Search is not available for this dataset
problem_id
stringlengths
32
32
name
stringlengths
2
112
problem
stringlengths
200
14k
test_cases
stringlengths
33
79.2M
difficulty
stringclasses
33 values
language
sequencelengths
1
1
source
stringclasses
14 values
num_solutions
int64
2
1.9M
starter_code
stringlengths
0
1.47k
subset
stringclasses
3 values
d9166e3b0f0ed9de32f8e9449f984a1c
Memory and De-Evolution
Memory is now interested in the de-evolution of objects, specifically triangles. He starts with an equilateral triangle of side length *x*, and he wishes to perform operations to obtain an equilateral triangle of side length *y*. In a single second, he can modify the length of a single side of the current triangle such that it remains a non-degenerate triangle (triangle of positive area). At any moment of time, the length of each side should be integer. What is the minimum number of seconds required for Memory to obtain the equilateral triangle of side length *y*? The first and only line contains two integers *x* and *y* (3<=≤<=*y*<=&lt;<=*x*<=≤<=100<=000) — the starting and ending equilateral triangle side lengths respectively. Print a single integer — the minimum number of seconds required for Memory to obtain the equilateral triangle of side length *y* if he starts with the equilateral triangle of side length *x*. Sample Input 6 3 8 5 22 4 Sample Output 4 3 6
{"inputs": ["6 3", "8 5", "22 4", "4 3", "57 27", "61 3", "5 4", "10 6", "20 10", "30 5", "25 24", "25 3", "12 7", "18 6", "100000 3", "100000 9999", "9999 3", "5323 32", "6666 66", "38578 32201", "49449 5291", "65310 32879", "41183 4453", "49127 9714", "19684 12784", "15332 5489", "33904 32701", "9258 2966", "21648 11231", "90952 47239", "49298 23199", "33643 24915", "40651 5137", "52991 15644", "97075 62157", "82767 53725", "58915 26212", "86516 16353", "14746 7504", "20404 7529", "52614 8572", "50561 50123", "37509 7908", "36575 23933", "75842 8002", "47357 2692", "23214 4255", "9474 46", "79874 76143", "63784 31333", "70689 29493", "43575 4086", "87099 7410", "75749 55910", "87827 20996", "31162 4580", "63175 33696", "15108 10033", "82991 29195", "48258 12837", "59859 33779", "93698 23890", "42724 379", "70434 39286", "69826 18300", "57825 17636", "64898 2076", "76375 67152", "30698 3778", "100 3", "41 3", "28 4", "2487 19", "100000 25000", "10000 3", "16 3"], "outputs": ["4", "3", "6", "3", "4", "9", "3", "3", "4", "6", "3", "7", "3", "5", "25", "7", "20", "13", "12", "3", "7", "3", "7", "6", "3", "4", "3", "5", "3", "3", "4", "3", "6", "5", "3", "3", "4", "6", "3", "4", "6", "3", "5", "3", "7", "8", "6", "13", "3", "4", "4", "7", "7", "3", "5", "6", "3", "3", "4", "5", "3", "5", "12", "3", "5", "5", "9", "3", "7", "10", "8", "7", "12", "5", "20", "6"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
106
codeforces
d919c3dbfa754f9bf126bdc7d28bb833
Benches
The city park of IT City contains *n* east to west paths and *n* north to south paths. Each east to west path crosses each north to south path, so there are *n*2 intersections. The city funded purchase of five benches. To make it seems that there are many benches it was decided to place them on as many paths as possible. Obviously this requirement is satisfied by the following scheme: each bench is placed on a cross of paths and each path contains not more than one bench. Help the park administration count the number of ways to place the benches. The only line of the input contains one integer *n* (5<=≤<=*n*<=≤<=100) — the number of east to west paths and north to south paths. Output one integer — the number of ways to place the benches. Sample Input 5 Sample Output 120
{"inputs": ["5", "6", "7", "15", "17", "72", "83", "95", "99", "100"], "outputs": ["120", "4320", "52920", "1082161080", "4594961280", "23491596420472320", "101159538130177920", "402852449038723320", "613867215317368320", "680185280130048000"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
23
codeforces
d94229bdeee493d6d40f8e91e0886a42
Little Dima and Equation
Little Dima misbehaved during a math lesson a lot and the nasty teacher Mr. Pickles gave him the following problem as a punishment. Find all integer solutions *x* (0<=&lt;<=*x*<=&lt;<=109) of the equation: where *a*, *b*, *c* are some predetermined constant values and function *s*(*x*) determines the sum of all digits in the decimal representation of number *x*. The teacher gives this problem to Dima for each lesson. He changes only the parameters of the equation: *a*, *b*, *c*. Dima got sick of getting bad marks and he asks you to help him solve this challenging problem. The first line contains three space-separated integers: *a*,<=*b*,<=*c* (1<=≤<=*a*<=≤<=5; 1<=≤<=*b*<=≤<=10000; <=-<=10000<=≤<=*c*<=≤<=10000). Print integer *n* — the number of the solutions that you've found. Next print *n* integers in the increasing order — the solutions of the given equation. Print only integer solutions that are larger than zero and strictly less than 109. Sample Input 3 2 8 1 2 -18 2 2 -1 Sample Output 3 10 2008 13726 0 4 1 31 337 967
{"inputs": ["3 2 8", "1 2 -18", "2 2 -1", "1 1 0", "1 37 963", "1 298 -1665", "1 3034 -9234", "5 9998 9998", "5 10000 10000", "5 65 352", "5 9999 9999", "4 2099 -38", "1 1 -6708", "5 36 -46", "5 8975 -4", "3 2794 -3354", "5 1 4473", "5 1 -9999", "4 4 6", "5 19 -666", "5 5 -865", "2 8468 -3666", "4 9359 -3039", "5 5706 -1856", "2 6828 -39", "5 3903 -9847", "3 1727 4771", "4 1870 9912", "3 6300 7035", "5 8704 -6190", "2 68 3", "5 6 -95", "2 28 12", "3 37 -70", "5 3 53", "3 2570 4109", "3 1139 6335", "3 2278 -1329", "4 30 719", "4 9023 312", "5 10000 9", "5 7698 5337", "5 1 0", "5 12 3", "5 3903 153", "5 10000 0", "3 2570 -6691", "5 5 13"], "outputs": ["3\n10 2008 13726 ", "0", "4\n1 31 337 967 ", "9\n1 2 3 4 5 6 7 8 9 ", "16\n1000 1111 1222 1333 1370 1407 1444 1481 1518 1555 1592 1629 1666 1777 1888 1999 ", "17\n123 421 1017 1315 1613 1911 2209 2507 2805 4295 4593 4891 5189 5487 5785 6679 6977 ", "23\n12004 21106 24140 30208 33242 39310 42344 48412 51446 54480 57514 60548 63582 66616 69650 72684 75718 78752 81786 87854 90888 96956 99990 ", "0", "0", "1\n208000352 ", "0", "0", "0", "0", "0", "5\n165733932 308990694 392855398 415958984 999999980 ", "11\n1424330 14353380 17214841 52526348 60470649 69348430 164920697 184532598 205967449 418199966 459169497 ", "6\n90001 2466100 17200369 52511876 60456177 205952977 ", "13\n10 1030 40006 114250 202506 262150 521290 937030 1562506 2458630 3694090 4743690 7496650 ", "0", "0", "2\n7117922 14933886 ", "0", "0", "2\n7435653 17759589 ", "0", "1\n42124574 ", "0", "1\n466761435 ", "0", "1\n45971 ", "1\n416063647 ", "2\n4044 7180 ", "0", "1\n100663349 ", "2\n427587859 999777799 ", "2\n12134407 499999999 ", "3\n61504671 145790671 999985999 ", "2\n21219149 899597999 ", "0", "0", "0", "5\n1 17210368 52521875 60466176 205962976 ", "0", "0", "1\n10000 ", "1\n999766999 ", "1\n579281018 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
30
codeforces
d947c674f71ad1869e3b4e4c2a9b4d08
Allowed Letters
Polycarp has just launched his new startup idea. The niche is pretty free and the key vector of development sounds really promising, so he easily found himself some investors ready to sponsor the company. However, he is yet to name the startup! Actually, Polycarp has already came up with the name but some improvement to it will never hurt. So now he wants to swap letters at some positions in it to obtain the better name. It isn't necessary for letters to be adjacent. In addition, each of the investors has chosen some index in the name and selected a set of letters that can go there. Indices chosen by different investors are pairwise distinct. If some indices aren't chosen by any investor then any letter can go there. Finally, Polycarp is sure that the smallest lexicographically name is the best. (Like why do you think Google decided to become Alphabet?) More formally, you are given a string consisting of lowercase Latin letters from "a" to "f". You can swap letters at any positions arbitrary number of times (zero swaps is also possible). What is the smallest lexicographically name you can obtain such that the letter at every position is among the allowed letters? If Polycarp can't produce any valid name then print "Impossible". The first line is the string $s$ ($1 \le |s| \le 10^5$) — the name Polycarp has came up with. The string consists only of lowercase Latin letters from "a" to "f". The second line contains a single integer $m$ ($0 \le m \le |s|$) — the number of investors. The $i$-th of the next $m$ lines contain an integer number $pos_i$ and a non-empty string of allowed characters for $pos_i$ ($1 \le pos_i \le |s|$). Each string contains pairwise distinct letters from "a" to "f". $pos_1, pos_2, \dots, pos_m$ are pairwise distinct. If any position of the string doesn't appear in the investors demands then any letter can go in this position. If Polycarp can't produce any valid name then print "Impossible". Otherwise print the smallest lexicographically name Polycarp can obtain by swapping letters in string $s$ such that the letter at every position is among the allowed ones. Sample Input bedefead 5 2 e 1 dc 5 b 7 ef 6 ef abacaba 0 fc 2 1 cfab 2 f Sample Output deadbeef aaaabbc cf
{"inputs": ["bedefead\n5\n2 e\n1 dc\n5 b\n7 ef\n6 ef", "abacaba\n0", "fc\n2\n1 cfab\n2 f", "bbcbbc\n6\n1 c\n2 c\n3 b\n4 ab\n5 ab\n6 ab", "abcdefffffffffffffff\n5\n20 abcde\n19 abcde\n18 abcde\n17 abcde\n16 abcde", "abcdefffffffffffffff\n20\n1 acf\n2 cdef\n3 ef\n4 def\n5 adef\n6 acdef\n7 bdef\n8 abdf\n9 bcdf\n10 abf\n11 abf\n12 bcdf\n13 df\n14 df\n15 abcdf\n16 abcde\n17 abcde\n18 abcde\n19 abcde\n20 abcde", "aaeff\n5\n2 afbdce\n5 c\n1 dbc\n4 afcbde\n3 ef", "cdff\n1\n2 ae", "dfb\n2\n1 c\n3 cae", "cefe\n2\n4 ca\n1 da", "cdccc\n5\n2 fae\n1 dabc\n4 dcfabe\n3 abc\n5 bdcafe", "bdc\n3\n1 f\n3 fdacb\n2 eb", "effa\n3\n3 ca\n2 bd\n4 abfdce", "bfd\n2\n2 aecf\n3 dfb", "bfb\n3\n1 f\n3 acdef\n2 cdefab", "fce\n3\n3 abdecf\n1 efdcba\n2 ac", "ded\n1\n2 aedc", "a\n1\n1 b"], "outputs": ["deadbeef", "aaaabbc", "cf", "ccbbbb", "fffffffffffffffabcde", "fffffffffffffffabcde", "Impossible", "Impossible", "Impossible", "Impossible", "Impossible", "Impossible", "Impossible", "bfd", "Impossible", "ecf", "dde", "Impossible"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
d9838a48b531ba63f2671bdf2b42d709
Russian Roulette
After all the events in Orlando we all know, Sasha and Roma decided to find out who is still the team's biggest loser. Thankfully, Masha found somewhere a revolver with a rotating cylinder of *n* bullet slots able to contain exactly *k* bullets, now the boys have a chance to resolve the problem once and for all. Sasha selects any *k* out of *n* slots he wishes and puts bullets there. Roma spins the cylinder so that every of *n* possible cylinder's shifts is equiprobable. Then the game starts, the players take turns, Sasha starts: he puts the gun to his head and shoots. If there was no bullet in front of the trigger, the cylinder shifts by one position and the weapon is given to Roma for make the same move. The game continues until someone is shot, the survivor is the winner. Sasha does not want to lose, so he must choose slots for bullets in such a way as to minimize the probability of its own loss. Of all the possible variant he wants to select the lexicographically minimal one, where an empty slot is lexicographically less than a charged one. More formally, the cylinder of *n* bullet slots able to contain *k* bullets can be represented as a string of *n* characters. Exactly *k* of them are "X" (charged slots) and the others are "." (uncharged slots). Let us describe the process of a shot. Suppose that the trigger is in front of the first character of the string (the first slot). If a shot doesn't kill anyone and the cylinder shifts, then the string shifts left. So the first character becomes the last one, the second character becomes the first one, and so on. But the trigger doesn't move. It will be in front of the first character of the resulting string. Among all the strings that give the minimal probability of loss, Sasha choose the lexicographically minimal one. According to this very string, he charges the gun. You have to help Sasha to charge the gun. For that, each *x**i* query must be answered: is there a bullet in the positions *x**i*? The first line contains three integers *n*, *k* and *p* (1<=≤<=*n*<=≤<=1018,<=0<=≤<=*k*<=≤<=*n*,<=1<=≤<=*p*<=≤<=1000) — the number of slots in the cylinder, the number of bullets and the number of queries. Then follow *p* lines; they are the queries. Each line contains one integer *x**i* (1<=≤<=*x**i*<=≤<=*n*) the number of slot to describe. Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use cin, cout streams or the %I64d specificator. For each query print "." if the slot should be empty and "X" if the slot should be charged. Sample Input 3 1 3 1 2 3 6 3 6 1 2 3 4 5 6 5 2 5 1 2 3 4 5 Sample Output ..X.X.X.X...XX
{"inputs": ["3 1 3\n1\n2\n3", "6 3 6\n1\n2\n3\n4\n5\n6", "5 2 5\n1\n2\n3\n4\n5", "4 2 8\n1\n3\n4\n2\n3\n4\n1\n2", "4 0 4\n1\n2\n3\n4", "10 2 10\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "12 2 12\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12", "9 4 9\n1\n2\n3\n4\n5\n6\n7\n8\n9", "15 10 15\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15", "7 3 7\n1\n2\n3\n4\n5\n6\n7", "7 4 7\n1\n2\n3\n4\n5\n6\n7", "7 5 7\n1\n2\n3\n4\n5\n6\n7", "7 7 7\n1\n2\n3\n4\n5\n6\n7"], "outputs": ["..X", ".X.X.X", "...XX", "..XX.X.X", "....", ".......X.X", ".........X.X", "...X.X.XX", ".X.X.X.X.XXXXXX", "...X.XX", ".X.X.XX", ".X.XXXX", "XXXXXXX"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
d987e074cea379ef806078ed3db3e1f4
Help Caretaker
Autumn came late to the kingdom of Far Far Away. The harvest was exuberant and it is now time to get ready for the winter. As most people celebrate the Harvest festival, Simon the Caretaker tries to solve a very non-trivial task of how to find place for the agricultural equipment in the warehouse. He's got problems with some particularly large piece of equipment, which is, of course, turboplows. The problem is that when a turboplow is stored, it takes up not some simply rectangular space. It takes up a T-shaped space like on one of the four pictures below (here character "#" stands for the space occupied by the turboplow and character "." stands for the free space): Simon faced a quite natural challenge: placing in the given *n*<=×<=*m* cells warehouse the maximum number of turboplows. As one stores the turboplows, he can rotate them in any manner (so that they take up the space like on one of the four pictures above). However, two turboplows cannot "overlap", that is, they cannot share the same cell in the warehouse. Simon feels that he alone cannot find the optimal way of positioning the plugs in the warehouse that would maximize their quantity. Can you help him? The only line contains two space-separated integers *n* and *m* — the sizes of the warehouse (1<=≤<=*n*,<=*m*<=≤<=9). In the first line print the maximum number of turboplows that can be positioned in the warehouse. In each of the next *n* lines print *m* characters. Use "." (dot) to mark empty space and use successive capital Latin letters ("A" for the first turboplow, "B" for the second one and so on until you reach the number of turboplows in your scheme) to mark place for the corresponding turboplows considering that they are positioned in the optimal manner in the warehouse. The order in which you number places for the turboplows does not matter. If there are several optimal solutions for a warehouse of the given size, print any of them. Sample Input 3 3 5 6 2 2 Sample Output 1 AAA .A. .A. 4 A..C.. AAAC.. ABCCCD .B.DDD BBB..D 0 .. ..
{"inputs": ["3 3", "5 6", "2 2", "4 2", "3 4", "5 3", "4 4", "3 6", "5 4", "5 5", "1 1", "1 2", "2 1", "1 3", "3 1", "1 4", "4 1", "1 5", "5 1", "1 6", "2 3", "3 2", "6 1", "1 7", "7 1", "1 8", "2 4", "8 1", "1 9", "9 1", "2 5", "5 2", "2 6", "4 3", "6 2", "2 7", "7 2", "3 5", "2 8", "8 2", "2 9", "6 3", "9 2", "4 5", "3 7", "7 3", "3 8", "4 6", "6 4", "8 3", "3 9", "9 3", "4 7", "7 4", "6 5", "4 8", "8 4", "5 7", "7 5", "4 9", "6 6", "9 4", "5 8", "8 5", "6 7", "7 6", "5 9", "9 5", "6 8", "8 6", "7 7", "6 9", "9 6", "7 8", "8 7", "7 9", "9 7", "8 8", "8 9", "9 8", "9 9"], "outputs": ["1\nAAA\n.A.\n.A.", "4\nA..C..\nAAAC..\nABCCCD\n.B.DDD\nBBB..D", "0\n..\n..", "0\n..\n..\n..\n..", "1\nA...\nAAA.\nA...", "2\nAAA\n.A.\n.AB\nBBB\n..B", "2\nAAA.\n.AB.\n.AB.\n.BBB", "2\nA..B..\nAAAB..\nA.BBB.", "2\nAAA.\n.AB.\n.AB.\n.BBB\n....", "4\nAAA.B\n.ABBB\nCA.DB\nCCCD.\nC.DDD", "0\n.", "0\n..", "0\n.\n.", "0\n...", "0\n.\n.\n.", "0\n....", "0\n.\n.\n.\n.", "0\n.....", "0\n.\n.\n.\n.\n.", "0\n......", "0\n...\n...", "0\n..\n..\n..", "0\n.\n.\n.\n.\n.\n.", "0\n.......", "0\n.\n.\n.\n.\n.\n.\n.", "0\n........", "0\n....\n....", "0\n.\n.\n.\n.\n.\n.\n.\n.", "0\n.........", "0\n.\n.\n.\n.\n.\n.\n.\n.\n.", "0\n.....\n.....", "0\n..\n..\n..\n..\n..", "0\n......\n......", "1\nAAA\n.A.\n.A.\n...", "0\n..\n..\n..\n..\n..\n..", "0\n.......\n.......", "0\n..\n..\n..\n..\n..\n..\n..", "2\nA..B.\nAAAB.\nA.BBB", "0\n........\n........", "0\n..\n..\n..\n..\n..\n..\n..\n..", "0\n.........\n.........", "2\nAAA\n.A.\n.AB\nBBB\n..B\n...", "0\n..\n..\n..\n..\n..\n..\n..\n..\n..", "2\nA....\nAAAB.\nABBB.\n...B.", "3\nA..B..C\nAAABCCC\nA.BBB.C", "3\nAAA\n.A.\n.AB\nBBB\n.CB\n.C.\nCCC", "3\nA..B..C.\nAAABCCC.\nA.BBB.C.", "3\nA..CCC\nAAABC.\nABBBC.\n...B..", "3\nAAA.\n.AB.\n.AB.\nCBBB\nCCC.\nC...", "3\nAAA\n.A.\n.AB\nBBB\n.CB\n.C.\nCCC\n...", "4\nA..BCCCD.\nAAAB.C.D.\nA.BBBCDDD", "4\nAAA\n.A.\n.AB\nBBB\nC.B\nCCC\nC.D\nDDD\n..D", "4\nA..CCC.\nAAABCD.\nABBBCD.\n...BDDD", "4\nAAA.\n.AB.\n.AB.\nCBBB\nCCCD\nCDDD\n...D", "4\nAAA.B\n.ABBB\n.AC.B\nCCCD.\n..CD.\n..DDD", "4\nA..CCC..\nAAABCD..\nABBBCD..\n...BDDD.", "4\nAAA.\n.AB.\n.AB.\nCBBB\nCCCD\nCDDD\n...D\n....", "5\nA..C..E\nAAACEEE\nABCCCDE\n.B.DDD.\nBBB..D.", "5\nAAA.B\n.ABBB\n.AC.B\nCCCD.\n.ECD.\n.EDDD\nEEE..", "5\nA..CCCE..\nAAABCDEEE\nABBBCDE..\n...BDDD..", "5\nAAA.B.\n.ABBB.\n.A.CB.\nDCCCE.\nDDDCE.\nD..EEE", "5\nAAA.\n.AB.\n.AB.\nCBBB\nCCCD\nCDDD\nEEED\n.E..\n.E..", "6\nA.CCC.E.\nAAACEEE.\nAB.CDFE.\n.BDDDFFF\nBBB.DF..", "6\nAAA.B\n.ABBB\nCA.DB\nCCCD.\nCEDDD\n.EFFF\nEEEF.\n...F.", "6\nA..C..E\nAAACEEE\nABCCCFE\n.B.D.F.\nBBBDFFF\n..DDD..", "6\nAAA.B.\n.ABBB.\n.AC.BD\nCCCDDD\n.EC.FD\n.EFFF.\nEEE.F.", "7\nA.CCC.GGG\nAAACEEEG.\nAB.CDEFG.\n.BDDDEF..\nBBB.DFFF.", "7\nAAA.B\n.ABBB\nCA.DB\nCCCD.\nCEDDD\n.EEEF\nGEFFF\nGGG.F\nG....", "7\nA..C.FFF\nAAAC.EF.\nABCCCEF.\n.B.DEEEG\nBBBD.GGG\n..DDD..G", "7\nAAA.B.\n.ABBB.\n.AC.BD\nCCCDDD\n..CE.D\nFEEEG.\nFFFEG.\nF..GGG", "8\nAAABCCC\n.A.B.C.\nDABBBCE\nDDDFEEE\nDG.F.HE\n.GFFFH.\nGGG.HHH", "8\nA..CEEE.G\nAAAC.EGGG\nABCCCEF.G\n.B.DFFFH.\nBBBD..FH.\n..DDD.HHH", "8\nAAA.B.\n.ABBB.\n.AC.BD\nCCCDDD\nE.CF.D\nEEEF..\nEGFFFH\n.G.HHH\nGGG..H", "9\nA.DDD..H\nAAADFHHH\nA.BDFFFH\nBBBEFIII\n.CBE.GI.\n.CEEEGI.\nCCC.GGG.", "9\nAAAB..C\n.A.BCCC\nDABBBEC\nDDDEEE.\nDFFF.EG\n.HFIGGG\n.HFIIIG\nHHHI...", "10\nA..DFFF.H\nAAAD.FHHH\nABDDDFI.H\n.B.EEEIII\nBBBCEGI.J\n.CCCEGJJJ\n...CGGG.J", "10\nAAA.B..\n.ABBBC.\n.AD.BC.\nDDDECCC\nF.DEEEG\nFFFEGGG\nFHIIIJG\n.H.I.J.\nHHHIJJJ", "10\nAAA.BCCC\n.ABBBDC.\nEA.FBDC.\nEEEFDDDG\nEHFFFGGG\n.HIII.JG\nHHHIJJJ.\n...I..J.", "12\nA.EEE.JJJ\nAAAEHHHJ.\nAB.EFHKJ.\n.BFFFHKKK\nBBBDFIK..\nCDDDGIIIL\nCCCDGILLL\nC..GGG..L", "12\nAAA.BCCC\n.ABBBDC.\nEA.FBDC.\nEEEFDDDG\nEHFFFGGG\n.HHHIIIG\nJHKKKIL.\nJJJK.IL.\nJ..K.LLL", "13\nAAA.BCCC.\n.ABBB.CD.\n.AE.BFCD.\nEEEFFFDDD\nG.E.HFIII\nGGGJHHHI.\nGK.JHL.IM\n.KJJJLMMM\nKKK.LLL.M"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
2
codeforces
d994761ff4339bef8b16efd63c03a5fc
GukiZ and GukiZiana
Professor GukiZ was playing with arrays again and accidentally discovered new function, which he called *GukiZiana*. For given array *a*, indexed with integers from 1 to *n*, and number *y*, *GukiZiana*(*a*,<=*y*) represents maximum value of *j*<=-<=*i*, such that *a**j*<==<=*a**i*<==<=*y*. If there is no *y* as an element in *a*, then *GukiZiana*(*a*,<=*y*) is equal to <=-<=1. GukiZ also prepared a problem for you. This time, you have two types of queries: 1. First type has form 1 *l* *r* *x* and asks you to increase values of all *a**i* such that *l*<=≤<=*i*<=≤<=*r* by the non-negative integer *x*. 1. Second type has form 2 *y* and asks you to find value of *GukiZiana*(*a*,<=*y*). For each query of type 2, print the answer and make GukiZ happy! The first line contains two integers *n*, *q* (1<=≤<=*n*<=≤<=5<=*<=105,<=1<=≤<=*q*<=≤<=5<=*<=104), size of array *a*, and the number of queries. The second line contains *n* integers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=109), forming an array *a*. Each of next *q* lines contain either four or two numbers, as described in statement: If line starts with 1, then the query looks like 1 *l* *r* *x* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, 0<=≤<=*x*<=≤<=109), first type query. If line starts with 2, then th query looks like 2 *y* (1<=≤<=*y*<=≤<=109), second type query. For each query of type 2, print the value of *GukiZiana*(*a*,<=*y*), for *y* value for that query. Sample Input 4 3 1 2 3 4 1 1 2 1 1 1 1 1 2 3 2 3 1 2 1 2 2 1 2 3 2 4 Sample Output 2 0 -1
{"inputs": ["4 3\n1 2 3 4\n1 1 2 1\n1 1 1 1\n2 3", "2 3\n1 2\n1 2 2 1\n2 3\n2 4", "8 5\n1 1 1 2 1 3 1 1\n2 1\n1 1 8 1\n2 2\n1 2 5 2\n2 4", "8 8\n1 9 1 9 2 3 4 5\n1 3 7 1\n2 6\n2 8\n2 9\n1 1 7 3\n2 11\n2 1000000000\n1 1 1 1", "7 3\n2 4 5 2 3 2 8\n2 2\n1 3 4 1\n2 4", "2 2\n1000000000 1000000000\n1 1 2 1\n2 1000000000", "4 4\n1000000000 1000000000 1000000000 1000000000\n2 1000000000\n1 1 2 1000000000\n1 1 3 1000000000\n2 1000000000", "6 4\n1 9 9 2 3 4\n1 2 6 6\n1 5 6 5\n2 15\n2 1", "1 5\n1\n2 4\n2 1\n1 1 1 999\n2 1000\n2 1000", "9 10\n1 1 2 1 3 3 7 8 9\n1 4 6 5\n2 8\n1 1 3 6\n2 1001212\n2 7\n1 3 3 1\n2 9\n2 8\n1 1 9 0\n2 6", "1 1\n1\n2 1", "1 1\n1\n2 5"], "outputs": ["2", "0\n-1", "7\n7\n4", "-1\n-1\n0\n-1\n-1", "5\n0", "-1", "3\n0", "4\n0", "-1\n0\n0\n0", "3\n-1\n6\n6\n3\n0", "0", "-1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
d9a29a5abec504e0145e12b7ca9942e3
Arpa and a research in Mexican wave
Arpa is researching the Mexican wave. There are *n* spectators in the stadium, labeled from 1 to *n*. They start the Mexican wave at time 0. - At time 1, the first spectator stands. - At time 2, the second spectator stands. - ... - At time *k*, the *k*-th spectator stands. - At time *k*<=+<=1, the (*k*<=+<=1)-th spectator stands and the first spectator sits. - At time *k*<=+<=2, the (*k*<=+<=2)-th spectator stands and the second spectator sits. - ... - At time *n*, the *n*-th spectator stands and the (*n*<=-<=*k*)-th spectator sits. - At time *n*<=+<=1, the (*n*<=+<=1<=-<=*k*)-th spectator sits. - ... - At time *n*<=+<=*k*, the *n*-th spectator sits. Arpa wants to know how many spectators are standing at time *t*. The first line contains three integers *n*, *k*, *t* (1<=≤<=*n*<=≤<=109, 1<=≤<=*k*<=≤<=*n*, 1<=≤<=*t*<=&lt;<=*n*<=+<=*k*). Print single integer: how many spectators are standing at time *t*. Sample Input 10 5 3 10 5 7 10 5 12 Sample Output 3 5 3
{"inputs": ["10 5 3", "10 5 7", "10 5 12", "840585600 770678331 788528791", "25462281 23343504 8024619", "723717988 205757169 291917494", "27462087 20831796 15492397", "966696824 346707476 1196846860", "290274403 41153108 327683325", "170963478 151220598 222269210", "14264008 309456 11132789", "886869816 281212106 52891064", "330543750 243917820 205522400", "457658451 18625039 157624558", "385908940 143313325 509731380", "241227633 220621961 10025257", "474139818 268918981 388282504", "25963410 3071034 820199", "656346757 647995766 75748423", "588568132 411878522 521753621", "735788762 355228487 139602545", "860798593 463398487 506871376", "362624055 110824996 194551217", "211691721 195866131 313244576", "45661815 26072719 9643822", "757183104 590795077 709609355", "418386749 1915035 197248338", "763782282 297277890 246562421", "893323188 617630677 607049638", "506708261 356545583 296093684", "984295813 427551190 84113823", "774984967 61373612 96603505", "774578969 342441237 91492393", "76495801 8780305 56447339", "48538385 582843 16805978", "325794610 238970909 553089099", "834925315 316928679 711068031", "932182199 454838315 267066713", "627793782 552043394 67061810", "24317170 17881607 218412", "1000000000 1000 1", "1000000000 1000 2", "1000000000 1 1000", "100 100 100", "100 100 99", "100 100 101", "100 100 199", "1000000000 1000000000 1999999999", "10 5 5", "5 3 5", "10 3 3", "10 5 6", "3 2 4", "10 5 14", "6 1 4", "10 10 19", "10 4 11", "2 2 3", "10 5 11", "600 200 700", "2000 1000 2001", "1000 1000 1001", "5 4 6", "2 1 2", "10 3 10", "15 10 10", "10 5 13", "2 2 2", "5 5 6", "10 6 12", "7 5 8", "10 4 9", "9 2 6", "5 2 6", "6 2 6", "5 5 8", "3 3 5", "10 2 5", "5 3 7", "5 4 8", "10 6 11", "5 3 6", "10 6 14", "10 10 10", "1000000000 1 1000000000", "20 4 22", "5 4 4", "4 3 6", "12 8 18", "10 5 10", "100 50 149", "4 4 4", "7 6 9", "16 10 21", "10 2 11", "600 200 500", "100 30 102", "10 10 18", "15 3 10", "1000000000 1000000000 1000000000", "5 5 5", "10 3 12", "747 457 789", "5 4 7", "15 5 11", "3 2 2", "7 6 8", "7 4 8", "10 4 13", "10 3 9", "20 2 21", "6 5 9", "10 9 18", "12 4 9", "10 7 15", "999999999 999999998 1500000000", "20 5 20", "4745 4574 4757", "10 7 12", "17 15 18", "3 1 3", "100 3 7", "6 2 7", "8 5 10", "3 3 3", "9 5 10", "10 6 13", "13 10 14", "13 12 15", "10 4 12", "41 3 3", "1000000000 1000000000 1400000000", "10 3 11", "12 7 18", "15 3 17", "10 2 8", "1000000000 1000 1000000999", "5 5 9", "100 3 6", "100 5 50", "10000 10 10000", "1 1 1", "6 4 4", "9979797 555554 10101010", "13 5 12", "9 4 10", "7 5 10", "100000000 10000000 100005000", "100000 50000 100001", "15 10 20", "4 4 5", "5 3 3", "30 5 30", "200000 10 200005", "10 9 12", "10 6 15", "1000000000 10 1000000000", "7 5 11", "9 4 4", "14 3 15", "1000000000 100000000 1000000000", "40 10 22", "50 10 51", "999999997 999999995 1999999991", "92 79 144", "8 4 4"], "outputs": ["3", "5", "3", "770678331", "8024619", "205757169", "15492397", "116557440", "3744186", "99914866", "309456", "52891064", "205522400", "18625039", "19490885", "10025257", "268918981", "820199", "75748423", "411878522", "139602545", "463398487", "110824996", "94313276", "9643822", "590795077", "1915035", "246562421", "607049638", "296093684", "84113823", "61373612", "91492393", "8780305", "582843", "11676420", "316928679", "267066713", "67061810", "218412", "1", "2", "1", "100", "99", "99", "1", "1", "5", "3", "3", "5", "1", "1", "1", "1", "3", "1", "4", "100", "999", "999", "3", "1", "3", "10", "2", "2", "4", "4", "4", "4", "2", "1", "2", "2", "1", "2", "1", "1", "5", "2", "2", "10", "1", "2", "4", "1", "2", "5", "1", "4", "4", "5", "1", "200", "28", "2", "3", "1000000000", "5", "1", "415", "2", "5", "2", "5", "3", "1", "3", "1", "2", "1", "4", "2", "499999997", "5", "4562", "5", "14", "1", "3", "1", "3", "3", "4", "3", "9", "10", "2", "3", "600000000", "2", "1", "1", "2", "1", "1", "3", "5", "10", "1", "4", "434341", "5", "3", "2", "9995000", "49999", "5", "3", "3", "5", "5", "7", "1", "10", "1", "4", "2", "100000000", "10", "9", "1", "27", "4"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
246
codeforces
d9ad52fdcdc20660bf62fa8976e10a19
Bus Number
This night wasn't easy on Vasya. His favorite team lost, and he didn't find himself victorious either — although he played perfectly, his teammates let him down every time. He had to win at least one more time, but the losestreak only grew longer and longer... It's no wonder he didn't get any sleep this night at all. In the morning, Vasya was waiting the bus to the university on the bus stop. Vasya's thoughts were hazy and so he couldn't remember the right bus' number quite right and got onto the bus with the number $n$. In the bus, Vasya thought that he could get the order of the digits in the number of the bus wrong. Futhermore, he could "see" some digits several times, but the digits he saw were definitely in the real number of the bus. For example, if Vasya saw the number 2028, it could mean that the real bus number could be 2028, 8022, 2820 or just 820. However, numbers 80, 22208, 52 definitely couldn't be the number of the bus. Also, real bus number couldn't start with the digit 0, this meaning that, for example, number 082 couldn't be the real bus number too. Given $n$, determine the total number of possible bus number variants. The first line contains one integer $n$ ($1 \leq n \leq 10^{18}$) — the number of the bus that was seen by Vasya. It is guaranteed that this number does not start with $0$. Output a single integer — the amount of possible variants of the real bus number. Sample Input 97 2028 Sample Output 2 13
{"inputs": ["97", "2028", "1", "10", "168", "999999", "987654320023456789", "1000000000000000000", "74774", "2", "3", "4", "5", "6", "7", "8", "9", "101010101", "1010101010", "707070707070707070", "19293", "987650", "123456", "900008", "1000000", "9900111", "11112222", "88888880", "100000009", "203456799", "890009800", "900000000", "987654321", "999999999", "1000000000", "999999999999999999", "987654321123456789", "987654321123456780", "888888888888888888", "888884444444448888", "880000000008888888", "122661170586643693", "166187867387753706", "54405428089931205", "96517150587709082", "234906817379759421", "470038695054731020", "888413836884649324", "978691308972024154", "484211136976275613", "824250067279351651", "269041787841325833", "462534182594129378", "79318880250640214", "58577142509378476", "973088698775609061", "529916324588161451", "406105326393716536", "490977896148785607", "547694365350162078", "868572419889505545"], "outputs": ["2", "13", "1", "1", "6", "6", "29340299842560", "18", "28", "1", "1", "1", "1", "1", "1", "1", "1", "246", "456", "92368", "84", "600", "720", "28", "6", "404", "242", "28", "70", "196560", "1120", "8", "362880", "9", "9", "18", "33007837322880", "55657759288320", "18", "184736", "92368", "4205605773600", "224244425700", "417074011200", "417074011200", "22773236965920", "5099960335680", "76835760120", "33638772575520", "6471643862880", "21519859273920", "22773236965920", "13498126800480", "2075276790720", "1126629393120", "1646603038080", "3614537707200", "2760291011520", "2054415328560", "21519859273920", "1124978369760"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
18
codeforces
d9b86edee53889453397f5b7ce5a5e84
Brain Network (hard)
Breaking news from zombie neurology! It turns out that – contrary to previous beliefs – every zombie is born with a single brain, and only later it evolves into a complicated brain structure. In fact, whenever a zombie consumes a brain, a new brain appears in its nervous system and gets immediately connected to one of the already existing brains using a single brain connector. Researchers are now interested in monitoring the brain latency of a zombie. Your task is to write a program which, given a history of evolution of a zombie's nervous system, computes its brain latency at every stage. The first line of the input contains one number *n* – the number of brains in the final nervous system (2<=≤<=*n*<=≤<=200000). In the second line a history of zombie's nervous system evolution is given. For convenience, we number all the brains by 1,<=2,<=...,<=*n* in the same order as they appear in the nervous system (the zombie is born with a single brain, number 1, and subsequently brains 2,<=3,<=...,<=*n* are added). The second line contains *n*<=-<=1 space-separated numbers *p*2,<=*p*3,<=...,<=*p**n*, meaning that after a new brain *k* is added to the system, it gets connected to a parent-brain . Output *n*<=-<=1 space-separated numbers – the brain latencies after the brain number *k* is added, for *k*<==<=2,<=3,<=...,<=*n*. Sample Input 6 1 2 2 1 5 Sample Output 1 2 2 3 4
{"inputs": ["2\n1", "3\n1\n2", "10\n1\n1\n1\n1\n3\n3\n7\n5\n5", "120\n1\n1\n2\n2\n3\n3\n4\n4\n5\n5\n6\n6\n7\n7\n8\n8\n9\n9\n10\n10\n11\n11\n12\n12\n13\n13\n14\n14\n15\n15\n16\n16\n17\n17\n18\n18\n19\n19\n20\n20\n21\n21\n22\n22\n23\n23\n24\n24\n25\n25\n26\n26\n27\n27\n28\n28\n29\n29\n30\n30\n31\n31\n32\n32\n33\n33\n34\n34\n35\n35\n36\n36\n37\n37\n38\n38\n39\n39\n40\n40\n41\n41\n42\n42\n43\n43\n44\n44\n45\n45\n46\n46\n47\n47\n48\n48\n49\n49\n50\n50\n51\n51\n52\n52\n53\n53\n54\n54\n55\n55\n56\n56\n57\n57\n58\n58\n59\n59\n60", "6\n1\n2\n2\n1\n5"], "outputs": ["1 ", "1 2 ", "1 2 2 2 3 3 4 5 5 ", "1 2 3 3 4 4 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 ", "1 2 2 3 4 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
d9cd69ac96b0cfa8b5d217423bac58b2
Fedor and coupons
All our characters have hobbies. The same is true for Fedor. He enjoys shopping in the neighboring supermarket. The goods in the supermarket have unique integer ids. Also, for every integer there is a product with id equal to this integer. Fedor has *n* discount coupons, the *i*-th of them can be used with products with ids ranging from *l**i* to *r**i*, inclusive. Today Fedor wants to take exactly *k* coupons with him. Fedor wants to choose the *k* coupons in such a way that the number of such products *x* that all coupons can be used with this product *x* is as large as possible (for better understanding, see examples). Fedor wants to save his time as well, so he asks you to choose coupons for him. Help Fedor! The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=3·105) — the number of coupons Fedor has, and the number of coupons he wants to choose. Each of the next *n* lines contains two integers *l**i* and *r**i* (<=-<=109<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the description of the *i*-th coupon. The coupons can be equal. In the first line print single integer — the maximum number of products with which all the chosen coupons can be used. The products with which at least one coupon cannot be used shouldn't be counted. In the second line print *k* distinct integers *p*1,<=*p*2,<=...,<=*p**k* (1<=≤<=*p**i*<=≤<=*n*) — the ids of the coupons which Fedor should choose. If there are multiple answers, print any of them. Sample Input 4 2 1 100 40 70 120 130 125 180 3 2 1 12 15 20 25 30 5 2 1 10 5 15 14 50 30 70 99 100 Sample Output 31 1 2 0 1 2 21 3 4
{"inputs": ["4 2\n1 100\n40 70\n120 130\n125 180", "3 2\n1 12\n15 20\n25 30", "5 2\n1 10\n5 15\n14 50\n30 70\n99 100", "7 6\n-8 6\n7 9\n-10 -5\n-6 10\n-7 -3\n5 8\n4 10", "9 6\n-7 -3\n-3 10\n-6 1\n-1 8\n-9 4\n-7 -6\n-5 -3\n-10 -2\n3 4", "7 7\n9 10\n-5 3\n-6 2\n1 6\n-9 6\n-10 7\n-7 -5", "23 2\n-629722518 -626148345\n739975524 825702590\n-360913153 -208398929\n76588954 101603025\n-723230356 -650106339\n-117490984 -101920679\n-39187628 -2520915\n717852164 720343632\n-611281114 -579708833\n-141791522 -122348148\n605078929 699430996\n-873386085 -820238799\n-922404067 -873522961\n7572046 13337057\n975081176 977171682\n901338407 964254238\n325388219 346712972\n505189756 516497863\n-425326983 -422098946\n520670681 522544433\n-410872616 -367919621\n359488350 447471156\n-566203447 -488202136", "24 21\n240694945 246896662\n240694930 246896647\n240695065 246896782\n240695050 246896767\n240695080 246896797\n240694960 246896677\n240694975 246896692\n240694825 246896542\n240694900 246896617\n240694915 246896632\n240694885 246896602\n240694855 246896572\n240694870 246896587\n240694795 246896512\n240695095 246896812\n240695125 246896842\n240695005 246896722\n240694990 246896707\n240695140 246896857\n240695020 246896737\n240695035 246896752\n240694840 246896557\n240694810 246896527\n240695110 246896827", "1 1\n2 2", "1 1\n-1000000000 1000000000", "2 1\n-1000000000 -1000000000\n1000000000 1000000000", "7 3\n3 3\n-6 -1\n6 7\n2 8\n3 10\n-8 0\n-3 10", "5 4\n4 7\n-4 2\n-7 -7\n-5 -2\n-8 -8", "7 7\n0 7\n9 9\n-10 -7\n5 8\n-10 4\n-7 0\n-3 5", "9 2\n5 10\n-10 -10\n0 10\n-6 3\n-8 7\n6 10\n-8 1\n5 7\n2 2", "9 5\n-2 1\n-6 9\n-7 -2\n5 7\n-10 -7\n-9 -2\n1 4\n-1 10\n4 8", "54 7\n-98 -39\n14 60\n-23 -5\n58 75\n14 16\n-40 20\n-6 10\n11 60\n-47 54\n-71 -17\n-48 -25\n-87 -46\n-10 99\n-97 -88\n-14 94\n-25 29\n-96 -92\n68 75\n-75 2\n12 84\n-47 3\n-88 49\n-37 88\n-61 -25\n36 67\n30 54\n12 31\n-71 60\n-18 -15\n-61 -47\n-51 -41\n-67 51\n26 37\n18 94\n-67 52\n-16 56\n-5 26\n27 57\n36 91\n-61 61\n71 86\n27 73\n-57 -39\n54 71\n-16 14\n-97 81\n-32 49\n-18 50\n-63 93\n51 70\n8 66\n43 45\n-2 99\n11 98", "52 18\n-50 54\n35 65\n67 82\n-87 -10\n-39 4\n-55 -18\n-27 90\n-42 73\n18 43\n70 85\n-85 -22\n-1 60\n-89 23\n-78 -75\n-14 69\n-69 50\n-93 74\n-10 45\n-81 -72\n-24 86\n-89 100\n25 70\n-65 -61\n-45 100\n-49 -23\n-74 -59\n-81 -15\n-58 47\n-65 -58\n-47 16\n-22 91\n-85 19\n-81 77\n79 87\n-31 88\n26 32\n11 90\n7 46\n64 83\n-51 -20\n-76 44\n-22 75\n45 84\n-98 46\n-20 78\n-88 -47\n-41 65\n2 93\n-66 69\n-73 94\n-85 -44\n-65 -23"], "outputs": ["31\n1 2 ", "0\n1 2 ", "21\n3 4 ", "0\n1 2 3 4 5 6 ", "1\n1 2 3 5 7 8 ", "0\n1 2 3 4 5 6 7 ", "0\n1 2 ", "6201418\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 21 22 23 ", "1\n1 ", "2000000001\n1 ", "1\n1 ", "6\n4 5 7 ", "0\n1 2 3 4 ", "0\n1 2 3 4 5 6 7 ", "10\n5 7 ", "0\n1 2 3 4 5 ", "111\n22 28 32 35 40 46 49 ", "67\n1 7 8 16 17 20 21 24 28 31 33 35 41 42 44 47 49 50 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
4
codeforces
da0df1b8f82f23e6dd788cf13a0aa7a2
Cola
To celebrate the opening of the Winter Computer School the organizers decided to buy in *n* liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly *a* bottles 0.5 in volume, *b* one-liter bottles and *c* of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well). Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly *n* liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer. All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind. The first line contains four integers — *n*, *a*, *b*, *c* (1<=≤<=*n*<=≤<=10000, 0<=≤<=*a*,<=*b*,<=*c*<=≤<=5000). Print the unique number — the solution to the problem. If it is impossible to buy exactly *n* liters of cola, print 0. Sample Input 10 5 5 5 3 0 0 2 Sample Output 9 0
{"inputs": ["10 5 5 5", "3 0 0 2", "1 0 0 0", "1 1 0 0", "1 2 0 0", "1 0 1 0", "1 0 2 0", "1 0 0 1", "2 2 2 2", "3 3 2 1", "3 10 10 10", "5 2 1 1", "7 2 2 2", "7 3 0 5", "10 20 10 5", "10 0 8 10", "10 19 15 100", "20 1 2 3", "20 10 20 30", "25 10 5 10", "101 10 0 50", "101 10 10 50", "505 142 321 12", "999 999 899 299", "5 5000 5000 5000", "10000 5000 5000 5000", "10000 0 5000 5000", "10000 5000 0 5000", "10000 5000 5000 0", "10000 4534 2345 4231", "10000 5000 2500 2500", "1234 645 876 1000", "8987 4000 2534 4534", "10000 2500 2500 2500", "10000 4999 2500 2500", "7777 4444 3333 2222", "5643 1524 1423 2111", "8765 2432 2789 4993", "5000 5000 5000 5000", "2500 5000 5000 5000"], "outputs": ["9", "0", "0", "0", "1", "1", "1", "0", "3", "3", "6", "0", "1", "1", "36", "5", "35", "0", "57", "12", "3", "33", "0", "145000", "12", "6253751", "2501", "1251", "0", "2069003", "1", "141636", "2536267", "0", "0", "1236544", "146687", "1697715", "4691251", "1565001"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
23
codeforces
da2883d92f1247d31b17cf7ed15d3203
Saitama Destroys Hotel
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0. The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0. The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively. The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*. Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0. Sample Input 3 7 2 1 3 8 5 2 5 10 2 77 3 33 8 21 9 12 10 64 Sample Output 11 79
{"inputs": ["3 7\n2 1\n3 8\n5 2", "5 10\n2 77\n3 33\n8 21\n9 12\n10 64", "1 1000\n1000 1000", "1 1\n1 1", "1 1000\n1 1", "1 1000\n1 1000", "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "2 7\n6 3\n1 5", "2 100\n99 2\n1 10", "5 5\n1 1\n2 1\n3 1\n4 1\n5 1", "3 7\n1 6\n5 5\n6 1", "2 100\n4 100\n7 99", "2 10\n9 3\n1 4", "2 5\n4 4\n5 4", "2 10\n9 10\n6 11", "2 100\n99 9\n1 10", "2 7\n3 5\n7 4", "4 4\n4 6\n4 8\n1 7\n2 9", "2 1000\n1 2\n1000 1", "2 20\n1 1\n2 2", "2 20\n10 10\n19 9"], "outputs": ["11", "79", "2000", "2", "1000", "1001", "2", "9", "101", "6", "10", "106", "12", "9", "19", "108", "11", "12", "1001", "20", "28"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
179
codeforces
da2f1cf3fd4cb162fa2d6e760291b9b8
Hyperspace Jump (easy)
The Rebel fleet is on the run. It consists of *m* ships currently gathered around a single planet. Just a few seconds ago, the vastly more powerful Empire fleet has appeared in the same solar system, and the Rebels will need to escape into hyperspace. In order to spread the fleet, the captain of each ship has independently come up with the coordinate to which that ship will jump. In the obsolete navigation system used by the Rebels, this coordinate is given as the value of an arithmetic expression of the form . To plan the future of the resistance movement, Princess Heidi needs to know, for each ship, how many ships are going to end up at the same coordinate after the jump. You are her only hope! The first line of the input contains a single integer *m* (1<=≤<=*m*<=≤<=200<=000) – the number of ships. The next *m* lines describe one jump coordinate each, given as an arithmetic expression. An expression has the form (a+b)/c. Namely, it consists of: an opening parenthesis (, a positive integer *a* of up to two decimal digits, a plus sign +, a positive integer *b* of up to two decimal digits, a closing parenthesis ), a slash /, and a positive integer *c* of up to two decimal digits. Print a single line consisting of *m* space-separated integers. The *i*-th integer should be equal to the number of ships whose coordinate is equal to that of the *i*-th ship (including the *i*-th ship itself). Sample Input 4 (99+98)/97 (26+4)/10 (12+33)/15 (5+1)/7 Sample Output 1 2 2 1
{"inputs": ["4\n(99+98)/97\n(26+4)/10\n(12+33)/15\n(5+1)/7", "10\n(44+98)/19\n(36+58)/47\n(62+74)/68\n(69+95)/82\n(26+32)/29\n(32+46)/39\n(32+24)/28\n(47+61)/54\n(39+13)/26\n(98+98)/98", "30\n(89+76)/87\n(81+78)/18\n(60+97)/32\n(41+14)/48\n(55+65)/27\n(29+15)/95\n(64+13)/96\n(78+30)/75\n(43+6)/60\n(69+34)/48\n(62+2)/97\n(85+42)/3\n(4+97)/42\n(1+18)/39\n(46+55)/76\n(22+59)/24\n(62+81)/98\n(64+8)/51\n(9+59)/48\n(47+2)/80\n(33+74)/76\n(61+83)/44\n(86+4)/51\n(65+41)/49\n(53+36)/45\n(6+19)/15\n(51+21)/68\n(98+36)/86\n(92+65)/86\n(27+58)/78"], "outputs": ["1 2 2 1 ", "1 9 9 9 9 9 9 9 9 9 ", "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
55
codeforces
da43b3d2628ee657c28f06e7172069e1
Not simply beatiful strings
Let's call a string adorable if its letters can be realigned in such a way that they form two consequent groups of equal symbols (note that different groups must contain different symbols). For example, ababa is adorable (you can transform it to aaabb, where the first three letters form a group of *a*-s and others — a group of *b*-s), but cccc is not since in each possible consequent partition letters in these two groups coincide. You're given a string *s*. Check whether it can be split into two non-empty subsequences such that the strings formed by these subsequences are adorable. Here a subsequence is an arbitrary set of indexes of the string. The only line contains *s* (1<=≤<=|*s*|<=≤<=105) consisting of lowercase latin letters. Print «Yes» if the string can be split according to the criteria above or «No» otherwise. Each letter can be printed in arbitrary case. Sample Input ababa zzcxx yeee Sample Output Yes Yes No
{"inputs": ["ababa", "zzcxx", "yeee", "a", "bbab", "abcd", "abc", "abcdaaaa", "aaaaaaaaaaaaaaa", "adb", "dcccbad", "bcbccccccca", "abcdefgh", "aabcdef", "aabc", "ssab", "ccdd", "abcc", "ab", "abcde", "aa", "aaabbb", "bbbba", "abbbc", "baabaa", "abacabadde", "aabbcc", "abbc", "aaaaaaabbbbbbcder", "aabb", "aabbccddee", "abca", "aaabbbccc"], "outputs": ["Yes", "Yes", "No", "No", "No", "Yes", "No", "Yes", "No", "No", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "No", "No", "No", "Yes", "No", "Yes", "Yes", "No", "Yes", "Yes", "No", "Yes", "No", "Yes", "Yes"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
110
codeforces
da5eb88fa07a9f4934cdc5e65e4121a0
Coprocessor
You are given a program you want to execute as a set of tasks organized in a dependency graph. The dependency graph is a directed acyclic graph: each task can depend on results of one or several other tasks, and there are no directed circular dependencies between tasks. A task can only be executed if all tasks it depends on have already completed. Some of the tasks in the graph can only be executed on a coprocessor, and the rest can only be executed on the main processor. In one coprocessor call you can send it a set of tasks which can only be executed on it. For each task of the set, all tasks on which it depends must be either already completed or be included in the set. The main processor starts the program execution and gets the results of tasks executed on the coprocessor automatically. Find the minimal number of coprocessor calls which are necessary to execute the given program. The first line contains two space-separated integers *N* (1<=≤<=*N*<=≤<=105) — the total number of tasks given, and *M* (0<=≤<=*M*<=≤<=105) — the total number of dependencies between tasks. The next line contains *N* space-separated integers . If *E**i*<==<=0, task *i* can only be executed on the main processor, otherwise it can only be executed on the coprocessor. The next *M* lines describe the dependencies between tasks. Each line contains two space-separated integers *T*1 and *T*2 and means that task *T*1 depends on task *T*2 (*T*1<=≠<=*T*2). Tasks are indexed from 0 to *N*<=-<=1. All *M* pairs (*T*1,<=*T*2) are distinct. It is guaranteed that there are no circular dependencies between tasks. Output one line containing an integer — the minimal number of coprocessor calls necessary to execute the program. Sample Input 4 3 0 1 0 1 0 1 1 2 2 3 4 3 1 1 1 0 0 1 0 2 3 0 Sample Output 2 1
{"inputs": ["4 3\n0 1 0 1\n0 1\n1 2\n2 3", "4 3\n1 1 1 0\n0 1\n0 2\n3 0", "10 39\n0 1 0 1 0 1 1 0 1 1\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n3 4\n3 6\n3 7\n3 8\n3 9\n4 5\n4 6\n4 7\n4 9\n5 6\n5 7\n5 8\n5 9\n6 8\n6 9\n7 8\n7 9\n8 9", "10 16\n0 1 1 0 0 1 1 0 0 1\n0 2\n0 3\n1 2\n1 3\n2 4\n2 5\n3 4\n3 5\n4 6\n4 7\n5 6\n5 7\n6 8\n6 9\n7 8\n7 9", "1 0\n0", "1 0\n1", "2 1\n0 1\n0 1", "2 1\n1 0\n0 1", "10 19\n0 0 0 0 0 0 0 0 1 1\n0 1\n0 3\n0 4\n1 2\n1 3\n1 4\n1 5\n1 7\n1 8\n1 9\n2 3\n2 4\n3 4\n3 5\n4 6\n4 8\n5 7\n6 7\n7 9", "10 29\n0 1 1 1 1 1 1 0 1 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 8\n1 2\n1 3\n1 4\n1 7\n1 8\n1 9\n2 3\n2 5\n2 7\n2 8\n2 9\n3 4\n3 9\n4 5\n4 8\n5 6\n5 7\n6 7\n6 8\n6 9\n7 8\n8 9", "10 9\n1 1 1 0 1 1 0 1 0 1\n0 1\n0 4\n0 5\n1 2\n1 3\n2 9\n3 6\n6 7\n7 8", "10 14\n1 1 0 0 1 0 1 0 1 1\n0 1\n0 2\n0 4\n0 9\n1 3\n2 5\n3 4\n3 6\n3 8\n4 9\n5 6\n6 7\n7 8\n7 9", "10 19\n0 1 0 1 1 1 1 1 1 1\n0 1\n0 2\n0 3\n0 4\n0 8\n0 9\n1 4\n1 8\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n3 6\n4 5\n4 7\n5 8", "10 24\n0 1 0 0 0 1 0 0 0 1\n0 1\n0 2\n0 3\n0 4\n0 6\n0 9\n1 3\n1 4\n1 7\n1 9\n2 4\n2 5\n2 7\n2 8\n3 4\n3 6\n4 5\n4 6\n5 6\n5 7\n6 7\n6 9\n7 8\n8 9", "10 29\n0 1 1 1 0 1 0 1 1 1\n0 1\n0 2\n0 4\n0 7\n0 8\n1 2\n1 4\n1 5\n1 7\n1 8\n1 9\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n3 5\n3 6\n3 7\n4 5\n4 6\n4 9\n5 7\n5 8\n6 8\n7 8\n7 9\n8 9", "10 39\n1 1 1 1 1 1 1 1 1 1\n0 1\n0 2\n0 3\n0 5\n0 6\n0 7\n0 8\n0 9\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n3 4\n3 5\n3 7\n3 8\n3 9\n4 5\n4 6\n5 6\n5 7\n5 8\n5 9\n6 7\n6 8\n7 8\n7 9\n8 9"], "outputs": ["2", "1", "4", "3", "0", "1", "1", "1", "1", "2", "2", "3", "1", "3", "2", "1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
2
codeforces
da6fcb2593d5a371fcd55ed5d106176c
Between the Offices
As you may know, MemSQL has American offices in both San Francisco and Seattle. Being a manager in the company, you travel a lot between the two cities, always by plane. You prefer flying from Seattle to San Francisco than in the other direction, because it's warmer in San Francisco. You are so busy that you don't remember the number of flights you have made in either direction. However, for each of the last *n* days you know whether you were in San Francisco office or in Seattle office. You always fly at nights, so you never were at both offices on the same day. Given this information, determine if you flew more times from Seattle to San Francisco during the last *n* days, or not. The first line of input contains single integer *n* (2<=≤<=*n*<=≤<=100) — the number of days. The second line contains a string of length *n* consisting of only capital 'S' and 'F' letters. If the *i*-th letter is 'S', then you were in Seattle office on that day. Otherwise you were in San Francisco. The days are given in chronological order, i.e. today is the last day in this sequence. Print "YES" if you flew more times from Seattle to San Francisco, and "NO" otherwise. You can print each letter in any case (upper or lower). Sample Input 4 FSSF 2 SF 10 FFFFFFFFFF 10 SSFFSFFSFF Sample Output NO YES NO YES
{"inputs": ["4\nFSSF", "2\nSF", "10\nFFFFFFFFFF", "10\nSSFFSFFSFF", "20\nSFSFFFFSSFFFFSSSSFSS", "20\nSSFFFFFSFFFFFFFFFFFF", "20\nSSFSFSFSFSFSFSFSSFSF", "20\nSSSSFSFSSFSFSSSSSSFS", "100\nFFFSFSFSFSSFSFFSSFFFFFSSSSFSSFFFFSFFFFFSFFFSSFSSSFFFFSSFFSSFSFFSSFSSSFSFFSFSFFSFSFFSSFFSFSSSSFSFSFSS", "100\nFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "100\nFFFFFFFFFFFFFFFFFFFFFFFFFFSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFSFFFFFFFFFFFFFFFFFSS", "100\nFFFFFFFFFFFFFSFFFFFFFFFSFSSFFFFFFFFFFFFFFFFFFFFFFSFFSFFFFFSFFFFFFFFSFFFFFFFFFFFFFSFFFFFFFFSFFFFFFFSF", "100\nSFFSSFFFFFFSSFFFSSFSFFFFFSSFFFSFFFFFFSFSSSFSFSFFFFSFSSFFFFFFFFSFFFFFSFFFFFSSFFFSFFSFSFFFFSFFSFFFFFFF", "100\nFFFFSSSSSFFSSSFFFSFFFFFSFSSFSFFSFFSSFFSSFSFFFFFSFSFSFSFFFFFFFFFSFSFFSFFFFSFSFFFFFFFFFFFFSFSSFFSSSSFF", "100\nFFFFFFFFFFFFSSFFFFSFSFFFSFSSSFSSSSSFSSSSFFSSFFFSFSFSSFFFSSSFFSFSFSSFSFSSFSFFFSFFFFFSSFSFFFSSSFSSSFFS", "100\nFFFSSSFSFSSSSFSSFSFFSSSFFSSFSSFFSSFFSFSSSSFFFSFFFSFSFSSSFSSFSFSFSFFSSSSSFSSSFSFSFFSSFSFSSFFSSFSFFSFS", "100\nFFSSSSFSSSFSSSSFSSSFFSFSSFFSSFSSSFSSSFFSFFSSSSSSSSSSSSFSSFSSSSFSFFFSSFFFFFFSFSFSSSSSSFSSSFSFSSFSSFSS", "100\nSSSFFFSSSSFFSSSSSFSSSSFSSSFSSSSSFSSSSSSSSFSFFSSSFFSSFSSSSFFSSSSSSFFSSSSFSSSSSSFSSSFSSSSSSSFSSSSFSSSS", "100\nFSSSSSSSSSSSFSSSSSSSSSSSSSSSSFSSSSSSFSSSSSSSSSSSSSFSSFSSSSSFSSFSSSSSSSSSFFSSSSSFSFSSSFFSSSSSSSSSSSSS", "100\nSSSSSSSSSSSSSFSSSSSSSSSSSSFSSSFSSSSSSSSSSSSSSSSSSSSSSSSSSSSSFSSSSSSSSSSSSSSSSFSFSSSSSSSSSSSSSSSSSSFS", "100\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS", "100\nSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "100\nSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFSFSFFFFFFFFFFFSFSFFFFFFFFFFFFFSFFFFFFFFFFFFFFFFFFFFFFFFF", "100\nSFFFFFFFFFFFFSSFFFFSFFFFFFFFFFFFFFFFFFFSFFFSSFFFFSFSFFFSFFFFFFFFFFFFFFFSSFFFFFFFFSSFFFFFFFFFFFFFFSFF", "100\nSFFSSSFFSFSFSFFFFSSFFFFSFFFFFFFFSFSFFFSFFFSFFFSFFFFSFSFFFFFFFSFFFFFFFFFFSFFSSSFFSSFFFFSFFFFSFFFFSFFF", "100\nSFFFSFFFFSFFFSSFFFSFSFFFSFFFSSFSFFFFFSFFFFFFFFSFSFSFFSFFFSFSSFSFFFSFSFFSSFSFSSSFFFFFFSSFSFFSFFFFFFFF", "100\nSSSSFFFFSFFFFFFFSFFFFSFSFFFFSSFFFFFFFFFSFFSSFFFFFFSFSFSSFSSSFFFFFFFSFSFFFSSSFFFFFFFSFFFSSFFFFSSFFFSF", "100\nSSSFSSFFFSFSSSSFSSFSSSSFSSFFFFFSFFSSSSFFSSSFSSSFSSSSFSSSSFSSSSSSSFSFSSFFFSSFFSFFSSSSFSSFFSFSSFSFFFSF", "100\nSFFSFSSSSSSSFFSSSFSSSSFSFSSFFFSSSSSSFSSSSFSSFSSSFSSSSSSSFSSFSFFFSSFSSFSFSFSSSSSSSSSSSSFFFFSSSSSFSFFF", "100\nSSSFSFFSFSFFSSSSSFSSSFSSSFFFSSSSSSSSSFSFSFSSSSFSFSSFFFFFSSSSSSSSSSSSSSSSSSSFFSSSSSFSFSSSSFFSSSSFSSSF", "100\nSSSFSSSSSSSSSSFSSSSFSSSSSSFSSSSSSFSSSSSSSSSSSSSSFSSSFSSSFSSSSSSSSSSSFSSSSSSFSFSSSSFSSSSSSFSSSSSSSSFF", "100\nSSSSSSSSSSSSSSSFSFSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSFFSSSSSSSSSFSSSSSSSSSSSSSSSSSF", "100\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSF", "2\nSS"], "outputs": ["NO", "YES", "NO", "YES", "NO", "YES", "YES", "NO", "NO", "NO", "NO", "NO", "YES", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "NO"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
887
codeforces
da8590f2c736c318d86e744275cbf270
Chips
Gerald plays the following game. He has a checkered field of size *n*<=×<=*n* cells, where *m* various cells are banned. Before the game, he has to put a few chips on some border (but not corner) board cells. Then for *n*<=-<=1 minutes, Gerald every minute moves each chip into an adjacent cell. He moves each chip from its original edge to the opposite edge. Gerald loses in this game in each of the three cases: - At least one of the chips at least once fell to the banned cell. - At least once two chips were on the same cell. - At least once two chips swapped in a minute (for example, if you stand two chips on two opposite border cells of a row with even length, this situation happens in the middle of the row). In that case he loses and earns 0 points. When nothing like that happened, he wins and earns the number of points equal to the number of chips he managed to put on the board. Help Gerald earn the most points. The first line contains two space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=1000, 0<=≤<=*m*<=≤<=105) — the size of the field and the number of banned cells. Next *m* lines each contain two space-separated integers. Specifically, the *i*-th of these lines contains numbers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*) — the coordinates of the *i*-th banned cell. All given cells are distinct. Consider the field rows numbered from top to bottom from 1 to *n*, and the columns — from left to right from 1 to *n*. Print a single integer — the maximum points Gerald can earn in this game. Sample Input 3 1 2 2 3 0 4 3 3 1 3 2 3 3 Sample Output 0 1 1
{"inputs": ["3 1\n2 2", "3 0", "4 3\n3 1\n3 2\n3 3", "2 1\n1 1", "2 3\n1 2\n2 1\n2 2", "5 1\n3 2", "5 1\n2 3", "1000 0", "999 0", "5 5\n3 2\n5 4\n3 3\n2 3\n1 2", "5 5\n3 2\n1 4\n5 1\n4 5\n3 1", "5 5\n2 2\n5 3\n2 3\n5 1\n4 4", "6 5\n2 6\n6 5\n3 1\n2 2\n1 2", "6 5\n2 6\n5 2\n4 3\n6 6\n2 5", "6 5\n2 1\n6 4\n2 2\n4 3\n4 1"], "outputs": ["0", "1", "1", "0", "0", "4", "4", "1996", "1993", "1", "2", "1", "4", "2", "3"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
7
codeforces
da8ef89e28fe6467a869a3a606647489
Range Increments
Polycarpus is an amateur programmer. Now he is analyzing a friend's program. He has already found there the function rangeIncrement(l, r), that adds 1 to each element of some array *a* for all indexes in the segment [*l*,<=*r*]. In other words, this function does the following: Polycarpus knows the state of the array *a* after a series of function calls. He wants to determine the minimum number of function calls that lead to such state. In addition, he wants to find what function calls are needed in this case. It is guaranteed that the required number of calls does not exceed 105. Before calls of function rangeIncrement(l, r) all array elements equal zero. The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the length of the array *a*[1... *n*]. The second line contains its integer space-separated elements, *a*[1],<=*a*[2],<=...,<=*a*[*n*] (0<=≤<=*a*[*i*]<=≤<=105) after some series of function calls rangeIncrement(l, r). It is guaranteed that at least one element of the array is positive. It is guaranteed that the answer contains no more than 105 calls of function rangeIncrement(l, r). Print on the first line *t* — the minimum number of calls of function rangeIncrement(l, r), that lead to the array from the input data. It is guaranteed that this number will turn out not more than 105. Then print *t* lines — the descriptions of function calls, one per line. Each line should contain two integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the arguments of the *i*-th call rangeIncrement(l, r). Calls can be applied in any order. If there are multiple solutions, you are allowed to print any of them. Sample Input 6 1 2 1 1 4 1 5 1 0 1 0 1 Sample Output 5 2 2 5 5 5 5 5 5 1 6 3 1 1 3 3 5 5
{"inputs": ["6\n1 2 1 1 4 1", "5\n1 0 1 0 1", "1\n1", "1\n100000", "5\n1 2 3 4 5", "12\n0 1 1 1 3 4 3 3 3 3 2 2", "2\n1 1", "2\n2 1", "2\n1 3", "2\n2 4", "3\n1 1 1", "3\n0 2 1", "3\n2 2 1", "3\n2 4 2", "5\n1 1 0 0 0", "5\n0 0 1 1 0", "5\n1 0 2 1 0", "5\n2 1 2 3 3", "20\n4 5 4 4 3 2 2 1 2 2 2 3 3 4 2 2 2 1 1 1", "20\n1 6 8 9 10 10 11 11 10 10 9 6 6 6 6 4 3 2 1 0", "20\n4 6 7 8 8 8 9 9 10 12 12 11 12 12 11 9 8 8 5 2", "20\n2 2 4 5 5 6 7 6 5 5 7 6 4 3 3 3 3 3 3 1", "20\n5 9 11 12 13 13 13 13 13 13 13 13 13 13 12 11 11 8 6 4"], "outputs": ["5\n2 2\n5 5\n5 5\n5 5\n1 6", "3\n1 1\n3 3\n5 5", "1\n1 1", "100000\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1...", "5\n5 5\n4 5\n3 5\n2 5\n1 5", "4\n6 6\n5 10\n5 12\n2 12", "1\n1 2", "2\n1 1\n1 2", "3\n2 2\n2 2\n1 2", "4\n2 2\n2 2\n1 2\n1 2", "1\n1 3", "2\n2 2\n2 3", "2\n1 2\n1 3", "4\n2 2\n2 2\n1 3\n1 3", "1\n1 2", "1\n3 4", "3\n1 1\n3 3\n3 4", "4\n1 1\n4 5\n3 5\n1 5", "8\n2 2\n1 4\n1 5\n1 7\n14 14\n12 14\n9 17\n1 20", "11\n7 8\n5 10\n4 11\n3 11\n3 11\n2 15\n2 15\n2 16\n2 17\n2 18\n1 19", "13\n10 11\n13 14\n10 15\n9 15\n7 16\n4 18\n3 18\n2 18\n2 19\n1 19\n1 19\n1 20\n1 20", "9\n7 7\n6 8\n11 11\n11 12\n4 12\n3 13\n3 19\n1 19\n1 20", "13\n5 14\n4 15\n3 17\n3 17\n2 17\n2 18\n2 18\n2 19\n1 19\n1 20\n1 20\n1 20\n1 20"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
da9eae118d525876722583eb6f68b38b
Cakeminator
You are given a rectangular cake, represented as an *r*<=×<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=×<=4 cake may look as follows: The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times. Please output the maximum number of cake cells that the cakeminator can eat. The first line contains two integers *r* and *c* (2<=≤<=*r*,<=*c*<=≤<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters — the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these: - '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry. Output the maximum number of cake cells that the cakeminator can eat. Sample Input 3 4 S... .... ..S. Sample Output 8
{"inputs": ["3 4\nS...\n....\n..S.", "2 2\n..\n..", "2 2\nSS\nSS", "7 3\nS..\nS..\nS..\nS..\nS..\nS..\nS..", "3 5\n..S..\nSSSSS\n..S..", "10 10\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS", "10 10\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS", "10 10\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..", "9 5\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS", "9 9\n...S.....\nS.S.....S\n.S....S..\n.S.....SS\n.........\n..S.S..S.\n.SS......\n....S....\n..S...S..", "5 6\nSSSSSS\nSSSSSS\nSSSSSS\nSS.S..\nS.S.SS", "9 8\n........\n.......S\n........\nS.......\n........\n........\nS.......\n........\n.......S", "9 7\n......S\n......S\nS.S.S..\n.......\n.......\n.S.....\n.S....S\n..S....\n.S....S", "10 10\n.....S....\n....SS..S.\n.S...S....\n........SS\n.S.......S\nSS..S.....\n.SS.....SS\nS..S......\n.......SSS\nSSSSS....S", "6 7\n..S.SS.\n......S\n....S.S\nSS..S..\nS..SS.S\n.....S.", "10 6\n.SSSSS\nSSS.SS\nSSSSSS\nS.SSSS\nSSSSS.\nS.SSSS\nSS.SSS\n.SSS.S\n.SSS..\nSS..SS", "2 2\n..\n..", "3 2\nS.\n.S\nS.", "3 2\nS.\n.S\nS.", "4 3\n.S.\nS.S\n.S.\nS.S", "2 3\n...\nSSS", "2 4\nS.SS\nS.SS", "2 2\n..\n.S", "3 2\n.S\n.S\nSS", "2 4\nSS.S\n..S.", "2 3\n...\nS.."], "outputs": ["8", "4", "0", "14", "0", "0", "30", "80", "0", "17", "0", "64", "28", "10", "0", "0", "4", "0", "0", "0", "3", "2", "3", "0", "0", "5"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
520
codeforces
dae0c1d757095ab713064ab15b0d198f
Happy Line
Do you like summer? Residents of Berland do. They especially love eating ice cream in the hot summer. So this summer day a large queue of *n* Berland residents lined up in front of the ice cream stall. We know that each of them has a certain amount of berland dollars with them. The residents of Berland are nice people, so each person agrees to swap places with the person right behind him for just 1 dollar. More formally, if person *a* stands just behind person *b*, then person *a* can pay person *b* 1 dollar, then *a* and *b* get swapped. Of course, if person *a* has zero dollars, he can not swap places with person *b*. Residents of Berland are strange people. In particular, they get upset when there is someone with a strictly smaller sum of money in the line in front of them. Can you help the residents of Berland form such order in the line so that they were all happy? A happy resident is the one who stands first in the line or the one in front of who another resident stands with not less number of dollars. Note that the people of Berland are people of honor and they agree to swap places only in the manner described above. The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of residents who stand in the line. The second line contains *n* space-separated integers *a**i* (0<=≤<=*a**i*<=≤<=109), where *a**i* is the number of Berland dollars of a man standing on the *i*-th position in the line. The positions are numbered starting from the end of the line. If it is impossible to make all the residents happy, print ":(" without the quotes. Otherwise, print in the single line *n* space-separated integers, the *i*-th of them must be equal to the number of money of the person on position *i* in the new line. If there are multiple answers, print any of them. Sample Input 2 11 8 5 10 9 7 10 6 3 12 3 3 Sample Output 9 10 :( 4 4 10
{"inputs": ["2\n11 8", "5\n10 9 7 10 6", "3\n12 3 3", "4\n7 3 9 10", "1\n1", "5\n15 5 8 6 3", "1\n1000000000", "2\n2 1", "3\n11 1 9", "1\n0", "20\n38 32 21 44 26 24 15 32 34 40 31 33 33 13 26 28 12 10 14 18", "20\n43 38 20 41 16 37 27 29 19 17 24 19 28 8 14 32 13 21 32 16", "20\n44 50 41 18 28 31 21 38 12 20 28 15 12 29 16 31 34 24 19 15", "10\n920480900 920480899 920480898 920480897 920480896 920480895 920480894 920480893 920480892 920480891", "10\n536259132 536259132 536259132 536259132 536259132 536259132 536259132 536259132 536259132 536259132", "10\n876584065 876584063 876584061 876584059 876584057 876584055 876584053 876584051 876584049 876584047", "10\n528402489 528402486 528402483 528402480 528402477 528402474 528402471 528402468 528402465 528402462", "10\n383593860 383593860 383593860 383593860 383593860 383593858 383593856 383593854 383593852 383593850", "10\n198447418 198447416 198447414 198447412 198447410 198447410 198447410 198447410 198447410 198447410", "10\n520230360 520230361 520230362 520230363 520230364 520230365 520230366 520230367 520230368 520230369"], "outputs": ["9 10 ", ":(", "4 4 10 ", "4 6 9 10 ", "1 ", "6 6 7 7 11 ", "1000000000 ", ":(", ":(", "0 ", "21 22 24 24 24 24 24 25 25 28 28 28 28 28 28 28 28 28 29 30 ", "20 20 20 23 23 23 23 23 25 25 25 25 26 26 26 27 27 27 29 31 ", "20 20 22 23 23 24 24 25 26 27 27 27 29 29 29 29 29 29 32 32 ", ":(", "536259132 536259132 536259132 536259132 536259132 536259132 536259132 536259132 536259132 536259132 ", "876584056 876584056 876584056 876584056 876584056 876584056 876584056 876584056 876584056 876584056 ", "528402471 528402472 528402473 528402474 528402475 528402476 528402477 528402478 528402479 528402480 ", ":(", ":(", "520230360 520230361 520230362 520230363 520230364 520230365 520230366 520230367 520230368 520230369 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
13
codeforces
db083a6098652bce07324df7bb974915
Sherlock and his girlfriend
Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry. He bought *n* pieces of jewelry. The *i*-th piece has price equal to *i*<=+<=1, that is, the prices of the jewelry are 2,<=3,<=4,<=... *n*<=+<=1. Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used. Help Sherlock complete this trivial task. The only line contains single integer *n* (1<=≤<=*n*<=≤<=100000) — the number of jewelry pieces. The first line of output should contain a single integer *k*, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints. The next line should consist of *n* space-separated integers (between 1 and *k*) that specify the color of each piece in the order of increasing price. If there are multiple ways to color the pieces using *k* colors, you can output any of them. Sample Input 3 4 Sample Output 2 1 1 2 2 2 1 1 2
{"inputs": ["3", "4", "17", "25", "85", "105", "123", "452", "641", "293", "733", "1", "10", "287", "3202", "728", "3509", "5137", "2023", "4890", "8507", "1796", "3466", "1098", "11226", "11731", "11644", "14553", "17307", "23189", "6818", "1054", "28163", "30885", "27673", "11656", "36325", "31205", "29958", "1696", "44907", "13736", "29594", "19283", "15346", "41794", "99998", "100000", "2", "1", "2", "100000", "99971"], "outputs": ["2\n1 1 2 ", "2\n1 1 2 1 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "1\n1 ", "2\n1 1 2 1 2 1 2 2 2 1 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "1\n1 1 ", "1\n1 ", "1\n1 1 ", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ...", "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
127
codeforces
db1ffc2ec8f3719b2f915150a1a936fc
Vladik and chat
Recently Vladik discovered a new entertainment — coding bots for social networks. He would like to use machine learning in his bots so now he want to prepare some learning data for them. At first, he need to download *t* chats. Vladik coded a script which should have downloaded the chats, however, something went wrong. In particular, some of the messages have no information of their sender. It is known that if a person sends several messages in a row, they all are merged into a single message. It means that there could not be two or more messages in a row with the same sender. Moreover, a sender never mention himself in his messages. Vladik wants to recover senders of all the messages so that each two neighboring messages will have different senders and no sender will mention himself in his messages. He has no idea of how to do this, and asks you for help. Help Vladik to recover senders in each of the chats! The first line contains single integer *t* (1<=≤<=*t*<=≤<=10) — the number of chats. The *t* chats follow. Each chat is given in the following format. The first line of each chat description contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of users in the chat. The next line contains *n* space-separated distinct usernames. Each username consists of lowercase and uppercase English letters and digits. The usernames can't start with a digit. Two usernames are different even if they differ only with letters' case. The length of username is positive and doesn't exceed 10 characters. The next line contains single integer *m* (1<=≤<=*m*<=≤<=100) — the number of messages in the chat. The next *m* line contain the messages in the following formats, one per line: - &lt;username&gt;:&lt;text&gt; — the format of a message with known sender. The username should appear in the list of usernames of the chat. - &lt;?&gt;:&lt;text&gt; — the format of a message with unknown sender. The text of a message can consist of lowercase and uppercase English letter, digits, characters '.' (dot), ',' (comma), '!' (exclamation mark), '?' (question mark) and ' ' (space). The text doesn't contain trailing spaces. The length of the text is positive and doesn't exceed 100 characters. We say that a text mention a user if his username appears in the text as a word. In other words, the username appears in a such a position that the two characters before and after its appearance either do not exist or are not English letters or digits. For example, the text "Vasya, masha13 and Kate!" can mention users "Vasya", "masha13", "and" and "Kate", but not "masha". It is guaranteed that in each chat no known sender mention himself in his messages and there are no two neighboring messages with the same known sender. Print the information about the *t* chats in the following format: If it is not possible to recover senders, print single line "Impossible" for this chat. Otherwise print *m* messages in the following format: &lt;username&gt;:&lt;text&gt; If there are multiple answers, print any of them. Sample Input 1 2 Vladik netman 2 ?: Hello, Vladik! ?: Hi 1 2 netman vladik 3 netman:how are you? ?:wrong message vladik:im fine 2 3 netman vladik Fedosik 2 ?: users are netman, vladik, Fedosik vladik: something wrong with this chat 4 netman tigerrrrr banany2001 klinchuh 4 ?: tigerrrrr, banany2001, klinchuh, my favourite team ever, are you ready? klinchuh: yes, coach! ?: yes, netman banany2001: yes of course. Sample Output netman: Hello, Vladik! Vladik: Hi Impossible Impossible netman: tigerrrrr, banany2001, klinchuh, my favourite team ever, are you ready? klinchuh: yes, coach! tigerrrrr: yes, netman banany2001: yes of course.
{"inputs": ["1\n2\nVladik netman\n2\n?: Hello, Vladik!\n?: Hi", "1\n2\nnetman vladik\n3\nnetman:how are you?\n?:wrong message\nvladik:im fine", "2\n3\nnetman vladik Fedosik\n2\n?: users are netman, vladik, Fedosik\nvladik: something wrong with this chat\n4\nnetman tigerrrrr banany2001 klinchuh\n4\n?: tigerrrrr, banany2001, klinchuh, my favourite team ever, are you ready?\nklinchuh: yes, coach!\n?: yes, netman\nbanany2001: yes of course.", "1\n1\nb\n1\nb:lala!", "1\n1\nb\n1\n?:lala b!", "1\n1\nb\n2\n?:lala hhe!\nb:wat?", "1\n3\nA B C\n3\nA: HI\n?: HI\nB: HI"], "outputs": ["netman: Hello, Vladik!\nVladik: Hi", "Impossible", "Impossible\nnetman: tigerrrrr, banany2001, klinchuh, my favourite team ever, are you ready?\nklinchuh: yes, coach!\ntigerrrrr: yes, netman\nbanany2001: yes of course.", "b:lala!", "Impossible", "Impossible", "A: HI\nC: HI\nB: HI"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
db2e54f81215aad936adfd11356f0fc8
Pair of Numbers
Simon has an array *a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* positive integers. Today Simon asked you to find a pair of integers *l*,<=*r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), such that the following conditions hold: 1. there is integer *j* (*l*<=≤<=*j*<=≤<=*r*), such that all integers *a**l*,<=*a**l*<=+<=1,<=...,<=*a**r* are divisible by *a**j*; 1. value *r*<=-<=*l* takes the maximum value among all pairs for which condition 1 is true; Help Simon, find the required pair of numbers (*l*,<=*r*). If there are multiple required pairs find all of them. The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106). Print two integers in the first line — the number of required pairs and the maximum value of *r*<=-<=*l*. On the following line print all *l* values from optimal pairs in increasing order. Sample Input 5 4 6 9 3 6 5 1 3 5 7 9 5 2 3 5 7 11 Sample Output 1 3 2 1 4 1 5 0 1 2 3 4 5
{"inputs": ["5\n4 6 9 3 6", "5\n1 3 5 7 9", "5\n2 3 5 7 11", "1\n1343", "1\n1000000", "1\n5", "1\n1", "2\n1 1000000", "2\n999999 1000000", "5\n3 3 6 2 2"], "outputs": ["1 3\n2 ", "1 4\n1 ", "5 0\n1 2 3 4 5 ", "1 0\n1 ", "1 0\n1 ", "1 0\n1 ", "1 0\n1 ", "1 1\n1 ", "2 0\n1 2 ", "2 2\n1 3 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
db44ea9c41db94f6084b977e4c7cafc7
Adjacent Replacements
Mishka got an integer array $a$ of length $n$ as a birthday present (what a surprise!). Mishka doesn't like this present and wants to change it somehow. He has invented an algorithm and called it "Mishka's Adjacent Replacements Algorithm". This algorithm can be represented as a sequence of steps: - Replace each occurrence of $1$ in the array $a$ with $2$; - Replace each occurrence of $2$ in the array $a$ with $1$; - Replace each occurrence of $3$ in the array $a$ with $4$; - Replace each occurrence of $4$ in the array $a$ with $3$; - Replace each occurrence of $5$ in the array $a$ with $6$; - Replace each occurrence of $6$ in the array $a$ with $5$; - $\dots$ - Replace each occurrence of $10^9 - 1$ in the array $a$ with $10^9$; - Replace each occurrence of $10^9$ in the array $a$ with $10^9 - 1$. Note that the dots in the middle of this algorithm mean that Mishka applies these replacements for each pair of adjacent integers ($2i - 1, 2i$) for each $i \in\{1, 2, \ldots, 5 \cdot 10^8\}$ as described above. For example, for the array $a = [1, 2, 4, 5, 10]$, the following sequence of arrays represents the algorithm: $[1, 2, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $1$ with $2$) $\rightarrow$ $[2, 2, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $2$ with $1$) $\rightarrow$ $[1, 1, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $3$ with $4$) $\rightarrow$ $[1, 1, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $4$ with $3$) $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ (replace all occurrences of $5$ with $6$) $\rightarrow$ $[1, 1, 3, 6, 10]$ $\rightarrow$ (replace all occurrences of $6$ with $5$) $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ $\dots$ $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ (replace all occurrences of $10$ with $9$) $\rightarrow$ $[1, 1, 3, 5, 9]$. The later steps of the algorithm do not change the array. Mishka is very lazy and he doesn't want to apply these changes by himself. But he is very interested in their result. Help him find it. The first line of the input contains one integer number $n$ ($1 \le n \le 1000$) — the number of elements in Mishka's birthday present (surprisingly, an array). The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the elements of the array. Print $n$ integers — $b_1, b_2, \dots, b_n$, where $b_i$ is the final value of the $i$-th element of the array after applying "Mishka's Adjacent Replacements Algorithm" to the array $a$. Note that you cannot change the order of elements in the array. Sample Input 5 1 2 4 5 10 10 10000 10 50605065 1 5 89 5 999999999 60506056 1000000000 Sample Output 1 1 3 5 9 9999 9 50605065 1 5 89 5 999999999 60506055 999999999
{"inputs": ["5\n1 2 4 5 10", "10\n10000 10 50605065 1 5 89 5 999999999 60506056 1000000000", "1\n999999999", "1\n1000000000", "1\n210400", "5\n100000000 100000000 100000000 100000000 100000000", "1\n2441139", "2\n2 2", "3\n2 2 2", "2\n4 4"], "outputs": ["1 1 3 5 9", "9999 9 50605065 1 5 89 5 999999999 60506055 999999999", "999999999", "999999999", "210399", "99999999 99999999 99999999 99999999 99999999", "2441139", "1 1", "1 1 1", "3 3"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
217
codeforces
db75ce1739f74864cfa3c19dc9613c42
New Reform
Berland has *n* cities connected by *m* bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads. The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another). In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city. Help the Ministry of Transport to find the minimum possible number of separate cities after the reform. The first line of the input contains two positive integers, *n* and *m* — the number of the cities and the number of roads in Berland (2<=≤<=*n*<=≤<=100<=000, 1<=≤<=*m*<=≤<=100<=000). Next *m* lines contain the descriptions of the roads: the *i*-th road is determined by two distinct integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, *x**i*<=≠<=*y**i*), where *x**i* and *y**i* are the numbers of the cities connected by the *i*-th road. It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads. Print a single integer — the minimum number of separated cities after the reform. Sample Input 4 3 2 1 1 3 4 3 5 5 2 1 1 3 2 3 2 5 4 3 6 5 1 2 2 3 4 5 4 6 5 6 Sample Output 1 0 1
{"inputs": ["4 3\n2 1\n1 3\n4 3", "5 5\n2 1\n1 3\n2 3\n2 5\n4 3", "6 5\n1 2\n2 3\n4 5\n4 6\n5 6", "4 4\n1 2\n2 3\n3 4\n4 1", "10 45\n3 5\n2 3\n4 8\n2 5\n6 8\n5 7\n2 1\n3 7\n5 10\n6 1\n9 4\n3 6\n9 10\n6 7\n1 7\n7 9\n6 9\n9 3\n4 2\n2 6\n5 6\n5 8\n3 4\n10 8\n7 8\n4 6\n9 1\n5 9\n7 4\n1 10\n9 2\n2 8\n6 10\n9 8\n1 5\n7 2\n10 3\n3 8\n4 10\n4 1\n10 7\n1 3\n1 8\n10 2\n4 5", "20 20\n16 3\n15 14\n6 14\n13 19\n7 13\n3 13\n3 2\n17 11\n14 20\n19 10\n4 13\n3 8\n18 4\n12 7\n6 3\n11 13\n17 19\n5 14\n9 2\n11 1", "2 1\n1 2", "5 5\n1 2\n2 3\n3 4\n4 5\n5 2"], "outputs": ["1", "0", "1", "0", "0", "0", "1", "0"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
16
codeforces
db7e46473014ad3cea73d78b576463bc
Table
Simon has a rectangular table consisting of *n* rows and *m* columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the *x*-th row and the *y*-th column as a pair of numbers (*x*,<=*y*). The table corners are cells: (1,<=1), (*n*,<=1), (1,<=*m*), (*n*,<=*m*). Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table. Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (*x*1,<=*y*1), an arbitrary corner of the table (*x*2,<=*y*2) and color all cells of the table (*p*,<=*q*), which meet both inequations: *min*(*x*1,<=*x*2)<=≤<=*p*<=≤<=*max*(*x*1,<=*x*2), *min*(*y*1,<=*y*2)<=≤<=*q*<=≤<=*max*(*y*1,<=*y*2). Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times. The first line contains exactly two integers *n*, *m* (3<=≤<=*n*,<=*m*<=≤<=50). Next *n* lines contain the description of the table cells. Specifically, the *i*-th line contains *m* space-separated integers *a**i*1,<=*a**i*2,<=...,<=*a**im*. If *a**ij* equals zero, then cell (*i*,<=*j*) isn't good. Otherwise *a**ij* equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner. Print a single number — the minimum number of operations Simon needs to carry out his idea. Sample Input 3 3 0 0 0 0 1 0 0 0 0 4 3 0 0 0 0 0 1 1 0 0 0 0 0 Sample Output 4 2
{"inputs": ["3 3\n0 0 0\n0 1 0\n0 0 0", "4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0", "50 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0", "5 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "4 32\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "7 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 0", "13 15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "3 3\n0 1 0\n0 0 0\n0 0 0", "3 3\n0 0 0\n0 0 0\n0 1 0", "3 3\n0 0 0\n1 0 0\n0 0 0", "3 3\n0 0 0\n0 0 1\n0 0 0", "3 4\n0 1 0 0\n0 0 0 0\n0 0 0 0", "3 5\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0", "3 5\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "3 5\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0", "3 5\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0", "4 3\n0 1 0\n0 0 0\n0 0 0\n0 0 0", "4 3\n0 0 0\n0 0 0\n0 0 0\n0 1 0", "5 3\n0 0 0\n0 0 0\n1 0 0\n0 0 0\n0 0 0", "5 3\n0 0 0\n0 0 1\n0 0 0\n0 0 0\n0 0 0", "5 3\n0 0 0\n0 1 0\n0 0 0\n0 0 0\n0 0 0", "4 4\n0 0 0 0\n0 1 1 0\n0 1 1 0\n0 0 0 0", "5 3\n0 0 0\n0 0 1\n0 0 0\n0 1 0\n0 0 0", "3 3\n0 0 0\n0 1 1\n0 0 0", "4 3\n0 0 0\n0 0 0\n0 1 0\n0 0 0", "5 5\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0", "5 3\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n0 0 0"], "outputs": ["4", "2", "4", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "4", "2", "2", "2", "2", "4", "4", "2", "2", "4", "4", "2"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
127
codeforces
dba7d865f424682bcd9b24c0a012fd31
Xors on Segments
You are given an array with *n* integers *a**i* and *m* queries. Each query is described by two integers (*l**j*,<=*r**j*). Let's define the function . The function is defined for only *u*<=≤<=*v*. For each query print the maximal value of the function *f*(*a**x*,<=*a**y*) over all *l**j*<=≤<=*x*,<=*y*<=≤<=*r**j*,<= *a**x*<=≤<=*a**y*. The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=5·104,<= 1<=≤<=*m*<=≤<=5·103) — the size of the array and the number of the queries. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*. Each of the next *m* lines contains two integers *l**j*,<=*r**j* (1<=≤<=*l**j*<=≤<=*r**j*<=≤<=*n*) – the parameters of the *j*-th query. For each query print the value *a**j* on a separate line — the maximal value of the function *f*(*a**x*,<=*a**y*) over all *l**j*<=≤<=*x*,<=*y*<=≤<=*r**j*,<= *a**x*<=≤<=*a**y*. Sample Input 6 3 1 2 3 4 5 6 1 6 2 5 3 4 1 1 1 1 1 6 20 10 21312 2314 214 1 322 1 1 1 2 1 3 1 4 1 5 1 6 2 2 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 4 4 5 4 6 5 5 5 6 6 6 Sample Output 7 7 7 1 10 21313 21313 21313 21313 21313 21312 21313 21313 21313 21313 2314 2315 2315 214 215 323 1 323 322
{"inputs": ["6 3\n1 2 3 4 5 6\n1 6\n2 5\n3 4", "1 1\n1\n1 1", "6 20\n10 21312 2314 214 1 322\n1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n2 2\n2 3\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6\n4 4\n4 5\n4 6\n5 5\n5 6\n6 6", "1 1\n1\n1 1", "5 10\n10 2 7 8 8\n2 5\n3 4\n5 5\n1 3\n3 4\n2 2\n2 5\n4 5\n5 5\n1 2"], "outputs": ["7\n7\n7", "1", "10\n21313\n21313\n21313\n21313\n21313\n21312\n21313\n21313\n21313\n21313\n2314\n2315\n2315\n214\n215\n323\n1\n323\n322", "1", "15\n15\n8\n12\n15\n2\n15\n8\n8\n10"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
dbc16444769ffff8737f6cd7f40829fd
Party
*n* people came to a party. Then those, who had no friends among people at the party, left. Then those, who had exactly 1 friend among those who stayed, left as well. Then those, who had exactly 2,<=3,<=...,<=*n*<=-<=1 friends among those who stayed by the moment of their leaving, did the same. What is the maximum amount of people that could stay at the party in the end? The first input line contains one number *t* — amount of tests (1<=≤<=*t*<=≤<=105). Each of the following *t* lines contains one integer number *n* (1<=≤<=*n*<=≤<=105). For each test output in a separate line one number — the maximum amount of people that could stay in the end. Sample Input 1 3 Sample Output 1
{"inputs": ["1\n3"], "outputs": ["1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
43
codeforces
dbc7d5ef45096d9e8efa03e27e9f8068
Olya and Energy Drinks
Olya loves energy drinks. She loves them so much that her room is full of empty cans from energy drinks. Formally, her room can be represented as a field of *n*<=×<=*m* cells, each cell of which is empty or littered with cans. Olya drank a lot of energy drink, so now she can run *k* meters per second. Each second she chooses one of the four directions (up, down, left or right) and runs from 1 to *k* meters in this direction. Of course, she can only run through empty cells. Now Olya needs to get from cell (*x*1,<=*y*1) to cell (*x*2,<=*y*2). How many seconds will it take her if she moves optimally? It's guaranteed that cells (*x*1,<=*y*1) and (*x*2,<=*y*2) are empty. These cells can coincide. The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the sizes of the room and Olya's speed. Then *n* lines follow containing *m* characters each, the *i*-th of them contains on *j*-th position "#", if the cell (*i*,<=*j*) is littered with cans, and "." otherwise. The last line contains four integers *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*) — the coordinates of the first and the last cells. Print a single integer — the minimum time it will take Olya to get from (*x*1,<=*y*1) to (*x*2,<=*y*2). If it's impossible to get from (*x*1,<=*y*1) to (*x*2,<=*y*2), print -1. Sample Input 3 4 4 .... ###. .... 1 1 3 1 3 4 1 .... ###. .... 1 1 3 1 2 2 1 .# #. 1 1 2 2 Sample Output 38-1
{"inputs": ["3 4 4\n....\n###.\n....\n1 1 3 1", "3 4 1\n....\n###.\n....\n1 1 3 1", "2 2 1\n.#\n#.\n1 1 2 2", "10 10 1\n##########\n#.........\n#.#######.\n#.#.....#.\n#.#.###.#.\n#.#.#.#.#.\n#.#.#.#.#.\n#.#.#...#.\n#.#.#####.\n#.#.......\n6 6 10 2", "10 10 3\n##########\n##########\n##########\n##########\n##########\n##########\n##########\n#########.\n#########.\n####..###.\n10 6 10 5", "10 10 3\n...##..#..\n#.#..#...#\n..#.##.#..\n##..#..#.#\n..#...##..\n.#.#.#....\n#......#..\n.#.####.##\n......#...\n.#.##...##\n4 6 8 1", "10 10 1000\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n7 6 1 3", "10 10 1000\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n.....#....\n3 9 5 1", "10 10 10\n...#......\n##.#.#####\n...#...###\n.#####.###\n...#...###\n##.#.#####\n...#...###\n.#####.###\n.......###\n##########\n1 1 1 10", "2 5 5\n#####\n##.##\n2 3 2 3", "4 4 4\n...#\n.#.#\n....\n##..\n1 1 3 4", "6 6 100\n....##\n.##.##\n.##.##\n......\n###.##\n###.##\n1 1 4 6"], "outputs": ["3", "8", "-1", "48", "1", "7", "2", "2", "17", "0", "2", "2"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
6
codeforces
dbcbc232b85bbf107db4ffb4922cc8f3
Puzzling Language
In this problem you will write a simple code generator for a 2D programming language derived from [Brainfuck](https://en.wikipedia.org/wiki/Brainfuck). The code in this language is a rectangular grid of characters '.' and 'X'. The code is converted to a Brainfuck program as follows: the characters are read in the usual order (top to bottom, left to right), and each 'X' character is converted a Brainfuck instruction to be executed. The instruction is defined by the left, top and right neighbors of the 'X' character using the following conversion table: You are given a string. Output a program in the described language which prints this string. You can download the language interpreter used for judging here: [https://assets.codeforces.com/rounds/952/puzzling-interpreter.cpp](https://assets.codeforces.com/rounds/952/puzzling-interpreter.cpp) (use C++11 to compile the code). Note several implementation details: - The first step of the language interpretation is conversion to a Brainfuck program, which is then executed.- The code must be rectangular, with all lines of the same length. It can have at most 10,000 lines and 10,000 columns, and can have at most 500,000 'X' characters.- The code has toroidal topology, i.e. the 'X' on the first line will have top neighbor in the last line.- Brainfuck interpreter has 30000 memory cells which store integers from 0 to 255 with increment/decrement done modulo 256.- Console input (, command) is allowed in Brainfuck code but has no effect when executed. The input consists of a single string of characters with ASCII codes between 33 ('!') and 122 ('z'), inclusive. The length of the string is between 1 and 10 characters, inclusive. Output a program in the described language which, when executed, will print the given message. Sample Input $$$ Sample Output .......X....... ......XXX...... .....XXXXX..... ....XXXXXXX.... ...XXXXXXXXX... ..XXXXXXXXXXX.. .XXXXXXXXXXXXX. ............... X.............X X.............. X.............. X..............
{"inputs": ["$$$", "Codeforces", "!\"#$%&'()*", "zyxwvutsrq", "z", "!", "Q", "\\RM3uy$>", "fQs1@=", "%n<VD0Q=eO", "[=iG", "&o+(", "9IHC0", ">,05jka@?", "j0&)@0=", "ouuj0an8;", "\\ZN).!R$N<", "4]", "YYiu0", "3^7Ib`nt^\"", "WnX/v-1&", "<Zno", "&.Uv", "4Vo", "R8", "uNC", "*)f>H.;!P", "=veAmKR]N'", "\\RD?XXd", "\"8c]Q@6&e", "zzzzzAAAAA", "z!z!z!z!z!", "\"", "\"$&(*,.024"], "outputs": ["..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n...", "..\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n.X\nX.\n..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
dbf788c2f5d9376e093d86306456040f
Dima and To-do List
You helped Dima to have a great weekend, but it's time to work. Naturally, Dima, as all other men who have girlfriends, does everything wrong. Inna and Dima are now in one room. Inna tells Dima off for everything he does in her presence. After Inna tells him off for something, she goes to another room, walks there in circles muttering about how useless her sweetheart is. During that time Dima has time to peacefully complete *k*<=-<=1 tasks. Then Inna returns and tells Dima off for the next task he does in her presence and goes to another room again. It continues until Dima is through with his tasks. Overall, Dima has *n* tasks to do, each task has a unique number from 1 to *n*. Dima loves order, so he does tasks consecutively, starting from some task. For example, if Dima has 6 tasks to do in total, then, if he starts from the 5-th task, the order is like that: first Dima does the 5-th task, then the 6-th one, then the 1-st one, then the 2-nd one, then the 3-rd one, then the 4-th one. Inna tells Dima off (only lovingly and appropriately!) so often and systematically that he's very well learned the power with which she tells him off for each task. Help Dima choose the first task so that in total he gets told off with as little power as possible. The first line of the input contains two integers *n*,<=*k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103), where *a**i* is the power Inna tells Dima off with if she is present in the room while he is doing the *i*-th task. It is guaranteed that *n* is divisible by *k*. In a single line print the number of the task Dima should start with to get told off with as little power as possible. If there are multiple solutions, print the one with the minimum number of the first task to do. Sample Input 6 2 3 2 1 6 5 4 10 5 1 3 5 7 9 9 4 1 8 5 Sample Output 1 3
{"inputs": ["6 2\n3 2 1 6 5 4", "10 5\n1 3 5 7 9 9 4 1 8 5", "20 4\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "10 10\n8 4 5 7 6 9 2 2 3 5", "50 10\n1 2 3 4 5 6 7 8 9 10 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1", "1 1\n1", "2 1\n1 1", "4 2\n2 1 1 3", "15 5\n5 5 5 5 5 1 2 3 4 5 1 2 3 4 5", "20 10\n3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 6 4"], "outputs": ["1", "3", "1", "7", "2", "1", "1", "1", "1", "1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
75
codeforces
dc2aae63f53571f5e0dedbbc0e5197f4
Swapping Characters
We had a string *s* consisting of *n* lowercase Latin letters. We made *k* copies of this string, thus obtaining *k* identical strings *s*1,<=*s*2,<=...,<=*s**k*. After that, in each of these strings we swapped exactly two characters (the characters we swapped could be identical, but they had different indices in the string). You are given *k* strings *s*1,<=*s*2,<=...,<=*s**k*, and you have to restore any string *s* so that it is possible to obtain these strings by performing aforementioned operations. Note that the total length of the strings you are given doesn't exceed 5000 (that is, *k*·*n*<=≤<=5000). The first line contains two integers *k* and *n* (1<=≤<=*k*<=≤<=2500,<=2<=≤<=*n*<=≤<=5000,<=*k* · *n*<=≤<=5000) — the number of strings we obtained, and the length of each of these strings. Next *k* lines contain the strings *s*1,<=*s*2,<=...,<=*s**k*, each consisting of exactly *n* lowercase Latin letters. Print any suitable string *s*, or -1 if such string doesn't exist. Sample Input 3 4 abac caab acba 3 4 kbbu kbub ubkb 5 4 abcd dcba acbd dbca zzzz Sample Output acab kbub -1
{"inputs": ["3 4\nabac\ncaab\nacba", "3 4\nkbbu\nkbub\nubkb", "5 4\nabcd\ndcba\nacbd\ndbca\nzzzz", "3 2\nxh\nxh\nxh", "3 4\nkbub\nkbbu\nubkb", "1 2\nyu", "1 3\nvts", "2 2\nnm\nnm", "2 3\nghn\nghn", "3 2\ncg\ncg\ncg", "3 3\nuvh\nvhu\nhuv", "100 2\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz\nqz", "100 3\nzsk\nzsk\nzsk\nzsk\nskz\nskz\nkzs\nskz\nkzs\nkzs\nzsk\nkzs\nkzs\nkzs\nskz\nkzs\nskz\nskz\nkzs\nzsk\nkzs\nkzs\nkzs\nskz\nskz\nskz\nzsk\nskz\nzsk\nskz\nkzs\nskz\nskz\nskz\nkzs\nzsk\nzsk\nkzs\nskz\nskz\nkzs\nkzs\nskz\nkzs\nkzs\nskz\nkzs\nskz\nkzs\nkzs\nskz\nkzs\nkzs\nkzs\nkzs\nskz\nkzs\nskz\nskz\nskz\nskz\nzsk\nkzs\nskz\nzsk\nkzs\nskz\nskz\nskz\nkzs\nkzs\nskz\nskz\nkzs\nkzs\nskz\nzsk\nskz\nzsk\nkzs\nkzs\nskz\nkzs\nkzs\nkzs\nzsk\nkzs\nkzs\nzsk\nkzs\nskz\nzsk\nskz\nskz\nskz\nkzs\nzsk\nkzs\nkzs\nskz", "2 6\nabcdef\nbadcef", "5 5\neellh\nehlle\nehlle\nhelle\nhlele", "5 5\nzbibx\nzbbix\nzbibx\nxbibz\nxbibz", "5 5\ngyvnn\ngnvny\nvygnn\ngynvn\ngnvny", "2 4\nabcd\nccdc", "2 2\nab\ncd", "2 4\nayax\nabac", "2 4\najax\nazad", "2 3\nabc\nabz", "8 6\nmnionk\nmnikno\ninmkno\nmnnkio\noniknm\noniknm\nmkinno\nmnikon", "8 23\nmgiomcytqdvoihhcirldmuj\nmgmoicytqdvoihhicrldmuj\nmgmomcytqdvoihhicrldiuj\nmgcomcytqdvoihhiirldmuj\nmgiimcytqdvoihhocrldmuj\nmgioicytqdvoihhmcrldmuj\nmgiomcytqdvodhhicrlimuj\nmgiomcytjdvoihhicrldmuq", "2 5\ndbcag\nacbdh", "2 2\nac\nca", "2 16\nhmlqgaepsgpdbzyk\nchhhburuvnyirrim"], "outputs": ["acab", "kbub", "-1", "hx", "kbub", "uy", "tvs", "mn", "hgn", "gc", "vuh", "zq", "szk", "bacdef", "helle", "zbibx", "gyvnn", "-1", "-1", "-1", "-1", "-1", "mnikno", "mgiomcytqdvoihhicrldmuj", "-1", "-1", "-1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
dc300f461142b79d550b3d60d2b8001e
Hag's Khashba
Hag is a very talented person. He has always had an artist inside him but his father forced him to study mechanical engineering. Yesterday he spent all of his time cutting a giant piece of wood trying to make it look like a goose. Anyway, his dad found out that he was doing arts rather than studying mechanics and other boring subjects. He confronted Hag with the fact that he is a spoiled son that does not care about his future, and if he continues to do arts he will cut his 25 Lira monthly allowance. Hag is trying to prove to his dad that the wooden piece is a project for mechanics subject. He also told his dad that the wooden piece is a strictly convex polygon with $n$ vertices. Hag brought two pins and pinned the polygon with them in the $1$-st and $2$-nd vertices to the wall. His dad has $q$ queries to Hag of two types. - $1$ $f$ $t$: pull a pin from the vertex $f$, wait for the wooden polygon to rotate under the gravity force (if it will rotate) and stabilize. And then put the pin in vertex $t$. - $2$ $v$: answer what are the coordinates of the vertex $v$. Please help Hag to answer his father's queries. You can assume that the wood that forms the polygon has uniform density and the polygon has a positive thickness, same in all points. After every query of the 1-st type Hag's dad tries to move the polygon a bit and watches it stabilize again. The first line contains two integers $n$ and $q$ ($3\leq n \leq 10\,000$, $1 \leq q \leq 200000$) — the number of vertices in the polygon and the number of queries. The next $n$ lines describe the wooden polygon, the $i$-th line contains two integers $x_i$ and $y_i$ ($|x_i|, |y_i|\leq 10^8$) — the coordinates of the $i$-th vertex of the polygon. It is guaranteed that polygon is strictly convex and the vertices are given in the counter-clockwise order and all vertices are distinct. The next $q$ lines describe the queries, one per line. Each query starts with its type $1$ or $2$. Each query of the first type continues with two integers $f$ and $t$ ($1 \le f, t \le n$) — the vertex the pin is taken from, and the vertex the pin is put to and the polygon finishes rotating. It is guaranteed that the vertex $f$ contains a pin. Each query of the second type continues with a single integer $v$ ($1 \le v \le n$) — the vertex the coordinates of which Hag should tell his father. It is guaranteed that there is at least one query of the second type. The output should contain the answer to each query of second type — two numbers in a separate line. Your answer is considered correct, if its absolute or relative error does not exceed $10^{-4}$. Formally, let your answer be $a$, and the jury's answer be $b$. Your answer is considered correct if $\frac{|a - b|}{\max{(1, |b|)}} \le 10^{-4}$ Sample Input 3 4 0 0 2 0 2 2 1 1 2 2 1 2 2 2 3 3 2 -1 1 0 0 1 1 1 1 2 2 1 Sample Output 3.4142135624 -1.4142135624 2.0000000000 0.0000000000 0.5857864376 -1.4142135624 1.0000000000 -1.0000000000
{"inputs": ["3 4\n0 0\n2 0\n2 2\n1 1 2\n2 1\n2 2\n2 3", "3 2\n-1 1\n0 0\n1 1\n1 1 2\n2 1", "10 10\n0 -100000000\n1 -100000000\n1566 -99999999\n2088 -99999997\n2610 -99999994\n3132 -99999990\n3654 -99999985\n4176 -99999979\n4698 -99999972\n5220 -99999964\n1 2 5\n2 1\n1 1 7\n2 5\n1 5 4\n1 4 2\n2 8\n1 7 9\n2 1\n1 2 10", "4 10\n0 0\n2 0\n2 2\n0 2\n2 3\n2 1\n2 1\n1 1 1\n2 3\n1 2 4\n1 4 4\n2 4\n1 1 3\n2 3", "3 2\n0 0\n1 0\n1566 1\n1 2 1\n2 3"], "outputs": ["3.4142135624 -1.4142135624\n2.0000000000 0.0000000000\n0.5857864376 -1.4142135624", "1.0000000000 -1.0000000000", "0.0000000000 -100000000.0000000000\n-7.3726558373 -100002609.9964835122\n-129.8654413032 -100003125.4302210321\n-114.4079442212 -100007299.4544525659", "2.0000000000 2.0000000000\n0.0000000000 0.0000000000\n0.0000000000 0.0000000000\n0.5857864376 -1.4142135624\n4.8284271247 -2.8284271247\n6.2426406871 -4.2426406871", "0.0006381620 -1566.0003192846"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
dc37a49da0b1d0da6a7014102922695b
Sereja and Suffixes
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*. The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*). Print *m* lines — on the *i*-th line print the answer to the number *l**i*. Sample Input 10 10 1 2 3 4 1 2 3 4 100000 99999 1 2 3 4 5 6 7 8 9 10 Sample Output 6 6 6 6 6 5 4 3 2 1
{"inputs": ["10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2", "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4", "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2", "7 1\n68346 10956 76708 23018 84063 34833 80407\n1", "2 2\n8 4\n1\n1", "1 5\n5\n1\n1\n1\n1\n1", "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4", "4 3\n9 1 7 1\n1\n4\n2", "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7", "1 1\n1\n1"], "outputs": ["6\n6\n6\n6\n6\n5\n4\n3\n2\n1", "3\n4\n5", "3\n5\n2\n4\n3\n3\n2\n5\n1\n3", "7\n7", "7", "2\n2", "1\n1\n1\n1\n1", "1\n4\n3\n2\n3\n1\n1", "3\n1\n2", "4\n3\n2", "1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
314
codeforces
dc8e5f65bf595e4b9d2f2ca02084f9da
MADMAX
As we all know, Max is the best video game player among her friends. Her friends were so jealous of hers, that they created an actual game just to prove that she's not the best at games. The game is played on a directed acyclic graph (a DAG) with *n* vertices and *m* edges. There's a character written on each edge, a lowercase English letter. Max and Lucas are playing the game. Max goes first, then Lucas, then Max again and so on. Each player has a marble, initially located at some vertex. Each player in his/her turn should move his/her marble along some edge (a player can move the marble from vertex *v* to vertex *u* if there's an outgoing edge from *v* to *u*). If the player moves his/her marble from vertex *v* to vertex *u*, the "character" of that round is the character written on the edge from *v* to *u*. There's one additional rule; the ASCII code of character of round *i* should be greater than or equal to the ASCII code of character of round *i*<=-<=1 (for *i*<=&gt;<=1). The rounds are numbered for both players together, i. e. Max goes in odd numbers, Lucas goes in even numbers. The player that can't make a move loses the game. The marbles may be at the same vertex at the same time. Since the game could take a while and Lucas and Max have to focus on finding Dart, they don't have time to play. So they asked you, if they both play optimally, who wins the game? You have to determine the winner of the game for all initial positions of the marbles. The first line of input contains two integers *n* and *m* (2<=≤<=*n*<=≤<=100, ). The next *m* lines contain the edges. Each line contains two integers *v*, *u* and a lowercase English letter *c*, meaning there's an edge from *v* to *u* written *c* on it (1<=≤<=*v*,<=*u*<=≤<=*n*, *v*<=≠<=*u*). There's at most one edge between any pair of vertices. It is guaranteed that the graph is acyclic. Print *n* lines, a string of length *n* in each one. The *j*-th character in *i*-th line should be 'A' if Max will win the game in case her marble is initially at vertex *i* and Lucas's marble is initially at vertex *j*, and 'B' otherwise. Sample Input 4 4 1 2 b 1 3 a 2 4 c 3 4 b 5 8 5 3 h 1 2 c 3 1 c 3 2 r 5 1 r 4 3 z 5 4 r 5 2 h Sample Output BAAA ABAA BBBA BBBB BABBB BBBBB AABBB AAABA AAAAB
{"inputs": ["4 4\n1 2 b\n1 3 a\n2 4 c\n3 4 b", "5 8\n5 3 h\n1 2 c\n3 1 c\n3 2 r\n5 1 r\n4 3 z\n5 4 r\n5 2 h", "2 1\n1 2 q", "8 20\n2 4 a\n1 8 a\n1 2 v\n8 4 h\n1 7 w\n5 4 h\n2 8 h\n7 4 i\n4 3 w\n6 8 l\n1 4 v\n1 3 g\n5 3 b\n1 6 a\n7 3 w\n6 4 f\n6 7 g\n7 8 n\n5 8 g\n2 6 j", "3 2\n1 3 l\n2 1 v", "100 1\n92 93 p"], "outputs": ["BAAA\nABAA\nBBBA\nBBBB", "BABBB\nBBBBB\nAABBB\nAAABA\nAAAAB", "BA\nBB", "BAAAAAAA\nBBAAAABA\nBBBBBBBB\nBAABAABA\nBAAABABA\nBAAAABAA\nBAAAAABA\nBAAABABB", "BBA\nABA\nBBB", "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nB..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
dc9dc468e2c937fdd3ca5379031d8341
Fingerprints
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code. The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints. In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable. Sample Input 7 3 3 5 7 1 6 2 8 1 2 7 4 4 3 4 1 0 0 1 7 9 Sample Output 7 1 2 1 0
{"inputs": ["7 3\n3 5 7 1 6 2 8\n1 2 7", "4 4\n3 4 1 0\n0 1 7 9", "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8", "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9", "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8", "1 1\n4\n4", "3 7\n6 3 4\n4 9 0 1 7 8 6", "10 1\n9 0 8 1 7 4 6 5 2 3\n0", "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6", "8 2\n7 2 9 6 1 0 3 4\n6 3", "5 4\n7 0 1 4 9\n0 9 5 3", "10 1\n9 6 2 0 1 8 3 4 7 5\n6", "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2", "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2", "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6", "8 2\n7 4 8 9 2 5 6 1\n6 4", "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3", "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8", "1 6\n3\n6 8 2 4 5 3", "1 8\n0\n9 2 4 8 1 5 0 7", "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4", "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1", "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2", "6 3\n8 3 9 2 7 6\n5 4 3", "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5", "1 2\n1\n1 0", "3 6\n1 2 3\n4 5 6 1 2 3", "1 2\n2\n1 2", "1 10\n9\n0 1 2 3 4 5 6 7 8 9"], "outputs": ["7 1 2", "1 0", "8 6 4 2", "3 7 4 9 0", "1 2 3 4 5 6 7 8 9 0", "4", "6 4", "0", "6 0 3 8 1", "6 3", "0 9", "6", "2 3", "3 9 2 4", "1 2 3 8 6 5", "4 6", "0 3", "2 8 1 3", "3", "0", "7 9 4 1 0", "0 1", "2 9 6 1 4", "3", "8 3 9 6", "1", "1 2 3", "2", "9"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
645
codeforces
dcec153142741226f333194eb0ae6f7c
Careful Maneuvering
There are two small spaceship, surrounded by two groups of enemy larger spaceships. The space is a two-dimensional plane, and one group of the enemy spaceships is positioned in such a way that they all have integer $y$-coordinates, and their $x$-coordinate is equal to $-100$, while the second group is positioned in such a way that they all have integer $y$-coordinates, and their $x$-coordinate is equal to $100$. Each spaceship in both groups will simultaneously shoot two laser shots (infinite ray that destroys any spaceship it touches), one towards each of the small spaceships, all at the same time. The small spaceships will be able to avoid all the laser shots, and now want to position themselves at some locations with $x=0$ (with not necessarily integer $y$-coordinates), such that the rays shot at them would destroy as many of the enemy spaceships as possible. Find the largest numbers of spaceships that can be destroyed this way, assuming that the enemy spaceships can't avoid laser shots. The first line contains two integers $n$ and $m$ ($1 \le n, m \le 60$), the number of enemy spaceships with $x = -100$ and the number of enemy spaceships with $x = 100$, respectively. The second line contains $n$ integers $y_{1,1}, y_{1,2}, \ldots, y_{1,n}$ ($|y_{1,i}| \le 10\,000$) — the $y$-coordinates of the spaceships in the first group. The third line contains $m$ integers $y_{2,1}, y_{2,2}, \ldots, y_{2,m}$ ($|y_{2,i}| \le 10\,000$) — the $y$-coordinates of the spaceships in the second group. The $y$ coordinates are not guaranteed to be unique, even within a group. Print a single integer – the largest number of enemy spaceships that can be destroyed. Sample Input 3 9 1 2 3 1 2 3 7 8 9 11 12 13 5 5 1 2 3 4 5 1 2 3 4 5 Sample Output 9 10
{"inputs": ["3 9\n1 2 3\n1 2 3 7 8 9 11 12 13", "5 5\n1 2 3 4 5\n1 2 3 4 5", "50 50\n744 333 562 657 680 467 357 376 759 311 371 327 369 172 286 577 446 922 16 69 350 92 627 852 878 733 148 857 663 969 131 250 563 665 67 169 178 625 975 457 414 434 146 602 235 86 240 756 161 675\n222 371 393 634 76 268 348 294 227 429 835 534 756 67 174 704 685 462 829 561 249 148 868 512 118 232 33 450 445 420 397 129 122 74 426 441 989 892 662 727 492 702 352 818 399 968 894 297 342 405", "60 60\n842 229 415 973 606 880 422 808 121 317 41 358 725 32 395 286 819 550 410 516 81 599 623 275 568 102 778 234 385 445 194 89 105 643 220 165 872 858 420 653 843 465 696 723 594 8 127 273 289 345 260 553 231 940 912 687 205 272 14 706\n855 361 529 341 602 225 922 807 775 149 212 789 547 766 813 624 236 583 207 586 516 21 621 839 259 774 419 286 537 284 685 944 223 189 358 232 495 688 877 920 400 105 968 919 543 700 538 466 739 33 729 292 891 797 707 174 799 427 321 953", "1 5\n1\n1 2 3 4 5", "5 1\n1 2 3 4 5\n1", "2 2\n-10000 10000\n-10000 10000", "8 57\n-107 1000 -238 -917 -918 668 -769 360\n124 250 601 242 189 155 688 -886 -504 39 -924 -266 -122 109 232 216 567 576 269 -349 257 589 -462 939 977 0 -808 118 -423 -856 769 954 889 21 996 -714 198 -854 981 -99 554 302 -27 454 -557 -585 465 -513 -113 714 -82 -906 522 75 -866 -942 -293", "43 48\n-10 -4 -4 3 -4 3 -1 9 10 4 -2 -8 -9 -6 4 0 4 3 -1 -3 -1 7 10 -2 6 6 -4 -7 7 10 -5 -2 9 -4 -3 -1 -3 -9 0 -5 -6 -7 2\n-8 10 8 4 -3 7 2 -6 10 -1 4 -8 1 3 -8 5 2 4 8 7 -4 -7 8 -8 2 4 -2 4 2 1 -4 9 -3 -9 -1 6 -9 1 -6 -4 6 -2 3 5 5 6 -3 -3", "8 9\n782 -300 482 -158 -755 809 -125 27\n0 251 593 796 371 839 -892 -954 236", "54 41\n-5 9 -4 -7 8 -2 -5 -3 -10 -10 -9 2 9 1 -8 -5 -5 -3 1 -7 -2 -8 -5 -1 2 6 -2 -10 -7 5 2 -4 -9 -2 4 -6 5 5 -3 7 -5 2 7 0 -3 8 -10 5 6 -4 -7 3 -9 6\n-5 -5 10 3 2 5 -3 4 -5 -6 2 9 -7 3 0 -3 -10 -6 -5 -5 9 0 1 -6 1 0 -9 8 -10 -3 -2 -10 4 -1 -3 -10 -6 -7 -6 -3 2", "46 52\n-31 11 38 -71 38 39 57 -31 -2 85 25 -85 17 -8 93 -1 75 -89 22 -61 -66 63 -91 80 -66 19 57 86 42 36 16 -65 -76 53 -21 85 -66 -96 85 45 35 29 54 18 -94 78\n-14 65 94 33 42 23 94 98 -44 -68 5 -27 -5 50 30 -56 49 -31 -61 34 9 -63 -92 48 17 99 -98 54 -13 34 46 13 -38 81 6 -58 68 -97 21 97 84 -10 5 11 99 -65 36 99 23 -20 -81 50", "51 49\n-6 6 -4 -9 10 -5 1 -7 10 -7 -9 7 -6 5 -7 -5 5 6 -1 9 -10 6 -9 -7 1 7 6 -2 -6 0 -9 5 3 -9 0 8 -8 -5 -6 3 0 2 -1 -8 -3 -4 -8 0 1 -7 10\n-9 -4 10 -1 4 7 -2 5 -4 -8 0 -2 -10 10 9 9 10 -6 -8 -3 -6 -7 2 1 -4 -4 5 -5 5 2 8 -3 -7 5 10 7 2 -2 6 7 6 -3 -4 -8 -7 -3 5 -7 4", "49 45\n293 126 883 638 33 -235 -591 -317 -532 -850 367 249 -470 373 -438 866 271 357 423 -972 -358 -418 531 -255 524 831 -200 -677 -424 -486 513 84 -598 86 525 -612 749 -525 -904 -773 599 170 -385 -44 40 979 -963 320 -875\n-197 47 -399 -7 605 -94 371 -752 370 459 297 775 -144 91 895 871 774 997 71 -23 301 138 241 891 -806 -990 111 -120 -233 552 557 633 -221 -804 713 -384 404 13 345 4 -759 -826 148 889 -270", "59 50\n-85 -30 33 10 94 91 -53 58 -21 68 5 76 -61 -35 9 -19 -32 8 57 -75 -49 57 92 8 92 -39 98 -81 -55 -79 -9 36 19 57 -32 11 -68 60 -20 25 -65 1 -25 -59 -65 -30 93 -60 59 10 -92 -76 -83 71 -89 33 1 60 -65\n39 -57 -21 -13 9 34 -93 -11 56 0 -40 -85 18 -96 66 -29 -64 52 -61 -20 67 54 -20 83 -8 -20 75 37 75 -81 37 -67 -89 -91 -30 86 93 58 33 62 -68 -48 87 -7 72 -62 59 81 -6 30", "57 57\n77 62 -5 -19 75 31 -71 29 -73 68 -4 42 -73 72 29 20 50 45 -4 28 73 -1 -25 69 -55 27 5 88 81 52 84 45 -11 -93 -4 23 -33 11 65 47 45 -83 -89 -11 -100 -26 89 41 35 -91 11 4 -23 57 38 17 -67\n68 75 5 10 -98 -17 73 68 -56 -82 69 55 62 -73 -75 -6 46 87 14 -81 -50 -69 -73 42 0 14 -82 -19 -5 40 -60 12 52 -46 97 70 45 -93 29 36 -41 61 -75 -84 -50 20 85 -33 10 80 33 50 44 -67 91 63 6", "52 16\n-4770 -9663 -5578 4931 6841 2993 -9006 -1526 -7843 -6401 -3082 -1988 -790 -2443 135 3540 6817 1432 -5237 -588 2459 4466 -4806 -3125 -8135 2879 -7059 8579 5834 9838 4467 -8424 -115 -6929 3050 -9010 9686 -9669 -3200 8478 -605 4845 1800 3070 2025 3063 -3787 -2948 3255 1614 7372 1484\n8068 -5083 -2302 8047 8609 -1144 -2610 -7251 820 -9517 -7419 -1291 1444 4232 -5153 5539", "8 7\n1787 -3614 8770 -5002 -7234 -8845 -585 -908\n1132 -7180 -5499 3850 352 2707 -8875", "50 46\n17 29 -14 -16 -17 -54 74 -70 -43 5 80 15 82 -10 -21 -98 -98 -52 50 90 -2 97 -93 8 83 89 -31 44 -96 32 100 -4 77 36 71 28 -79 72 -18 89 -80 -3 -73 66 12 70 -78 -59 55 -44\n-10 -58 -14 -60 -6 -100 -41 -52 -67 -75 -33 -80 -98 -51 -76 92 -43 -4 -70 83 -70 28 -95 8 83 0 -54 -78 75 61 21 38 -53 -61 -95 4 -42 -43 14 60 -15 45 -73 -23 76 -73", "6 8\n9115 641 -7434 1037 -612 -6061\n-8444 4031 7752 -7787 -1387 -9687 -1176 8891", "60 13\n999 863 66 -380 488 494 -351 -911 -690 -341 -729 -215 -427 -286 -189 657 44 -577 655 646 731 -673 -49 -836 -768 -84 -833 -539 345 -244 562 -748 260 -765 569 -264 43 -853 -568 134 -574 -874 -64 -946 941 408 393 -741 155 -492 -994 -2 107 508 -560 15 -278 264 -875 -817\n-138 422 -958 95 245 820 -805 -27 376 121 -508 -951 977", "50 58\n-7 7 10 1 4 1 10 -10 -8 2 1 5 -9 10 2 -3 -6 -7 -8 2 7 0 8 -2 -7 9 -4 8 -6 10 -9 -9 2 -8 8 0 -2 8 -10 -10 -10 2 8 -3 5 1 0 4 -9 -2\n6 6 -9 10 -2 -2 7 -5 9 -5 -7 -8 -8 5 -9 -3 -3 7 9 0 9 -1 1 5 1 0 -8 -9 -4 4 -4 5 -2 2 -7 -6 10 -1 -8 -3 6 -1 -10 -5 -10 3 9 7 5 -3 8 -7 6 9 1 10 -9 3", "17 49\n17 55 -3 72 43 -91 1 -51 -5 -58 -30 -3 71 -39 44 9 7\n-38 -9 -74 -77 -14 14 78 13 -96 85 54 -83 -90 18 22 4 -61 23 -13 -38 -87 -79 -25 31 -64 47 -92 91 55 -8 -38 -34 -46 6 31 15 -72 80 -46 58 -1 90 -47 -28 53 31 -61 89 61", "22 54\n484 -77 -421 -590 633 -472 -983 -396 756 -21 -320 -96 -590 -677 758 -556 -672 -798 430 -449 -213 -944\n309 -468 -484 973 -992 -385 -210 205 -318 350 468 196 802 461 286 -431 -81 984 286 -462 47 -647 -760 629 314 -388 986 507 898 287 -434 -390 95 -163 584 -67 655 -19 -756 50 215 833 -753 485 -127 62 -897 -898 1 -924 -224 30 -373 975", "33 30\n-55 26 -48 -87 -87 -73 13 87 -79 -88 91 38 80 86 55 -66 72 -72 -77 -41 95 11 13 -99 -23 -66 -20 35 90 -40 59 -2 43\n-56 -23 16 51 78 -58 -61 -18 -7 -57 -8 86 -44 -47 -70 -31 -34 -80 -85 -21 53 93 -93 88 -54 -83 97 57 47 80", "10 8\n8780 -6753 -8212 -1027 1193 -6328 -4260 -8031 4114 -135\n-6545 1378 6091 -4158 3612 1509 -8731 1391", "10 5\n-7722 3155 -4851 -5222 -2712 4693 -3099 222 -4282 -4848\n3839 3098 -8804 4627 -7437", "4 10\n1796 5110 -8430 -617\n9903 -5666 -2809 -4878 -284 -1123 5202 -3694 -789 5483", "46 60\n-119 682 371 355 -473 978 -474 311 379 -311 601 -287 683 625 982 -772 -706 -995 451 -877 452 -823 -51 826 -771 -419 -215 -502 -110 -454 844 -433 942 250 155 -787 628 282 -818 -784 282 -888 200 628 -320 62\n-389 -518 341 98 -138 -816 -628 81 567 112 -220 -122 -307 -891 -85 253 -352 -244 194 779 -884 866 -23 298 -191 -497 106 -553 -612 -48 -279 847 -721 195 -397 -455 486 -572 -489 -183 -582 354 -542 -371 -330 -105 -110 -536 -559 -487 -297 -533 813 281 847 -786 8 -179 394 -734", "39 31\n268 -441 -422 252 377 420 749 748 660 893 -309 722 -612 -667 363 79 650 884 -672 -880 518 -936 806 376 359 -965 -964 138 851 717 -131 316 603 -375 114 421 976 688 -527\n-989 -76 -404 971 -572 771 149 674 -471 218 -317 -225 994 10 509 719 915 -811 -57 -995 865 -486 7 -766 143 -53 699 -466 -165 -486 602", "5 3\n-8452 -1472 4013 -5048 -6706\n-8387 -7493 -7090", "58 58\n-2 79 3 14 40 -23 87 -86 80 -23 77 12 55 -81 59 -84 -66 89 92 -85 14 -44 -28 -75 77 -36 97 69 21 -31 -26 -13 9 83 -70 38 58 79 -34 68 -52 -50 -68 41 86 -9 -87 64 90 -88 -55 -32 35 100 76 -85 63 -29\n68 3 -18 -13 -98 -52 -90 -21 43 -63 -97 49 40 65 -96 83 15 2 76 54 50 49 4 -71 -62 53 26 -90 -38 -24 71 -69 -58 -86 66 5 31 -23 -76 -34 -79 72 7 45 -86 -97 -43 85 -51 -76 26 98 58 -28 58 44 82 -70", "9 10\n-393 439 961 649 441 -536 -453 989 733\n-952 -776 674 696 -452 -700 58 -430 540 271", "8 6\n-90 817 655 798 -547 -390 -828 -50\n-626 -365 426 139 513 -607", "54 11\n-10 5 -4 -7 -2 10 -10 -4 6 4 9 -7 -10 8 8 6 0 -6 8 4 -6 -1 6 4 -6 1 -2 8 -5 -2 -9 -8 9 6 1 2 10 3 1 3 -3 -10 8 -2 3 9 8 3 -9 -5 -6 -2 -5 -6\n10 1 0 -9 -5 -6 8 0 -3 5 -5", "6 7\n3403 -4195 5813 -1096 -9300 -959\n-4820 9153 2254 6322 -5071 6383 -687", "41 56\n6 2 0 -3 3 6 0 10 -7 -5 -5 7 -5 -9 -3 -5 -2 9 5 -1 1 8 -2 1 -10 10 -4 -9 10 -8 8 7 7 7 4 4 -2 2 4 -6 -7\n9 6 -5 6 -7 2 -6 -3 -6 -1 10 -5 -5 3 10 10 4 3 0 2 8 4 -3 3 9 4 -6 0 2 6 6 -2 0 -3 -5 3 4 -2 -3 10 -10 1 3 -3 -7 2 -2 2 0 4 -6 8 -4 -1 1 -6", "45 57\n-5 -3 -10 2 -3 1 10 -3 -3 -7 -9 6 6 1 8 2 -4 3 -6 9 8 10 -1 8 -2 -8 -9 -7 -8 4 -1 -10 0 -4 8 -7 3 -1 0 3 -8 -10 -6 -8 -5\n1 3 -1 7 1 10 3 -2 8 6 0 2 -3 -3 10 -10 -6 -7 10 5 9 10 3 -2 4 10 -10 0 -2 4 -6 -1 -1 -5 7 -3 -2 -7 7 -2 2 2 1 -10 -7 -8 -3 4 0 8 -5 -7 -7 9 -3 8 -5", "51 39\n-10 6 -8 2 6 6 0 2 4 -3 8 10 7 1 9 -8 4 -2 3 5 8 -2 1 3 1 3 -5 0 2 2 7 -3 -10 4 9 -3 -7 5 5 10 -5 -5 9 -3 9 -1 -4 9 -7 -8 5\n-5 10 -2 -8 -10 5 -7 1 7 6 -3 -5 0 -4 0 -9 2 -9 -10 2 -6 10 0 4 -4 -8 -3 1 10 7 5 7 0 -7 1 0 9 0 -5", "4 10\n3 -7 -4 -8\n7 3 -1 -8 2 -1 -5 8 -8 9", "44 41\n-6 0 -2 5 5 -9 -4 -5 -2 -6 -7 -10 5 2 -6 -3 1 4 8 2 -7 6 5 0 10 -2 -9 3 -6 -3 7 5 -3 7 -10 -1 6 0 10 -6 -5 -6 -6 6\n6 -3 1 -1 8 9 6 7 -6 -4 -2 -4 -3 3 2 -1 3 1 10 -2 2 -10 -9 -3 8 -3 -1 -4 0 0 -4 7 -10 6 10 -8 5 6 2 -9 -4", "52 43\n-514 -667 -511 516 -332 73 -233 -594 125 -847 -584 432 631 -673 -380 835 69 523 -568 -110 -752 -731 864 250 550 -249 525 357 8 43 -395 -328 61 -84 -151 165 -896 955 -660 -195 375 806 -160 870 143 -725 -814 494 -953 -463 704 -415\n608 -584 673 -920 -227 -442 242 815 533 -184 -502 -594 -381 -960 786 -627 -531 -579 583 -252 -445 728 902 934 -311 971 119 -391 710 -794 738 -82 774 580 -142 208 704 -745 -509 979 -236 -276 -800", "51 48\n642 261 822 -266 700 18 -62 -915 39 997 564 -130 605 -141 58 426 -514 425 -310 -56 -524 860 -793 57 511 -563 -529 -140 -679 -489 -841 -326 -108 -785 599 3 -90 -52 769 -513 -328 -709 -887 736 729 -148 232 680 -589 77 531\n689 765 386 700 612 -936 -258 966 873 130 230 -78 -835 739 -755 127 -963 -282 -728 -833 345 -817 -61 680 944 -475 -46 -915 777 -789 -742 -755 325 -474 -220 544 19 828 -483 -388 -330 -150 -912 -219 185 -541 237 724", "35 32\n8 3 9 -6 -6 -3 -6 2 2 3 0 -4 8 9 -10 -7 7 -6 -4 1 -9 3 -2 3 -4 -8 -8 5 -10 2 6 4 -7 -6 -1\n7 -2 1 -9 1 8 4 -4 -4 -7 5 4 0 3 5 8 9 -7 -1 -8 -1 7 2 5 6 -2 -8 -2 9 -6 8 -6", "54 55\n-95 -3 -18 81 -85 -78 -76 95 -4 -91 88 98 35 88 -30 -82 -1 23 -98 82 -83 100 -47 -7 93 -87 -57 -5 -57 -46 30 -16 -27 -46 78 -58 4 87 86 -58 22 19 -40 8 -6 92 -65 10 -51 -34 -70 -69 -70 -51\n-42 75 48 -79 58 23 -8 47 48 33 -2 97 -30 -8 -87 56 22 -91 25 27 -91 -75 -10 45 -27 54 -94 60 -49 22 18 2 35 -81 8 -61 91 12 78 6 -83 76 -81 -27 -65 56 -99 -69 3 91 81 -34 9 -29 61", "18 4\n81 -30 22 81 -9 -66 -39 -11 16 9 91 74 -36 40 -26 -11 -13 -22\n21 67 96 96", "5 5\n9 9 -7 -4 6\n2 3 -3 -8 -1", "44 49\n28 76 41 66 49 31 3 4 41 89 44 41 33 73 5 -85 57 -55 86 43 25 0 -26 -36 81 -80 -71 77 96 85 -8 -96 -91 28 3 -98 -82 -87 -50 70 -39 -99 -70 66\n-12 28 11 -25 -34 70 -4 69 9 -31 -23 -8 19 -54 -5 -24 -7 -45 -70 -71 -64 77 39 60 -63 10 -7 -92 22 4 45 75 100 49 95 -66 -96 -85 -35 92 -9 -37 -38 62 -62 24 -35 40 3", "57 41\n-10 9 2 7 -1 1 -10 9 7 -9 -4 8 4 -8 -6 8 1 5 -7 9 8 -4 1 -2 -7 6 -9 -10 3 0 8 7 1 -4 -6 9 -10 8 3 -9 4 -9 6 -7 10 -4 3 -4 10 -1 -7 -7 -10 -10 0 3 -10\n-2 1 -5 6 0 -2 -4 8 2 -9 -6 7 2 6 -9 -1 -1 3 -4 -8 -4 -10 7 -1 -6 -5 -7 5 10 -5 -4 4 -7 6 -2 -9 -10 3 -7 -5 -9", "9 5\n7 -5 -2 -3 -10 -3 5 4 10\n-1 6 -4 3 2", "31 55\n68 -31 19 47 95 -44 67 45 32 -17 31 -14 52 -19 -75 97 88 9 -11 77 -23 74 -29 31 -42 -15 -77 30 -17 75 -9\n-63 94 98 45 -57 -41 4 34 38 67 68 69 -36 47 91 -55 58 73 77 -71 4 -89 -6 49 71 70 -64 -24 -87 -3 -96 62 -31 -56 -2 88 -80 95 -97 -91 25 -2 1 -80 -45 -96 -62 12 12 -61 -13 23 -32 6 29", "50 59\n-6 -5 8 -6 7 9 2 -7 0 -9 -7 1 -5 10 -6 -2 -10 6 -6 -2 -7 -10 1 4 -4 9 2 -8 -3 -1 5 -4 2 8 -10 7 -10 4 8 7 -4 9 1 5 -10 -7 -2 3 -9 5\n-10 -1 3 9 0 8 5 10 -6 -2 -2 4 4 -1 -3 -9 4 -6 9 -5 -5 -4 -7 -2 9 6 -3 -6 -1 -9 1 9 2 -9 2 -5 3 7 -10 7 -3 -1 -10 -3 2 6 -2 -5 10 5 8 7 4 6 -7 -5 2 -2 -10", "53 51\n678 -657 703 569 -524 -801 -221 -600 -95 11 -660 866 506 683 649 -842 604 -33 -929 541 379 939 -512 -347 763 697 653 844 927 488 -233 -313 357 -717 119 885 -864 738 -20 -350 -724 906 -41 324 -713 424 -432 154 173 406 29 -420 62\n-834 648 564 735 206 490 297 -968 -482 -914 -149 -312 506 56 -773 527 816 137 879 552 -224 811 -786 739 -828 -203 -873 148 -290 395 832 -845 302 -324 32 299 746 638 -684 216 392 -137 496 57 -187 477 -16 395 -325 -186 -801", "51 7\n323 236 120 48 521 587 327 613 -470 -474 522 -705 320 -51 1 288 -430 -954 732 -805 -562 300 -710 190 515 280 -101 -927 77 282 198 -51 -350 -990 -435 -765 178 -934 -955 704 -565 -640 853 -27 950 170 -712 -780 620 -572 -409\n244 671 425 977 773 -294 268", "9 9\n-9 -1 2 8 10 2 9 7 3\n5 8 -5 4 -4 -8 2 8 -8", "50 60\n445 303 -861 -583 436 -125 312 -700 -829 -865 -276 -25 -725 -286 528 -221 757 720 -572 514 -514 359 294 -992 -838 103 611 776 830 143 -247 182 -241 -627 299 -824 635 -571 -660 924 511 -876 160 569 -570 827 75 558 708 46\n899 974 750 -138 -439 -904 -113 -761 -150 -92 -279 489 323 -649 -759 667 -600 -76 -991 140 701 -654 -276 -563 108 -301 161 -989 -852 -97 316 31 -724 848 979 -501 -883 569 925 -532 86 456 302 -985 826 79 -911 660 752 941 -464 -157 -110 433 829 -872 172 496 528 -576", "7 3\n90 67 1 68 40 -100 -26\n-96 70 -74", "7 4\n-8 -2 -5 -3 -8 -9 8\n-8 4 -1 10", "52 48\n-552 43 -670 -163 -765 -603 -768 673 -248 337 -89 941 -676 -406 280 409 -630 -577 324 115 927 477 -242 108 -337 591 -158 -524 928 859 825 935 818 638 -51 988 -568 871 -842 889 -737 -272 234 -643 766 -422 473 -570 -1000 -735 -279 845\n963 -436 738 113 273 -374 -568 64 276 -698 -135 -748 909 -250 -740 -344 -436 414 719 119 973 -881 -576 868 -45 909 630 286 -845 458 684 -64 579 965 598 205 -318 -974 228 -596 596 -946 -198 923 571 -907 -911 -341", "40 54\n-26 -98 27 -64 0 33 62 -12 -8 -10 -62 28 28 75 -5 -89 -75 -100 -63 9 -97 -20 -81 62 56 -39 87 -33 13 61 19 -97 -23 95 18 -4 -48 55 -40 -81\n-69 -71 1 -46 -58 0 -100 -82 31 43 -59 -43 77 -8 -61 -2 -36 -55 -35 -44 -59 -13 -16 14 60 -95 -61 25 76 -1 -3 9 -92 48 -92 -54 2 -7 73 -16 42 -40 36 -58 97 81 13 -64 -12 -28 65 85 -61 8", "22 34\n-73 45 -81 -67 9 61 -97 0 -64 86 -9 47 -28 100 79 -53 25 -59 -80 -86 -47 24\n57 69 8 -34 -37 12 -32 -81 27 -65 87 -64 62 -44 97 34 44 -93 44 25 -72 93 14 95 -60 -65 96 -95 23 -69 28 -20 -95 74", "46 48\n-710 947 515 217 26 -548 -416 494 431 -872 -616 848 -950 -138 -104 560 241 -462 -265 90 66 -331 934 -788 -815 -558 86 39 784 86 -856 879 -733 -653 104 -673 -588 -568 78 368 -226 850 195 982 140 370\n470 -337 283 460 -710 -434 739 459 -567 173 217 511 -830 644 -734 764 -211 -106 423 -356 -126 677 -454 42 680 557 -636 9 -552 877 -246 -352 -44 442 -505 -811 -100 -768 -130 588 -428 755 -904 -138 14 -253 -40 265", "58 40\n120 571 -472 -980 993 -885 -546 -220 617 -697 -182 -42 128 -29 567 -615 -260 -876 -507 -642 -715 -283 495 -584 97 4 376 -131 186 -301 729 -545 8 -610 -643 233 -123 -769 -173 119 993 825 614 -503 891 426 -850 -992 -406 784 634 -294 997 127 697 -509 934 316\n630 -601 937 -544 -50 -176 -885 530 -828 556 -784 460 -422 647 347 -862 131 -76 490 -576 5 -761 922 -426 -7 -401 989 -554 688 -531 -303 -415 -507 -752 -581 -589 513 -151 -279 317", "8 6\n23 -18 -94 -80 74 89 -48 61\n-84 45 -12 -9 -74 63", "57 55\n-34 744 877 -4 -902 398 -404 225 -560 -600 634 180 -198 703 910 681 -864 388 394 -317 839 -95 -706 -474 -340 262 228 -196 -35 221 -689 -960 -430 946 -231 -146 741 -754 330 217 33 276 381 -734 780 -522 528 -425 -202 -19 -302 -743 53 -247 69 -314 -845\n-158 24 461 -274 -30 -58 223 -806 747 568 -59 126 56 661 8 419 -422 320 340 480 -185 905 -459 -530 -50 -484 303 366 889 404 915 -361 -985 -642 -690 -577 -80 -250 173 -740 385 908 -4 593 -559 731 326 -209 -697 490 265 -548 716 320 23", "59 56\n-8 -8 -4 5 -4 4 4 -5 -10 -2 0 6 -9 -2 10 1 -8 -2 9 5 2 -1 -5 7 -7 7 2 -7 -5 2 -2 -8 4 10 5 -9 5 9 6 10 7 6 -6 -4 -8 5 9 6 1 -7 5 -9 8 10 -7 1 3 -6 8\n6 -2 -7 4 -2 -5 -9 -5 0 8 5 5 -4 -6 -5 -10 4 3 -4 -4 -8 2 -6 -10 -10 4 -3 8 -1 8 -8 -5 -2 3 7 3 -8 10 6 0 -8 0 9 -3 9 0 9 0 -3 4 -3 10 10 5 -6 4", "53 30\n-4206 -1169 3492 6759 5051 -3338 4024 8267 -4651 -7685 -3346 -4958 2648 9321 6062 -3566 8118 9067 -1331 5064 148 6375 6193 -2024 -9376 -663 3837 3989 6583 6971 -146 2515 -4222 8159 -94 -4937 -8364 -6025 3566 556 -5229 3138 -9504 1383 1171 -3918 -1587 -6532 -2299 -6648 -5861 4864 9220\n-2359 7436 1682 1775 3850 2691 -4326 6670 3245 -3821 5932 -1159 6162 -2818 -5255 -7439 -6688 1778 -5132 8085 -3576 9153 -5260 -1438 9941 -4729 532 -5206 2133 -2252", "4 9\n-2 3 -5 -10\n7 -7 5 5 2 4 9 -4 5", "44 50\n23 -401 692 -570 264 -885 417 -355 560 -254 -468 -849 900 997 559 12 853 424 -579 485 711 67 638 771 -750 -583 294 -410 -225 -117 -262 148 385 627 610 983 -345 -236 -62 635 -421 363 88 682\n-204 -429 -74 855 533 -817 -613 205 972 941 -566 -813 79 -660 -604 661 273 -70 -70 921 -240 148 314 328 -155 -56 -793 259 -630 92 -975 -361 671 963 430 315 -94 957 465 548 -796 626 -58 -595 315 -455 -918 398 279 99", "53 30\n5 10 -1 -9 7 -7 1 6 0 7 2 -2 -2 1 -9 -9 2 -7 9 10 -9 1 -1 -9 -9 -5 -8 -3 2 4 -3 -6 6 4 -2 -3 -3 -9 2 -4 9 5 6 -5 -5 6 -2 -1 10 7 4 -4 -2\n-1 10 3 -1 7 10 -2 -1 -2 0 3 -10 -6 1 -9 2 -10 9 6 -7 -9 3 -7 1 0 9 -8 2 9 7", "9 9\n1 10 0 -2 9 -7 1 -4 3\n-7 -1 6 -4 8 2 6 6 -3", "9 9\n5181 -7243 3653 3587 -5051 -4899 -4110 7981 -6429\n-7365 -2247 7942 9486 -7160 -1020 -8934 7733 -3010", "55 43\n9 1 0 -7 4 3 4 4 -8 3 0 -7 0 -9 3 -6 0 4 7 1 -1 -10 -7 -6 -8 -8 2 -5 5 -4 -9 -7 5 -3 -7 -10 -4 -2 -7 -3 2 4 9 8 -8 9 -10 0 0 3 -6 -5 -2 9 -6\n-4 -6 9 -4 -2 5 9 6 -8 -2 -3 -7 -8 8 -8 5 1 7 9 7 -5 10 -10 -8 -3 10 0 8 8 4 8 3 10 -8 -4 -6 1 9 0 -3 -4 8 -10", "53 12\n63 88 91 -69 -15 20 98 40 -70 -49 -51 -74 -34 -52 1 21 83 -14 57 40 -57 33 94 2 -74 22 86 79 9 -18 67 -31 72 31 -64 -83 83 29 50 -29 -27 97 -40 -8 -57 69 -93 18 42 68 -71 -86 22\n51 19 33 12 98 91 -83 65 -6 16 81 86", "1 1\n0\n0", "3 3\n1 1 1\n1 2 2", "1 1\n1\n1", "1 1\n0\n1", "3 3\n0 0 0\n0 0 0", "5 5\n5 5 5 5 5\n5 5 5 5 5", "60 60\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59\n0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540", "2 2\n0 2\n0 1", "1 1\n5\n5", "10 10\n1 1 1 1 1 1 1 1 1 1\n-30 -30 -30 -30 40 40 40 40 40 40"], "outputs": ["9", "10", "29", "40", "3", "3", "4", "8", "91", "4", "95", "53", "100", "20", "68", "64", "8", "4", "56", "4", "12", "108", "27", "17", "28", "4", "4", "4", "19", "15", "4", "79", "8", "6", "55", "4", "97", "102", "90", "12", "85", "18", "20", "67", "63", "8", "7", "52", "98", "11", "43", "109", "24", "9", "16", "24", "6", "8", "21", "54", "27", "20", "18", "7", "24", "115", "10", "11", "22", "82", "15", "4", "98", "27", "2", "6", "2", "2", "6", "10", "4", "4", "2", "20"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
dcf673ff4e3d272a4fef682339c0d6ea
Lucky Tickets
Gerald has a friend, Pollard. Pollard is interested in lucky tickets (ticket is a sequence of digits). At first he thought that a ticket is lucky if between some its digits we can add arithmetic signs and brackets so that the result obtained by the arithmetic expression was number 100. But he quickly analyzed all such tickets and moved on to a more general question. Now he explores *k*-lucky tickets. Pollard sais that a ticket is *k*-lucky if we can add arithmetic operation signs between its digits to the left or right of them (i.e., "+", "-", "<=×<=") and brackets so as to obtain the correct arithmetic expression whose value would equal *k*. For example, ticket "224201016" is 1000-lucky as (<=-<=2<=-<=(2<=+<=4))<=×<=(2<=+<=0)<=+<=1016<==<=1000. Pollard was so carried away by the lucky tickets that he signed up for a seminar on lucky tickets and, as far as Gerald knows, Pollard will attend it daily at 7 pm in some famous institute and will commute to it in the same tram for *m* days. In this tram tickets have eight digits. And Gerald wants to make a surprise for Pollard: each day Pollard will receive a tram *k*-lucky ticket. The conductor has already agreed to give Pollard certain tickets during all these *m* days and he only wants Gerald to tell him what kind of tickets to give out. In this regard, help Gerald pick exactly *m* distinct *k*-lucky tickets. The single line contains two integers *k* and *m* (0<=≤<=*k*<=≤<=104, 1<=≤<=*m*<=≤<=3·105). Print *m* lines. Each line must contain exactly 8 digits — the *k*-winning ticket. The tickets may begin with 0, all tickets must be distinct. If there are more than *m* distinct *k*-lucky tickets, print any *m* of them. It is guaranteed that at least *m* distinct *k*-lucky tickets exist. The tickets can be printed in any order. Sample Input 0 3 7 4 Sample Output 00000000 00000001 00000002 00000007 00000016 00000017 00000018
{"inputs": ["0 3", "7 4", "0 10000", "1 10000", "9999 10000", "9998 10000", "9997 10000", "9973 10000", "0 300000", "1 300000", "10000 300000", "9999 300000", "9973 300000", "9998 300000", "2 10000", "3 10000", "4 10000", "5 10000", "7 10000", "14 10000", "9996 10000", "10 10000", "256 10000", "9240 10000", "7560 10000", "13 10000", "9949 10000", "9901 10000", "0 1", "10000 1", "10000 10000", "1234 123"], "outputs": ["00000000\n00000001\n00000002", "00000007\n00000016\n00000017\n00000018", "00000000\n00000001\n00000002\n00000003\n00000004\n00000005\n00000006\n00000007\n00000008\n00000009\n00000010\n00000011\n00000012\n00000013\n00000014\n00000015\n00000016\n00000017\n00000018\n00000019\n00000020\n00000021\n00000022\n00000023\n00000024\n00000025\n00000026\n00000027\n00000028\n00000029\n00000030\n00000031\n00000032\n00000033\n00000034\n00000035\n00000036\n00000037\n00000038\n00000039\n00000040\n00000041\n00000042\n00000043\n00000044\n00000045\n00000046\n00000047\n00000048\n00000049\n00000050\n0...", "00000001\n00000010\n00000011\n00000012\n00000021\n00000023\n00000031\n00000032\n00000034\n00000041\n00000043\n00000045\n00000051\n00000054\n00000056\n00000061\n00000065\n00000067\n00000071\n00000076\n00000078\n00000081\n00000087\n00000089\n00000091\n00000098\n00000100\n00000101\n00000102\n00000103\n00000104\n00000105\n00000106\n00000107\n00000108\n00000109\n00000110\n00000111\n00000112\n00000113\n00000120\n00000121\n00000122\n00000123\n00000124\n00000130\n00000131\n00000132\n00000133\n00000134\n00000135\n0...", "00009999\n00019999\n00019998\n00029999\n00029997\n00039999\n00039996\n00033333\n00049999\n00049995\n00059999\n00059994\n00069999\n00069993\n00079999\n00079992\n00089999\n00089991\n00099999\n00099990\n00091111\n00109999\n00109998\n00109989\n00119999\n00119998\n00119997\n00119988\n00110909\n00111019\n00111908\n00111909\n00111910\n00112907\n00112911\n00112999\n00113033\n00113303\n00113906\n00113912\n00113989\n00114905\n00114913\n00114979\n00115904\n00115914\n00115969\n00116903\n00116915\n00116959\n00117902\n0...", "00009998\n00019999\n00019998\n00019997\n00029998\n00029996\n00024999\n00039998\n00039995\n00049998\n00049994\n00059998\n00059993\n00069998\n00069992\n00079998\n00079991\n00089998\n00089990\n00099998\n00099989\n00109999\n00109998\n00109997\n00109988\n00119999\n00119998\n00119997\n00119996\n00114999\n00119987\n00129999\n00129998\n00129997\n00129996\n00124999\n00129995\n00129986\n00139998\n00139996\n00134999\n00139995\n00139994\n00139985\n00149998\n00149995\n00149994\n00149993\n00149984\n00159998\n00159994\n0...", "00009997\n00019998\n00019997\n00019996\n00029999\n00029997\n00029995\n00039997\n00039994\n00049997\n00049993\n00059997\n00059992\n00069997\n00069991\n00079997\n00079990\n00089997\n00089989\n00099997\n00099988\n00109998\n00109997\n00109996\n00109987\n00119999\n00119998\n00119997\n00119996\n00119995\n00119986\n00129999\n00129998\n00129997\n00129996\n00129995\n00129994\n00129985\n00139999\n00139997\n00139995\n00139994\n00139993\n00139984\n00130769\n00131768\n00131769\n00131770\n00131896\n00131968\n00132767\n0...", "00009973\n00019974\n00019973\n00019972\n00029975\n00029973\n00029971\n00039976\n00039973\n00039970\n00049977\n00049973\n00049969\n00059978\n00059973\n00059968\n00069979\n00069973\n00069967\n00079980\n00079973\n00079966\n00089981\n00089973\n00089965\n00099982\n00099973\n00099964\n00109974\n00109973\n00109972\n00109963\n00119975\n00119974\n00119973\n00119972\n00119971\n00119962\n00129976\n00129975\n00129974\n00129973\n00129972\n00129971\n00129970\n00129961\n00139977\n00139976\n00139975\n00139973\n00139971\n0...", "00000000\n00000001\n00000002\n00000003\n00000004\n00000005\n00000006\n00000007\n00000008\n00000009\n00000010\n00000011\n00000012\n00000013\n00000014\n00000015\n00000016\n00000017\n00000018\n00000019\n00000020\n00000021\n00000022\n00000023\n00000024\n00000025\n00000026\n00000027\n00000028\n00000029\n00000030\n00000031\n00000032\n00000033\n00000034\n00000035\n00000036\n00000037\n00000038\n00000039\n00000040\n00000041\n00000042\n00000043\n00000044\n00000045\n00000046\n00000047\n00000048\n00000049\n00000050\n0...", "00000001\n00000010\n00000011\n00000012\n00000021\n00000023\n00000031\n00000032\n00000034\n00000041\n00000043\n00000045\n00000051\n00000054\n00000056\n00000061\n00000065\n00000067\n00000071\n00000076\n00000078\n00000081\n00000087\n00000089\n00000091\n00000098\n00000100\n00000101\n00000102\n00000103\n00000104\n00000105\n00000106\n00000107\n00000108\n00000109\n00000110\n00000111\n00000112\n00000113\n00000120\n00000121\n00000122\n00000123\n00000124\n00000130\n00000131\n00000132\n00000133\n00000134\n00000135\n0...", "00019999\n00029998\n00025000\n00026258\n00028625\n00039997\n00049996\n00042500\n00044625\n00045005\n00045050\n00045500\n00046254\n00059995\n00052000\n00052508\n00052580\n00054005\n00054050\n00054500\n00055004\n00055040\n00055058\n00055085\n00055400\n00055508\n00055580\n00055805\n00055850\n00058025\n00058055\n00058250\n00058505\n00058550\n00069994\n00079993\n00089992\n00081250\n00082505\n00082550\n00082625\n00085025\n00085055\n00085250\n00085505\n00085550\n00086252\n00099991\n00109999\n00109990\n00101000\n0...", "00009999\n00019999\n00019998\n00029999\n00029997\n00039999\n00039996\n00033333\n00049999\n00049995\n00059999\n00059994\n00069999\n00069993\n00079999\n00079992\n00089999\n00089991\n00099999\n00099990\n00091111\n00109999\n00109998\n00109989\n00119999\n00119998\n00119997\n00119988\n00110909\n00111019\n00111908\n00111909\n00111910\n00112907\n00112911\n00112999\n00113033\n00113303\n00113906\n00113912\n00113989\n00114905\n00114913\n00114979\n00115904\n00115914\n00115969\n00116903\n00116915\n00116959\n00117902\n0...", "00009973\n00019974\n00019973\n00019972\n00029975\n00029973\n00029971\n00039976\n00039973\n00039970\n00049977\n00049973\n00049969\n00059978\n00059973\n00059968\n00069979\n00069973\n00069967\n00079980\n00079973\n00079966\n00089981\n00089973\n00089965\n00099982\n00099973\n00099964\n00109974\n00109973\n00109972\n00109963\n00119975\n00119974\n00119973\n00119972\n00119971\n00119962\n00129976\n00129975\n00129974\n00129973\n00129972\n00129971\n00129970\n00129961\n00139977\n00139976\n00139975\n00139973\n00139971\n0...", "00009998\n00019999\n00019998\n00019997\n00029998\n00029996\n00024999\n00039998\n00039995\n00049998\n00049994\n00059998\n00059993\n00069998\n00069992\n00079998\n00079991\n00089998\n00089990\n00099998\n00099989\n00109999\n00109998\n00109997\n00109988\n00119999\n00119998\n00119997\n00119996\n00114999\n00119987\n00129999\n00129998\n00129997\n00129996\n00124999\n00129995\n00129986\n00139998\n00139996\n00134999\n00139995\n00139994\n00139985\n00149998\n00149995\n00149994\n00149993\n00149984\n00159998\n00159994\n0...", "00000002\n00000011\n00000012\n00000013\n00000020\n00000021\n00000022\n00000024\n00000031\n00000032\n00000035\n00000042\n00000046\n00000052\n00000053\n00000057\n00000062\n00000064\n00000068\n00000072\n00000075\n00000079\n00000082\n00000086\n00000092\n00000097\n00000101\n00000102\n00000103\n00000108\n00000110\n00000111\n00000112\n00000113\n00000114\n00000119\n00000120\n00000121\n00000122\n00000123\n00000124\n00000125\n00000130\n00000131\n00000132\n00000134\n00000135\n00000136\n00000141\n00000142\n00000143\n0...", "00000003\n00000012\n00000013\n00000014\n00000021\n00000023\n00000025\n00000030\n00000031\n00000033\n00000036\n00000041\n00000043\n00000047\n00000052\n00000053\n00000058\n00000063\n00000069\n00000073\n00000074\n00000083\n00000085\n00000093\n00000096\n00000102\n00000103\n00000104\n00000107\n00000111\n00000112\n00000113\n00000114\n00000115\n00000118\n00000120\n00000121\n00000122\n00000123\n00000124\n00000125\n00000126\n00000129\n00000130\n00000131\n00000133\n00000135\n00000136\n00000137\n00000140\n00000141\n0...", "00000004\n00000013\n00000014\n00000015\n00000022\n00000024\n00000026\n00000031\n00000034\n00000037\n00000040\n00000041\n00000044\n00000048\n00000051\n00000054\n00000059\n00000062\n00000064\n00000073\n00000074\n00000084\n00000094\n00000095\n00000103\n00000104\n00000105\n00000106\n00000112\n00000113\n00000114\n00000115\n00000116\n00000117\n00000121\n00000122\n00000123\n00000124\n00000125\n00000126\n00000127\n00000128\n00000130\n00000131\n00000132\n00000134\n00000136\n00000137\n00000138\n00000139\n00000140\n0...", "00000005\n00000014\n00000015\n00000016\n00000023\n00000025\n00000027\n00000032\n00000035\n00000038\n00000041\n00000045\n00000049\n00000050\n00000051\n00000055\n00000061\n00000065\n00000072\n00000075\n00000083\n00000085\n00000094\n00000095\n00000104\n00000105\n00000106\n00000113\n00000114\n00000115\n00000116\n00000117\n00000122\n00000123\n00000124\n00000125\n00000126\n00000127\n00000128\n00000131\n00000132\n00000133\n00000135\n00000137\n00000138\n00000139\n00000140\n00000141\n00000142\n00000145\n00000148\n0...", "00000007\n00000016\n00000017\n00000018\n00000025\n00000027\n00000029\n00000034\n00000037\n00000043\n00000047\n00000052\n00000057\n00000061\n00000067\n00000070\n00000071\n00000077\n00000081\n00000087\n00000092\n00000097\n00000103\n00000106\n00000107\n00000108\n00000114\n00000115\n00000116\n00000117\n00000118\n00000119\n00000123\n00000124\n00000125\n00000126\n00000127\n00000128\n00000129\n00000132\n00000133\n00000134\n00000135\n00000136\n00000137\n00000139\n00000142\n00000143\n00000144\n00000147\n00000151\n0...", "00000014\n00000027\n00000059\n00000068\n00000072\n00000077\n00000086\n00000095\n00000104\n00000113\n00000114\n00000115\n00000117\n00000122\n00000127\n00000131\n00000135\n00000137\n00000140\n00000141\n00000149\n00000151\n00000153\n00000158\n00000159\n00000162\n00000167\n00000168\n00000169\n00000172\n00000173\n00000176\n00000177\n00000178\n00000182\n00000184\n00000185\n00000186\n00000187\n00000194\n00000195\n00000196\n00000206\n00000207\n00000212\n00000214\n00000216\n00000217\n00000218\n00000225\n00000226\n0...", "00009996\n00019997\n00019996\n00019995\n00029998\n00029996\n00029994\n00024998\n00025198\n00026833\n00027147\n00027714\n00028336\n00029851\n00039999\n00039996\n00039993\n00033332\n00033498\n00034767\n00034833\n00034968\n00036849\n00036877\n00037476\n00037687\n00037768\n00038334\n00039834\n00049996\n00049992\n00042499\n00043577\n00043833\n00044951\n00045149\n00045177\n00047357\n00047517\n00047751\n00048333\n00059996\n00059991\n00069996\n00069990\n00061666\n00061798\n00062387\n00062833\n00063449\n00063477\n0...", "00000010\n00000019\n00000025\n00000028\n00000037\n00000046\n00000052\n00000055\n00000064\n00000073\n00000082\n00000091\n00000100\n00000101\n00000109\n00000110\n00000111\n00000115\n00000118\n00000119\n00000122\n00000125\n00000127\n00000128\n00000129\n00000133\n00000135\n00000136\n00000137\n00000138\n00000142\n00000144\n00000145\n00000146\n00000147\n00000152\n00000154\n00000155\n00000156\n00000162\n00000163\n00000164\n00000165\n00000166\n00000172\n00000173\n00000174\n00000177\n00000181\n00000182\n00000183\n0...", "00000256\n00000328\n00000464\n00000488\n00000644\n00000832\n00000848\n00000884\n00001255\n00001256\n00001257\n00001282\n00001318\n00001328\n00001338\n00001364\n00001385\n00001388\n00001464\n00001488\n00001515\n00001551\n00001564\n00001588\n00001616\n00001628\n00001634\n00001644\n00001654\n00001679\n00001682\n00001688\n00001697\n00001732\n00001748\n00001784\n00001794\n00001832\n00001848\n00001853\n00001884\n00001932\n00001948\n00001974\n00001984\n00002128\n00002168\n00002254\n00002258\n00002264\n00002288\n0...", "00009240\n00019241\n00019240\n00019239\n00029242\n00029240\n00029238\n00024620\n00025584\n00025924\n00026077\n00026607\n00026670\n00026770\n00027066\n00027660\n00027706\n00027760\n00028455\n00029245\n00039243\n00039240\n00039237\n00033080\n00033588\n00033858\n00034077\n00034407\n00034470\n00034770\n00035556\n00035578\n00035587\n00035616\n00035655\n00035778\n00035788\n00035877\n00035887\n00036165\n00037044\n00037440\n00037558\n00037588\n00037704\n00037740\n00037758\n00037785\n00037855\n00037885\n00038385\n0...", "00007560\n00008409\n00008490\n00008945\n00009084\n00009458\n00009840\n00017561\n00017560\n00018409\n00018490\n00018945\n00019084\n00019458\n00019840\n00017559\n00027562\n00027560\n00028409\n00028490\n00028945\n00029084\n00029458\n00029840\n00027558\n00023780\n00024209\n00024290\n00024584\n00024945\n00025407\n00025470\n00025756\n00025849\n00025984\n00026063\n00026079\n00026097\n00026306\n00026360\n00026630\n00026709\n00026790\n00026907\n00026970\n00027054\n00027069\n00027096\n00027540\n00027565\n00027609\n0...", "00000013\n00000049\n00000058\n00000067\n00000076\n00000085\n00000094\n00000103\n00000112\n00000113\n00000114\n00000121\n00000126\n00000127\n00000130\n00000131\n00000134\n00000139\n00000141\n00000143\n00000148\n00000149\n00000152\n00000157\n00000158\n00000159\n00000162\n00000163\n00000166\n00000167\n00000168\n00000172\n00000174\n00000175\n00000176\n00000177\n00000184\n00000185\n00000186\n00000193\n00000194\n00000195\n00000196\n00000207\n00000211\n00000213\n00000215\n00000218\n00000229\n00000235\n00000237\n0...", "00009949\n00019950\n00019949\n00019948\n00029951\n00029949\n00029947\n00039952\n00039949\n00039946\n00049953\n00049949\n00049945\n00059954\n00059949\n00059944\n00069955\n00069949\n00069943\n00079956\n00079949\n00079942\n00089957\n00089949\n00089941\n00099958\n00099949\n00099940\n00109950\n00109949\n00109948\n00109939\n00119951\n00119950\n00119949\n00119948\n00119947\n00119938\n00129952\n00129951\n00129950\n00129949\n00129948\n00129947\n00129946\n00129937\n00139953\n00139952\n00139951\n00139949\n00139947\n0...", "00009901\n00019902\n00019901\n00019900\n00029903\n00029901\n00029899\n00039904\n00039901\n00039898\n00049905\n00049901\n00049897\n00059906\n00059901\n00059896\n00069907\n00069901\n00069895\n00079908\n00079901\n00079894\n00089909\n00089901\n00089893\n00099910\n00099901\n00099892\n00109902\n00109901\n00109900\n00109891\n00119903\n00119902\n00119901\n00119900\n00119899\n00119890\n00129904\n00129903\n00129902\n00129901\n00129900\n00129899\n00129898\n00129889\n00139905\n00139904\n00139903\n00139901\n00139899\n0...", "00000000", "00019999", "00019999\n00029998\n00025000\n00026258\n00028625\n00039997\n00049996\n00042500\n00044625\n00045005\n00045050\n00045500\n00046254\n00059995\n00052000\n00052508\n00052580\n00054005\n00054050\n00054500\n00055004\n00055040\n00055058\n00055085\n00055400\n00055508\n00055580\n00055805\n00055850\n00058025\n00058055\n00058250\n00058505\n00058550\n00069994\n00079993\n00089992\n00081250\n00082505\n00082550\n00082625\n00085025\n00085055\n00085250\n00085505\n00085550\n00086252\n00099991\n00109999\n00109990\n00101000\n0...", "00001234\n00002617\n00006172\n00011235\n00011395\n00011965\n00012475\n00014995\n00015247\n00015895\n00016519\n00016795\n00017695\n00018595\n00019495\n00019513\n00019549\n00019558\n00019567\n00019576\n00019585\n00019594\n00011234\n00012617\n00016172\n00011233\n00011379\n00013411\n00014113\n00019137\n00021236\n00022066\n00022618\n00023094\n00023412\n00024123\n00024309\n00026182\n00026206\n00021234\n00022617\n00026172\n00021232\n00021488\n00021548\n00021677\n00021767\n00022256\n00022278\n00022287\n00022616\n0..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
dcfbb6638db328393fdcbc6d1ec406d6
Lucky Sum
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem. The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits. In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator. Sample Input 2 7 7 7 Sample Output 33 7
{"inputs": ["2 7", "7 7", "1 9", "4 7", "12 47", "6 77", "1 100", "1000000000 1000000000", "77 77", "69 788", "474 747", "4 77777", "1 1000000", "47 744447", "47444 1000000000", "48 854888", "854444 985555", "774744 774747", "654 987654", "477777 1000000000", "77777 777777777", "963 85555574", "47 7444", "1 1000000000", "474 999888555", "777 1000000000", "7 777777774", "369 852", "47 47", "747 748", "77777440 77777444", "987545885 999875584", "2 777777776", "1 1", "1 2", "999999999 1000000000", "777777777 1000000000", "777777778 1000000000", "5 6", "49 49", "6 6", "3 4"], "outputs": ["33", "7", "125", "25", "1593", "4012", "14247", "4444444444", "77", "452195", "202794", "4070145675", "1394675359387", "381286992761", "1394672348253941136", "749733199853", "582719941728", "3098985", "1339803940266", "1394672167300009765", "407018021649898097", "7526978888069560", "38125896", "1394672350065645019", "1394177038954402791", "1394672350065239125", "407018023386632646", "606732", "47", "1521", "388887220", "54798666661186800", "407018024942188226", "4", "8", "8888888888", "987654325123456789", "987654324345679012", "14", "74", "7", "8"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
76
codeforces
dcffb99df12778203441b22c7fe377c7
Jzzhu and Numbers
Jzzhu have *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. We will call a sequence of indexes *i*1,<=*i*2,<=...,<=*i**k* (1<=≤<=*i*1<=&lt;<=*i*2<=&lt;<=...<=&lt;<=*i**k*<=≤<=*n*) a group of size *k*. Jzzhu wonders, how many groups exists such that *a**i*1 &amp; *a**i*2 &amp; ... &amp; *a**i**k*<==<=0 (1<=≤<=*k*<=≤<=*n*)? Help him and print this number modulo 1000000007 (109<=+<=7). Operation *x* &amp; *y* denotes bitwise AND operation of two numbers. The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=106). Output a single integer representing the number of required groups modulo 1000000007 (109<=+<=7). Sample Input 3 2 3 3 4 0 1 2 3 6 5 2 0 5 2 1 Sample Output 0 10 53
{"inputs": ["3\n2 3 3", "4\n0 1 2 3", "6\n5 2 0 5 2 1", "16\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "10\n450661 128600 993228 725823 293549 33490 843121 903634 556169 448234", "1\n0", "1\n1", "6\n524 529 5249 524 529 529", "55\n0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 4 5 6 7 8 9 5 6 7 8 9 6 7 8 9 7 8 9 8 9 9", "2\n0 0", "2\n0 1", "2\n1 0", "2\n1 1", "2\n1 2", "3\n1 2 3", "3\n128 1024 2048", "2\n1 31", "5\n1 3 5 7 9", "10\n3 3 3 5 5 3 3 3 3 5"], "outputs": ["0", "10", "53", "64594", "632", "1", "0", "24", "621247139", "3", "2", "2", "0", "1", "2", "4", "0", "0", "0"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
6
codeforces
dd23dd1684258e60b52f6529bf828f6c
Amusing Joke
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door. The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters. Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning. The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100. Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes. Sample Input SANTACLAUS DEDMOROZ SANTAMOROZDEDCLAUS PAPAINOEL JOULUPUKKI JOULNAPAOILELUPUKKI BABBONATALE FATHERCHRISTMAS BABCHRISTMASBONATALLEFATHER Sample Output YES NO NO
{"inputs": ["SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS", "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI", "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER", "B\nA\nAB", "ONDOL\nJNPB\nONLNJBODP", "Y\nW\nYW", "OI\nM\nIMO", "VFQRWWWACX\nGHZJPOQUSXRAQDGOGMR\nOPAWDOUSGWWCGQXXQAZJRQRGHRMVF", "JUTCN\nPIGMZOPMEUFADQBW\nNWQGZMAIPUPOMCDUB", "Z\nO\nZOCNDOLTBZKQLTBOLDEGXRHZGTTPBJBLSJCVSVXISQZCSFDEBXRCSGBGTHWOVIXYHACAGBRYBKBJAEPIQZHVEGLYH", "IQ\nOQ\nQOQIGGKFNHJSGCGM", "ROUWANOPNIGTVMIITVMZ\nOQTUPZMTKUGY\nVTVNGZITGPUNPMQOOATUUIYIWMMKZOTR", "OVQELLOGFIOLEHXMEMBJDIGBPGEYFG\nJNKFPFFIJOFHRIFHXEWYZOPDJBZTJZKBWQTECNHRFSJPJOAPQT\nYAIPFFFEXJJNEJPLREIGODEGQZVMCOBDFKWTMWJSBEBTOFFQOHIQJLHFNXIGOHEZRZLFOKJBJPTPHPGY", "NBJGVNGUISUXQTBOBKYHQCOOVQWUXWPXBUDLXPKX\nNSFQDFUMQDQWQ\nWXKKVNTDQQFXCUQBIMQGQHSLVGWSBFYBUPOWPBDUUJUXQNOQDNXOX", "IJHHGKCXWDBRWJUPRDBZJLNTTNWKXLUGJSBWBOAUKWRAQWGFNL\nNJMWRMBCNPHXTDQQNZ\nWDNJRCLILNQRHWBANLTXWMJBPKUPGKJDJZAQWKTZFBRCTXHHBNXRGUQUNBNMWODGSJWW", "SRROWANGUGZHCIEFYMQVTWVOMDWPUZJFRDUMVFHYNHNTTGNXCJ\nDJYWGLBFCCECXFHOLORDGDCNRHPWXNHXFCXQCEZUHRRNAEKUIX\nWCUJDNYHNHYOPWMHLDCDYRWBVOGHFFUKOZTXJRXJHRGWICCMRNEVNEGQWTZPNFCSHDRFCFQDCXMHTLUGZAXOFNXNVGUEXIACRERU", "H\nJKFGHMIAHNDBMFXWYQLZRSVNOTEGCQSVUBYUOZBTNKTXPFQDCMKAGFITEUGOYDFIYQIORMFJEOJDNTFVIQEBICSNGKOSNLNXJWC\nBQSVDOGIHCHXSYNYTQFCHNJGYFIXTSOQINZOKSVQJMTKNTGFNXAVTUYEONMBQMGJLEWJOFGEARIOPKFUFCEMUBRBDNIIDFZDCLWK", "DSWNZRFVXQ\nPVULCZGOOU\nUOLVZXNUPOQRZGWFVDSCANQTCLEIE", "EUHTSCENIPXLTSBMLFHD\nIZAVSZPDLXOAGESUSE\nLXAELAZ", "WYSJFEREGELSKRQRXDXCGBODEFZVSI\nPEJKMGFLBFFDWRCRFSHVEFLEBTJCVCHRJTLDTISHPOGFWPLEWNYJLMXWIAOTYOXMV\nHXERTZWLEXTPIOTFRVMEJVYFFJLRPFMXDEBNSGCEOFFCWTKIDDGCFYSJKGLHBORWEPLDRXRSJYBGASSVCMHEEJFLVI", "EPBMDIUQAAUGLBIETKOKFLMTCVEPETWJRHHYKCKU\nHGMAETVPCFZYNNKDQXVXUALHYLOTCHM\nECGXACVKEYMCEDOTMKAUFHLHOMT", "NUBKQEJHALANSHEIFUZHYEZKKDRFHQKAJHLAOWTZIMOCWOVVDW\nEFVOBIGAUAUSQGVSNBKNOBDMINODMFSHDL\nKLAMKNTHBFFOHVKWICHBKNDDQNEISODUSDNLUSIOAVWY", "VXINHOMEQCATZUGAJEIUIZZLPYFGUTVLNBNWCUVMEENUXKBWBGZTMRJJVJDLVSLBABVCEUDDSQFHOYPYQTWVAGTWOLKYISAGHBMC\nZMRGXPZSHOGCSAECAPGVOIGCWEOWWOJXLGYRDMPXBLOKZVRACPYQLEQGFQCVYXAGBEBELUTDAYEAGPFKXRULZCKFHZCHVCWIRGPK\nRCVUXGQVNWFGRUDLLENNDQEJHYYVWMKTLOVIPELKPWCLSQPTAXAYEMGWCBXEVAIZGGDDRBRT", "PHBDHHWUUTZAHELGSGGOPOQXSXEZIXHZTOKYFBQLBDYWPVCNQSXHEAXRRPVHFJBVBYCJIFOTQTWSUOWXLKMVJJBNLGTVITWTCZZ\nFUPDLNVIHRWTEEEHOOEC\nLOUSUUSZCHJBPEWIILUOXEXRQNCJEGTOBRVZLTTZAHTKVEJSNGHFTAYGY", "GDSLNIIKTO\nJF\nPDQYFKDTNOLI", "AHOKHEKKPJLJIIWJRCGY\nORELJCSIX\nZVWPXVFWFSWOXXLIHJKPXIOKRELYE", "ZWCOJFORBPHXCOVJIDPKVECMHVHCOC\nTEV\nJVGTBFTLFVIEPCCHODOFOMCVZHWXVCPEH", "AGFIGYWJLVMYZGNQHEHWKJIAWBPUAQFERMCDROFN\nPMJNHMVNRGCYZAVRWNDSMLSZHFNYIUWFPUSKKIGU\nMCDVPPRXGUAYLSDRHRURZASXUWZSIIEZCPXUVEONKNGNWRYGOSFMCKESMVJZHWWUCHWDQMLASLNNMHAU", "XLOWVFCZSSXCSYQTIIDKHNTKNKEEDFMDZKXSPVLBIDIREDUAIN\nZKIWNDGBISDB\nSLPKLYFYSRNRMOSWYLJJDGFFENPOXYLPZFTQDANKBDNZDIIEWSUTTKYBKVICLG", "PMUKBTRKFIAYVGBKHZHUSJYSSEPEOEWPOSPJLWLOCTUYZODLTUAFCMVKGQKRRUSOMPAYOTBTFPXYAZXLOADDEJBDLYOTXJCJYTHA\nTWRRAJLCQJTKOKWCGUH\nEWDPNXVCXWCDQCOYKKSOYTFSZTOOPKPRDKFJDETKSRAJRVCPDOBWUGPYRJPUWJYWCBLKOOTUPBESTOFXZHTYLLMCAXDYAEBUTAHM", "QMIMGQRQDMJDPNFEFXSXQMCHEJKTWCTCVZPUAYICOIRYOWKUSIWXJLHDYWSBOITHTMINXFKBKAWZTXXBJIVYCRWKXNKIYKLDDXL\nV\nFWACCXBVDOJFIUAVYRALBYJKXXWIIFORRUHKHCXLDBZMXIYJWISFEAWTIQFIZSBXMKNOCQKVKRWDNDAMQSTKYLDNYVTUCGOJXJTW", "XJXPVOOQODELPPWUISSYVVXRJTYBPDHJNENQEVQNVFIXSESKXVYPVVHPMOSX\nLEXOPFPVPSZK\nZVXVPYEYOYXVOISVLXPOVHEQVXPNQJIOPFDTXEUNMPEPPHELNXKKWSVSOXSBPSJDPVJVSRFQ", "OSKFHGYNQLSRFSAHPXKGPXUHXTRBJNAQRBSSWJVEENLJCDDHFXVCUNPZAIVVO\nFNUOCXAGRRHNDJAHVVLGGEZQHWARYHENBKHP\nUOEFNWVXCUNERLKVTHAGPSHKHDYFPYWZHJKHQLSNFBJHVJANRXCNSDUGVDABGHVAOVHBJZXGRACHRXEGNRPQEAPORQSILNXFS", "VYXYVVACMLPDHONBUTQFZTRREERBLKUJYKAHZRCTRLRCLOZYWVPBRGDQPFPQIF\nFE\nRNRPEVDRLYUQFYRZBCQLCYZEABKLRXCJLKVZBVFUEYRATOMDRTHFPGOWQVTIFPPH", "WYXUZQJQNLASEGLHPMSARWMTTQMQLVAZLGHPIZTRVTCXDXBOLNXZPOFCTEHCXBZ\nBLQZRRWP\nGIQZXPLTTMNHQVWPPEAPLOCDMBSTHRCFLCQRRZXLVAOQEGZBRUZJXXZTMAWLZHSLWNQTYXB", "MKVJTSSTDGKPVVDPYSRJJYEVGKBMSIOKHLZQAEWLRIBINVRDAJIBCEITKDHUCCVY\nPUJJQFHOGZKTAVNUGKQUHMKTNHCCTI\nQVJKUSIGTSVYUMOMLEGHWYKSKQTGATTKBNTKCJKJPCAIRJIRMHKBIZISEGFHVUVQZBDERJCVAKDLNTHUDCHONDCVVJIYPP", "OKNJOEYVMZXJMLVJHCSPLUCNYGTDASKSGKKCRVIDGEIBEWRVBVRVZZTLMCJLXHJIA\nDJBFVRTARTFZOWN\nAGHNVUNJVCPLWSVYBJKZSVTFGLELZASLWTIXDDJXCZDICTVIJOTMVEYOVRNMJGRKKHRMEBORAKFCZJBR", "OQZACLPSAGYDWHFXDFYFRRXWGIEJGSXWUONAFWNFXDTGVNDEWNQPHUXUJNZWWLBPYL\nOHBKWRFDRQUAFRCMT\nWIQRYXRJQWWRUWCYXNXALKFZGXFTLOODWRDPGURFUFUQOHPWBASZNVWXNCAGHWEHFYESJNFBMNFDDAPLDGT", "OVIRQRFQOOWVDEPLCJETWQSINIOPLTLXHSQWUYUJNFBMKDNOSHNJQQCDHZOJVPRYVSV\nMYYDQKOOYPOOUELCRIT\nNZSOTVLJTTVQLFHDQEJONEOUOFOLYVSOIYUDNOSIQVIRMVOERCLMYSHPCQKIDRDOQPCUPQBWWRYYOXJWJQPNKH", "WGMBZWNMSJXNGDUQUJTCNXDSJJLYRDOPEGPQXYUGBESDLFTJRZDDCAAFGCOCYCQMDBWK\nYOBMOVYTUATTFGJLYUQD\nDYXVTLQCYFJUNJTUXPUYOPCBCLBWNSDUJRJGWDOJDSQAAMUOJWSYERDYDXYTMTOTMQCGQZDCGNFBALGGDFKZMEBG", "CWLRBPMEZCXAPUUQFXCUHAQTLPBTXUUKWVXKBHKNSSJFEXLZMXGVFHHVTPYAQYTIKXJJE\nMUFOSEUEXEQTOVLGDSCWM\nJUKEQCXOXWEHCGKFPBIGMWVJLXUONFXBYTUAXERYTXKCESKLXAEHVPZMMUFTHLXTTZSDMBJLQPEUWCVUHSQQVUASPF", "IDQRX\nWETHO\nODPDGBHVUVSSISROHQJTUKPUCLXABIZQQPPBPKOSEWGEHRSRRNBAVLYEMZISMWWGKHVTXKUGUXEFBSWOIWUHRJGMWBMHQLDZHBWA", "IXFDY\nJRMOU\nDF", "JPSPZ\nUGCUB\nJMZZZZZZZZ", "AC\nA\nBBA", "UIKWWKXLSHTOOZOVGXKYSOJEHAUEEG\nKZXQDWJJWRXFHKJDQHJK\nXMZHTFOGEXAUJXXJUYVJIFOTKLZHDKELJWERHMGAWGKWAQKEKHIDWGGZVYOHKXRPWSJDPESFJUMKQYWBYUTHQYEFZUGKQOBHYDWB", "PXWRXRPFLR\nPJRWWXIVHODV\nXW", "CHTAZVHGSHCVIBK\nEQINEBKXEPYJSAZIMLDF\nZCZZZZDZMCZZEZDZZEZZZZQZZBZZZOZZCZE", "GXPZFSELJJNDAXYRV\nUYBKPMVBSOVOJWMONLTJOJCNQKMTAHEWLHOWIIBH\nHCWNFWJPEJIWOVPTBMVCRJLSISSVNOHCKLBFMIUAIMASQWPXEYXBOXQGFEMYJLBKDCZIMJNHOJEDGGANIVYKQTUOSOVOPWHVJGXH", "LFGJCJJDUTUP\nOVSBILTIYCJCRHKCIXCETJQJJ\nGIJJTJCLTJJJ", "GIO\nPRL\nPRL", "A\nB\nABC", "KKK\nKKK\nZZZZZ", "ZMYGQLDBLAPN\nZFJBKWHROVNPSJQUDFTHOCGREUFLYIWYICD\nZMJZZEDAZANKZZZZZZEZZBZDZZZZZZKHZZFZZZDZNZMDZZA"], "outputs": ["YES", "NO", "NO", "YES", "YES", "YES", "YES", "YES", "NO", "NO", "NO", "YES", "YES", "YES", "YES", "YES", "YES", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "YES", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
789
codeforces
dd2461a6f9dafd41268ba6bff8d1830d
Domino
We all know the problem about the number of ways one can tile a 2<=×<=*n* field by 1<=×<=2 dominoes. You probably remember that it goes down to Fibonacci numbers. We will talk about some other problem below, there you also are going to deal with tiling a rectangular field with dominoes. You are given a 4<=×<=*n* rectangular field, that is the field that contains four lines and *n* columns. You have to find for it any tiling by 1<=×<=2 dominoes such that each of the *n*<=-<=1 potential vertical cuts along the grid lines intersects at least one domino, splitting it in two. No two dominoes in the sought tiling should overlap, each square of the field should be covered by exactly one domino. It is allowed to rotate the dominoes, that is, you can use 2<=×<=1 as well as 1<=×<=2 dominoes. Write a program that finds an arbitrary sought tiling. The input contains one positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of the field's columns. If there's no solution, print "-1" (without the quotes). Otherwise, print four lines containing *n* characters each — that's the description of tiling, where each vertical cut intersects at least one domino. You should print the tiling, having painted the field in no more than 26 colors. Each domino should be painted a color. Different dominoes can be painted the same color, but dominoes of the same color should not be side-neighbouring. To indicate colors you should use lowercase Latin letters. Print any of the acceptable ways of tiling. Sample Input 4 Sample Output yyzz bccd bxxd yyaa
{"inputs": ["4", "2", "3", "5", "1", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100"], "outputs": ["aacc\nbbdd\nzkkz\nzllz", "aa\nbb\naa\nbb", "aab\nccb\nbaa\nbcc", "aaccz\nbbddz\nzkkmm\nzllnn", "a\na\nb\nb", "aaccee\nbbddff\nzkkmmz\nzllnnz", "aacceez\nbbddffz\nzkkmmoo\nzllnnpp", "aacceegg\nbbddffhh\nzkkmmooz\nzllnnppz", "aacceeggz\nbbddffhhz\nzkkmmooqq\nzllnnpprr", "aacceeggii\nbbddffhhjj\nzkkmmooqqz\nzllnnpprrz", "aacceeggiiz\nbbddffhhjjz\nzkkmmooqqss\nzllnnpprrtt", "aacceeggiiaa\nbbddffhhjjbb\nzkkmmooqqssz\nzllnnpprrttz", "aacceeggiiaaz\nbbddffhhjjbbz\nzkkmmooqqsskk\nzllnnpprrttll", "aacceeggiiaacc\nbbddffhhjjbbdd\nzkkmmooqqsskkz\nzllnnpprrttllz", "aacceeggiiaaccz\nbbddffhhjjbbddz\nzkkmmooqqsskkmm\nzllnnpprrttllnn", "aacceeggiiaaccee\nbbddffhhjjbbddff\nzkkmmooqqsskkmmz\nzllnnpprrttllnnz", "aacceeggiiaacceez\nbbddffhhjjbbddffz\nzkkmmooqqsskkmmoo\nzllnnpprrttllnnpp", "aacceeggiiaacceegg\nbbddffhhjjbbddffhh\nzkkmmooqqsskkmmooz\nzllnnpprrttllnnppz", "aacceeggiiaacceeggz\nbbddffhhjjbbddffhhz\nzkkmmooqqsskkmmooqq\nzllnnpprrttllnnpprr", "aacceeggiiaacceeggii\nbbddffhhjjbbddffhhjj\nzkkmmooqqsskkmmooqqz\nzllnnpprrttllnnpprrz", "aacceeggiiaacceeggiiz\nbbddffhhjjbbddffhhjjz\nzkkmmooqqsskkmmooqqss\nzllnnpprrttllnnpprrtt", "aacceeggiiaacceeggiiaa\nbbddffhhjjbbddffhhjjbb\nzkkmmooqqsskkmmooqqssz\nzllnnpprrttllnnpprrttz", "aacceeggiiaacceeggiiaaz\nbbddffhhjjbbddffhhjjbbz\nzkkmmooqqsskkmmooqqsskk\nzllnnpprrttllnnpprrttll", "aacceeggiiaacceeggiiaacc\nbbddffhhjjbbddffhhjjbbdd\nzkkmmooqqsskkmmooqqsskkz\nzllnnpprrttllnnpprrttllz", "aacceeggiiaacceeggiiaaccz\nbbddffhhjjbbddffhhjjbbddz\nzkkmmooqqsskkmmooqqsskkmm\nzllnnpprrttllnnpprrttllnn", "aacceeggiiaacceeggiiaaccee\nbbddffhhjjbbddffhhjjbbddff\nzkkmmooqqsskkmmooqqsskkmmz\nzllnnpprrttllnnpprrttllnnz", "aacceeggiiaacceeggiiaacceez\nbbddffhhjjbbddffhhjjbbddffz\nzkkmmooqqsskkmmooqqsskkmmoo\nzllnnpprrttllnnpprrttllnnpp", "aacceeggiiaacceeggiiaacceegg\nbbddffhhjjbbddffhhjjbbddffhh\nzkkmmooqqsskkmmooqqsskkmmooz\nzllnnpprrttllnnpprrttllnnppz", "aacceeggiiaacceeggiiaacceeggz\nbbddffhhjjbbddffhhjjbbddffhhz\nzkkmmooqqsskkmmooqqsskkmmooqq\nzllnnpprrttllnnpprrttllnnpprr", "aacceeggiiaacceeggiiaacceeggii\nbbddffhhjjbbddffhhjjbbddffhhjj\nzkkmmooqqsskkmmooqqsskkmmooqqz\nzllnnpprrttllnnpprrttllnnpprrz", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiz\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjz\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqss\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrtt", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaa\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbb\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqssz\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttz", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaaz\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbz\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskk\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttll", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacc\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbdd\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkz\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllz", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaaccz\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddz\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmm\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnn", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaaccee\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddff\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmz\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnz", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceez\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffz\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmoo\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpp", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceegg\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhh\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooz\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnppz", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggz\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhz\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqq\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprr", "aacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggiiaacceeggii\nbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjjbbddffhhjj\nzkkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqsskkmmooqqz\nzllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrttllnnpprrz"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
11
codeforces
dd26a1454c8815b3a6c8070afb3087a8
Road to Post Office
Vasiliy has a car and he wants to get from home to the post office. The distance which he needs to pass equals to *d* kilometers. Vasiliy's car is not new — it breaks after driven every *k* kilometers and Vasiliy needs *t* seconds to repair it. After repairing his car Vasiliy can drive again (but after *k* kilometers it will break again, and so on). In the beginning of the trip the car is just from repair station. To drive one kilometer on car Vasiliy spends *a* seconds, to walk one kilometer on foot he needs *b* seconds (*a*<=&lt;<=*b*). Your task is to find minimal time after which Vasiliy will be able to reach the post office. Consider that in every moment of time Vasiliy can left his car and start to go on foot. The first line contains 5 positive integers *d*,<=*k*,<=*a*,<=*b*,<=*t* (1<=≤<=*d*<=≤<=1012; 1<=≤<=*k*,<=*a*,<=*b*,<=*t*<=≤<=106; *a*<=&lt;<=*b*), where: - *d* — the distance from home to the post office; - *k* — the distance, which car is able to drive before breaking; - *a* — the time, which Vasiliy spends to drive 1 kilometer on his car; - *b* — the time, which Vasiliy spends to walk 1 kilometer on foot; - *t* — the time, which Vasiliy spends to repair his car. Print the minimal time after which Vasiliy will be able to reach the post office. Sample Input 5 2 1 4 10 5 2 1 4 5 Sample Output 14 13
{"inputs": ["5 2 1 4 10", "5 2 1 4 5", "1 1 1 2 1", "1000000000000 1000000 999999 1000000 1000000", "997167959139 199252 232602 952690 802746", "244641009859 748096 689016 889744 927808", "483524125987 264237 209883 668942 244358", "726702209411 813081 730750 893907 593611", "965585325539 329221 187165 817564 718673", "213058376259 910770 679622 814124 67926", "451941492387 235422 164446 207726 192988", "690824608515 751563 656903 733131 509537", "934002691939 300407 113318 885765 858791", "375802030518 196518 567765 737596 550121", "614685146646 521171 24179 943227 899375", "857863230070 37311 545046 657309 991732", "101041313494 586155 1461 22992 340986", "344219396918 167704 522327 941101 690239", "583102513046 683844 978741 986255 815301", "821985629174 232688 471200 927237 164554", "1000000000000 1 1 2 1000000", "1049 593 10 36 7", "1 100 1 5 10", "2 3 1 4 10", "10 20 5 15 50", "404319 964146 262266 311113 586991", "1000000000000 1 1 4 1", "1000000000000 1 1 10 1", "100 123 1 2 1000", "100 111 1 2 123456", "100 110 1 2 100000", "100 122 1 2 70505", "100 120 1 2 300", "100 125 1 2 300", "100 120 1 2 305", "10 12 3 4 5", "100 1000 1 10 1000", "5 10 1 2 5", "11 3 4 5 1", "100 121 1 2 666", "1 10 1 10 10", "100 120 1 2 567", "1 2 1 2 1", "100 120 1 2 306", "1 2 1 2 2", "100 120 1 2 307", "3 100 1 2 5", "11 12 3 4 5", "100 120 1 2 399", "1 9 54 722 945", "100 10 1 10 100", "100 120 1 2 98765", "100 101 1 2 3", "1000000000000 1 1 1000000 1", "1 100 2 200 900", "100 120 1 2 505", "100 120 1 2 3", "2 100 1 2 10", "5 10 1 2 10", "10 100 5 6 1000", "100 120 1 2 506", "5 10 1 2 500", "100 120 1 2 507", "100 123 1 2 1006", "100 120 1 2 509", "100 120 1 2 510", "100 120 1 2 512", "4 5 3 4 199", "100 120 1 2 513", "100 123 1 2 1007", "5 6 1 2 10000", "1 10 10 11 12", "100 120 1 2 515", "100 120 1 2 516", "5 10 1 2000 100000", "1000000000000 3 4 5 1", "100 5 20 21 50", "3 10 3 6 100", "41 18467 6334 26500 19169", "10 20 1 2 100", "4 6 1 2 100", "270 66 76 82 27", "4492 4 3 13 28", "28 32 37 38 180", "100 120 1 2 520", "5 10 2 3 10", "66 21 11 21 97", "549 88 81471 83555 35615", "100 120 1 2 1", "1 999999 1 2 1000000", "100 20 1 100 999999", "3 9 8 9 4", "100 120 1 2 600", "6 3 4 9 4", "9 1 1 2 1", "100 120 1 2 522", "501 47 789 798 250", "3 6 1 6 9", "2 5 8 9 4", "9 1 3 8 2", "17 42 22 64 14", "20 5 82 93 50", "5 6 2 3 50", "100 120 1 2 525", "6 3 7 9 1", "1686604166 451776 534914 885584 885904", "1 4 4 6 7", "5 67 61 68 83", "15 5 11 20 15", "15 2 9 15 13", "17 15 9 17 19", "1 17 9 10 6", "2 10 10 16 8", "18419 54 591 791 797", "10 2 1 2 18", "100 120 1 2 528", "5 17 2 3 8", "63793 358 368 369 367", "7 2 4 16 19", "3 8 3 5 19", "17 7 6 9 13", "14 3 14 16 5", "2000002 1000000 1 3 1000000", "2 1 3 8 14", "18 6 8 9 7", "10 20 10 20 7", "12 7 8 18 1", "16 1 3 20 2", "5 1000 1 4 10"], "outputs": ["14", "13", "1", "999999999999000000", "231947279018960454", "168561873458925288", "101483941282301425", "531038170074636443", "180725885278576882", "144799175679959130", "74320341137487118", "453805226165077316", "105841987132852686", "213368291855090933", "14863532910609884", "467597724229950776", "147680137840428", "179796501677835485", "570707031914457669", "387320209764489810", "1999999999999", "10497", "1", "2", "50", "106039126854", "1999999999999", "1999999999999", "100", "100", "100", "100", "100", "100", "100", "30", "100", "5", "47", "100", "1", "100", "1", "100", "1", "100", "3", "33", "100", "54", "910", "100", "100", "1999999999999", "2", "100", "100", "2", "5", "50", "100", "5", "100", "100", "100", "100", "100", "12", "100", "100", "5", "10", "100", "100", "5", "4333333333333", "2095", "9", "259694", "10", "4", "20628", "44892", "1036", "100", "10", "950", "44941269", "100", "1", "8020", "24", "100", "28", "17", "100", "397789", "3", "16", "43", "374", "1790", "10", "100", "43", "902191487931356", "4", "305", "195", "213", "169", "9", "20", "11157406", "18", "100", "10", "23539259", "78", "9", "124", "215", "3000006", "11", "156", "100", "97", "78", "5"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
8
codeforces
dd382f408ce546f2af364af2e0257c42
Levels and Regions
Radewoosh is playing a computer game. There are *n* levels, numbered 1 through *n*. Levels are divided into *k* regions (groups). Each region contains some positive number of consecutive levels. The game repeats the the following process: 1. If all regions are beaten then the game ends immediately. Otherwise, the system finds the first region with at least one non-beaten level. Let *X* denote this region.1. The system creates an empty bag for tokens. Each token will represent one level and there may be many tokens representing the same level. For each already beaten level *i* in the region *X*, the system adds *t**i* tokens to the bag (tokens representing the *i*-th level). 1. Let *j* denote the first non-beaten level in the region *X*. The system adds *t**j* tokens to the bag. 1. Finally, the system takes a uniformly random token from the bag and a player starts the level represented by the token. A player spends one hour and beats the level, even if he has already beaten it in the past. Given *n*, *k* and values *t*1,<=*t*2,<=...,<=*t**n*, your task is to split levels into regions. Each level must belong to exactly one region, and each region must contain non-empty consecutive set of levels. What is the minimum possible expected number of hours required to finish the game? The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=200<=000, 1<=≤<=*k*<=≤<=*min*(50,<=*n*)) — the number of levels and the number of regions, respectively. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100<=000). Print one real number — the minimum possible expected value of the number of hours spent to finish the game if levels are distributed between regions in the optimal way. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=4. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if . Sample Input 4 2 100 3 5 7 6 2 1 2 4 8 16 32 Sample Output 5.7428571429 8.5000000000
{"inputs": ["4 2\n100 3 5 7", "6 2\n1 2 4 8 16 32", "10 5\n47 56 21 20 50 47 26 10 57 58", "10 5\n39 49 99 91 66 14 32 26 83 49", "20 3\n71 85 56 41 96 52 11 71 59 8 63 87 91 51 40 60 41 59 34 93", "20 4\n25 66 10 18 67 40 66 49 3 51 61 29 10 72 71 22 63 4 74 67", "20 5\n79 44 59 91 54 28 30 35 42 95 56 58 29 89 93 73 81 53 23 45", "10 4\n100000 100000 100000 100000 100000 100000 100000 1000 15 1", "12 6\n100000 100000 10000 10000 1000 1000 100 100 10 10 1 1", "1 1\n1", "50 50\n19867 45605 40384 80338 35357 26984 42119 22894 54485 43252 73155 16988 49368 28732 94027 3201 85154 31575 3611 44646 85903 78111 63411 20408 91746 8981 59064 77033 14529 59387 47314 13004 72950 19288 42156 86108 39184 9848 72600 5110 11040 30346 33864 72442 60477 77920 96662 23854 62016 81458", "50 50\n98600 97856 94746 90361 92889 99197 92619 96786 90334 94428 97737 96351 92051 99379 94986 93158 93099 99484 92760 91214 92261 95826 96976 94365 97281 96357 90866 99013 92511 98257 95552 98091 93730 95035 92431 94150 95576 93406 90174 97817 92985 95435 92011 93452 94114 98132 97037 93952 100 1", "50 50\n94502 91117 93131 93702 97444 95558 94753 94713 98277 92507 96468 92973 98242 94798 96217 98289 95872 91058 99562 93124 94116 95119 90302 97441 92214 100 1 2 1 1 1 1 3 3 1 2 1 3 2 3 2 1 2 2 1 2 2 2 1 3", "50 50\n100000 1000 2 2 3 2 2 2 2 3 3 1 1 3 3 3 1 1 3 1 1 3 2 1 3 1 1 1 1 2 3 3 2 1 1 1 1 2 3 1 3 1 1 1 1 2 2 1 3 2", "200 50\n100000 1000 3 1 3 2 1 3 2 1 2 1 2 1 2 1 3 1 2 3 2 2 2 1 1 1 1 2 2 2 2 3 3 2 3 1 1 2 3 3 3 1 3 1 3 2 3 1 1 1 3 3 1 3 3 3 1 1 1 3 1 2 2 3 1 2 1 2 1 1 2 3 3 3 2 3 2 1 2 3 1 2 2 3 3 3 3 2 2 2 3 1 3 2 1 1 1 1 3 2 3 3 2 2 1 3 2 3 2 3 1 1 1 3 2 2 3 3 1 1 2 2 3 3 1 2 1 1 1 1 3 1 3 1 3 2 1 2 2 1 3 1 3 1 2 1 3 2 2 3 3 1 1 3 2 3 3 2 2 2 2 1 1 3 1 2 2 2 3 1 2 1 1 2 2 1 2 1 2 1 3 2 2 1 2 3 1 3 2 2 3 1 1 1 1 2 2 1 1 2"], "outputs": ["5.7428571429", "8.5000000000", "14.0398967246", "13.8143481471", "85.5717304391", "68.0534060202", "50.1115680558", "31.0000000000", "18.0000000000", "1.0000000000", "50.0000000000", "50.0000000000", "50.0000000000", "50.0000000000", "458.5000000000"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
dd4ab5a1ab3442824ebf7d06e96b723b
Kicker
Kicker (table football) is a board game based on football, in which players control the footballers' figures mounted on rods by using bars to get the ball into the opponent's goal. When playing two on two, one player of each team controls the goalkeeper and the full-backs (plays defence), the other player controls the half-backs and forwards (plays attack). Two teams of company Q decided to battle each other. Let's enumerate players from both teams by integers from 1 to 4. The first and second player play in the first team, the third and the fourth one play in the second team. For each of the four players we know their game skills in defence and attack. The defence skill of the *i*-th player is *a**i*, the attack skill is *b**i*. Before the game, the teams determine how they will play. First the players of the first team decide who will play in the attack, and who will play in the defence. Then the second team players do the same, based on the choice of their opponents. We will define a team's defence as the defence skill of player of the team who plays defence. Similarly, a team's attack is the attack skill of the player of the team who plays attack. We assume that one team is guaranteed to beat the other one, if its defence is strictly greater than the opponent's attack and its attack is strictly greater than the opponent's defence. The teams of company Q know each other's strengths and therefore arrange their teams optimally. Identify the team that is guaranteed to win (if both teams act optimally) or tell that there is no such team. The input contain the players' description in four lines. The *i*-th line contains two space-separated integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=100) — the defence and the attack skill of the *i*-th player, correspondingly. If the first team can win, print phrase "Team 1" (without the quotes), if the second team can win, print phrase "Team 2" (without the quotes). If no of the teams can definitely win, print "Draw" (without the quotes). Sample Input 1 100 100 1 99 99 99 99 1 1 2 2 3 3 2 2 3 3 2 2 1 1 2 2 Sample Output Team 1 Team 2 Draw
{"inputs": ["1 100\n100 1\n99 99\n99 99", "1 1\n2 2\n3 3\n2 2", "3 3\n2 2\n1 1\n2 2", "80 79\n79 30\n80 81\n40 80", "10 10\n4 9\n8 9\n7 6", "10 2\n9 3\n3 1\n9 4", "6 3\n6 10\n2 5\n4 4", "8 7\n1 5\n7 4\n8 8", "2 7\n8 4\n4 6\n10 8", "8 3\n4 9\n6 1\n5 6", "10 5\n3 1\n1 9\n1 2", "6 5\n10 6\n8 1\n3 2", "6 2\n7 5\n5 4\n8 6", "1 10\n1 10\n1 1\n7 8", "16 7\n9 3\n11 2\n11 4", "20 17\n14 10\n10 7\n19 18", "12 7\n3 17\n4 15\n2 8", "8 14\n8 12\n7 20\n14 6", "4 4\n4 15\n2 4\n10 12", "4 10\n9 9\n9 12\n13 10", "20 20\n18 8\n15 5\n17 20", "12 10\n7 3\n10 5\n1 14", "8 16\n12 10\n13 18\n8 4", "16 15\n19 1\n16 16\n20 9", "12 29\n44 8\n18 27\n43 19", "28 46\n50 27\n23 50\n21 45", "40 6\n9 1\n16 18\n4 23", "4 16\n6 28\n12 32\n28 3", "16 22\n11 3\n17 5\n12 27", "32 32\n10 28\n14 23\n39 5", "48 41\n15 47\n11 38\n19 31", "8 9\n11 17\n11 6\n5 9", "24 19\n18 44\n8 29\n30 39", "22 4\n29 38\n31 43\n47 21", "51 54\n95 28\n42 28\n17 48", "11 64\n92 47\n88 93\n41 26", "27 74\n97 22\n87 65\n24 52", "43 32\n49 48\n42 33\n60 30", "55 50\n54 23\n85 6\n32 60", "19 56\n59 46\n40 70\n67 34", "31 67\n8 13\n86 91\n43 12", "47 77\n13 88\n33 63\n75 38", "59 35\n10 14\n88 23\n58 16", "63 4\n18 60\n58 76\n44 93", "14 47\n47 42\n21 39\n40 7", "67 90\n63 36\n79 56\n25 56", "64 73\n59 46\n8 19\n57 18", "23 80\n62 56\n56 31\n9 50", "86 95\n86 38\n59 66\n44 78", "10 3\n2 5\n1 10\n2 10", "62 11\n79 14\n46 36\n91 52", "8 4\n9 10\n7 3\n6 5", "21 12\n29 28\n16 4\n10 1", "91 71\n87 45\n28 73\n9 48", "4 1\n4 3\n6 4\n2 8", "11 7\n12 8\n15 14\n14 14", "12 7\n3 15\n20 18\n20 8", "4 7\n24 11\n17 30\n21 4", "21 22\n21 16\n32 14\n39 35", "16 48\n16 49\n10 68\n60 64", "46 33\n12 3\n11 67\n98 77", "19 9\n47 28\n83 41\n76 14", "36 68\n65 82\n37 6\n21 60", "70 98\n62 5\n30 50\n66 96", "45 69\n91 96\n72 67\n24 30", "34 38\n91 17\n2 12\n83 90", "30 31\n98 15\n40 62\n10 22"], "outputs": ["Team 1", "Team 2", "Draw", "Team 2", "Team 1", "Draw", "Team 1", "Draw", "Draw", "Team 1", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Team 2", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Draw", "Team 1", "Draw", "Draw", "Team 2", "Team 1", "Draw", "Draw", "Draw", "Team 2", "Team 2", "Team 2", "Draw", "Draw", "Draw", "Team 1", "Team 1", "Team 1", "Team 1", "Team 1", "Draw", "Draw", "Team 1", "Team 1", "Team 1", "Team 2", "Team 2", "Team 2", "Team 2", "Team 2", "Team 2", "Team 2", "Draw", "Team 1", "Draw", "Draw", "Draw", "Draw"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
15
codeforces
dd6ed2b719807458cc8a9b1d59a13cfd
Maximum Subsequence
You are given an array *a* consisting of *n* integers, and additionally an integer *m*. You have to choose some sequence of indices *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**k*<=≤<=*n*) in such a way that the value of is maximized. Chosen sequence can be empty. Print the maximum possible value of . The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=35, 1<=≤<=*m*<=≤<=109). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109). Print the maximum possible value of . Sample Input 4 4 5 2 4 1 3 20 199 41 299 Sample Output 3 19
{"inputs": ["4 4\n5 2 4 1", "3 20\n199 41 299", "5 10\n47 100 49 2 56", "5 1000\n38361 75847 14913 11499 8297", "10 10\n48 33 96 77 67 59 35 15 14 86", "10 1000\n16140 63909 7177 99953 35627 40994 29288 7324 44476 36738", "30 10\n99 44 42 36 43 82 99 99 10 79 97 84 5 78 37 45 87 87 11 11 79 66 47 100 8 50 27 98 32 27", "30 1000\n81021 18939 94456 90340 76840 78808 27921 71826 99382 1237 93435 35153 71691 25508 96732 23778 49073 60025 95231 88719 61650 50925 34416 73600 7295 14654 78340 72871 17324 77484", "35 10\n86 66 98 91 61 71 14 58 49 92 13 97 13 22 98 83 85 29 85 41 51 16 76 17 75 25 71 10 87 11 9 34 3 6 4", "35 1000\n33689 27239 14396 26525 30455 13710 37039 80789 26268 1236 89916 87557 90571 13710 59152 99417 39577 40675 25931 14900 86611 46223 7105 64074 41238 59169 81308 70534 99894 10332 72983 85414 73848 68378 98404", "35 1000000000\n723631245 190720106 931659134 503095294 874181352 712517040 800614682 904895364 256863800 39366772 763190862 770183843 774794919 55669976 329106527 513566505 207828535 258356470 816288168 657823769 5223226 865258331 655737365 278677545 880429272 718852999 810522025 229560899 544602508 195068526 878937336 739178504 474601895 54057210 432282541", "35 982451653\n27540278 680344696 757828533 487257472 581415866 897315944 104006244 109795853 24393319 840585536 643747159 864374693 675946278 27492061 172462571 484550119 801174500 94160579 818984382 53253720 966692115 811281559 154162995 890236127 799613478 611617443 787587569 606421577 91876376 464150101 671199076 108388038 342311910 974681791 862530363", "15 982451653\n384052103 7482105 882228352 582828798 992251028 892163214 687253903 951043841 277531875 402248542 499362766 919046434 350763964 288775999 982610665", "35 1000000000\n513 9778 5859 8149 297 7965 7152 917 243 4353 7248 4913 9403 6199 2930 7461 3888 1898 3222 9424 3960 1902 2933 5268 2650 1687 5319 5065 8450 141 4219 2586 2176 1118 9635", "35 982451653\n5253 7912 3641 7428 6138 9613 9059 6352 9070 89 9030 1686 3098 7852 3316 8158 7497 5804 130 6201 235 64 3451 6104 4148 3446 6059 6802 7466 8781 1636 8291 8874 8924 5997", "15 982451653\n7975 7526 1213 2318 209 7815 4153 1853 6651 2880 4535 587 8022 3365 5491", "35 1730970\n141538 131452 93552 3046 119468 8282 166088 33782 36462 25246 178798 81434 180900 15102 175898 157782 155254 166352 60772 75162 102326 104854 181138 58618 123800 54458 157516 20658 25084 155276 194920 16680 15148 188292 88802", "35 346194136\n89792 283104 58936 184528 194768 253076 304368 140216 220836 69196 274604 68988 300412 242588 25328 183488 81712 374964 377696 317872 146208 147400 346276 14356 90432 347556 35452 119348 311320 126112 113200 98936 189500 363424 320164", "35 129822795\n379185 168630 1047420 892020 180690 1438200 168330 1328610 933930 936360 1065225 351990 1079190 681510 1336020 814590 365820 1493580 495825 809745 309585 190320 1148640 146790 1008900 365655 947265 1314060 1048770 1463535 1233420 969330 1324530 944130 1457160", "35 106920170\n36941450 53002950 90488020 66086895 77577045 16147985 26130825 84977690 87374560 59007480 61416705 100977415 43291920 56833000 12676230 50531950 5325005 54745005 105536410 76922230 9031505 121004870 104634495 16271535 55819890 47603815 85830185 65938635 33074335 40289655 889560 19829775 31653510 120671285 37843365", "35 200000000\n75420000 93400000 70560000 93860000 183600000 143600000 61780000 145000000 99360000 14560000 109280000 22040000 141220000 14360000 55140000 78580000 96940000 62400000 173220000 40420000 139600000 30100000 141640000 64780000 186080000 159220000 137780000 133640000 83560000 51280000 139100000 133020000 99460000 35900000 78980000", "4 1\n435 124 324 2", "1 12\n13", "1 1000000000\n1000000000", "7 19\n8 1 4 8 8 7 3", "6 7\n1 1 1 1 1 6", "3 5\n1 2 3", "4 36\n22 9 24 27", "2 8\n7 1", "2 12\n8 7", "4 10\n11 31 12 3", "2 8\n2 7", "4 19\n16 20 19 21", "3 4\n9 16 11", "2 3\n3 7", "2 20\n4 3", "3 299\n100 100 200"], "outputs": ["3", "19", "9", "917", "9", "999", "9", "999", "9", "999", "999999999", "982451652", "982368704", "158921", "197605", "64593", "1730968", "6816156", "29838960", "106907815", "199980000", "0", "1", "0", "18", "6", "4", "33", "7", "8", "7", "7", "18", "3", "1", "7", "200"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
21
codeforces
dd7a7a3defc3f56ae33425c26d2916d1
DZY Loves Hash
DZY has a hash table with *p* buckets, numbered from 0 to *p*<=-<=1. He wants to insert *n* numbers, in the order they are given, into the hash table. For the *i*-th number *x**i*, DZY will put it into the bucket numbered *h*(*x**i*), where *h*(*x*) is the hash function. In this problem we will assume, that *h*(*x*)<==<=*x* *mod* *p*. Operation *a* *mod* *b* denotes taking a remainder after division *a* by *b*. However, each bucket can contain no more than one element. If DZY wants to insert an number into a bucket which is already filled, we say a "conflict" happens. Suppose the first conflict happens right after the *i*-th insertion, you should output *i*. If no conflict happens, just output -1. The first line contains two integers, *p* and *n* (2<=≤<=*p*,<=*n*<=≤<=300). Then *n* lines follow. The *i*-th of them contains an integer *x**i* (0<=≤<=*x**i*<=≤<=109). Output a single integer — the answer to the problem. Sample Input 10 5 0 21 53 41 53 5 5 0 1 2 3 4 Sample Output 4 -1
{"inputs": ["10 5\n0\n21\n53\n41\n53", "5 5\n0\n1\n2\n3\n4", "10 6\n811966798\n734823552\n790326404\n929189974\n414343256\n560346537", "2 2\n788371161\n801743052", "10 6\n812796223\n122860157\n199259103\n597650585\n447742024\n521549402", "300 2\n822454942\n119374431", "300 2\n823284367\n507345500", "2 5\n791579811\n35613889\n997079893\n878677665\n693717467", "20 5\n793926268\n28931770\n842870287\n974950617\n859404206", "100 15\n805069249\n778178198\n633897389\n844316223\n146759898\n870527016\n82668754\n42060733\n943602929\n979451110\n746979598\n47406033\n607284062\n850870259\n229415316", "100 15\n806204335\n189490323\n718805086\n716787474\n262315718\n822030596\n894644222\n724054623\n141384399\n579354205\n192622443\n672556242\n97417563\n243354557\n208957882", "100 15\n807033760\n577461392\n275221433\n532633429\n295714486\n783298996\n255799943\n99107143\n729119412\n59302896\n37640015\n313610861\n630550567\n534283052\n681062462", "100 15\n808103310\n136224397\n360129131\n405104681\n263786657\n734802577\n67808179\n928584682\n926900882\n511722343\n483348395\n938695534\n120684068\n74152694\n808088675", "2 2\n2\n2", "300 2\n0\n300", "2 2\n0\n0"], "outputs": ["4", "-1", "4", "-1", "3", "-1", "-1", "2", "-1", "5", "8", "8", "9", "2", "2", "2"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
212
codeforces
dd967a53482a424ba1d1d758c4d3a4a0
An abandoned sentiment from past
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed. To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity. Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total. If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing. The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements. The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total. Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise. Sample Input 4 2 11 0 0 14 5 4 6 1 2 3 0 8 9 10 5 4 1 8 94 0 4 89 7 7 0 0 0 0 0 0 0 1 2 3 4 5 6 7 Sample Output Yes No Yes Yes
{"inputs": ["4 2\n11 0 0 14\n5 4", "6 1\n2 3 0 8 9 10\n5", "4 1\n8 94 0 4\n89", "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7", "40 1\n23 26 27 28 31 35 38 40 43 50 52 53 56 57 59 61 65 73 75 76 79 0 82 84 85 86 88 93 99 101 103 104 105 106 110 111 112 117 119 120\n80", "100 1\n99 95 22 110 47 20 37 34 23 0 16 69 64 49 111 42 112 96 13 40 18 77 44 46 74 55 15 54 56 75 78 100 82 101 31 83 53 80 52 63 30 57 104 36 67 65 103 51 48 26 68 59 35 92 85 38 107 98 73 90 62 43 32 89 19 106 17 88 41 72 113 86 66 102 81 27 29 50 71 79 109 91 70 39 61 76 93 84 108 97 24 25 45 105 94 60 33 87 14 21\n58", "4 1\n2 1 0 4\n3", "2 1\n199 0\n200", "3 2\n115 0 0\n145 191", "5 1\n196 197 198 0 200\n199", "5 1\n92 0 97 99 100\n93", "3 1\n3 87 0\n81", "3 1\n0 92 192\n118", "10 1\n1 3 0 7 35 46 66 72 83 90\n22", "100 1\n14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 0 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113\n67", "100 5\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 53 54 0 56 57 58 59 60 61 62 63 0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 0 99 100\n98 64 55 52 29", "100 5\n175 30 124 0 12 111 6 0 119 108 0 38 127 3 151 114 95 54 4 128 91 11 168 120 80 107 18 21 149 169 0 141 195 20 78 157 33 118 17 69 105 130 197 57 74 110 138 84 71 172 132 93 191 44 152 156 24 101 146 26 2 36 143 122 104 42 103 97 39 116 115 0 155 87 53 85 7 43 65 196 136 154 16 79 45 129 67 150 35 73 55 76 37 147 112 82 162 58 40 75\n121 199 62 193 27", "100 1\n1 2 3 4 5 6 7 8 9 0 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n11", "100 1\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n1", "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0\n100", "100 1\n9 79 7 98 10 50 28 99 43 74 89 20 32 66 23 45 87 78 81 41 86 71 75 85 5 39 14 53 42 48 40 52 3 51 11 34 35 76 77 61 47 19 55 91 62 56 8 72 88 4 33 0 97 92 31 83 18 49 54 21 17 16 63 44 84 22 2 96 70 36 68 60 80 82 13 73 26 94 27 58 1 30 100 38 12 15 93 90 57 59 67 6 64 46 25 29 37 95 69 24\n65", "100 2\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n48 1", "100 1\n2 7 11 17 20 22 23 24 25 27 29 30 31 33 34 35 36 38 39 40 42 44 46 47 50 52 53 58 59 60 61 62 63 66 0 67 71 72 75 79 80 81 86 91 93 94 99 100 101 102 103 104 105 108 109 110 111 113 114 118 119 120 122 123 127 129 130 131 132 133 134 135 136 138 139 140 141 142 147 154 155 156 160 168 170 171 172 176 179 180 181 182 185 186 187 188 189 190 194 198\n69", "100 1\n3 5 7 9 11 12 13 18 20 21 22 23 24 27 28 29 31 34 36 38 39 43 46 48 49 50 52 53 55 59 60 61 62 63 66 68 70 72 73 74 75 77 78 79 80 81 83 85 86 88 89 91 92 94 97 98 102 109 110 115 116 117 118 120 122 126 127 128 0 133 134 136 137 141 142 144 145 147 151 152 157 159 160 163 164 171 172 175 176 178 179 180 181 184 186 188 190 192 193 200\n129", "5 2\n0 2 7 0 10\n1 8", "3 1\n5 4 0\n1", "3 1\n1 0 3\n4", "2 1\n0 2\n1", "2 1\n0 5\n7", "5 1\n10 11 0 12 13\n1", "5 1\n0 2 3 4 5\n6", "6 2\n1 0 3 4 0 6\n2 5", "7 2\n1 2 3 0 0 6 7\n4 5", "4 1\n1 2 3 0\n4", "2 2\n0 0\n1 2", "3 2\n1 0 0\n2 3", "4 2\n1 0 4 0\n5 2", "2 1\n0 1\n2", "5 2\n1 0 4 0 6\n2 5", "5 1\n2 3 0 4 5\n1", "3 1\n0 2 3\n5", "6 1\n1 2 3 4 5 0\n6", "5 1\n1 2 0 4 5\n6", "3 1\n5 0 2\n7", "4 1\n4 5 0 8\n3", "5 1\n10 11 12 0 14\n13", "4 1\n1 2 0 4\n5", "3 1\n0 11 14\n12", "4 1\n1 3 0 4\n2", "2 1\n0 5\n1", "5 1\n1 2 0 4 7\n5", "3 1\n2 3 0\n1", "6 1\n1 2 3 0 5 4\n6", "4 2\n11 0 0 14\n13 12", "2 1\n1 0\n2", "3 1\n1 2 0\n3", "4 1\n1 0 3 2\n4", "3 1\n0 1 2\n5", "3 1\n0 1 2\n3", "4 1\n0 2 3 4\n5", "6 1\n1 2 3 0 4 5\n6", "3 1\n1 2 0\n5", "4 2\n1 0 0 4\n3 2", "5 1\n2 3 0 5 7\n6", "3 1\n2 3 0\n4", "3 1\n1 0 11\n5", "4 1\n7 9 5 0\n8", "6 2\n1 2 3 0 5 0\n6 4", "3 2\n0 1 0\n3 2", "4 1\n6 9 5 0\n8", "2 1\n0 3\n6", "5 2\n1 2 0 0 5\n4 3", "4 2\n2 0 0 8\n3 4", "2 1\n0 2\n3", "3 1\n0 4 5\n6", "6 1\n1 2 3 4 0 5\n6", "2 1\n2 0\n3", "4 2\n11 0 0 200\n100 199", "2 1\n5 0\n4", "3 1\n1 0 5\n10", "6 2\n1 2 0 0 5 6\n3 4", "5 2\n1 0 3 0 5\n2 4", "4 1\n1 4 0 8\n3", "4 1\n5 9 4 0\n8", "4 2\n1 0 0 7\n3 2", "3 3\n0 0 0\n1 4 3", "5 5\n0 0 0 0 0\n5 4 3 2 1", "4 1\n3 9 4 0\n8", "4 2\n1 0 0 4\n2 3", "6 1\n2 4 0 8 9 10\n3", "4 1\n0 3 5 6\n9", "4 2\n1 2 0 0\n3 4", "5 1\n2 3 4 5 0\n1", "3 1\n2 0 4\n5"], "outputs": ["Yes", "No", "Yes", "Yes", "No", "Yes", "Yes", "No", "Yes", "No", "No", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
246
codeforces
ddda23f7ef553a81823a6b2e7064dfe1
USB vs. PS/2
Due to the increase in the number of students of Berland State University it was decided to equip a new computer room. You were given the task of buying mouses, and you have to spend as little as possible. After all, the country is in crisis! The computers bought for the room were different. Some of them had only USB ports, some — only PS/2 ports, and some had both options. You have found a price list of a certain computer shop. In it, for *m* mouses it is specified the cost and the type of the port that is required to plug the mouse in (USB or PS/2). Each mouse from the list can be bought at most once. You want to buy some set of mouses from the given price list in such a way so that you maximize the number of computers equipped with mouses (it is not guaranteed that you will be able to equip all of the computers), and in case of equality of this value you want to minimize the total cost of mouses you will buy. The first line contains three integers *a*, *b* and *c* (0<=≤<=*a*,<=*b*,<=*c*<=≤<=105)  — the number of computers that only have USB ports, the number of computers, that only have PS/2 ports, and the number of computers, that have both options, respectively. The next line contains one integer *m* (0<=≤<=*m*<=≤<=3·105)  — the number of mouses in the price list. The next *m* lines each describe another mouse. The *i*-th line contains first integer *val**i* (1<=≤<=*val**i*<=≤<=109)  — the cost of the *i*-th mouse, then the type of port (USB or PS/2) that is required to plug the mouse in. Output two integers separated by space — the number of equipped computers and the total cost of the mouses you will buy. Sample Input 2 1 1 4 5 USB 6 PS/2 3 PS/2 7 PS/2 Sample Output 3 14
{"inputs": ["2 1 1\n4\n5 USB\n6 PS/2\n3 PS/2\n7 PS/2", "1 4 4\n12\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n916758386 PS/2\n474310330 USB\n350512489 USB\n281054887 USB\n875326145 USB", "3 0 3\n0", "1 2 4\n12\n257866589 PS/2\n246883568 USB\n104396128 USB\n993389754 PS/2\n896419206 USB\n405836977 USB\n50415634 PS/2\n152940828 PS/2\n847270779 PS/2\n850467106 USB\n922287488 USB\n622484596 PS/2", "0 4 2\n12\n170189291 USB\n670118538 USB\n690872205 PS/2\n582606841 PS/2\n397508479 USB\n578814041 USB\n96734643 USB\n168371453 USB\n528445088 PS/2\n506017602 PS/2\n512143072 USB\n188740735 USB", "5 100 100\n29\n741703337 USB\n285817204 PS/2\n837154300 USB\n250820430 USB\n809146898 PS/2\n10478072 USB\n2833804 PS/2\n669657009 USB\n427708130 PS/2\n204319444 PS/2\n209882040 USB\n56937335 USB\n107442187 USB\n46188465 USB\n902978472 USB\n792812238 PS/2\n513787720 PS/2\n486353330 PS/2\n168930159 PS/2\n183624803 USB\n67302934 USB\n264291554 USB\n467936329 USB\n82111533 USB\n849018301 USB\n645374374 PS/2\n967926381 PS/2\n286289663 PS/2\n36760263 USB", "71 15 60\n24\n892757877 USB\n613048358 USB\n108150254 USB\n425313488 USB\n949441992 USB\n859461207 PS/2\n81440099 PS/2\n348819522 USB\n606267503 USB\n443620287 PS/2\n610038583 USB\n374259313 PS/2\n947207567 PS/2\n424889764 PS/2\n58345333 USB\n735796912 PS/2\n523115052 USB\n983709864 USB\n426463338 USB\n305759345 PS/2\n689127461 PS/2\n878781173 PS/2\n445036480 USB\n643765304 USB", "37 80 100\n31\n901706521 USB\n555265160 PS/2\n547038505 PS/2\n644436873 PS/2\n105558073 USB\n915082057 PS/2\n913113815 USB\n953413471 PS/2\n252912707 PS/2\n830344497 USB\n781593007 USB\n610659875 PS/2\n177755858 PS/2\n496444729 PS/2\n617569418 USB\n304908147 PS/2\n188649950 PS/2\n705737216 USB\n473915286 USB\n622994426 PS/2\n783873493 USB\n789927108 USB\n258311181 PS/2\n720083354 PS/2\n676406125 PS/2\n634885851 PS/2\n126814339 USB\n704693540 USB\n789707618 PS/2\n938873907 USB\n576166502 USB", "6 100 10\n11\n931138340 USB\n421397130 USB\n899599243 PS/2\n891033726 PS/2\n375251114 PS/2\n991976657 USB\n743116261 PS/2\n163085281 PS/2\n111524953 PS/2\n148832199 PS/2\n480084927 PS/2", "1 1 124\n1\n2 USB", "1 1 1\n3\n3 USB\n3 PS/2\n3 PS/2", "3 3 3\n6\n3 USB\n3 USB\n3 USB\n3 USB\n3 USB\n3 USB", "1 1 1\n0", "1 1 1\n4\n9 USB\n1 PS/2\n5 USB\n6 PS/2", "1 1 1\n1\n6 PS/2", "1 3 1\n5\n1 PS/2\n8 USB\n8 PS/2\n8 PS/2\n1 PS/2", "3 2 1\n6\n1 USB\n4 PS/2\n4 PS/2\n7 USB\n8 PS/2\n1 USB", "1 1 1\n3\n10 USB\n6 USB\n6 USB", "1 1 1\n3\n4 USB\n3 PS/2\n3 USB", "1 1 1\n2\n6 PS/2\n5 USB", "1 1 2\n5\n4 USB\n7 PS/2\n10 PS/2\n7 PS/2\n3 USB", "1 4 4\n8\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n474310330 USB", "1 4 4\n9\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n916758386 PS/2\n474310330 USB", "1 4 4\n10\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n916758386 PS/2\n474310330 USB\n350512489 USB", "48810 78876 100000\n0", "1 0 0\n1\n862644246 PS/2", "2 6 0\n3\n380521935 USB\n261865233 USB\n744434239 USB", "0 0 0\n1\n1 USB", "0 0 0\n1\n2 USB", "1 1 1\n1\n5 USB", "1 1 1\n2\n2 USB\n5 USB", "1 1 1\n2\n3 PS/2\n6 PS/2", "2 1 1\n4\n5 USB\n5 PS/2\n3 PS/2\n7 PS/2"], "outputs": ["3 14", "8 2345344274", "0 0", "7 1840824320", "6 2573047832", "29 11375586709", "24 13374616076", "31 18598842609", "11 6157039831", "1 2", "3 9", "6 18", "0 0", "3 12", "1 6", "5 26", "6 25", "2 12", "3 10", "2 11", "4 21", "7 1621841331", "8 2538599717", "8 2414801876", "0 0", "0 0", "2 642387168", "0 0", "0 0", "1 5", "2 7", "2 9", "3 13"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
42
codeforces
ddec47bec5554b2e632d663d5064df4e
Sea Battle
Galya is playing one-dimensional Sea Battle on a 1<=×<=*n* grid. In this game *a* ships are placed on the grid. Each of the ships consists of *b* consecutive cells. No cell can be part of two ships, however, the ships can touch each other. Galya doesn't know the ships location. She can shoot to some cells and after each shot she is told if that cell was a part of some ship (this case is called "hit") or not (this case is called "miss"). Galya has already made *k* shots, all of them were misses. Your task is to calculate the minimum number of cells such that if Galya shoot at all of them, she would hit at least one ship. It is guaranteed that there is at least one valid ships placement. The first line contains four positive integers *n*, *a*, *b*, *k* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=*n*, 0<=≤<=*k*<=≤<=*n*<=-<=1) — the length of the grid, the number of ships on the grid, the length of each ship and the number of shots Galya has already made. The second line contains a string of length *n*, consisting of zeros and ones. If the *i*-th character is one, Galya has already made a shot to this cell. Otherwise, she hasn't. It is guaranteed that there are exactly *k* ones in this string. In the first line print the minimum number of cells such that if Galya shoot at all of them, she would hit at least one ship. In the second line print the cells Galya should shoot at. Each cell should be printed exactly once. You can print the cells in arbitrary order. The cells are numbered from 1 to *n*, starting from the left. If there are multiple answers, you can print any of them. Sample Input 5 1 2 1 00100 13 3 2 3 1000000010001 Sample Output 2 4 2 2 7 11
{"inputs": ["5 1 2 1\n00100", "13 3 2 3\n1000000010001", "1 1 1 0\n0", "2 2 1 0\n00", "5 4 1 0\n00000", "10 2 2 0\n0000000000", "20 1 3 5\n01001010000000010010", "100 17 4 11\n0100000100000000000000001000000000010001100000000000101000000000000000000000001000001000010000000000"], "outputs": ["2\n2 5 ", "2\n3 5 ", "1\n1 ", "1\n1 ", "2\n1 2 ", "4\n2 4 6 8 ", "2\n10 13 ", "2\n6 12 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
28
codeforces
ddecee6a7da306e0f17ed95f4412dcba
Prime Problem
In Berland prime numbers are fashionable — the respectable citizens dwell only on the floors with numbers that are prime numbers. The numismatists value particularly high the coins with prime nominal values. All the prime days are announced holidays! Yet even this is not enough to make the Berland people happy. On the main street of the capital stand *n* houses, numbered from 1 to *n*. The government decided to paint every house a color so that the sum of the numbers of the houses painted every color is a prime number. However it turned out that not all the citizens approve of this decision — many of them protest because they don't want many colored houses on the capital's main street. That's why it is decided to use the minimal possible number of colors. The houses don't have to be painted consecutively, but every one of *n* houses should be painted some color. The one-colored houses should not stand consecutively, any way of painting is acceptable. There are no more than 5 hours left before the start of painting, help the government find the way when the sum of house numbers for every color is a prime number and the number of used colors is minimal. The single input line contains an integer *n* (2<=≤<=*n*<=≤<=6000) — the number of houses on the main streets of the capital. Print the sequence of *n* numbers, where the *i*-th number stands for the number of color for house number *i*. Number the colors consecutively starting from 1. Any painting order is allowed. If there are several solutions to that problem, print any of them. If there's no such way of painting print the single number -1. Sample Input 8 Sample Output 1 2 2 1 1 1 1 2
{"inputs": ["8", "2", "3", "4", "5", "6", "7", "8", "9", "10", "23", "233", "1009", "2009", "4009", "4509", "2539", "5000", "4999", "4997", "5997", "5998", "5999", "6000", "11", "2109", "4890", "4356", "1075", "169", "5792", "2244", "2757", "3769", "3789", "3510", "962", "1834", "5544", "5558", "1005", "3904", "4691", "4998", "4276", "1252", "4447", "1927", "754", "4864"], "outputs": ["1 1 1 1 2 1 1 1 ", "1 1 ", "1 1 2 ", "1 1 2 1 ", "1 2 1 1 1 ", "1 2 1 1 1 1 ", "1 1 1 1 2 1 1 ", "1 1 1 1 2 1 1 1 ", "1 2 1 1 1 1 1 1 1 ", "1 2 1 1 1 1 1 1 1 1 ", "1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 2 1 1 1 1 1 1 ", "1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ", "1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...", "1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
ddf9a9ecc2e1e7a99780d4ed3a38540f
Shortest Path Queries
You are given an undirected connected graph with weighted edges. The length of some path between two vertices is the bitwise xor of weights of all edges belonging to this path (if some edge is traversed more than once, then it is included in bitwise xor the same number of times). There are three types of queries you have to process: - 1 *x* *y* *d* — add an edge connecting vertex *x* to vertex *y* with weight *d*. It is guaranteed that there is no edge connecting *x* to *y* before this query; - 2 *x* *y* — remove an edge connecting vertex *x* to vertex *y*. It is guaranteed that there was such edge in the graph, and the graph stays connected after this query; - 3 *x* *y* — calculate the length of the shortest path (possibly non-simple) from vertex *x* to vertex *y*. Print the answers for all queries of type 3. The first line contains two numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200000) — the number of vertices and the number of edges in the graph, respectively. Then *m* lines follow denoting the edges of the graph. Each line contains three integers *x*, *y* and *d* (1<=≤<=*x*<=&lt;<=*y*<=≤<=*n*, 0<=≤<=*d*<=≤<=230<=-<=1). Each pair (*x*,<=*y*) is listed at most once. The initial graph is connected. Then one line follows, containing an integer *q* (1<=≤<=*q*<=≤<=200000) — the number of queries you have to process. Then *q* lines follow, denoting queries in the following form: - 1 *x* *y* *d* (1<=≤<=*x*<=&lt;<=*y*<=≤<=*n*, 0<=≤<=*d*<=≤<=230<=-<=1) — add an edge connecting vertex *x* to vertex *y* with weight *d*. It is guaranteed that there is no edge connecting *x* to *y* before this query; - 2 *x* *y* (1<=≤<=*x*<=&lt;<=*y*<=≤<=*n*) — remove an edge connecting vertex *x* to vertex *y*. It is guaranteed that there was such edge in the graph, and the graph stays connected after this query; - 3 *x* *y* (1<=≤<=*x*<=&lt;<=*y*<=≤<=*n*) — calculate the length of the shortest path (possibly non-simple) from vertex *x* to vertex *y*. It is guaranteed that at least one query has type 3. Print the answers for all queries of type 3 in the order they appear in input. Sample Input 5 5 1 2 3 2 3 4 3 4 5 4 5 6 1 5 1 5 3 1 5 1 1 3 1 3 1 5 2 1 5 3 1 5 Sample Output 1 1 2
{"inputs": ["5 5\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n1 5 1\n5\n3 1 5\n1 1 3 1\n3 1 5\n2 1 5\n3 1 5"], "outputs": ["1\n1\n2"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
de1be60077eb96d5bef6f2b195c6890c
Dreamoon and Stairs
Dreamoon wants to climb up a stair of *n* steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer *m*. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition? The single line contains two space separated integers *n*, *m* (0<=&lt;<=*n*<=≤<=10000,<=1<=&lt;<=*m*<=≤<=10). Print a single integer — the minimal number of moves being a multiple of *m*. If there is no way he can climb satisfying condition print <=-<=1 instead. Sample Input 10 2 3 5 Sample Output 6 -1
{"inputs": ["10 2", "3 5", "29 7", "2 2", "1 2", "10000 2", "10000 3", "10000 10", "9999 3", "9999 2", "9999 10", "9999 9", "18 10", "19 10", "20 10", "21 10", "7688 5", "4608 5", "3979 2", "9985 6", "3230 8", "24 9", "3275 8", "6240 7", "5227 4", "3832 6", "4 2", "6 3", "10 5", "3 2", "6 4", "5 2", "8 2", "9 9", "4 5"], "outputs": ["6", "-1", "21", "2", "-1", "5000", "5001", "5000", "5001", "5000", "5000", "5004", "10", "10", "10", "20", "3845", "2305", "1990", "4998", "1616", "18", "1640", "3122", "2616", "1920", "2", "3", "5", "2", "4", "4", "4", "9", "-1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
261
codeforces
de529027519466567e75557d762da495
Magic Spheres
Carl is a beginner magician. He has *a* blue, *b* violet and *c* orange magic spheres. In one move he can transform two spheres of the same color into one sphere of any other color. To make a spell that has never been seen before, he needs at least *x* blue, *y* violet and *z* orange spheres. Can he get them (possible, in multiple actions)? The first line of the input contains three integers *a*, *b* and *c* (0<=≤<=*a*,<=*b*,<=*c*<=≤<=1<=000<=000) — the number of blue, violet and orange spheres that are in the magician's disposal. The second line of the input contains three integers, *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=1<=000<=000) — the number of blue, violet and orange spheres that he needs to get. If the wizard is able to obtain the required numbers of spheres, print "Yes". Otherwise, print "No". Sample Input 4 4 0 2 1 2 5 6 1 2 7 2 3 3 3 2 2 2 Sample Output Yes No Yes
{"inputs": ["4 4 0\n2 1 2", "5 6 1\n2 7 2", "3 3 3\n2 2 2", "0 0 0\n0 0 0", "0 0 0\n0 0 1", "0 1 0\n0 0 0", "1 0 0\n1 0 0", "2 2 1\n1 1 2", "1 3 1\n2 1 1", "1000000 1000000 1000000\n1000000 1000000 1000000", "1000000 500000 500000\n0 750000 750000", "500000 1000000 500000\n750001 0 750000", "499999 500000 1000000\n750000 750000 0", "500000 500000 0\n0 0 500000", "0 500001 499999\n500000 0 0", "1000000 500000 1000000\n500000 1000000 500000", "1000000 1000000 499999\n500000 500000 1000000", "500000 1000000 1000000\n1000000 500001 500000", "1000000 500000 500000\n0 1000000 500000", "500000 500000 1000000\n500001 1000000 0", "500000 999999 500000\n1000000 0 500000", "4 0 3\n2 2 1", "0 2 4\n2 0 2", "3 1 0\n1 1 1", "4 4 1\n1 3 2", "1 2 4\n2 1 3", "1 1 0\n0 0 1", "4 0 0\n0 1 1", "0 3 0\n1 0 1", "0 0 3\n1 0 1", "1 12 1\n4 0 4", "4 0 4\n1 2 1", "4 4 0\n1 1 3", "0 9 0\n2 2 2", "0 10 0\n2 2 2", "9 0 9\n0 8 0", "0 9 9\n9 0 0", "9 10 0\n0 0 9", "10 0 9\n0 10 0", "0 10 10\n10 0 0", "10 10 0\n0 0 11", "307075 152060 414033\n381653 222949 123101", "569950 228830 153718\n162186 357079 229352", "149416 303568 749016\n238307 493997 190377", "438332 298094 225324\n194220 400244 245231", "293792 300060 511272\n400687 382150 133304", "295449 518151 368838\n382897 137148 471892", "191789 291147 691092\n324321 416045 176232", "286845 704749 266526\n392296 104421 461239", "135522 188282 377041\n245719 212473 108265", "404239 359124 133292\n180069 184791 332544", "191906 624432 244408\n340002 367217 205432", "275980 429361 101824\n274288 302579 166062", "136092 364927 395302\n149173 343146 390922", "613852 334661 146012\n363786 326286 275233", "348369 104625 525203\n285621 215396 366411", "225307 153572 114545\n154753 153282 149967", "438576 124465 629784\n375118 276028 390116", "447521 327510 158732\n395759 178458 259139", "8 5 5\n5 5 5", "100 100 100\n1 1 1", "100 100 100\n0 0 0", "3 2 3\n2 3 2", "5 4 3\n2 2 2", "14 9 8\n12 5 10", "10 10 10\n1 1 1", "6 3 3\n3 3 3", "10 0 4\n2 4 2", "100 100 100\n2 2 2", "4 6 0\n2 1 2", "4 6 3\n4 2 3", "5 5 5\n1 1 1", "41 17 34\n0 19 24", "8 8 8\n3 3 3", "7 7 1\n1 1 2", "6 6 0\n2 2 2", "5 5 5\n2 2 2", "400 400 400\n1 1 1", "4 4 4\n2 2 2"], "outputs": ["Yes", "No", "Yes", "Yes", "No", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No", "No", "Yes", "No", "Yes", "No", "No", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", "No", "No", "Yes", "No", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "No", "Yes", "No", "Yes", "No", "No", "No", "No", "No", "No", "No", "Yes", "Yes", "Yes", "No", "No", "No", "No", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
131
codeforces
de6126ca010eecf21706ad036f0b3f16
PolandBall and White-Red graph
PolandBall has an undirected simple graph consisting of *n* vertices. Unfortunately, it has no edges. The graph is very sad because of that. PolandBall wanted to make it happier, adding some red edges. Then, he will add white edges in every remaining place. Therefore, the final graph will be a clique in two colors: white and red. Colorfulness of the graph is a value *min*(*d**r*,<=*d**w*), where *d**r* is the diameter of the red subgraph and *d**w* is the diameter of white subgraph. The diameter of a graph is a largest value *d* such that shortest path between some pair of vertices in it is equal to *d*. If the graph is not connected, we consider its diameter to be -1. PolandBall wants the final graph to be as neat as possible. He wants the final colorfulness to be equal to *k*. Can you help him and find any graph which satisfies PolandBall's requests? The only one input line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=1000, 1<=≤<=*k*<=≤<=1000), representing graph's size and sought colorfulness. If it's impossible to find a suitable graph, print -1. Otherwise, you can output any graph which fulfills PolandBall's requirements. First, output *m* — the number of red edges in your graph. Then, you should output *m* lines, each containing two integers *a**i* and *b**i*, (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*) which means that there is an undirected red edge between vertices *a**i* and *b**i*. Every red edge should be printed exactly once, you can print the edges and the vertices of every edge in arbitrary order. Remember that PolandBall's graph should remain simple, so no loops or multiple edges are allowed. Sample Input 4 1 5 2 Sample Output -1 4 1 2 2 3 3 4 4 5
{"inputs": ["4 1", "5 2", "500 3", "1000 2", "10 2", "590 3", "1000 5", "5 3", "100 49", "4 2", "4 3", "5 4", "5 1", "7 2", "1000 1", "1000 3", "1000 4", "999 1", "999 2", "999 3", "999 4", "999 5", "8 2", "9 2", "6 3", "7 3", "8 3", "9 3", "10 3", "527 2", "218 2", "565 2", "11 2", "237 2", "107 2", "494 2", "40 2", "301 2", "101 2", "642 3", "683 3", "750 3", "851 3", "207 3", "196 3", "706 3", "416 3", "2 1", "2 2", "2 3", "2 4", "3 1", "3 2", "3 3", "3 4"], "outputs": ["-1", "4\n1 2\n2 3\n3 4\n4 5", "123755\n1 2\n499 500\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "999\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "9\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10", "172580\n1 2\n589 590\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "-1", "5\n1 2\n4 5\n2 3\n2 4\n3 4", "-1", "-1", "3\n1 2\n3 4\n2 3", "-1", "-1", "6\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7", "-1", "497505\n1 2\n999 1000\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 8...", "-1", "-1", "998\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "496508\n1 2\n998 999\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "-1", "-1", "7\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8", "8\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9", "8\n1 2\n5 6\n2 3\n2 4\n2 5\n3 4\n3 5\n4 5", "12\n1 2\n6 7\n2 3\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6\n4 5\n4 6\n5 6", "17\n1 2\n7 8\n2 3\n2 4\n2 5\n2 6\n2 7\n3 4\n3 5\n3 6\n3 7\n4 5\n4 6\n4 7\n5 6\n5 7\n6 7", "23\n1 2\n8 9\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n3 4\n3 5\n3 6\n3 7\n3 8\n4 5\n4 6\n4 7\n4 8\n5 6\n5 7\n5 8\n6 7\n6 8\n7 8", "30\n1 2\n9 10\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n3 4\n3 5\n3 6\n3 7\n3 8\n3 9\n4 5\n4 6\n4 7\n4 8\n4 9\n5 6\n5 7\n5 8\n5 9\n6 7\n6 8\n6 9\n7 8\n7 9\n8 9", "526\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "217\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "564\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "10\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11", "236\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "106\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "493\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "39\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40", "300\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "100\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76...", "204482\n1 2\n641 642\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "231542\n1 2\n682 683\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "279380\n1 2\n749 750\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "359978\n1 2\n850 851\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "20912\n1 2\n206 207\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85\n...", "18723\n1 2\n195 196\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85\n...", "247458\n1 2\n705 706\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85...", "85493\n1 2\n415 416\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85\n...", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
2
codeforces
de8e21fefe42129a166a2cb60fb65d72
none
Group of Berland scientists, with whom you have a close business relationship, makes a research in the area of peaceful nuclear energy. In particular, they found that a group of four nanobots, placed on a surface of a plate, can run a powerful chain reaction under certain conditions. To be precise, researchers introduced a rectangular Cartesian coordinate system on a flat plate and selected four distinct points with integer coordinates where bots will be placed initially. Next each bot will be assigned with one of the four directions (up, down, left or right) parallel to the coordinate axes. After that, each bot is shifted by an integer distance (which may be different for different bots) along its direction. The chain reaction starts, if the bots are in the corners of a square with positive area with sides parallel to the coordinate axes. Each corner of the square must contain one nanobot. This reaction will be stronger, if bots spend less time to move. We can assume that bots move with unit speed. In other words, the lesser is the maximum length traveled by bot, the stronger is reaction. Scientists have prepared a set of plates and selected starting position for the bots for each plate. Now they ask you to assign the direction for each bot to move after landing such that the maximum length traveled by bot is as small as possible. The first line contains an integer number *t* (1<=≤<=*t*<=≤<=50) — the number of plates. *t* descriptions of plates follow. A description of each plate consists of four lines. Each line consists of a pair of integers numbers *x**i*,<=*y**i* (<=-<=108<=≤<=*x**i*,<=*y**i*<=≤<=108) — coordinates of the next bot. All bots are in different locations. Note, though, the problem can include several records in one test, you can hack other people's submissions only with the test of one plate, i.e. parameter *t* in a hack test should be equal to 1. Print answers for all plates separately. First goes a single integer number in a separate line. If scientists have made an unfortunate mistake and nanobots are not able to form the desired square, print -1. Otherwise, print the minimum possible length of the longest bot's path. If a solution exists, in the next four lines print two integer numbers — positions of each bot after moving. Print bots' positions in the order they are specified in the input data. If there are multiple solution, you can print any of them. Sample Input 2 1 1 1 -1 -1 1 -1 -1 1 1 2 2 4 4 6 6 Sample Output 0 1 1 1 -1 -1 1 -1 -1 -1
{"inputs": ["2\n1 1\n1 -1\n-1 1\n-1 -1\n1 1\n2 2\n4 4\n6 6", "1\n31 85\n9 49\n52 57\n11 85", "1\n183 65\n100 121\n138 31\n81 31", "1\n152 76\n152 112\n118 17\n83 129", "1\n54 42\n41 32\n83 57\n83 28", "1\n41 153\n-6 153\n112 92\n6 83", "1\n78 92\n98 10\n40 -17\n122 112", "1\n97 85\n108 10\n24 91\n29 10", "1\n3 0\n5 0\n4 9\n5 9", "1\n-5 -1\n-4 -6\n-11 -6\n-4 -1", "1\n-5 -2\n-3 -5\n-1 -1\n-4 -4", "1\n35 23\n49 28\n28 28\n23 23", "1\n0 3\n0 14\n10 3\n10 8", "1\n7434523 11523154\n7611807 5876512\n3910524 11523154\n3373024 5876512", "1\n-100000000 -100000000\n-100000000 100000000\n100000000 -100000000\n100000000 100000000", "1\n-100000000 -100000000\n100000000 -100000000\n-100000000 100000000\n100000000 99999999"], "outputs": ["0\n1 1\n1 -1\n-1 1\n-1 -1\n-1", "15\n37 85\n9 57\n37 57\n9 85", "49\n183 114\n100 114\n183 31\n100 31", "59\n152 17\n152 86\n83 17\n83 86", "19\n54 61\n54 32\n83 61\n83 32", "45\n67 153\n6 153\n67 92\n6 92", "38\n40 92\n122 10\n40 10\n122 92", "9\n99 85\n99 10\n24 85\n24 10", "4\n0 0\n9 0\n0 9\n9 9", "3\n-8 -1\n-3 -6\n-8 -6\n-3 -1", "2\n-4 -2\n-1 -5\n-1 -2\n-4 -5", "11\n38 23\n38 28\n33 28\n33 23", "3\n0 1\n0 11\n10 1\n10 11", "1061322\n8495844 11523154\n8495844 5876512\n2849202 11523154\n2849202 5876512", "0\n-100000000 -100000000\n-100000000 100000000\n100000000 -100000000\n100000000 100000000", "1\n-100000000 -100000001\n100000000 -100000001\n-100000000 99999999\n100000000 99999999"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
de907226bd55c2ddee0d451765d2e50c
Ralph and Mushrooms
Ralph is going to collect mushrooms in the Mushroom Forest. There are *m* directed paths connecting *n* trees in the Mushroom Forest. On each path grow some mushrooms. When Ralph passes a path, he collects all the mushrooms on the path. The Mushroom Forest has a magical fertile ground where mushrooms grow at a fantastic speed. New mushrooms regrow as soon as Ralph finishes mushroom collection on a path. More specifically, after Ralph passes a path the *i*-th time, there regrow *i* mushrooms less than there was before this pass. That is, if there is initially *x* mushrooms on a path, then Ralph will collect *x* mushrooms for the first time, *x*<=-<=1 mushrooms the second time, *x*<=-<=1<=-<=2 mushrooms the third time, and so on. However, the number of mushrooms can never be less than 0. For example, let there be 9 mushrooms on a path initially. The number of mushrooms that can be collected from the path is 9, 8, 6 and 3 when Ralph passes by from first to fourth time. From the fifth time and later Ralph can't collect any mushrooms from the path (but still can pass it). Ralph decided to start from the tree *s*. How many mushrooms can he collect using only described paths? The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=106, 0<=≤<=*m*<=≤<=106), representing the number of trees and the number of directed paths in the Mushroom Forest, respectively. Each of the following *m* lines contains three integers *x*, *y* and *w* (1<=≤<=*x*,<=*y*<=≤<=*n*, 0<=≤<=*w*<=≤<=108), denoting a path that leads from tree *x* to tree *y* with *w* mushrooms initially. There can be paths that lead from a tree to itself, and multiple paths between the same pair of trees. The last line contains a single integer *s* (1<=≤<=*s*<=≤<=*n*) — the starting position of Ralph. Print an integer denoting the maximum number of the mushrooms Ralph can collect during his route. Sample Input 2 2 1 2 4 2 1 4 1 3 3 1 2 4 2 3 3 1 3 8 1 Sample Output 168
{"inputs": ["2 2\n1 2 4\n2 1 4\n1", "3 3\n1 2 4\n2 3 3\n1 3 8\n1", "1 0\n1"], "outputs": ["16", "8", "0"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
2
codeforces
de95ee4db2f47d9dd85262de180228c9
Olympic Medal
The World Programming Olympics Medal is a metal disk, consisting of two parts: the first part is a ring with outer radius of *r*1 cm, inner radius of *r*2 cm, (0<=&lt;<=*r*2<=&lt;<=*r*1) made of metal with density *p*1 g/cm3. The second part is an inner disk with radius *r*2 cm, it is made of metal with density *p*2 g/cm3. The disk is nested inside the ring. The Olympic jury decided that *r*1 will take one of possible values of *x*1,<=*x*2,<=...,<=*x**n*. It is up to jury to decide which particular value *r*1 will take. Similarly, the Olympic jury decided that *p*1 will take one of possible value of *y*1,<=*y*2,<=...,<=*y**m*, and *p*2 will take a value from list *z*1,<=*z*2,<=...,<=*z**k*. According to most ancient traditions the ratio between the outer ring mass *m**out* and the inner disk mass *m**in* must equal , where *A*,<=*B* are constants taken from ancient books. Now, to start making medals, the jury needs to take values for *r*1, *p*1, *p*2 and calculate the suitable value of *r*2. The jury wants to choose the value that would maximize radius *r*2. Help the jury find the sought value of *r*2. Value *r*2 doesn't have to be an integer. Medal has a uniform thickness throughout the area, the thickness of the inner disk is the same as the thickness of the outer ring. The first input line contains an integer *n* and a sequence of integers *x*1,<=*x*2,<=...,<=*x**n*. The second input line contains an integer *m* and a sequence of integers *y*1,<=*y*2,<=...,<=*y**m*. The third input line contains an integer *k* and a sequence of integers *z*1,<=*z*2,<=...,<=*z**k*. The last line contains two integers *A* and *B*. All numbers given in the input are positive and do not exceed 5000. Each of the three sequences contains distinct numbers. The numbers in the lines are separated by spaces. Print a single real number — the sought value *r*2 with absolute or relative error of at most 10<=-<=6. It is guaranteed that the solution that meets the problem requirements exists. Sample Input 3 1 2 3 1 2 3 3 2 1 1 2 4 2 3 6 4 2 1 2 3 10 6 8 2 1 Sample Output 2.683281573000 2.267786838055
{"inputs": ["3 1 2 3\n1 2\n3 3 2 1\n1 2", "4 2 3 6 4\n2 1 2\n3 10 6 8\n2 1", "1 5\n1 3\n1 7\n515 892", "2 3 2\n3 2 3 1\n2 2 1\n733 883", "2 4 2\n3 1 2 3\n2 2 3\n676 769", "2 4 2\n3 2 3 1\n2 3 1\n772 833", "2 1 2\n3 2 3 1\n2 1 3\n452 219", "2 3 2\n3 3 2 1\n2 3 2\n417 202", "2 1 2\n3 1 2 3\n2 3 2\n596 206", "2 1 2\n3 3 1 2\n2 2 3\n306 406", "2 3 2\n3 3 1 2\n2 2 1\n881 165", "2 2 4\n3 1 2 3\n2 2 1\n618 401", "10 24 2621 2533 3148 3544 4273 4921 2950 3780 4483\n10 1687 4906 4246 2814 1874 3020 3039 3971 102 492\n10 3458 2699 2463 4395 3607 550 1608 958 3970 3077\n4 891", "1 5000\n1 5000\n1 1\n1 5000", "1 1\n1 1\n1 5000\n5000 1", "3 5000 4999 4998\n3 5000 4999 4998\n4 1 2 3 4\n1 5000", "3 1 2 3\n3 1 2 3\n3 5000 4999 4998\n5000 1", "3 1 2 3\n1 2\n3 3 2 1\n54 58", "3 1 2 3\n1 2\n3 3 2 1\n52 56", "3 1 2 3\n1 2\n3 3 2 1\n51 55", "3 1 2 3\n1 2\n3 3 2 1\n55 59", "3 1 2 3\n1 2\n3 1 2 3\n53 57", "13 1 2 3 4 5 6 7 8 9 10 11 12 13\n1 14\n2 15 16\n17 18"], "outputs": ["2.683281573000", "2.267786838055", "3.263613058533", "2.655066678191", "3.176161549164", "3.496252962144", "1.539383784060", "1.946150045603", "1.168651298016", "1.631654093847", "1.799345811354", "3.251156175034", "4919.762124668494", "4999.999900000003", "0.000199999996", "4999.999900000003", "0.001039438331", "2.478139719747", "2.479181611624", "2.479731502196", "2.477645721991", "2.478651362102", "9.165151389912"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
111
codeforces
deed43691dc1ca42f8825b9adbcbbdef
Dense Subsequence
You are given a string *s*, consisting of lowercase English letters, and the integer *m*. One should choose some symbols from the given string so that any contiguous subsegment of length *m* has at least one selected symbol. Note that here we choose positions of symbols, not the symbols themselves. Then one uses the chosen symbols to form a new string. All symbols from the chosen position should be used, but we are allowed to rearrange them in any order. Formally, we choose a subsequence of indices 1<=≤<=*i*1<=&lt;<=*i*2<=&lt;<=...<=&lt;<=*i**t*<=≤<=|*s*|. The selected sequence must meet the following condition: for every *j* such that 1<=≤<=*j*<=≤<=|*s*|<=-<=*m*<=+<=1, there must be at least one selected index that belongs to the segment [*j*,<= *j*<=+<=*m*<=-<=1], i.e. there should exist a *k* from 1 to *t*, such that *j*<=≤<=*i**k*<=≤<=*j*<=+<=*m*<=-<=1. Then we take any permutation *p* of the selected indices and form a new string *s**i**p*1*s**i**p*2... *s**i**p**t*. Find the lexicographically smallest string, that can be obtained using this procedure. The first line of the input contains a single integer *m* (1<=≤<=*m*<=≤<=100<=000). The second line contains the string *s* consisting of lowercase English letters. It is guaranteed that this string is non-empty and its length doesn't exceed 100<=000. It is also guaranteed that the number *m* doesn't exceed the length of the string *s*. Print the single line containing the lexicographically smallest string, that can be obtained using the procedure described above. Sample Input 3 cbabc 2 abcab 3 bcabcbaccba Sample Output a aab aaabb
{"inputs": ["3\ncbabc", "2\nabcab", "3\nbcabcbaccba", "5\nimmaydobun", "5\nwjjdqawypvtgrncmqvcsergermprauyevcegjtcrrblkwiugrcjfpjyxngyryxntauxlouvwgjzpsuxyxvhavgezwtuzknetdibv", "10\nefispvmzuutsrpxzfrykhabznxiyquwvhwhrksrgzodtuepfvamilfdynapzhzyhncorhzuewrrkcduvuhwsrprjrmgctnvrdtpj", "20\nhlicqhxayiodyephxlfoetfketnaabpfegqcrjzlshkxfzjssvpvzhzylgowwovgxznzowvpklbwbzhwtkkaomjkenhpedmbmjic", "50\ntyhjolxuexoffdkdwimsjujorgeksyiyvvqecvhpjsuayqnibijtipuqhkulxpysotlmtrsgygpkdhkrtntwqzrpfckiscaphyhv", "1\nbaaa", "5\nbbbbba", "10\nbbabcbbaabcbcbcbaabbccaacccbbbcaaacabbbbaaaccbcccacbbccaccbbaacaccbabcaaaacaccacbaaccaaccbaacabbbaac"], "outputs": ["a", "aab", "aaabb", "ab", "aaaabbcccccddeeeeeefggggggghiijjjjjjkkllmmnnnnoppppqqrrrrrrrrsstttttu", "aaabcccddddeeeffffgghhhhhhhiiijjkkklm", "aaaabbbbcccddeeeeeeffffg", "aab", "aaab", "ab", "aaaaaaaaaaa"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
7
codeforces
df24cb0120d4b4002bc23bc05b50de93
Cloud of Hashtags
Vasya is an administrator of a public page of organization "Mouse and keyboard" and his everyday duty is to publish news from the world of competitive programming. For each news he also creates a list of hashtags to make searching for a particular topic more comfortable. For the purpose of this problem we define hashtag as a string consisting of lowercase English letters and exactly one symbol '#' located at the beginning of the string. The length of the hashtag is defined as the number of symbols in it without the symbol '#'. The head administrator of the page told Vasya that hashtags should go in lexicographical order (take a look at the notes section for the definition). Vasya is lazy so he doesn't want to actually change the order of hashtags in already published news. Instead, he decided to delete some suffixes (consecutive characters at the end of the string) of some of the hashtags. He is allowed to delete any number of characters, even the whole string except for the symbol '#'. Vasya wants to pick such a way to delete suffixes that the total number of deleted symbols is minimum possible. If there are several optimal solutions, he is fine with any of them. The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=500<=000) — the number of hashtags being edited now. Each of the next *n* lines contains exactly one hashtag of positive length. It is guaranteed that the total length of all hashtags (i.e. the total length of the string except for characters '#') won't exceed 500<=000. Print the resulting hashtags in any of the optimal solutions. Sample Input 3 #book #bigtown #big 3 #book #cool #cold 4 #car #cart #art #at 3 #apple #apple #fruit Sample Output #b #big #big #book #co #cold # # #art #at #apple #apple #fruit
{"inputs": ["3\n#book\n#bigtown\n#big", "3\n#book\n#cool\n#cold", "4\n#car\n#cart\n#art\n#at", "3\n#apple\n#apple\n#fruit", "1\n#h", "2\n#y\n#q", "3\n#sima\n#simb\n#sima", "1\n#lxqnqdnkpeayhxh", "6\n#abu\n#abc\n#ac\n#bk\n#bmm\n#bb", "7\n#a\n#aab\n#abc\n#abq\n#ab\n#ac\n#z", "15\n#a\n#a\n#b\n#c\n#e\n#i\n#k\n#m\n#o\n#r\n#u\n#v\n#w\n#w\n#e", "5\n#abcde\n#abcd\n#abc\n#ab\n#a", "5\n#xyz\n#yzx\n#zzxy\n#zzy\n#yz", "15\n#a\n#b\n#c\n#c\n#f\n#h\n#i\n#j\n#l\n#l\n#q\n#q\n#u\n#z\n#z", "6\n#jgpajxhyrlbnpcfkklkfjflexcbhza\n#jgpajxhyrlbnpcfkklkfjflexcbhz\n#jgpajxhyrlbnpcfkklkfjflexcb\n#jgpajxhyrlbnpcfkklkfjflex\n#jgpajxhyrlbnpcfkklkfjf\n#jgpajxhyrlbnpcfkk", "37\n#dut\n#du\n#du\n#dxzd\n#dxz\n#dxz\n#dyyr\n#dyy\n#dyy\n#dzuo\n#dzu\n#dzu\n#wldl\n#wld\n#wl\n#wl\n#xeuu\n#xeu\n#xe\n#xe\n#ytki\n#ytk\n#yt\n#yt\n#yvbn\n#yvb\n#yvb\n#zvip\n#zvi\n#zv\n#zv\n#zzag\n#zza\n#zza\n#zznz\n#zznz\n#zzo", "2\n#aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab\n#aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"], "outputs": ["#b\n#big\n#big", "#book\n#co\n#cold", "#\n#\n#art\n#at", "#apple\n#apple\n#fruit", "#h", "#\n#q", "#sim\n#sim\n#sima", "#lxqnqdnkpeayhxh", "#ab\n#abc\n#ac\n#b\n#b\n#bb", "#a\n#aab\n#ab\n#ab\n#ab\n#ac\n#z", "#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#e", "#a\n#a\n#a\n#a\n#a", "#\n#\n#\n#\n#yz", "#a\n#b\n#c\n#c\n#f\n#h\n#i\n#j\n#l\n#l\n#q\n#q\n#u\n#z\n#z", "#jgpajxhyrlbnpcfkk\n#jgpajxhyrlbnpcfkk\n#jgpajxhyrlbnpcfkk\n#jgpajxhyrlbnpcfkk\n#jgpajxhyrlbnpcfkk\n#jgpajxhyrlbnpcfkk", "#du\n#du\n#du\n#dxz\n#dxz\n#dxz\n#dyy\n#dyy\n#dyy\n#dzu\n#dzu\n#dzu\n#wl\n#wl\n#wl\n#wl\n#xe\n#xe\n#xe\n#xe\n#yt\n#yt\n#yt\n#yt\n#yvb\n#yvb\n#yvb\n#zv\n#zv\n#zv\n#zv\n#zza\n#zza\n#zza\n#zznz\n#zznz\n#zzo", "#aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n#aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
21
codeforces
df35371b016a964a5bd7dcf6fa8d0ecd
Dome
The input contains a single floating-point number *x* with exactly 6 decimal places (0<=&lt;<=*x*<=&lt;<=5). Output two integers separated by a single space. Each integer should be between 1 and 10, inclusive. If several solutions exist, output any of them. Solution will exist for all tests. Sample Input 1.200000 2.572479 4.024922 Sample Output 3 2 10 3 9 9
{"inputs": ["1.200000", "2.572479", "4.024922", "0.447214", "0.493197", "0.496139", "0.498273", "0.499026", "0.499230", "0.499376", "0.832050", "0.894427", "0.948683", "0.976187", "0.986394", "0.989949", "0.993884", "1.404494", "1.483405", "1.561738", "1.736486", "1.920553", "1.923048", "1.940285", "2.121320", "2.277770", "2.307692", "2.408795", "2.683282", "2.757435", "2.828427", "2.867312", "2.989637", "3.123475", "3.130495", "3.262016", "3.303504", "3.472973", "3.577709", "3.655246", "3.922090", "4.068667", "4.239992", "4.472136"], "outputs": ["3 2", "10 3", "9 9", "1 1", "1 3", "1 4", "1 6", "1 8", "1 9", "1 10", "3 1", "4 1", "6 1", "9 1", "2 6", "2 7", "2 9", "3 4", "3 10", "5 2", "7 2", "5 3", "4 7", "4 8", "6 3", "7 3", "5 6", "5 9", "6 6", "6 7", "8 4", "7 5", "9 4", "10 4", "7 7", "7 9", "7 10", "8 7", "8 8", "8 9", "9 8", "10 7", "10 8", "10 10"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
7
codeforces
df7bd7b4c72c71c76502c093a86fd21f
Optical Experiment
Professor Phunsuk Wangdu has performed some experiments on rays. The setup for *n* rays is as follows. There is a rectangular box having exactly *n* holes on the opposite faces. All rays enter from the holes of the first side and exit from the holes of the other side of the box. Exactly one ray can enter or exit from each hole. The holes are in a straight line. Professor Wangdu is showing his experiment to his students. He shows that there are cases, when all the rays are intersected by every other ray. A curious student asked the professor: "Sir, there are some groups of rays such that all rays in that group intersect every other ray in that group. Can we determine the number of rays in the largest of such groups?". Professor Wangdu now is in trouble and knowing your intellect he asks you to help him. The first line contains *n* (1<=≤<=*n*<=≤<=106), the number of rays. The second line contains *n* distinct integers. The *i*-th integer *x**i* (1<=≤<=*x**i*<=≤<=*n*) shows that the *x**i*-th ray enters from the *i*-th hole. Similarly, third line contains *n* distinct integers. The *i*-th integer *y**i* (1<=≤<=*y**i*<=≤<=*n*) shows that the *y**i*-th ray exits from the *i*-th hole. All rays are numbered from 1 to *n*. Output contains the only integer which is the number of rays in the largest group of rays all of which intersect each other. Sample Input 5 1 4 5 2 3 3 4 2 1 5 3 3 1 2 2 3 1 Sample Output 3 2
{"inputs": ["5\n1 4 5 2 3\n3 4 2 1 5", "3\n3 1 2\n2 3 1", "5\n1 2 4 5 3\n1 5 4 2 3", "3\n3 1 2\n1 3 2", "7\n1 5 2 7 4 3 6\n6 3 1 2 5 4 7", "4\n1 4 2 3\n2 3 1 4", "4\n2 4 1 3\n2 3 1 4", "10\n4 7 8 1 2 3 5 9 6 10\n6 3 8 7 10 2 1 4 5 9", "7\n1 5 7 2 4 3 6\n3 2 5 7 6 1 4", "9\n1 7 4 9 3 8 2 5 6\n8 4 7 1 3 2 9 6 5", "5\n1 4 5 2 3\n3 4 2 1 5", "3\n1 2 3\n2 3 1", "2\n1 2\n1 2", "2\n1 2\n2 1", "3\n1 2 3\n2 1 3", "3\n1 2 3\n1 3 2", "3\n1 2 3\n3 2 1", "3\n1 2 3\n1 2 3", "1\n1\n1", "5\n1 2 5 3 4\n3 5 4 2 1", "5\n5 3 2 4 1\n2 4 5 1 3", "5\n1 2 4 5 3\n1 2 5 4 3", "5\n1 2 3 4 5\n1 2 3 4 5", "5\n5 4 3 2 1\n1 2 3 4 5", "5\n1 3 5 4 2\n1 4 5 3 2", "5\n1 5 2 4 3\n4 3 2 5 1", "25\n21 19 25 9 24 23 20 18 16 22 17 7 4 15 13 11 2 3 10 12 14 6 8 5 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25", "30\n30 29 28 27 26 25 19 24 9 23 21 20 18 16 22 17 7 4 15 13 11 2 3 10 12 14 6 8 5 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30", "40\n40 27 29 39 30 34 28 26 25 38 19 32 24 9 37 23 21 20 18 33 36 16 22 35 17 7 4 15 31 13 11 2 3 10 12 14 6 8 5 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40", "45\n45 44 40 43 27 29 41 39 30 34 28 26 25 42 38 19 32 24 9 37 23 21 20 18 33 36 16 22 35 17 7 4 15 31 13 11 2 3 10 12 14 6 8 5 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45", "1\n1\n1"], "outputs": ["3", "2", "3", "2", "4", "2", "3", "5", "4", "4", "3", "2", "1", "2", "2", "2", "3", "1", "1", "4", "2", "2", "1", "5", "3", "4", "13", "19", "19", "22", "1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
df928cfd18ea2303b90a1ab6e9203bda
Nastya and a Game
Nastya received one more array on her birthday, this array can be used to play a traditional Byteland game on it. However, to play the game the players should first select such a subsegment of the array that , where *p* is the product of all integers on the given array, *s* is their sum, and *k* is a given constant for all subsegments. Nastya wonders how many subsegments of the array fit the described conditions. A subsegment of an array is several consecutive integers of the array. The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*k*<=≤<=105), where *n* is the length of the array and *k* is the constant described above. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=108) — the elements of the array. In the only line print the number of subsegments such that the ratio between the product and the sum on them is equal to *k*. Sample Input 1 1 1 4 2 6 3 8 1 Sample Output 1 2
{"inputs": ["1 1\n1", "4 2\n6 3 8 1", "94 58\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29 58 1 1 1 29 58 58 1 1 29 1 1 1 1 2 1 58 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 29 1 1 1 1 1 58 1 29 1 1 1 1 1 1 1 1 1 1 1 1 58 1 1 1 1 1 2 1 1 1", "6 76\n1 38 1 1 1 1", "16 53\n53 1 1 1 1 1 53 1 1 1 1 1 1 1 1 1", "13 16\n2 1 1 1 1 1 1 1 1 1 1 1 1", "90 45\n15 1 1 1 1 3 1 1 5 3 5 1 1 15 15 3 1 15 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 15 1 1 1 1 5 1 1 1 1 15 1 1 1 15 1 1 1 1 1 1 1 1 3 1 1 15 3 1 1 1 15 15 1 1 1 1 15", "9 209\n2 7 31 673 853 1669 5821 7621 16677", "8 27\n8 3 9 8 3 10 7 1", "50 5\n1 5 11 10 3 6 9 3 9 6 1 1 4 7 8 6 11 2 6 10 4 1 8 11 5 6 5 6 7 2 2 3 1 10 8 8 2 10 7 3 8 10 11 7 3 2 10 11 7 4", "16 1\n2 6 1 11 5 9 5 9 7 5 8 5 3 2 7 2", "13 38\n1 10 4 1 5 5 4 4 8 4 11 1 9", "5 15\n10 9 5 2 2", "10 2\n1 1 1 1 10 3 1 1 1 1"], "outputs": ["1", "2", "5", "0", "0", "0", "5", "0", "0", "0", "16", "0", "0", "3"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
df97b5535fa90dfe37d6d91ebf948021
Brand New Easy Problem
A widely known among some people Belarusian sport programmer Lesha decided to make some money to buy a one square meter larger flat. To do this, he wants to make and carry out a Super Rated Match (SRM) on the site Torcoder.com. But there's a problem — a severe torcoder coordinator Ivan does not accept any Lesha's problem, calling each of them an offensive word "duped" (that is, duplicated). And one day they nearely quarrelled over yet another problem Ivan wouldn't accept. You are invited to act as a fair judge and determine whether the problem is indeed brand new, or Ivan is right and the problem bears some resemblance to those used in the previous SRMs. You are given the descriptions of Lesha's problem and each of Torcoder.com archive problems. The description of each problem is a sequence of words. Besides, it is guaranteed that Lesha's problem has no repeated words, while the description of an archive problem may contain any number of repeated words. The "similarity" between Lesha's problem and some archive problem can be found as follows. Among all permutations of words in Lesha's problem we choose the one that occurs in the archive problem as a subsequence. If there are multiple such permutations, we choose the one with the smallest number of inversions. Then the "similarity" of a problem can be written as , where *n* is the number of words in Lesha's problem and *x* is the number of inversions in the chosen permutation. Note that the "similarity" *p* is always a positive integer. The problem is called brand new if there is not a single problem in Ivan's archive which contains a permutation of words from Lesha's problem as a subsequence. Help the boys and determine whether the proposed problem is new, or specify the problem from the archive which resembles Lesha's problem the most, otherwise. The first line contains a single integer *n* (1<=≤<=*n*<=≤<=4) — the number of words in Lesha's problem. The second line contains *n* space-separated words — the short description of the problem. The third line contains a single integer *m* (1<=≤<=*m*<=≤<=10) — the number of problems in the Torcoder.com archive. Next *m* lines contain the descriptions of the problems as "*k* *s*1 *s*2 ... *s**k*", where *k* (1<=≤<=*k*<=≤<=20) is the number of words in the problem and *s**i* is a word of the problem description. All words from all problem descriptions contain no more than 10 lowercase English letters. If Lesha's problem is brand new, print string "Brand new problem!" (without quotes). Otherwise, on the first line print the index of the archive problem which resembles Lesha's problem most. If there are multiple such problems, print the one with the smallest index. On the second line print a string consisting of characters [:, character | repeated *p* times, and characters :], where *p* is the "similarity" between this problem and Lesha's one. The archive problems are numbered starting from one in the order in which they are given in the input. Sample Input 4 find the next palindrome 1 10 find the previous palindrome or print better luck next time 3 add two numbers 3 1 add 2 two two 3 numbers numbers numbers 4 these papers are formulas 3 6 what are these formulas and papers 5 papers are driving me crazy 4 crazy into the night 3 add two decimals 5 4 please two decimals add 5 decimals want to be added 4 two add decimals add 4 add one two three 7 one plus two plus three equals six Sample Output 1 [:||||||:] Brand new problem! 1 [:||||:] 3 [:|||:]
{"inputs": ["4\nfind the next palindrome\n1\n10 find the previous palindrome or print better luck next time", "3\nadd two numbers\n3\n1 add\n2 two two\n3 numbers numbers numbers", "4\nthese papers are formulas\n3\n6 what are these formulas and papers\n5 papers are driving me crazy\n4 crazy into the night", "3\nadd two decimals\n5\n4 please two decimals add\n5 decimals want to be added\n4 two add decimals add\n4 add one two three\n7 one plus two plus three equals six", "2\naaaa aa\n2\n3 a aa aaa\n4 aaaa aaa aa a", "4\nsave the planet please\n4\n5 the save please planet please\n3 save please plants\n4 planet the save safe\n6 please save the save please planet", "2\na b\n3\n5 f q a y w\n5 p h w w u\n5 c n l m l", "1\na\n4\n2 c t\n2 n v\n2 n v\n2 g o", "3\na b c\n7\n7 n g q l j r k\n7 b j o n n y p\n7 a u d h m n a\n7 r x d q g s l\n7 p b d d x r h\n7 v z w t d r r\n7 u k p e j o u", "3\na b c\n3\n3 f c v\n3 v i m\n3 u o s", "4\na b c d\n10\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a\n20 d c c c c c b b b b b a a a a a a a a a", "3\na b c\n10\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a\n20 c b b b b b b a a a a a a a a a a a a a", "4\na b c d\n1\n8 d c c b b a a a", "4\na b c d\n1\n4 d c b a", "3\na b c\n1\n4 c b a a", "1\nromka\n2\n1 tourist\n1 romka", "4\na b c d\n1\n8 c a a a d b d b", "4\na b c d\n1\n10 b c a b a d d d a a", "4\na b c d\n1\n8 a d d d b c c b", "4\na b c d\n1\n11 b c d a c a b d b c d", "4\na b c d\n1\n11 b c b a d d d a a c b", "4\na b c d\n1\n10 c a b b b d d c c a", "4\na b c d\n1\n10 a d a a c d b b c d", "4\na b c d\n1\n13 b c d a c a b d b c a d b", "2\na b\n10\n2 a b\n2 a b\n2 a b\n2 b a\n2 a b\n2 a b\n2 b a\n2 b a\n2 b a\n2 a b", "3\na b c\n10\n3 a b c\n3 a b c\n3 c a b\n3 b c a\n3 c b a\n3 c b a\n3 a b c\n3 b a c\n3 b a c\n3 b c a", "4\na b c d\n10\n4 b c d a\n4 d c b a\n4 d a b c\n4 a c d b\n4 a b c d\n4 a b d c\n4 c b a d\n4 d c a b\n4 a d c b\n4 c a b d", "4\na b c d\n10\n4 b d c a\n4 a d b c\n4 c a d b\n4 a c b d\n4 b d c a\n4 d c a b\n4 d c a b\n4 a b d c\n4 d c b a\n4 a d c b", "4\na b c d\n10\n8 c yy d vm a dh b bt\n8 b bx d yi a qp c qd\n8 c uk d ys b dv a cg\n8 b of a wh d gj c cr\n8 a qn b na d hh c ak\n8 a zq d rs c zj b lc\n8 a et b oj c zf d xt\n8 d mq a di b gw c vh\n8 a lb d ft b uc c zj\n8 c gf d oj b wo a lf", "3\na b c\n10\n6 a mj b by c qi\n6 b qn a bq c os\n6 b vy a dg c ui\n6 a ay b xm c yt\n6 c vj a db b gs\n6 a kf b gg c vh\n6 a lr c fe b xm\n6 a ur c mf b ka\n6 a ar b bu c xn\n6 c ak a dn b de", "2\na b\n10\n4 a tr b xz\n4 a xv b fq\n4 a kp b md\n4 b xl a yi\n4 a or b ho\n4 a hf b ab\n4 a mp b vm\n4 b qx a pc\n4 a wi b ct\n4 b cj a ba", "4\nwgrwqh mztgbac choxdd pjuzku\n10\n7 eozce zfu zfu mztgbac wgrwqh mztgbac skxf\n7 glu skxf pjuzku choxdd glu wgrwqh eozce\n7 wgrwqh wgrwqh wgrwqh wgrwqh pjuzku choxdd eozce\n7 wgrwqh glu eozce zfu wgrwqh choxdd pjuzku\n7 skxf skxf skxf mztgbac mztgbac skxf choxdd\n7 zfu eozce glu pjuzku mztgbac wgrwqh glu\n7 eozce eozce pjuzku wgrwqh wgrwqh pjuzku zfu\n7 eozce skxf glu eozce choxdd skxf mztgbac\n7 choxdd pjuzku skxf zfu pjuzku mztgbac mztgbac\n7 mztgbac wgrwqh mztgbac skxf choxdd pjuzku mztgbac", "4\ntfggs qnehos igekv rnmr\n10\n8 ccj ccj qnehos igekv rnmr ccj igekv qnehos\n8 rnmr igekv gydhj tfggs ccj tfggs rnmr rnmr\n8 gydhj qnehos igekv ccj tfggs gydhj qnehos ccj\n8 tfggs igekv rnmr rnmr rnmr tfggs rnmr ccj\n8 jjwek gydhj gydhj tfggs igekv igekv rnmr ccj\n8 rnmr tfggs rnmr tfggs rnmr gydhj ccj qnehos\n8 igekv ccj ccj gydhj ccj igekv gydhj igekv\n8 jjwek qnehos tfggs ccj tfggs qnehos qnehos qnehos\n8 rnmr igekv ccj jjwek ccj ccj jjwek tfggs\n8 ccj ccj gydhj qnehos gydhj ccj gydhj gydhj", "1\nhello\n8\n3 a whathello a\n3 b hellowhat b\n4 hell hella hellier hell\n1 hellz\n1 ahello\n1 helloa\n1 zhello\n1 helloz"], "outputs": ["1\n[:||||||:]", "Brand new problem!", "1\n[:||||:]", "3\n[:|||:]", "2\n[:||:]", "1\n[:||||||:]", "Brand new problem!", "Brand new problem!", "Brand new problem!", "Brand new problem!", "1\n[:|:]", "1\n[:|:]", "1\n[:|:]", "1\n[:|:]", "1\n[:|:]", "2\n[:|:]", "1\n[:|||||:]", "1\n[:|||||:]", "1\n[:|||||:]", "1\n[:|||||||:]", "1\n[:|||||:]", "1\n[:||||||:]", "1\n[:|||||||:]", "1\n[:|||||||:]", "1\n[:||:]", "1\n[:||||:]", "5\n[:|||||||:]", "4\n[:||||||:]", "7\n[:|||||||:]", "1\n[:||||:]", "1\n[:||:]", "10\n[:|||||||:]", "Brand new problem!", "Brand new problem!"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
df9a647d53279e1dac6634dddd5e6756
Timofey and a tree
Each New Year Timofey and his friends cut down a tree of *n* vertices and bring it home. After that they paint all the *n* its vertices, so that the *i*-th vertex gets color *c**i*. Now it's time for Timofey birthday, and his mother asked him to remove the tree. Timofey removes the tree in the following way: he takes some vertex in hands, while all the other vertices move down so that the tree becomes rooted at the chosen vertex. After that Timofey brings the tree to a trash can. Timofey doesn't like it when many colors are mixing together. A subtree annoys him if there are vertices of different color in it. Timofey wants to find a vertex which he should take in hands so that there are no subtrees that annoy him. He doesn't consider the whole tree as a subtree since he can't see the color of the root vertex. A subtree of some vertex is a subgraph containing that vertex and all its descendants. Your task is to determine if there is a vertex, taking which in hands Timofey wouldn't be annoyed. The first line contains single integer *n* (2<=≤<=*n*<=≤<=105) — the number of vertices in the tree. Each of the next *n*<=-<=1 lines contains two integers *u* and *v* (1<=≤<=*u*,<=*v*<=≤<=*n*, *u*<=≠<=*v*), denoting there is an edge between vertices *u* and *v*. It is guaranteed that the given graph is a tree. The next line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105), denoting the colors of the vertices. Print "NO" in a single line, if Timofey can't take the tree in such a way that it doesn't annoy him. Otherwise print "YES" in the first line. In the second line print the index of the vertex which Timofey should take in hands. If there are multiple answers, print any of them. Sample Input 4 1 2 2 3 3 4 1 2 1 1 3 1 2 2 3 1 2 3 4 1 2 2 3 3 4 1 2 1 2 Sample Output YES 2YES 2NO
{"inputs": ["4\n1 2\n2 3\n3 4\n1 2 1 1", "3\n1 2\n2 3\n1 2 3", "4\n1 2\n2 3\n3 4\n1 2 1 2", "3\n2 1\n2 3\n1 2 3", "4\n1 2\n2 4\n4 3\n1 1 3 2", "2\n1 2\n1 1", "10\n5 7\n4 5\n10 2\n3 6\n1 2\n3 4\n8 5\n4 9\n2 3\n15 15 15 15 5 15 26 18 15 15", "8\n1 2\n1 3\n3 5\n3 6\n1 4\n4 7\n4 8\n1 3 1 1 1 1 1 2", "3\n2 1\n2 3\n4 4 4", "3\n1 2\n1 3\n1 2 2", "4\n1 4\n2 4\n3 4\n1 2 3 1", "4\n1 2\n1 3\n1 4\n1 2 3 4", "9\n1 2\n2 3\n3 4\n4 5\n2 7\n7 6\n2 8\n8 9\n1 1 2 2 2 3 3 4 4", "3\n2 1\n2 3\n4 4 5", "4\n1 2\n2 3\n3 4\n1 2 2 1"], "outputs": ["YES\n2", "YES\n2", "NO", "YES\n2", "YES\n4", "YES\n1", "YES\n5", "NO", "YES\n1", "YES\n1", "YES\n4", "YES\n1", "YES\n2", "YES\n2", "NO"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
42
codeforces
df9c6cd618727a365f261b12f93c16e7
Three Logos
Three companies decided to order a billboard with pictures of their logos. A billboard is a big square board. A logo of each company is a rectangle of a non-zero area. Advertisers will put up the ad only if it is possible to place all three logos on the billboard so that they do not overlap and the billboard has no empty space left. When you put a logo on the billboard, you should rotate it so that the sides were parallel to the sides of the billboard. Your task is to determine if it is possible to put the logos of all the three companies on some square billboard without breaking any of the described rules. The first line of the input contains six positive integers *x*1,<=*y*1,<=*x*2,<=*y*2,<=*x*3,<=*y*3 (1<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2,<=*x*3,<=*y*3<=≤<=100), where *x**i* and *y**i* determine the length and width of the logo of the *i*-th company respectively. If it is impossible to place all the three logos on a square shield, print a single integer "-1" (without the quotes). If it is possible, print in the first line the length of a side of square *n*, where you can place all the three logos. Each of the next *n* lines should contain *n* uppercase English letters "A", "B" or "C". The sets of the same letters should form solid rectangles, provided that: - the sizes of the rectangle composed from letters "A" should be equal to the sizes of the logo of the first company, - the sizes of the rectangle composed from letters "B" should be equal to the sizes of the logo of the second company, - the sizes of the rectangle composed from letters "C" should be equal to the sizes of the logo of the third company, Note that the logos of the companies can be rotated for printing on the billboard. The billboard mustn't have any empty space. If a square billboard can be filled with the logos in multiple ways, you are allowed to print any of them. See the samples to better understand the statement. Sample Input 5 1 2 5 5 2 4 4 2 6 4 2 Sample Output 5 AAAAA BBBBB BBBBB CCCCC CCCCC 6 BBBBBB BBBBBB AAAACC AAAACC AAAACC AAAACC
{"inputs": ["5 1 2 5 5 2", "4 4 2 6 4 2", "1 3 1 3 3 1", "2 4 1 4 1 4", "7 2 7 2 7 3", "1 10 6 10 3 10", "20 1 20 1 18 20", "75 31 69 100 25 31", "6 23 23 12 5 23", "40 12 2 40 26 40", "3 49 1 49 49 45", "56 6 35 56 15 56", "70 6 70 62 70 2", "80 65 80 12 3 80", "90 20 54 90 90 16", "75 100 19 100 6 100", "17 100 100 22 61 100", "19 100 67 100 100 14", "15 100 100 12 100 73", "100 69 100 10 21 100", "100 8 31 100 61 100", "33 100 100 65 100 2", "67 100 100 16 17 100", "2 1 3 1 2 2", "1 2 2 4 3 2", "7 4 3 3 4 3", "2 1 9 10 1 8", "20 4 8 16 12 16", "9 23 14 8 15 14", "1 37 3 40 37 39", "2 37 2 12 47 49", "25 25 56 31 31 25", "70 64 6 43 27 6", "80 46 34 35 45 34", "5 48 90 85 5 42", "100 95 5 79 5 21", "75 66 25 66 100 34", "67 45 45 33 100 55", "13 68 100 87 13 32", "100 20 96 80 80 4", "100 73 27 35 65 27", "100 12 88 61 39 88", "100 100 100 100 100 100", "1 100 100 1 1 100", "100 100 100 1 100 100", "3 8 4 8 2 8", "70 7 70 2 70 62", "6 100 20 100 75 100", "17 100 62 100 100 22", "2 3 2 5 5 8", "70 10 47 59 23 59", "42 69 41 31 58 100", "96 70 3 100 30 96", "1 1 2 2 2 2", "2 5 6 7 3 4", "2 3 2 3 2 2", "1 1 1 1 1 1", "5 31 95 90 64 5", "23 36 57 80 44 23", "4 53 92 88 4 39", "12 51 78 90 39 12", "37 44 90 53 37 46", "40 9 72 81 41 9"], "outputs": ["5\nAAAAA\nBBBBB\nBBBBB\nCCCCC\nCCCCC", "6\nBBBBBB\nBBBBBB\nAAAACC\nAAAACC\nAAAACC\nAAAACC", "3\nAAA\nBBB\nCCC", "4\nAAAA\nAAAA\nBBBB\nCCCC", "7\nAAAAAAA\nAAAAAAA\nBBBBBBB\nBBBBBBB\nCCCCCCC\nCCCCCCC\nCCCCCCC", "10\nAAAAAAAAAA\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nCCCCCCCCCC\nCCCCCCCCCC\nCCCCCCCCCC", "20\nAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCC", "100\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "23\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCC...", "40\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBB...", "49\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC...", "56\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "70\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBB...", "80\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAA...", "90\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "3\nBBB\nACC\nACC", "4\nBBBB\nBBBB\nACCC\nACCC", "7\nAAAAAAA\nAAAAAAA\nAAAAAAA\nAAAAAAA\nBBBCCCC\nBBBCCCC\nBBBCCCC", "10\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nAACCCCCCCC", "20\nAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCC", "23\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBBBCCCCCCCCCCCCCCC\nBBBBBBB...", "40\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nACC...", "49\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC...", "56\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "70\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA...", "80\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAA...", "90\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC...", "100\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC...", "100\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "95\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBB...", "80\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBB...", "92\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "90\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "90\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB...", "81\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBB..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
4
codeforces
dfce938d392bea22ed9c82eaa6a4d150
none
Currently Tiny is learning Computational Geometry. When trying to solve a problem called "The Closest Pair Of Points In The Plane", he found that a code which gave a wrong time complexity got Accepted instead of Time Limit Exceeded. The problem is the follows. Given *n* points in the plane, find a pair of points between which the distance is minimized. Distance between (*x*1,<=*y*1) and (*x*2,<=*y*2) is . The pseudo code of the unexpected code is as follows: Here, *tot* can be regarded as the running time of the code. Due to the fact that a computer can only run a limited number of operations per second, *tot* should not be more than *k* in order not to get Time Limit Exceeded. You are a great hacker. Would you please help Tiny generate a test data and let the code get Time Limit Exceeded? A single line which contains two space-separated integers *n* and *k* (2<=≤<=*n*<=≤<=2000, 1<=≤<=*k*<=≤<=109). If there doesn't exist such a data which let the given code get TLE, print "no solution" (without quotes); else print *n* lines, and the *i*-th line contains two integers *x**i*,<=*y**i* (|*x**i*|,<=|*y**i*|<=≤<=109) representing the coordinates of the *i*-th point. The conditions below must be held: - All the points must be distinct. - |*x**i*|,<=|*y**i*|<=≤<=109. - After running the given code, the value of *tot* should be larger than *k*. Sample Input 4 3 2 100 Sample Output 0 0 0 1 1 0 1 1 no solution
{"inputs": ["4 3", "2 100", "5 6", "8 20", "6 15", "1808 505823289", "1850 507001807", "1892 948371814", "1788 94774524", "1947 944738707", "1989 367830", "1885 1096142", "1854 631695", "1750 215129", "1792 341122", "1834 1680860", "1657 1371995", "1699 1442450", "1595 1271214", "2000 1998999", "2000 1000000000", "2 1", "3 2", "5 1", "1000 500", "342 340"], "outputs": ["0 0\n0 1\n1 0\n1 1", "no solution", "0 0\n0 1\n0 2\n0 3\n0 4", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7", "no solution", "no solution", "no solution", "no solution", "no solution", "no solution", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "no solution", "no solution", "0 0\n0 1\n0 2", "0 0\n0 1\n0 2\n0 3\n0 4", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n...", "0 0\n0 1\n0 2\n0 3\n0 4\n0 5\n0 6\n0 7\n0 8\n0 9\n0 10\n0 11\n0 12\n0 13\n0 14\n0 15\n0 16\n0 17\n0 18\n0 19\n0 20\n0 21\n0 22\n0 23\n0 24\n0 25\n0 26\n0 27\n0 28\n0 29\n0 30\n0 31\n0 32\n0 33\n0 34\n0 35\n0 36\n0 37\n0 38\n0 39\n0 40\n0 41\n0 42\n0 43\n0 44\n0 45\n0 46\n0 47\n0 48\n0 49\n0 50\n0 51\n0 52\n0 53\n0 54\n0 55\n0 56\n0 57\n0 58\n0 59\n0 60\n0 61\n0 62\n0 63\n0 64\n0 65\n0 66\n0 67\n0 68\n0 69\n0 70\n0 71\n0 72\n0 73\n0 74\n0 75\n0 76\n0 77\n0 78\n0 79\n0 80\n0 81\n0 82\n0 83\n0 84\n0 85\n0 86\n..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
20
codeforces
dfd3423b46d9ac875c40fdb6e3391bae
Vasya and Basketball
Vasya follows a basketball game and marks the distances from which each team makes a throw. He knows that each successful throw has value of either 2 or 3 points. A throw is worth 2 points if the distance it was made from doesn't exceed some value of *d* meters, and a throw is worth 3 points if the distance is larger than *d* meters, where *d* is some non-negative integer. Vasya would like the advantage of the points scored by the first team (the points of the first team minus the points of the second team) to be maximum. For that he can mentally choose the value of *d*. Help him to do that. The first line contains integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of throws of the first team. Then follow *n* integer numbers — the distances of throws *a**i* (1<=≤<=*a**i*<=≤<=2·109). Then follows number *m* (1<=≤<=*m*<=≤<=2·105) — the number of the throws of the second team. Then follow *m* integer numbers — the distances of throws of *b**i* (1<=≤<=*b**i*<=≤<=2·109). Print two numbers in the format a:b — the score that is possible considering the problem conditions where the result of subtraction *a*<=-<=*b* is maximum. If there are several such scores, find the one in which number *a* is maximum. Sample Input 3 1 2 3 2 5 6 5 6 7 8 9 10 5 1 2 3 4 5 Sample Output 9:6 15:10
{"inputs": ["3\n1 2 3\n2\n5 6", "5\n6 7 8 9 10\n5\n1 2 3 4 5", "5\n1 2 3 4 5\n5\n6 7 8 9 10", "3\n1 2 3\n3\n6 4 5", "10\n1 2 3 4 5 6 7 8 9 10\n1\n11", "10\n1 2 3 4 5 6 7 8 9 11\n1\n10", "3\n1 2 3\n3\n1 2 3", "3\n1 2 3\n3\n3 4 5", "4\n2 5 3 2\n4\n1 5 6 2", "2\n3 3\n3\n1 3 3", "3\n1 1 1\n4\n1 3 1 1", "4\n4 2 1 1\n4\n3 2 2 2", "3\n3 9 4\n2\n10 1", "14\n4336 24047 24846 25681 28597 30057 32421 34446 48670 67750 68185 69661 85721 89013\n30\n8751 10576 14401 22336 22689 35505 38649 43073 43176 44359 44777 50210 50408 51361 53181 60095 65554 68201 68285 68801 72501 75881 80251 80509 83306 93167 95365 95545 97201 97731", "1\n1\n2\n1 2", "18\n450 3726 12063 27630 29689 30626 33937 35015 45951 46217 53004 59541 75551 75836 78996 81297 93876 96211\n47\n3393 5779 6596 7935 9549 10330 11145 13121 14801 15578 24104 24125 25871 31280 35036 38969 40077 41342 42708 46033 47491 48451 49152 51905 55002 55689 56565 57901 59481 60017 66075 67081 68397 71122 74961 78501 84098 87083 87893 89281 89739 90321 92046 95821 96717 96921 96951", "3\n3 3 4\n6\n2 2 3 3 3 3", "3\n2 2 2\n3\n1 1 1", "2\n2 2\n2\n2 2", "1\n7\n6\n6 7 8 9 10 11", "1\n1\n2\n1 1", "3\n1 2 3\n1\n1", "3\n3 3 4\n6\n3 2 2 2 3 2", "1\n3\n1\n3", "1\n1\n5\n1 1 1 1 1", "2\n1 999999999\n2\n2 4"], "outputs": ["9:6", "15:10", "15:15", "9:9", "30:3", "30:3", "9:9", "9:9", "12:11", "6:8", "6:8", "9:8", "9:5", "28:60", "2:4", "36:94", "7:12", "9:6", "6:6", "2:12", "2:4", "9:3", "9:14", "3:3", "2:10", "5:4"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
41
codeforces
dfdb6ca43f21c375705818cab533efac
Follow Traffic Rules
Everybody knows that the capital of Berland is connected to Bercouver (the Olympic capital) by a direct road. To improve the road's traffic capacity, there was placed just one traffic sign, limiting the maximum speed. Traffic signs in Berland are a bit peculiar, because they limit the speed only at that point on the road where they are placed. Right after passing the sign it is allowed to drive at any speed. It is known that the car of an average Berland citizen has the acceleration (deceleration) speed of *a* km/h2, and has maximum speed of *v* km/h. The road has the length of *l* km, and the speed sign, limiting the speed to *w* km/h, is placed *d* km (1<=≤<=*d*<=&lt;<=*l*) away from the capital of Berland. The car has a zero speed at the beginning of the journey. Find the minimum time that an average Berland citizen will need to get from the capital to Bercouver, if he drives at the optimal speed. The car can enter Bercouver at any speed. The first line of the input file contains two integer numbers *a* and *v* (1<=≤<=*a*,<=*v*<=≤<=10000). The second line contains three integer numbers *l*, *d* and *w* (2<=≤<=*l*<=≤<=10000; 1<=≤<=*d*<=&lt;<=*l*; 1<=≤<=*w*<=≤<=10000). Print the answer with at least five digits after the decimal point. Sample Input 1 1 2 1 3 5 70 200 170 40 Sample Output 2.500000000000 8.965874696353
{"inputs": ["1 1\n2 1 3", "5 70\n200 170 40", "6 80\n100 50 10", "7 80\n100 50 50", "8 80\n100 50 199", "200 1000\n3 2 1", "200 1000\n3 2 10000", "200 1000\n1000 500 1023", "200 1000\n1000 999 10", "20 40\n10000 1 30", "20 40\n10000 799 30", "20 40\n9958 9799 30", "9998 9999\n3 2 1", "9998 9999\n3 2 6580", "9998 9999\n800 40 10000", "9998 9999\n800 516 124", "4 120\n5112 3000 130", "4 120\n5112 3000 113", "9000 1\n10000 9999 1", "2 10000\n270 64 16", "2 20\n270 64 16", "2 16\n270 64 16", "2000 10000\n8000 4000 4000", "2000 4000\n8000 4000 4000", "2000 10\n8000 4000 4000", "7143 4847\n4193 2677 1991", "5744 5873\n3706 1656 8898", "7992 3250\n9987 6772 5806", "240 4275\n6270 1836 6361", "5369 9035\n1418 879 3344", "7062 9339\n2920 1289 8668", "8755 9643\n1193 27 3992", "448 3595\n2696 1020 5667", "2141 3899\n968 262 991", "3834 4202\n2471 607 6315", "5527 8154\n3974 3550 1639", "7220 8458\n2246 1326 6963", "8914 8762\n3749 1899 2287", "607 2714\n2021 1483 3963", "9788 8432\n2795 2025 3436", "26 12\n17 13 29", "12 42\n6 5 19", "50 22\n42 1 12", "38 3\n47 16 4", "24 33\n35 2 45", "11 13\n24 15 37", "49 43\n12 6 30", "35 23\n17 12 20", "23 4\n5 2 13", "8 28\n22 4 29", "38 35\n16 12 38", "21 41\n26 18 47", "2 50\n21 1 6", "32 7\n15 6 17", "15 13\n10 3 26", "46 20\n4 2 35", "26 28\n46 9 44", "9 35\n41 22 3", "39 42\n35 19 12", "28 24\n31 13 21"], "outputs": ["2.500000000000", "8.965874696353", "7.312347829731", "5.345224838248", "5.000000000000", "0.290249882934", "0.173205080757", "3.162277660168", "4.482261988326", "251.000000000000", "251.125000000000", "250.075000000000", "0.042231317453", "0.024497347285", "0.400040006001", "0.668565367679", "57.600000000000", "57.702083333333", "10000.000055555556", "16.431676725155", "18.500000000000", "20.875000000000", "2.828427124746", "3.000000000000", "800.002500000000", "1.438097228927", "1.142252435725", "3.276251405251", "7.228416147400", "0.726785762909", "0.909374070882", "0.522044043034", "3.469252698452", "0.967126013479", "1.136044961574", "1.555031897139", "0.788771617656", "1.172208101814", "2.580499677039", "0.863942827831", "1.647435897436", "1.000000000000", "2.129090909091", "15.706140350877", "1.748106060606", "2.437062937063", "0.699854212224", "1.078881987578", "1.336956521739", "2.345207879912", "0.917662935482", "1.573591584939", "4.582575694956", "2.252232142857", "1.202564102564", "0.417028828114", "2.181318681319", "4.577276992968", "1.803482716151", "1.733630952381"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
13
codeforces
dff35cfccaed3049a7d8dbccfbbaef3d
Divisibility
Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*. The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018). Print the required number. Sample Input 1 1 10 2 -4 4 Sample Output 10 5
{"inputs": ["1 1 10", "2 -4 4", "1 1 1", "1 0 0", "1 0 1", "1 10181 10182", "1 10182 10183", "1 -191 1011", "2 0 0", "2 0 1", "2 1 2", "2 2 3", "2 -1 0", "2 -1 1", "2 -7 -6", "2 -7 -5", "2 -6 -6", "2 -6 -4", "2 -6 13", "2 -19171 1911", "3 123 456", "3 124 456", "3 125 456", "3 381 281911", "3 381 281912", "3 381 281913", "3 382 281911", "3 382 281912", "3 382 281913", "3 383 281911", "3 383 281912", "3 383 281913", "3 -381 281911", "3 -381 281912", "3 -381 281913", "3 -380 281911", "3 -380 281912", "3 -380 281913", "3 -379 281911", "3 -379 281912", "3 -379 281913", "3 -191381 -1911", "3 -191381 -1910", "3 -191381 -1909", "3 -191380 -1911", "3 -191380 -1910", "3 -191380 -1909", "3 -191379 -1911", "3 -191379 -1910", "3 -191379 -1909", "3 -2810171 0", "3 0 29101", "3 -2810170 0", "3 0 29102", "3 -2810169 0", "3 0 29103", "1 -1000000000000000000 1000000000000000000", "2 -1000000000000000000 1000000000000000000", "3 -1000000000000000000 1000000000000000000", "4 -1000000000000000000 1000000000000000000", "5 -1000000000000000000 1000000000000000000", "6 -1000000000000000000 1000000000000000000", "7 -1000000000000000000 1000000000000000000", "1 -1000000000000000000 -100000000000000000", "2 -1000000000000000000 -10000000000000000", "3 -1000000000000000000 -10218000000000000", "4 -1000000000000000000 -320110181919100", "5 -1000000000000000000 -402710171917", "6 -1000000000000000000 -6666666666", "7 -1000000000000000000 -77777777777778", "1000000000000000000 -1000000000000000000 1000000000000000000", "1000000000000000000 0 1000000000000000000", "1000000000000000000 1000000000000000000 1000000000000000000", "100000000000000321 1000000000000000000 1000000000000000000", "100000000000000321 -1000000000000000000 1000000000000000000", "1000000000000000000 0 0", "1000000000000000000 1 1", "1000000000000000000 -1 -1", "1000000000000000000 -2 -1", "142000000000000271 -228118171 -1382811", "1 1 1000000000000000000"], "outputs": ["10", "5", "1", "1", "2", "2", "2", "1203", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "10", "10541", "112", "111", "111", "93844", "93844", "93845", "93843", "93843", "93844", "93843", "93843", "93844", "94098", "94098", "94099", "94097", "94097", "94098", "94097", "94097", "94098", "63157", "63157", "63157", "63157", "63157", "63157", "63157", "63157", "63157", "936724", "9701", "936724", "9701", "936724", "9702", "2000000000000000001", "1000000000000000001", "666666666666666667", "500000000000000001", "400000000000000001", "333333333333333333", "285714285714285715", "900000000000000001", "495000000000000001", "329927333333333334", "249919972454520226", "199999919457965617", "166666665555555556", "142846031746031746", "3", "2", "1", "0", "19", "1", "0", "0", "0", "0", "1000000000000000000"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
89
codeforces
e002199dc05266707d905a6b35037cc1
Multiplication Table
Let's consider a table consisting of *n* rows and *n* columns. The cell located at the intersection of *i*-th row and *j*-th column contains number *i*<=×<=*j*. The rows and columns are numbered starting from 1. You are given a positive integer *x*. Your task is to count the number of cells in a table that contain number *x*. The single line contains numbers *n* and *x* (1<=≤<=*n*<=≤<=105, 1<=≤<=*x*<=≤<=109) — the size of the table and the number that we are looking for in the table. Print a single number: the number of times *x* occurs in the table. Sample Input 10 5 6 12 5 13 Sample Output 2 4 0
{"inputs": ["10 5", "6 12", "5 13", "1 1", "2 1", "100000 1", "1 1000000000", "100000 1000000000", "100000 362880", "1 4", "9 12", "10 123", "9551 975275379", "17286 948615687", "58942 936593001", "50000 989460910", "22741 989460910", "22740 989460910", "100000 989460910", "100000 98280", "100000 997920", "100000 720720", "100000 2162160", "100000 4324320", "100000 8648640", "100000 183783600", "100000 551350800", "40000 551350800", "20000 400000000", "19999 400000000", "19999 399960001", "31621 999887641", "31622 999887641", "31620 999887641", "100000 999887641", "100000 25", "100000 1", "100000 3628800", "100000 39916800", "100000 479001600", "4 9", "2 6", "20 100", "10 3", "4 4", "2 4", "89874 1"], "outputs": ["2", "4", "0", "1", "1", "1", "0", "16", "154", "0", "4", "0", "0", "0", "0", "4", "0", "0", "4", "128", "222", "226", "282", "320", "348", "438", "392", "150", "1", "0", "1", "1", "1", "0", "3", "3", "1", "220", "328", "254", "1", "0", "3", "2", "3", "1", "1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
257
codeforces
e01325cc3bb47d387ca422ff653548a6
none
Students love to celebrate their holidays. Especially if the holiday is the day of the end of exams! Despite the fact that Igor K., unlike his groupmates, failed to pass a programming test, he decided to invite them to go to a cafe so that each of them could drink a bottle of... fresh cow milk. Having entered the cafe, the *m* friends found *n* different kinds of milk on the menu, that's why they ordered *n* bottles — one bottle of each kind. We know that the volume of milk in each bottle equals *w*. When the bottles were brought in, they decided to pour all the milk evenly among the *m* cups, so that each got a cup. As a punishment for not passing the test Igor was appointed the person to pour the milk. He protested that he was afraid to mix something up and suggested to distribute the drink so that the milk from each bottle was in no more than two different cups. His friends agreed but they suddenly faced the following problem — and what is actually the way to do it? Help them and write the program that will help to distribute the milk among the cups and drink it as quickly as possible! Note that due to Igor K.'s perfectly accurate eye and unswerving hands, he can pour any fractional amount of milk from any bottle to any cup. The only input data file contains three integers *n*, *w* and *m* (1<=≤<=*n*<=≤<=50, 100<=≤<=*w*<=≤<=1000, 2<=≤<=*m*<=≤<=50), where *n* stands for the number of ordered bottles, *w* stands for the volume of each of them and *m* stands for the number of friends in the company. Print on the first line "YES" if it is possible to pour the milk so that the milk from each bottle was in no more than two different cups. If there's no solution, print "NO". If there is a solution, then print *m* more lines, where the *i*-th of them describes the content of the *i*-th student's cup. The line should consist of one or more pairs that would look like "*b* *v*". Each such pair means that *v* (*v*<=&gt;<=0) units of milk were poured into the *i*-th cup from bottle *b* (1<=≤<=*b*<=≤<=*n*). All numbers *b* on each line should be different. If there are several variants to solve the problem, print any of them. Print the real numbers with no less than 6 digits after the decimal point. Sample Input 2 500 3 4 100 5 4 100 7 5 500 2 Sample Output YES 1 333.333333 2 333.333333 2 166.666667 1 166.666667 YES 3 20.000000 4 60.000000 1 80.000000 4 40.000000 2 40.000000 3 80.000000 2 60.000000 1 20.000000 NO YES 4 250.000000 5 500.000000 2 500.000000 3 500.000000 1 500.000000 4 250.000000
{"inputs": ["2 500 3", "4 100 5", "4 100 7", "5 500 2", "4 100 8", "1 1000 2", "2 500 4", "2 500 5", "9 1000 12", "20 1000 30", "50 1000 50", "50 1000 49", "49 1000 50", "40 1000 50", "48 1000 50", "45 1000 50", "30 1000 40", "20 1000 25", "21 1000 27", "21 1000 28", "21 1000 29", "22 1000 30", "3 356 14", "9 120 13", "1 301 20", "11 489 14", "6 218 16", "2 632 19", "14 157 19", "12 430 14", "16 980 19", "1 736 10", "4 650 19", "3 953 13", "10 524 8", "6 283 11", "5 825 16", "13 557 13", "13 503 9", "12 255 8", "11 827 13", "4 381 16", "18 624 32", "30 864 48", "26 637 16", "13 322 43", "12 792 38", "30 628 23", "2 190 29", "33 353 40", "21 608 35", "46 328 27", "44 371 47", "9 615 50", "4 574 9", "13 751 24", "5 556 43", "2 449 45", "21 665 45", "26 905 31", "26 856 49", "6 804 32", "15 737 26", "35 462 50", "34 948 42", "9 929 41", "11 324 24", "2 227 11", "3 606 41", "21 452 43", "19 134 48", "28 595 48", "36 371 42", "23 511 24", "24 836 25", "28 380 29", "24 704 30", "30 565 40", "35 948 42", "6 578 9", "24 619 28", "30 986 32", "26 381 28", "24 743 32", "24 459 27", "25 531 26", "40 897 42", "24 371 26", "18 169 20", "24 264 25", "27 884 28", "18 922 21", "37 772 38", "32 610 40", "22 771 23", "22 792 24", "40 100 48", "42 501 48", "36 100 39", "42 171 49", "17 100 10", "5 100 7"], "outputs": ["YES\n1 333.333333\n2 333.333333\n2 166.666667 1 166.666667", "YES\n3 20.000000 4 60.000000\n1 80.000000\n4 40.000000 2 40.000000\n3 80.000000\n2 60.000000 1 20.000000", "NO", "YES\n4 250.000000 5 500.000000 2 500.000000\n3 500.000000 1 500.000000 4 250.000000", "YES\n3 50.000000\n1 50.000000\n2 50.000000\n4 50.000000\n1 50.000000\n3 50.000000\n2 50.000000\n4 50.000000", "YES\n1 500.000000\n1 500.000000", "YES\n2 250.000000\n2 250.000000\n1 250.000000\n1 250.000000", "NO", "YES\n3 750.000000\n6 750.000000\n7 250.000000 2 500.000000\n5 750.000000\n9 250.000000 2 500.000000\n4 500.000000 8 250.000000\n6 250.000000 1 500.000000\n4 500.000000 5 250.000000\n7 750.000000\n8 750.000000\n1 500.000000 3 250.000000\n9 750.000000", "YES\n5 666.666667\n18 666.666667\n19 666.666667\n9 333.333333 18 333.333333\n14 666.666667\n1 666.666667\n20 333.333333 8 333.333333\n2 666.666667\n1 333.333333 12 333.333333\n12 666.666667\n8 666.666667\n16 666.666667\n16 333.333333 5 333.333333\n10 666.666667\n20 666.666667\n4 666.666667\n9 666.666667\n4 333.333333 7 333.333333\n13 333.333333 2 333.333333\n15 333.333333 14 333.333333\n6 666.666667\n19 333.333333 6 333.333333\n7 666.666667\n3 666.666667\n11 333.333333 17 333.333333\n15 666.666667\n10 333....", "YES\n50 1000.000000\n46 1000.000000\n15 1000.000000\n32 1000.000000\n11 1000.000000\n24 1000.000000\n12 1000.000000\n16 1000.000000\n1 1000.000000\n36 1000.000000\n40 1000.000000\n25 1000.000000\n2 1000.000000\n44 1000.000000\n33 1000.000000\n31 1000.000000\n38 1000.000000\n47 1000.000000\n30 1000.000000\n34 1000.000000\n19 1000.000000\n5 1000.000000\n4 1000.000000\n42 1000.000000\n49 1000.000000\n35 1000.000000\n27 1000.000000\n43 1000.000000\n22 1000.000000\n8 1000.000000\n28 1000.000000\n37 1000.000000\n...", "YES\n1 81.632653 50 938.775510\n46 816.326531 19 204.081633\n15 142.857143 14 877.551020\n32 857.142857 30 163.265306\n11 306.122449 40 714.285714\n24 714.285714 34 306.122449\n6 571.428571 12 448.979592\n29 938.775510 16 81.632653\n28 102.040816 1 918.367347\n36 326.530612 11 693.877551\n26 734.693878 40 285.714286\n25 102.040816 16 918.367347\n10 40.816327 2 979.591837\n44 224.489796 17 795.918367\n33 755.102041 41 265.306122\n8 510.204082 31 510.204082\n15 857.142857 38 163.265306\n33 244.897959 47 775....", "YES\n40 280.000000 11 700.000000\n19 220.000000 47 760.000000\n13 20.000000 2 960.000000\n30 180.000000 46 800.000000\n15 860.000000 14 120.000000\n35 480.000000 31 500.000000\n17 200.000000 44 780.000000\n30 820.000000 32 160.000000\n3 380.000000 5 600.000000\n3 620.000000 22 360.000000\n12 440.000000 7 540.000000\n40 720.000000 26 260.000000\n10 940.000000 2 40.000000\n1 100.000000 28 880.000000\n23 460.000000 35 520.000000\n32 840.000000 37 140.000000\n16 80.000000 25 900.000000\n20 40.000000 29 940.000...", "YES\n12 800.000000\n34 800.000000\n35 800.000000\n26 200.000000 4 600.000000\n16 600.000000 30 200.000000\n12 200.000000 7 600.000000\n20 400.000000 23 400.000000\n24 400.000000 39 400.000000\n27 200.000000 38 600.000000\n40 800.000000\n1 200.000000 28 600.000000\n18 200.000000 21 600.000000\n25 800.000000\n31 800.000000\n2 600.000000 13 200.000000\n18 800.000000\n10 400.000000 2 400.000000\n14 600.000000 17 200.000000\n9 200.000000 20 600.000000\n27 800.000000\n15 200.000000 36 600.000000\n36 400.000000 1...", "YES\n20 40.000000 29 920.000000\n24 400.000000 41 560.000000\n6 200.000000 5 760.000000\n42 720.000000 21 240.000000\n40 480.000000 26 480.000000\n44 600.000000 17 360.000000\n3 280.000000 22 680.000000\n1 800.000000 45 160.000000\n41 440.000000 33 520.000000\n25 160.000000 14 800.000000\n7 120.000000 12 840.000000\n34 360.000000 24 600.000000\n22 320.000000 43 640.000000\n23 80.000000 48 880.000000\n31 40.000000 8 920.000000\n31 960.000000\n23 920.000000 35 40.000000\n45 840.000000 10 120.000000\n30 640.0...", "YES\n15 700.000000 14 200.000000\n14 800.000000 25 100.000000\n12 900.000000\n32 200.000000 37 700.000000\n40 900.000000\n5 700.000000 6 200.000000\n8 200.000000 31 700.000000\n13 100.000000 2 800.000000\n1 500.000000 28 400.000000\n41 500.000000 24 400.000000\n42 900.000000\n2 200.000000 10 700.000000\n5 300.000000 3 600.000000\n34 300.000000 24 600.000000\n42 100.000000 27 800.000000\n44 700.000000 4 200.000000\n9 300.000000 20 600.000000\n23 500.000000 20 400.000000\n12 100.000000 6 800.000000\n16 900.0...", "YES\n7 250.000000 8 500.000000\n11 250.000000 23 500.000000\n14 500.000000 15 250.000000\n18 500.000000 9 250.000000\n27 500.000000 17 250.000000\n13 750.000000\n7 750.000000\n3 750.000000\n17 750.000000\n3 250.000000 8 500.000000\n6 500.000000 12 250.000000\n24 750.000000\n21 750.000000\n29 750.000000\n10 750.000000\n1 500.000000 25 250.000000\n28 250.000000 1 500.000000\n27 500.000000 4 250.000000\n19 500.000000 29 250.000000\n19 500.000000 16 250.000000\n4 750.000000\n20 250.000000 23 500.000000\n5 750....", "YES\n16 400.000000 19 400.000000\n13 800.000000\n15 800.000000\n9 600.000000 18 200.000000\n7 800.000000\n12 600.000000 1 200.000000\n5 800.000000\n2 400.000000 10 400.000000\n12 400.000000 8 400.000000\n8 600.000000 20 200.000000\n20 800.000000\n6 800.000000\n6 200.000000 19 600.000000\n10 600.000000 3 200.000000\n16 600.000000 5 200.000000\n3 800.000000\n4 600.000000 7 200.000000\n11 600.000000 17 200.000000\n13 200.000000 2 600.000000\n17 800.000000\n14 400.000000 11 400.000000\n15 200.000000 14 600.000...", "NO", "YES\n2 500.000000 10 250.000000\n16 250.000000 19 500.000000\n4 750.000000\n17 750.000000\n1 500.000000 3 250.000000\n15 750.000000\n7 500.000000 4 250.000000\n5 250.000000 20 500.000000\n21 750.000000\n12 750.000000\n13 750.000000\n5 750.000000\n3 750.000000\n6 750.000000\n16 750.000000\n7 500.000000 17 250.000000\n8 750.000000\n15 250.000000 14 500.000000\n19 500.000000 6 250.000000\n21 250.000000 18 500.000000\n18 500.000000 9 250.000000\n9 750.000000\n1 500.000000 12 250.000000\n10 750.000000\n8 250.00...", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "YES\n9 122.857143 7 245.714286\n1 122.857143 3 245.714286\n9 307.142857 6 61.428571\n4 307.142857 8 61.428571\n10 245.714286 2 122.857143\n1 307.142857 12 61.428571\n4 122.857143 5 245.714286\n7 184.285714 5 184.285714\n10 184.285714 3 184.285714\n8 368.571429\n12 368.571429\n11 368.571429\n2 307.142857 11 61.428571\n6 368.571429", "NO", "NO", "NO", "NO", "YES\n4 262.000000 5 393.000000\n8 131.000000 6 524.000000\n10 262.000000 3 393.000000\n7 524.000000 5 131.000000\n3 131.000000 1 524.000000\n2 131.000000 9 524.000000\n10 262.000000 2 393.000000\n8 393.000000 4 262.000000", "NO", "NO", "YES\n5 557.000000\n7 557.000000\n6 557.000000\n4 557.000000\n3 557.000000\n1 557.000000\n10 557.000000\n9 557.000000\n8 557.000000\n12 557.000000\n11 557.000000\n13 557.000000\n2 557.000000", "YES\n6 223.555556 11 503.000000\n5 335.333333 4 391.222222\n2 223.555556 13 503.000000\n9 447.111111 6 279.444444\n12 391.222222 1 335.333333\n4 111.777778 12 111.777778 8 503.000000\n3 503.000000 10 55.888889 1 167.666667\n2 279.444444 10 447.111111\n9 55.888889 7 503.000000 5 167.666667", "YES\n11 255.000000 2 127.500000\n4 127.500000 8 255.000000\n2 127.500000 10 255.000000\n12 255.000000 1 127.500000\n1 127.500000 3 255.000000\n4 127.500000 5 255.000000\n6 255.000000 9 127.500000\n9 127.500000 7 255.000000", "NO", "NO", "NO", "NO", "YES\n26 318.500000 12 637.000000 1 79.625000\n6 238.875000 16 159.250000 19 637.000000\n14 637.000000 24 398.125000\n5 79.625000 26 318.500000 22 637.000000\n4 79.625000 21 637.000000 18 318.500000\n9 637.000000 18 318.500000 20 79.625000\n8 637.000000 3 398.125000\n23 477.750000 20 557.375000\n7 159.250000 17 637.000000 24 238.875000\n2 238.875000 10 637.000000 25 159.250000\n23 159.250000 3 238.875000 11 637.000000\n1 557.375000 25 477.750000\n16 477.750000 5 557.375000\n13 637.000000 2 398.125000\n4 557...", "NO", "NO", "YES\n19 273.043478 16 546.086957\n26 327.652174 28 491.478261\n23 518.782609 11 300.347826\n10 245.739130 25 573.391304\n12 382.260870 6 436.869565\n13 628.000000 2 191.130435\n24 409.565217 17 409.565217\n14 600.695652 24 218.434783\n12 245.739130 7 573.391304\n15 628.000000 29 163.826087 14 27.304348\n23 109.217391 9 81.913043 20 628.000000\n8 628.000000 7 54.608696 3 136.521739\n27 600.695652 17 218.434783\n9 546.086957 18 273.043478\n1 628.000000 28 136.521739 25 54.608696\n22 518.782609 26 300.347826\n...", "NO", "NO", "NO", "YES\n9 182.222222 20 328.000000 23 48.592593\n4 170.074074 17 60.740741 44 328.000000\n25 97.185185 15 133.629630 14 328.000000\n30 170.074074 32 328.000000 37 60.740741\n8 182.222222 35 48.592593 31 328.000000\n28 291.555556 37 267.259259\n21 242.962963 42 315.851852\n9 145.777778 21 85.037037 18 328.000000\n6 315.851852 12 242.962963\n29 303.703704 19 255.111111\n26 328.000000 40 72.888889 4 157.925926\n3 218.666667 6 12.148148 5 328.000000\n45 194.370370 1 328.000000 28 36.444444\n34 218.666667 27 328.0...", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "NO", "YES\n5 53.000000 6 265.000000\n34 212.000000 27 106.000000\n26 53.000000 32 265.000000\n4 318.000000\n3 318.000000\n31 318.000000\n18 265.000000 21 53.000000\n30 159.000000 16 159.000000\n33 318.000000\n36 212.000000 11 106.000000\n28 318.000000\n35 318.000000\n8 265.000000 31 53.000000\n24 212.000000 14 106.000000\n5 318.000000\n2 265.000000 13 53.000000\n17 53.000000 11 265.000000\n36 159.000000 15 159.000000\n13 318.000000\n19 106.000000 16 212.000000\n17 318.000000\n18 106.000000 9 212.000000\n25 159.0...", "YES\n7 149.041667 17 340.666667\n16 212.916667 19 276.791667\n3 85.166667 1 404.541667\n21 404.541667 18 85.166667\n2 468.416667 13 21.291667\n22 170.333333 5 319.375000\n22 340.666667 8 149.041667\n4 127.750000 7 361.958333\n12 127.750000 8 361.958333\n23 489.708333\n13 489.708333\n19 234.208333 6 255.500000\n5 191.625000 16 298.083333\n6 255.500000 15 234.208333\n4 383.250000 21 106.458333\n1 106.458333 12 383.250000\n20 42.583333 9 447.125000\n11 191.625000 14 298.083333\n18 425.833333 9 63.875000\n23 2...", "YES\n13 802.560000\n17 535.040000 7 267.520000\n14 468.160000 24 334.400000\n2 769.120000 13 33.440000\n15 434.720000 14 367.840000\n3 702.240000 10 100.320000\n6 434.720000 19 367.840000\n8 234.080000 22 568.480000\n23 769.120000 11 33.440000\n20 735.680000 23 66.880000\n6 401.280000 15 401.280000\n18 668.800000 9 133.760000\n7 568.480000 4 234.080000\n21 200.640000 4 601.920000\n5 535.040000 22 267.520000\n5 300.960000 16 501.600000\n11 802.560000\n20 100.320000 9 702.240000\n10 735.680000 2 66.880000\n1...", "YES\n18 262.068966 9 104.827586\n28 78.620690 26 288.275862\n5 117.931034 16 248.965517\n4 235.862069 21 131.034483\n11 65.517241 23 301.379310\n15 209.655172 6 157.241379\n3 327.586207 8 39.310345\n6 222.758621 19 144.137931\n27 157.241379 17 209.655172\n23 78.620690 20 288.275862\n14 196.551724 15 170.344828\n20 91.724138 9 275.172414\n2 353.793103 13 13.103448\n10 340.689655 2 26.206897\n13 366.896552\n25 327.586207 10 39.310345\n24 183.448276 14 183.448276\n24 196.551724 17 170.344828\n4 144.137931 27 ...", "YES\n13 563.200000\n14 422.400000 15 140.800000\n6 563.200000\n13 140.800000 2 422.400000\n19 422.400000 6 140.800000\n10 422.400000 3 140.800000\n5 140.800000 16 422.400000\n12 281.600000 8 281.600000\n20 281.600000 23 281.600000\n21 281.600000 4 281.600000\n19 281.600000 16 281.600000\n9 140.800000 20 422.400000\n24 281.600000 14 281.600000\n17 140.800000 24 422.400000\n11 563.200000\n9 563.200000\n18 563.200000\n4 422.400000 7 140.800000\n10 281.600000 2 281.600000\n15 563.200000\n17 563.200000\n12 422....", "YES\n7 141.250000 8 282.500000\n11 141.250000 23 282.500000\n14 282.500000 15 141.250000\n18 282.500000 9 141.250000\n27 282.500000 17 141.250000\n13 423.750000\n7 423.750000\n3 423.750000\n17 423.750000\n3 141.250000 8 282.500000\n6 282.500000 12 141.250000\n24 423.750000\n21 423.750000\n29 423.750000\n10 423.750000\n1 282.500000 25 141.250000\n28 141.250000 1 282.500000\n27 282.500000 4 141.250000\n19 282.500000 29 141.250000\n19 282.500000 16 141.250000\n4 423.750000\n20 141.250000 23 282.500000\n5 423....", "YES\n7 632.000000 8 158.000000\n33 474.000000 29 316.000000\n21 632.000000 18 158.000000\n28 790.000000\n3 790.000000\n17 632.000000 11 158.000000\n16 158.000000 30 632.000000\n19 158.000000 29 632.000000\n10 474.000000 25 316.000000\n16 790.000000\n11 790.000000\n18 790.000000\n32 474.000000 26 316.000000\n8 790.000000\n1 790.000000\n15 474.000000 22 316.000000\n9 790.000000\n5 158.000000 6 632.000000\n4 474.000000 27 316.000000\n31 158.000000 35 632.000000\n31 790.000000\n20 632.000000 9 158.000000\n20 3...", "YES\n1 385.333333\n1 192.666667 6 192.666667\n3 385.333333\n5 192.666667 2 192.666667\n4 385.333333\n4 192.666667 3 192.666667\n2 385.333333\n6 385.333333\n5 385.333333", "YES\n13 530.571429\n14 176.857143 24 353.714286\n15 530.571429\n2 442.142857 13 88.428571\n6 530.571429\n3 265.285714 10 265.285714\n16 353.714286 19 176.857143\n8 530.571429\n11 530.571429\n21 88.428571 18 442.142857\n19 442.142857 6 88.428571\n23 442.142857 11 88.428571\n24 265.285714 17 265.285714\n17 353.714286 7 176.857143\n22 442.142857 8 88.428571\n23 176.857143 20 353.714286\n9 265.285714 20 265.285714\n21 530.571429\n10 353.714286 2 176.857143\n14 442.142857 15 88.428571\n4 88.428571 7 442.142857\n...", "YES\n22 493.000000 26 431.375000\n6 862.750000 5 61.625000\n27 862.750000 17 61.625000\n8 308.125000 3 616.250000\n9 616.250000 18 308.125000\n13 924.375000\n29 246.500000 19 677.875000\n7 246.500000 8 677.875000\n18 677.875000 21 246.500000\n16 369.750000 30 554.625000\n5 924.375000\n21 739.500000 4 184.875000\n11 431.375000 23 493.000000\n24 924.375000\n10 184.875000 25 739.500000\n28 616.250000 1 308.125000\n28 369.750000 26 554.625000\n20 554.625000 9 369.750000\n24 61.625000 14 862.750000\n14 123.2500...", "YES\n9 163.285714 18 190.500000\n12 163.285714 26 190.500000\n22 217.714286 5 136.071429\n23 272.142857 11 81.642857\n11 299.357143 3 54.428571\n3 326.571429 8 27.214286\n14 27.214286 24 326.571429\n23 108.857143 20 244.928571\n8 353.785714\n2 326.571429 13 27.214286\n7 108.857143 4 244.928571\n10 299.357143 2 54.428571\n18 190.500000 21 163.285714\n21 217.714286 4 136.071429\n19 81.642857 16 272.142857\n7 272.142857 17 81.642857\n15 353.785714\n22 163.285714 26 190.500000\n14 353.785714\n13 353.785714\n12...", "YES\n13 557.250000\n15 557.250000\n19 371.500000 6 185.750000\n13 185.750000 2 371.500000\n16 185.750000 19 371.500000\n10 557.250000\n5 557.250000\n12 557.250000\n9 557.250000\n7 371.500000 4 185.750000\n16 557.250000\n18 371.500000 9 185.750000\n14 371.500000 15 185.750000\n24 185.750000 14 371.500000\n20 185.750000 23 371.500000\n18 371.500000 21 185.750000\n21 557.250000\n7 371.500000 17 185.750000\n10 185.750000 2 371.500000\n11 185.750000 23 371.500000\n24 557.250000\n11 557.250000\n5 185.750000 22 3...", "YES\n13 408.000000\n17 51.000000 24 357.000000\n15 255.000000 14 153.000000\n2 357.000000 13 51.000000\n15 204.000000 6 204.000000\n10 153.000000 3 255.000000\n16 102.000000 19 306.000000\n8 357.000000 22 51.000000\n9 255.000000 20 153.000000\n18 204.000000 9 204.000000\n19 153.000000 6 255.000000\n11 408.000000\n17 408.000000\n7 408.000000\n22 408.000000\n11 51.000000 23 357.000000\n23 102.000000 20 306.000000\n21 153.000000 18 255.000000\n10 306.000000 2 102.000000\n24 102.000000 14 306.000000\n4 357.000...", "YES\n7 183.807692 17 326.769231\n5 183.807692 16 326.769231\n18 122.538462 21 388.038462\n10 469.730769 2 40.846154\n4 367.615385 21 142.961538\n15 265.500000 14 245.076923\n25 81.692308 1 428.884615\n9 428.884615 20 81.692308\n13 20.423077 2 490.153846\n18 408.461538 9 102.115385\n19 306.346154 16 204.230769\n3 20.423077 11 490.153846\n19 224.653846 6 285.923077\n13 510.576923\n25 449.307692 10 61.269231\n8 388.038462 12 122.538462\n5 347.192308 22 163.384615\n3 510.576923\n23 61.269231 20 449.307692\n12 ...", "YES\n15 555.285714 36 299.000000\n21 811.571429 18 42.714286\n6 512.571429 12 341.714286\n30 512.571429 32 341.714286\n29 384.428571 19 469.857143\n15 341.714286 22 512.571429\n7 598.000000 8 256.285714\n38 128.142857 27 726.142857\n9 854.285714\n13 854.285714\n28 256.285714 37 598.000000\n23 768.857143 20 85.428571\n1 683.428571 25 170.857143\n6 384.428571 5 469.857143\n2 811.571429 13 42.714286\n23 128.142857 35 726.142857\n2 85.428571 10 768.857143\n24 256.285714 39 598.000000\n8 640.714286 31 213.57142...", "YES\n13 342.461538\n24 85.615385 17 256.846154\n14 313.923077 15 28.538462\n13 28.538462 2 313.923077\n15 342.461538\n3 256.846154 10 85.615385\n6 28.538462 19 313.923077\n8 199.769231 22 142.692308\n20 285.384615 23 57.076923\n9 256.846154 20 85.615385\n6 342.461538\n21 199.769231 18 142.692308\n17 114.153846 7 228.307692\n7 142.692308 4 199.769231\n5 114.153846 22 228.307692\n11 342.461538\n11 28.538462 23 313.923077\n18 228.307692 9 114.153846\n10 285.384615 2 57.076923\n24 285.384615 14 57.076923\n21 1...", "YES\n17 118.300000 7 33.800000\n6 50.700000 15 101.400000\n15 67.600000 14 84.500000\n8 50.700000 12 101.400000\n18 135.200000 5 16.900000\n10 50.700000 3 101.400000\n10 118.300000 2 33.800000\n7 135.200000 4 16.900000\n16 16.900000 9 135.200000\n2 135.200000 13 16.900000\n9 33.800000 6 118.300000\n16 152.100000\n4 152.100000\n8 118.300000 18 33.800000\n14 84.500000 11 67.600000\n17 50.700000 11 101.400000\n5 152.100000\n1 84.500000 12 67.600000\n1 84.500000 3 67.600000\n13 152.100000", "YES\n13 253.440000\n17 168.960000 7 84.480000\n14 147.840000 24 105.600000\n2 242.880000 13 10.560000\n15 137.280000 14 116.160000\n3 221.760000 10 31.680000\n6 137.280000 19 116.160000\n8 73.920000 22 179.520000\n23 242.880000 11 10.560000\n20 232.320000 23 21.120000\n6 126.720000 15 126.720000\n18 211.200000 9 42.240000\n7 179.520000 4 73.920000\n21 63.360000 4 190.080000\n5 168.960000 22 84.480000\n5 95.040000 16 158.400000\n11 253.440000\n20 31.680000 9 221.760000\n10 232.320000 2 21.120000\n17 95.0400...", "YES\n6 378.857143 15 473.571429\n13 31.571429 2 820.857143\n18 631.428571 9 221.000000\n26 221.000000 22 631.428571\n13 852.428571\n23 726.142857 11 126.285714\n20 694.571429 23 157.857143\n10 789.285714 2 63.142857\n1 726.142857 25 126.285714\n4 568.285714 21 284.142857\n25 757.714286 10 94.714286\n27 347.285714 17 505.142857\n5 599.857143 22 252.571429\n18 252.571429 21 599.857143\n7 852.428571\n8 63.142857 3 789.285714\n14 442.000000 15 410.428571\n19 536.714286 16 315.714286\n3 94.714286 11 757.714286\n...", "YES\n11 395.142857 17 395.142857\n6 790.285714\n15 790.285714\n12 790.285714\n8 131.714286 18 658.571429\n4 790.285714\n10 526.857143 2 263.428571\n17 526.857143 7 263.428571\n16 526.857143 9 263.428571\n2 658.571429 13 131.714286\n9 658.571429 6 131.714286\n5 395.142857 16 395.142857\n4 131.714286 7 658.571429\n8 790.285714\n15 131.714286 14 658.571429\n14 263.428571 11 526.857143\n18 263.428571 5 526.857143\n12 131.714286 1 658.571429\n3 526.857143 1 263.428571\n13 790.285714\n3 395.142857 10 395.142857\n...", "YES\n16 203.157895 19 548.526316\n35 284.421053 23 467.263158\n27 426.631579 34 325.052632\n11 60.947368 36 690.736842\n28 121.894737 37 629.789474\n5 609.473684 3 142.210526\n26 751.684211\n9 345.368421 18 406.315789\n10 60.947368 25 690.736842\n19 223.473684 29 528.210526\n4 406.315789 27 345.368421\n7 223.473684 8 528.210526\n23 304.736842 20 446.947368\n24 467.263158 14 284.421053\n26 20.315789 17 731.368421\n6 182.842105 12 568.842105\n3 629.789474 22 121.894737\n18 365.684211 21 386.000000\n5 162.526...", "YES\n17 122.000000 24 366.000000\n13 488.000000\n9 122.000000 20 366.000000\n29 488.000000\n30 488.000000\n19 244.000000 16 244.000000\n7 366.000000 12 122.000000\n24 244.000000 14 244.000000\n22 488.000000\n31 488.000000\n6 488.000000\n27 488.000000\n3 244.000000 5 244.000000\n1 488.000000\n7 244.000000 8 244.000000\n9 488.000000\n28 244.000000 26 244.000000\n26 366.000000 32 122.000000\n2 366.000000 13 122.000000\n15 488.000000\n15 122.000000 14 366.000000\n21 366.000000 18 122.000000\n25 122.000000 10 3...", "YES\n13 33.521739 2 703.956522\n7 569.869565 4 167.608696\n14 301.695652 15 435.782609\n6 402.260870 15 335.217391\n8 234.652174 22 502.826087\n5 301.695652 16 435.782609\n6 368.739130 19 368.739130\n9 703.956522 20 33.521739\n17 234.652174 11 502.826087\n11 268.173913 14 469.304348\n3 134.086957 1 603.391304\n4 603.391304 21 134.086957\n13 737.478261\n16 335.217391 19 402.260870\n21 636.913043 18 100.565217\n22 268.173913 5 469.304348\n12 201.130435 8 536.347826\n9 67.043478 18 670.434783\n10 670.434783 2...", "YES\n13 66.000000 2 660.000000\n7 396.000000 17 330.000000\n6 66.000000 15 660.000000\n6 726.000000\n8 462.000000 22 264.000000\n5 594.000000 16 132.000000\n19 726.000000\n9 132.000000 18 594.000000\n14 198.000000 11 528.000000\n14 594.000000 15 132.000000\n1 462.000000 3 264.000000\n7 396.000000 4 330.000000\n13 726.000000\n16 660.000000 19 66.000000\n4 462.000000 21 264.000000\n22 528.000000 5 198.000000\n12 396.000000 8 330.000000\n21 528.000000 18 198.000000\n10 594.000000 2 132.000000\n20 66.000000 9 ...", "YES\n5 16.666667 6 66.666667\n27 66.666667 34 16.666667\n31 83.333333\n14 66.666667 17 16.666667\n16 83.333333\n6 33.333333 12 50.000000\n35 33.333333 23 50.000000\n24 83.333333\n38 50.000000 21 33.333333\n4 50.000000 26 33.333333\n28 83.333333\n18 83.333333\n25 66.666667 1 16.666667\n8 83.333333\n13 16.666667 2 66.666667\n9 83.333333\n10 50.000000 2 33.333333\n33 50.000000 29 33.333333\n23 50.000000 20 33.333333\n27 33.333333 38 50.000000\n11 83.333333\n40 83.333333\n9 16.666667 20 66.666667\n7 33.333333 ...", "YES\n28 375.750000 37 62.625000\n25 250.500000 10 187.875000\n24 438.375000\n34 375.750000 24 62.625000\n26 125.250000 4 313.125000\n16 313.125000 30 125.250000\n19 250.500000 29 187.875000\n37 438.375000\n31 250.500000 8 187.875000\n28 125.250000 1 313.125000\n3 313.125000 5 125.250000\n12 62.625000 7 375.750000\n33 375.750000 41 62.625000\n20 438.375000\n3 187.875000 22 250.500000\n29 313.125000 33 125.250000\n32 438.375000\n15 313.125000 36 125.250000\n17 313.125000 39 125.250000\n1 187.875000 25 250.50...", "YES\n3 53.846154 22 38.461538\n4 53.846154 27 38.461538\n30 30.769231 32 61.538462\n18 38.461538 21 53.846154\n15 69.230769 36 23.076923\n8 15.384615 7 76.923077\n20 23.076923 9 69.230769\n16 76.923077 19 15.384615\n33 7.692308 14 84.615385\n6 61.538462 12 30.769231\n26 46.153846 28 46.153846\n8 84.615385 31 7.692308\n12 69.230769 7 23.076923\n34 69.230769 24 23.076923\n15 30.769231 22 61.538462\n13 7.692308 2 84.615385\n10 76.923077 2 15.384615\n17 92.307692\n13 92.307692\n29 7.692308 19 84.615385\n30 69....", "YES\n28 146.571429\n25 73.285714 10 73.285714\n24 97.714286 41 48.857143\n24 73.285714 34 73.285714\n26 146.571429\n16 73.285714 30 73.285714\n19 122.142857 29 24.428571\n37 146.571429\n31 146.571429\n1 122.142857 28 24.428571\n5 146.571429\n7 97.714286 8 48.857143\n33 146.571429\n20 73.285714 9 73.285714\n3 146.571429\n38 146.571429\n32 122.142857 37 24.428571\n22 48.857143 15 97.714286\n14 73.285714 17 73.285714\n25 97.714286 1 48.857143\n2 48.857143 10 97.714286\n3 24.428571 22 122.142857\n4 122.142857 ...", "YES\n17 30.000000 14 40.000000 11 100.000000\n4 100.000000 8 20.000000 5 50.000000\n17 70.000000 7 100.000000\n9 20.000000 16 100.000000 5 50.000000\n3 40.000000 10 100.000000 2 30.000000\n12 90.000000 8 80.000000\n15 100.000000 6 10.000000 14 60.000000\n3 60.000000 12 10.000000 1 100.000000\n2 70.000000 13 100.000000\n9 80.000000 6 90.000000", "NO"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
e01e94d3d663c0ea8272b045a34e994b
Post Lamps
Adilbek's house is located on a street which can be represented as the OX axis. This street is really dark, so Adilbek wants to install some post lamps to illuminate it. Street has $n$ positions to install lamps, they correspond to the integer numbers from $0$ to $n - 1$ on the OX axis. However, some positions are blocked and no post lamp can be placed there. There are post lamps of different types which differ only by their power. When placed in position $x$, post lamp of power $l$ illuminates the segment $[x; x + l]$. The power of each post lamp is always a positive integer number. The post lamp shop provides an infinite amount of lamps of each type from power $1$ to power $k$. Though each customer is only allowed to order post lamps of exactly one type. Post lamps of power $l$ cost $a_l$ each. What is the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment $[0; n]$ of the street? If some lamps illuminate any other segment of the street, Adilbek does not care, so, for example, he may place a lamp of power $3$ in position $n - 1$ (even though its illumination zone doesn't completely belong to segment $[0; n]$). The first line contains three integer numbers $n$, $m$ and $k$ ($1 \le k \le n \le 10^6$, $0 \le m \le n$) — the length of the segment of the street Adilbek wants to illuminate, the number of the blocked positions and the maximum power of the post lamp available. The second line contains $m$ integer numbers $s_1, s_2, \dots, s_m$ ($0 \le s_1 &lt; s_2 &lt; \dots s_m &lt; n$) — the blocked positions. The third line contains $k$ integer numbers $a_1, a_2, \dots, a_k$ ($1 \le a_i \le 10^6$) — the costs of the post lamps. Print the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment $[0; n]$ of the street. If illumintaing the entire segment $[0; n]$ is impossible, print -1. Sample Input 6 2 3 1 3 1 2 3 4 3 4 1 2 3 1 10 100 1000 5 1 5 0 3 3 3 3 3 7 4 3 2 4 5 6 3 14 15 Sample Output 6 1000 -1 -1
{"inputs": ["6 2 3\n1 3\n1 2 3", "4 3 4\n1 2 3\n1 10 100 1000", "5 1 5\n0\n3 3 3 3 3", "7 4 3\n2 4 5 6\n3 14 15", "1 0 1\n\n1000000", "1 1 1\n0\n1000", "3 2 3\n1 2\n1 1 1000000", "3 0 3\n\n333 500 1001", "3 0 3\n\n334 500 1001", "6 2 3\n2 3\n1 1 3", "9 4 3\n3 4 7 8\n1 1 1", "11 4 6\n3 4 5 6\n1000000 1000000 1000000 1000000 1000000 1", "1000000 0 1\n\n999999", "1000000 0 1\n\n1000000", "2 1 2\n1\n1 2", "2 1 1\n1\n1", "4 1 3\n3\n3 2 9", "3 1 2\n1\n8 61", "20 2 10\n9 16\n109 58 165 715 341 620 574 732 653 675", "4 0 4\n\n1 4 4 3", "20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 3 2 2 1 3 3 3 3 2", "10 3 2\n2 3 8\n2 4", "4 1 3\n3\n838 185 210", "3 1 2\n2\n1 1", "3 1 1\n2\n1"], "outputs": ["6", "1000", "-1", "-1", "1000000", "-1", "1000000", "999", "1000", "9", "4", "3", "999999000000", "1000000000000", "2", "-1", "4", "122", "638", "3", "3", "-1", "370", "2", "-1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
e0304ed0a9986c1e8d9720575bb720bb
Alena's Schedule
Alena has successfully passed the entrance exams to the university and is now looking forward to start studying. One two-hour lesson at the Russian university is traditionally called a pair, it lasts for two academic hours (an academic hour is equal to 45 minutes). The University works in such a way that every day it holds exactly *n* lessons. Depending on the schedule of a particular group of students, on a given day, some pairs may actually contain classes, but some may be empty (such pairs are called breaks). The official website of the university has already published the schedule for tomorrow for Alena's group. Thus, for each of the *n* pairs she knows if there will be a class at that time or not. Alena's House is far from the university, so if there are breaks, she doesn't always go home. Alena has time to go home only if the break consists of at least two free pairs in a row, otherwise she waits for the next pair at the university. Of course, Alena does not want to be sleepy during pairs, so she will sleep as long as possible, and will only come to the first pair that is presented in her schedule. Similarly, if there are no more pairs, then Alena immediately goes home. Alena appreciates the time spent at home, so she always goes home when it is possible, and returns to the university only at the beginning of the next pair. Help Alena determine for how many pairs she will stay at the university. Note that during some pairs Alena may be at the university waiting for the upcoming pair. The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of lessons at the university. The second line contains *n* numbers *a**i* (0<=≤<=*a**i*<=≤<=1). Number *a**i* equals 0, if Alena doesn't have the *i*-th pairs, otherwise it is equal to 1. Numbers *a*1,<=*a*2,<=...,<=*a**n* are separated by spaces. Print a single number — the number of pairs during which Alena stays at the university. Sample Input 5 0 1 0 1 1 7 1 0 1 0 0 1 0 1 0 Sample Output 4 4 0
{"inputs": ["5\n0 1 0 1 1", "7\n1 0 1 0 0 1 0", "1\n0", "1\n1", "2\n0 0", "2\n0 1", "2\n1 0", "2\n1 1", "10\n0 0 0 0 0 0 0 0 0 0", "9\n1 1 1 1 1 1 1 1 1", "11\n0 0 0 0 0 0 0 0 0 0 1", "12\n1 0 0 0 0 0 0 0 0 0 0 0", "20\n1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0", "41\n1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1", "63\n1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0", "80\n0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1", "99\n1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1", "100\n0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0", "11\n0 1 1 0 0 0 0 0 0 0 0", "11\n0 1 0 1 0 0 1 1 0 1 1", "11\n1 0 1 0 1 1 0 1 1 1 0", "11\n1 0 0 0 0 0 1 0 1 1 1", "22\n0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0", "22\n0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1", "22\n1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0", "22\n1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1", "33\n0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0", "33\n0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1", "33\n1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0", "33\n1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1", "44\n0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0", "44\n0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1", "44\n1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0", "44\n1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1", "55\n0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0", "55\n0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1", "55\n1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0", "55\n1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1", "66\n0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0", "66\n0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1", "66\n1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0", "66\n1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1", "77\n0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0", "77\n0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1", "77\n1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0", "77\n1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1", "88\n0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0", "88\n0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1", "88\n1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0", "88\n1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1", "99\n0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0", "99\n0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1", "99\n1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0", "99\n1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1", "90\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "95\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "95\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"], "outputs": ["4", "4", "0", "1", "0", "1", "1", "2", "0", "9", "1", "1", "16", "28", "39", "52", "72", "65", "2", "8", "10", "6", "7", "16", "11", "14", "26", "27", "25", "24", "19", "32", "23", "32", "23", "39", "32", "36", "41", "42", "46", "46", "47", "44", "45", "51", "44", "59", "53", "63", "56", "58", "65", "77", "0", "90", "0", "95", "0", "100"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
171
codeforces
e032edaee261e97dbb910310c3e107a9
Ternary Logic
Little Petya very much likes computers. Recently he has received a new "Ternatron IV" as a gift from his mother. Unlike other modern computers, "Ternatron IV" operates with ternary and not binary logic. Petya immediately wondered how the *xor* operation is performed on this computer (and whether there is anything like it). It turned out that the operation does exist (however, it is called *tor*) and it works like this. Suppose that we need to calculate the value of the expression *a* *tor* *b*. Both numbers *a* and *b* are written in the ternary notation one under the other one (*b* under *a*). If they have a different number of digits, then leading zeroes are added to the shorter number until the lengths are the same. Then the numbers are summed together digit by digit. The result of summing each two digits is calculated modulo 3. Note that there is no carry between digits (i. e. during this operation the digits aren't transferred). For example: 1410 *tor* 5010<==<=01123 *tor* 12123<==<=10213<==<=3410. Petya wrote numbers *a* and *c* on a piece of paper. Help him find such number *b*, that *a* *tor* *b*<==<=*c*. If there are several such numbers, print the smallest one. The first line contains two integers *a* and *c* (0<=≤<=*a*,<=*c*<=≤<=109). Both numbers are written in decimal notation. Print the single integer *b*, such that *a* *tor* *b*<==<=*c*. If there are several possible numbers *b*, print the smallest one. You should print the number in decimal notation. Sample Input 14 34 50 34 387420489 225159023 5 5 Sample Output 50 14 1000000001 0
{"inputs": ["14 34", "50 34", "387420489 225159023", "5 5", "23476 23875625", "11111 10101010", "1 23865354", "0 0", "2376234 0", "1 0", "581130733 0", "581131733 1", "0 1000000000", "1000000000 0", "1000000000 100000000", "956747697 9487", "229485033 8860", "5341 813849430", "227927516 956217829", "390 380875228", "336391083 911759145", "154618752 504073566", "6436017 645491133", "4232 755480607", "19079106 69880743", "460318555 440850074", "227651149 379776728", "621847819 8794", "827112516 566664600", "460311350 820538776", "276659168 241268656", "9925 9952", "830218526 438129941", "630005197 848951646", "123256190 174927955", "937475611 769913258", "561666539 29904379", "551731805 8515539", "6560 96330685", "337894292 55", "479225038 396637601", "111174087 482024380", "785233275 1523", "47229813 6200", "264662333 6952", "523162963 922976263", "6347 7416", "278014879 3453211", "991084922 66", "929361351 7373", "532643581 213098335", "69272798 718909239", "440760623 316634331", "9001 9662", "417584836 896784933", "640735701 335933492", "5440 6647", "3545 6259", "847932562 1405", "359103580 852", "406369748 625641695", "345157805 719310676", "9150 823789822", "8727 702561605", "931392186 677650263", "976954722 548418041", "168971531 697371009", "5849 7211", "934045591 4156", "427471963 436868749", "702754885 762686553", "897312963 177161062", "268520356 1999", "635318406 289972012", "237819544 904440360", "44788825 4485", "7376 994270908", "893244884 654169485", "960725158 342144655", "460645829 46697832", "8389 172682371", "294567098 631452590", "5573 8790", "285938679 907528096", "774578699 101087409", "153749013 598457896", "364059865 346004232", "237924125 573400957", "987310001 827978268", "922263603 387506683", "5712 384487208", "9099 3208", "948688087 38251290", "260153932 138945442", "497129325 766959165", "783390583 7679", "657244587 28654748", "455705795 757666961", "815932189 211656771", "511307975 307916669", "274842194 1000000000"], "outputs": ["50", "14", "1000000001", "0", "23860906", "10116146", "23865356", "0", "4732515", "2", "1162261466", "1162260467", "1000000000", "693711461", "650219958", "736688812", "308580772", "813850920", "872370713", "380874919", "1135529718", "753527130", "639142839", "755485882", "56293527", "25179124", "168088492", "1114556841", "908742057", "404875070", "358409486", "27", "784719357", "754665575", "243699845", "994719535", "1152454076", "1049769112", "96330968", "243175169", "47143216", "430083082", "393767834", "89081162", "141903557", "414184806", "10549", "171855414", "690049933", "679915097", "842718489", "668771236", "1052493562", "1390", "481392203", "992169746", "10711", "3536", "488901051", "201115550", "221459919", "504894191", "823781437", "702556127", "923604336", "862925051", "588009082", "10146", "661009836", "67345761", "81198815", "620860447", "135088146", "950864476", "857959352", "89397617", "994283218", "1095395095", "548529624", "792961330", "172696203", "745235571", "13021", "1068058915", "940495066", "444892699", "40934348", "507664538", "275919178", "1064907553", "384482225", "14035", "768385433", "271056231", "276817557", "399664540", "921153434", "303798597", "562850021", "1137612240", "1162261466"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
e0332eac78721837186baef3409b2d7d
Vile Grasshoppers
The weather is fine today and hence it's high time to climb the nearby pine and enjoy the landscape. The pine's trunk includes several branches, located one above another and numbered from 2 to *y*. Some of them (more precise, from 2 to *p*) are occupied by tiny vile grasshoppers which you're at war with. These grasshoppers are known for their awesome jumping skills: the grasshopper at branch *x* can jump to branches . Keeping this in mind, you wisely decided to choose such a branch that none of the grasshoppers could interrupt you. At the same time you wanna settle as high as possible since the view from up there is simply breathtaking. In other words, your goal is to find the highest branch that cannot be reached by any of the grasshoppers or report that it's impossible. The only line contains two integers *p* and *y* (2<=≤<=*p*<=≤<=*y*<=≤<=109). Output the number of the highest suitable branch. If there are none, print -1 instead. Sample Input 3 6 3 4 Sample Output 5 -1
{"inputs": ["3 6", "3 4", "2 2", "5 50", "944192806 944193066", "1000000000 1000000000", "2 1000000000", "28788 944193066", "49 52", "698964997 734575900", "287894773 723316271", "171837140 733094070", "37839169 350746807", "125764821 234689174", "413598841 430509920", "145320418 592508508", "155098216 476450875", "459843315 950327842", "469621113 834270209", "13179877 557546766", "541748242 723508350", "607450717 924641194", "786360384 934418993", "649229491 965270051", "144179719 953974590", "28122086 963752388", "268497487 501999053", "356423140 385941420", "71233638 269883787", "2601 698964997", "4096 287894773", "5675 171837140", "13067 350746807", "8699 234689174", "12190 413598841", "20555 592508508", "19137 476450875", "8793 950327842", "1541 834270209", "1082 13179877", "3888 723508350", "14078 607450717", "20869 786360384", "13689 965270051", "782 144179719", "404 28122086", "21992 501999053", "13745 385941420", "8711 269883787", "31333 981756889", "944192808 944193061", "3 9", "4 5", "2 13", "7 53", "10 1000000000", "2 7", "4 9"], "outputs": ["5", "-1", "-1", "49", "944192807", "-1", "999999999", "944192833", "-1", "734575871", "723316207", "733094069", "350746727", "234689137", "430509917", "592508479", "476450861", "950327831", "834270209", "557546753", "723508301", "924641189", "934418981", "965270051", "953974583", "963752347", "501999053", "385941419", "269883787", "698964983", "287894771", "171837131", "350746727", "234689137", "413598817", "592508479", "476450861", "950327831", "834270209", "13179871", "723508301", "607450703", "786360373", "965270051", "144179719", "28122079", "501999053", "385941419", "269883787", "981756871", "-1", "7", "5", "13", "53", "999999997", "7", "7"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
41
codeforces
e047d6f8c864250517f98173e0289925
Prairie Partition
It can be shown that any positive integer *x* can be uniquely represented as *x*<==<=1<=+<=2<=+<=4<=+<=...<=+<=2*k*<=-<=1<=+<=*r*, where *k* and *r* are integers, *k*<=≥<=0, 0<=&lt;<=*r*<=≤<=2*k*. Let's call that representation prairie partition of *x*. For example, the prairie partitions of 12, 17, 7 and 1 are: 17<==<=1<=+<=2<=+<=4<=+<=8<=+<=2, 7<==<=1<=+<=2<=+<=4, 1<==<=1. Alice took a sequence of positive integers (possibly with repeating elements), replaced every element with the sequence of summands in its prairie partition, arranged the resulting numbers in non-decreasing order and gave them to Borys. Now Borys wonders how many elements Alice's original sequence could contain. Find all possible options! The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of numbers given from Alice to Borys. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1012; *a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*) — the numbers given from Alice to Borys. Output, in increasing order, all possible values of *m* such that there exists a sequence of positive integers of length *m* such that if you replace every element with the summands in its prairie partition and arrange the resulting numbers in non-decreasing order, you will get the sequence given in the input. If there are no such values of *m*, output a single integer -1. Sample Input 8 1 1 2 2 3 4 5 8 6 1 1 1 2 2 2 5 1 2 4 4 4 Sample Output 2 2 3 -1
{"inputs": ["8\n1 1 2 2 3 4 5 8", "6\n1 1 1 2 2 2", "5\n1 2 4 4 4", "20\n1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8 8 10 10 11", "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2", "25\n1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8 13 15 16 16 31 32 36 41 55", "25\n1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 9 16 16 32 40 43 53 61 64 128", "45\n1 1 1 1 1 2 2 2 2 2 2 2 4 4 4 4 4 4 8 8 8 8 8 8 16 16 16 16 16 32 32 32 32 32 41 64 64 64 64 128 128 128 256 256 512", "100\n1 1 1 1 1 1 1 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 8 8 8 8 8 8 8 10 16 16 16 16 16 16 16 17 22 24 24 30 32 32 32 32 32 32 48 62 64 64 65 65 67 70 74 88 89 98 99 101 101 109 121 127 128 128 137 143 152 153 155 156 160 161 170 183 186 196 196 214 220 226 228 230 238 240 241 245 249 249 250 253 254 256 256 512 1024 1703", "101\n1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 7 8 8 8 8 8 8 8 8 8 8 8 16 16 16 16 16 16 16 16 16 16 16 32 32 32 32 32 32 32 32 32 32 64 64 64 64 64 64 64 64 64 128 128 128 128 128 128 128 128 239 256 256 256 256 256 373 512 512 512 512 695 1024 1024 1024", "101\n1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 16 16 16 16 16 16 16 16 16 16 16 16 26 32 32 32 32 32 32 32 32 49 58 64 64 64 64 64 64 122 128 128 128 128 128 128 256 256 256 256 256 491 512 512 512 512 718 1024 1024 1024 2935 3123", "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 8 8 8 8 8 8 8 8 11 13 14", "1\n1", "2\n1 2", "2\n1 1", "1\n2", "1\n1000000000000", "2\n1 1000000000000", "40\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888", "41\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1000000000000", "41\n1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888", "96\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 9 12 12 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 21"], "outputs": ["2 ", "2 3 ", "-1", "4 ", "9 10 11 12 13 14 15 16 17 ", "-1", "-1", "5 ", "-1", "11 12 ", "-1", "27 28 29 30 31 32 33 34 35 36 37 38 ", "1 ", "1 ", "1 2 ", "-1", "-1", "-1", "1 ", "1 ", "1 2 ", "-1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
4
codeforces
e06260a867da74744d2211c1c54a8ad6
Barcode
You've got an *n*<=×<=*m* pixel picture. Each pixel can be white or black. Your task is to change the colors of as few pixels as possible to obtain a barcode picture. A picture is a barcode if the following conditions are fulfilled: - All pixels in each column are of the same color. - The width of each monochrome vertical line is at least *x* and at most *y* pixels. In other words, if we group all neighbouring columns of the pixels with equal color, the size of each group can not be less than *x* or greater than *y*. The first line contains four space-separated integers *n*, *m*, *x* and *y* (1<=≤<=*n*,<=*m*,<=*x*,<=*y*<=≤<=1000; *x*<=≤<=*y*). Then follow *n* lines, describing the original image. Each of these lines contains exactly *m* characters. Character "." represents a white pixel and "#" represents a black pixel. The picture description doesn't have any other characters besides "." and "#". In the first line print the minimum number of pixels to repaint. It is guaranteed that the answer exists. Sample Input 6 5 1 2 ##.#. .###. ###.. #...# .##.# ###.. 2 5 1 1 ##### ..... Sample Output 11 5
{"inputs": ["6 5 1 2\n##.#.\n.###.\n###..\n#...#\n.##.#\n###..", "10 5 3 7\n.####\n###..\n##.##\n#..#.\n.#...\n#.##.\n.##..\n.#.##\n#.#..\n.#..#", "6 3 1 4\n##.\n#..\n#..\n..#\n.#.\n#.#", "5 10 4 16\n.#####....\n##..#..##.\n.#..##.#..\n##..#####.\n...#.##..#", "5 4 1 4\n####\n..##\n##..\n..#.\n#..#", "1 1 1 2\n.", "3 44 2 18\n####..###.#.##........##...###.####.#.....##\n...#....##.###.###.##.#####.#######.#..#..#.\n#...#.####.#.##.#.#.#.....##.##..###.#....##", "69 1 1 2\n#\n.\n#\n#\n.\n#\n#\n.\n.\n#\n.\n.\n#\n.\n#\n#\n.\n#\n#\n#\n#\n#\n.\n#\n.\n.\n#\n#\n#\n.\n.\n.\n.\n#\n#\n.\n#\n#\n.\n#\n.\n.\n#\n.\n.\n.\n#\n.\n.\n#\n#\n.\n.\n#\n.\n.\n.\n#\n#\n#\n#\n#\n.\n#\n.\n#\n#\n#\n#", "56 2 2 2\n##\n##\n##\n..\n..\n##\n.#\n#.\n..\n##\n##\n..\n..\n#.\n#.\n#.\n#.\n##\n..\n.#\n..\n##\n##\n.#\n#.\n.#\n..\n..\n#.\n..\n##\n..\n#.\n.#\n#.\n#.\n#.\n##\n#.\n##\n##\n.#\n#.\n##\n..\n.#\n#.\n#.\n##\n..\n..\n#.\n##\n..\n..\n##"], "outputs": ["11", "24", "6", "21", "8", "0", "39", "31", "55"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
31
codeforces
e066aeeb5f5b265ec4c40aa35e1d99b3
Easy Tape Programming
There is a programming language in which every program is a non-empty sequence of "&lt;" and "&gt;" signs and digits. Let's explain how the interpreter of this programming language works. A program is interpreted using movement of instruction pointer (IP) which consists of two parts. - Current character pointer (CP); - Direction pointer (DP) which can point left or right; Initially CP points to the leftmost character of the sequence and DP points to the right. We repeat the following steps until the first moment that CP points to somewhere outside the sequence. - If CP is pointing to a digit the interpreter prints that digit then CP moves one step according to the direction of DP. After that the value of the printed digit in the sequence decreases by one. If the printed digit was 0 then it cannot be decreased therefore it's erased from the sequence and the length of the sequence decreases by one. - If CP is pointing to "&lt;" or "&gt;" then the direction of DP changes to "left" or "right" correspondingly. Then CP moves one step according to DP. If the new character that CP is pointing to is "&lt;" or "&gt;" then the previous character will be erased from the sequence. If at any moment the CP goes outside of the sequence the execution is terminated. It's obvious the every program in this language terminates after some steps. We have a sequence *s*1,<=*s*2,<=...,<=*s**n* of "&lt;", "&gt;" and digits. You should answer *q* queries. Each query gives you *l* and *r* and asks how many of each digit will be printed if we run the sequence *s**l*,<=*s**l*<=+<=1,<=...,<=*s**r* as an independent program in this language. The first line of input contains two integers *n* and *q* (1<=≤<=*n*,<=*q*<=≤<=100) — represents the length of the sequence *s* and the number of queries. The second line contains *s*, a sequence of "&lt;", "&gt;" and digits (0..9) written from left to right. Note, that the characters of *s* are not separated with spaces. The next *q* lines each contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the *i*-th query. For each query print 10 space separated integers: *x*0,<=*x*1,<=...,<=*x*9 where *x**i* equals the number of times the interpreter prints *i* while running the corresponding program. Print answers to the queries in the order they are given in input. Sample Input 7 4 1&gt;3&gt;22&lt; 1 3 4 7 7 7 1 7 Sample Output 0 1 0 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 1 0 0 0 0 0 0
{"inputs": ["7 4\n1>3>22<\n1 3\n4 7\n7 7\n1 7", "5 2\n>>>>>\n1 5\n1 2", "1 3\n9\n1 1\n1 1\n1 1", "7 1\n0101010\n1 7", "10 30\n306<<>4>04\n2 2\n6 6\n1 10\n1 8\n2 4\n9 10\n2 8\n3 5\n7 7\n2 6\n1 3\n3 7\n4 9\n3 10\n5 9\n7 10\n1 3\n5 7\n4 10\n6 10\n6 7\n4 5\n3 4\n4 6\n4 7\n7 9\n4 6\n2 8\n1 5\n2 6", "17 21\n187<9>82<818<4229\n8 14\n4 10\n11 17\n8 8\n4 12\n6 6\n5 12\n10 12\n15 16\n7 7\n3 8\n4 8\n8 9\n8 10\n5 7\n1 7\n11 12\n3 6\n6 11\n8 16\n6 9", "21 33\n007317842806111438>67\n2 11\n3 21\n3 12\n5 8\n14 14\n10 14\n9 17\n7 17\n1 12\n12 18\n3 10\n2 20\n5 5\n10 13\n14 20\n2 19\n1 13\n6 11\n6 9\n8 13\n16 16\n1 15\n18 20\n12 12\n7 20\n3 11\n13 21\n3 11\n12 13\n8 15\n13 17\n5 5\n2 16", "1 5\n<\n1 1\n1 1\n1 1\n1 1\n1 1", "1 2\n>\n1 1\n1 1", "1 1\n0\n1 1", "3 10\n<<<\n2 3\n3 3\n2 3\n3 3\n1 3\n1 1\n1 2\n3 3\n1 1\n2 2", "1 100\n3\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "2 100\n44\n1 2\n2 2\n2 2\n1 2\n1 1\n2 2\n2 2\n1 2\n1 1\n1 1\n1 2\n1 1\n1 2\n1 1\n2 2\n1 1\n1 2\n2 2\n1 2\n1 2\n2 2\n2 2\n1 2\n1 1\n1 1\n1 2\n1 1\n2 2\n1 2\n1 2\n2 2\n1 2\n1 2\n2 2\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n2 2\n1 2\n1 1\n1 2\n1 2\n2 2\n1 1\n2 2\n1 2\n1 1\n2 2\n1 1\n1 2\n2 2\n1 2\n1 1\n1 1\n1 2\n2 2\n1 2\n1 2\n1 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 2\n1 1\n1 2\n2 2\n1 2\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 1\n1 2\n1 1\n1 1\n1 1\n2 2\n1 1\n2 2\n2 2\n1 2\n1 1\n2 2\n1 1\n1 1\n1 2\n1 2\n2 2\n1 2\n2 2\n1 2\n1 2\n1 2", "5 1\n1>3><\n4 5", "4 1\n217<\n1 4", "4 1\n34><\n1 4"], "outputs": ["0 1 0 1 0 0 0 0 0 0 \n2 2 2 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n2 3 2 1 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 0 1 \n0 0 0 0 0 0 0 0 0 1 \n0 0 0 0 0 0 0 0 0 1 ", "4 3 0 0 0 0 0 0 0 0 ", "1 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n1 0 1 1 0 1 1 0 0 0 \n1 0 1 1 0 1 1 0 0 0 \n1 0 0 0 0 1 1 0 0 0 \n1 0 0 0 1 0 0 0 0 0 \n1 0 0 0 0 1 1 0 0 0 \n0 0 0 0 0 1 1 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n1 0 0 0 0 1 1 0 0 0 \n1 0 0 1 0 0 1 0 0 0 \n0 0 0 0 0 1 1 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 1 1 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 2 0 0 0 0 0 \n1 0 0 1 0 0 1 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 1 1 0 0 0 \n0 0 0...", "0 1 1 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n1 1 0 0 0 0 0 1 1 0 \n0 0 1 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n2 3 2 1 1 1 1 1 3 1 \n0 1 0 0 0 0 0 0 2 0 \n0 0 2 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 1 0 \n0 0 0 0 0 0 1 1 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 1 1 0 0 0 0 0 0 0 \n0 1 1 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 1 1 \n1 1 0 0 0 0 1 2 1 0 \n0 1 0 0 0 0 0 0 1 0 \n0 0 0 0 0 0 1 1 0 0 \n2 3 2 1 1 1 1 1 2 0 \n0 1 1 0 0 0 0 0 0 0 \n2 2 2 1 1 1 1 1 1 0 ", "2 1 1 1 1 0 0 2 2 0 \n1 4 1 2 2 0 2 3 3 0 \n1 1 1 1 1 0 1 2 2 0 \n0 1 0 0 1 0 0 1 1 0 \n0 1 0 0 0 0 0 0 0 0 \n1 2 0 0 0 0 1 0 1 0 \n1 3 1 1 1 0 1 0 1 0 \n1 3 1 1 2 0 1 0 2 0 \n3 1 1 1 1 0 1 2 2 0 \n0 3 0 1 1 0 1 0 1 0 \n0 1 1 1 1 0 0 2 2 0 \n2 4 1 2 2 0 2 2 3 0 \n0 1 0 0 0 0 0 0 0 0 \n1 1 0 0 0 0 1 0 1 0 \n0 2 0 1 1 0 1 0 1 0 \n2 4 1 2 2 0 1 2 3 0 \n3 2 1 1 1 0 1 2 2 0 \n1 0 1 0 1 0 0 1 2 0 \n0 0 1 0 1 0 0 1 1 0 \n1 1 1 0 1 0 1 0 1 0 \n0 0 0 0 1 0 0 0 0 0 \n3 4 1 1 1 0 1 2 2 0 \n0 0 0 0 0 0 1 0 1 0 \n0 0 0...", "0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 ", "1 0 0 0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 ", "0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0 1 0 0 0 0 0 0 \n0 0 0...", "0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 1 0 0 0 0 0 \n0 0 0 0 2 0 0 0 0 0 \n0 0 0...", "0 0 0 0 0 0 0 0 0 0 ", "1 2 1 0 0 0 1 1 0 0 ", "0 0 1 2 1 0 0 0 0 0 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
5
codeforces
e070fa09a730ded5af470dfb1b5ddf32
Almost Identity Permutations
A permutation *p* of size *n* is an array such that every integer from 1 to *n* occurs exactly once in this array. Let's call a permutation an almost identity permutation iff there exist at least *n*<=-<=*k* indices *i* (1<=≤<=*i*<=≤<=*n*) such that *p**i*<==<=*i*. Your task is to count the number of almost identity permutations for given numbers *n* and *k*. The first line contains two integers *n* and *k* (4<=≤<=*n*<=≤<=1000, 1<=≤<=*k*<=≤<=4). Print the number of almost identity permutations for given *n* and *k*. Sample Input 4 1 4 2 5 3 5 4 Sample Output 1 7 31 76
{"inputs": ["4 1", "4 2", "5 3", "5 4", "200 1", "200 2", "200 3", "200 4", "400 1", "400 2", "400 3", "400 4", "600 1", "600 2", "600 3", "600 4", "800 1", "800 2", "800 3", "800 4", "1000 1", "1000 2", "1000 3", "1000 4", "4 4"], "outputs": ["1", "7", "31", "76", "1", "19901", "2646701", "584811251", "1", "79801", "21253401", "9477912501", "1", "179701", "71820101", "48187303751", "1", "319601", "170346801", "152620985001", "1", "499501", "332833501", "373086956251", "24"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
118
codeforces
e081729c9849ecde07bd53798955d477
Lorry
A group of tourists is going to kayak and catamaran tour. A rented lorry has arrived to the boat depot to take kayaks and catamarans to the point of departure. It's known that all kayaks are of the same size (and each of them occupies the space of 1 cubic metre), and all catamarans are of the same size, but two times bigger than kayaks (and occupy the space of 2 cubic metres). Each waterborne vehicle has a particular carrying capacity, and it should be noted that waterborne vehicles that look the same can have different carrying capacities. Knowing the truck body volume and the list of waterborne vehicles in the boat depot (for each one its type and carrying capacity are known), find out such set of vehicles that can be taken in the lorry, and that has the maximum total carrying capacity. The truck body volume of the lorry can be used effectively, that is to say you can always put into the lorry a waterborne vehicle that occupies the space not exceeding the free space left in the truck body. The first line contains a pair of integer numbers *n* and *v* (1<=≤<=*n*<=≤<=105; 1<=≤<=*v*<=≤<=109), where *n* is the number of waterborne vehicles in the boat depot, and *v* is the truck body volume of the lorry in cubic metres. The following *n* lines contain the information about the waterborne vehicles, that is a pair of numbers *t**i*,<=*p**i* (1<=≤<=*t**i*<=≤<=2; 1<=≤<=*p**i*<=≤<=104), where *t**i* is the vehicle type (1 – a kayak, 2 – a catamaran), and *p**i* is its carrying capacity. The waterborne vehicles are enumerated in order of their appearance in the input file. In the first line print the maximum possible carrying capacity of the set. In the second line print a string consisting of the numbers of the vehicles that make the optimal set. If the answer is not unique, print any of them. Sample Input 3 2 1 2 2 7 1 3 Sample Output 7 2
{"inputs": ["3 2\n1 2\n2 7\n1 3", "5 3\n1 9\n2 9\n1 9\n2 10\n1 6", "10 10\n1 14\n2 15\n2 11\n2 12\n2 9\n1 14\n2 15\n1 9\n2 11\n2 6", "20 19\n2 47\n1 37\n1 48\n2 42\n2 48\n1 38\n2 47\n1 48\n2 47\n1 41\n2 46\n1 28\n1 49\n1 45\n2 34\n1 43\n2 29\n1 46\n2 45\n2 18", "50 27\n2 93\n1 98\n2 62\n1 56\n1 86\n1 42\n2 67\n2 97\n2 59\n1 73\n1 83\n2 96\n1 20\n1 66\n1 84\n1 83\n1 91\n2 97\n1 81\n2 88\n2 63\n1 99\n2 57\n1 39\n1 74\n2 88\n1 30\n2 68\n1 100\n2 57\n1 87\n1 93\n1 83\n1 100\n1 91\n1 14\n1 38\n2 98\n2 85\n2 61\n1 44\n2 93\n2 66\n2 55\n2 74\n1 67\n2 67\n1 85\n2 59\n1 83", "1 1\n1 600", "10 14\n2 230\n2 516\n2 527\n2 172\n2 854\n2 61\n1 52\n2 154\n2 832\n2 774", "8 8\n1 1\n1 1\n1 1\n1 1\n2 100\n2 100\n2 100\n2 100", "8 4\n1 100\n1 100\n1 100\n1 100\n2 1\n2 1\n2 1\n2 1"], "outputs": ["7\n2", "24\n3 1 5", "81\n6 1 7 2 4 9", "630\n13 8 3 18 14 16 10 6 2 5 9 7 1 11", "2055\n34 29 22 2 32 35 17 31 5 48 15 50 33 16 11 19 25 10 46 14 4 38 18 8", "600\n1", "3905\n5 9 10 3 2 1 4", "400\n8 7 6 5", "400\n4 3 2 1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
17
codeforces
e095fc0f2706652ae0c7e6370b7eedb8
Timetable
Ivan is a student at Berland State University (BSU). There are *n* days in Berland week, and each of these days Ivan might have some classes at the university. There are *m* working hours during each Berland day, and each lesson at the university lasts exactly one hour. If at some day Ivan's first lesson is during *i*-th hour, and last lesson is during *j*-th hour, then he spends *j*<=-<=*i*<=+<=1 hours in the university during this day. If there are no lessons during some day, then Ivan stays at home and therefore spends 0 hours in the university. Ivan doesn't like to spend a lot of time in the university, so he has decided to skip some lessons. He cannot skip more than *k* lessons during the week. After deciding which lessons he should skip and which he should attend, every day Ivan will enter the university right before the start of the first lesson he does not skip, and leave it after the end of the last lesson he decides to attend. If Ivan skips all lessons during some day, he doesn't go to the university that day at all. Given *n*, *m*, *k* and Ivan's timetable, can you determine the minimum number of hours he has to spend in the university during one week, if he cannot skip more than *k* lessons? The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*k*<=≤<=500) — the number of days in the Berland week, the number of working hours during each day, and the number of lessons Ivan can skip, respectively. Then *n* lines follow, *i*-th line containing a binary string of *m* characters. If *j*-th character in *i*-th line is 1, then Ivan has a lesson on *i*-th day during *j*-th hour (if it is 0, there is no such lesson). Print the minimum number of hours Ivan has to spend in the university during the week if he skips not more than *k* lessons. Sample Input 2 5 1 01001 10110 2 5 0 01001 10110 Sample Output 5 8
{"inputs": ["2 5 1\n01001\n10110", "2 5 0\n01001\n10110", "3 4 0\n0000\n0000\n0000", "3 4 12\n1111\n1111\n1111", "3 4 6\n1111\n1111\n1111", "10 10 0\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001", "10 10 5\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001", "10 10 10\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001", "10 10 20\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001", "10 10 19\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001", "4 16 11\n1111011101111111\n0111110111111111\n0011101111011000\n0000010000001000", "1 1 5\n1", "4 113 370\n01110100100010110100110000000011001111110000100111111001011001110111110111001011010110000110110010101010110001000\n01101001111110001010001100101100111100111001001001001101110101100110110110001110100010111011101011101110011110100\n01100110001001111010000010101100111100011111010000101010011011111111000111111001001010110110011011111110110010111\n11100111000100010000100111010101110110100101100100001111000001001010001000101110011100101011101100011010111010000", "3 3 4\n000\n000\n000", "1 5 1\n10001", "1 1 1\n0", "10 10 100\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001", "5 1 6\n1\n1\n1\n0\n1", "1 1 1\n1", "8 4 8\n0001\n0010\n0100\n0000\n1001\n1101\n0010\n0001", "1 1 2\n1", "1 1 0\n1", "1 1 2\n0"], "outputs": ["5", "8", "0", "0", "6", "100", "55", "10", "0", "1", "30", "0", "0", "0", "1", "0", "0", "0", "0", "2", "0", "1", "0"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
9
codeforces
e0978618e361da10f11b0837442672c5
Game on Tree
Momiji has got a rooted tree, consisting of *n* nodes. The tree nodes are numbered by integers from 1 to *n*. The root has number 1. Momiji decided to play a game on this tree. The game consists of several steps. On each step, Momiji chooses one of the remaining tree nodes (let's denote it by *v*) and removes all the subtree nodes with the root in node *v* from the tree. Node *v* gets deleted as well. The game finishes when the tree has no nodes left. In other words, the game finishes after the step that chooses the node number 1. Each time Momiji chooses a new node uniformly among all the remaining nodes. Your task is to find the expectation of the number of steps in the described game. The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of nodes in the tree. The next *n*<=-<=1 lines contain the tree edges. The *i*-th line contains integers *a**i*, *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*) — the numbers of the nodes that are connected by the *i*-th edge. It is guaranteed that the given graph is a tree. Print a single real number — the expectation of the number of steps in the described game. The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6. Sample Input 2 1 2 3 1 2 1 3 Sample Output 1.50000000000000000000 2.00000000000000000000
{"inputs": ["2\n1 2", "3\n1 2\n1 3", "10\n1 2\n2 3\n3 4\n1 5\n2 6\n6 7\n4 8\n6 9\n9 10", "6\n1 3\n2 4\n5 6\n3 6\n5 4"], "outputs": ["1.50000000000000000000", "2.00000000000000000000", "3.81666666666666690000", "2.45000000000000020000"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
e0a25aa6735cc7bbb4f5284e0f982675
Watching Fireworks is Fun
A festival will be held in a town's main street. There are *n* sections in the main street. The sections are numbered 1 through *n* from left to right. The distance between each adjacent sections is 1. In the festival *m* fireworks will be launched. The *i*-th (1<=≤<=*i*<=≤<=*m*) launching is on time *t**i* at section *a**i*. If you are at section *x* (1<=≤<=*x*<=≤<=*n*) at the time of *i*-th launching, you'll gain happiness value *b**i*<=-<=|*a**i*<=-<=*x*| (note that the happiness value might be a negative value). You can move up to *d* length units in a unit time interval, but it's prohibited to go out of the main street. Also you can be in an arbitrary section at initial time moment (time equals to 1), and want to maximize the sum of happiness that can be gained from watching fireworks. Find the maximum total happiness. Note that two or more fireworks can be launched at the same time. The first line contains three integers *n*, *m*, *d* (1<=≤<=*n*<=≤<=150000; 1<=≤<=*m*<=≤<=300; 1<=≤<=*d*<=≤<=*n*). Each of the next *m* lines contains integers *a**i*, *b**i*, *t**i* (1<=≤<=*a**i*<=≤<=*n*; 1<=≤<=*b**i*<=≤<=109; 1<=≤<=*t**i*<=≤<=109). The *i*-th line contains description of the *i*-th launching. It is guaranteed that the condition *t**i*<=≤<=*t**i*<=+<=1 (1<=≤<=*i*<=&lt;<=*m*) will be satisfied. Print a single integer — the maximum sum of happiness that you can gain from watching all the fireworks. Please, do not write the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier. Sample Input 50 3 1 49 1 1 26 1 4 6 1 10 10 2 1 1 1000 4 9 1000 4 Sample Output -31 1992
{"inputs": ["50 3 1\n49 1 1\n26 1 4\n6 1 10", "10 2 1\n1 1000 4\n9 1000 4", "30 8 2\n15 97 3\n18 64 10\n20 14 20\n16 18 36\n10 23 45\n12 60 53\n17 93 71\n11 49 85", "100 20 5\n47 93 3\n61 49 10\n14 69 10\n88 2 14\n35 86 18\n63 16 20\n39 49 22\n32 45 23\n66 54 25\n77 2 36\n96 85 38\n33 28 45\n29 78 53\n78 13 60\n58 96 64\n74 39 71\n18 80 80\n18 7 85\n97 82 96\n74 99 97"], "outputs": ["-31", "1992", "418", "877"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
3
codeforces
e0a8066c3ffaf53d1423dd8bb7537fb4
The Brand New Function
Polycarpus has a sequence, consisting of *n* non-negative integers: *a*1,<=*a*2,<=...,<=*a**n*. Let's define function *f*(*l*,<=*r*) (*l*,<=*r* are integer, 1<=≤<=*l*<=≤<=*r*<=≤<=*n*) for sequence *a* as an operation of bitwise OR of all the sequence elements with indexes from *l* to *r*. Formally: *f*(*l*,<=*r*)<==<=*a**l* | *a**l*<=+<=1 | ...  | *a**r*. Polycarpus took a piece of paper and wrote out the values of function *f*(*l*,<=*r*) for all *l*,<=*r* (*l*,<=*r* are integer, 1<=≤<=*l*<=≤<=*r*<=≤<=*n*). Now he wants to know, how many distinct values he's got in the end. Help Polycarpus, count the number of distinct values of function *f*(*l*,<=*r*) for the given sequence *a*. Expression *x* | *y* means applying the operation of bitwise OR to numbers *x* and *y*. This operation exists in all modern programming languages, for example, in language C++ and Java it is marked as "|", in Pascal — as "or". The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements of sequence *a*. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=106) — the elements of sequence *a*. Print a single integer — the number of distinct values of function *f*(*l*,<=*r*) for the given sequence *a*. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Sample Input 3 1 2 0 10 1 2 3 4 5 6 1 2 9 10 Sample Output 411
{"inputs": ["3\n1 2 0", "10\n1 2 3 4 5 6 1 2 9 10", "1\n123", "10\n6 8 4 5 1 9 10 2 3 7", "7\n1 2 4 8 16 32 64", "10\n375813 659427 484038 348181 432640 368050 271089 721588 345312 630771", "5\n0 1 2 0 4", "1\n0", "1\n1000000"], "outputs": ["4", "11", "1", "15", "28", "29", "7", "1", "1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
21
codeforces
e0d0422a544145c98c802c1517bec7f7
Industrial Nim
There are *n* stone quarries in Petrograd. Each quarry owns *m**i* dumpers (1<=≤<=*i*<=≤<=*n*). It is known that the first dumper of the *i*-th quarry has *x**i* stones in it, the second dumper has *x**i*<=+<=1 stones in it, the third has *x**i*<=+<=2, and the *m**i*-th dumper (the last for the *i*-th quarry) has *x**i*<=+<=*m**i*<=-<=1 stones in it. Two oligarchs play a well-known game Nim. Players take turns removing stones from dumpers. On each turn, a player can select any dumper and remove any non-zero amount of stones from it. The player who cannot take a stone loses. Your task is to find out which oligarch will win, provided that both of them play optimally. The oligarchs asked you not to reveal their names. So, let's call the one who takes the first stone «tolik» and the other one «bolik». The first line of the input contains one integer number *n* (1<=≤<=*n*<=≤<=105) — the amount of quarries. Then there follow *n* lines, each of them contains two space-separated integers *x**i* and *m**i* (1<=≤<=*x**i*,<=*m**i*<=≤<=1016) — the amount of stones in the first dumper of the *i*-th quarry and the number of dumpers at the *i*-th quarry. Output «tolik» if the oligarch who takes a stone first wins, and «bolik» otherwise. Sample Input 2 2 1 3 2 4 1 1 1 1 1 1 1 1 Sample Output tolik bolik
{"inputs": ["2\n2 1\n3 2", "4\n1 1\n1 1\n1 1\n1 1", "10\n2 3\n1 4\n5 8\n4 10\n10 8\n7 2\n1 2\n1 7\n4 10\n5 3", "20\n8 6\n6 3\n2 9\n7 8\n9 1\n2 4\n3 6\n6 3\n5 6\n5 3\n6 5\n2 10\n2 9\n6 3\n10 6\n10 10\n10 7\n3 9\n16 1\n1 3", "30\n53 12\n13 98\n21 60\n76 58\n39 5\n62 58\n73 80\n13 75\n37 45\n44 86\n1 85\n13 33\n17 50\n12 26\n97 48\n52 40\n2 71\n95 79\n38 76\n24 54\n91 39\n97 92\n94 80\n50 61\n33 56\n22 91\n39 94\n31 56\n28 16\n20 44", "1\n3737203222172202 1", "1\n3737203222172202 1"], "outputs": ["tolik", "bolik", "tolik", "bolik", "tolik", "tolik", "tolik"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
10
codeforces
e0d62a2e04817aababe97ea9ff251c84
Dividing the numbers
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group. The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has. Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them. Sample Input 4 2 Sample Output 0 2 1 4 1 1 1
{"inputs": ["4", "2", "3", "5", "59998", "60000", "59991", "59989", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "59999", "59997", "59996", "59995", "59994", "59993", "59992", "59990", "100", "1000", "10001", "103", "1002", "31724", "2032", "42620", "18076", "53520", "37193", "12645", "53237", "28693", "4145", "36042", "16646", "57238", "27542", "8146", "46659", "27259", "2715", "38159", "18759"], "outputs": ["0\n2 1 4 ", "1\n1 1 ", "0\n1\n3 ", "1\n3\n1 2 5 ", "1\n29999 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "0\n30000 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "0\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n3 1 4 5 ", "0\n3\n1 6 7 ", "0\n4 1 4 5 8 ", "1\n5\n1 2 3 8 9 ", "1\n5 1 4 5 8 9 ", "0\n5\n1 2 9 10 11 ", "0\n6 1 4 5 8 9 12 ", "1\n7\n1 2 3 4 11 12 13 ", "1\n7 1 4 5 8 9 12 13 ", "0\n7\n1 2 3 12 13 14 15 ", "0\n8 1 4 5 8 9 12 13 16 ", "1\n9\n1 2 3 4 5 14 15 16 17 ", "1\n9 1 4 5 8 9 12 13 16 17 ", "0\n9\n1 2 3 4 15 16 17 18 19 ", "0\n10 1 4 5 8 9 12 13 16 17 20 ", "1\n11\n1 2 3 4 5 6 17 18 19 20 21 ", "1\n11 1 4 5 8 9 12 13 16 17 20 21 ", "0\n11\n1 2 3 4 5 18 19 20 21 22 23 ", "0\n12 1 4 5 8 9 12 13 16 17 20 21 24 ", "0\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "0\n29998 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "0\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n29997 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "1\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "0\n29996 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "1\n29995 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "0\n50 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 ", "0\n500 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28...", "1\n5001\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15...", "0\n51\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 ", "1\n501 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28...", "0\n15862 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "0\n1016 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2...", "0\n21310 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "0\n9038 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2...", "0\n26760 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "1\n18597\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n6323\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15...", "1\n26619\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n14347\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "1\n2073\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15...", "1\n18021 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "1\n8323 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2...", "1\n28619 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "1\n13771 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ...", "1\n4073 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2...", "0\n23329\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "0\n13629\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "0\n1357\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15...", "0\n19079\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1...", "0\n9379\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
144
codeforces
e0d9b47413ecdfc4e7b25dd15d254c2c
Two Strings Swaps
You are given two strings $a$ and $b$ consisting of lowercase English letters, both of length $n$. The characters of both strings have indices from $1$ to $n$, inclusive. You are allowed to do the following changes: - Choose any index $i$ ($1 \le i \le n$) and swap characters $a_i$ and $b_i$; - Choose any index $i$ ($1 \le i \le n$) and swap characters $a_i$ and $a_{n - i + 1}$; - Choose any index $i$ ($1 \le i \le n$) and swap characters $b_i$ and $b_{n - i + 1}$. Note that if $n$ is odd, you are formally allowed to swap $a_{\lceil\frac{n}{2}\rceil}$ with $a_{\lceil\frac{n}{2}\rceil}$ (and the same with the string $b$) but this move is useless. Also you can swap two equal characters but this operation is useless as well. You have to make these strings equal by applying any number of changes described above, in any order. But it is obvious that it may be impossible to make two strings equal by these swaps. In one preprocess move you can replace a character in $a$ with another character. In other words, in a single preprocess move you can choose any index $i$ ($1 \le i \le n$), any character $c$ and set $a_i := c$. Your task is to find the minimum number of preprocess moves to apply in such a way that after them you can make strings $a$ and $b$ equal by applying some number of changes described in the list above. Note that the number of changes you make after the preprocess moves does not matter. Also note that you cannot apply preprocess moves to the string $b$ or make any preprocess moves after the first change is made. The first line of the input contains one integer $n$ ($1 \le n \le 10^5$) — the length of strings $a$ and $b$. The second line contains the string $a$ consisting of exactly $n$ lowercase English letters. The third line contains the string $b$ consisting of exactly $n$ lowercase English letters. Print a single integer — the minimum number of preprocess moves to apply before changes, so that it is possible to make the string $a$ equal to string $b$ with a sequence of changes from the list above. Sample Input 7 abacaba bacabaa 5 zcabd dbacz Sample Output 4 0
{"inputs": ["7\nabacaba\nbacabaa", "5\nzcabd\ndbacz", "1\na\nb", "5\nahmad\nyogaa"], "outputs": ["4", "0", "1", "3"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
18
codeforces
e1034fbea68dca22768a04b14ad82878
Booking System
Innovation technologies are on a victorious march around the planet. They integrate into all spheres of human activity! A restaurant called "Dijkstra's Place" has started thinking about optimizing the booking system. There are *n* booking requests received by now. Each request is characterized by two numbers: *c**i* and *p**i* — the size of the group of visitors who will come via this request and the total sum of money they will spend in the restaurant, correspondingly. We know that for each request, all *c**i* people want to sit at the same table and are going to spend the whole evening in the restaurant, from the opening moment at 18:00 to the closing moment. Unfortunately, there only are *k* tables in the restaurant. For each table, we know *r**i* — the maximum number of people who can sit at it. A table can have only people from the same group sitting at it. If you cannot find a large enough table for the whole group, then all visitors leave and naturally, pay nothing. Your task is: given the tables and the requests, decide which requests to accept and which requests to decline so that the money paid by the happy and full visitors was maximum. The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of requests from visitors. Then *n* lines follow. Each line contains two integers: *c**i*,<=*p**i* (1<=≤<=*c**i*,<=*p**i*<=≤<=1000) — the size of the group of visitors who will come by the *i*-th request and the total sum of money they will pay when they visit the restaurant, correspondingly. The next line contains integer *k* (1<=≤<=*k*<=≤<=1000) — the number of tables in the restaurant. The last line contains *k* space-separated integers: *r*1,<=*r*2,<=...,<=*r**k* (1<=≤<=*r**i*<=≤<=1000) — the maximum number of people that can sit at each table. In the first line print two integers: *m*,<=*s* — the number of accepted requests and the total money you get from these requests, correspondingly. Then print *m* lines — each line must contain two space-separated integers: the number of the accepted request and the number of the table to seat people who come via this request. The requests and the tables are consecutively numbered starting from 1 in the order in which they are given in the input. If there are multiple optimal answers, print any of them. Sample Input 3 10 50 2 100 5 30 3 4 6 9 Sample Output 2 130 2 1 3 2
{"inputs": ["3\n10 50\n2 100\n5 30\n3\n4 6 9", "1\n1 1\n1\n1", "1\n2 1\n1\n1", "2\n10 10\n5 5\n1\n5", "2\n10 10\n5 5\n1\n10", "2\n2 100\n10 10\n1\n10", "2\n10 100\n5 90\n2\n15 20", "3\n10 10\n3 5\n5 8\n3\n3 4 10", "10\n739 307\n523 658\n700 143\n373 577\n120 433\n353 833\n665 516\n988 101\n817 604\n800 551\n10\n431 425 227 147 153 170 954 757 222 759", "9\n216 860\n299 720\n688 831\n555 733\n863 873\n594 923\n583 839\n738 824\n57 327\n10\n492 578 452 808 492 163 670 31 267 627", "3\n694 606\n76 973\n676 110\n5\n592 737 313 903 13", "7\n172 864\n853 523\n368 989\n920 452\n351 456\n269 104\n313 677\n9\n165 47 259 51 693 941 471 871 206", "1\n545 609\n4\n584 822 973 652", "9\n23 163\n895 838\n344 444\n284 763\n942 39\n431 92\n147 515\n59 505\n940 999\n8\n382 497 297 125 624 212 851 859", "3\n500 613\n671 899\n628 131\n10\n622 467 479 982 886 968 326 64 228 321", "7\n682 870\n640 857\n616 306\n649 777\n725 215\n402 977\n981 353\n1\n846", "1\n160 616\n5\n406 713 290 308 741", "6\n397 946\n871 126\n800 290\n505 429\n239 43\n320 292\n9\n387 925 9 440 395 320 58 707 994", "1\n3 20\n4\n3 2 1 4", "2\n2 100\n1 1000\n1\n2"], "outputs": ["2 130\n2 1\n3 2", "1 1\n1 1", "0 0", "1 5\n2 1", "1 10\n1 1", "1 100\n1 1", "2 190\n1 1\n2 2", "2 15\n1 3\n2 1", "6 3621\n6 2\n2 8\n9 7\n4 1\n7 10\n5 4", "7 5233\n6 10\n1 9\n7 7\n3 4\n4 2\n2 3\n9 6", "3 1689\n2 3\n1 2\n3 4", "5 3509\n3 7\n1 9\n7 5\n2 8\n5 6", "1 609\n1 1", "6 2482\n4 3\n7 6\n8 4\n3 1\n1 2\n6 5", "3 1643\n2 5\n1 1\n3 6", "1 977\n6 1", "1 616\n1 3", "6 2126\n1 4\n4 8\n6 6\n3 2\n2 9\n5 1", "1 20\n1 1", "1 1000\n2 1"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
46
codeforces
e12509b906dd993ec3ead38d458dc7f9
Maximize Sum of Digits
Anton has the integer *x*. He is interested what positive integer, which doesn't exceed *x*, has the maximum sum of digits. Your task is to help Anton and to find the integer that interests him. If there are several such integers, determine the biggest of them. The first line contains the positive integer *x* (1<=≤<=*x*<=≤<=1018) — the integer which Anton has. Print the positive integer which doesn't exceed *x* and has the maximum sum of digits. If there are several such integers, print the biggest of them. Printed integer must not contain leading zeros. Sample Input 100 48 521 Sample Output 99 48 499
{"inputs": ["100", "48", "521", "1", "2", "3", "39188", "5", "6", "7", "8", "9", "10", "59999154", "1000", "10000", "100000", "1000000", "10000000", "100000000", "1000000000", "10000000000", "100000000000", "1000000000000", "10000000000000", "100000000000000", "1000000000000000", "10000000000000000", "100000000000000000", "1000000000000000000", "999999990", "666666899789879", "65499992294999000", "9879100000000099", "9991919190909919", "978916546899999999", "5684945999999999", "999999999999999999", "999999999999990999", "999999999999999990", "909999999999999999", "199999999999999999", "299999999999999999", "999999990009999999", "999000000001999999", "999999999991", "999999999992", "79320", "99004", "99088", "99737", "29652", "59195", "19930", "49533", "69291", "59452", "11", "110", "111", "119", "118", "1100", "1199", "1109", "1190", "12", "120", "121", "129", "128", "1200", "1299", "1209", "1290", "13", "130", "131", "139", "138", "1300", "1399", "1309", "1390", "14", "140", "141", "149", "148", "1400", "1499", "1409", "1490", "15", "150", "151", "159", "158", "1500", "1599", "1509", "1590", "16", "160", "161", "169", "168", "1600", "1699", "1609", "1690", "17", "170", "171", "179", "178", "1700", "1799", "1709", "1790", "18", "180", "181", "189", "188", "1800", "1899", "1809", "1890", "19", "190", "191", "199", "198", "1900", "1999", "1909", "1990", "20", "200", "201", "209", "208", "2000", "2099", "2009", "2090", "21", "210", "211", "219", "218", "2100", "2199", "2109", "2190", "22", "220", "221", "229", "228", "2200", "2299", "2209", "2290", "23", "230", "231", "239", "238", "2300", "2399", "2309", "2390", "24", "240", "241", "249", "248", "2400", "2499", "2409", "2490", "25", "250", "251", "259", "258", "2500", "2599", "2509", "2590", "26", "260", "261", "269", "268", "2600", "2699", "2609", "2690", "27", "270", "271", "279", "278", "2700", "2799", "2709", "2790", "28", "280", "281", "289", "288", "2800", "2899", "2809", "2890", "29", "290", "291", "299", "298", "2900", "2999", "2909", "2990", "999", "999", "890", "995", "999", "989", "999", "999", "991", "999", "9929", "4999", "9690", "8990", "9982", "9999", "1993", "9367", "8939", "9899", "99999", "93929", "99999", "38579", "79096", "72694", "99999", "99999", "99992", "27998", "460999", "999999", "999999", "998999", "999999", "999929", "999999", "999999", "979199", "999999", "9899999", "9699959", "9999999", "9997099", "8992091", "9599295", "2999902", "9999953", "9999999", "9590999"], "outputs": ["99", "48", "499", "1", "2", "3", "38999", "5", "6", "7", "8", "9", "9", "59998999", "999", "9999", "99999", "999999", "9999999", "99999999", "999999999", "9999999999", "99999999999", "999999999999", "9999999999999", "99999999999999", "999999999999999", "9999999999999999", "99999999999999999", "999999999999999999", "999999989", "599999999999999", "59999999999999999", "8999999999999999", "9989999999999999", "899999999999999999", "4999999999999999", "999999999999999999", "999999999999989999", "999999999999999989", "899999999999999999", "199999999999999999", "299999999999999999", "999999989999999999", "998999999999999999", "999999999989", "999999999989", "78999", "98999", "98999", "98999", "28999", "58999", "19899", "48999", "68999", "58999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "9", "99", "99", "99", "99", "999", "999", "999", "999", "18", "99", "99", "189", "99", "999", "1899", "999", "999", "19", "189", "189", "199", "198", "1899", "1999", "1899", "1989", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "19", "199", "199", "199", "199", "1999", "1999", "1999", "1999", "28", "199", "199", "289", "199", "1999", "2899", "1999", "1999", "29", "289", "289", "299", "298", "2899", "2999", "2899", "2989", "999", "999", "889", "989", "999", "989", "999", "999", "989", "999", "9899", "4999", "8999", "8989", "9899", "9999", "1989", "8999", "8899", "9899", "99999", "89999", "99999", "29999", "78999", "69999", "99999", "99999", "99989", "19999", "399999", "999999", "999999", "998999", "999999", "999899", "999999", "999999", "899999", "999999", "9899999", "8999999", "9999999", "9989999", "8989999", "8999999", "2999899", "9999899", "9999999", "8999999"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
15
codeforces
e130bca7c9717c52c141f6eb021a0626
Delete from the Left
You are given two strings $s$ and $t$. In a single move, you can choose any of two strings and delete the first (that is, the leftmost) character. After a move, the length of the string decreases by $1$. You can't choose a string if it is empty. For example: - by applying a move to the string "where", the result is the string "here", - by applying a move to the string "a", the result is an empty string "". You are required to make two given strings equal using the fewest number of moves. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the initial strings. Write a program that finds the minimum number of moves to make two given strings $s$ and $t$ equal. The first line of the input contains $s$. In the second line of the input contains $t$. Both strings consist only of lowercase Latin letters. The number of letters in each string is between 1 and $2\cdot10^5$, inclusive. Output the fewest number of moves required. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the given strings. Sample Input test west codeforces yes test yes b ab Sample Output 2 9 7 1
{"inputs": ["test\nwest", "codeforces\nyes", "test\nyes", "b\nab", "z\nz", "abacabadabacaba\nabacabadacaba", "z\na", "ama\nsama", "aaabc\nbc", "lxuyspmieeuyxluv\ndfwxqvavzxctblaa", "ahmedaly\naly", "aa\na", "aa\nba", "cccba\nba", "a\nab", "dadc\ndddc", "aacaaab\nb", "dddc\ncdcde", "bbdab\ndab", "a\naa", "aa\nab", "codeforces\nces"], "outputs": ["2", "9", "7", "1", "0", "18", "2", "1", "3", "32", "5", "1", "2", "3", "3", "4", "6", "9", "2", "1", "4", "7"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
233
codeforces
e13a6e6f6d8c190168588e4e23f98439
DZY Loves Strings
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get? The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103). The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103). The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000. Print a single integer — the largest possible value of the resulting string DZY could get. Sample Input abc 3 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Sample Output 41
{"inputs": ["abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "mmzhr\n3\n443 497 867 471 195 670 453 413 579 466 553 881 847 642 269 996 666 702 487 209 257 741 974 133 519 453", "ajeeseerqnpaujubmajpibxrccazaawetywxmifzehojf\n23\n359 813 772 413 733 654 33 87 890 433 395 311 801 852 376 148 914 420 636 695 583 733 664 394 407 314", "uahngxejpomhbsebcxvelfsojbaouynnlsogjyvktpwwtcyddkcdqcqs\n34\n530 709 150 660 947 830 487 142 208 276 885 542 138 214 76 184 273 753 30 195 722 236 82 691 572 585", "xnzeqmouqyzvblcidmhbkqmtusszuczadpooslqxegldanwopilmdwzbczvrwgnwaireykwpugvpnpafbxlyggkgawghysufuegvmzvpgcqyjkoadcreaguzepbendwnowsuekxxivkziibxvxfoilofxcgnxvfefyezfhevfvtetsuhwtyxdlkccdkvqjl\n282\n170 117 627 886 751 147 414 187 150 960 410 70 576 681 641 729 798 877 611 108 772 643 683 166 305 933", "pplkqmluhfympkjfjnfdkwrkpumgdmbkfbbldpepicbbmdgafttpopzdxsevlqbtywzkoxyviglbbxsohycbdqksrhlumsldiwzjmednbkcjishkiekfrchzuztkcxnvuykhuenqojrmzaxlaoxnljnvqgnabtmcftisaazzgbmubmpsorygyusmeonrhrgphnfhlaxrvyhuxsnnezjxmdoklpquzpvjbxgbywppmegzxknhfzyygrmejleesoqfwheulmqhonqaukyuejtwxskjldplripyihbfpookxkuehiwqthbfafyrgmykuxglpplozycgydyecqkgfjljfqvigqhuxssqqtfanwszduwbsoytnrtgc\n464\n838 95 473 955 690 84 436 19 179 437 674 626 377 365 781 4 733 776 462 203 119 256 381 668 855 686", "qkautnuilwlhjsldfcuwhiqtgtoihifszlyvfaygrnivzgvwthkrzzdtfjcirrjjlrmjtbjlzmjeqmuffsjorjyggzefwgvmblvotvzffnwjhqxorpowzdcnfksdibezdtfjjxfozaghieksbmowrbeehuxlesmvqjsphlvauxiijm\n98\n121 622 0 691 616 959 838 161 581 862 876 830 267 812 598 106 337 73 588 323 999 17 522 399 657 495", "tghyxqfmhz\n8\n191 893 426 203 780 326 148 259 182 140 847 636 778 97 167 773 219 891 758 993 695 603 223 779 368 165", "nyawbfjxnxjiyhwkydaruozobpphgjqdpfdqzezcsoyvurnapu\n30\n65 682 543 533 990 148 815 821 315 916 632 771 332 513 472 864 12 73 548 687 660 572 507 192 226 348", "pylrnkrbcjgoytvdnhmlvnkknijkdgdhworlvtwuonrkhrilkewcnofodaumgvnsisxooswgrgtvdeauyxhkipfoxrrtysuepjcf\n60\n894 206 704 179 272 337 413 828 119 182 330 46 440 102 250 191 242 539 678 783 843 431 612 567 33 338", "vhjnkrxbyhjhnjrxvwxmhxwoxttbtqosfxtcuvhfjlkyfspeypthsdkkwnqdpxdlnxsgtzvkrgqosgfjrwetqbxgoarkjhrjbspzgblsapifltkfxbfdbxqwoohlgyzijmiwnpmveybyzvasoctxsmgjehpyysmqblwnmkappbecklqjfmxhlyceordroflnposohfplrvijxbwvqdtvzhobtrumiujnyrfbwthvciinuveoizkccelxtaveiiagryqnyvsgfnipnavrtmdqlcnldepocbpzmqnarkdvykds\n276\n364 244 798 82 582 9 309 950 286 547 892 371 569 159 705 975 740 845 655 179 130 993 255 552 882 657", "gsaddmezrnttfalbwlqbnedumvikplfosw\n12\n290 850 872 361 483 895 152 118 974 619 701 154 899 285 328 712 669 984 407 340 851 775 324 892 554 860", "a\n0\n5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "lol\n3\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"], "outputs": ["41", "29978", "1762894", "2960349", "99140444", "301124161", "30125295", "136422", "2578628", "9168707", "144901921", "809931", "5", "21"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
420
codeforces
e1478fe113da588a61423b6304a9e4dc
Godsend
Leha somehow found an array consisting of *n* integers. Looking at it, he came up with a task. Two players play the game on the array. Players move one by one. The first player can choose for his move a subsegment of non-zero length with an odd sum of numbers and remove it from the array, after that the remaining parts are glued together into one array and the game continues. The second player can choose a subsegment of non-zero length with an even sum and remove it. Loses the one who can not make a move. Who will win if both play optimally? First line of input data contains single integer *n* (1<=≤<=*n*<=≤<=106) — length of the array. Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109). Output answer in single line. "First", if first player wins, and "Second" otherwise (without quotes). Sample Input 4 1 3 2 3 2 2 2 Sample Output First Second
{"inputs": ["4\n1 3 2 3", "2\n2 2", "4\n2 4 6 8", "5\n1 1 1 1 1", "4\n720074544 345031254 849487632 80870826", "1\n0", "1\n999999999", "2\n1 999999999", "4\n3 3 4 4", "2\n1 2", "8\n2 2 2 1 1 2 2 2", "5\n3 3 2 2 2", "4\n0 1 1 0", "3\n1 2 2", "6\n2 2 1 1 4 2", "8\n2 2 2 3 3 2 2 2", "4\n2 3 3 4", "10\n2 2 2 2 3 1 2 2 2 2", "6\n2 2 1 1 2 2", "3\n1 1 2", "6\n2 4 3 3 4 6", "6\n4 4 3 3 4 4", "4\n1 1 2 2", "4\n1 3 5 7", "4\n2 1 1 2", "4\n1 3 3 2", "5\n3 2 2 2 2", "3\n2 1 1", "4\n1000000000 1000000000 1000000000 99999999", "4\n2 2 1 1", "5\n2 3 2 3 2", "1\n1", "4\n1000000000 1000000000 1000000000 1", "5\n2 2 2 1 1", "6\n2 1 1 1 1 2", "6\n1 2 2 2 2 1", "11\n2 2 2 2 2 1 2 2 2 2 2", "5\n1 3 2 2 2", "3\n2 3 2", "2\n1 1", "5\n4 4 4 3 3", "5\n3 3 4 4 4", "1\n2"], "outputs": ["First", "Second", "Second", "First", "Second", "Second", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "First", "Second"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
223
codeforces
e14b7011b3fe8a743e826ee023646996
Kitahara Haruki's Gift
Kitahara Haruki has bought *n* apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends. Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna. But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends? The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of apples. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (*w**i*<==<=100 or *w**i*<==<=200), where *w**i* is the weight of the *i*-th apple. In a single line print "YES" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print "NO" (without the quotes). Sample Input 3 100 200 100 4 100 100 100 200 Sample Output YES NO
{"inputs": ["3\n100 200 100", "4\n100 100 100 200", "1\n100", "1\n200", "2\n100 100", "2\n200 200", "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "52\n200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 100 200 100 200 200 200 100 200 200", "2\n100 200", "2\n200 100", "3\n100 100 100", "3\n200 200 200", "3\n200 100 200", "4\n100 100 100 100", "4\n200 200 200 200", "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 100 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "100\n100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "100\n100 100 100 100 100 100 100 100 200 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "99\n200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "100\n100 100 200 100 100 200 200 200 200 100 200 100 100 100 200 100 100 100 100 200 100 100 100 100 100 100 200 100 100 200 200 100 100 100 200 200 200 100 200 200 100 200 100 100 200 100 200 200 100 200 200 100 100 200 200 100 200 200 100 100 200 100 200 100 200 200 200 200 200 100 200 200 200 200 200 200 100 100 200 200 200 100 100 100 200 100 100 200 100 100 100 200 200 100 100 200 200 200 200 100", "100\n100 100 200 200 100 200 100 100 100 100 100 100 200 100 200 200 200 100 100 200 200 200 200 200 100 200 100 200 100 100 100 200 100 100 200 100 200 100 100 100 200 200 100 100 100 200 200 200 200 200 100 200 200 100 100 100 100 200 100 100 200 100 100 100 100 200 200 200 100 200 100 200 200 200 100 100 200 200 200 200 100 200 100 200 200 100 200 100 200 200 200 200 200 200 100 100 100 200 200 100", "100\n100 200 100 100 200 200 200 200 100 200 200 200 200 200 200 200 200 200 100 100 100 200 200 200 200 200 100 200 200 200 200 100 200 200 100 100 200 100 100 100 200 100 100 100 200 100 200 100 200 200 200 100 100 200 100 200 100 200 100 100 100 200 100 200 100 100 100 100 200 200 200 200 100 200 200 100 200 100 100 100 200 100 100 100 100 100 200 100 100 100 200 200 200 100 200 100 100 100 200 200", "99\n100 200 200 200 100 200 100 200 200 100 100 100 100 200 100 100 200 100 200 100 100 200 100 100 200 200 100 100 100 100 200 200 200 200 200 100 100 200 200 100 100 100 100 200 200 100 100 100 100 100 200 200 200 100 100 100 200 200 200 100 200 100 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 100 200 100 200 200 200 200 100 200 100 100 100 100 100 100 100 100 100", "99\n100 200 100 100 100 100 200 200 100 200 100 100 200 100 100 100 100 100 100 200 100 100 100 100 100 100 100 200 100 200 100 100 100 100 100 100 100 200 200 200 200 200 200 200 100 200 100 200 100 200 100 200 100 100 200 200 200 100 200 200 200 200 100 200 100 200 200 200 200 100 200 100 200 200 100 200 200 200 200 200 100 100 200 100 100 100 100 200 200 200 100 100 200 200 200 200 200 200 200", "99\n200 100 100 100 200 200 200 100 100 100 100 100 100 100 100 100 200 200 100 200 200 100 200 100 100 200 200 200 100 200 100 200 200 100 200 100 200 200 200 100 100 200 200 200 200 100 100 100 100 200 200 200 200 100 200 200 200 100 100 100 200 200 200 100 200 100 200 100 100 100 200 100 200 200 100 200 200 200 100 100 100 200 200 200 100 200 200 200 100 100 100 200 100 200 100 100 100 200 200", "56\n100 200 200 200 200 200 100 200 100 100 200 100 100 100 100 100 200 200 200 100 200 100 100 200 200 200 100 200 100 200 200 100 100 100 100 100 200 100 200 100 200 200 200 100 100 200 200 200 200 200 200 200 200 200 200 100", "72\n200 100 200 200 200 100 100 200 200 100 100 100 100 200 100 200 100 100 100 100 200 100 200 100 100 200 100 100 200 100 200 100 100 200 100 200 100 100 200 200 200 200 200 100 100 200 200 200 200 100 100 100 200 200 100 100 100 100 100 200 100 100 200 100 100 200 200 100 100 200 100 200", "32\n200 200 200 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200", "48\n200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 100 200 200 200 200 200 200", "60\n100 100 200 200 100 200 100 200 100 100 100 100 100 100 200 100 100 100 200 100 200 100 100 100 100 100 200 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100", "24\n200 200 100 100 200 100 200 200 100 200 200 200 200 200 100 200 200 200 200 200 200 200 200 100", "40\n100 100 200 200 200 200 100 100 100 200 100 100 200 200 100 100 100 100 100 200 100 200 200 100 200 200 200 100 100 100 100 100 200 200 100 200 100 100 200 100", "5\n200 200 200 200 200", "9\n100 100 100 200 100 100 200 100 200", "1\n200", "7\n200 200 200 100 200 200 200", "4\n100 100 200 200", "6\n100 100 100 200 200 200", "4\n200 100 100 200", "5\n100 100 100 100 200"], "outputs": ["YES", "NO", "NO", "NO", "YES", "YES", "YES", "NO", "YES", "NO", "NO", "NO", "NO", "NO", "YES", "YES", "YES", "NO", "YES", "NO", "YES", "NO", "NO", "NO", "YES", "NO", "NO", "YES", "NO", "YES", "NO", "YES", "YES", "NO", "YES", "YES", "YES", "YES", "NO", "YES", "YES", "NO", "NO", "YES", "NO", "NO", "YES", "NO", "YES", "YES"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
102
codeforces
e182ab5da357b6cd08d11902dd0b81d8
Cats Transport
Zxr960115 is owner of a large farm. He feeds *m* cute cats and employs *p* feeders. There's a straight road across the farm and *n* hills along the road, numbered from 1 to *n* from left to right. The distance between hill *i* and (*i*<=-<=1) is *d**i* meters. The feeders live in hill 1. One day, the cats went out to play. Cat *i* went on a trip to hill *h**i*, finished its trip at time *t**i*, and then waited at hill *h**i* for a feeder. The feeders must take all the cats. Each feeder goes straightly from hill 1 to *n* without waiting at a hill and takes all the waiting cats at each hill away. Feeders walk at a speed of 1 meter per unit time and are strong enough to take as many cats as they want. For example, suppose we have two hills (*d*2<==<=1) and one cat that finished its trip at time 3 at hill 2 (*h*1<==<=2). Then if the feeder leaves hill 1 at time 2 or at time 3, he can take this cat, but if he leaves hill 1 at time 1 he can't take it. If the feeder leaves hill 1 at time 2, the cat waits him for 0 time units, if the feeder leaves hill 1 at time 3, the cat waits him for 1 time units. Your task is to schedule the time leaving from hill 1 for each feeder so that the sum of the waiting time of all cats is minimized. The first line of the input contains three integers *n*,<=*m*,<=*p* (2<=≤<=*n*<=≤<=105,<=1<=≤<=*m*<=≤<=105,<=1<=≤<=*p*<=≤<=100). The second line contains *n*<=-<=1 positive integers *d*2,<=*d*3,<=...,<=*d**n* (1<=≤<=*d**i*<=&lt;<=104). Each of the next *m* lines contains two integers *h**i* and *t**i* (1<=≤<=*h**i*<=≤<=*n*,<=0<=≤<=*t**i*<=≤<=109). Output an integer, the minimum sum of waiting time of all cats. Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Sample Input 4 6 2 1 3 5 1 0 2 1 4 9 1 10 2 10 3 12 Sample Output 3
{"inputs": ["4 6 2\n1 3 5\n1 0\n2 1\n4 9\n1 10\n2 10\n3 12"], "outputs": ["3"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces
e186d5e1fd55287a9b94b5ef95540968
Distances to Zero
You are given the array of integer numbers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1. For each element find the distance to the nearest zero (to the element which equals to zero). There is at least one zero element in the given array. The first line contains integer *n* (1<=≤<=*n*<=≤<=2·105) — length of the array *a*. The second line contains integer elements of the array separated by single spaces (<=-<=109<=≤<=*a**i*<=≤<=109). Print the sequence *d*0,<=*d*1,<=...,<=*d**n*<=-<=1, where *d**i* is the difference of indices between *i* and nearest *j* such that *a**j*<==<=0. It is possible that *i*<==<=*j*. Sample Input 9 2 1 0 3 0 0 3 2 4 5 0 1 2 3 4 7 5 6 0 1 -2 3 4 Sample Output 2 1 0 1 0 0 1 2 3 0 1 2 3 4 2 1 0 1 2 3 4
{"inputs": ["9\n2 1 0 3 0 0 3 2 4", "5\n0 1 2 3 4", "7\n5 6 0 1 -2 3 4", "1\n0", "2\n0 0", "2\n0 1", "2\n1 0", "5\n0 1000000000 1000000000 1000000000 1000000000", "5\n-1000000000 -1000000000 0 1000000000 1000000000", "5\n-1000000000 1000000000 1000000000 1000000000 0", "15\n1000000000 -1000000000 -1000000000 1000000000 -1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 -1000000000 -1000000000 1000000000 0", "15\n0 0 0 0 1000000000 -1000000000 -1000000000 -1000000000 -1000000000 1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000", "15\n-1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 0 -1000000000 -1000000000 0 0 1000000000 -1000000000 0 -1000000000", "15\n-1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000 1000000000 1000000000 0 0 0 0", "4\n0 0 2 0", "15\n1 2 3 4 0 1 2 3 -5 -4 -3 -1 0 5 4", "2\n0 -1", "5\n0 -1 -1 -1 0", "5\n0 0 0 -1 0", "3\n0 0 -1", "3\n0 -1 -1", "12\n0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0", "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1", "30\n0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1", "1\n0", "1\n0", "1\n0", "2\n0 -1000000000", "2\n0 1000000000", "2\n-1000000000 0", "2\n0 0", "2\n0 0", "2\n0 0", "3\n0 -1000000000 -1000000000", "3\n0 1000000000 1000000000", "3\n1000000000 1000000000 0", "3\n0 0 -1000000000", "3\n0 1000000000 0", "3\n-1000000000 0 0", "3\n0 0 0", "3\n0 0 0", "3\n0 0 0", "4\n0 -1000000000 -1000000000 -1000000000", "4\n1000000000 -1000000000 0 -1000000000", "4\n1000000000 -1000000000 1000000000 0", "4\n0 0 -1000000000 1000000000", "4\n0 0 1000000000 -1000000000", "4\n-1000000000 1000000000 0 0", "4\n0 0 0 -1000000000", "4\n1000000000 0 0 0", "4\n1000000000 0 0 0", "4\n0 0 0 0", "4\n0 0 0 0", "4\n0 0 0 0", "5\n0 1000000000 1000000000 1000000000 1000000000", "5\n1000000000 -1000000000 -1000000000 1000000000 0", "5\n1000000000 -1000000000 1000000000 -1000000000 0", "5\n0 0 -1000000000 -1000000000 -1000000000", "5\n1000000000 0 -1000000000 0 -1000000000", "5\n1000000000 1000000000 1000000000 0 0", "5\n0 0 0 -1000000000 -1000000000", "5\n-1000000000 1000000000 0 0 0", "5\n1000000000 1000000000 0 0 0", "5\n0 0 0 0 -1000000000", "5\n0 0 1000000000 0 0", "5\n1000000000 0 0 0 0", "5\n0 0 0 0 0", "5\n0 0 0 0 0", "5\n0 0 0 0 0", "6\n0 1000000000 -1000000000 1000000000 -1000000000 1000000000", "6\n-1000000000 -1000000000 1000000000 1000000000 1000000000 0", "6\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 0", "6\n0 0 1000000000 1000000000 -1000000000 -1000000000", "6\n0 0 1000000000 1000000000 -1000000000 -1000000000", "6\n-1000000000 1000000000 -1000000000 -1000000000 0 0", "6\n0 0 0 -1000000000 1000000000 1000000000", "6\n-1000000000 1000000000 -1000000000 0 0 0", "6\n-1000000000 -1000000000 1000000000 0 0 0", "6\n0 0 0 0 -1000000000 1000000000", "6\n0 0 0 -1000000000 1000000000 0", "6\n1000000000 1000000000 0 0 0 0", "6\n0 0 0 0 0 -1000000000", "6\n0 0 0 1000000000 0 0", "6\n1000000000 0 0 0 0 0", "6\n0 0 0 0 0 0", "6\n0 0 0 0 0 0", "6\n0 0 0 0 0 0", "7\n0 -1000000000 1000000000 -1000000000 -1000000000 -1000000000 -1000000000", "7\n1000000000 1000000000 -1000000000 0 -1000000000 1000000000 -1000000000", "7\n1000000000 1000000000 -1000000000 1000000000 -1000000000 -1000000000 0", "7\n0 0 1000000000 1000000000 1000000000 1000000000 -1000000000", "7\n0 1000000000 1000000000 -1000000000 1000000000 1000000000 0", "7\n1000000000 -1000000000 -1000000000 1000000000 -1000000000 0 0", "7\n0 0 0 1000000000 -1000000000 -1000000000 1000000000", "7\n-1000000000 0 0 -1000000000 0 -1000000000 1000000000", "7\n1000000000 1000000000 1000000000 -1000000000 0 0 0", "7\n0 0 0 0 -1000000000 -1000000000 1000000000", "7\n0 -1000000000 0 0 0 -1000000000 1000000000", "7\n1000000000 1000000000 1000000000 0 0 0 0", "7\n0 0 0 0 0 -1000000000 1000000000", "7\n0 -1000000000 0 0 0 0 -1000000000", "7\n-1000000000 1000000000 0 0 0 0 0", "7\n0 0 0 0 0 0 -1000000000", "7\n0 0 0 0 0 1000000000 0", "7\n1000000000 0 0 0 0 0 0", "7\n0 0 0 0 0 0 0", "7\n0 0 0 0 0 0 0", "7\n0 0 0 0 0 0 0", "8\n0 -1000000000 -1000000000 1000000000 1000000000 1000000000 1000000000 -1000000000", "8\n0 -1000000000 1000000000 1000000000 1000000000 -1000000000 1000000000 1000000000", "8\n1000000000 -1000000000 -1000000000 -1000000000 1000000000 1000000000 1000000000 0", "8\n0 0 -1000000000 -1000000000 1000000000 1000000000 1000000000 -1000000000", "8\n1000000000 0 0 -1000000000 -1000000000 1000000000 -1000000000 -1000000000", "8\n1000000000 -1000000000 1000000000 -1000000000 -1000000000 -1000000000 0 0", "8\n0 0 0 1000000000 1000000000 -1000000000 -1000000000 -1000000000", "8\n-1000000000 0 0 1000000000 1000000000 0 -1000000000 1000000000", "8\n1000000000 1000000000 1000000000 -1000000000 -1000000000 0 0 0", "8\n0 0 0 0 1000000000 1000000000 1000000000 -1000000000", "8\n1000000000 0 1000000000 -1000000000 0 -1000000000 0 0", "8\n-1000000000 -1000000000 -1000000000 -1000000000 0 0 0 0", "8\n0 0 0 0 0 1000000000 1000000000 -1000000000", "8\n-1000000000 0 -1000000000 0 0 1000000000 0 0", "8\n1000000000 1000000000 1000000000 0 0 0 0 0", "8\n0 0 0 0 0 0 -1000000000 -1000000000", "8\n0 0 0 1000000000 -1000000000 0 0 0", "8\n1000000000 1000000000 0 0 0 0 0 0", "8\n0 0 0 0 0 0 0 -1000000000", "8\n0 1000000000 0 0 0 0 0 0", "8\n1000000000 0 0 0 0 0 0 0", "8\n0 0 0 0 0 0 0 0", "8\n0 0 0 0 0 0 0 0", "8\n0 0 0 0 0 0 0 0"], "outputs": ["2 1 0 1 0 0 1 2 3 ", "0 1 2 3 4 ", "2 1 0 1 2 3 4 ", "0 ", "0 0 ", "0 1 ", "1 0 ", "0 1 2 3 4 ", "2 1 0 1 2 ", "4 3 2 1 0 ", "14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ", "0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 ", "6 5 4 3 2 1 0 1 1 0 0 1 1 0 1 ", "11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 ", "0 0 1 0 ", "4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 ", "0 1 ", "0 1 2 1 0 ", "0 0 0 1 0 ", "0 0 1 ", "0 1 2 ", "0 1 2 3 4 5 5 4 3 2 1 0 ", "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ", "0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ", "0 ", "0 ", "0 ", "0 1 ", "0 1 ", "1 0 ", "0 0 ", "0 0 ", "0 0 ", "0 1 2 ", "0 1 2 ", "2 1 0 ", "0 0 1 ", "0 1 0 ", "1 0 0 ", "0 0 0 ", "0 0 0 ", "0 0 0 ", "0 1 2 3 ", "2 1 0 1 ", "3 2 1 0 ", "0 0 1 2 ", "0 0 1 2 ", "2 1 0 0 ", "0 0 0 1 ", "1 0 0 0 ", "1 0 0 0 ", "0 0 0 0 ", "0 0 0 0 ", "0 0 0 0 ", "0 1 2 3 4 ", "4 3 2 1 0 ", "4 3 2 1 0 ", "0 0 1 2 3 ", "1 0 1 0 1 ", "3 2 1 0 0 ", "0 0 0 1 2 ", "2 1 0 0 0 ", "2 1 0 0 0 ", "0 0 0 0 1 ", "0 0 1 0 0 ", "1 0 0 0 0 ", "0 0 0 0 0 ", "0 0 0 0 0 ", "0 0 0 0 0 ", "0 1 2 3 4 5 ", "5 4 3 2 1 0 ", "5 4 3 2 1 0 ", "0 0 1 2 3 4 ", "0 0 1 2 3 4 ", "4 3 2 1 0 0 ", "0 0 0 1 2 3 ", "3 2 1 0 0 0 ", "3 2 1 0 0 0 ", "0 0 0 0 1 2 ", "0 0 0 1 1 0 ", "2 1 0 0 0 0 ", "0 0 0 0 0 1 ", "0 0 0 1 0 0 ", "1 0 0 0 0 0 ", "0 0 0 0 0 0 ", "0 0 0 0 0 0 ", "0 0 0 0 0 0 ", "0 1 2 3 4 5 6 ", "3 2 1 0 1 2 3 ", "6 5 4 3 2 1 0 ", "0 0 1 2 3 4 5 ", "0 1 2 3 2 1 0 ", "5 4 3 2 1 0 0 ", "0 0 0 1 2 3 4 ", "1 0 0 1 0 1 2 ", "4 3 2 1 0 0 0 ", "0 0 0 0 1 2 3 ", "0 1 0 0 0 1 2 ", "3 2 1 0 0 0 0 ", "0 0 0 0 0 1 2 ", "0 1 0 0 0 0 1 ", "2 1 0 0 0 0 0 ", "0 0 0 0 0 0 1 ", "0 0 0 0 0 1 0 ", "1 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 ", "0 1 2 3 4 5 6 7 ", "0 1 2 3 4 5 6 7 ", "7 6 5 4 3 2 1 0 ", "0 0 1 2 3 4 5 6 ", "1 0 0 1 2 3 4 5 ", "6 5 4 3 2 1 0 0 ", "0 0 0 1 2 3 4 5 ", "1 0 0 1 1 0 1 2 ", "5 4 3 2 1 0 0 0 ", "0 0 0 0 1 2 3 4 ", "1 0 1 1 0 1 0 0 ", "4 3 2 1 0 0 0 0 ", "0 0 0 0 0 1 2 3 ", "1 0 1 0 0 1 0 0 ", "3 2 1 0 0 0 0 0 ", "0 0 0 0 0 0 1 2 ", "0 0 0 1 1 0 0 0 ", "2 1 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 1 ", "0 1 0 0 0 0 0 0 ", "1 0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 ", "0 0 0 0 0 0 0 0 "]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
109
codeforces
e1c5ad14b20dbf5c26e55715bcabf8fe
Blog Photo
One popular blog site edits the uploaded photos like this. It cuts a rectangular area out of them so that the ratio of height to width (i.e. the *height*<=/<=*width* quotient) can vary from 0.8 to 1.25 inclusively. Besides, at least one side of the cut area should have a size, equal to some power of number 2 (2*x* for some integer *x*). If those rules don't indicate the size of the cut are clearly, then the way with which the cut part possesses the largest area is chosen. Of course, both sides of the cut area should be integer. If there are several answers to this problem, you should choose the answer with the maximal height. The first line contains a pair of integers *h* and *w* (1<=≤<=*h*,<=*w*<=≤<=109) which are the height and width of the uploaded photo in pixels. Print two integers which are the height and width of the cut area. Sample Input 2 1 2 2 5 5 Sample Output 1 1 2 2 5 4
{"inputs": ["2 1", "2 2", "5 5", "9 10", "15 13", "47 46", "99 100", "939 887", "4774 4806", "39271 49032", "483242 484564", "4939191 4587461", "9909199 9945873", "49829224 49889315", "49728622 49605627", "49934587 49239195", "48298903 49928606", "49874820 49474021", "48945079 49798393", "99692141 99232337", "998557701 924591072", "644590722 593296648", "792322809 775058858", "971840165 826141527", "944976601 976175854", "1000000000 1000000000"], "outputs": ["1 1", "2 2", "5 4", "8 10", "10 8", "40 32", "80 64", "640 512", "4096 4806", "32768 40960", "327680 262144", "4939191 4194304", "8388608 9945873", "41943040 33554432", "41943040 33554432", "41943040 33554432", "41943040 33554432", "41943040 33554432", "41943040 33554432", "83886080 67108864", "671088640 536870912", "644590722 536870912", "671088640 536870912", "671088640 536870912", "671088640 536870912", "671088640 536870912"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
15
codeforces
e1c6638094e6ffa59cfa504b3bf9c472
Year of University Entrance
There is the faculty of Computer Science in Berland. In the social net "TheContact!" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university. Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than *x* from the year of university entrance of this student, where *x* — some non-negative integer. A value *x* is not given, but it can be uniquely determined from the available data. Note that students don't join other groups. You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance. The first line contains the positive odd integer *n* (1<=≤<=*n*<=≤<=5) — the number of groups which Igor joined. The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (2010<=≤<=*a**i*<=≤<=2100) — years of student's university entrance for each group in which Igor is the member. It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly. Print the year of Igor's university entrance. Sample Input 3 2014 2016 2015 1 2050 Sample Output 2015 2050
{"inputs": ["3\n2014 2016 2015", "1\n2050", "1\n2010", "1\n2011", "3\n2010 2011 2012", "3\n2049 2047 2048", "5\n2043 2042 2041 2044 2040", "5\n2012 2013 2014 2015 2016", "1\n2045", "1\n2046", "1\n2099", "1\n2100", "3\n2011 2010 2012", "3\n2011 2012 2010", "3\n2012 2011 2010", "3\n2010 2012 2011", "3\n2012 2010 2011", "3\n2047 2048 2049", "3\n2047 2049 2048", "3\n2048 2047 2049", "3\n2048 2049 2047", "3\n2049 2048 2047", "5\n2011 2014 2012 2013 2010", "5\n2014 2013 2011 2012 2015", "5\n2021 2023 2024 2020 2022", "5\n2081 2079 2078 2080 2077", "5\n2095 2099 2097 2096 2098", "5\n2097 2099 2100 2098 2096", "5\n2012 2010 2014 2011 2013", "5\n2012 2011 2013 2015 2014", "5\n2023 2024 2022 2021 2020", "5\n2077 2078 2080 2079 2081", "5\n2099 2096 2095 2097 2098", "5\n2097 2100 2098 2096 2099", "5\n2011 2014 2013 2010 2012", "5\n2013 2011 2015 2012 2014", "5\n2024 2020 2021 2023 2022", "5\n2079 2080 2077 2081 2078", "5\n2095 2097 2096 2098 2099", "5\n2099 2096 2100 2097 2098", "5\n2034 2033 2036 2032 2035", "5\n2030 2031 2033 2032 2029", "5\n2093 2092 2094 2096 2095", "5\n2012 2015 2014 2013 2011", "5\n2056 2057 2058 2059 2060"], "outputs": ["2015", "2050", "2010", "2011", "2011", "2048", "2042", "2014", "2045", "2046", "2099", "2100", "2011", "2011", "2011", "2011", "2011", "2048", "2048", "2048", "2048", "2048", "2012", "2013", "2022", "2079", "2097", "2098", "2012", "2013", "2022", "2079", "2097", "2098", "2012", "2013", "2022", "2079", "2097", "2098", "2034", "2031", "2094", "2013", "2058"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
202
codeforces
e1d1777c58d7782a80342ff92b03a1c9
Zublicanes and Mumocrates
It's election time in Berland. The favorites are of course parties of zublicanes and mumocrates. The election campaigns of both parties include numerous demonstrations on *n* main squares of the capital of Berland. Each of the *n* squares certainly can have demonstrations of only one party, otherwise it could lead to riots. On the other hand, both parties have applied to host a huge number of demonstrations, so that on all squares demonstrations must be held. Now the capital management will distribute the area between the two parties. Some pairs of squares are connected by (*n*<=-<=1) bidirectional roads such that between any pair of squares there is a unique way to get from one square to another. Some squares are on the outskirts of the capital meaning that they are connected by a road with only one other square, such squares are called dead end squares. The mayor of the capital instructed to distribute all the squares between the parties so that the dead end squares had the same number of demonstrations of the first and the second party. It is guaranteed that the number of dead end squares of the city is even. To prevent possible conflicts between the zublicanes and the mumocrates it was decided to minimize the number of roads connecting the squares with the distinct parties. You, as a developer of the department of distributing squares, should determine this smallest number. The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of squares in the capital of Berland. Next *n*<=-<=1 lines contain the pairs of integers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=*n*,<=*x*<=≠<=*y*) — the numbers of the squares connected by the road. All squares are numbered with integers from 1 to *n*. It is guaranteed that the number of dead end squares of the city is even. Print a single number — the minimum number of roads connecting the squares with demonstrations of different parties. Sample Input 8 1 4 2 4 3 4 6 5 7 5 8 5 4 5 5 1 2 1 3 1 4 1 5 Sample Output 1 2
{"inputs": ["8\n1 4\n2 4\n3 4\n6 5\n7 5\n8 5\n4 5", "5\n1 2\n1 3\n1 4\n1 5", "11\n1 7\n2 1\n2 9\n6 2\n7 10\n1 3\n5 2\n3 8\n8 11\n2 4", "20\n2 18\n15 18\n18 4\n4 20\n20 6\n8 6\n1 8\n9 6\n11 9\n11 12\n19 4\n3 9\n9 7\n7 13\n10 3\n16 20\n1 5\n5 17\n10 14", "11\n9 2\n9 4\n8 9\n7 9\n3 9\n5 9\n6 9\n10 9\n1 9\n11 9", "15\n4 12\n1 12\n1 6\n9 1\n7 4\n12 5\n15 9\n11 1\n13 9\n14 9\n9 2\n3 5\n10 2\n3 8", "16\n15 6\n5 9\n3 15\n9 11\n7 15\n1 2\n14 6\n8 9\n14 12\n10 16\n3 13\n8 1\n3 1\n9 4\n10 1", "17\n15 6\n2 8\n15 2\n8 3\n16 4\n13 7\n11 5\n10 1\n2 12\n16 8\n12 9\n11 8\n1 8\n5 17\n13 11\n14 13", "18\n5 7\n3 9\n16 17\n18 13\n3 15\n3 18\n17 11\n12 8\n1 2\n5 16\n17 4\n1 4\n8 1\n6 5\n4 18\n10 5\n14 17", "19\n3 19\n13 19\n11 6\n15 19\n7 14\n12 18\n8 16\n7 4\n11 12\n7 10\n11 14\n2 17\n9 7\n3 11\n2 7\n1 7\n16 2\n5 17", "21\n3 19\n3 17\n4 3\n11 3\n3 16\n8 3\n7 3\n3 21\n3 9\n13 3\n18 3\n12 3\n3 1\n10 3\n3 5\n3 20\n3 14\n3 2\n6 3\n3 15", "21\n7 8\n20 7\n7 6\n14 7\n3 7\n7 19\n7 9\n2 7\n4 7\n16 7\n7 5\n7 13\n7 10\n15 7\n7 11\n7 17\n7 21\n18 7\n7 1\n7 12", "23\n3 9\n9 15\n9 19\n10 9\n9 4\n9 8\n1 9\n9 6\n9 21\n9 18\n20 9\n9 13\n9 23\n14 9\n5 9\n12 9\n9 16\n2 9\n11 9\n17 9\n7 9\n22 9", "23\n15 6\n15 23\n15 10\n11 15\n15 19\n15 7\n12 15\n15 8\n4 15\n22 15\n20 15\n17 15\n3 15\n15 13\n21 15\n15 16\n9 15\n5 15\n14 15\n1 15\n15 18\n2 15"], "outputs": ["1", "2", "2", "1", "5", "1", "2", "2", "1", "2", "10", "10", "11", "11"]}
UNKNOWN
[ "PYTHON3" ]
CODEFORCES
1
codeforces