name']._options = None _CAMPAIGNCRITERIONSIMULATIONSERVICE = _descriptor.ServiceDescriptor( name='CampaignCriterionSimulationService', full_name='google.ads.googleads.v3.services.CampaignCriterionSimulationService', file=DESCRIPTOR, index=0, serialized_options=_b('\312A\030googleads.googleapis.com'), serialized_start=439, serialized_end=764, methods=[ _descriptor.MethodDescriptor( name='GetCampaignCriterionSimulation', full_name='google.ads.googleads.v3.services.CampaignCriterionSimulationService.GetCampaignCriterionSimulation', index=0, containing_service=None, input_type=_GETCAMPAIGNCRITERIONSIMULATIONREQUEST, output_type=google_dot_ads_dot_googleads__v3_dot_proto_dot_resources_dot_campaign__criterion__simulation__pb2._CAMPAIGNCRITERIONSIMULATION, serialized_options=_b('\202\323\344\223\002@\022>/v3/{resource_name=customers/*/campaignCriterionSimulations/*}\332A\rresource_name'), ), ]) _sym_db.RegisterServiceDescriptor(_CAMPAIGNCRITERIONSIMULATIONSERVICE) DESCRIPTOR.services_by_name['CampaignCriterionSimulationService'] = _CAMPAIGNCRITERIONSIMULATIONSERVICE # @@protoc_insertion_point(module_scope)
56.769912
1,247
0.833983
[ "Apache-2.0" ]
BenRKarl/google-ads-python
google/ads/google_ads/v3/proto/services/campaign_criterion_simulation_service_pb2.py
6,415
Python
import numpy as np from env import Env from models import PolicyNet, Critic from utils import one_hot import torch from torch.optim import Adam import time import os from datetime import datetime import math device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') #------------------------SET PARAMETERS---------------------------- SEED = 17 BATCH_SIZE = 128 N_NODES = 11 N_DEPOT = 1 NUM_LAYERS = 1 CAPACITY = [20,15,10] MAX_DEMAND = 10 N_VEHICLES = len(CAPACITY) DIM_STATIC = 2 DIM_DYNAMIC = 1 + N_VEHICLES DIM_LOAD = N_VEHICLES DIM_EMBED = 128 MAX_EP_lEN = 16 GAMMA = 0.99 ENTROPY_REG = 0.01 MAX_GRAD_NORM = 2 DROPOUT = 0.1 EMBED_TYPE = 'conv1d' LOG_INTERVAL = 200 #----------------INITIALIZE ENVIROMENT AND POLICIES---------------- env_test = Env(seed = SEED, batch_size = BATCH_SIZE, capacity = CAPACITY, n_nodes = N_NODES, n_depot = N_DEPOT, max_demand = MAX_DEMAND, n_agents = N_VEHICLES) policy = [PolicyNet(batch_size = BATCH_SIZE, n_nodes = N_NODES, n_agents=N_VEHICLES, num_layers = NUM_LAYERS, dim_s = DIM_STATIC, dim_d = DIM_DYNAMIC, dim_embed = DIM_EMBED, n_glimpses = 0, embeding_type=EMBED_TYPE, dropout = DROPOUT).to(device) for i in range(N_VEHICLES)] #------------------LOAD TRAINDEL MODEL--------------------------- model_dir = 'weights/model_exp_1.pt' policy_name = "policy_agent_X" if os.path.isfile(model_dir): checkpoint = torch.load(model_dir,map_location=device) else: raise ValueError('No model file!') for agent_id in range(N_VEHICLES): p_name = policy_name.replace("X",str(agent_id)) policy[agent_id].load_state_dict(checkpoint[p_name]) #-----------------RUN TRAINED POLICY---------------- num_epochs = math.ceil(1000/BATCH_SIZE) total_tests = [] total_times = [] for i in range(num_epochs): start = time.time() o_t, d_t, r_t = env_test.reset(), False, 0 actions_ep = [] log_probs_ep = [] rewards_ep = [] values_ep = [] last_hh_t = [None]*N_VEHICLES for t in range(int(MAX_EP_lEN) ): actions = [] actions_one_hot = [] log_probs = [] values = [] for agent_id in range(N_VEHICLES) : model = policy[agent_id].eval() logits, prob , log_p, last_hh_t[agent_id] = model(o_t, last_hh_t[agent_id], agent_id) #--------- GREEDY POLICY ------------ act = torch.argmax(prob, dim =1) # [ batch size ] actions.append(act.detach()) ot_2, d_t, r_t = env_test.step(act.detach().unsqueeze(1), agent_id) o_t = ot_2 values.append( r_t ) r_step = torch.stack(values, dim = 1) #[batch_size, n_agents] a = torch.stack(actions, dim = 1) #[batch_size, n_agents] actions_ep.append(a) rewards_ep.append(r_step) end = time.time() rewards = torch.stack(rewards_ep, dim = 2 ).sum(dim=2).sum(dim=1) #[batch_size, n_agents, ep_len] total_tests.append(rewards) total_times.append((end-start)/BATCH_SIZE) #------------------- SAVE RESULTS ----------------------- rewards_total = torch.stack(total_tests, dim=1).reshape(-1,) np_results = rewards_total.numpy() np.save('vrp_results_RL',np_results) np_runtimes = np.array(total_times).reshape(-1,) np.save('vrp_runtimes_RL',np_runtimes)
33.018692
109
0.589301
[ "MIT" ]
jomavera/DRL_HFV
infer.py
3,533
Python
"""File Converter .nfc """ import asyncio import os import time from datetime import datetime from userbot.utils import admin_cmd, progress @borg.on(admin_cmd(pattern="nfc (.*)")) # pylint:disable=E0602 async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) reply_message = await event.get_reply_message() if reply_message is None: await event.edit("reply to a media to use the `nfc` operation.\nInspired by @FileConverterBot") return await event.edit("trying to download media file, to my local") try: start = datetime.now() c_time = time.time() downloaded_file_name = await borg.download_media( reply_message, Config.TMP_DOWNLOAD_DIRECTORY, progress_callback=lambda d, t: asyncio.get_event_loop().create_task( progress(d, t, event, c_time, "trying to download") ) ) except Exception as e: # pylint:disable=C0103,W0703 await event.edit(str(e)) else: end = datetime.now() ms = (end - start).seconds await event.edit("Downloaded to `{}` in {} seconds.".format(downloaded_file_name, ms)) new_required_file_name = "" new_required_file_caption = "" command_to_run = [] force_document = False voice_note = False supports_streaming = False if input_str == "voice": new_required_file_caption = "NLFC_" + str(round(time.time())) + ".opus" new_required_file_name = Config.TMP_DOWNLOAD_DIRECTORY + "/" + new_required_file_caption command_to_run = [ "ffmpeg", "-i", downloaded_file_name, "-map", "0:a", "-codec:a", "libopus", "-b:a", "100k", "-vbr", "on", new_required_file_name ] voice_note = True supports_streaming = True elif input_str == "mp3": new_required_file_caption = "NLFC_" + str(round(time.time())) + ".mp3" new_required_file_name = Config.TMP_DOWNLOAD_DIRECTORY + "/" + new_required_file_caption command_to_run = [ "ffmpeg", "-i", downloaded_file_name, "-vn", new_required_file_name ] voice_note = False supports_streaming = True else: await event.edit("not supported") os.remove(downloaded_file_name) return logger.info(command_to_run) # TODO: re-write create_subprocess_exec 😉 process = await asyncio.create_subprocess_exec( *command_to_run, # stdout must a pipe to be accessible as process.stdout stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) # Wait for the subprocess to finish stdout, stderr = await process.communicate() e_response = stderr.decode().strip() t_response = stdout.decode().strip() os.remove(downloaded_file_name) if os.path.exists(new_required_file_name): end_two = datetime.now() await borg.send_file( entity=event.chat_id, file=new_required_file_name, caption="`File Successfully converted by` @kannappan04", allow_cache=False, silent=True, force_document=force_document, voice_note=voice_note, supports_streaming=supports_streaming, progress_callback=lambda d, t: asyncio.get_event_loop().create_task( progress(d, t, event, c_time, "trying to upload") ) ) ms_two = (end_two - end).seconds os.remove(new_required_file_name) await event.edit(f"converted in {ms_two} seconds")
37.110092
103
0.5644
[ "MIT" ]
anandhu-dev/catuserbot
userbot/plugins/fconvert.py
4,048
Python
#!/usr/bin/env python3 import pwncat from pwncat.commands import CommandDefinition class Command(CommandDefinition): """ Exit the interactive prompt. If sessions are active, you will be prompted to confirm. This shouldn't be run from a configuration script. """ PROG = "exit" ARGS = {} LOCAL = True def run(self, manager, args): raise pwncat.manager.InteractiveExit
21.789474
70
0.683575
[ "MIT" ]
Mitul16/pwncat
pwncat/commands/exit.py
414
Python
from __future__ import absolute_import #SymPy is a non-commercial alternative to Mathematica and Maple # SymPy can map variable to a value or a matrix. # SymPy's Symbolic Statistical Modelling uses scintific computing. import sys import numpy as np import sympy as sp import pandas as pd from pathlib import Path from .tokens import * from .equation import * class Equations(Equation): def __init__(self): path = Path(__file__).parent self.filepath = path.joinpath("fixtures","equations.xlsx") self.equations_sheet = "equations" self.column_mapping_sheet = "col_var_mapping" self.data_sheet = "values" self.mappings = None self.df = None self.equations_df = pd.DataFrame() self.equations = dict() self.lhs = None self.values = dict() def upload_data_equations(self, filepath, equations_sheet, data_sheet, column_mapping_sheet=""): if not self.validate_file_inputs(filepath, equations_sheet, data_sheet): return False self.filepath = filepath self.equations_df = pd.read_excel(self.filepath, sheet_name=equations_sheet, mangle_dupe_cols=True) self.df = pd.read_excel(self.filepath, sheet_name=data_sheet, mangle_dupe_cols=True) if column_mapping_sheet: self.mappings = pd.read_excel(self.filepath, sheet_name=column_mapping_sheet, mangle_dupe_cols=True) def validate_file_inputs(self, filepath, equations_sheet, data_sheet): if not filepath or not equations_sheet or not data_sheet: raise Exception("Empty upload data inputs. Please provide valid inputs to file upload.") else: return True return False def process_equations(self): self.lhs = self.equations_df['name'] eq_list = self.equations_df['equation'] self.equations = dict() for variable, equation in zip(self.lhs, eq_list): self.equations[variable] = Equation(equation, self.df) self.equations[variable].set_symbols(self.mappings) self.values[variable] = self.equations[variable].evaluate(self.values) result_df = pd.DataFrame.from_dict(self.values) result_df.to_csv("results.csv", index=False) return self.values
41.781818
112
0.691036
[ "MIT" ]
sushmaakoju/parser
src/equation_parser/equations.py
2,298
Python
from win32com import storagecon import pythoncom, os, win32api import win32com.test.util import unittest class TestEnum(win32com.test.util.TestCase): def testit(self): fname, tmp = win32api.GetTempFileName(win32api.GetTempPath(),'stg') m=storagecon.STGM_READWRITE | storagecon.STGM_SHARE_EXCLUSIVE ## file, mode, format, attrs (always 0), IID (IStorage or IPropertySetStorage, storage options(only used with STGFMT_DOCFILE) pss=pythoncom.StgOpenStorageEx(fname, m, storagecon.STGFMT_FILE, 0 , pythoncom.IID_IPropertySetStorage) ### {"Version":2,"reserved":0,"SectorSize":512,"TemplateFile":u'somefilename'}) ## FMTID_SummaryInformation FMTID_DocSummaryInformation FMTID_UserDefinedProperties psuser=pss.Create(pythoncom.FMTID_UserDefinedProperties, pythoncom.IID_IPropertySetStorage, storagecon.PROPSETFLAG_DEFAULT, storagecon.STGM_READWRITE|storagecon.STGM_CREATE|storagecon.STGM_SHARE_EXCLUSIVE) ## its very picky about flag combinations! psuser.WriteMultiple((3,4),('hey','bubba')) psuser.WritePropertyNames((3,4),('property3','property4')) expected_summaries = [] expected_summaries.append( ('property3', 3, pythoncom.VT_BSTR)) expected_summaries.append( ('property4', 4, pythoncom.VT_BSTR)) psuser=None pssum=pss.Create(pythoncom.FMTID_SummaryInformation, pythoncom.IID_IPropertySetStorage, storagecon.PROPSETFLAG_DEFAULT, storagecon.STGM_READWRITE|storagecon.STGM_CREATE|storagecon.STGM_SHARE_EXCLUSIVE) pssum.WriteMultiple((storagecon.PIDSI_AUTHOR,storagecon.PIDSI_COMMENTS),('me', 'comment')) pssum=None pss=None ## doesn't seem to be a close or release method, and you can't even reopen it from the same process until previous object is gone pssread=pythoncom.StgOpenStorageEx(fname, storagecon.STGM_READ|storagecon.STGM_SHARE_EXCLUSIVE, storagecon.STGFMT_FILE, 0 , pythoncom.IID_IPropertySetStorage) found_summaries = [] for psstat in pssread: ps=pssread.Open(psstat[0],storagecon.STGM_READ|storagecon.STGM_SHARE_EXCLUSIVE) for p in ps: p_val = ps.ReadMultiple((p[1],))[0] if (p[1]==storagecon.PIDSI_AUTHOR and p_val=='me') or \ (p[1]==storagecon.PIDSI_COMMENTS and p_val=='comment'): pass else: self.fail("Uxexpected property %s/%s" % (p, p_val)) ps=None ## FMTID_UserDefinedProperties can't exist without FMTID_DocSummaryInformation, and isn't returned independently from Enum ## also can't be open at same time if psstat[0]==pythoncom.FMTID_DocSummaryInformation: ps=pssread.Open(pythoncom.FMTID_UserDefinedProperties,storagecon.STGM_READ|storagecon.STGM_SHARE_EXCLUSIVE) for p in ps: found_summaries.append(p) ps=None psread=None expected_summaries.sort() found_summaries.sort() self.assertEqual(expected_summaries, found_summaries) if __name__=='__main__': unittest.main()
54.935484
167
0.644745
[ "Apache-2.0" ]
Matchoc/python_env
python35/Lib/site-packages/win32com/test/testStorage.py
3,406
Python
"""A simple CLI app to practice grammatical genders of German nouns.""" import argparse import json import pathlib import pandas as pd class WordList: """Data structure to store a pandas dataframe and some structural details. Args: path (pathlib.Path or None): The path (without suffix) to a wordlist. If there is no current list at the path, will create a new list. If no path is provided the WordList will not be fully initialized and will require a subsequent call of `load` or `new`. """ def __init__(self, path=None): self.words = None self.structure = {} if path is not None: self.load(path) def load(self, path: pathlib.Path): """Load stored data.""" try: self.words = pd.read_csv(path.with_suffix(".csv")) with path.with_suffix(".json").open() as f: self.structure = json.loads(f.read()) self.words.set_index(self.structure["index"], inplace=True) except FileNotFoundError as exception: raise FileNotFoundError( "No word list found with the specified name." ) from exception def new(self, language: str = "german", score_inertia: int = 2): """Create a new wordlist. Args: language (str): The name of a language in the GENDERS dictionary. score_inertia (int): Determines how resistant scores are to change. Must be a positive integer. Higher values will require more consecutive correct answers to reduce the frequency of a specific word. """ gender_options = get_languages() try: genders = gender_options[language] except KeyError as exception: raise ValueError(f"Unknown language: {language}") from exception columns = ["Word", "Gender", "Correct", "Wrong", "Weight"] self.structure = { "language": language, "genders": genders, "aliases": self._get_aliases(genders), "default guesses": score_inertia, "index": "Word", "column count": 3, } self.words = pd.DataFrame(columns=columns) self.words.set_index(self.structure["index"], inplace=True) def save(self, path: pathlib.Path): """Saves words to a .csv file and structure to a .json.""" self.words.to_csv(path.with_suffix(".csv")) with path.with_suffix(".json").open(mode="w") as f: f.write(json.dumps(self.structure)) def format_gender(self, gender_string: str): """Attempts to find a matching gender for gender_string. Args: gender_string (str): A gender for the word list or an alias of a gender. Returns: The associated gender. Raises: ValueError: `gender_string` does not match any gender or alias. """ gender_string = gender_string.lower() if gender_string in self.structure["genders"]: return gender_string if gender_string in self.structure["aliases"]: return self.structure["aliases"][gender_string] raise ValueError(f"Unknown gender: {gender_string}") def add(self, gender: str, word: str): """Add a new word to the list. Args: gender (str): The gender of the word being added. word (str): The word to add. Raises: ValueError: `gender` does not match the current wordlist or the word is already present in the list. """ gender = self.format_gender(gender) word = word.capitalize() if gender not in self.structure["genders"]: raise ValueError( f"{gender} is not a valid gender for the current wordlist." ) if word in self.words.index: raise ValueError(f"{word} is already included.") n_genders = len(self.structure["genders"]) row = [ gender, self.structure["default guesses"], self.structure["default guesses"] * (n_genders - 1), (n_genders - 1) / n_genders, ] self.words.loc[word] = row def get_words(self, n: int, distribution: str = "weighted"): """Selects and returns a sample of words and their genders. Args: n (int): The number of results wanted. distribution (str): The sampling method to use. Either `uniform` or `weighted`. Yields: A tuple of strings in the format (word, gender). """ if distribution == "uniform": sample = self.words.sample(n=n) elif distribution == "weighted": sample = self.words.sample(n=n, weights="Weight") else: raise ValueError(f"Unknown value for distribution: {distribution}") for row in sample.iterrows(): yield row[0], row[1].Gender def update_weight(self, word, guess): """Update the weighting on a word based on the most recent guess. Args: word (str): The word to update. Should be in the index of self.words. guess (bool): Whether the guess was correct or not. """ row = self.words.loc[word] if guess: row.Correct += 1 else: row.Wrong += 1 n_genders = len(self.structure["genders"]) total = row.Correct + row.Wrong if not total % n_genders: # Throw away some data as evenly as possible to allow for change over time # Never throw away the last negative result to avoid question being lost. if row.Correct: wrongs_to_throw = min(row.Wrong - 1, n_genders - 1) row.Wrong -= wrongs_to_throw row.Correct -= n_genders - wrongs_to_throw else: row.wrong -= n_genders row.Weight = row.Wrong / (row.Correct + row.Wrong) self.words.loc[word] = row @staticmethod def _get_aliases(genders: dict): """Create a dictionary of aliases and the genders they refer to. May have issues if multiple genders have the same article or first letter. """ aliases = {} for gender, article in genders.items(): aliases[gender[0]] = gender aliases[article] = gender return aliases def force_console_input( query: str, allowable, onfail: str = "Input not recognised, please try again.\n", case_sensitive=False, ): """Get an input from the user matching some string in allowable. Args: query (str): The query to issue the user with. allowable (str or container): The options which the user is allowed to submit. If this is a string, acceptable answers will be substrings. For containers acceptable answers will be elements of the container. Returns: The correct input returned Raises: IOError: A request to quit was submitted. """ if not allowable: raise ValueError("At least one entry must be allowable.") submission = input(query) while True: if not case_sensitive: submission = submission.lower() if submission in ("quit", "exit"): raise IOError("Exit command received.") if submission in allowable: return submission submission = input(onfail) def get_languages(): """Gets the language: genders dictionary.""" with open("genders.json", "r") as f: return json.loads(f.read()) def main(): """Orchestration function for the CLI.""" args = _parse_args() path = pathlib.Path("lists", args.words) try: words = _load_words(path) except IOError: print("Exiting.") return if args.quiz_length is not None: if args.quiz_length == 0: print("Starting quiz in endless mode. Answer `quit` to end the quiz.") correct, answered = _quiz_endless(words) elif args.quiz_length > 0: print(f"Starting quiz with length {args.quiz_length}...\n") correct, answered, _ = _quiz(words, args.quiz_length) else: raise ValueError(f"Invalid quiz length: {args.quiz_length}.") print(f"\nYou successfully answered {correct} out of {answered} questions!") elif args.add_words: print("Entering word addition mode...") _add_words(words) elif args.load_words: print(f"Importing word file {args.load_words}...") added, reps = _import_words(words, args.load_words) print(f"{added} words successfully imported. {reps} duplicates skipped.") elif args.reset_scores: print("Resetting scores") words = WordList() words.new() _import_words(words, path.with_suffix(".csv")) _save_and_exit(words, path) def _parse_args(): parser = argparse.ArgumentParser( description="Flashcard app for German grammatical genders." ) mode = parser.add_mutually_exclusive_group(required=True) mode.add_argument( "-q", "--quiz", type=int, help="Start the app in quiz mode.", dest="quiz_length" ) mode.add_argument( "-a", "--add-words", action="store_true", help="Start the app in manual word addition mode.", ) mode.add_argument( "-l", "--load-words", help="Concatenates a prewritten list of words into the saved WordList.", ) mode.add_argument( "-r", "--reset-scores", action="store_true", help="Reset all scores in the specified word list.", ) parser.add_argument( "-w", "--words", default="main_list", help="The name of the WordList to use." ) return parser.parse_args() def _load_words(path): """Encapsulates the loading/newfile creation logic.""" try: words = WordList(path) print("Words successfully loaded.") except FileNotFoundError: print(f"No word list found with given name.") newfile = force_console_input( "Would you like to create a new wordlist with the specified name? Y/N: ", options=["y", "yes", "n", "no"], ) if newfile[0] == "y": words = WordList() language = force_console_input( query="Which language should be used?\n", onfail="Language not recognised, please try again or check genders.json\n", options=get_languages(), ) words.new(language=language) print(f"New WordList for language {language} successfully created.") else: raise IOError return words def _quiz(wordlist, quiz_length): """Runs a command line quiz of the specified length.""" pd.options.mode.chained_assignment = None # Suppresses SettingWithCopyWarning answered, correct = 0, 0 for word, gender in wordlist.get_words(quiz_length): guess = input(f"What is the gender of {word}? ").lower() if guess in ("quit", "exit"): break answered += 1 try: guess = wordlist.format_gender(guess) except ValueError: print("Unrecognised guess, skipping.\n") continue accurate = gender == guess wordlist.update_weight(word, accurate) if accurate: print("Correct!\n") correct += 1 else: print(f"Incorrect! The correct gender is {gender}.\n") return correct, answered, answered == quiz_length def _quiz_endless(wordlist): """Runs quizzes in batches of 20 until quit or exit is answered.""" correct, answered = 0, 0 finished = False while not finished: results = _quiz(wordlist, 20) correct += results[0] answered += results[1] finished = not results[2] return correct, answered def _add_words(wordlist): """CLI for adding words individually to the wordlist.""" print("Type a word with gender eg `m Mann` or `quit` when finished.") while True: input_str = input() if input_str in ("quit", "exit"): print("Exiting word addition mode...") break try: gender, word = input_str.split() wordlist.add(gender, word) except ValueError as e: print(e) def _import_words(wordlist, import_path): """Loads words from a csv file at import_path into `wordlist`.""" new_words = pd.read_csv(import_path) words_added = 0 repetitions = 0 for _, row in new_words.iterrows(): try: wordlist.add(row.Gender, row.Word) words_added += 1 except ValueError: repetitions += 1 return words_added, repetitions def _save_and_exit(wordlist, path): while True: try: wordlist.save(path=path) # TODO: Can WordList be made into a context manager? print("WordList successfully saved, goodbye!") break except PermissionError: print("PermissionError! File may be open in another window.") retry = force_console_input("Try again? Y/N: ", ["y", "yes", "n", "no"]) if retry[0] == "y": continue else: print("Exiting without saving changes.") if __name__ == "__main__": main()
32.370546
91
0.587981
[ "MIT" ]
n-Holmes/deutscheflash
deutscheflash.py
13,628
Python
from django.test import TestCase, override_settings from api.tests.fixtures import patch_requests from .. import client @patch_requests @override_settings( VBO_URI_TEMPLATE="http://api/bag/verblijfsobject/{landelijk_id}/") class ClientTest(TestCase): def setUp(self): self.client = client.Client() def test_get_vbo(self): vbo = self.client.get_verblijfsobject('0363010000998532') self.assertIsNotNone(vbo) self.assertEquals('0363010000998532', vbo.landelijk_id) def test_get_vbo_follow_pand_relatie(self): vbo = self.client.get_verblijfsobject('0363010000998532') panden = self.client.get_panden(vbo) self.assertIsNotNone(panden) self.assertEquals(1, len(panden)) self.assertEquals("31", panden[0].pand_status) def test_get_vbo_follow_beperking_relatie(self): vbo = self.client.get_verblijfsobject('0363010000758545') beperkingen = self.client.get_beperkingen(vbo) self.assertIsNotNone(beperkingen) self.assertEquals(1, len(beperkingen)) self.assertEquals("HS", beperkingen[0].beperking)
32.257143
70
0.719221
[ "MPL-2.0" ]
Amsterdam/zwaailicht
web/zwaailicht/api/tests/test_client.py
1,129
Python
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def oddEvenList(self, head: Optional[ListNode]) -> Optional[ListNode]: if head is None: return None odd, even = ListNode(), ListNode() oddTail, evenTail = odd, even count = 0 while head: if count % 2 == 0: evenTail.next = head evenTail = evenTail.next else: oddTail.next = head oddTail = oddTail.next head = head.next count += 1 evenTail.next = odd.next oddTail.next = None return even.next
27.103448
74
0.493639
[ "MIT" ]
MayaScarlet/leetcode-python
328-odd-even-linked-list/328-odd-even-linked-list.py
786
Python
# services/resource/project/utils/enums.py from enum import Enum class Status(Enum): normal = 0 delete = 1 other = 2 class Scope(Enum): user = 'UserScope' admin = 'AdminScope'
12.625
42
0.643564
[ "MIT" ]
spruce-cq/sblog
services/resource/project/utils/enums.py
202
Python
import os import shutil #for i in range(8050,8051): # old=str(i) + '.bin' # new="../new/"+'%06d.bin' % i # shutil.move(old,new) file1 = open('a.txt', 'r') Lines = file1.readlines() file2 = open('b.txt', 'r') Lines2 = file2.readlines() calib_DIR='./calib/' img_DIR='./image_2/' label_DIR='./label_2/' pcl_DIR='./velodyne/' # Strips the newline character for line in Lines2: line=line.rstrip() print(line) pcl_fname=line+'.bin' img_fname=line+'.png' txt_fname=line+'.txt' shutil.move(calib_DIR+txt_fname, "../testing/"+calib_DIR+txt_fname) #shutil.move(label_DIR+txt_fname, "../testing/"+label_DIR+txt_fname) #shutil.move(img_DIR+img_fname, "../testing/"+img_DIR+img_fname) #shutil.move(pcl_DIR+pcl_fname, "../testing/"+pcl_DIR+pcl_fname)
26.4
72
0.655303
[ "MIT" ]
UILXELA/Cooperative-3D-Object-Detection-Using-Shared-Raw-LIDAR-Data
useful_scripts/split.py
792
Python
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Creature() result.template = "object/mobile/shared_warren_bors_teraud.iff" result.attribute_template_id = 9 result.stfName("npc_name","warren_bors_teraud") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
26.235294
64
0.730942
[ "MIT" ]
SWGANHServices/GameServer_Legacy
data/scripts/templates/object/mobile/shared_warren_bors_teraud.py
446
Python
# # Copyright (c) 2015 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import from __future__ import print_function import os import ntpath import posixpath from commoncode import compat from commoncode import filetype from commoncode import fileutils from commoncode.testcase import FileBasedTesting from commoncode.system import on_windows """ Shared archiving test utils. """ def check_size(expected_size, location): assert expected_size == os.stat(location).st_size def check_files(test_dir, expected): """ Walk test_dir. Check that all dirs are readable. Check that all files are: * non-special, * readable, * have a posix path that ends with one of the expected tuple paths. """ result = [] locs = [] if filetype.is_file(test_dir): test_dir = fileutils.parent_directory(test_dir) test_dir_path = fileutils.as_posixpath(test_dir) for top, _, files in os.walk(test_dir): for f in files: location = os.path.join(top, f) locs.append(location) path = fileutils.as_posixpath(location) path = path.replace(test_dir_path, '').strip('/') result.append(path) assert sorted(expected) == sorted(result) for location in locs: assert filetype.is_file(location) assert not filetype.is_special(location) assert filetype.is_readable(location) def check_no_error(result): """ Check that every ExtractEvent in the `result` list has no error or warning. """ for r in result: assert not r.errors assert not r.warnings def is_posixpath(location): """ Return True if the `location` path is likely a POSIX-like path using POSIX path separators (slash or "/")or has no path separator. Return False if the `location` path is likely a Windows-like path using backslash as path separators (e.g. "\"). """ has_slashes = '/' in location has_backslashes = '\\' in location # windows paths with drive if location: drive, _ = ntpath.splitdrive(location) if drive: return False # a path is always POSIX unless it contains ONLY backslahes # which is a rough approximation (it could still be posix) is_posix = True if has_backslashes and not has_slashes: is_posix = False return is_posix def to_posix(path): """ Return a path using the posix path separator given a path that may contain posix or windows separators, converting \\ to /. NB: this path will still be valid in the windows explorer (except as a UNC or share name). It will be a valid path everywhere in Python. It will not be valid for windows command line operations. """ is_unicode = isinstance(path, compat.unicode) ntpath_sep = is_unicode and u'\\' or '\\' posixpath_sep = is_unicode and u'/' or '/' if is_posixpath(path): if on_windows: return path.replace(ntpath_sep, posixpath_sep) else: return path return path.replace(ntpath_sep, posixpath_sep) class BaseArchiveTestCase(FileBasedTesting): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') def check_get_extractors(self, test_file, expected, kinds=()): from extractcode import archive test_loc = self.get_test_loc(test_file) if kinds: extractors = archive.get_extractors(test_loc, kinds) else: extractors = archive.get_extractors(test_loc) # import typecode # ft = 'TODO' or typecode.contenttype.get_type(test_loc).filetype_file # mt = 'TODO' or typecode.contenttype.get_type(test_loc).mimetype_file fe = fileutils.file_extension(test_loc).lower() em = ', '.join(e.__module__ + '.' + e.__name__ for e in extractors) msg = ('%(expected)r == %(extractors)r for %(test_file)s\n' 'with fe:%(fe)r, em:%(em)s' % locals()) assert expected == extractors, msg def assertRaisesInstance(self, excInstance, callableObj, *args, **kwargs): """ This assertion accepts an instance instead of a class for refined exception testing. """ kwargs = kwargs or {} excClass = excInstance.__class__ try: callableObj(*args, **kwargs) except excClass as e: assert str(e).startswith(str(excInstance)) else: if hasattr(excClass, '__name__'): excName = excClass.__name__ else: excName = str(excClass) raise self.failureException('%s not raised' % excName) def check_extract(self, test_function, test_file, expected, expected_warnings=None, check_all=False): """ Run the extraction `test_function` on `test_file` checking that a map of expected paths --> size exist in the extracted target directory. Does not test the presence of all files unless `check_all` is True. """ from extractcode import archive test_file = self.get_test_loc(test_file) test_dir = self.get_temp_dir() warnings = test_function(test_file, test_dir) if expected_warnings is not None: assert expected_warnings == warnings if check_all: len_test_dir = len(test_dir) extracted = {path[len_test_dir:]: filetype.get_size(path) for path in fileutils.resource_iter(test_dir, with_dirs=False)} expected = {os.path.join(test_dir, exp_path): exp_size for exp_path, exp_size in expected.items()} assert sorted(expected.items()) == sorted(extracted.items()) else: for exp_path, exp_size in expected.items(): exp_loc = os.path.join(test_dir, exp_path) msg = '''When extracting: %(test_file)s With function: %(test_function)r Failed to find expected path: %(exp_loc)s''' assert os.path.exists(exp_loc), msg % locals() if exp_size is not None: res_size = os.stat(exp_loc).st_size msg = '''When extracting: %(test_file)s With function: %(test_function)r Failed to assert the correct size %(exp_size)d Got instead: %(res_size)d for expected path: %(exp_loc)s''' assert exp_size == res_size, msg % locals() def collect_extracted_path(self, test_dir): result = [] td = fileutils.as_posixpath(test_dir) for t, dirs, files in os.walk(test_dir): t = fileutils.as_posixpath(t) for d in dirs: nd = posixpath.join(t, d).replace(td, '') + '/' result.append(nd) for f in files: nf = posixpath.join(t, f).replace(td, '') result.append(nf) result = sorted(result) return result def assertExceptionContains(self, text, callableObj, *args, **kwargs): try: callableObj(*args, **kwargs) except Exception as e: if text not in str(e): raise self.failureException( 'Exception %(e)r raised, ' 'it should contain the text %(text)r ' 'and does not' % locals()) else: raise self.failureException( 'Exception containing %(text)r not raised' % locals())
37.927039
133
0.640715
[ "Apache-2.0", "CC0-1.0" ]
adityaviki/scancode-toolk
tests/extractcode/extractcode_assert_utils.py
8,837
Python
import os import unittest from tests.base import ( HPSS_ARCHIVE, TOP_LEVEL, ZSTASH_PATH, TestZstash, compare, print_starred, run_cmd, write_file, ) class TestUpdate(TestZstash): """ Test `zstash --update`. """ # x = on, no mark = off, b = both on and off tested # option | Update | UpdateDryRun | UpdateKeep | UpdateCache | TestZstash.add_files (used in multiple tests)| # --hpss |x|x|x|x|x| # --cache | | | |x|b| # --dry-run | |x| | | | # --keep | | |x| |b| # -v | | | | |b| def helperUpdate(self, test_name, hpss_path, zstash_path=ZSTASH_PATH): """ Test `zstash update`. """ self.hpss_path = hpss_path use_hpss = self.setupDirs(test_name) self.create(use_hpss, zstash_path) print_starred( "Running update on the newly created directory, nothing should happen" ) self.assertWorkspace() os.chdir(self.test_dir) cmd = "{}zstash update -v --hpss={}".format(zstash_path, self.hpss_path) output, err = run_cmd(cmd) os.chdir(TOP_LEVEL) self.check_strings(cmd, output + err, ["Nothing to update"], ["ERROR"]) def helperUpdateDryRun(self, test_name, hpss_path, zstash_path=ZSTASH_PATH): """ Test `zstash update --dry-run`. """ self.hpss_path = hpss_path use_hpss = self.setupDirs(test_name) self.create(use_hpss, zstash_path) print_starred("Testing update with an actual change") self.assertWorkspace() if not os.path.exists("{}/dir2".format(self.test_dir)): os.mkdir("{}/dir2".format(self.test_dir)) write_file("{}/dir2/file2.txt".format(self.test_dir), "file2 stuff") write_file("{}/dir/file1.txt".format(self.test_dir), "file1 stuff with changes") os.chdir(self.test_dir) cmd = "{}zstash update --dry-run --hpss={}".format(zstash_path, self.hpss_path) output, err = run_cmd(cmd) os.chdir(TOP_LEVEL) expected_present = [ "List of files to be updated", "dir/file1.txt", "dir2/file2.txt", ] # Make sure none of the old files or directories are moved. expected_absent = [ "ERROR", "file0", "file_empty", "empty_dir", "INFO: Creating new tar archive", ] self.check_strings(cmd, output + err, expected_present, expected_absent) def helperUpdateKeep(self, test_name, hpss_path, zstash_path=ZSTASH_PATH): """ Test `zstash update --keep`. """ self.hpss_path = hpss_path use_hpss = self.setupDirs(test_name) # Not keeping the tar from `create`. self.create(use_hpss, zstash_path) self.add_files(use_hpss, zstash_path, keep=True) files = os.listdir("{}/{}".format(self.test_dir, self.cache)) if use_hpss: expected_files = [ "index.db", "000003.tar", "000004.tar", "000001.tar", "000002.tar", ] else: expected_files = [ "index.db", "000003.tar", "000004.tar", "000000.tar", "000001.tar", "000002.tar", ] if not compare(files, expected_files): error_message = ( "The zstash cache does not contain expected files.\nIt has: {}".format( files ) ) self.stop(error_message) os.chdir(TOP_LEVEL) def helperUpdateCache(self, test_name, hpss_path, zstash_path=ZSTASH_PATH): """ Test `zstash update --cache`. """ self.hpss_path = hpss_path self.cache = "my_cache" use_hpss = self.setupDirs(test_name) self.create(use_hpss, zstash_path, cache=self.cache) self.add_files(use_hpss, zstash_path, cache=self.cache) files = os.listdir("{}/{}".format(self.test_dir, self.cache)) if use_hpss: expected_files = ["index.db"] else: expected_files = [ "index.db", "000003.tar", "000004.tar", "000000.tar", "000001.tar", "000002.tar", ] if not compare(files, expected_files): error_message = ( "The zstash cache does not contain expected files.\nIt has: {}".format( files ) ) self.stop(error_message) def testUpdate(self): self.helperUpdate("testUpdate", "none") def testUpdateHPSS(self): self.conditional_hpss_skip() self.helperUpdate("testUpdateHPSS", HPSS_ARCHIVE) def testUpdateDryRun(self): self.helperUpdateDryRun("testUpdateDryRun", "none") def testUpdateDryRunHPSS(self): self.conditional_hpss_skip() self.helperUpdateDryRun("testUpdateDryRunHPSS", HPSS_ARCHIVE) def testUpdateKeep(self): self.helperUpdateKeep("testUpdateKeep", "none") def testUpdateKeepHPSS(self): self.conditional_hpss_skip() self.helperUpdateKeep("testUpdateKeepHPSS", HPSS_ARCHIVE) def testUpdateCache(self): self.helperUpdateCache("testUpdateCache", "none") def testUpdateCacheHPSS(self): self.conditional_hpss_skip() self.helperUpdateCache("testUpdateCacheHPSS", HPSS_ARCHIVE) if __name__ == "__main__": unittest.main()
32.274286
112
0.561969
[ "BSD-3-Clause" ]
E3SM-Project/zstash
tests/test_update.py
5,648
Python
# -*- coding: utf-8 -*- """ Created on Wed May 9 14:25:47 2018 @author: Steven """ import sys import argparse from radioxenon_ml.read_in import ml_matrix_composition as mlmc from radioxenon_ml.solve import iterate import numpy as np """ import radioxenon_ml.read_in.ml_matrix_composition import radioxenon_ml.solve.iterate import radioxenon_ml.solve.variance """ """the master file for the radioxenon_ml package""" parser = argparse.ArgumentParser(description='This is the master file for running the maximum likelihood package.') parser.add_argument('-o', '--offset', type=int, default=84, help='where to start the file selection from list of test files' ) args = parser.parse_args(sys.argv[1:]) spectrum_file_location = 'radioxenon_ml/test_files/test' offset = args.offset err = 0.01 #acceptable error in normalized activity scale_array = np.array([1,1,1,1]) #Should have elements equal to the number of isotopes #scale_array = np.array([0.561,0.584,0.9,0.372,0.489,0.489,1]) #scaling factor for each simulation file #currently taken from (Czyz, 2017) n = np.shape(scale_array)[0] #number of simulated spectra simulation, experiment, totcount = mlmc.form_matrix(spectrum_file_location,scale_array,n,offset); #known issue: requires UTF-8 encoding #simulation, experiment = mlmc.scale_matrix(simulation_unscaled,experiment_unscaled,) A,J,K,q=iterate.iterate(simulation, experiment, err) print("\n_____________________________________\nTotal activity percents = " + str(A*100))
43.025641
138
0.690703
[ "MIT" ]
sczyz/radioxenon_ml
ml_rxe.py
1,678
Python
""" A class for testing a SSD model on a video file or webcam """ import cv2 import keras from keras.applications.imagenet_utils import preprocess_input from keras.backend.tensorflow_backend import set_session from keras.models import Model from keras.preprocessing import image import pickle import numpy as np from random import shuffle from scipy.misc import imread, imresize from timeit import default_timer as timer import sys sys.path.append("..") from ssd_utils import BBoxUtility class VideoTest(object): """ Class for testing a trained SSD model on a video file and show the result in a window. Class is designed so that one VideoTest object can be created for a model, and the same object can then be used on multiple videos and webcams. Arguments: class_names: A list of strings, each containing the name of a class. The first name should be that of the background class which is not used. model: An SSD model. It should already be trained for images similar to the video to test on. input_shape: The shape that the model expects for its input, as a tuple, for example (300, 300, 3) bbox_util: An instance of the BBoxUtility class in ssd_utils.py The BBoxUtility needs to be instantiated with the same number of classes as the length of class_names. """ def __init__(self, class_names, model, input_shape): self.class_names = class_names self.num_classes = len(class_names) self.model = model self.input_shape = input_shape self.bbox_util = BBoxUtility(self.num_classes) # Create unique and somewhat visually distinguishable bright # colors for the different classes. self.class_colors = [] for i in range(0, self.num_classes): # This can probably be written in a more elegant manner hue = 255*i/self.num_classes col = np.zeros((1,1,3)).astype("uint8") col[0][0][0] = hue col[0][0][1] = 128 # Saturation col[0][0][2] = 255 # Value cvcol = cv2.cvtColor(col, cv2.COLOR_HSV2BGR) col = (int(cvcol[0][0][0]), int(cvcol[0][0][1]), int(cvcol[0][0][2])) self.class_colors.append(col) def run(self, video_path = 0, start_frame = 0, conf_thresh = 0.6): """ Runs the test on a video (or webcam) # Arguments video_path: A file path to a video to be tested on. Can also be a number, in which case the webcam with the same number (i.e. 0) is used instead start_frame: The number of the first frame of the video to be processed by the network. conf_thresh: Threshold of confidence. Any boxes with lower confidence are not visualized. """ vid = cv2.VideoCapture(video_path) if not vid.isOpened(): raise IOError(("Couldn't open video file or webcam. If you're " "trying to open a webcam, make sure you video_path is an integer!")) # Compute aspect ratio of video vidw = vid.get(cv2.CAP_PROP_FRAME_WIDTH) vidh = vid.get(cv2.CAP_PROP_FRAME_HEIGHT) vidar = vidw/vidh # Skip frames until reaching start_frame if start_frame > 0: vid.set(cv2.CAP_PROP_POS_MSEC, start_frame) accum_time = 0 curr_fps = 0 fps = "FPS: ??" prev_time = timer() while True: retval, orig_image = vid.read() if not retval: print("Done!") return im_size = (self.input_shape[0], self.input_shape[1]) resized = cv2.resize(orig_image, im_size) rgb = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) # Reshape to original aspect ratio for later visualization # The resized version is used, to visualize what kind of resolution # the network has to work with. to_draw = cv2.resize(resized, (int(self.input_shape[0]*vidar), self.input_shape[1])) # Use model to predict inputs = [image.img_to_array(rgb)] tmp_inp = np.array(inputs) x = preprocess_input(tmp_inp) y = self.model.predict(x) # This line creates a new TensorFlow device every time. Is there a # way to avoid that? results = self.bbox_util.detection_out(y) if len(results) > 0 and len(results[0]) > 0: # Interpret output, only one frame is used det_label = results[0][:, 0] det_conf = results[0][:, 1] det_xmin = results[0][:, 2] det_ymin = results[0][:, 3] det_xmax = results[0][:, 4] det_ymax = results[0][:, 5] top_indices = [i for i, conf in enumerate(det_conf) if conf >= conf_thresh] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_xmin = det_xmin[top_indices] top_ymin = det_ymin[top_indices] top_xmax = det_xmax[top_indices] top_ymax = det_ymax[top_indices] for i in range(top_conf.shape[0]): xmin = int(round(top_xmin[i] * to_draw.shape[1])) ymin = int(round(top_ymin[i] * to_draw.shape[0])) xmax = int(round(top_xmax[i] * to_draw.shape[1])) ymax = int(round(top_ymax[i] * to_draw.shape[0])) # Draw the box on top of the to_draw image class_num = int(top_label_indices[i]) cv2.rectangle(to_draw, (xmin, ymin), (xmax, ymax), self.class_colors[class_num], 2) text = self.class_names[class_num] + " " + ('%.2f' % top_conf[i]) text_top = (xmin, ymin-10) text_bot = (xmin + 80, ymin + 5) text_pos = (xmin + 5, ymin) cv2.rectangle(to_draw, text_top, text_bot, self.class_colors[class_num], -1) cv2.putText(to_draw, text, text_pos, cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0,0,0), 1) # Calculate FPS # This computes FPS for everything, not just the model's execution # which may or may not be what you want curr_time = timer() exec_time = curr_time - prev_time prev_time = curr_time accum_time = accum_time + exec_time curr_fps = curr_fps + 1 if accum_time > 1: accum_time = accum_time - 1 fps = "FPS: " + str(curr_fps) curr_fps = 0 # Draw FPS in top left corner cv2.rectangle(to_draw, (0,0), (50, 17), (255,255,255), -1) cv2.putText(to_draw, fps, (3,10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0,0,0), 1) cv2.imshow("SSD result", to_draw) cv2.waitKey(10)
41.625
100
0.536362
[ "MIT" ]
hanhejia/SSD
testing_utils/videotest.py
7,659
Python
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Time stepping for Navier-Stokes equations.""" import dataclasses from typing import Callable, Sequence, TypeVar import jax from jax_cfd.base import tree_math PyTreeState = TypeVar("PyTreeState") TimeStepFn = Callable[[PyTreeState], PyTreeState] class ExplicitNavierStokesODE: """Spatially discretized version of Navier-Stokes. The equation is given by: ∂u/∂t = explicit_terms(u) 0 = incompressibility_constraint(u) """ def __init__(self, explicit_terms, pressure_projection): self.explicit_terms = explicit_terms self.pressure_projection = pressure_projection def explicit_terms(self, state): """Explicitly evaluate the ODE.""" raise NotImplementedError def pressure_projection(self, state): """Enforce the incompressibility constraint.""" raise NotImplementedError @dataclasses.dataclass class ButcherTableau: a: Sequence[Sequence[float]] b: Sequence[float] # TODO(shoyer): add c, when we support time-dependent equations. def __post_init__(self): if len(self.a) + 1 != len(self.b): raise ValueError("inconsistent Butcher tableau") def navier_stokes_rk( tableau: ButcherTableau, equation: ExplicitNavierStokesODE, time_step: float, ) -> TimeStepFn: """Create a forward Runge-Kutta time-stepper for incompressible Navier-Stokes. This function implements the reference method (equations 16-21), rather than the fast projection method, from: "Fast-Projection Methods for the Incompressible Navier–Stokes Equations" Fluids 2020, 5, 222; doi:10.3390/fluids5040222 Args: tableau: Butcher tableau. equation: equation to use. time_step: overall time-step size. Returns: Function that advances one time-step forward. """ # pylint: disable=invalid-name dt = time_step F = tree_math.pytree_to_vector_fun(equation.explicit_terms) P = tree_math.pytree_to_vector_fun(equation.pressure_projection) a = tableau.a b = tableau.b num_steps = len(b) @tree_math.vector_to_pytree_fun def step_fn(u0): u = [None] * num_steps k = [None] * num_steps u[0] = u0 k[0] = F(u0) for i in range(1, num_steps): u_star = u0 + dt * sum(a[i-1][j] * k[j] for j in range(i) if a[i-1][j]) u[i] = P(u_star) k[i] = F(u[i]) u_star = u0 + dt * sum(b[j] * k[j] for j in range(num_steps) if b[j]) u_final = P(u_star) return u_final return step_fn def forward_euler( equation: ExplicitNavierStokesODE, time_step: float, ) -> TimeStepFn: return jax.named_call( navier_stokes_rk( ButcherTableau(a=[], b=[1]), equation, time_step), name="forward_euler", ) def midpoint_rk2( equation: ExplicitNavierStokesODE, time_step: float, ) -> TimeStepFn: return jax.named_call( navier_stokes_rk( ButcherTableau(a=[[1/2]], b=[0, 1]), equation=equation, time_step=time_step, ), name="midpoint_rk2", ) def heun_rk2( equation: ExplicitNavierStokesODE, time_step: float, ) -> TimeStepFn: return jax.named_call( navier_stokes_rk( ButcherTableau(a=[[1]], b=[1/2, 1/2]), equation=equation, time_step=time_step, ), name="heun_rk2", ) def classic_rk4( equation: ExplicitNavierStokesODE, time_step: float, ) -> TimeStepFn: return jax.named_call( navier_stokes_rk( ButcherTableau(a=[[1/2], [0, 1/2], [0, 0, 1]], b=[1/6, 1/3, 1/3, 1/6]), equation=equation, time_step=time_step, ), name="classic_rk4", )
26.194969
80
0.677791
[ "Apache-2.0" ]
google/jax-cfd
jax_cfd/base/time_stepping.py
4,171
Python
import base64 import numpy as np import cv2 path_save = "./images/" def base64_cv2(base64_str): imgString = base64.b64decode(base64_str) nparr = np.fromstring(imgString,np.uint8) image = cv2.imdecode(nparr,cv2.IMREAD_COLOR) a = cv2.imwrite(path_save + "img_face_1" + ".jpg", image) print(a) return image if __name__ == '__main__': s = "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCACBAIEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDw6HTNKtNTXUtXvLqGIHe1zfYzLnkYB5OfTjmtyx8cWNvZPJpmhtZ2xP7y8ucebn2U9P1qm0nhK4tZz4Zs572WVtsmoXXzJIxP3lB4B+nFdX4R+C+peJZLbUdfgklWFQRZRnt/ePqa8GpWjA+qo0ZTRH4H0GdrWfxLdSHyJyzvO8mfO/8A1dq8u+MfiWLX9Qj0fSWKxC3fzZlAzFECOOnVm217v8XLuHwv4PuIn0vyLa1G20jQYAJGMn8a+YNe1KbQNCvNXvYdt1cTJHZK3LzysSQq/THSs8PVUpOQ61OUUoFDQ/B9x4m8W2nhkIy2VjAdQ1+YnKwRrggZ6c+lee/tAX0Gr+IrrXYoCjXcix6ZagdIUyi5Hocbvxr3/wAQafL8J/hpb+G711t9c8Qw/wBoa9dSf8srWP5jH7buAR3rwvwN4D8TfHX4pwadpVjOZb2cpZqW+SGEnl2/D7vpXRSrpxdSWyM3QfOqS3Z237C37Jc/xu8cQx31o7aHpbJPf6gv3bifcCI/p2r9U9F8Aad4c0C30/SbNYEiQJ5X/PMAYH51zH7K37O/hz4F/Dy20TTLICUQr57seWb1PrXpGoXUUoaJxsZRwB396+Zx2Iq1qj7I97B4dUY8p4p+0NooPgTVIXQF3t3KH3CmvyC+JfhKWxb7Ax/e3WquxPYfNzX7KfGeNLrRbu3uFBT7LIRn/dNfkV8YtRtYfFlpZ53ZuJ3BPs5FevkD92ovM8zOoyj7N90ed+KvDxsryyhVtyyWUi89zuNcv4j0ww/E29s1LD5I3VQexTFeh61FFNc6MZUDMzSoFI7A5rnPFmleV8W/tjx7hc6dA4A+hFfQnhJJnJ+JbKf+01nK5WWzU5I6gHBrN8SWDXNjd6LMnzLCHQ9xxmuw8WWJSzgkULvjhaF19MtkVheKS0V1Hc7BuuVVG+gGKlP3zOokloef2Ci805LUuGeTdEd394d6+9P+CM15qD2XiHTRcubNrwTMjciN9oGB6dK+DZLdLHU5oYRtG7zIsfw89q+8v+CIWrW0njXxp4NnjzHcwR3tuMfdIA3AVRz1G0tD9EfOt/8An4k/Kit37Hpv/PiP++aKDDnl3OE/Z+/Zrm1zUI9Y1CIw2OStlAwznvuAHHOf0r6XT4P6R4S0O20jR9Ljk1C9cxRIo/1aYy7N9K6n9nfwZDH4RsNSlgEEMdqBc38i/LbpjkKPXGOfeuJ/bb+O+nfBrwJqVr4BBHinV7IxpxuOnWB+US57PJ1x6CvkKq+s1eTufd0ZuhRcz43/AGy/G/hi98dH4WeH/JudL0APLq1+r5E9xnI59BXkPwO+H1t8XfiFc/F3xZ+78PaHC8lt5v3YypB3DPckAfiaxdfsLrxbrFl4C0GOaIXtyJ9Zu2yZZsn7pr1X9oPxbYfAj4UWnwZ8MWUQ1XVQk94qdYox9xcehBzz3UV3yXKo4ePQ44yTTrT3ex4r+0j4pPijxa/h2yvTL9quRc6lKHwAoOLexT/dzlvrX2J/wTh/ZIj0fSX8ceIdMQXEifugBwOSOOOnFfHXwg+FHjD4gfE3To38O3F+iyfa289cb5c/NI2OnoB7V933fx9+Onwt8KQWGjeHLa2toYAkKR2hYnHqcVlia8IuNNK6R1YOjUcXNrVn1FFpljYW/wBhWEcIBwRxXMeLrSO3U3cCHBGNwFfFup/8FGf2hvD17IbzwdZXJXOPMt2Qn8hUFl/wVT17ULxYvGnwtNrF0aSzkL/iVrx6ictj0KUorRn0J8SNl9atBIoMUvyvuHVcf44r8U/j/quoWXxPlsbmNlfTNWubYgevng/y5r9WLT9pLwZ8TbA3vhy9BddshhYncgzzkHpX5u/8FF/htJ4N+NN3r+jKBaeJP9MhkboJFxuH19q9HKJKlNw7nFm1Pnw0J9UeWXXjCRSl6E/eWkjCJ89eGH+FUbnxjNqPiEeJLuUZjt1hhB/iORWNdXsN6BJbSg2jjO7vuNU72CC6vLe0SYBBIuBnvnvX0zaex8vFqSujt/EV5bapK6Iyfwnn3FcN4tu3knAcAGBtq4NbVtdRDfACHcTYyD2Fc/rlvLPqMq/KuZAQCe1YwbdZp7FyjFw1OfvLVpHFyR3xmvqT/gkR47/4Qj9q+x0kSEQaxZvbybjwG5I/PFfNGq2zxWRYEDY+SPWu5/ZI8Uv4X+P/AIa1uG4MQi1eFHYHnlx/jXU5ROCqmkfvp/Ys3980Vj/8LDk/57R/nRUXRyn0d4n+MWjeAvBkelaLZC6mtIlje2EYxcTfwRL65J546V8D/t9/GJvAKX3h7xXfW+peIJ5k1HxFPBgpJKR/o9mh9I+4Hevp2fxjoXwk8Ca3+1D8RoilxpQaPwlpkq5HmuoC3Ei/xEZ4BzjFfnz8O/h54i/ba/aEvtf8W6yttoOk3bX+sapLzCGySS2O1fLULcntOvQ+8lCUvc6dTT/Z50SfwZ4Yu/jx8RwUaMNNLLOPuswyqrnqf9kc0fB74XeJP2o/iJqnxk8Z2rjTrGTF5PO33mYhoLJP+mmAWb0AArpviqn/AAv34g2HwU+HNwLLw7osoFu0owrqrDN3N6MB9xT175r6R8F+EtF8JeEtO8BfDfSJJdJ0ouUkEf7y8mb79xJ6u3OD6dMVNbEzhG32n+Hka0cJGrNS+zHT1Nf4B+AvBnwysm1/WNCt4BNzcSSsAEP9wZ546YFaHxn+MHgyy8Pvdy6AVseSst2sdujD/ZMhBI9wK5nxjB+0B4jgOi/CbwjYQywAeRd6x8wVsH+E9TXwN+354F8V+CvF8Fh8YbXWvG2r+IfD0pi8QXepvb2+j3IXBhjhX5eCMjPWs8Bg5Y58kpWNsfjvqUeaMb+h7t4z/aE+DU2p7bizMKbTiWIJNHt9Tisybwz8K/GTQ6xp4t50kH+vhTaEz6rX58fsV/CDxb8QvGV5bavqWorpNlp7Jc3QuG+SXnbg5wa+mPhPqPiD4TfENvAur6mt7buf9Afd80691PPWqx2WLCO6lexyYHMp4puMoWPoXw98ARab9T8N6hiN/lj8w/OCf6VzH7Qv7GF58cPAF14U1HV1h1JAbjTLw52284HGf9k9MDvXrnwHu7/xVeNZWcTOY/vKx5TngfhzXtWvfDhtP0ea4nQrlAWwMjgV51CtJS5l0PTq0YVI8k9mfgN8XPgt8Y/gv4rm8JeOPCF3bzpISRHCXjmGc+YhHYjnHWuJvItZt5ftMNtcb1ORHJCymv18/aa1bQxqIh1iytrp4AVWWaIZiGevTmvmrxDovhjxXctHY6HbSz7iHKwKNo9cmvo6WbVHTXMtT53EZXCFS0HofDen+JNTt3802J3hssHyKq6prt5JqQup0kjVyD8wOCfQV9d6t4D+Bnhm/KeItR0+O66yISDj6YNc74t8A/Bjx3Y/ZrW/tgUciJYG2t9cYrphi5SfM4s5Z4F7KaPm+9vUvbKSQxOmCq4fvnvW18CGt7X4l6NfXbDaNXj+Vumd4A/UCtD4rfDjTPAUjT2uoyyQcYEwGR6fWqf7P2jy+Kfizo2nQpJ5EmqR9B0O7P8AOu2nL2kOZHm16TirH7S/25P/AM9LX8z/AI0Vm/8ACubn/npN+dFXys845z/gov8AtIX3xR8R3PwY8K6z5WkaFctHe3aLvE9y3/LNQPvBRtHHQg1wOjfFHVfA3w1tP2ePgho7y63ft5mop5JZp3cceaw6qD/D2q/4N/ZL+Mmp+GdHTwP4burrWfETPMLu5TP2dGOTO2eSWJYj2xX6Rf8ABOr/AIJJeFvgnpUfxC+J8banr9zGHuJ5k3E5GcDPTmvloVIRp8tPWR93LmT5qukevdo8J/Y4/wCCdfjTS9L/AOEp8Xxub7UcT6tPKSfOkPUJxyo7V9V2fwI0rwTZRW9pbOFhUbAVOa+p/wDhF9D0KwWxsNLjSKNcRjZjiuL8Z2VlPC7GFQT90YqJ4eUIuc3q9TrpYv2tlBWj0PBj4b02zuWR0IOMjjj8a8L/AGpfgF8OfidF53ieCJzEjFRNEHQHHavpDxbpcULyjeR3yteU+O2sr6N7aZMhUO4kda4VWnTm3FndCgqj1jdH55+Iv2frHwU02m+C7u0sLFZGfyrKAoW471wGk/s36dqnjm21yy1K/wDttrcrIsnmsUbnkYNfcPiH4faNqt3lLQD229a2fAfwI0KLVIpEsIyxOWIXin9Zry0buOeBo025R0Iv2NfgTeabdzeILqzbZdy8Bv7uOP619AfErwCkXhK4hSABhCRz9K7T4MfD2DTtHitYbNQFbsK674i+As+FZ5DBngj3+7W9HC/u23ocNSq1VSR+GP7b817pfxEm0meYEtOwAz/DzXzP8VvHvjTwro9ho3hfwzc3j6nOs+qtbQkMbVWGYgy9Cf5V9lf8FNfAFxoXxKGqBQoLMcEV8/8AgbW7mwnjEZQvjYu4ZGOta4acYNSavY5MXTlO6Ttc+PI/Ds/i/wCOBsNBtbu3s7vUy5tZXZvIjzna2fxr2n4/fDXwh4Os7LUPCTpBqaoqboJMbm9frXvmufDvwj4keTWbzQlhvjgtc2qKhPryBzXnnif4U6CL77UWuJPLcNH9ok3EV7M81o1I8qVmebHLpUVzuTZ4H8fEvv8AhDrO58QSO12IYU+Ycsc/rXr3/BNr4EJ49+LnhS2hR3vJtclupXhOUit7dASGHbnP5V57+1rpix6PosgDYk1EALjl+SFXH9K/RT/git+zbceEfh/ffG7xTY7L7VXaysIiMCFIxhmAPQsSc16GB5alDU8rGy5JcqPsD/hDbT/ngf8Avmiu1/sFPUUV3eyXc8o+jv2UPg3oqCXxXdaYiK7NDZJtBEMEZ2Io/AZ7da+jpPKtLBI4FHyrgDAFcv8ADbw7BoGhQacLUR+Uu1wON3PWuivJUERxnr0r5bC4eNCF1ufU4+s8TiVfZGFrd2Xg2s+MjGa878cXBHyqeF4yO9dxrUkZtSxHO7GPSuM122WfLMuQTXPipSuz1MHGNjyPxzd5eXII4rx7xjZz3LkwuVBbOQOo9K9t8d6aHmkKxkjpwK848SaLgALGRg9DXlODbufQ4erZJHmK20Vtc7nAJB6kV6N8ILW0mvzLKUK7h1riNf0mSNmmC8YOOe9bn7PE91q/xBtdBnzsdwWUHrTpJe0RWJ1gz7B+Gmh2M9jCygKD0xXReONJs30NoWX5QGH14pnhLwxf6bAj2jlUQD5CvWnfFLVYLLw4zi5jVgpyA2STXvJL6ufJ1K3Nikon5H/8FgfhpG+lrr1na4aNiC47ivz00nbbXiLEQxVgeDzn0r9Vf+Cm8llq/wAPriKXGRGSmeufTFfljotkJNaljVfuuSR75ryI7tHqVEuZHpmhSLqdqscp2/KOlUfF3hu0W2ZwvzY64q34Zj+zOok6ECpfGt5CbJxCx3BeFAqrIppKBh/s8/stWP7Q/wAc9A1LxJZiXw/4TvXvr+KVciWVAWVT7Gv0n/Zn0K2tvh+rW9rHbxzapcSwxRxbVRGc4AH4V84/sVeF5PCPwP1fxpexlJtYdjAzLjgDYpHtmvrz4SaMdK8GaZYOwJjtQz5GCCx3Y/Wvq8BBqij4fH1E8Q7nT/ZE9R+VFXvs8P8Ac/WivWPNPuq12BMDAOag1i1nu7B4LWcRyMflYCltX2yMH4OKkklTZuzwK+Xd7HvvdHM+IPLCYXHPXFcvqvlG2YN1zxjrXVeIYfLjMgA4HFcjqU29SpUDnrmuCqnfU93DPQ5DxZpccg3RHAzzXmvi+wdZTtQkAHkCvUte3SExoM8Vy2taRCsLSTclhnbXLUWmh6dOo4s8Y1jRbq8BgEf04xmui+FXgK88Gazb+MLO3CzxPn5jkEeldBZaPa3moFTECoPGa6E2JtljWDhV5xjioo07aoJYhtWaKfx0/az/AGhtE0GOL4LfCOLV7rbtxe6gIIj68is3Qfjrq3iz4YS698TNIXR9UsI8alp0d35qrIemG7ir2qXiW1q864LA/vF3cEZ7DtXx1+0v8W9e1XxpqnhLw34gezjitpGdbVgQSB/FjqaVWpVg9WOFOi43UEvM4/8Abq+Lg8VtLp1rMgjddqNMcBh6818VWOk21l4luIoZInJOWKHI/Csz4j/8Jf4r8es/iTxdqV0sLnyYnuWVQc+n9K2fD2k/ZWEoQZwMsWyTTpwcVfuctSsnW0OjsowrRlG4XPekTRbzxb4os/DWnxM0tzMquPRMjJ/KkhlECEsPvE5PoK9K/Zo8ORw6rc+LtYtt8u39wX/gA7iurDUnOumZY7E+ywzfU+gtH0S10/RvDXwu0wKIWmRHSMjiFBzwPcZr6N8KRwFEZY8ZUADHHHFeA/CC6HiHxNceKWRTFDEILE47d2H1r6B8Jgi3QmvsKCskfATk5TbZ0eI/RaKbsb0orqIuj7G1DVI7S4eRyQD0UdqdbanDd2oaOXJIzj0rnfF+ri3EjlgAK4q1+JEmh3xeebdAT857r9K+DeKaqWlsfdxwMZUYyPQ/ENyDbkt0A5FclNEkuZNhxnjmrcni+x1a3TyZVk3c5XoPas+6vYI3KRvwR0qpVFNGtOk4mRq23cWYDg4ArmfFMqRwM/onSug124hC7gT69a43xXqkLWpTBLbDnBrHY7VscrN438OeGZXOpakqFeRIeF/M1yXxC/bp/Z0+FsCweIPiPYXN4w/48bWZXf6cHr7V43+0f+ydrf7THiC3027+IGpaRZ2kxbZY3DL5oHO0kHv0rzDV/wDgkJ+yrpmrt4hvZLxddQCSK5mvZGDsB1OWxRRtUi3LQ9HAZdTx7XO9e3c9q1X/AIKHw+PLC+g+G3gRJEjQp5l2ArAHvj8K+XPjb8Vv+EJ1hdYufD1rLq2sW0hZoTwi45JHr+Nc98Tvg5qPw2kn1HwP8TLqGZJirJIuQwA6DA6fWvmn47aB+0VqmjjVLb4kRwSO5ZblYyWVQfu4OQKqOGhUloz3quXPAUGvY9N9zZ1HWZdV1qPUxCXW4LFgo5j+talrK/mhI2+XHJzXlvwy+JXi+98Uad4L8T6PHczTDEuoxHaHxwTjtmvZ9Q0a0snWW1RmMgwsacnNOcXF2Pi6kYczaViTw7p134h1e10eAjM8gDFj0x1r2rwzpcOlzRaXDfnYjBZAh6+ozXI+CPAMvhzSBrN6P39yd6BhzHxW3ocgstRi+Y5L5OT1r2cHh3TpczWrPlswxvtans09j6b+FS2lpaxQ28aJGMYRRXtHgyUNECW4J4HpXz/8LNVSSKHc3XFe5eDbxRbja3Oa9qhsjw60W5HdbR/fFFUPtx9VorqMuVn0R8QtY3xSor9GzxXkPizxGVLujEBR0Brr/GniASpKofndnGO1ePeNNbmM0pUjHTOa/KcROXNc/WcPCLjY3NI+K+reFtstmnn2zNmWFm5A9vSu/wDD/wASdD8UwLPpl6rttzLGZDuSvnWXXFUKZG474qsniXUdHl/tfw7ceVOh4V2wGHXB/KnSxU0+WxFSgrcyPpi+vPte4hsqvA+bNctrdu9y+1W4Jwea5X4e/H/w/wCJZ10fWHGnaiqjzopW/dy/TNdjcXVvJKoUhi3IwMcdq6lU5nucyb7HEX2nSWd87QPs2gsNvrXmHxlv9YktDJYzlZ1Q4VYwQ31r2rVNNt5pXkfGADmvK/iJb2SR3BVRtweamTai7HTTk4SXI7Hxl8W9C8W+I9QkOpyoDj/Vqh5H4dK8c8e+CtQi037I88IhXqIY8sPzr6o8fW9qb2Rggx7V8+fFbVrfSri4SNcEDc5I4A6dacJ1OWy3O2rmmNUOXndrdTyjSPB+laHdtqsEZEnH7x1G4j+lfRf7OP7OeseLrQfEPxdA0Ol2z77GKQbftj/3h6KPT2qx+yJ+x9q3xguoPiZ8QtOa38MwTbraBn2vqEinOCDyIx9Oa+wdb0qwg0MaVp9ikMFuoS3hiHCKBivqMry6pKCq1lqj4PN80bg4U3fuz5c8e6SILySBEUKjYAQYUewriZIfJ1ILjo/Few/EbQzvmBj/AI68t1+z+yzllXgda9Sorux85CTWp6f8IdVCmKJjnaQOa+hfAt8kkargYr5R+E+sFLyNN3fivpH4eX5NvGCw61tR0Lk+bU9K+0+9FVftY9TRXUZnrPi//WS/7v8AjXkXjHo/+/RRX5NXP1nDdTjLn7g+lQn/AFK/9dBRRWcSp/w2cj4t/wCRjtv+uy/zr6T8H/8AIBtv+uIooropfEccfhLlz/yD5v8Ark38jXlPjv8A48ZfoaKK3l8JcPiR87fEv/j4P+61fN/xY/15/wCvhP8A0IUUVvg/40fUxxn8KXofo58J/wDkifhX/sGxf+ihTtQ+5J9KKK/SqX8JH5vX+16niPxM/wCPif8A368e8Wffk+lFFefU+NmS2RP8Mf8AkKR/71fSnw5/49ovrRRWlE06HotFFFdJB//Z" base64_cv2(s)
438.5
9,266
0.94589
[ "Apache-2.0" ]
Cambio-Project/trainticket-fork
ts-avatar-service/base64toimage.py
9,647
Python
# Copyright (c) 2015 Huawei Technologies Co., Ltd. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import importutils from cinder import exception from cinder.i18n import _ from cinder.i18n import _LE from cinder.i18n import _LI from cinder.volume import configuration as config from cinder.zonemanager import utils as fczm_utils LOG = logging.getLogger(__name__) controller_list = ['A', 'B', 'C', 'D'] zone_manager_opts = [ cfg.StrOpt('zone_driver', default='cinder.zonemanager.drivers.brocade.brcd_fc_zone_driver' '.BrcdFCZoneDriver', help='FC Zone Driver responsible for zone management') ] class FCZoneHelper(object): """FC zone helper for Huawei driver.""" def __init__(self, zm, client): self.zm = zm self.client = client def _check_fc_port_and_init(self, wwns, hostid, fabric_map, nsinfos): """Check FC port on array and wwn on host is connected to switch. If no FC port on array is connected to switch or no ini on host is connected to switch, raise a error. """ if not fabric_map: msg = _('No FC port on array is connected to switch.') LOG.error(msg) raise exception.CinderException(msg) no_wwn_connected_to_switch = True for wwn in wwns: formatted_initiator = fczm_utils.get_formatted_wwn(wwn) for fabric in fabric_map: nsinfo = nsinfos[fabric] if formatted_initiator in nsinfo: no_wwn_connected_to_switch = False self.client.ensure_fc_initiator_added(wwn, hostid) break if no_wwn_connected_to_switch: msg = _('No wwn on host is connected to switch.') LOG.error(msg) raise exception.CinderException(msg) def build_ini_tgt_map(self, wwns, host_id, port_list, is_add): fabric_map = self.zm.get_san_context(port_list) nsinfos = {} cfgmap_from_fabrics = {} for fabric in fabric_map: nsinfos[fabric] = self._get_nameserver_info(fabric) cfgmap_from_fabric = self._get_active_zone_set(fabric) cfgmap_from_fabrics[fabric] = cfgmap_from_fabric self._check_fc_port_and_init(wwns, host_id, fabric_map, nsinfos) return self._build_ini_tgt_map(wwns, is_add, nsinfos, cfgmap_from_fabrics) def _build_ini_tgt_map(self, wwns, need_add_con, nsinfos, cfgmap_from_fabrics): tgt_port_wwns = [] init_targ_map_total = {} fabric_maps = {} for contr in controller_list: port_list_from_contr = self.client.get_fc_ports_from_contr(contr) if port_list_from_contr: fabric_map = self.zm.get_san_context(port_list_from_contr) fabric_maps[contr] = fabric_map for wwn in wwns: init_targ_map = {} tmp_port_list = [] tgt_port_for_map = [] tmp_flag = False need_new_zone = False for contr in fabric_maps: (fc_port_for_zone, tmp_flag) = \ self._get_one_fc_port_for_zone(wwn, contr, nsinfos, cfgmap_from_fabrics, fabric_maps) if tmp_flag: need_new_zone = True if fc_port_for_zone: tgt_port_wwns.append(fc_port_for_zone) if not tmp_flag: tgt_port_for_map.append(fc_port_for_zone) if tmp_flag: tmp_port_list.append(fc_port_for_zone) init_targ_map[wwn] = tmp_port_list LOG.debug("tmp_port_list: %s" % tmp_port_list) init_targ_map_total[wwn] = tgt_port_for_map if need_new_zone and need_add_con: LOG.debug("Got init_targ_map to create zone: %s" % init_targ_map) self.zm.add_connection(init_targ_map) tgt_port_wwns = list(set(tgt_port_wwns)) return (tgt_port_wwns, init_targ_map_total) def _get_fabric_vendor(self): zone_config = config.Configuration(zone_manager_opts, 'fc-zone-manager') fabric_driver = zone_config.zone_driver LOG.debug('Using fabric driver: %s' % fabric_driver) driver_vendor = None try: driver_vendor = fabric_driver.split('.')[3] except Exception: msg = _('Get fabric driver vendor error.') LOG.exception(msg) raise exception.VolumeBackendAPIException(data=msg) return driver_vendor def _get_nameserver_info(self, fabric): driver_vendor = self._get_fabric_vendor() if driver_vendor == 'brocade': nsinfo = self._get_brcd_nsinfo(fabric) elif driver_vendor == 'cisco': nsinfo = self._get_cisco_nsinfo(fabric) else: msg = ('Unsupported fabric, vendor name: %s.' % driver_vendor) LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) return nsinfo def _get_cisco_config(self, fabric): fabric_ip = self.zm.driver.fabric_configs[fabric].safe_get( 'cisco_fc_fabric_address') fabric_user = self.zm.driver.fabric_configs[fabric].safe_get( 'cisco_fc_fabric_user') fabric_pwd = self.zm.driver.fabric_configs[fabric].safe_get( 'cisco_fc_fabric_password') fabric_port = self.zm.driver.fabric_configs[fabric].safe_get( 'cisco_fc_fabric_port') zoning_vsan = self.zm.driver.fabric_configs[fabric].safe_get( 'cisco_zoning_vsan') return (fabric_ip, fabric_user, fabric_pwd, fabric_port, zoning_vsan) def _get_brcd_nsinfo(self, fabric): conn = self.zm.driver._get_cli_client(fabric) try: nsinfo = conn.get_nameserver_info() LOG.debug("name server info from fabric: %s", nsinfo) conn.cleanup() except exception.BrocadeZoningCliException: if not conn.is_supported_firmware(): msg = _("Unsupported firmware on switch %s. Make sure " "switch is running firmware v6.4 or higher." ) % conn.switch_ip LOG.error(msg) raise exception.FCZoneDriverException(msg) with excutils.save_and_reraise_exception(): LOG.exception(_LE("Error getting name server info.")) except Exception: msg = _("Failed to get name server info.") LOG.exception(msg) raise exception.FCZoneDriverException(msg) return nsinfo def _get_cisco_nsinfo(self, fabric): (fabric_ip, fabric_user, fabric_pwd, fabric_port, zoning_vsan) = ( self._get_cisco_config(fabric)) try: conn = importutils.import_object( self.zm.driver.configuration.cisco_sb_connector, ipaddress=fabric_ip, username=fabric_user, password=fabric_pwd, port=fabric_port, vsan=zoning_vsan) nsinfo = conn.get_nameserver_info() LOG.debug("name server info from fabric: %s", nsinfo) conn.cleanup() except exception.CiscoZoningCliException: with excutils.save_and_reraise_exception(): LOG.exception(_LE("Error getting show fcns database " "info.")) except Exception: msg = ("Failed to get show fcns database info.") LOG.exception(msg) raise exception.FCZoneDriverException(msg) return nsinfo def _get_one_fc_port_for_zone(self, initiator, contr, nsinfos, cfgmap_from_fabrics, fabric_maps): """Get on FC port per one controller. task flow: 1. Get all the FC port from the array. 2. Filter out ports belonged to the specific controller and the status is connected. 3. Filter out ports connected to the fabric configured in cinder.conf. 4. Get active zones set from switch. 5. Find a port according to three cases. """ LOG.info(_LI("Get in function _get_one_fc_port_for_zone. " "Initiator: %s"), initiator) formatted_initiator = fczm_utils.get_formatted_wwn(initiator) fabric_map = fabric_maps[contr] if not fabric_map: return (None, False) port_zone_number_map = {} for fabric in fabric_map: LOG.info(_LI("Dealing with fabric: %s"), fabric) nsinfo = nsinfos[fabric] if formatted_initiator not in nsinfo: continue final_port_list_per_fabric = fabric_map[fabric] cfgmap_from_fabric = cfgmap_from_fabrics[fabric] zones_members = cfgmap_from_fabric['zones'].values() for port in final_port_list_per_fabric: port_zone_number_map[port] = 0 formatted_port = fczm_utils.get_formatted_wwn(port) for zones_member in zones_members: if formatted_port in zones_member: # For the second case use. if formatted_initiator in zones_member: # First case: found a port in the same # zone with the given initiator. return (port, False) # For the third case use. port_zone_number_map[port] += 1 if port_zone_number_map == {}: return (None, False) temp_list = [] temp_list = sorted(port_zone_number_map.items(), key=lambda d: d[1]) # Third case: find a port referenced in fewest zone. return (temp_list[0][0], True) def _get_active_zone_set(self, fabric): driver_vendor = self._get_fabric_vendor() if driver_vendor == 'brocade': conn = self.zm.driver._get_cli_client(fabric) cfgmap_from_fabric = self.zm.driver._get_active_zone_set(conn) conn.cleanup() elif driver_vendor == 'cisco': (fabric_ip, fabric_user, fabric_pwd, fabric_port, zoning_vsan) = ( self._get_cisco_config(fabric)) cfgmap_from_fabric = self.zm.driver.get_active_zone_set( fabric_ip, fabric_user, fabric_pwd, fabric_port, zoning_vsan) else: msg = ('Unsupported fabric, vendor name: %s.' % driver_vendor) LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) return cfgmap_from_fabric
41.274021
79
0.604846
[ "Apache-2.0" ]
Huawei/OpenStack_Driver
Cinder/Mitaka/extend/fc_zone_helper.py
11,598
Python
# This code is licensed under the MIT License (see LICENSE file for details) import concurrent.futures as futures import contextlib import inspect import json import logging import pathlib import platform import sys import time from zplib import datafile from zplib.image import threaded_io from elegant import load_data from ..util import log_util from ..util import timer class DummyIO: def __init__(self, logger): self.logger = logger def write(self, *args, **kws): self.logger.warning('Trying to write files, but file writing was disabled!') def wait(self): return class TimepointHandler: IMAGE_COMPRESSION = threaded_io.COMPRESSION.DEFAULT LOG_LEVEL = logging.INFO IO_THREADS = 4 MAX_IO_JOBS = 256 # max pending image writes before the threaded IO will block. def __init__(self, data_dir, log_level=None, scope_host='127.0.0.1', dry_run=False): """Setup the basic code to take a single timepoint from a timecourse experiment. Parameters: data_dir: directory where the data and metadata-files should be read/written. io_threads: number of threads to use to save image data out. loglevel: level from logging library at which to log information to the logfile in data_dir. (Subclasses can log information with self.logger) If not specified, fall back to the class attribute LOG_LEVEL. This allows a subclass to set a default log level, which still can be over-ridden from the command line. scope_host: IP address to connect to the scope server. If None, run without a scope server. dry_run: if True, do not write any files (including log files; log entries will be printed to the console). """ self.data_dir = pathlib.Path(data_dir).resolve() # get an absolute path self.experiment_metadata_path = self.data_dir / 'experiment_metadata.json' with self.experiment_metadata_path.open('r') as f: self.experiment_metadata = json.load(f) self.experiment_metadata['node'] = platform.node() self.positions = self.experiment_metadata['positions'] # dict mapping names to (x,y,z) stage positions self.skip_positions = set() annotations = load_data.read_annotations(self.data_dir) for position in self.positions.keys(): if position in annotations: position_annotations, timepoint_annotations = annotations[position] if position_annotations.get('exclude'): self.skip_positions.add(position) else: for annotation in timepoint_annotations.values(): if annotation.get('stage') == 'dead': self.skip_positions.add(position) break if scope_host is not None: from .. import scope_client self.scope = scope_client.ScopeClient(scope_host) if hasattr(self.scope, 'camera'): self.scope.camera.return_to_default_state() else: self.scope = None self.write_files = not dry_run self.logger = log_util.get_logger(str(data_dir)) if log_level is None: log_level = self.LOG_LEVEL elif isinstance(log_level, str): log_level = getattr(logging, log_level) self.logger.setLevel(log_level) if self.write_files: self.image_io = threaded_io.ThreadedIO(self.IO_THREADS, self.MAX_IO_JOBS) handler = logging.FileHandler(str(self.data_dir/'acquisitions.log')) else: self.image_io = DummyIO(self.logger) handler = logging.StreamHandler() handler.setFormatter(log_util.get_formatter()) self.logger.addHandler(handler) self._job_thread = None def heartbeat(self): print('heartbeat') # write a line to stdout to serve as a heartbeat @contextlib.contextmanager def heartbeat_timer(self): heartbeat_timer = timer.Timer(self.heartbeat, interval=60) yield heartbeat_timer.stop() @contextlib.contextmanager def debug_timing(self, task): t0 = time.time() yield self.logger.debug(f'{task} complete ({{:.1f}} seconds)', time.time() - t0) def run_all_positions(self): for position_name, position_coords in sorted(self.positions.items()): if position_name not in self.skip_positions: self.logger.info(f'Acquiring Position {position_name}') with self.debug_timing(f'Position {position_name}'): self.run_position(position_name, position_coords) self.heartbeat() def run_timepoint(self, scheduled_start): try: self.heartbeat() self.timepoint_prefix = time.strftime('%Y-%m-%dt%H%M') self.scheduled_start = scheduled_start self.start_time = time.time() self._job_futures = [] self.logger.info('Starting timepoint {} ({:.0f} minutes after scheduled)', self.timepoint_prefix, (self.start_time-self.scheduled_start)/60) # record the timepoint prefix and timestamp for this timepoint into the # experiment metadata self.experiment_metadata.setdefault('timepoints', []).append(self.timepoint_prefix) self.experiment_metadata.setdefault('timestamps', []).append(self.start_time) self.logger.info('Configuring timepoint') with self.debug_timing('Configuration'): self.configure_timepoint() self.heartbeat() self.run_all_positions() self.finalize_timepoint() self.heartbeat() self.end_time = time.time() self.experiment_metadata.setdefault('durations', []).append(self.end_time - self.start_time) if self.write_files: self._write_atomic_json(self.experiment_metadata_path, self.experiment_metadata) run_again = self.skip_positions != self.positions.keys() # don't run again if we're skipping all the positions # wait for all queued background jobs to complete. with self.debug_timing('Image IO'), self.heartbeat_timer(): self.image_io.wait() if self._job_futures: # wait for all queued background jobs to complete. with self.debug_timing('Background jobs'), self.heartbeat_timer(): futures.wait(self._job_futures) # now get the result() from each future, which will raise any errors encountered # during the execution. [f.result() for f in self._job_futures] self.cleanup() self.logger.info('Timepoint {} ended ({:.0f} minutes after starting)', self.timepoint_prefix, (time.time()-self.start_time)/60) if run_again: return self.get_next_run_time() except: self.logger.error('Exception in timepoint:', exc_info=True) raise def add_background_job(self, function, *args, **kws): """Add a function with parameters *args and **kws to a queue to be completed asynchronously with the rest of the timepoint acquisition. This will be run in a background thread, so make sure that the function acts in a threadsafe manner. (NB: self.logger *is* thread-safe.) All queued functions will be waited for completion before the timepoint ends. Any exceptions will be propagated to the foreground after all functions queued either finish or raise an exception. """ if self._job_thread is None: self._job_thread = futures.ThreadPoolExecutor(max_workers=1) self._job_futures.append(self._job_thread.submit(function, *args, **kws)) def _position_metadata(self, position_name): position_dir = self.data_dir / position_name metadata_path = position_dir / 'position_metadata.json' if metadata_path.exists(): with metadata_path.open('r') as f: position_metadata = json.load(f) else: position_metadata = [] return position_dir, metadata_path, position_metadata def run_position(self, position_name, position_coords): """Do everything required for taking a timepoint at a single position EXCEPT focusing / image acquisition. This includes moving the stage to the right x,y position, loading and saving metadata, and saving image data, as generated by acquire_images()""" timestamp = time.time() position_dir, metadata_path, position_metadata = self._position_metadata(position_name) position_dir.mkdir(exist_ok=True) if self.scope is not None: with self.debug_timing('Stage positioning'): self.scope.stage.position = position_coords images, image_names, new_metadata = self.acquire_images(position_name, position_dir, position_metadata) new_metadata['timestamp'] = timestamp new_metadata['timepoint'] = self.timepoint_prefix position_metadata.append(new_metadata) self.finalize_acquisition(position_name, position_dir, position_metadata) image_paths = [position_dir / (self.timepoint_prefix + ' ' + name) for name in image_names] if new_metadata is None: new_metadata = {} if self.write_files: self.image_io.write(images, image_paths, self.IMAGE_COMPRESSION) self._write_atomic_json(metadata_path, position_metadata) def _write_atomic_json(self, out_path, data): datafile.json_encode_atomic_legible_to_file(data, out_path) def configure_timepoint(self): """Override this method with global configuration for the image acquisitions (e.g. camera configuration). Member variables 'scope', 'experiment_metadata', 'timepoint_prefix', and 'positions' may be specifically useful.""" pass def finalize_timepoint(self): """Override this method with global finalization after the images have been acquired for each position. Useful for altering the self.experiment_metadata dictionary before it is saved out. """ pass def finalize_acquisition(self, position_name, position_dir, position_metadata): """Called after acquiring images for a single postiion. Parameters: position_name: name of the position in the experiment metadata file. position_dir: pathlib.Path object representing the directory where position-specific data files and outputs are written. Useful for reading previous image data. position_metadata: list of all the stored position metadata from the previous timepoints, in chronological order. This includes data from the latest timepoint, accessible as: position_metadata[-1]. """ pass def cleanup(self): """Override this method with any global cleanup/finalization tasks that may be necessary.""" pass def get_next_run_time(self): """Override this method to return when the next timepoint run should be scheduled. Returning None means no future runs will be scheduled.""" return None def acquire_images(self, position_name, position_dir, position_metadata): """Override this method in a subclass to define the image-acquisition sequence. All most subclasses will need to do is return the following as a tuple: (images, image_names, new_metadata), where: images is a list of the acquired images image_names is a list of the generic names for each of these images (not timepoint- or position-specific; e.g. 'GFP.png' or some such) new_metadata is a dictionary of timepoint-specific information, such as the latest focal plane z-position or similar. This will be made available to future acquisition runs via the 'position_metadata' argument described below. The images and metadata will be written out by the superclass, and must not be written by the overriding subclass. Optionally, subclasses may choose to enter 'position_name' into the self.skip_positions set to indicate that in the future this position should not be acquired. (E.g. the worm is dead.) Parameters: position_name: identifier for this image-acquisition position. Useful for adding this position to the skip_positions set. position_dir: pathlib.Path object representing the directory where position-specific data files and outputs should be written. Useful only if additional data needs to be read in or out during acquisition. (E.g. a background model or similar.) position_metadata: list of all the stored position metadata from the previous timepoints, in chronological order. In particular, this dictionary is guaranteed to contain 'timestamp' which is the time.time() at which that acquisition was started. Other values (such as the latest focal plane) stored by previous acquisition runs will also be available. The most recent metadata will be in position_metadata[-1]. """ raise NotImplementedError() @classmethod def main(cls, timepoint_dir=None, **cls_init_args): """Main method to run a timepoint. Parse sys.argv to find an (optional) scheduled_start time as a positional argument. Any arguments that contain an '=' will be assumed to be python variable definitions to pass to the class init method. (Leading '-' or '--' will be stripped, and internal '-'s will be converted to '_'.) e.g. this allows the following usage: ./acquire.py --dry-run=True --log-level=logging.DEBUG Parameters: timepoint_dir: location of timepoint directory. If not specified, default to the parent dir of the file that defines the class that this method is called on. **cls_init_args: dict of arguments to pass to the class init method. """ if timepoint_dir is None: timepoint_dir = pathlib.Path(inspect.getfile(cls)).parent scheduled_start = None for arg in sys.argv[1:]: if arg.count('='): while arg.startswith('-'): arg = arg[1:] arg = arg.replace('-', '_') # execute the argument in a restricted namespace containing only 'logging', and store the # result in the args to pass to the class. exec(arg, dict(logging=logging), cls_init_args) elif scheduled_start is None: scheduled_start = float(arg) else: raise ValueError('More than one schedule start time provided') if scheduled_start is None: scheduled_start = time.time() handler = cls(timepoint_dir, **cls_init_args) next_run_time = handler.run_timepoint(scheduled_start) if next_run_time: print('next run:{}'.format(next_run_time))
47.837423
122
0.648092
[ "MIT" ]
drew-sinha/rpc-scope
scope/timecourse/base_handler.py
15,595
Python
from logging import warning from os import path from typing import Optional, List from lxml.html import HtmlElement from manga_py.http import Http from .params import ProviderParams class Base(ProviderParams): _storage = None _params = None _image_params = None _http_kwargs = None __http = None __arguments = None chapter_id = 0 quiet = False original_url = None def __init__(self): self._storage = { 'cookies': {}, 'main_content': None, 'chapters': [], 'current_chapter': 0, 'current_file': 0, 'proxies': {}, 'domain_uri': None, } self._params = { 'destination': 'Manga', 'cf-protect': False, } self._image_params = { 'crop': (0, 0, 0, 0), # 'crop': (left, upper, right, lower) 'auto_crop': False, # 'auto_crop': True, } self._http_kwargs = {} def _archive_type(self) -> str: arc_type = 'zip' if self._params['cbz']: arc_type = 'cbz' return arc_type def get_url(self): return self._params['url'] def _build_http_params(self, params): if params is None: params = {} params.setdefault('allow_webp', not self._params.get('disallow_webp', None)) params.setdefault('referer', self._storage.get('referer', self.domain)) params.setdefault('user_agent', self._get_user_agent()) params.setdefault('proxies', self._storage.get('proxies', None)) params.setdefault('cookies', self._storage.get('cookies', None)) params.setdefault('kwargs', self._http_kwargs) return params def http(self, new=False, params=None) -> Http: http_params = self._build_http_params(params) if new: http = Http(**http_params) return http elif not self.__http: self.__http = Http(**http_params) return self.__http def http_get(self, url: str, headers: dict = None, cookies: dict = None): return self.http().get(url=url, headers=headers, cookies=cookies) def http_post(self, url: str, headers: dict = None, cookies: dict = None, data=()): return self.http().post(url=url, headers=headers, cookies=cookies, data=data) def _get_user_agent(self): ua_storage = self._storage.get('user_agent', None) ua_params = self._params.get('user_agent', None) if self._params.get('cf_scrape', False): return ua_storage return ua_params @classmethod def __normalize_chapters(cls, n, element): if isinstance(element, HtmlElement): return n(element.get('href')) if isinstance(element, str): return n(element) return element def _prepare_chapters(self, chapters): n = self.http().normalize_uri items = [] if chapters and len(chapters): for i in chapters: url = self.__normalize_chapters(n, i) items.append(url) else: warning('Chapters list empty. Check %s' % self.get_url()) return items def get_current_file(self): return self._storage['files'][self._storage['current_file']] def book_meta(self) -> dict: return {} def _image_name(self, idx, filename): if idx is None: idx = self._storage['current_file'] fn, extension = path.splitext(filename) _path = '{:0>3}_{}'.format(idx, fn) if self._params['rename_pages']: _path = '{:0>3}'.format(idx) return _path + extension def chapter_for_json(self) -> str: return self.chapter def put_info_json(self, meta): # manga_name, url, directory pass def _fill_arguments(self, arguments: List[str]): know_args = [ 'login', 'password', 'language', 'translator', ] if self.__arguments is None: self.__arguments = {} for arg in arguments: key, value = arg.split('=', 1) # type: str, str if key in know_args: self.__arguments[key] = value def arg(self, key: str) -> Optional[str]: if self.__arguments is None: return None return self.__arguments.get(key) def allow_auto_change_url(self): return True
29.748344
87
0.573241
[ "MIT" ]
Ever4engel/manga-py
manga_py/base_classes/base.py
4,492
Python
import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'aa!b!ug6opqr*_f60k&%orwoqus_ecvlgjtsn0y)c)1o7-_at&' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'myApp' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'myProject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'myProject.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ]
25.517857
91
0.689293
[ "MIT" ]
anthonyc1/django-materialize-boilerplate
myProject/settings.py
2,858
Python
# coding: utf-8 """ Genomic Data Store Service No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from libica.openapi.libgds.configuration import Configuration class FolderUpdateRequest(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'metadata': 'object', 'acl': 'list[str]' } attribute_map = { 'metadata': 'metadata', 'acl': 'acl' } def __init__(self, metadata=None, acl=None, local_vars_configuration=None): # noqa: E501 """FolderUpdateRequest - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._metadata = None self._acl = None self.discriminator = None if metadata is not None: self.metadata = metadata if acl is not None: self.acl = acl @property def metadata(self): """Gets the metadata of this FolderUpdateRequest. # noqa: E501 Metadata about this folder and its contents # noqa: E501 :return: The metadata of this FolderUpdateRequest. # noqa: E501 :rtype: object """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this FolderUpdateRequest. Metadata about this folder and its contents # noqa: E501 :param metadata: The metadata of this FolderUpdateRequest. # noqa: E501 :type: object """ self._metadata = metadata @property def acl(self): """Gets the acl of this FolderUpdateRequest. # noqa: E501 Optional array to replace the acl on the resource. # noqa: E501 :return: The acl of this FolderUpdateRequest. # noqa: E501 :rtype: list[str] """ return self._acl @acl.setter def acl(self, acl): """Sets the acl of this FolderUpdateRequest. Optional array to replace the acl on the resource. # noqa: E501 :param acl: The acl of this FolderUpdateRequest. # noqa: E501 :type: list[str] """ self._acl = acl def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FolderUpdateRequest): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, FolderUpdateRequest): return True return self.to_dict() != other.to_dict()
28.503311
124
0.58434
[ "MIT" ]
umccr-illumina/libica
libica/openapi/libgds/models/folder_update_request.py
4,304
Python
import numpy as np from mendeleev import element as md_element from basisopt import api, data from basisopt.exceptions import PropertyNotAvailable from basisopt.basis import even_temper_expansion from basisopt.basis.guesses import null_guess from .preconditioners import unit from .strategies import Strategy _INITIAL_GUESS = (0.3, 2.0, 8) class EvenTemperedStrategy(Strategy): """ Implements a strategy for an even tempered basis set, where each angular momentum shell is described by three parameters: (c, x, n) Each exponent in that shell is then given by y_k = c*(x**k) for k=0,...,n --------------------------- ALGORITHM ---------------------------- Evaluate: energy (can change to any RMSE-compatible property) Loss: root-mean-square error Guess: null, uses _INITIAL_GUESS above Pre-conditioner: None Initialisation: - Find minimum no. of shells needed - max_l >= min_l - generate initial parameters for each shell First run: - optimize parameters for each shell once, sequentially Next shell in list not marked finished: - re-optimise - below threshold or n=max_n: mark finished - above threshold: increment n Repeat until all shells are marked finished. Uses iteration, limited by two parameters: max_n: max number of exponents in shell target: threshold for objective function ------------------------------------------------------------------ Additional attributes: shells (list): list of (c, x, n) parameter tuples shell_done (list): list of flags for whether shell is finished (0) or not (1) target (float): threshold for optimization delta max_n (int): maximum number of primitives in shell expansion max_l (int): maximum angular momentum shell to do; if -1, does minimal configuration first_run (bool): setting to True restarts optimization from beginning last_objective (var): last value of objective function """ def __init__(self, eval_type='energy', target=1e-5, max_n=18, max_l=-1): Strategy.__init__(self, eval_type=eval_type, pre=unit) self.name = 'EvenTemper' self.shells = [] self.shell_done = [] self.last_objective = 0 self.target = target self.guess = null_guess self.guess_params = {} self.max_n = max_n self.max_l = max_l self.first_run = True def set_basis_shells(self, basis, element): """Expands parameters into a basis set""" basis[element] = even_temper_expansion(self.shells) def initialise(self, basis, element): if self.max_l < 0: el = md_element(element.title()) l_list = [l for (n, l) in el.ec.conf.keys()] min_l = len(set(l_list)) self.max_l = max(min_l, self.max_l) self.shells = [_INITIAL_GUESS] * self.max_l self.shell_done = [1] * self.max_l self.set_basis_shells(basis, element) self.last_objective = 0 def get_active(self, basis, element): (c, x, _) = self.shells[self._step] return np.array([c, x]) def set_active(self, values, basis, element): (c, x, n) = self.shells[self._step] c = max(values[0], 1e-5) x = max(values[1], 1.01) self.shells[self._step] = (c, x, n) self.set_basis_shells(basis, element) def next(self, basis, element, objective): delta_objective = np.abs(self.last_objective - objective) self.last_objective = objective carry_on = True if self.first_run: self._step = self._step + 1 if self._step == self.max_l: self.first_run = False self._step = 0 (c, x, n) = self.shells[self._step] self.shells[self._step] = (c, x, min(n+1, self.max_n)) else: if delta_objective < self.target: self.shell_done[self._step] = 0 self._step = (self._step + 1) % self.max_l (c, x, n) = self.shells[self._step] if n == self.max_n: self.shell_done[self._step] = 0 elif self.shell_done[self._step] != 0: self.shells[self._step] = (c, x, n+1) carry_on = np.sum(self.shell_done) != 0 return carry_on
37.758065
89
0.566852
[ "MIT" ]
robashaw/basisopt
basisopt/opt/eventemper.py
4,682
Python
import os import sys sys.path.append(os.getcwd()) import numpy as np import torch import flow from utils import cdfDiscreteLogitstic, cdfMixDiscreteLogistic from utils import logDiscreteLogistic, logMixDiscreteLogistic nbins = 4096 _bins = torch.arange(-nbins // 2, nbins // 2).reshape(-1, 1, 1, 1, 1) decimal = flow.ScalingNshifting(256, -128) def test_disLogisticCDF(): logscale = torch.tensor( [[[[-3.6826, -3.0157, -3.6032], [-3.7063, -3.0269, -3.5338], [-3.5311, -2.9907, -3.3516], [-3.9300, -3.3121, -3.8110]], [[-3.1022, -3.0692, -3.2039], [-2.9466, -3.0006, -3.2969], [-2.7636, -2.5691, -2.9628], [-3.3657, -3.2948, -3.5318]], [[-3.9748, -3.0670, -3.2399], [-3.9312, -3.0055, -3.1729], [-3.8588, -2.9139, -3.1794], [-4.1534, -3.2404, -3.5665]]]] ) mean = torch.tensor( [[[[ 0.0191, 0.0459, 0.0131], [-0.0059, 0.0254, -0.0100], [ 0.0359, 0.0406, 0.0242], [ 0.0331, 0.0438, 0.0255]], [[ 0.0214, 0.0502, 0.0622], [ 0.0371, 0.0368, 0.0517], [ 0.0217, 0.0855, 0.0874], [ 0.0144, 0.0475, 0.0470]], [[-0.0602, -0.0791, -0.0784], [-0.0443, -0.0765, -0.0701], [-0.0654, -0.0709, -0.0788], [-0.0608, -0.0721, -0.0688]]]] ) bins = _bins - 1 + torch.round(decimal.forward_(mean)) cdf = cdfDiscreteLogitstic(bins, mean, logscale, decimal=decimal).detach().numpy() pList = [] for i in range(bins.shape[0]): logp = logDiscreteLogistic(bins[i: i + 1], mean, logscale, decimal=decimal).detach().numpy() pList.append(np.exp(logp).reshape(mean.shape)) pList = np.array(pList) _cdf = np.cumsum(pList, 0) assert np.allclose(cdf, _cdf) def test_mixDixLogisticCDF(): mean = torch.tensor( [[[[-0.2414, 0.2089, -0.0209, -0.1279]], [[ 0.7791, 0.1031, 0.0940, 0.1678]], [[ 0.0095, 0.0391, -0.0318, -0.2183]]], [[[-0.1466, 0.2090, -0.0594, -0.0837]], [[ 0.8711, 0.0540, 0.0940, 0.0859]], [[-0.0683, -0.0204, -0.0340, -0.0587]]], [[[-0.1994, -0.0442, -0.0307, -0.0823]], [[ 1.0158, 0.0636, 0.0832, 0.0717]], [[-0.1863, -0.0177, -0.0293, -0.0708]]], [[[-0.3517, 0.1062, -0.0362, -0.1661]], [[ 0.6567, 0.1452, 0.0294, 0.0864]], [[-0.1384, -0.0171, -0.0195, -0.0710]]], [[[-0.3158, 0.2068, 0.1114, -0.1251]], [[ 0.5600, 0.1987, 0.1891, 0.1754]], [[-0.2758, -0.1032, -0.0435, -0.1156]]]]) logscale = torch.tensor( [[[[-3.1292, -4.0168, -3.2886, -2.5948]], [[-2.8226, -2.3489, -2.8613, -2.3892]], [[-3.3502, -3.4929, -2.9572, -2.7060]]], [[[-3.4556, -4.0166, -2.7471, -3.1203]], [[-2.6906, -3.6062, -2.8620, -3.0673]], [[-3.2775, -3.3661, -3.2897, -4.0553]]], [[[-3.4652, -3.3828, -3.3053, -3.6945]], [[-2.7657, -2.9172, -3.4067, -3.7734]], [[-3.4817, -3.0397, -2.8021, -3.1398]]], [[[-2.7246, -3.7798, -4.1237, -2.8605]], [[-3.0524, -2.6628, -2.4833, -3.0913]], [[-4.0249, -3.8364, -3.7608, -2.7111]]], [[[-3.5460, -4.0208, -2.9837, -3.1288]], [[-3.2062, -2.1702, -2.2238, -2.6122]], [[-3.1754, -3.0892, -2.3359, -2.4321]]]]) mixing = torch.tensor( [[[[ 1.3161, 0.8664, 1.7648, -0.7598, -0.8658], [-3.7472, -3.6553, 5.2783, 0.2242, -3.6304], [-0.7378, 0.2730, 1.8044, 0.7450, -1.6218], [-0.8105, 1.8833, 1.8243, -0.7879, -1.1211]]], [[[ 1.3952, -0.8232, -1.0135, 1.8041, 0.9846], [-0.4372, 1.1296, 1.5473, -0.0661, -0.5995], [-0.5167, 1.5559, 1.2607, -0.3227, -0.8687], [-0.6226, 1.5024, 1.4221, 1.4741, -0.4409]]], [[[ 1.3045, 1.8551, 0.1755, -0.6253, -1.2045], [-0.9858, 1.5529, -0.6332, 1.4569, -1.1089], [-0.5954, 1.2305, 1.4068, 0.7919, -0.3811], [-0.2997, 0.6804, 2.0660, 1.1353, -0.9155]]]]) bins = _bins - 1 + torch.round(decimal.forward_(mean.permute([1, 2, 3, 0])) * mixing).sum(-1).reshape(1, *mean.shape[1:]) cdf = cdfMixDiscreteLogistic(bins, mean, logscale, mixing, decimal=decimal) pList = [] for i in range(bins.shape[0]): logp = logMixDiscreteLogistic(bins[i: i + 1], mean, logscale, mixing, decimal=decimal).detach().numpy() pList.append(np.exp(logp).reshape(logp.shape[1:])) pList = np.array(pList) _cdf = np.cumsum(pList, 0) assert np.allclose(cdf, _cdf) if __name__ == "__main__": test_disLogisticCDF() test_mixDixLogisticCDF()
36.19084
125
0.494832
[ "Apache-2.0" ]
li012589/NeuralWavelet
test/test_cdf.py
4,741
Python
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import shutil import string import armi from armi import runLog from armi.utils import pathTools def _changeDirectory(destination): if os.path.exists(destination): os.chdir(destination) else: raise IOError( "Cannot change directory to non-existent location: {}".format(destination) ) class DirectoryChanger(object): """ Utility to change directory. Parameters ---------- destination : str Path of directory to change into filesToMove : list of str, optional Filenames to bring from the CWD into the destination filesToRetrieve : list of str, optional Filenames to bring back from the destination to the cwd dumpOnException : bool, optional Flag to tell system to retrieve the entire directory if an exception is raised within a the context manager. Use with 'with' statements to execute code in a different dir, guaranteeing a clean return to the original directory >>> with DirectoryChanger('C:\\whatever') ... pass """ def __init__( self, destination, filesToMove=None, filesToRetrieve=None, dumpOnException=True ): """Establish the new and return directories""" self.initial = pathTools.armiAbsPath(os.getcwd()) self.destination = None if destination is not None: self.destination = pathTools.armiAbsPath(destination) self._filesToMove = filesToMove or [] self._filesToRetrieve = filesToRetrieve or [] self._dumpOnException = dumpOnException def __enter__(self): """At the inception of a with command, navigate to a new directory if one is supplied.""" runLog.debug("Changing directory to {}".format(self.destination)) self.moveFiles() self.open() return self def __exit__(self, exc_type, exc_value, traceback): """At the termination of a with command, navigate back to the original directory.""" runLog.debug("Returning to directory {}".format(self.initial)) if exc_type is not None and self._dumpOnException: runLog.info( "An exception was raised within a DirectoryChanger. " "Retrieving entire folder for debugging." ) self._retrieveEntireFolder() else: self.retrieveFiles() self.close() def __repr__(self): """Print the initial and destination paths""" return "<{} {} to {}>".format( self.__class__.__name__, self.initial, self.destination ) def open(self): """ User requested open, used to stalling the close from a with statement. This method has been made for old uses of :code:`os.chdir()` and is not recommended. Please use the with statements """ if self.destination: _changeDirectory(self.destination) def close(self): """User requested close.""" if self.initial != os.getcwd(): _changeDirectory(self.initial) def moveFiles(self): initialPath = self.initial destinationPath = self.destination self._transferFiles(initialPath, destinationPath, self._filesToMove) def retrieveFiles(self): """Retrieve any desired files.""" initialPath = self.destination destinationPath = self.initial fileList = self._filesToRetrieve self._transferFiles(initialPath, destinationPath, fileList) def _retrieveEntireFolder(self): """Retrieve all files.""" initialPath = self.destination destinationPath = self.initial folderName = os.path.split(self.destination)[1] destinationPath = os.path.join(destinationPath, f"dump-{folderName}") fileList = os.listdir(self.destination) self._transferFiles(initialPath, destinationPath, fileList) @staticmethod def _transferFiles(initialPath, destinationPath, fileList): """ Transfer files into or out of the directory. .. warning:: On Windows the max number of characters in a path is 260. If you exceed this you will see FileNotFound errors here. """ if not fileList: return if not os.path.exists(destinationPath): os.mkdir(destinationPath) for ff in fileList: if isinstance(ff, tuple): # allow renames in transit fromName, destName = ff else: fromName, destName = ff, ff fromPath = os.path.join(initialPath, fromName) toPath = os.path.join(destinationPath, destName) runLog.extra("Copying {} to {}".format(fromPath, toPath)) shutil.copy(fromPath, toPath) class TemporaryDirectoryChanger(DirectoryChanger): """ Create temporary directory, changes into it, and if there is no error/exception generated when using a :code:`with` statement, it deletes the directory. Notes ----- If there is an error/exception generated while in a :code:`with` statement, the temporary directory contents will be copied to the original directory and then the temporary directory will be deleted. """ _home = armi.context.FAST_PATH def __init__( self, root=None, filesToMove=None, filesToRetrieve=None, dumpOnException=True ): DirectoryChanger.__init__( self, root, filesToMove, filesToRetrieve, dumpOnException ) root = root or TemporaryDirectoryChanger._home if not os.path.exists(root): os.makedirs(root) self.initial = os.path.abspath(os.getcwd()) self.destination = TemporaryDirectoryChanger.GetRandomDirectory(root) while os.path.exists(self.destination): self.destination = TemporaryDirectoryChanger.GetRandomDirectory(root) @classmethod def GetRandomDirectory(cls, root): return os.path.join( root, "temp-" + "".join( random.choice(string.ascii_letters + string.digits) for _ in range(10) ), ) def __enter__(self): os.mkdir(self.destination) return DirectoryChanger.__enter__(self) def __exit__(self, exc_type, exc_value, traceback): DirectoryChanger.__exit__(self, exc_type, exc_value, traceback) shutil.rmtree(self.destination) class ForcedCreationDirectoryChanger(DirectoryChanger): """ Creates the directory tree necessary to reach your desired destination Attributes ---------- clean : bool if True and the directory exists, clear all contents on entry. """ def __init__( self, destination, filesToMove=None, filesToRetrieve=None, dumpOnException=True, clean=False, ): DirectoryChanger.__init__( self, destination, filesToMove, filesToRetrieve, dumpOnException ) self.clean = clean def __enter__(self): if not os.path.exists(self.destination): runLog.debug(f"Creating destination folder {self.destination}") try: os.makedirs(self.destination) except OSError: # even though we checked exists, this still fails # sometimes when multiple MPI nodes try # to make the dirs due to I/O delays runLog.debug(f"Failed to make destination folder") else: runLog.debug(f"Destination folder already exists: {self.destination}") DirectoryChanger.__enter__(self) if self.clean: shutil.rmtree(".", ignore_errors=True) return self def directoryChangerFactory(): if armi.MPI_SIZE > 1: from .directoryChangersMpi import MpiDirectoryChanger return MpiDirectoryChanger else: return DirectoryChanger
33.766798
97
0.64626
[ "Apache-2.0" ]
sammiller11235/armi
armi/utils/directoryChangers.py
8,543
Python
# Copyright 2019 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import logging import os import zipfile from dataclasses import dataclass from io import BytesIO from typing import Iterable from pants.backend.python.subsystems.setuptools import PythonDistributionFieldSet from pants.backend.python.util_rules.interpreter_constraints import InterpreterConstraints from pants.backend.python.util_rules.pex import Pex, PexRequest, PexRequirements from pants.backend.python.util_rules.pex import rules as pex_rules from pants.backend.python.util_rules.python_sources import PythonSourceFiles from pants.build_graph.address import Address from pants.core.goals.package import BuiltPackage, PackageFieldSet from pants.core.util_rules.source_files import SourceFiles from pants.engine.addresses import Addresses from pants.engine.fs import ( EMPTY_SNAPSHOT, Digest, DigestContents, DigestSubset, MergeDigests, PathGlobs, Snapshot, ) from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import TransitiveTargets, TransitiveTargetsRequest from pants.util.docutil import doc_url from pants.util.meta import frozen_after_init logger = logging.getLogger(__name__) @frozen_after_init @dataclass(unsafe_hash=True) class LocalDistsPexRequest: """Request to build the local dists from the dependency closure of a set of addresses.""" addresses: Addresses interpreter_constraints: InterpreterConstraints # The result will return these with the sources provided by the dists subtracted out. # This will help the caller prevent sources from appearing twice on sys.path. sources: PythonSourceFiles def __init__( self, addresses: Iterable[Address], *, interpreter_constraints: InterpreterConstraints = InterpreterConstraints(), sources: PythonSourceFiles = PythonSourceFiles( SourceFiles(EMPTY_SNAPSHOT, tuple()), tuple() ), ) -> None: self.addresses = Addresses(addresses) self.interpreter_constraints = interpreter_constraints self.sources = sources @dataclass(frozen=True) class LocalDistsPex: """A PEX file containing locally-built dists. Can be consumed from another PEX, e.g., by adding to PEX_PATH. Lists the files provided by the dists on sys.path, so they can be subtracted from sources digests, to prevent the same file ending up on sys.path twice. """ pex: Pex # The sources from the request, but with any files provided by the local dists subtracted out. remaining_sources: PythonSourceFiles @rule(desc="Building local distributions") async def build_local_dists( request: LocalDistsPexRequest, ) -> LocalDistsPex: transitive_targets = await Get(TransitiveTargets, TransitiveTargetsRequest(request.addresses)) applicable_targets = [ tgt for tgt in transitive_targets.closure if PythonDistributionFieldSet.is_applicable(tgt) ] python_dist_field_sets = [ PythonDistributionFieldSet.create(target) for target in applicable_targets ] dists = await MultiGet( [Get(BuiltPackage, PackageFieldSet, field_set) for field_set in python_dist_field_sets] ) # The primary use-case of the "local dists" feature is to support consuming native extensions # as wheels without having to publish them first. # It doesn't seem very useful to consume locally-built sdists, and it makes it hard to # reason about possible sys.path collisions between the in-repo sources and whatever the # sdist will place on the sys.path when it's installed. # So for now we simply ignore sdists, with a warning if necessary. provided_files = set() wheels = [] all_contents = await MultiGet(Get(DigestContents, Digest, dist.digest) for dist in dists) for dist, contents, tgt in zip(dists, all_contents, applicable_targets): artifacts = set((a.relpath or "") for a in dist.artifacts) # A given local dist might build a wheel and an sdist (and maybe other artifacts - # we don't know what setup command was run...) # As long as there is a wheel, we can ignore the other artifacts. wheel = next((art for art in artifacts if art.endswith(".whl")), None) if wheel: wheel_content = next(content for content in contents if content.path == wheel) wheels.append(wheel) buf = BytesIO() buf.write(wheel_content.content) buf.seek(0) with zipfile.ZipFile(buf) as zf: provided_files.update(zf.namelist()) else: logger.warning( f"Encountered a dependency on the {tgt.alias} target at {tgt.address.spec}, but " "this target does not produce a Python wheel artifact. Therefore this target's " "code will be used directly from sources, without a distribution being built, " "and therefore any native extensions in it will not be built.\n\n" f"See {doc_url('python-distributions')} for details on how to set up a {tgt.alias} " "target to produce a wheel." ) dists_digest = await Get(Digest, MergeDigests([dist.digest for dist in dists])) wheels_digest = await Get(Digest, DigestSubset(dists_digest, PathGlobs(["**/*.whl"]))) dists_pex = await Get( Pex, PexRequest( output_filename="local_dists.pex", requirements=PexRequirements(wheels), interpreter_constraints=request.interpreter_constraints, additional_inputs=wheels_digest, internal_only=True, ), ) # We check source roots in reverse lexicographic order, # so we'll find the innermost root that matches. source_roots = list(reversed(sorted(request.sources.source_roots))) remaining_sources = set(request.sources.source_files.files) unrooted_files_set = set(request.sources.source_files.unrooted_files) for source in request.sources.source_files.files: if source not in unrooted_files_set: for source_root in source_roots: if ( source.startswith(source_root) and os.path.relpath(source, source_root) in provided_files ): remaining_sources.remove(source) remaining_sources_snapshot = await Get( Snapshot, DigestSubset( request.sources.source_files.snapshot.digest, PathGlobs(sorted(remaining_sources)) ), ) subtracted_sources = PythonSourceFiles( SourceFiles(remaining_sources_snapshot, request.sources.source_files.unrooted_files), request.sources.source_roots, ) return LocalDistsPex(dists_pex, subtracted_sources) def rules(): return (*collect_rules(), *pex_rules())
40.045977
100
0.708668
[ "Apache-2.0" ]
chebbyChefNEQ/pants
src/python/pants/backend/python/util_rules/local_dists.py
6,968
Python
from fastai.data.all import IntToFloatTensor from fastai.vision.learner import * from fastai.vision.augment import * from fastai.vision.core import PILImageBW, PILImage from fastai.vision.data import * from preprocessing.transforms import * # from preprocessing.dicom import * from preprocessing.misc import * def get_item_tfms(run_params): item_tfms = [] # if run_params['HIST_CLIPPING']: # item_tfms.append(XRayPreprocess(PIL_cls=PILImageBW, cut_min=run_params['HIST_CLIPPING_CUT_MIN'], cut_max=run_params['HIST_CLIPPING_CUT_MAX'], np_input=len(item_tfms) > 0, np_output=True)) if run_params["KNEE_LOCALIZER"]: item_tfms.append( KneeLocalizer( run_params["KNEE_SVM_MODEL_PATH"], PIL_cls=PILImageBW, resize=run_params["RESIZE"], np_input=len(item_tfms) > 0, np_output=True, ) ) else: item_tfms.append( Resize( run_params["RESIZE"], method=ResizeMethod.Pad, pad_mode=PadMode.Zeros ) ) if run_params["BACKGROUND_PREPROCESS"]: item_tfms.append( BackgroundPreprocess( PIL_cls=PILImageBW, np_input=len(item_tfms) > 0, np_output=True ) ) # item_tfms.append(RandomResizedCrop(RANDOM_RESIZE_CROP)) # Histogram scaling DICOM on the fly if run_params["CLAHE_SCALED"]: item_tfms.append( CLAHE_Transform( PIL_cls=PILImageBW, grayscale=not run_params["SELF_SUPERVISED"], np_input=len(item_tfms) > 0, np_output=False, ) ) elif run_params["HIST_SCALED"]: if run_params["HIST_SCALED_SELF"]: bins = None else: # bins = init_bins(fnames=L(list(final_df['Original'].values)), n_samples=100) all_valid_raw_preprocess = pd.concat( [pd.Series(unlabel_all_df.index), label_df["Raw_preprocess"]] ) bins = init_bins( fnames=L(list(all_valid_raw_preprocess.values)), n_samples=100, isDCM=False, ) # item_tfms.append(HistScaled(bins)) item_tfms.append(HistScaled_all(bins)) return item_tfms def get_batch_tfms(run_params): label_tfms = [ IntToFloatTensor(div=2 ** 16 - 1), *aug_transforms( pad_mode=PadMode.Zeros, mult=1.0, do_flip=True, flip_vert=False, max_rotate=90.0, min_zoom=0.9, max_zoom=1.2, max_lighting=0.4, max_warp=0.4, p_affine=0.9, p_lighting=0.9, mode="bilinear", align_corners=True, ), RandomResizedCropGPU( run_params["RANDOM_RESIZE_CROP"], min_scale=run_params["RANDOM_MIN_SCALE"] ), # Normalize() # Issue with CPU vs GPU interaction ] unlabel_tfms = [[IntToFloatTensor(div=2 ** 16 - 1)]] if run_params["SSL"] == run_params["SSL_FIX_MATCH"]: weak_transform = [ IntToFloatTensor(div=1), RandomResizedCropGPU( run_params["RANDOM_RESIZE_CROP"], min_scale=run_params["RANDOM_MIN_SCALE"], ), Flip(), # Normalize() ] unlabel_tfms.append(weak_transform) strong_transform = [ IntToFloatTensor(div=1), RandomResizedCropGPU( run_params["RANDOM_RESIZE_CROP"], min_scale=run_params["RANDOM_MIN_SCALE"], ), Flip(), Rotate(180), Brightness(), Contrast(), RandomErasing(), # Normalize() ] unlabel_tfms.append(strong_transform) elif run_params["SSL"] == run_params["SSL_MIX_MATCH"]: unlabel_transform = [ IntToFloatTensor(div=2 ** 16 - 1), RandomResizedCropGPU( run_params["RANDOM_RESIZE_CROP"], min_scale=run_params["RANDOM_MIN_SCALE"], ), Flip(), Rotate(180), Brightness(), Contrast(), # Normalize() ] unlabel_tfms.append(unlabel_transform) return label_tfms, unlabel_tfms
30.303448
197
0.561447
[ "MIT" ]
lluissalord/radiology_ai
train/tfms.py
4,394
Python
import sys,os try: import argparse except ImportError: print("""ERROR: Could not import argparse Either use python2.7 or later (perhaps in a strange location such as /bgsys/tools/python2.7.5-gnu-20130730/bin/hostpython) or install from PyPI (https://pypi.python.org/pypi/argparse/).""") sys.exit(1) def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == os.errno.EEXIST: pass else: raise def main(): parser = argparse.ArgumentParser(description='Configure High-performance Geometric Multigrid (HPGMG)') parser.add_argument('--arch', help='Name of this configuration', default=None) parser.add_argument('--petsc-dir', help='PETSC_DIR', default=os.environ.get('PETSC_DIR','')) parser.add_argument('--petsc-arch', help='PETSC_ARCH', default=os.environ.get('PETSC_ARCH','')) parser.add_argument('--with-hpm', help='libHPM profiling library on Blue Gene ("1" or "/path/to/libmpihpm.a /path/to/libbgpm.a")') cf = parser.add_argument_group('Compilers and flags') cf.add_argument('--CC', help='Path to C compiler', default=os.environ.get('CC','')) cf.add_argument('--CFLAGS', help='Flags for C compiler', default=os.environ.get('CFLAGS','')) cf.add_argument('--CPPFLAGS', help='Flags for C preprocessor', default=os.environ.get('CPPFLAGS','')) cf.add_argument('--LDFLAGS', help='Flags to pass to linker', default=os.environ.get('LDFLAGS','')) cf.add_argument('--LDLIBS', help='Libraries to pass to linker', default=os.environ.get('LDLIBS','')) fe = parser.add_argument_group('Finite Element options') fe.add_argument('--fe', action='store_true', dest='fe', help='Build the Finite-Element solver') fv = parser.add_argument_group('Finite Volume options') fv.add_argument('--no-fv', action='store_false', dest='fv', help='Do not build the Finite-Volume solver') fv.add_argument('--no-fv-mpi', action='store_false', dest='fv_mpi', help='Use MPI') fv.add_argument('--fv-cycle', help='Multigrid cycle type', choices=['V','F','U'], default='F') fv.add_argument('--no-fv-subcomm', action='store_false', dest='fv_subcomm', help='Build a subcommunicator for each level in the MG v-cycle to minimize the scope of MPI_AllReduce()') fv.add_argument('--fv-coarse-solver', help='Use BiCGStab as a bottom (coarse grid) solver', choices=['bicgstab','cabicgstab','cg','cacg'], default='bicgstab') fv.add_argument('--fv-smoother', help='Multigrid smoother', choices=['cheby','gsrb','jacobi','l1jacobi'], default='gsrb') args = parser.parse_args() if args.arch is None: args.arch = args.petsc_arch if not args.arch: args.arch = 'build' mkdir_p(args.arch) configure(args) def configure(args): open(os.path.join(args.arch,'Makefile'), 'w').write(makefile(args)) reconfname = os.path.join(args.arch,'reconfigure-%s.py' % args.arch) open(reconfname, 'w').write('\n'.join([ '#!'+sys.executable, 'import os,sys', 'from argparse import Namespace', "sys.path.insert(0, os.path.abspath('.'))", 'import hpgmgconf', 'hpgmgconf.configure(%r)' % args, ])) os.chmod(reconfname,0o755) print('Configuration complete in: %s' % os.path.realpath(args.arch)) print('To build: make -j3 -C %s' % args.arch) def makefile(args): if args.CC: CC = args.CC else: if args.petsc_dir: CC = '$(PCC)' else: CC = 'mpicc' m = ['HPGMG_ARCH = %s' % args.arch, 'HPGMG_CC = %s' % CC, 'HPGMG_CFLAGS = %s' % (args.CFLAGS if args.CFLAGS else ('$(PCC_FLAGS) ' if args.petsc_dir else '')), 'HPGMG_CPPFLAGS = %s' % (('$(CCPPFLAGS) ' if args.petsc_dir else '') + args.CPPFLAGS), 'HPGMG_LDFLAGS = %s' % args.LDFLAGS, 'HPGMG_LDLIBS = %s' % args.LDLIBS, 'PETSC_DIR = %s' % args.petsc_dir, 'PETSC_ARCH = %s' % args.petsc_arch, 'PYTHON = %s' % sys.executable, 'SRCDIR = %s' % os.path.abspath(os.path.dirname(__name__)),] if args.with_hpm: m.append('CONFIG_HPM = y') hpm_lib = args.with_hpm try: hpm_lib = int(hpm_lib) except: pass if not isinstance(hpm_lib,str): # ALCF location hpm_lib = '/soft/perftools/hpctw/lib/libmpihpm.a /bgsys/drivers/ppcfloor/bgpm/lib/libbgpm.a' for p in hpm_lib.split(): assert os.path.exists(p), "HPM path '%s' not found" % p m.append('HPGMG_LDLIBS += ' + hpm_lib) m.append('HPGMG_CPPFLAGS += -DUSE_HPM=1') if args.fv: m.append('CONFIG_FV = y') if args.fe and args.petsc_dir: m.append('CONFIG_FE = y') m.append('CONFIG_FV_CPPFLAGS = ' + hpgmg_fv_cflags(args)) if args.petsc_dir: found = False for variables_path in [os.path.join('lib', 'petsc', 'conf', 'variables'), os.path.join('lib', 'petsc-conf', 'variables'), os.path.join('conf', 'variables')]: if os.path.exists(os.path.join(args.petsc_dir,variables_path)): m.append('include $(PETSC_DIR)/' + variables_path) found = True if not found: raise RuntimeError('Could not find PETSc variables file in PETSC_DIR=%s' % (args.petsc_dir,)) m.append('include $(SRCDIR)/base.mk\n') return '\n'.join(m) def hpgmg_fv_cflags(args): defines = [] if args.fv_mpi: defines.append('USE_MPI') defines.append('USE_%s' % args.fv_coarse_solver.upper()) if args.fv_subcomm: defines.append('USE_SUBCOMM') defines.append('USE_%sCYCLES' % args.fv_cycle.upper()) defines.append('USE_%s' % args.fv_smoother.upper()) #defines.append('STENCIL_FUSE_DINV') # generally only good on compute-intensive architectures with good compilers #defines.append('STENCIL_FUSE_BC') return ' '.join('-D%s=1'%d for d in defines)
48.176
185
0.622551
[ "Unlicense" ]
kyushick/cdruntime
examples/hpgmg/hpgmgconf.py
6,022
Python
from typing import Any from typing import Mapping from pandas.core.frame import DataFrame from pyspark.sql import SparkSession from pyspark.sql.types import StructType from cishouseholds.pipeline.config import get_config sessions = { "s": ( SparkSession.builder.config("spark.executor.memory", "1g") .config("spark.executor.cores", 1) .config("spark.dynamicAllocation.enabled", "true") .config("spark.dynamicAllocation.maxExecutors", 3) .config("spark.sql.shuffle.partitions", 12) .config("spark.ui.showConsoleProgress", "false") .config("spark.sql.legacy.allowCreatingManagedTableUsingNonemptyLocation", "true") .config("spark.shuffle.service.enabled", "true") .config("spark.sql.crossJoin.enabled", "true") .appName("cishouseholds") .enableHiveSupport() .getOrCreate() ), "m": ( SparkSession.builder.config("spark.executor.memory", "6g") .config("spark.executor.cores", 3) .config("spark.dynamicAllocation.enabled", "true") .config("spark.dynamicAllocation.maxExecutors", 3) .config("spark.sql.shuffle.partitions", 18) .config("spark.ui.showConsoleProgress", "false") .config("spark.sql.legacy.allowCreatingManagedTableUsingNonemptyLocation", "true") .config("spark.shuffle.service.enabled", "true") .config("spark.debug.maxToStringFields", 2000) .config("spark.sql.crossJoin.enabled", "true") .appName("cishouseholds") .enableHiveSupport() .getOrCreate() ), "l": ( SparkSession.builder.config("spark.executor.memory", "10g") .config("spark.yarn.executor.memoryOverhead", "1g") .config("spark.executor.cores", 5) .config("spark.dynamicAllocation.enabled", "true") .config("spark.dynamicAllocation.maxExecutors", 5) .config("spark.sql.shuffle.partitions", 200) .config("spark.ui.showConsoleProgress", "false") .config("spark.sql.legacy.allowCreatingManagedTableUsingNonemptyLocation", "true") .config("spark.shuffle.service.enabled", "true") .config("spark.sql.crossJoin.enabled", "true") .appName("cishouseholds") .enableHiveSupport() .getOrCreate() ), "xl": ( SparkSession.builder.config("spark.executor.memory", "20g") .config("spark.yarn.executor.memoryOverhead", "2g") .config("spark.executor.cores", 5) .config("spark.dynamicAllocation.enabled", "true") .config("spark.dynamicAllocation.maxExecutors", 12) .config("spark.sql.shuffle.partitions", 240) .config("spark.shuffle.service.enabled", "true") .config("spark.ui.showConsoleProgress", "false") .config("spark.sql.legacy.allowCreatingManagedTableUsingNonemptyLocation", "true") .config("spark.shuffle.service.enabled", "true") .config("spark.sql.crossJoin.enabled", "true") .appName("cishouseholds") .enableHiveSupport() .getOrCreate() ), } def convert_cerberus_schema_to_pyspark(schema: Mapping[str, Any]) -> StructType: """ Convert a cerberus validation schema to a pyspark schema. Assumes that schema is not nested. The following are required in spark schema: * `nullable` is False by default * `metadata` is an empty dict by default * `name` is the name of the field """ fields = [ {"metadata": {}, "name": name, "nullable": True, **values} for name, values in schema.items() if isinstance(values, dict) ] return StructType.fromJson({"fields": fields, "type": "struct"}) def get_or_create_spark_session() -> SparkSession: """ Create a spark_session, hiding console progress and enabling HIVE table overwrite. Session size is configured via pipeline config. """ config = get_config() session_size = config.get("pyspark_session_size", "m") spark_session = sessions[session_size] return spark_session def column_to_list(df: DataFrame, column_name: str): """Fast collection of all records in a column to a standard list.""" return [row[column_name] for row in df.collect()]
39.271028
90
0.6604
[ "MIT" ]
ONS-SST/cis_households
cishouseholds/pyspark_utils.py
4,202
Python
from flask import Flask, render_template, request import model from model import get_headlines app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': url = request.form['url'] predict = model.predict(url) value = predict[1] clickbait = predict[2] text = predict[3] article_title = predict[0] model.update(value) model.update(clickbait) return render_template('index.html', value = value, clickbait = clickbait, text = text, article_title=article_title, url=url) else: return render_template('index.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/feed') def feed(): headlines = get_headlines() return render_template('feed.html',headlines = headlines) @app.route('/trends') def trends(): return render_template('trends.html', num_fake = model.get_data("FAKE"), num_real = model.get_data("REAL"), num_clickbait = model.get_data("CLICKBAIT"), num_notclickbait = model.get_data("NOT CLICKBAIT")) app.run(host='0.0.0.0', port=8080, debug=True)
5.229381
121
0.377526
[ "MIT" ]
asaxena2019/FakeNewsify-Article-Credibility-Checker
app.py
2,029
Python
from keras.models import load_model from glob import glob from metrics import auc, precision, recall, f1 def save_json(model, path): model_json = model.to_json() with open(path, "w") as json_file: json_file.write(model_json) def save_weights(model, path): model.save_weights(path) def resave_model(model_path, save_path): model = load_model(model_path, custom_objects={"auc": auc, "precision": precision, "recall": recall, "f1": f1}) save_json(model, save_path + '/model.json') save_weights(model, save_path + '/model.h5') if __name__ == '__main__': model_folders = glob('./model/saved_models/*') for model_folder in model_folders: models = sorted(glob(model_folder + '/*.hdf5')) last_model = models[-1] resave_model(last_model, model_folder) model_name = model_folder[model_folder.rfind('/') + 1:] print('Model {} resaved!'.format(model_name))
33.90625
74
0.588018
[ "MIT" ]
eugene-vasilev/Automatic-Tool-Annotation-for-CATARACT-Surgery
learning/model/keras_model_resave.py
1,085
Python
from panda3d.core import * from direct.distributed.PyDatagram import PyDatagram from OTPInternalRepository import OTPInternalRepository from direct.directnotify import DirectNotifyGlobal from game.OtpDoGlobals import * from realtime.types import * from direct.distributed.AIZoneData import AIZoneDataStore from game.TimeManagerAI import TimeManagerAI from game.EstateManagerAI import EstateManagerAI from game.TTHoodAI import TTHoodAI from game.DDHoodAI import DDHoodAI from game.DGHoodAI import DGHoodAI from game.MMHoodAI import MMHoodAI class AIRepository(OTPInternalRepository): notify = DirectNotifyGlobal.directNotify.newCategory('AIRepository') notify.setInfo(True) GameGlobalsId = OTP_DO_ID_TOONTOWN def __init__(self, baseChannel, serverId, districtName, dcFileNames): OTPInternalRepository.__init__(self, baseChannel, serverId, dcFileNames=dcFileNames, dcSuffix='AI') self.zoneDataStore = AIZoneDataStore() self.districtName = districtName self.districtPopulation = 0 self.districtId = self.ourChannel self.hoods = [] self.zoneAllocator = UniqueIdAllocator(61000, 1 << 20) def getGameDoId(self): return self.GameGlobalsId def getAvatarIdFromSender(self): return self.getMsgSender() & 0xFFFFFFFF def getAccountIdFromSender(self): return (self.getMsgSender() >> 32) & 0xFFFFFFFF def getZoneDataStore(self): return self.zoneDataStore def getAvatarExitEvent(self, avId): return 'distObjDelete-%d' % avId def allocateZone(self): return self.zoneAllocator.allocate() def deallocateZone(self, zoneId): self.zoneAllocator.free(zoneId) def handleConnected(self): OTPInternalRepository.handleConnected(self) # register the AI on the state server... dg = PyDatagram() dg.addServerHeader(self.serverId, self.ourChannel, STATESERVER_ADD_SHARD) dg.addString(self.districtName) dg.addUint32(self.districtPopulation) self.send(dg) # add a post remove to remove the shard from the state server # when we disconnect from the message director... dg = PyDatagram() dg.addServerHeader(self.serverId, self.ourChannel, STATESERVER_REMOVE_SHARD) self.addPostRemove(dg) # create the AI globals... self.createGlobals() self.createZones() def createGlobals(self): self.timeManager = TimeManagerAI(self) self.timeManager.generateWithRequired(OTP_ZONE_ID_OLD_QUIET_ZONE) self.estateManager = EstateManagerAI(self) self.estateManager.generateWithRequired(OTP_ZONE_ID_OLD_QUIET_ZONE) def createZones(self): if simbase.config.GetBool('want-toontown-central', False): self.hoods.append(TTHoodAI(self)) if simbase.config.GetBool('want-donalds-dock', False): self.hoods.append(DDHoodAI(self)) if simbase.config.GetBool('want-daisys-garden', False): self.hoods.append(DGHoodAI(self)) if simbase.config.GetBool('want-minnies-melody-land', False): self.hoods.append(MMHoodAI(self)) for hood in self.hoods: hood.createObjects()
33.71875
107
0.713315
[ "BSD-3-Clause" ]
AnythingTechPro/toontown-otp-original
game/AIRepository.py
3,237
Python