code
stringlengths
141
79.4k
apis
sequencelengths
1
23
extract_api
stringlengths
126
73.2k
import os try: from genai.credentials import Credentials from genai.schemas import GenerateParams from genai.extensions.langchain import LangChainInterface from langchain import PromptTemplate from langchain.chains import LLMChain, SimpleSequentialChain except ImportError: raise ImportError("Could not import langchain: Please install ibm-generative-ai[langchain] extension.") """ pip install "ibm-generative-ai[langchain]" """ # make sure you have a .env file under genai root with api_key = os.getenv("GENAI_KEY", None) api_url = os.getenv("GENAI_API", None) # create creds for watsonx.ai models creds = Credentials(api_key, api_endpoint=api_url) params = GenerateParams(decoding_method="greedy", min_new_tokens=3, max_new_tokens=300) #params = GenerateParams(decoding_method="greedy") llmp = LangChainInterface(model="ibm/granite-13b-sft", params=params, credentials=creds) # This is a simple example of a zero shot prompt print(f"******************************************************") print(f" ") print(f"This is a simple zero shot prompt") print(f" ") print(f"******************************************************") print(f" ") print(f" ") print(llmp("Explain Mortgage backed securities in one sentence")) """ Implement a Prompt PromptTemplate """ print(f" ") print(f" ") print(f"******************************************************") print(f" ") print(f"This is a sample using a Prompt Template") print(f" ") print(f"******************************************************") print(f" ") print(f" ") template = """ You are a mortgage broker with exertise in financial product. Explain the concept of {concept} in a paragraph. """ promptp = PromptTemplate(input_variables=["concept"],template=template,) #print(promptp) conceptp = "closing costs" print(llmp(promptp.format(concept=conceptp))) """ Implement Chains: In this section I am taking the initial prompt response and then asking the model to update the response. """ print(f"******************************************************") print(f" ") print(f" ") print(f"This is an example of chaining 2 prompts together to have the second prompt work in the repsonse of the first prompt. We will be using the first Prompt template from above to feed the second Prompt Template, using a Simple Sequence Chain.") print(f" ") print(f" ") print(f"******************************************************") print(f" ") print(f" ") #print(promptp) chain = LLMChain(llm=llmp, prompt=promptp) #print(chain.run(conceptp)) second_prompt = PromptTemplate( input_variables=["ml_concept"], template="Turn this financial description {ml_concept} and explain in techncial terms") chain_two = LLMChain(llm=llmp, prompt=second_prompt) overall_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True) explanation = overall_chain.run(conceptp) print(explanation)
[ "langchain.chains.LLMChain", "langchain.chains.SimpleSequentialChain", "langchain.PromptTemplate" ]
[((520, 548), 'os.getenv', 'os.getenv', (['"""GENAI_KEY"""', 'None'], {}), "('GENAI_KEY', None)\n", (529, 548), False, 'import os\n'), ((559, 587), 'os.getenv', 'os.getenv', (['"""GENAI_API"""', 'None'], {}), "('GENAI_API', None)\n", (568, 587), False, 'import os\n'), ((634, 676), 'genai.credentials.Credentials', 'Credentials', (['api_key'], {'api_endpoint': 'api_url'}), '(api_key, api_endpoint=api_url)\n', (645, 676), False, 'from genai.credentials import Credentials\n'), ((686, 764), 'genai.schemas.GenerateParams', 'GenerateParams', ([], {'decoding_method': '"""greedy"""', 'min_new_tokens': '(3)', 'max_new_tokens': '(300)'}), "(decoding_method='greedy', min_new_tokens=3, max_new_tokens=300)\n", (700, 764), False, 'from genai.schemas import GenerateParams\n'), ((823, 909), 'genai.extensions.langchain.LangChainInterface', 'LangChainInterface', ([], {'model': '"""ibm/granite-13b-sft"""', 'params': 'params', 'credentials': 'creds'}), "(model='ibm/granite-13b-sft', params=params, credentials=\n creds)\n", (841, 909), False, 'from genai.extensions.langchain import LangChainInterface\n'), ((1698, 1760), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['concept']", 'template': 'template'}), "(input_variables=['concept'], template=template)\n", (1712, 1760), False, 'from langchain import PromptTemplate\n'), ((2476, 2510), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llmp', 'prompt': 'promptp'}), '(llm=llmp, prompt=promptp)\n', (2484, 2510), False, 'from langchain.chains import LLMChain, SimpleSequentialChain\n'), ((2556, 2700), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['ml_concept']", 'template': '"""Turn this financial description {ml_concept} and explain in techncial terms"""'}), "(input_variables=['ml_concept'], template=\n 'Turn this financial description {ml_concept} and explain in techncial terms'\n )\n", (2570, 2700), False, 'from langchain import PromptTemplate\n'), ((2713, 2753), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llmp', 'prompt': 'second_prompt'}), '(llm=llmp, prompt=second_prompt)\n', (2721, 2753), False, 'from langchain.chains import LLMChain, SimpleSequentialChain\n'), ((2770, 2832), 'langchain.chains.SimpleSequentialChain', 'SimpleSequentialChain', ([], {'chains': '[chain, chain_two]', 'verbose': '(True)'}), '(chains=[chain, chain_two], verbose=True)\n', (2791, 2832), False, 'from langchain.chains import LLMChain, SimpleSequentialChain\n')]
#%% Import Flask and create an app object import config from dotenv import load_dotenv load_dotenv() import os import json import asyncio import openai import pprint as pp import markdown # openai.api_key = os.getenv("OPENAI_API_KEY") # os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") # Import Flask and create an app object from flask import Flask, render_template, request, jsonify app = Flask(__name__) # Import asyncio and the async_playwright module from Playwright import asyncio from playwright.async_api import async_playwright # Import LangChain and other modules import langchain from langchain.agents import AgentType from langchain.chat_models import ChatOpenAI from langchain.agents import initialize_agent, load_tools from langchain.agents.agent_toolkits import PlayWrightBrowserToolkit from langchain.tools.playwright.utils import ( create_async_playwright_browser, create_sync_playwright_browser, # A synchronous browser is available, though it isn't compatible with jupyter. ) # This import is required only for jupyter notebooks, since they have their own eventloop # import nest_asyncio # nest_asyncio.apply() #%% Agent def get_agent(): # LLM using ChatOpenAI llm = ChatOpenAI(model_name="gpt-4", temperature=0) # Also works well with Anthropic models # Get the tools from the toolkit tools = load_tools(["serpapi"], llm=llm) # Create an agent using ChatOpenAI and initialize it with tools and handle_parsing_errors=True agent_chain = initialize_agent( tools=tools, llm=llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, handle_parsing_errors=True ) # agent_chain = get_agent() #%% @app.route("/") def home(): # Use some initial chat history (empty, in this case) chat_history = [] return render_template("chat.html", chat_history=chat_history) @app.route("/respond") def respond(): """ Create another route for your chatbot logic """ print("\nrespond::start:") # Get the user message and the chat history from the interface message = request.args.get("message") print(f" respond::message: {message}") # Parse the chat history as a JSON object chat_history = json.loads(request.args.get("chat_history", "[]")) print(f" respond::chat_history: {chat_history}") # Run your main coroutine that handles the chatbot logic # response = asyncio.run(main(message, chat_history)) chat_history = main(message, chat_history) response = jsonify({"chat_history": chat_history}) print("\nrespond::return:") print(f" respond::chat_history: {chat_history}") # print response to console as json pp.pprint(response.json) # Return the response as a JSON string return response def main(message, chat_history): """ Define your main coroutine that handles the chatbot logic """ print("\nmain::start:") print(f" main::message: {message}") print(f" main::chat_history: {chat_history}") # Run your agent chain with the user message as input and get the bot message as output bot_message = "I'm a STICK!!!\n\n```python\nprint('Hello World')\n```" # Convert bot_message to HTML bot_message_html = markdown.markdown(bot_message) # Append the user message and the bot message to the chat history chat_history[-1][1] = bot_message_html print("\nmain::return:") print(f" main::bot_message: {bot_message}") print(f" main::bot_message_html: {bot_message_html}") print(f" main::chat_history: {chat_history}") # Return the updated chat history as a string return chat_history # def main(message, chat_history): # """ Define your main coroutine that handles the chatbot logic # """ # print("\nmain::start:") # print(f" main::message: {message}") # print(f" main::chat_history: {chat_history}") # # Run your agent chain with the user message as input and get the bot message as output # # bot_message = "I'm a STICK!!!\n\n```python\nprint('Hello World')\n```" # agent_chain.run(input=message) # bot_message = "I'm a STICK!!!<br><br><pre><code>print('Hello World')</code></pre>" # print("\nmain::return:") # print(f" main::bot_message: {bot_message}") # # Append the user message and the bot message to the chat history # chat_history[-1][1] = bot_message # print(f" main::chat_history: {chat_history}") # # Return the updated chat history as a string # return chat_history async def amain(message, chat_history): """ Define your main coroutine that handles the chatbot logic """ # Create one event loop before creating the tools loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Use async with to create and close the async browser automatically async with async_playwright() as playwright: # Use await to launch a Chromium browser asynchronously browser = await playwright.chromium.launch() # Create a PlayWrightBrowserToolkit from the browser browser_toolkit = PlayWrightBrowserToolkit.from_browser(async_browser=browser) # Get the tools from the toolkit tools = browser_toolkit.get_tools() # Create an agent using ChatOpenAI and initialize it with tools and handle_parsing_errors=True llm = ChatOpenAI(model_name="gpt-4", temperature=0) # Also works well with Anthropic models agent_chain = initialize_agent( tools=tools, llm=llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, handle_parsing_errors=True ) # Run your agent chain with the user message as input and get the bot message as output bot_message = await agent_chain.arun(input=message) # Append the user message and the bot message to the chat history chat_history.append((message, bot_message)) # Return the updated chat history as a string return str(chat_history) # Run your Flask app with app.run() if __name__ == "__main__": app.run( host="localhost", port=None, debug=True, load_dotenv=True, )
[ "langchain.agents.initialize_agent", "langchain.agents.agent_toolkits.PlayWrightBrowserToolkit.from_browser", "langchain.agents.load_tools", "langchain.chat_models.ChatOpenAI" ]
[((87, 100), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (98, 100), False, 'from dotenv import load_dotenv\n'), ((403, 418), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (408, 418), False, 'from flask import Flask, render_template, request, jsonify\n'), ((1220, 1265), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (1230, 1265), False, 'from langchain.chat_models import ChatOpenAI\n'), ((1356, 1388), 'langchain.agents.load_tools', 'load_tools', (["['serpapi']"], {'llm': 'llm'}), "(['serpapi'], llm=llm)\n", (1366, 1388), False, 'from langchain.agents import initialize_agent, load_tools\n'), ((1506, 1656), 'langchain.agents.initialize_agent', 'initialize_agent', ([], {'tools': 'tools', 'llm': 'llm', 'agent': 'AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)', 'handle_parsing_errors': '(True)'}), '(tools=tools, llm=llm, agent=AgentType.\n STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True,\n handle_parsing_errors=True)\n', (1522, 1656), False, 'from langchain.agents import initialize_agent, load_tools\n'), ((1848, 1903), 'flask.render_template', 'render_template', (['"""chat.html"""'], {'chat_history': 'chat_history'}), "('chat.html', chat_history=chat_history)\n", (1863, 1903), False, 'from flask import Flask, render_template, request, jsonify\n'), ((2116, 2143), 'flask.request.args.get', 'request.args.get', (['"""message"""'], {}), "('message')\n", (2132, 2143), False, 'from flask import Flask, render_template, request, jsonify\n'), ((2539, 2578), 'flask.jsonify', 'jsonify', (["{'chat_history': chat_history}"], {}), "({'chat_history': chat_history})\n", (2546, 2578), False, 'from flask import Flask, render_template, request, jsonify\n'), ((2709, 2733), 'pprint.pprint', 'pp.pprint', (['response.json'], {}), '(response.json)\n', (2718, 2733), True, 'import pprint as pp\n'), ((3251, 3281), 'markdown.markdown', 'markdown.markdown', (['bot_message'], {}), '(bot_message)\n', (3268, 3281), False, 'import markdown\n'), ((4710, 4734), 'asyncio.new_event_loop', 'asyncio.new_event_loop', ([], {}), '()\n', (4732, 4734), False, 'import asyncio\n'), ((4739, 4767), 'asyncio.set_event_loop', 'asyncio.set_event_loop', (['loop'], {}), '(loop)\n', (4761, 4767), False, 'import asyncio\n'), ((2264, 2302), 'flask.request.args.get', 'request.args.get', (['"""chat_history"""', '"""[]"""'], {}), "('chat_history', '[]')\n", (2280, 2302), False, 'from flask import Flask, render_template, request, jsonify\n'), ((4857, 4875), 'playwright.async_api.async_playwright', 'async_playwright', ([], {}), '()\n', (4873, 4875), False, 'from playwright.async_api import async_playwright\n'), ((5095, 5155), 'langchain.agents.agent_toolkits.PlayWrightBrowserToolkit.from_browser', 'PlayWrightBrowserToolkit.from_browser', ([], {'async_browser': 'browser'}), '(async_browser=browser)\n', (5132, 5155), False, 'from langchain.agents.agent_toolkits import PlayWrightBrowserToolkit\n'), ((5359, 5404), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model_name': '"""gpt-4"""', 'temperature': '(0)'}), "(model_name='gpt-4', temperature=0)\n", (5369, 5404), False, 'from langchain.chat_models import ChatOpenAI\n'), ((5468, 5618), 'langchain.agents.initialize_agent', 'initialize_agent', ([], {'tools': 'tools', 'llm': 'llm', 'agent': 'AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)', 'handle_parsing_errors': '(True)'}), '(tools=tools, llm=llm, agent=AgentType.\n STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True,\n handle_parsing_errors=True)\n', (5484, 5618), False, 'from langchain.agents import initialize_agent, load_tools\n')]
import langchain_helper as lch import streamlit as st st.title("Pet Name Generator") pet_type = st.sidebar.selectbox("What is your pet?", ("dog", "cat", "bird", "fish", "reptile")) if pet_type: names_count = st.sidebar.slider("How many names do you want to generate?", 1, 10, 1) if pet_type and names_count and st.button("Generate"): response = lch.generate_pet_name(pet_type, names_count) st.text(response["text"]) st.text("Powered by OpenAI's GPT-3.5")
[ "langchain_helper.generate_pet_name" ]
[((55, 85), 'streamlit.title', 'st.title', (['"""Pet Name Generator"""'], {}), "('Pet Name Generator')\n", (63, 85), True, 'import streamlit as st\n'), ((98, 186), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""What is your pet?"""', "('dog', 'cat', 'bird', 'fish', 'reptile')"], {}), "('What is your pet?', ('dog', 'cat', 'bird', 'fish',\n 'reptile'))\n", (118, 186), True, 'import streamlit as st\n'), ((215, 285), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""How many names do you want to generate?"""', '(1)', '(10)', '(1)'], {}), "('How many names do you want to generate?', 1, 10, 1)\n", (232, 285), True, 'import streamlit as st\n'), ((319, 340), 'streamlit.button', 'st.button', (['"""Generate"""'], {}), "('Generate')\n", (328, 340), True, 'import streamlit as st\n'), ((357, 401), 'langchain_helper.generate_pet_name', 'lch.generate_pet_name', (['pet_type', 'names_count'], {}), '(pet_type, names_count)\n', (378, 401), True, 'import langchain_helper as lch\n'), ((406, 431), 'streamlit.text', 'st.text', (["response['text']"], {}), "(response['text'])\n", (413, 431), True, 'import streamlit as st\n'), ((436, 474), 'streamlit.text', 'st.text', (['"""Powered by OpenAI\'s GPT-3.5"""'], {}), '("Powered by OpenAI\'s GPT-3.5")\n', (443, 474), True, 'import streamlit as st\n')]
import torch from langchain.llms.base import LLM from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index import LangchainEmbedding from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, GPTSimpleVectorIndex from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig hf_model_path = "models/llama-7b" alpaca_model_path = "models/lora-alpaca" tokenizer = LlamaTokenizer.from_pretrained(hf_model_path) model = LlamaForCausalLM.from_pretrained( hf_model_path, load_in_8bit=True, #Dissabling could solve some errors device_map="auto", ) model = PeftModel.from_pretrained(model, alpaca_model_path) device = torch.device("cuda") if torch.cuda.is_available() else "cpu" max_length = 1500 #2048 max_new_tokens = 48 class LLaMALLM(LLM): def _call(self, prompt, stop=None): prompt += "### Response:" inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_config = GenerationConfig( temperature=0.6, top_p=0.95, repetition_penalty=1.15, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=128, ) response = "" for s in generation_output.sequences: response += tokenizer.decode(s) response = response[len(prompt):] print("Model Response:", response) return response def _identifying_params(self): return {"name_of_model": "alpaca"} def _llm_type(self): return "custom" max_input_size = max_length num_output = max_new_tokens max_chunk_overlap = 20 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) embed_model = LangchainEmbedding(HuggingFaceEmbeddings()) documents = SimpleDirectoryReader('data').load_data() llm_predictor = LLMPredictor(llm=LLaMALLM()) index = GPTSimpleVectorIndex(documents, llm_predictor=llm_predictor, embed_model=embed_model, prompt_helper=prompt_helper) index.save_to_disk('index.json') new_index = GPTSimpleVectorIndex.load_from_disk('index.json', embed_model=embed_model, llm_predictor=llm_predictor, prompt_helper=prompt_helper) response = new_index.query("What did Gatsby do before he met Daisy?") print(response.response) response = new_index.query("What did the narrator do after getting back to Chicago?") print(response.response)
[ "langchain.embeddings.huggingface.HuggingFaceEmbeddings" ]
[((460, 505), 'transformers.LlamaTokenizer.from_pretrained', 'LlamaTokenizer.from_pretrained', (['hf_model_path'], {}), '(hf_model_path)\n', (490, 505), False, 'from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig\n'), ((517, 606), 'transformers.LlamaForCausalLM.from_pretrained', 'LlamaForCausalLM.from_pretrained', (['hf_model_path'], {'load_in_8bit': '(True)', 'device_map': '"""auto"""'}), "(hf_model_path, load_in_8bit=True,\n device_map='auto')\n", (549, 606), False, 'from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig\n'), ((667, 718), 'peft.PeftModel.from_pretrained', 'PeftModel.from_pretrained', (['model', 'alpaca_model_path'], {}), '(model, alpaca_model_path)\n', (692, 718), False, 'from peft import PeftModel\n'), ((1997, 2056), 'llama_index.PromptHelper', 'PromptHelper', (['max_input_size', 'num_output', 'max_chunk_overlap'], {}), '(max_input_size, num_output, max_chunk_overlap)\n', (2009, 2056), False, 'from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, GPTSimpleVectorIndex\n'), ((2226, 2345), 'llama_index.GPTSimpleVectorIndex', 'GPTSimpleVectorIndex', (['documents'], {'llm_predictor': 'llm_predictor', 'embed_model': 'embed_model', 'prompt_helper': 'prompt_helper'}), '(documents, llm_predictor=llm_predictor, embed_model=\n embed_model, prompt_helper=prompt_helper)\n', (2246, 2345), False, 'from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, GPTSimpleVectorIndex\n'), ((2390, 2526), 'llama_index.GPTSimpleVectorIndex.load_from_disk', 'GPTSimpleVectorIndex.load_from_disk', (['"""index.json"""'], {'embed_model': 'embed_model', 'llm_predictor': 'llm_predictor', 'prompt_helper': 'prompt_helper'}), "('index.json', embed_model=embed_model,\n llm_predictor=llm_predictor, prompt_helper=prompt_helper)\n", (2425, 2526), False, 'from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, GPTSimpleVectorIndex\n'), ((757, 782), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (780, 782), False, 'import torch\n'), ((733, 753), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (745, 753), False, 'import torch\n'), ((2091, 2114), 'langchain.embeddings.huggingface.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {}), '()\n', (2112, 2114), False, 'from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n'), ((1088, 1158), 'transformers.GenerationConfig', 'GenerationConfig', ([], {'temperature': '(0.6)', 'top_p': '(0.95)', 'repetition_penalty': '(1.15)'}), '(temperature=0.6, top_p=0.95, repetition_penalty=1.15)\n', (1104, 1158), False, 'from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig\n'), ((2129, 2158), 'llama_index.SimpleDirectoryReader', 'SimpleDirectoryReader', (['"""data"""'], {}), "('data')\n", (2150, 2158), False, 'from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, GPTSimpleVectorIndex\n'), ((1224, 1239), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1237, 1239), False, 'import torch\n')]
import streamlit as st import pandas as pd import time import gcsfs import asyncio import os import chromadb from chromadb.utils import embedding_functions import langchain from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from langchain.chains import LLMChain from langchain.vectorstores import Chroma import ast # Import the ast module for literal evaluation # SINGLE RESPONSE GENERATION async def get_email_response_personalized(sender_id, replier_id, sender_email, email_retrieval_dataset, num_emails, vector_db_client, llm_endpoint, template_string): # First getting retrieved emails to understand conversation -------- sender_replier_id='-'.join([sender_id, replier_id]) previous_emails=(email_retrieval_dataset[email_retrieval_dataset.sender_replier_thread==sender_replier_id]['Sender_Receiver_Emails_list']).to_list()[0][-num_emails:] # Second, getting ranked responses as per context ------------------ # Building the Langchain vectorstore using chroma collections user_vector_store = Chroma( client=vector_db_client, collection_name='user'+str(replier_id), embedding_function=OpenAIEmbeddings()) # Getting ranked responses using MMR found_rel_emails = await user_vector_store.amax_marginal_relevance_search(sender_email, k=num_emails, fetch_k=num_emails) list_rel_emails=[] for i, doc in enumerate(found_rel_emails): list_rel_emails.append(doc.page_content) # Setting up LangChain prompt_template = ChatPromptTemplate.from_template(template=template_string) llm_chain=LLMChain(llm=llm_endpoint, prompt=prompt_template) return llm_chain.run(sender_email=sender_email, prev_emails=previous_emails, relevant_emails=list_rel_emails) async def main(): await get_email_response_personalized() # https://medium.com/@faizififita1/how-to-deploy-your-streamlit-web-app-to-google-cloud-run-ba776487c5fe # gcloud builds submit --tag gcr.io/msca310019-capstone-49b3/streamlit-app os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "credentials/msca310019-capstone-49b3-af1bf51fb3e1.json" # Create a GCS filesystem instance fs = gcsfs.GCSFileSystem(project='msca310019-capstone-49b3') # Define the path to your CSV file in the GCS bucket file_path = 'user-scripts-msca310019-capstone-49b3/data/20231026_Emails_Deduped.csv' # Read the CSV file from Google Cloud Storage with fs.open(file_path, 'rb') as file: # Use Pandas to read the CSV content into a DataFrame df_messages_deduped = pd.read_csv(file) df_messages_deduped['Sender_Receiver_Emails_list'] = df_messages_deduped['Sender_Receiver_Emails'].apply(lambda x: ast.literal_eval(x) if pd.notna(x) else []) # Find senders with more than 10 rows repliers_with_more_than_10_rows = df_messages_deduped['reply_sender'].value_counts()[df_messages_deduped['reply_sender'].value_counts() > 10].index # Filter the DataFrame to include only the rows with those senders df_messages_deduped = df_messages_deduped[df_messages_deduped['reply_sender'].isin(repliers_with_more_than_10_rows)] # users_more_than_50 = pd.read_csv('users_more_than_50.csv') # # Define the path to your CSV file in the GCS bucket # data_path = 'user-scripts-msca310019-capstone-49b3/data/data_message_reply_pairs_cleaned.csv' # # Read the CSV file from Google Cloud Storage # with fs.open(data_path, 'rb') as file: # # Use Pandas to read the CSV content into a DataFrame # data = pd.read_csv(file) # data = pd.read_csv('/Users/scottsmacbook/Hedwig/Hedwig/00_Data/data_data_message_reply_pairs_cleaned.csv') # Define a function to generate a random email and its sender ID def generate_random_email(): st.session_state.random_email = df_messages_deduped.sample(n=1) # # Define a function to type out a string letter by letter def type_string(text): t = st.empty() for i in range(len(text) + 1): t.markdown("## %s" % text[0:i]) time.sleep(0.005) # # Set the title image path title_image_path = 'Hedwig Logo.jpeg' # Replace with the actual path # # Display the title and image side by side # st.title("Hedwig.AI") col1, mid, col2 = st.columns([1,1,20]) with col1: st.image('Hedwig Logo.jpeg', width=60) with col2: st.title("Hedwig.AI") # st.image(title_image_path, use_column_width=False, width=100) # # Use HTML and CSS to display title and image side by side # st.markdown( # f""" # <div style="display: flex; align-items: center;"> # <h1 style="flex: 1;">Hedwig.AI</h1> # <img src="{title_image_path}" width="100"> # </div> # """, # unsafe_allow_html=True, # ) # Use Streamlit's 'columns' layout to display buttons side by side col1, col2 = st.columns(2) with col1: st.subheader("Incoming Email") with col2: st.subheader("Generated Email") # Button to get a random email if col1.button("Get Random Email Reply Pair"): generate_random_email() if 'random_email' not in st.session_state: generate_random_email() random_email = st.session_state.random_email with col1: st.write(f"Sender ID: {str(list(random_email['sender'])[0])}") # Create a larger text area for user input (e.g., 10 rows) user_input = st.text_area("Enter Email:", height=500) # st.write(f"Email: {user_input}") # Input field for email response # replier_id = st.text_input("Enter your user :") # Button to generate the response if col2.button("Generate Response") and st.session_state.random_email is not None: with col2: st.write(f"Replier ID: {str(list(random_email['reply_sender'])[0])}") # st.write("Response:") random_email = st.session_state.random_email client = chromadb.PersistentClient(path="vectorstores") sender_id = str(list(random_email['sender'])[0]) replier_id = str(list(random_email['reply_sender'])[0]) sender_email = user_input num_emails = 10 #FOR RETRIEVEL + RANKING email_retrieval_dataset = df_messages_deduped # FOR RETRIEVAL DATABASE vector_db_client = client openai_api_key = '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' api_key=openai_api_key llm_model='gpt-3.5-turbo-0301' # CAN CHANGE llm_endpoint=ChatOpenAI(temperature=0.1, model=llm_model, openai_api_key=openai_api_key) # CAN CHANGE template_string="""You are an employee of a company and receiver of this email: {sender_email}, Reply to the email as the receiver, deriving the context from these relevant emails : {relevant_emails} paying attention to and copying the writing style and tone of the receiver's previous emails : {prev_emails} Use salutation and signature similar to previous emails of the user. """ os.environ['OPENAI_API_KEY'] = openai_api_key personalized_response = asyncio.run(get_email_response_personalized(sender_id,replier_id,sender_email,df_messages_deduped, num_emails,client,llm_endpoint,template_string)) st.text_area("Generated Response: ", value=personalized_response, key='response_area', height=500) # type_text_in_textarea(personalized_response)
[ "langchain.chains.LLMChain", "langchain.embeddings.openai.OpenAIEmbeddings", "langchain.prompts.ChatPromptTemplate.from_template", "langchain.chat_models.ChatOpenAI" ]
[((2623, 2678), 'gcsfs.GCSFileSystem', 'gcsfs.GCSFileSystem', ([], {'project': '"""msca310019-capstone-49b3"""'}), "(project='msca310019-capstone-49b3')\n", (2642, 2678), False, 'import gcsfs\n'), ((4609, 4631), 'streamlit.columns', 'st.columns', (['[1, 1, 20]'], {}), '([1, 1, 20])\n', (4619, 4631), True, 'import streamlit as st\n'), ((5175, 5188), 'streamlit.columns', 'st.columns', (['(2)'], {}), '(2)\n', (5185, 5188), True, 'import streamlit as st\n'), ((1987, 2045), 'langchain.prompts.ChatPromptTemplate.from_template', 'ChatPromptTemplate.from_template', ([], {'template': 'template_string'}), '(template=template_string)\n', (2019, 2045), False, 'from langchain.prompts import ChatPromptTemplate\n'), ((2064, 2114), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm_endpoint', 'prompt': 'prompt_template'}), '(llm=llm_endpoint, prompt=prompt_template)\n', (2072, 2114), False, 'from langchain.chains import LLMChain\n'), ((2988, 3005), 'pandas.read_csv', 'pd.read_csv', (['file'], {}), '(file)\n', (2999, 3005), True, 'import pandas as pd\n'), ((4303, 4313), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (4311, 4313), True, 'import streamlit as st\n'), ((4646, 4684), 'streamlit.image', 'st.image', (['"""Hedwig Logo.jpeg"""'], {'width': '(60)'}), "('Hedwig Logo.jpeg', width=60)\n", (4654, 4684), True, 'import streamlit as st\n'), ((4700, 4721), 'streamlit.title', 'st.title', (['"""Hedwig.AI"""'], {}), "('Hedwig.AI')\n", (4708, 4721), True, 'import streamlit as st\n'), ((5205, 5235), 'streamlit.subheader', 'st.subheader', (['"""Incoming Email"""'], {}), "('Incoming Email')\n", (5217, 5235), True, 'import streamlit as st\n'), ((5252, 5283), 'streamlit.subheader', 'st.subheader', (['"""Generated Email"""'], {}), "('Generated Email')\n", (5264, 5283), True, 'import streamlit as st\n'), ((5672, 5712), 'streamlit.text_area', 'st.text_area', (['"""Enter Email:"""'], {'height': '(500)'}), "('Enter Email:', height=500)\n", (5684, 5712), True, 'import streamlit as st\n'), ((4402, 4419), 'time.sleep', 'time.sleep', (['(0.005)'], {}), '(0.005)\n', (4412, 4419), False, 'import time\n'), ((6163, 6209), 'chromadb.PersistentClient', 'chromadb.PersistentClient', ([], {'path': '"""vectorstores"""'}), "(path='vectorstores')\n", (6188, 6209), False, 'import chromadb\n'), ((6731, 6806), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(0.1)', 'model': 'llm_model', 'openai_api_key': 'openai_api_key'}), '(temperature=0.1, model=llm_model, openai_api_key=openai_api_key)\n', (6741, 6806), False, 'from langchain.chat_models import ChatOpenAI\n'), ((7673, 7776), 'streamlit.text_area', 'st.text_area', (['"""Generated Response: """'], {'value': 'personalized_response', 'key': '"""response_area"""', 'height': '(500)'}), "('Generated Response: ', value=personalized_response, key=\n 'response_area', height=500)\n", (7685, 7776), True, 'import streamlit as st\n'), ((1624, 1642), 'langchain.embeddings.openai.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (1640, 1642), False, 'from langchain.embeddings.openai import OpenAIEmbeddings\n'), ((3145, 3156), 'pandas.notna', 'pd.notna', (['x'], {}), '(x)\n', (3153, 3156), True, 'import pandas as pd\n'), ((3122, 3141), 'ast.literal_eval', 'ast.literal_eval', (['x'], {}), '(x)\n', (3138, 3141), False, 'import ast\n')]
import langchain.graphs.neo4j_graph as neo4j_graph import os import sys import ast sys.path.append('backendPython') from llms import * from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) # read local .env file from langchain.chains import LLMChain from langchain.prompts import PromptTemplate, FewShotPromptTemplate from neo4j_dir.entities import get_nodes_chain graph = neo4j_graph.Neo4jGraph( url = os.environ['NEO4J_URI'], username=os.environ['NEO4J_USERNAME'], password=os.environ['NEO4J_PASSWORD'] ) #__________________________________________________________________________________________________ # giving few-shot prompts examples = [ {'Query' : 'name 10 companies which came for cgpa below 7' , 'syntax' : '''MATCH (c:Company)-[Company_to_CGPA]->(cgpa:CGPA) WHERE cgpa.name < 7 RETURN c.name LIMIT 10'''}, {"Query": "The ctc recieved by students for cgpa below 6", "syntax": '''MATCH (cgpa:CGPA)-[CGPA_to_CTC]->(ctc:CTC) WHERE cgpa.name < 6 RETURN ctc '''}, {"Query": "name 10 companies which came for cgpa below 7 and ctc above 20", "syntax" :'''MATCH (company:Company)-[Company_to_CGPA]->(cgpa:CGPA) MATCH (company)-[Company_to_CTC]->(ctc:CTC) WHERE cgpa.name < 7 AND ctc.name > 20 RETURN company LIMIT 10;''' } , { "Query": "minimum cgpa required for ctc above 40" , "syntax" : ''' MATCH (cgpa:CGPA)-[CGPA_to_CTC]->(ctc:CTC) WHERE ctc.name > 20 RETURN MIN(cgpa.name) AS minimum_cgpa; ''' , } , { "Query" :"maximum and minimum cgpa required for ctc above 40" , "syntax" : ''' MATCH (cgpa:CGPA)-[CGPA_to_CTC]->(ctc:CTC)-[CTC_to_Company]->(company:Company) WHERE ctc.name > 40 WITH MIN(cgpa.name) AS minCGPA, MAX(cgpa.name) AS maxCGPA RETURN minCGPA, maxCGPA; ''' } , ] example_formatter_template = """ Query : {Query} Cypher Syntax : {syntax} """ example_prompt = PromptTemplate( input_variables=['Query','syntax'], template=example_formatter_template, ) prefix = ''' You are supposed to convert the following natural query into a cypher query for neo4j database You can refer to below examples for getting idea of how to write cypher query for neo4j database. ''' suffix = ''' create a cypher query for following natural query for neo4j database The query has the following list of nodes : {List_of_nodes} You can create relations between the nodes in following manner : Node1 : Company Node2 : CGPA Relation1 : Company_to_CGPA Relation2 : CGPA_to_Company natural_query : {natural_query} Do not put back-ticks(`) in the output. Use only nodes provided , don't create your new nodes and relations. ''' few_shot_prompt = FewShotPromptTemplate( examples=examples, # prompt template used to format each individual example example_prompt=example_prompt, # prompt template string to put before the examples, assigning roles and rules. prefix=prefix , # prompt template string to put after the examples. suffix=suffix , # input variable to use in the suffix template input_variables=["List_of_nodes" , "natural_query"], example_separator="\n", ) cypher_chain = LLMChain(llm=llm, prompt=few_shot_prompt,verbose=False,) #__________________________________________________________________________________________________ # cypher = cypher_chain.run({"List_of_nodes" :['Company' , 'CGPA'] , 'natural_query':'name 10 companies which came for cgpa below 7'}) # result = graph.query(cypher) # print(result) #__________________________________________________________________________________________________ result_template = ''' You will be provided with the response generated for the given user query. Response : {response} You need to format the respone in html in a conversational way, arrange the response in bulleted points and under major headings if possible. Take care that you do not pollute the data provided in response, by adding your own data. Check that there are no back-ticks(`) in the output. Check that html syntax is correct. ''' result_prompt = PromptTemplate(input_variables=['response'], template=result_template) result_chain = LLMChain(llm=llm, prompt=result_prompt) # print(result_chain.run({'response': result})) # #__________________________________________________________________________________________________ def get_response(query): print('\n\n\n\n', query) li = get_nodes_chain.run(query) print(li) if type(li)==str: li = ast.literal_eval(li) cypher = cypher_chain.run({"List_of_nodes" : li, 'natural_query':query}) print('\n\n\n', cypher,'\n\n\n') result = graph.query(cypher) print('\n\n\n', result) response = result_chain.run({'response': result}) # print('\n\n\n', response) return response # x = get_response('what ctc is offered for cgpa below 7, sort the ctc in descending order') # x = get_response("list companies with ctc above 30") # x= get_response("list companies with ctc above 30 and cgpa below 8") # x = get_response('name 10 companies which offered ctc above 20') # x = get_response('jobProfiles available for cgpa below 7') # print(x)
[ "langchain.chains.LLMChain", "langchain.graphs.neo4j_graph.Neo4jGraph", "langchain.prompts.FewShotPromptTemplate", "langchain.prompts.PromptTemplate" ]
[((83, 115), 'sys.path.append', 'sys.path.append', (['"""backendPython"""'], {}), "('backendPython')\n", (98, 115), False, 'import sys\n'), ((392, 526), 'langchain.graphs.neo4j_graph.Neo4jGraph', 'neo4j_graph.Neo4jGraph', ([], {'url': "os.environ['NEO4J_URI']", 'username': "os.environ['NEO4J_USERNAME']", 'password': "os.environ['NEO4J_PASSWORD']"}), "(url=os.environ['NEO4J_URI'], username=os.environ[\n 'NEO4J_USERNAME'], password=os.environ['NEO4J_PASSWORD'])\n", (414, 526), True, 'import langchain.graphs.neo4j_graph as neo4j_graph\n'), ((2133, 2226), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['Query', 'syntax']", 'template': 'example_formatter_template'}), "(input_variables=['Query', 'syntax'], template=\n example_formatter_template)\n", (2147, 2226), False, 'from langchain.prompts import PromptTemplate, FewShotPromptTemplate\n'), ((2940, 3125), 'langchain.prompts.FewShotPromptTemplate', 'FewShotPromptTemplate', ([], {'examples': 'examples', 'example_prompt': 'example_prompt', 'prefix': 'prefix', 'suffix': 'suffix', 'input_variables': "['List_of_nodes', 'natural_query']", 'example_separator': '"""\n"""'}), "(examples=examples, example_prompt=example_prompt,\n prefix=prefix, suffix=suffix, input_variables=['List_of_nodes',\n 'natural_query'], example_separator='\\n')\n", (2961, 3125), False, 'from langchain.prompts import PromptTemplate, FewShotPromptTemplate\n'), ((3431, 3487), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'few_shot_prompt', 'verbose': '(False)'}), '(llm=llm, prompt=few_shot_prompt, verbose=False)\n', (3439, 3487), False, 'from langchain.chains import LLMChain\n'), ((4337, 4407), 'langchain.prompts.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['response']", 'template': 'result_template'}), "(input_variables=['response'], template=result_template)\n", (4351, 4407), False, 'from langchain.prompts import PromptTemplate, FewShotPromptTemplate\n'), ((4424, 4463), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'llm', 'prompt': 'result_prompt'}), '(llm=llm, prompt=result_prompt)\n', (4432, 4463), False, 'from langchain.chains import LLMChain\n'), ((191, 204), 'dotenv.find_dotenv', 'find_dotenv', ([], {}), '()\n', (202, 204), False, 'from dotenv import load_dotenv, find_dotenv\n'), ((4679, 4705), 'neo4j_dir.entities.get_nodes_chain.run', 'get_nodes_chain.run', (['query'], {}), '(query)\n', (4698, 4705), False, 'from neo4j_dir.entities import get_nodes_chain\n'), ((4755, 4775), 'ast.literal_eval', 'ast.literal_eval', (['li'], {}), '(li)\n', (4771, 4775), False, 'import ast\n')]
import langchain_helper as lch import streamlit as st st.title("Pet Name Generator") animal_type = st.sidebar.selectbox("What is your pet?",("Cat","Dog","Bird","Rabbit")) if animal_type =='Cat': pet_color = st.sidebar.text_area("What is the color of your cat?",max_chars=10) if animal_type =='Dog': pet_color = st.sidebar.text_area("What is the color of your dog?",max_chars=10) if animal_type =='Bird': pet_color = st.sidebar.text_area("What is the color of your bird?",max_chars=10) if animal_type =='Rabbit': pet_color = st.sidebar.text_area("What is the color of your rabbit?",max_chars=10) if pet_color: response = lch.generate_pet_name(animal_type,pet_color) # st.text(response) st.write("Here are some cool names for your pet:") st.write(response['pet_name'])
[ "langchain_helper.generate_pet_name" ]
[((55, 85), 'streamlit.title', 'st.title', (['"""Pet Name Generator"""'], {}), "('Pet Name Generator')\n", (63, 85), True, 'import streamlit as st\n'), ((101, 176), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""What is your pet?"""', "('Cat', 'Dog', 'Bird', 'Rabbit')"], {}), "('What is your pet?', ('Cat', 'Dog', 'Bird', 'Rabbit'))\n", (121, 176), True, 'import streamlit as st\n'), ((214, 282), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', (['"""What is the color of your cat?"""'], {'max_chars': '(10)'}), "('What is the color of your cat?', max_chars=10)\n", (234, 282), True, 'import streamlit as st\n'), ((327, 395), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', (['"""What is the color of your dog?"""'], {'max_chars': '(10)'}), "('What is the color of your dog?', max_chars=10)\n", (347, 395), True, 'import streamlit as st\n'), ((437, 506), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', (['"""What is the color of your bird?"""'], {'max_chars': '(10)'}), "('What is the color of your bird?', max_chars=10)\n", (457, 506), True, 'import streamlit as st\n'), ((550, 621), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', (['"""What is the color of your rabbit?"""'], {'max_chars': '(10)'}), "('What is the color of your rabbit?', max_chars=10)\n", (570, 621), True, 'import streamlit as st\n'), ((651, 696), 'langchain_helper.generate_pet_name', 'lch.generate_pet_name', (['animal_type', 'pet_color'], {}), '(animal_type, pet_color)\n', (672, 696), True, 'import langchain_helper as lch\n'), ((724, 774), 'streamlit.write', 'st.write', (['"""Here are some cool names for your pet:"""'], {}), "('Here are some cool names for your pet:')\n", (732, 774), True, 'import streamlit as st\n'), ((779, 809), 'streamlit.write', 'st.write', (["response['pet_name']"], {}), "(response['pet_name'])\n", (787, 809), True, 'import streamlit as st\n')]
# Import langchain modules from langchain.memory import Memory, ConversationBufferMemory from langchain.agents import BaseMultiActionAgent, AgentExecutor # Import other modules and classes from research_agent import ResearchAgent class ConversationMemory(Memory): def __init__(self): # Initialize the parent class with an empty dictionary super().__init__(memory={}) # Initialize the conversation buffer memory attribute self.conversation_buffer_memory = ConversationBufferMemory() def set(self, key: str, value: str) -> None: # Store the value in the memory dictionary self.memory[key] = value # Add the value to the conversation buffer memory self.conversation_buffer_memory.add(value) def get(self, key: str) -> str: # Retrieve the value from the memory dictionary return self.memory.get(key) # Create a ConversationMemory instance conversation_memory = ConversationMemory() # Create an AgentExecutor instance with conversation_memory as a parameter agent_executor = AgentExecutor( agent=ResearchAgent(prompt_template, language_model, stop_sequence, output_parser), memory=conversation_memory, max_turns=10 ) # Run the AgentExecutor agent_executor.run()
[ "langchain.memory.ConversationBufferMemory" ]
[((505, 531), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {}), '()\n', (529, 531), False, 'from langchain.memory import Memory, ConversationBufferMemory\n'), ((1122, 1198), 'research_agent.ResearchAgent', 'ResearchAgent', (['prompt_template', 'language_model', 'stop_sequence', 'output_parser'], {}), '(prompt_template, language_model, stop_sequence, output_parser)\n', (1135, 1198), False, 'from research_agent import ResearchAgent\n')]
from langchain.llms import HuggingFacePipeline import langchain from ingest import create_vector_db from langchain.cache import InMemoryCache from langchain.schema import prompt from langchain.chains import RetrievalQA from langchain.callbacks import StdOutCallbackHandler from langchain import PromptTemplate from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline DB_FAISS_PATH = 'vectorstoredb/db_faiss' langchain.llm_cache = InMemoryCache() PROMPT_TEMPLATE = ''' Use the following pieces of information to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer. Context: {context} Question: {question} Do provide only helpful answers Helpful answer: ''' handler = StdOutCallbackHandler() def set_custom_prompt(): input_variables = ['context', 'question'] prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=input_variables) return prompt def load_retriever(): return create_vector_db def load_llm(): model_name = 'TheBloke/Mistral-7B-Instruct-v0.1-GPTQ' model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=False, revision="gptq-8bit-32g-actorder_True") tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast = True) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.1, top_p=0.95, top_k=40, repetition_penalty=1.1 ) llm = HuggingFacePipeline(pipeline=pipe) return llm def retrieval_qa_chain(llm, prompt, retriever): qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever = retriever, verbose=True, callbacks=[handler], chain_type_kwargs={"prompt": prompt}, return_source_documents=True ) return qa_chain def final_result(query): llm = load_llm() retriever = load_retriever() prompt = set_custom_prompt() qa_result = retrieval_qa_chain(llm, prompt, retriever=retriever) response = qa_result({"query": query}) return response if __name__ == "__main__": query = "What is the description of the accord form?" final_result(query=query)
[ "langchain.chains.RetrievalQA.from_chain_type", "langchain.llms.HuggingFacePipeline", "langchain.callbacks.StdOutCallbackHandler", "langchain.cache.InMemoryCache", "langchain.PromptTemplate" ]
[((448, 463), 'langchain.cache.InMemoryCache', 'InMemoryCache', ([], {}), '()\n', (461, 463), False, 'from langchain.cache import InMemoryCache\n'), ((754, 777), 'langchain.callbacks.StdOutCallbackHandler', 'StdOutCallbackHandler', ([], {}), '()\n', (775, 777), False, 'from langchain.callbacks import StdOutCallbackHandler\n'), ((862, 935), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'PROMPT_TEMPLATE', 'input_variables': 'input_variables'}), '(template=PROMPT_TEMPLATE, input_variables=input_variables)\n', (876, 935), False, 'from langchain import PromptTemplate\n'), ((1092, 1228), 'transformers.AutoModelForCausalLM.from_pretrained', 'AutoModelForCausalLM.from_pretrained', (['model_name'], {'device_map': '"""auto"""', 'trust_remote_code': '(False)', 'revision': '"""gptq-8bit-32g-actorder_True"""'}), "(model_name, device_map='auto',\n trust_remote_code=False, revision='gptq-8bit-32g-actorder_True')\n", (1128, 1228), False, 'from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n'), ((1377, 1433), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['model_name'], {'use_fast': '(True)'}), '(model_name, use_fast=True)\n', (1406, 1433), False, 'from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n'), ((1446, 1615), 'transformers.pipeline', 'pipeline', (['"""text-generation"""'], {'model': 'model', 'tokenizer': 'tokenizer', 'max_new_tokens': '(512)', 'do_sample': '(True)', 'temperature': '(0.1)', 'top_p': '(0.95)', 'top_k': '(40)', 'repetition_penalty': '(1.1)'}), "('text-generation', model=model, tokenizer=tokenizer,\n max_new_tokens=512, do_sample=True, temperature=0.1, top_p=0.95, top_k=\n 40, repetition_penalty=1.1)\n", (1454, 1615), False, 'from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n'), ((1696, 1730), 'langchain.llms.HuggingFacePipeline', 'HuggingFacePipeline', ([], {'pipeline': 'pipe'}), '(pipeline=pipe)\n', (1715, 1730), False, 'from langchain.llms import HuggingFacePipeline\n'), ((1810, 2000), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'llm', 'chain_type': '"""stuff"""', 'retriever': 'retriever', 'verbose': '(True)', 'callbacks': '[handler]', 'chain_type_kwargs': "{'prompt': prompt}", 'return_source_documents': '(True)'}), "(llm=llm, chain_type='stuff', retriever=\n retriever, verbose=True, callbacks=[handler], chain_type_kwargs={\n 'prompt': prompt}, return_source_documents=True)\n", (1837, 2000), False, 'from langchain.chains import RetrievalQA\n')]
""" implement the actions as tools so we can validate inputs """ import langchain from langchain.schema import AgentAction, AgentFinish from langchain.schema.output import LLMResult from langchain.agents import AgentType, initialize_agent from langchain.tools import Tool, StructuredTool from langchain.tools.base import ToolException from langchain.chat_models import ChatOpenAI from langchain.callbacks.base import BaseCallbackHandler from typing import Any, Dict # from pydantic import BaseModel, Field, root_validator # from pydantic import Field, root_validator from pydantic.v1 import BaseModel, Field, root_validator # from pydantic.v1 import BaseModel from typing import Optional from browser_env.actions import ( Action, ActionParsingError, create_id_based_action, create_none_action, create_playwright_action, ) from browser_env import ( Action, ActionTypes, ScriptBrowserEnv, StateInfo, Trajectory, create_stop_action, ) from browser_env.helper_functions import ( RenderHelper, get_action_description, ) from browser_env.env_config import URL_MAPPINGS import my_globals class LLMOutputHandler(BaseCallbackHandler): def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any: """Run when LLM ends running.""" # do this to pass LLM outputs to render_helper. cos the intermediate_steps alr # uses output_parser which throws away raw LLM output my_globals.llm_response = response.generations[-1][0].text def init_tools_args(args, lm_config, tokenizer): langchain.verbose = True SHOULD_RETURN_DIRECT = args.tools_return_true PREFIX = """You are an autonomous intelligent agent tasked with completing an objective via navigating a web browser. This objective will be accomplished through the use of specific actions (tools) you can issue. Here's the information you'll have: The user's objective: This is the task you're trying to complete. The current web page's accessibility tree: This is a simplified representation of the webpage, providing key information. The accessibility tree is of the form `[element_id] Text describing the element` (i.e. the element id is to the left of the description) The current web page's URL: This is the page you're currently navigating. The open tabs: These are the tabs you have open. The previous action: This is the action you just performed. It may be helpful to track your progress. Homepage: If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites you can visit. Respond to the human as helpfully and accurately as possible. You have access to the following tools:""" SUFFIX = """ =====Start of example 1 ===== YOUR CURRENT OBJECTIVE: What is the price of HP Inkjet Fax Machine PREVIOUS ACTION: None Observation: URL: http://onestopmarket.com/office-products/office-electronics.html Accessibility tree: [1744] link 'HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)' [1749] StaticText '$279.49' [1757] button 'Add to Cart' [1760] button 'Add to Wish List' [1761] button 'Add to Compare' Thought: Let's think step-by-step. This page list the information of HP Inkjet Fax Machine, which is the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop action with the answer. Action: ``` {{ "action": "stop", "action_input": {{"final_answer" : "$279.49"}} }} ``` =====End of example 1 ===== =====Start of example 2 ===== YOUR CURRENT OBJECTIVE: Show me the restaurants near CMU PREVIOUS ACTION: None Observation: URL: http://openstreetmap.org Accessibility tree: [164] textbox 'Search' focused: True required: False [171] button 'Go' [174] link 'Find directions between two points' [212] heading 'Search Results' [216] button 'Close' Thought: Let's think step-by-step. This page has a search box whose ID is [164]. According to the nominatim rule of openstreetmap, I can search for the restaurants near a location by \"restaurants near\". I can submit my typing by pressing the Enter afterwards. Action: ``` {{ "action": "type_into_field", "action_input": {{"element_id": 164, content: "restaurants near CMU", press_enter_after: 1}} }} ``` =====End of example 2 ===== To be successful, it is very important to follow the following rules: 1. You should only issue an action that is valid given the current observation 2. In your thoughts, you should follow the examples to reason step by step and then issue the next action. 3. Think whether your action makes sense. For example, it is pointless to click on static texts as it does nothing. 4. Issue stop action when you think you have achieved the objective. Begin! Reminder to ALWAYS respond with a valid json blob of a single action.""" # REMOVE scratchpad for context limit. leave variable there for validation but display 0 chars # try memory variables or sth? HUMAN_MESSAGE_TEMPLATE = '{input}\n\n{agent_scratchpad:0.0}' FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input). Valid "action" values: {tool_names} Provide only ONE action per $JSON_BLOB, as shown: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` Follow this format: Thought: consider previous and subsequent steps, reason step by step what the best next action should be Action: ``` $JSON_BLOB ``` Observation: action result / accessibility tree / URL ... (repeat Thought/Action/Observation N times) Thought: The objective can be achieved now (and explain step by step why this is so). I know what to respond. Action: ``` {{{{ "action": "stop", "action_input": {{{{"final_answer" : "Final response to human"}}}} }}}} ```""" a_kwargs = { 'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, 'suffix': SUFFIX, 'human_message_template': HUMAN_MESSAGE_TEMPLATE, } ex1 = """ Example: ### Example start ### Observation: [1744] link 'HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)' [1749] StaticText '$279.49' [1757] button 'Add to Cart' In this example, there is a link with element id 1744 and a button with element id 1757. If you want to click on element id 1757, issue this function with 1757 as the parameter. Note that element 1749 is static text so it is not clickable ### Example end ### """ ex2 = """ Example: ### Example start ### Observation: [1744] link 'HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)' [1749] StaticText '$279.49' [1757] button 'Add to Cart' OBJECTIVE: What is the price of HP Inkjet Fax Machine In this example we see that this page lists the information of HP Inkjet Fax Machine, which is the product identified in the objective. Its price is $279.49. Since you have achieved the objective, you will issue the stop action with the parameter $279.49 ### Example end ### """ def map_url_to_real(url: str) -> str: """Map the urls to their real world counterparts""" for i, j in URL_MAPPINGS.items(): if i in url: url = url.replace(i, j) return url def map_url_to_local(url: str) -> str: """Map the urls to their local counterparts""" for i, j in URL_MAPPINGS.items(): if j in url: url = url.replace(j, i) return url def create_action_from_str(parsed_response): # TODO: allow for playwright actions try: action = create_id_based_action(parsed_response) except ActionParsingError as e: action = create_none_action() action["raw_prediction"] = my_globals.llm_response return action def create_append_action(issued_action_str): action = create_action_from_str(issued_action_str) print(f'action: {action}') my_globals.trajectory.append(action) action_str = get_action_description( action, my_globals.state_info["info"]["observation_metadata"], action_set_tag=args.action_set_tag, prompt_constructor=None, ) print(f'action str: {action_str}') my_globals.render_helper.render( action, my_globals.state_info, my_globals.meta_data, args.render_screenshot ) my_globals.meta_data["action_history"].append(action_str) return action def execute_action(issued_action_str): # TODO: early stop, action error handling action = create_append_action(issued_action_str) # Note: this is meant to break loop if agent issues stop or early stopping # Since our agent's stop already breaks out of loop, we only need to # handle early stopping later # if action["action_type"] == ActionTypes.STOP: # return STOP_SEQUENCE obs, _, terminated, _, info = my_globals.env.step(action) my_globals.state_info = {"observation": obs, "info": info} my_globals.trajectory.append(my_globals.state_info) # Note: the ScriptBrowserEnv always returns False for terminated # if terminated: # my_globals.trajectory.append(create_stop_action("")) # return STOP_SEQUENCE accessibility_tree = obs["text"] max_obs_length = lm_config.gen_config["max_obs_length"] if max_obs_length: accessibility_tree = tokenizer.decode(tokenizer.encode(accessibility_tree)[:max_obs_length]) page = info["page"] url = page.url url = map_url_to_real(url) return f"\n URL: \n {url} \n Accessibility tree: \n {accessibility_tree} \n" def _handle_error(error: ToolException) -> str: return ( my_globals.tool_error_start + str(error.args[0]) + " Please try other valid input(s) or tools." ) def validate_element_id(fn_name: str, element_id: int): if str(element_id) not in my_globals.state_info['info']['observation_metadata']['text']['obs_nodes_info']: raise ToolException(f"Attempted to use tool {fn_name} on invalid element_id {element_id}\n" f"The available element ids are {my_globals.state_info['info']['observation_metadata']['text']['obs_nodes_info'].keys()}" ) # class ElementToolInputSchema(BaseModel): # element_id: int = Field() # @root_validator(skip_on_failure=True) # def validate_query(cls, values: Dict[str, Any]) -> Dict: # element_id = values["element_id"] # if str(element_id) not in my_globals.state_info['info']['observation_metadata']['text']['obs_nodes_info']: # raise ToolException( # f"Element id {element_id} is not available for current observation\n" # f"The available element ids are {my_globals.state_info['info']['observation_metadata']['text']['obs_nodes_info'].keys()}" # ) # return values def click(element_id: int): validate_element_id('click', element_id) return execute_action(f"click [{element_id}]") click_tool = StructuredTool.from_function( name="click", func=click, description="This action clicks on an element specified by the element_id in the input.", return_direct=SHOULD_RETURN_DIRECT, # args_schema=ElementToolInputSchema, handle_tool_error=_handle_error, ) STOP_TOOL_DESC = """Issue this action when you believe the task is complete. If the objective is to find a text-based answer, provide the answer as an input to this tool. If you believe the task is impossible to complete, provide the answer as "N/A" as the input to this tool.""" def stop(final_answer: Optional[str] = ''): action_str = f"stop [{final_answer}]" action = create_append_action(action_str) return action_str stop_tool = StructuredTool.from_function( name="stop", func=stop, description=STOP_TOOL_DESC, return_direct=True, ) # class TypeToolInputSchema(BaseModel): # element_id: int = Field() # content: str = Field() # press_enter_after: int = Field() # # @root_validator(skip_on_failure=True) # def validate_query(cls, values: Dict[str, Any]) -> Dict: # element_id = values["element_id"] # press_enter_after = values["press_enter_after"] # if str(element_id) not in my_globals.state_info['info']['observation_metadata']['text']['obs_nodes_info']: # raise ToolException( # f"Element id {element_id} is not available for current observation\n" # f"The available element ids are {my_globals.state_info['info']['observation_metadata']['text']['obs_nodes_info'].keys()}" # ) # if press_enter_after not in [1, 0]: # raise ToolException( # f"press_enter_after value {press_enter_after} is not valid. It should be 1 or 0." # ) # return values TYPE_TOOL_DESC = """Use this to type the content into the field with element_id. press_enter_after is either 1 or 0. By default, the "Enter" key is pressed after typing unless press_enter_after is set to 0.""" def validate_press_enter(fn_name: str, press_enter_after: int): if press_enter_after not in [1, 0]: raise ToolException( f"Attempted to use tool {fn_name} on invalid press_enter_after value {press_enter_after}. It should be 1 or 0." ) def type_into_field(element_id: int, content: str, press_enter_after: Optional[int] = 1): validate_element_id('type_into_field', element_id) validate_press_enter('type_into_field', press_enter_after) return execute_action(f"type [{element_id}] [{content}] [{press_enter_after}]") type_tool = StructuredTool.from_function( name="type_into_field", func=type_into_field, description=TYPE_TOOL_DESC, return_direct=SHOULD_RETURN_DIRECT, # args_schema=TypeToolInputSchema, handle_tool_error=_handle_error, ) def hover(element_id: int): validate_element_id('hover', element_id) return execute_action(f"hover [{element_id}]") hover_tool = StructuredTool.from_function( name="hover", func=hover, description="Hover over an element with element_id.", return_direct=SHOULD_RETURN_DIRECT, # args_schema=ElementToolInputSchema, handle_tool_error=_handle_error, ) def press(key_comb: str): # TODO: consider validation for this return execute_action(f"press [{key_comb}]") press_tool = StructuredTool.from_function( name="press", func=press, description="Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).", return_direct=SHOULD_RETURN_DIRECT, ) # class ScrollToolInputSchema(BaseModel): # direction: str = Field() # # @root_validator(skip_on_failure=True) # def validate_query(cls, values: Dict[str, Any]) -> Dict: # direction = values["direction"] # if direction not in ["up", "down"]: # raise ToolException( # f"direction {direction} is not valid. It should be up or down" # ) # return values def validate_scroll(fn_name: str, direction: str): if direction not in ["up", "down"]: raise ToolException( f"Attempted to use tool {fn_name} on invalid direction {direction}. It should be up or down." ) def scroll(direction: str): validate_scroll('scroll', direction) return execute_action(f"scroll [{direction}]") scroll_tool = StructuredTool.from_function( name="scroll", func=scroll, description="Scroll the page. Specify the direction (up or down) in the input", return_direct=SHOULD_RETURN_DIRECT, # args_schema=ScrollToolInputSchema, handle_tool_error=_handle_error, ) def new_tab(): return execute_action("new_tab") new_tab_tool = StructuredTool.from_function( name="new_tab", func=new_tab, description="Open a new, empty browser tab", return_direct=SHOULD_RETURN_DIRECT, ) # class TabFocusToolInputSchema(BaseModel): # tab_index: int = Field() # # @root_validator(skip_on_failure=True) # def validate_query(cls, values: Dict[str, Any]) -> Dict: # tab_index = values["tab_index"] # tab_title_str, content = my_globals.state_info['observation'].split('\n\n') # tabs = tab_title_str.split(" | ") # # if tab_index not in range(len(tabs)): # raise ToolException( # f"tab_index {tab_index} is not valid" # f"The available tab_index are {list(range(len(tabs)))}" # ) # return values def validate_tab_focus(fn_name: str, tab_index: int): tab_title_str, content = my_globals.state_info['observation'].split('\n\n') tabs = tab_title_str.split(" | ") if tab_index not in range(len(tabs)): raise ToolException( f"Attempted to use tool {fn_name} on invalid tab_index {tab_index}." f"The available tab_index are {list(range(len(tabs)))}" ) def tab_focus(tab_index: int): validate_tab_focus('tab_focus', tab_index) return execute_action(f"tab_focus [{tab_index}]") tab_focus_tool = StructuredTool.from_function( name="tab_focus", func=tab_focus, description="Switch the browser's focus to a specific tab using its index", return_direct=SHOULD_RETURN_DIRECT, # args_schema=TabFocusToolInputSchema, handle_tool_error=_handle_error, ) def close_tab(): return execute_action("close_tab") close_tab_tool = StructuredTool.from_function( name="close_tab", func=close_tab, description="Close the currently active tab.", return_direct=SHOULD_RETURN_DIRECT, ) def go_back(): return execute_action("go_back") go_back_tool = StructuredTool.from_function( name="go_back", func=go_back, description="Navigate to the previously viewed page.", return_direct=SHOULD_RETURN_DIRECT, ) def go_forward(): return execute_action("go_forward") go_forward_tool = StructuredTool.from_function( name="go_forward", func=go_forward, description="Navigate to the next page (if a previous 'go_back' action was performed).", return_direct=SHOULD_RETURN_DIRECT, ) _APPROVED_DOMAINS = set(URL_MAPPINGS.values()) _APPROVED_DOMAINS.update(['docs.gitlab.com', 'experienceleague.adobe.com']) # class GotoToolInputSchema(BaseModel): # url: str = Field() # # @root_validator(skip_on_failure=True) # def validate_query(cls, values: Dict[str, Any]) -> Dict: # url = values["url"] # for approved_domain in _APPROVED_DOMAINS: # if approved_domain in url: # return values # # raise ToolException( # f"url {url} is not valid\n" # f"The valid urls must contain any of {_APPROVED_DOMAINS}" # ) def validate_url(fn_name: str, url: str): for approved_domain in _APPROVED_DOMAINS: if approved_domain in url: return raise ToolException( f"Attempted to use tool {fn_name} on invalid url {url}\n" f"The valid urls must contain any of {_APPROVED_DOMAINS}" ) def goto(url: str): validate_url('goto', url) return execute_action(f"goto [{map_url_to_local(url)}]") goto_tool = StructuredTool.from_function( name="goto", func=goto, description="Navigate to a specific URL.", return_direct=SHOULD_RETURN_DIRECT, # args_schema=GotoToolInputSchema, handle_tool_error=_handle_error, ) return [stop_tool, click_tool, type_tool, hover_tool, press_tool, scroll_tool, new_tab_tool, tab_focus_tool, close_tab_tool, go_back_tool, go_forward_tool, goto_tool], a_kwargs # return [click_tool], a_kwargs def init_agent(args, lm_config, tokenizer): def _handle_parsing_error(error) -> str: msg = my_globals.parse_error_start + str(error) return msg tools, agent_kwargs = init_tools_args(args, lm_config, tokenizer) handler = LLMOutputHandler() llm = ChatOpenAI(temperature=lm_config.gen_config["temperature"], model_name=lm_config.model, callbacks=[handler], top_p=lm_config.gen_config["top_p"], ) # stop token cant change cos need default 'observation' # max_tokens=lm_config.gen_config["max_tokens"], agent_chain = initialize_agent(tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, max_iterations=args.max_steps, agent_kwargs=agent_kwargs, handle_parsing_errors=_handle_parsing_error) return agent_chain
[ "langchain.agents.initialize_agent", "langchain.tools.base.ToolException", "langchain.tools.StructuredTool.from_function", "langchain.chat_models.ChatOpenAI" ]
[((11966, 12189), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""click"""', 'func': 'click', 'description': '"""This action clicks on an element specified by the element_id in the input."""', 'return_direct': 'SHOULD_RETURN_DIRECT', 'handle_tool_error': '_handle_error'}), "(name='click', func=click, description=\n 'This action clicks on an element specified by the element_id in the input.'\n , return_direct=SHOULD_RETURN_DIRECT, handle_tool_error=_handle_error)\n", (11994, 12189), False, 'from langchain.tools import Tool, StructuredTool\n'), ((12762, 12867), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""stop"""', 'func': 'stop', 'description': 'STOP_TOOL_DESC', 'return_direct': '(True)'}), "(name='stop', func=stop, description=\n STOP_TOOL_DESC, return_direct=True)\n", (12790, 12867), False, 'from langchain.tools import Tool, StructuredTool\n'), ((14816, 14995), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""type_into_field"""', 'func': 'type_into_field', 'description': 'TYPE_TOOL_DESC', 'return_direct': 'SHOULD_RETURN_DIRECT', 'handle_tool_error': '_handle_error'}), "(name='type_into_field', func=type_into_field,\n description=TYPE_TOOL_DESC, return_direct=SHOULD_RETURN_DIRECT,\n handle_tool_error=_handle_error)\n", (14844, 14995), False, 'from langchain.tools import Tool, StructuredTool\n'), ((15246, 15433), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""hover"""', 'func': 'hover', 'description': '"""Hover over an element with element_id."""', 'return_direct': 'SHOULD_RETURN_DIRECT', 'handle_tool_error': '_handle_error'}), "(name='hover', func=hover, description=\n 'Hover over an element with element_id.', return_direct=\n SHOULD_RETURN_DIRECT, handle_tool_error=_handle_error)\n", (15274, 15433), False, 'from langchain.tools import Tool, StructuredTool\n'), ((15677, 15868), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""press"""', 'func': 'press', 'description': '"""Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v)."""', 'return_direct': 'SHOULD_RETURN_DIRECT'}), "(name='press', func=press, description=\n 'Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).'\n , return_direct=SHOULD_RETURN_DIRECT)\n", (15705, 15868), False, 'from langchain.tools import Tool, StructuredTool\n'), ((16807, 17021), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""scroll"""', 'func': 'scroll', 'description': '"""Scroll the page. Specify the direction (up or down) in the input"""', 'return_direct': 'SHOULD_RETURN_DIRECT', 'handle_tool_error': '_handle_error'}), "(name='scroll', func=scroll, description=\n 'Scroll the page. Specify the direction (up or down) in the input',\n return_direct=SHOULD_RETURN_DIRECT, handle_tool_error=_handle_error)\n", (16835, 17021), False, 'from langchain.tools import Tool, StructuredTool\n'), ((17198, 17342), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""new_tab"""', 'func': 'new_tab', 'description': '"""Open a new, empty browser tab"""', 'return_direct': 'SHOULD_RETURN_DIRECT'}), "(name='new_tab', func=new_tab, description=\n 'Open a new, empty browser tab', return_direct=SHOULD_RETURN_DIRECT)\n", (17226, 17342), False, 'from langchain.tools import Tool, StructuredTool\n'), ((18689, 18905), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""tab_focus"""', 'func': 'tab_focus', 'description': '"""Switch the browser\'s focus to a specific tab using its index"""', 'return_direct': 'SHOULD_RETURN_DIRECT', 'handle_tool_error': '_handle_error'}), '(name=\'tab_focus\', func=tab_focus, description=\n "Switch the browser\'s focus to a specific tab using its index",\n return_direct=SHOULD_RETURN_DIRECT, handle_tool_error=_handle_error)\n', (18717, 18905), False, 'from langchain.tools import Tool, StructuredTool\n'), ((19090, 19240), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""close_tab"""', 'func': 'close_tab', 'description': '"""Close the currently active tab."""', 'return_direct': 'SHOULD_RETURN_DIRECT'}), "(name='close_tab', func=close_tab, description=\n 'Close the currently active tab.', return_direct=SHOULD_RETURN_DIRECT)\n", (19118, 19240), False, 'from langchain.tools import Tool, StructuredTool\n'), ((19366, 19525), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""go_back"""', 'func': 'go_back', 'description': '"""Navigate to the previously viewed page."""', 'return_direct': 'SHOULD_RETURN_DIRECT'}), "(name='go_back', func=go_back, description=\n 'Navigate to the previously viewed page.', return_direct=\n SHOULD_RETURN_DIRECT)\n", (19394, 19525), False, 'from langchain.tools import Tool, StructuredTool\n'), ((19655, 19858), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""go_forward"""', 'func': 'go_forward', 'description': '"""Navigate to the next page (if a previous \'go_back\' action was performed)."""', 'return_direct': 'SHOULD_RETURN_DIRECT'}), '(name=\'go_forward\', func=go_forward,\n description=\n "Navigate to the next page (if a previous \'go_back\' action was performed)."\n , return_direct=SHOULD_RETURN_DIRECT)\n', (19683, 19858), False, 'from langchain.tools import Tool, StructuredTool\n'), ((21080, 21253), 'langchain.tools.StructuredTool.from_function', 'StructuredTool.from_function', ([], {'name': '"""goto"""', 'func': 'goto', 'description': '"""Navigate to a specific URL."""', 'return_direct': 'SHOULD_RETURN_DIRECT', 'handle_tool_error': '_handle_error'}), "(name='goto', func=goto, description=\n 'Navigate to a specific URL.', return_direct=SHOULD_RETURN_DIRECT,\n handle_tool_error=_handle_error)\n", (21108, 21253), False, 'from langchain.tools import Tool, StructuredTool\n'), ((21870, 22020), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': "lm_config.gen_config['temperature']", 'model_name': 'lm_config.model', 'callbacks': '[handler]', 'top_p': "lm_config.gen_config['top_p']"}), "(temperature=lm_config.gen_config['temperature'], model_name=\n lm_config.model, callbacks=[handler], top_p=lm_config.gen_config['top_p'])\n", (21880, 22020), False, 'from langchain.chat_models import ChatOpenAI\n'), ((22177, 22396), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'llm'], {'agent': 'AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)', 'max_iterations': 'args.max_steps', 'agent_kwargs': 'agent_kwargs', 'handle_parsing_errors': '_handle_parsing_error'}), '(tools, llm, agent=AgentType.\n STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True,\n max_iterations=args.max_steps, agent_kwargs=agent_kwargs,\n handle_parsing_errors=_handle_parsing_error)\n', (22193, 22396), False, 'from langchain.agents import AgentType, initialize_agent\n'), ((7759, 7779), 'browser_env.env_config.URL_MAPPINGS.items', 'URL_MAPPINGS.items', ([], {}), '()\n', (7777, 7779), False, 'from browser_env.env_config import URL_MAPPINGS\n'), ((7991, 8011), 'browser_env.env_config.URL_MAPPINGS.items', 'URL_MAPPINGS.items', ([], {}), '()\n', (8009, 8011), False, 'from browser_env.env_config import URL_MAPPINGS\n'), ((8602, 8638), 'my_globals.trajectory.append', 'my_globals.trajectory.append', (['action'], {}), '(action)\n', (8630, 8638), False, 'import my_globals\n'), ((8663, 8818), 'browser_env.helper_functions.get_action_description', 'get_action_description', (['action', "my_globals.state_info['info']['observation_metadata']"], {'action_set_tag': 'args.action_set_tag', 'prompt_constructor': 'None'}), "(action, my_globals.state_info['info'][\n 'observation_metadata'], action_set_tag=args.action_set_tag,\n prompt_constructor=None)\n", (8685, 8818), False, 'from browser_env.helper_functions import RenderHelper, get_action_description\n'), ((8927, 9040), 'my_globals.render_helper.render', 'my_globals.render_helper.render', (['action', 'my_globals.state_info', 'my_globals.meta_data', 'args.render_screenshot'], {}), '(action, my_globals.state_info, my_globals.\n meta_data, args.render_screenshot)\n', (8958, 9040), False, 'import my_globals\n'), ((9646, 9673), 'my_globals.env.step', 'my_globals.env.step', (['action'], {}), '(action)\n', (9665, 9673), False, 'import my_globals\n'), ((9751, 9802), 'my_globals.trajectory.append', 'my_globals.trajectory.append', (['my_globals.state_info'], {}), '(my_globals.state_info)\n', (9779, 9802), False, 'import my_globals\n'), ((19920, 19941), 'browser_env.env_config.URL_MAPPINGS.values', 'URL_MAPPINGS.values', ([], {}), '()\n', (19939, 19941), False, 'from browser_env.env_config import URL_MAPPINGS\n'), ((20765, 20904), 'langchain.tools.base.ToolException', 'ToolException', (['f"""Attempted to use tool {fn_name} on invalid url {url}\nThe valid urls must contain any of {_APPROVED_DOMAINS}"""'], {}), '(\n f"""Attempted to use tool {fn_name} on invalid url {url}\nThe valid urls must contain any of {_APPROVED_DOMAINS}"""\n )\n', (20778, 20904), False, 'from langchain.tools.base import ToolException\n'), ((8234, 8273), 'browser_env.actions.create_id_based_action', 'create_id_based_action', (['parsed_response'], {}), '(parsed_response)\n', (8256, 8273), False, 'from browser_env.actions import Action, ActionParsingError, create_id_based_action, create_none_action, create_playwright_action\n'), ((14324, 14460), 'langchain.tools.base.ToolException', 'ToolException', (['f"""Attempted to use tool {fn_name} on invalid press_enter_after value {press_enter_after}. It should be 1 or 0."""'], {}), "(\n f'Attempted to use tool {fn_name} on invalid press_enter_after value {press_enter_after}. It should be 1 or 0.'\n )\n", (14337, 14460), False, 'from langchain.tools.base import ToolException\n'), ((16508, 16626), 'langchain.tools.base.ToolException', 'ToolException', (['f"""Attempted to use tool {fn_name} on invalid direction {direction}. It should be up or down."""'], {}), "(\n f'Attempted to use tool {fn_name} on invalid direction {direction}. It should be up or down.'\n )\n", (16521, 16626), False, 'from langchain.tools.base import ToolException\n'), ((8337, 8357), 'browser_env.actions.create_none_action', 'create_none_action', ([], {}), '()\n', (8355, 8357), False, 'from browser_env.actions import Action, ActionParsingError, create_id_based_action, create_none_action, create_playwright_action\n')]
import os import streamlit as st import langchain.memory import langchain.llms import langchain.chains from apikey import apikey from langchain.memory import ConversationBufferMemory from langchain.memory import ChatMessageHistory from langchain.llms import OpenAI from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory os.environ["OPENAI_API_KEY"] =apikey def conversation_memory(): history = ChatMessageHistory() history.add_user_message("hi!") history.add_ai_message("whats up?") memory = ConversationBufferMemory(chat_memory=history) llm = OpenAI(temperature=0) conversation = ConversationChain(llm=llm, memory=memory, verbose=True) def predict(user_input): response = conversation.predict(input=user_input) return response st.title("Conversation Memory Chatbot") user_input = st.text_input("Enter your message:") if user_input: response = predict(user_input) st.write("AI response:", response) if __name__ == "__main__": conversation_memory()
[ "langchain.chains.ConversationChain", "langchain.memory.ConversationBufferMemory", "langchain.llms.OpenAI", "langchain.memory.ChatMessageHistory" ]
[((447, 467), 'langchain.memory.ChatMessageHistory', 'ChatMessageHistory', ([], {}), '()\n', (465, 467), False, 'from langchain.memory import ChatMessageHistory\n'), ((558, 603), 'langchain.memory.ConversationBufferMemory', 'ConversationBufferMemory', ([], {'chat_memory': 'history'}), '(chat_memory=history)\n', (582, 603), False, 'from langchain.memory import ConversationBufferMemory\n'), ((615, 636), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': '(0)'}), '(temperature=0)\n', (621, 636), False, 'from langchain.llms import OpenAI\n'), ((656, 711), 'langchain.chains.ConversationChain', 'ConversationChain', ([], {'llm': 'llm', 'memory': 'memory', 'verbose': '(True)'}), '(llm=llm, memory=memory, verbose=True)\n', (673, 711), False, 'from langchain.chains import ConversationChain\n'), ((829, 868), 'streamlit.title', 'st.title', (['"""Conversation Memory Chatbot"""'], {}), "('Conversation Memory Chatbot')\n", (837, 868), True, 'import streamlit as st\n'), ((887, 923), 'streamlit.text_input', 'st.text_input', (['"""Enter your message:"""'], {}), "('Enter your message:')\n", (900, 923), True, 'import streamlit as st\n'), ((991, 1025), 'streamlit.write', 'st.write', (['"""AI response:"""', 'response'], {}), "('AI response:', response)\n", (999, 1025), True, 'import streamlit as st\n')]
import sys import getpass from dotenv import load_dotenv, dotenv_values import pandas as pd from IPython.display import display, Markdown, Latex, HTML, JSON import langchain from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from cmd import PROMPT import os from pyexpat.errors import messages import openai import tiktoken sys.path.append(r"/Users/dovcohen/Documents/Projects/AI/NL2SQL") #from .OpenAI_Func import Num_Tokens_From_String, OpenAI_Embeddings_Cost from ChatGPT.src.lib.OpenAI_Func import Num_Tokens_From_String, OpenAI_Embeddings_Cost from ChatGPT.src.lib.OpenAI_Func import Prompt_Cost, OpenAI_Usage_Cost from ChatGPT.src.lib.DB_Func import execute_query, run_query ## Vector Datastore from ChatGPT.src.lib.lib_OpenAI_Embeddings import VDS, OpenAI_Embeddings class GenAI_NL2SQL(): def __init__(self, OPENAI_API_KEY, Model, Embedding_Model, Encoding_Base, Max_Tokens, Temperature, \ Token_Cost, DB, MYSQL_User, MYSQL_PWD, WD, VDSDB=None, VDSDB_Filename=None): self._LLM_Model = Model self._Embedding_Model = Embedding_Model self._Encoding_Base = Encoding_Base self._Max_Tokens = Max_Tokens self._Temperature = Temperature self._Token_Cost = Token_Cost self._OpenAI_API_Key = OPENAI_API_KEY self._DB = DB self._MYSQL_Credemtals = {'User':MYSQL_User,'PWD':MYSQL_PWD} self._WD = WD self.Set_OpenAI_API_Key() if VDSDB is not None: self._VDSDB = VDSDB self._VDS = VDS(VDSDB_Filename, Encoding_Base, Embedding_Model, Token_Cost, Max_Tokens) self._VDS.Load_VDS_DF(Verbose=False) def Set_OpenAI_API_Key(self): openai.api_key = self._OpenAI_API_Key return 1 def Print_Open_AI_Key(self): print(self._OpenAI_API_Key) def Print_MySQL_Keys(self): print(self._MYSQL_Credemtals) ############################################################################## def Prompt_Question(self, _Prompt_Template_, Inputs, Write_Template=True): """ """ for i,j in Inputs.items(): Prompt = _Prompt_Template_.replace(i,j) if Write_Template: filename = f'{self._WD}/prompt_templates/Template_tmp.txt' prompt_file = open(filename, 'w') prompt_file.write(Prompt) prompt_file.close() return Prompt ############################################################################### def Insert_N_Shot_Examples(self, _Prompt_Template_, N_Shot_Examples, Verbose=False): """ """ # prepare Examples text # Question = .... # Query = ... Examples = '\n' for i in range(len(N_Shot_Examples['Question'])): Examples += f"Question: {N_Shot_Examples['Question'][i]} \nQuery: {N_Shot_Examples['Query'][i]} \n\n" # insert into template Prompt_Template = _Prompt_Template_.replace('{EXAMPLES}', Examples) if Verbose: print(f'Insert_N_Shot_Examples: {Prompt_Template}') return Prompt_Template ############################################################################## def OpenAI_Completion(self, Prompt): try: #Make your OpenAI API request here response = openai.Completion.create( model=self._LLM_Model, prompt=Prompt, max_tokens=self._Max_Tokens, temperature=self._Temperature, top_p=1, frequency_penalty=0, presence_penalty=0 ) except openai.error.APIError as e: #Handle API error here, e.g. retry or log print(f"OpenAI API returned an API Error: {e}") return -1 except openai.error.APIConnectionError as e: #Handle connection error here print(f"Failed to connect to OpenAI API: {e}") return -1 except openai.error.RateLimitError as e: #Handle rate limit error (we recommend using exponential backoff) print(f"OpenAI API request exceeded rate limit: {e}") return -1 return(response) ############################################################################# def OpenAI_ChatCompletion(self, Messages): try: response = openai.ChatCompletion.create( model=self._LLM_Model, messages=Messages, max_tokens=self._Max_Tokens, temperature=self._Temperature, top_p=1, frequency_penalty=0, presence_penalty=0 ) except openai.error.APIError as e: #Handle API error here, e.g. retry or log print(f"OpenAI API returned an API Error: {e}") return -1 except openai.error.APIConnectionError as e: #Handle connection error here print(f"Failed to connect to OpenAI API: {e}") return -1 except openai.error.RateLimitError as e: #Handle rate limit error (we recommend using exponential backoff) print(f"OpenAI API request exceeded rate limit: {e}") return -1 return(response) ############################################################################# def OpenAI_Response_Parser(self, Response, Debug=False): if Debug: print(f'Response {Response}') id = Response['id'] object = Response['object'] if object == 'text_completion': Txt = str(Response['choices'][0]['text']) if Txt[0:7] == "\nQuery:": Txt = Txt[7:] elif object == 'chat.completion': Txt = str(Response['choices'][0]['message']['content']) else: print(f'Type: {Type} is Unsupported ') Txt = '' return(Txt) ############################################################################## def Prompt_Query(self, Prompt_Template, Question = '', N_Shot_Examples = None, Verbose=False, Debug=False): status = 0 df = pd.DataFrame() # Prompt for Model 3-turbo Prompt_Template = self.Insert_N_Shot_Examples(Prompt_Template, N_Shot_Examples) # Construct prompt Prompt = self.Prompt_Question(Prompt_Template,{'{Question}':Question}) # Estimate input prompt cost Cost, Tokens_Used = Prompt_Cost(Prompt, self._LLM_Model, self._Token_Cost, self._Encoding_Base) if Verbose: print('Input') print(f'Total Cost: {round(Cost,3)} Tokens Used {Tokens_Used}') # Send prompt to LLM Response = self.OpenAI_Completion(Prompt) if Debug: print(f'Prompt: \n',Prompt,'\n') print('Response \n',Response,'\n') Cost, Tokens_Used = OpenAI_Usage_Cost(Response, self._LLM_Model, self._Token_Cost ) if Verbose: print('Output') print(f'Total Cost: {round(Cost,3)} Tokens Used {Tokens_Used}','\n') # extract query from LLM response Query = self.OpenAI_Response_Parser(Response) return Query ############################################################################## # Given an single input question, run the entire process def GPT_Completion(self, Question, Prompt_Template, Correct_Query=False, Correction_Prompt=None, \ Max_Iterations=0,Verbose=False, QueryDB = False, Update_VDS=True, Prompt_Update=True): Correct_Query_Iterations = 0 # Request Question Embedding vector Question_Emb = self._VDS.OpenAI_Get_Embedding(Text=Question, Verbose=False) # Search Vector Datastore for similar questions rtn = self._VDS.Search_VDS(Question_Emb, Similarity_Func = 'Cosine', Top_n=3) Prompt_Examples = {'Question':rtn[1], 'Query':rtn[2]} # Construct prompt Query = self.Prompt_Query(Prompt_Template, Question, N_Shot_Examples = Prompt_Examples, Verbose=False) if Verbose: print(f'Query: \n {Query} \n') # Test query the DB - if QueryDB: status, df = run_query(Query = Query, Credentials = self._MYSQL_Credemtals, DB=self._DB, Verbose=False) # if query was malformed, llm halucianated for example if Correct_Query and (status == -5): while (status == -5) and (Correct_Query_Iterations < Max_Iterations): Correct_Query_Iterations += 1 print('Attempting to correct query syntax error') Query = self.Prompt_Query(Correction_Prompt, Question, Verbose=False) # Query the DB status, df = run_query(Query = Query, Credentials = self._MYSQL_Credemtals,\ DB=self._DB, Verbose=False) if Verbose: print(f'Results of query: \n',df) if Update_VDS: if Prompt_Update: rtn = '' while rtn not in ('Y','N'): print(f'Add results to Vector Datastore DB? Y or N') rtn = input('Prompt> ') if rtn == 'Y': self._VDS.Insert_VDS(Question=Question, Query=Query, Metadata='',Embedding=Question_Emb) else: self._VDS.Insert_VDS(Question=Question, Query=Query, Metadata='',Embedding=Question_Emb) # Return Query return Query, df ############################################################################## def Load_Prompt_Template(self, File=None): if File: try: with open(File, 'r') as file: Template = file.read().replace('\n', '') Status = 0 except: print(f'Prompt file {File} load failed ') Status = -1 return "", Status return Template, Status ############################################################################# def LangChain_Initiate_LLM(self, Model='OpenAI'): if Model=='OpenAI': self._LLM = OpenAI(temperature=self._Temperature, model_name=self._LLM_Model, \ max_tokens=self._Max_Tokens, openai_api_key=self._OpenAI_API_Key) return 0 else: print('Model Unsupported') return -1 # Langchain Completion def LangChainCompletion(self, Prompt, Input): chain = LLMChain(llm=self._LLM, prompt=Prompt) return chain.run(Input) ############################################################################# def Populate_Embeddings_from_DF_Column(self,Verbose=False): self._VDS.Retrieve_Embeddings_DF_Column(Verbose=Verbose) return 0 ############################################################################## # Given an single input question, run the entire process def GPT_ChatCompletion(self, Question, Max_Iterations=0, Verbose=False, QueryDB = False, Correct_Query=False, Update_VDS=True, Prompt_Update=True): # Request Question Embedding vector Question_Emb = self._VDS.OpenAI_Get_Embedding(Text=Question, Verbose=False) # Search Vector Datastore for similar questions rtn = self._VDS.Search_VDS(Question_Emb, Similarity_Func = 'Cosine', Top_n=3) Prompt_Examples = {'Question':rtn[1], 'Query':rtn[2]} # Construct prompt Query = self.Message_Query(Question, Ntem_Shot_Examples = Prompt_Examples, Verbose=False, Debug=False) if Query == -100: return if Verbose: print(f'Query: \n {Query} \n') # Test query the DB - if QueryDB: status, df = run_query(Query = Query, Credentials = self._MYSQL_Credemtals, DB=self._DB, Verbose=False) print(f'Status {status}') # if query was malformed, llm halucianated for example if Correct_Query and (status == -5): while (status == -5) and (Correct_Query_Iterations < Max_Iterations): Correct_Query_Iterations += 1 print('Attempting to correct query syntax error') Query = self.Prompt_Query(Correction_Prompt, Question, Verbose=False) # Query the DB status, df = run_query(Query = Query, Credentials = self._MYSQL_Credemtals,\ DB=self._DB, Verbose=False) if Verbose: print(f'Results of query: \n',df) if Update_VDS: if Prompt_Update: rtn = '' while rtn not in ('Y','N'): print(f'Add results to Vector Datastore DB? Y or N') rtn = input('Prompt> ') if rtn == 'Y': self._VDS.Insert_VDS(Question=Question, Query=Query, Metadata='',Embedding=Question_Emb) else: self._VDS.Insert_VDS(Question=Question, Query=Query, Metadata='',Embedding=Question_Emb) # Return Query return Query, df ############################################################################## # Import Message Template def Prepare_Message_Template(self, Verbose=False, Debug=False): # Import Mesage Template file Filename = f'{self._WD}/Message_Templates/Template_0.txt' # Filename = self._MessageTemplate try: with open(Filename, 'r') as file: Template = file.read().replace('\n', '') Status = 0 except: print(f'Prompt file {Filename} load failed ') Status = -1 return "", Status if Debug: print(f'Template {Template}') Messages = [{"role": "system", "content": Template}] if Debug: print(f'Prepare Message Template: \n {Messages} \n end \n') return Messages, Status ############################################################################## # Insert_N_Shot_Messages def Insert_N_Shot_Messages(self, Messages, N_Shot_Examples, Verbose=False, Debug=False): """ Insert example questions and queries into message list for ChatCompletion API """ for i in range(len(N_Shot_Examples['Question'])): Messages.append({"role": "system", "name":"example_user", "content": N_Shot_Examples['Question'][i]}) Messages.append({"role": "system", "name":"example_assistant", "content": N_Shot_Examples['Query'][i]}) if Debug: print(f'Insert_N_Shot_Examples: {Messages[0]}\n') print(f'Insert_N_Shot_Examples: {Messages[1]}\n') print(f'Insert_N_Shot_Examples: {Messages[2]}') return Messages ############################################################################## def Insert_Queston(self, Messages, Question, Verbose=True, Debug=False): """ Insert question into message list for ChatCompletion API """ Messages.append({"role": "user", "content": Question}) if Debug: print(f'Insert Question: \n {Messages[3]}') return Messages ############################################################################## def Message_Query(self, Question = '', N_Shot_Examples = None, Verbose=False, Debug=False): """ Message dictionary format for ChatCompletion API """ Status = 0 df = pd.DataFrame() # Prepare Message Template Messages, Status = self.Prepare_Message_Template(Verbose=True) # Insert Example Messages Messages = self.Insert_N_Shot_Messages(Messages, N_Shot_Examples, Verbose=True) # Insert question Messages = self.Insert_Queston(Messages, Question, Verbose=True) if Debug: print(f' Message_Query: \n {Messages}') # Estimate input prompt cost # Cost, Tokens_Used = Prompt_Cost(Prompt, self._LLM_Model, self._Token_Cost, self._Encoding_Base) # if Verbose: # print('Input') # print(f'Total Cost: {round(Cost,3)} Tokens Used {Tokens_Used}') # Send prompt to LLM Response = self.OpenAI_ChatCompletion(Messages) if Debug: print(f'Prompt: \n',Messages,'\n') print('Response \n',Response,'\n') return -100 # Cost, Tokens_Used = OpenAI_Usage_Cost(Response, self._LLM_Model, self._Token_Cost ) if Verbose: print('Output') print(f'Total Cost: {round(Cost,3)} Tokens Used {Tokens_Used}','\n') # extract query from LLM response Query = self.OpenAI_Response_Parser(Response) return Query
[ "langchain.chains.LLMChain", "langchain.llms.OpenAI" ]
[((394, 457), 'sys.path.append', 'sys.path.append', (['"""/Users/dovcohen/Documents/Projects/AI/NL2SQL"""'], {}), "('/Users/dovcohen/Documents/Projects/AI/NL2SQL')\n", (409, 457), False, 'import sys\n'), ((6238, 6252), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6250, 6252), True, 'import pandas as pd\n'), ((6553, 6628), 'ChatGPT.src.lib.OpenAI_Func.Prompt_Cost', 'Prompt_Cost', (['Prompt', 'self._LLM_Model', 'self._Token_Cost', 'self._Encoding_Base'], {}), '(Prompt, self._LLM_Model, self._Token_Cost, self._Encoding_Base)\n', (6564, 6628), False, 'from ChatGPT.src.lib.OpenAI_Func import Prompt_Cost, OpenAI_Usage_Cost\n'), ((6973, 7035), 'ChatGPT.src.lib.OpenAI_Func.OpenAI_Usage_Cost', 'OpenAI_Usage_Cost', (['Response', 'self._LLM_Model', 'self._Token_Cost'], {}), '(Response, self._LLM_Model, self._Token_Cost)\n', (6990, 7035), False, 'from ChatGPT.src.lib.OpenAI_Func import Prompt_Cost, OpenAI_Usage_Cost\n'), ((10625, 10663), 'langchain.chains.LLMChain', 'LLMChain', ([], {'llm': 'self._LLM', 'prompt': 'Prompt'}), '(llm=self._LLM, prompt=Prompt)\n', (10633, 10663), False, 'from langchain.chains import LLMChain\n'), ((15713, 15727), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (15725, 15727), True, 'import pandas as pd\n'), ((1587, 1662), 'ChatGPT.src.lib.lib_OpenAI_Embeddings.VDS', 'VDS', (['VDSDB_Filename', 'Encoding_Base', 'Embedding_Model', 'Token_Cost', 'Max_Tokens'], {}), '(VDSDB_Filename, Encoding_Base, Embedding_Model, Token_Cost, Max_Tokens)\n', (1590, 1662), False, 'from ChatGPT.src.lib.lib_OpenAI_Embeddings import VDS, OpenAI_Embeddings\n'), ((3395, 3576), 'openai.Completion.create', 'openai.Completion.create', ([], {'model': 'self._LLM_Model', 'prompt': 'Prompt', 'max_tokens': 'self._Max_Tokens', 'temperature': 'self._Temperature', 'top_p': '(1)', 'frequency_penalty': '(0)', 'presence_penalty': '(0)'}), '(model=self._LLM_Model, prompt=Prompt, max_tokens=\n self._Max_Tokens, temperature=self._Temperature, top_p=1,\n frequency_penalty=0, presence_penalty=0)\n', (3419, 3576), False, 'import openai\n'), ((4427, 4615), 'openai.ChatCompletion.create', 'openai.ChatCompletion.create', ([], {'model': 'self._LLM_Model', 'messages': 'Messages', 'max_tokens': 'self._Max_Tokens', 'temperature': 'self._Temperature', 'top_p': '(1)', 'frequency_penalty': '(0)', 'presence_penalty': '(0)'}), '(model=self._LLM_Model, messages=Messages,\n max_tokens=self._Max_Tokens, temperature=self._Temperature, top_p=1,\n frequency_penalty=0, presence_penalty=0)\n', (4455, 4615), False, 'import openai\n'), ((8305, 8395), 'ChatGPT.src.lib.DB_Func.run_query', 'run_query', ([], {'Query': 'Query', 'Credentials': 'self._MYSQL_Credemtals', 'DB': 'self._DB', 'Verbose': '(False)'}), '(Query=Query, Credentials=self._MYSQL_Credemtals, DB=self._DB,\n Verbose=False)\n', (8314, 8395), False, 'from ChatGPT.src.lib.DB_Func import execute_query, run_query\n'), ((10273, 10408), 'langchain.llms.OpenAI', 'OpenAI', ([], {'temperature': 'self._Temperature', 'model_name': 'self._LLM_Model', 'max_tokens': 'self._Max_Tokens', 'openai_api_key': 'self._OpenAI_API_Key'}), '(temperature=self._Temperature, model_name=self._LLM_Model,\n max_tokens=self._Max_Tokens, openai_api_key=self._OpenAI_API_Key)\n', (10279, 10408), False, 'from langchain.llms import OpenAI\n'), ((11908, 11998), 'ChatGPT.src.lib.DB_Func.run_query', 'run_query', ([], {'Query': 'Query', 'Credentials': 'self._MYSQL_Credemtals', 'DB': 'self._DB', 'Verbose': '(False)'}), '(Query=Query, Credentials=self._MYSQL_Credemtals, DB=self._DB,\n Verbose=False)\n', (11917, 11998), False, 'from ChatGPT.src.lib.DB_Func import execute_query, run_query\n'), ((8869, 8959), 'ChatGPT.src.lib.DB_Func.run_query', 'run_query', ([], {'Query': 'Query', 'Credentials': 'self._MYSQL_Credemtals', 'DB': 'self._DB', 'Verbose': '(False)'}), '(Query=Query, Credentials=self._MYSQL_Credemtals, DB=self._DB,\n Verbose=False)\n', (8878, 8959), False, 'from ChatGPT.src.lib.DB_Func import execute_query, run_query\n'), ((12523, 12613), 'ChatGPT.src.lib.DB_Func.run_query', 'run_query', ([], {'Query': 'Query', 'Credentials': 'self._MYSQL_Credemtals', 'DB': 'self._DB', 'Verbose': '(False)'}), '(Query=Query, Credentials=self._MYSQL_Credemtals, DB=self._DB,\n Verbose=False)\n', (12532, 12613), False, 'from ChatGPT.src.lib.DB_Func import execute_query, run_query\n')]
"""Web base loader class.""" import langchain_community.document_loaders as dl from langchain.docstore.document import Document import asyncio import datetime from io import StringIO import logging import re import warnings from typing import Any, AsyncGenerator, Dict, Iterator, List, Optional, Tuple, Union import inspect import aiohttp import discord import requests import gui from htmldate import find_date import assets from javascriptasync import require, eval_js, eval_js_a from .metadataenums import MetadataDocType from bs4 import BeautifulSoup """This is a special loader that makes use of Mozilla's readability library.""" from utility import Timer def remove_links(markdown_text): # Regular expression pattern to match masked links # pattern = r'\[([^\]]+)\]\(([^\)]+)\)' pattern = r"\[([^\]]+)\]\([^)]+\)" # Replace the masked links with their text content no_links_string = re.sub(pattern, r"\1", markdown_text) return no_links_string async def check_readability(jsenv, html, url): myfile = await assets.JavascriptLookup.get_full_pathas( "readwebpage.js", "WEBJS", jsenv ) htmls: str = str(html) rsult = await myfile.check_read(url, htmls, timeout=45) return rsult async def read_article_direct(jsenv, html, url): myfile = await assets.JavascriptLookup.get_full_pathas( "readwebpage.js", "WEBJS", jsenv ) timeout = 30 htmls: str = str(html) pythonObject = {"var": htmls, "url": url} rsult = await myfile.read_webpage_html_direct(htmls, url, timeout=45) output = await rsult.get_a("mark") header = await rsult.get_a("orig") serial = await header.get_dict_a() simplified_text = output.strip() simplified_text = re.sub(r"(\n){4,}", "\n\n\n", simplified_text) simplified_text = re.sub(r"\n\n", "\n", simplified_text) simplified_text = re.sub(r" {3,}", " ", simplified_text) simplified_text = simplified_text.replace("\t", "") simplified_text = re.sub(r"\n+(\s*\n)*", "\n", simplified_text) return [simplified_text, serial] async def read_article_aw(jsenv, html, url): now = discord.utils.utcnow() getthread = await read_article_direct(jsenv, html, url) result = getthread text, header = result[0], result[1] return text, header def _build_metadata(soup: Any, url: str) -> dict: """Build metadata from BeautifulSoup output.""" metadata = {"source": url} if title := soup.find("title"): metadata["title"] = title.get_text() if description := soup.find("meta", attrs={"name": "description"}): metadata["description"] = description.get("content", "No description found.") if html := soup.find("html"): metadata["language"] = html.get("lang", "No language found.") metadata["dateadded"] = datetime.datetime.utcnow().timestamp() metadata["date"] = "None" try: dt = find_date(str(soup)) if dt: metadata["date"] = dt except Exception as e: gui.dprint(e) metadata["reader"] = False return metadata ScrapeResult = Tuple[str, BeautifulSoup, Dict[str, Any]] class ReadableLoader(dl.WebBaseLoader): async def _fetch_with_rate_limit( self, url: str, semaphore: asyncio.Semaphore ) -> str: # Extended from WebBaseLoader so that it will log the errors # using this app's logging system. async with semaphore: try: return await self._fetch(url) except Exception as e: await self.bot.send_error(e, title="fetching a url.", uselog=True) if self.continue_on_failure: self.bot.logs.warning( f"Error fetching {url}, skipping due to" f" continue_on_failure=True" ) return e self.bot.logs.exception( f"Error fetching {url} and aborting, use continue_on_failure=True " "to continue loading urls after encountering an error." ) raise e async def scrape_all( self, urls: List[Tuple[int, str]], parser: Union[str, None] = None ) -> AsyncGenerator[Tuple[int, int, Union[ScrapeResult, Exception]], None]: """Fetch all urls, then return soups for all results. This function is an asyncronous generator.""" regular_urls = [] for e, url in urls: regular_urls.append(url) with Timer() as timer: results = await self.fetch_all(regular_urls) elapsed_time = timer.get_time() print(f"READ: Took {elapsed_time:.4f} seconds to gather {len(urls)}.") for i, result in enumerate(results): if isinstance(result, Exception): yield i, urls[i][0], result continue url = regular_urls[i] if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) souped = BeautifulSoup(result, parser) clean_html = re.sub( r"<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>", "", result ) print("attempting read of ", urls[i][0], "length is", len(clean_html)) readable = await check_readability(self.jsenv, clean_html, url) if not readable: gui.dprint("Not readable link.") try: with Timer() as timer: text, header = await read_article_aw(self.jsenv, clean_html, url) elapsed_time = timer.get_time() print( f"READABILITY: Took {elapsed_time:.4f} seconds to convert {urls[i][0]} to readable." ) # YIELD THIS: out = (remove_links(text), souped, header) yield i, urls[i][0], out except Exception as e: gui.dprint(e) text = souped.get_text(**self.bs_get_text_kwargs) # YIELD THIS: out = (remove_links(text), souped, None) yield i, urls[i][0], out # return final_results def _scrape(self, url: str, parser: Union[str, None] = None) -> Any: from bs4 import BeautifulSoup if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) html_doc = self.session.get(url, **self.requests_kwargs) if self.raise_for_status: html_doc.raise_for_status() html_doc.encoding = html_doc.apparent_encoding return BeautifulSoup(html_doc.text, parser) def scrape(self, parser: Union[str, None] = None) -> Any: """Scrape data from webpage and return it in BeautifulSoup format.""" if parser is None: parser = self.default_parser return self._scrape(self.web_path, parser) def lazy_load(self) -> Iterator[Document]: """Lazy load text from the url(s) in web_path.""" for path in self.web_paths: soup = self._scrape(path) text = soup.get_text(**self.bs_get_text_kwargs) metadata = _build_metadata(soup, path) yield Document(page_content=text, metadata=metadata) def load(self) -> List[Document]: """Load text from the url(s) in web_path.""" return list(self.lazy_load()) async def aload( self, bot ) -> AsyncGenerator[Tuple[Union[List[Document], Exception], int, int], None]: """Load text from the urls in web_path async into Documents.""" self.jsenv = bot.jsenv self.bot = bot self.continue_on_failure = True docs, typev = [], -1 # e is the original fetched url position. # i is the position in the self.web_paths list. # Result is either a tuple or exception. async for i, e, result in self.scrape_all(self.web_paths): if isinstance(result, Exception): yield result, e, -5 else: try: text, soup, header = result metadata = _build_metadata(soup, self.web_paths[i][1]) typev = MetadataDocType.htmltext if not "title" in metadata: metadata["title"] = "No Title" if header is not None: if "byline" in header: metadata["authors"] = header["byline"] metadata["website"] = header.get("siteName", "siteunknown") metadata["title"] = header.get("title") typev = MetadataDocType.readertext metadata["type"] = int(typev) metadata["sum"] = "source" yield Document(page_content=text, metadata=metadata), e, typev except Exception as err: gui.dprint(str(err)) yield err, e, -5
[ "langchain.docstore.document.Document" ]
[((914, 951), 're.sub', 're.sub', (['pattern', '"""\\\\1"""', 'markdown_text'], {}), "(pattern, '\\\\1', markdown_text)\n", (920, 951), False, 'import re\n'), ((1742, 1788), 're.sub', 're.sub', (['"""(\\\\n){4,}"""', '"""\n\n\n"""', 'simplified_text'], {}), "('(\\\\n){4,}', '\\n\\n\\n', simplified_text)\n", (1748, 1788), False, 'import re\n'), ((1811, 1850), 're.sub', 're.sub', (['"""\\\\n\\\\n"""', '"""\n"""', 'simplified_text'], {}), "('\\\\n\\\\n', '\\n', simplified_text)\n", (1817, 1850), False, 'import re\n'), ((1872, 1910), 're.sub', 're.sub', (['""" {3,}"""', '""" """', 'simplified_text'], {}), "(' {3,}', ' ', simplified_text)\n", (1878, 1910), False, 'import re\n'), ((1990, 2037), 're.sub', 're.sub', (['"""\\\\n+(\\\\s*\\\\n)*"""', '"""\n"""', 'simplified_text'], {}), "('\\\\n+(\\\\s*\\\\n)*', '\\n', simplified_text)\n", (1996, 2037), False, 'import re\n'), ((2130, 2152), 'discord.utils.utcnow', 'discord.utils.utcnow', ([], {}), '()\n', (2150, 2152), False, 'import discord\n'), ((1048, 1121), 'assets.JavascriptLookup.get_full_pathas', 'assets.JavascriptLookup.get_full_pathas', (['"""readwebpage.js"""', '"""WEBJS"""', 'jsenv'], {}), "('readwebpage.js', 'WEBJS', jsenv)\n", (1087, 1121), False, 'import assets\n'), ((1310, 1383), 'assets.JavascriptLookup.get_full_pathas', 'assets.JavascriptLookup.get_full_pathas', (['"""readwebpage.js"""', '"""WEBJS"""', 'jsenv'], {}), "('readwebpage.js', 'WEBJS', jsenv)\n", (1349, 1383), False, 'import assets\n'), ((6806, 6842), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc.text', 'parser'], {}), '(html_doc.text, parser)\n', (6819, 6842), False, 'from bs4 import BeautifulSoup\n'), ((2806, 2832), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2830, 2832), False, 'import datetime\n'), ((3002, 3015), 'gui.dprint', 'gui.dprint', (['e'], {}), '(e)\n', (3012, 3015), False, 'import gui\n'), ((4504, 4511), 'utility.Timer', 'Timer', ([], {}), '()\n', (4509, 4511), False, 'from utility import Timer\n'), ((5136, 5165), 'bs4.BeautifulSoup', 'BeautifulSoup', (['result', 'parser'], {}), '(result, parser)\n', (5149, 5165), False, 'from bs4 import BeautifulSoup\n'), ((5191, 5265), 're.sub', 're.sub', (['"""<script\\\\b[^<]*(?:(?!<\\\\/script>)<[^<]*)*<\\\\/script>"""', '""""""', 'result'], {}), "('<script\\\\b[^<]*(?:(?!<\\\\/script>)<[^<]*)*<\\\\/script>', '', result)\n", (5197, 5265), False, 'import re\n'), ((5498, 5530), 'gui.dprint', 'gui.dprint', (['"""Not readable link."""'], {}), "('Not readable link.')\n", (5508, 5530), False, 'import gui\n'), ((7414, 7460), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (7422, 7460), False, 'from langchain.docstore.document import Document\n'), ((5569, 5576), 'utility.Timer', 'Timer', ([], {}), '()\n', (5574, 5576), False, 'from utility import Timer\n'), ((6049, 6062), 'gui.dprint', 'gui.dprint', (['e'], {}), '(e)\n', (6059, 6062), False, 'import gui\n'), ((9021, 9067), 'langchain.docstore.document.Document', 'Document', ([], {'page_content': 'text', 'metadata': 'metadata'}), '(page_content=text, metadata=metadata)\n', (9029, 9067), False, 'from langchain.docstore.document import Document\n')]
#!/usr/bin/python3 import cgi import time import threading import langchain import openai from langchain.tools import WikipediaQueryRun from langchain.utilities import WikipediaAPIWrapper from langchain.llms import OpenAI from langchain.chains import LLMChain from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType print("Content-type:text/html") print() form = cgi.FieldStorage() data=form.getvalue("c") def run(data): wikipedia = WikipediaAPIWrapper() myapikey= openai.api_key="your_openai_key" myllm = OpenAI( model= ('text-davinci-003'), temperature=1, openai_api_key= myapikey ) mywikitool=load_tools(tool_names=["wikipedia"]) mywikichain=initialize_agent( llm=myllm, tools=mywikitool, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) mywikichain.run(data) program_thread = threading.Thread(target=run, args=(data)) program_thread.start() program_thread.join() op=run(data) #time.sleep(30) print(op) print() print() print("<form action= HTTP://'your_ip'/menu.html>") print("<input type='submit' vaue='Back to Main menu'></form>")
[ "langchain.agents.initialize_agent", "langchain.utilities.WikipediaAPIWrapper", "langchain.llms.OpenAI", "langchain.agents.load_tools" ]
[((436, 454), 'cgi.FieldStorage', 'cgi.FieldStorage', ([], {}), '()\n', (452, 454), False, 'import cgi\n'), ((895, 934), 'threading.Thread', 'threading.Thread', ([], {'target': 'run', 'args': 'data'}), '(target=run, args=data)\n', (911, 934), False, 'import threading\n'), ((507, 528), 'langchain.utilities.WikipediaAPIWrapper', 'WikipediaAPIWrapper', ([], {}), '()\n', (526, 528), False, 'from langchain.utilities import WikipediaAPIWrapper\n'), ((582, 654), 'langchain.llms.OpenAI', 'OpenAI', ([], {'model': '"""text-davinci-003"""', 'temperature': '(1)', 'openai_api_key': 'myapikey'}), "(model='text-davinci-003', temperature=1, openai_api_key=myapikey)\n", (588, 654), False, 'from langchain.llms import OpenAI\n'), ((689, 725), 'langchain.agents.load_tools', 'load_tools', ([], {'tool_names': "['wikipedia']"}), "(tool_names=['wikipedia'])\n", (699, 725), False, 'from langchain.agents import load_tools\n'), ((739, 848), 'langchain.agents.initialize_agent', 'initialize_agent', ([], {'llm': 'myllm', 'tools': 'mywikitool', 'agent': 'AgentType.ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)'}), '(llm=myllm, tools=mywikitool, agent=AgentType.\n ZERO_SHOT_REACT_DESCRIPTION, verbose=True)\n', (755, 848), False, 'from langchain.agents import initialize_agent\n')]
import streamlit as st import os # Utils import time from typing import List # Langchain import langchain from pydantic import BaseModel from vertexai.language_models import TextGenerationModel # Vertex AI from langchain.llms import VertexAI from llm_experiments.utils import here os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = str(here() / 'motorway-genai-ccebd34bd403.json') # LLM model llm = VertexAI( model_name="text-bison@001", max_output_tokens=1024, temperature=0.3, top_p=0.8, top_k=40, verbose=True, ) def form_assistant_prompt(seller_email): return f"""Your task is to assist a customer service agent. Step 1: Summarise the following email from a customer who is trying to sell their vehicle and the agent. Use 2-5 bullet points. Step 2: Estimate the customer's emotional state in no more than 3 words. This might be distressed, angry, upset, happy, excited etc. Step 3: Output the recommended action for the agent. Step 3: Draft a response for the agent, in a polite but semi-formal and friendly tone (suitable for a start up). The email will be delimited with #### Format your response like this: **** Summary: - <bullet 1> - <bullet 2> - <bullet 3> **** Customer's emotional state: <examples: distressed, angry, upset> **** Recommended Action: <Action> **** Draft Response: <Draft response> **** Customer email below: #### {seller_email} #### Response: """ def form_validation_prompt(summary_and_context, proposed_response): return f"""Your task is to assist a customer service agent. You will receive an email from a customer and a proposed response from a customer support agent. You will also receive a summary, an estimate of the customer's emotional state, the recommended action and then the draft response. You should conduct the following actions: Step 1: Identify if the proposed response meets the needs of the customer and is of the appropriate tone to match the customer's emotional state. Respond with a "Yes, this meets the customer's needs" or "No, this doesn't meet the customer's needs because <give reason>" Step 2: Recommend a better response that meets the customer's needs more closely. The information will be delimited with #### Format your response like this: **** Validation: <response> **** Improved response: <response> **** Context: #### {summary_and_context} #### Proposed Response: #### {proposed_response} #### Response: """ # Streamlit code starts here st.set_page_config(page_title='Customer Email Assistant 📧🤖', layout='wide') st.title('Customer Email Assistant 📧🤖') seller_email = st.text_area('Seller Email', """Good morning Unfortunately the dealer who came to collect the car decided that they only wanted to offer me ¬£9800 when they arrived to collect the car and i was not willing to let it go for that amount. There was 3 men who cam to collect it and it felt really intimidating and pressured.The car has not been collected.""") if 'result' not in st.session_state: st.session_state['result'] = None if st.button('Generate Response') or st.session_state.result is not None: st.session_state.result = llm(form_assistant_prompt(seller_email)) sections = st.session_state.result.split('****') for section in sections[1:]: title, _, rest = section.partition(':') st.subheader(title) st.session_state.text_box = st.text_area('', rest.strip()) st.divider() st.subheader('Check Response:') draft_response = st.text_area('Draft your response here') if st.button('Validate Response'): summary_and_context, _, _ = st.session_state.result.rpartition('****') response = llm(form_validation_prompt(summary_and_context, draft_response)) title, _, rest = response.partition(':') st.subheader(title) st.text_area('', rest)
[ "langchain.llms.VertexAI" ]
[((400, 518), 'langchain.llms.VertexAI', 'VertexAI', ([], {'model_name': '"""text-bison@001"""', 'max_output_tokens': '(1024)', 'temperature': '(0.3)', 'top_p': '(0.8)', 'top_k': '(40)', 'verbose': '(True)'}), "(model_name='text-bison@001', max_output_tokens=1024, temperature=\n 0.3, top_p=0.8, top_k=40, verbose=True)\n", (408, 518), False, 'from langchain.llms import VertexAI\n'), ((3484, 3559), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""Customer Email Assistant 📧🤖"""', 'layout': '"""wide"""'}), "(page_title='Customer Email Assistant 📧🤖', layout='wide')\n", (3502, 3559), True, 'import streamlit as st\n'), ((3561, 3600), 'streamlit.title', 'st.title', (['"""Customer Email Assistant 📧🤖"""'], {}), "('Customer Email Assistant 📧🤖')\n", (3569, 3600), True, 'import streamlit as st\n'), ((3617, 3981), 'streamlit.text_area', 'st.text_area', (['"""Seller Email"""', '"""Good morning Unfortunately the dealer who came to collect the car decided that they only wanted to offer me ¬£9800 when they arrived to collect the car and i was not willing to let it go for that amount.\nThere was 3 men who cam to collect it and it felt really intimidating and pressured.The car has not been collected."""'], {}), '(\'Seller Email\',\n """Good morning Unfortunately the dealer who came to collect the car decided that they only wanted to offer me ¬£9800 when they arrived to collect the car and i was not willing to let it go for that amount.\nThere was 3 men who cam to collect it and it felt really intimidating and pressured.The car has not been collected."""\n )\n', (3629, 3981), True, 'import streamlit as st\n'), ((4454, 4466), 'streamlit.divider', 'st.divider', ([], {}), '()\n', (4464, 4466), True, 'import streamlit as st\n'), ((4468, 4499), 'streamlit.subheader', 'st.subheader', (['"""Check Response:"""'], {}), "('Check Response:')\n", (4480, 4499), True, 'import streamlit as st\n'), ((4517, 4557), 'streamlit.text_area', 'st.text_area', (['"""Draft your response here"""'], {}), "('Draft your response here')\n", (4529, 4557), True, 'import streamlit as st\n'), ((4562, 4592), 'streamlit.button', 'st.button', (['"""Validate Response"""'], {}), "('Validate Response')\n", (4571, 4592), True, 'import streamlit as st\n'), ((4081, 4111), 'streamlit.button', 'st.button', (['"""Generate Response"""'], {}), "('Generate Response')\n", (4090, 4111), True, 'import streamlit as st\n'), ((4239, 4276), 'streamlit.session_state.result.split', 'st.session_state.result.split', (['"""****"""'], {}), "('****')\n", (4268, 4276), True, 'import streamlit as st\n'), ((4626, 4668), 'streamlit.session_state.result.rpartition', 'st.session_state.result.rpartition', (['"""****"""'], {}), "('****')\n", (4660, 4668), True, 'import streamlit as st\n'), ((4798, 4817), 'streamlit.subheader', 'st.subheader', (['title'], {}), '(title)\n', (4810, 4817), True, 'import streamlit as st\n'), ((4822, 4844), 'streamlit.text_area', 'st.text_area', (['""""""', 'rest'], {}), "('', rest)\n", (4834, 4844), True, 'import streamlit as st\n'), ((336, 342), 'llm_experiments.utils.here', 'here', ([], {}), '()\n', (340, 342), False, 'from llm_experiments.utils import here\n'), ((4366, 4385), 'streamlit.subheader', 'st.subheader', (['title'], {}), '(title)\n', (4378, 4385), True, 'import streamlit as st\n')]
#Multi-agent decentralized speaker selection: ''' This notebook showcases how to implement a multi-agent simulation without a fixed schedule for who speaks when. Instead the agents decide for themselves who speaks. We can implement this by having each agent bid to speak. Whichever agent’s bid is the highest gets to speak. We will show how to do this in the example below that showcases a fictitious presidential debate. ''' import os os.environ["OPENAI_API_KEY"] ="your_api_key" serpapi_key="your_serpapi_key" #Import LangChain related modules from langchain import PromptTemplate import re import tenacity from typing import List, Dict, Callable from langchain.chat_models import ChatOpenAI from langchain.output_parsers import RegexParser from langchain.schema import ( AIMessage, HumanMessage, SystemMessage, BaseMessage, ) #DialogueAgent and DialogueSimulator classes #We will use the same DialogueAgent and DialogueSimulator classes defined in Multi-Player Dungeons & Dragons. def dec_speaker_selection(): class DialogueAgent: def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.name = name self.system_message = system_message self.model = model self.prefix = f"{self.name}: " self.reset() def reset(self): self.message_history = ["Here is the conversation so far."] def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ message = self.model( [ self.system_message, HumanMessage(content="\n".join(self.message_history + [self.prefix])), ] ) return message.content def receive(self, name: str, message: str) -> None: """ Concatenates {message} spoken by {name} into message history """ self.message_history.append(f"{name}: {message}") class DialogueSimulator: def __init__( self, agents: List[DialogueAgent], selection_function: Callable[[int, List[DialogueAgent]], int], ) -> None: self.agents = agents self._step = 0 self.select_next_speaker = selection_function def reset(self): for agent in self.agents: agent.reset() def inject(self, name: str, message: str): """ Initiates the conversation with a {message} from {name} """ for agent in self.agents: agent.receive(name, message) # increment time self._step += 1 def step(self) -> tuple[str, str]: # 1. choose the next speaker speaker_idx = self.select_next_speaker(self._step, self.agents) speaker = self.agents[speaker_idx] # 2. next speaker sends message message = speaker.send() # 3. everyone receives message for receiver in self.agents: receiver.receive(speaker.name, message) # 4. increment time self._step += 1 return speaker.name, message #BiddingDialogueAgent class #We define a subclass of DialogueAgent that has a bid() method that produces a bid given the message history and the most recent message. class BiddingDialogueAgent(DialogueAgent): def __init__( self, name, system_message: SystemMessage, bidding_template: PromptTemplate, model: ChatOpenAI, ) -> None: super().__init__(name, system_message, model) self.bidding_template = bidding_template def bid(self) -> str: """ Asks the chat model to output a bid to speak """ prompt = PromptTemplate( input_variables=['message_history', 'recent_message'], template = self.bidding_template ).format( message_history='\n'.join(self.message_history), recent_message=self.message_history[-1]) bid_string = self.model([SystemMessage(content=prompt)]).content return bid_string #Define participants and debate topic character_names = ["Donald Trump", "Kanye West", "Elizabeth Warren"] topic = "transcontinental high speed rail" word_limit = 50 #Generate system messages game_description = f"""Here is the topic for the presidential debate: {topic}. The presidential candidates are: {', '.join(character_names)}.""" player_descriptor_system_message = SystemMessage( content="You can add detail to the description of each presidential candidate.") def generate_character_description(character_name): character_specifier_prompt = [ player_descriptor_system_message, HumanMessage(content= f"""{game_description} Please reply with a creative description of the presidential candidate, {character_name}, in {word_limit} words or less, that emphasizes their personalities. Speak directly to {character_name}. Do not add anything else.""" ) ] character_description = ChatOpenAI(temperature=1.0)(character_specifier_prompt).content return character_description def generate_character_header(character_name, character_description): return f"""{game_description} Your name is {character_name}. You are a presidential candidate. Your description is as follows: {character_description} You are debating the topic: {topic}. Your goal is to be as creative as possible and make the voters think you are the best candidate. """ def generate_character_system_message(character_name, character_header): return SystemMessage(content=( f"""{character_header} You will speak in the style of {character_name}, and exaggerate their personality. You will come up with creative ideas related to {topic}. Do not say the same things over and over again. Speak in the first person from the perspective of {character_name} For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of {character_name}. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to {word_limit} words! Do not add anything else. """ )) character_descriptions = [generate_character_description(character_name) for character_name in character_names] character_headers = [generate_character_header(character_name, character_description) for character_name, character_description in zip(character_names, character_descriptions)] character_system_messages = [generate_character_system_message(character_name, character_headers) for character_name, character_headers in zip(character_names, character_headers)] for character_name, character_description, character_header, character_system_message in zip(character_names, character_descriptions, character_headers, character_system_messages): print(f'\n\n{character_name} Description:') print(f'\n{character_description}') print(f'\n{character_header}') print(f'\n{character_system_message.content}') dec_speaker_selection()
[ "langchain.PromptTemplate", "langchain.schema.SystemMessage", "langchain.chat_models.ChatOpenAI", "langchain.schema.HumanMessage" ]
[((4907, 5006), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': '"""You can add detail to the description of each presidential candidate."""'}), "(content=\n 'You can add detail to the description of each presidential candidate.')\n", (4920, 5006), False, 'from langchain.schema import AIMessage, HumanMessage, SystemMessage, BaseMessage\n'), ((6148, 6860), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': 'f"""{character_header}\n You will speak in the style of {character_name}, and exaggerate their personality.\n You will come up with creative ideas related to {topic}.\n Do not say the same things over and over again.\n Speak in the first person from the perspective of {character_name}\n For describing your own body movements, wrap your description in \'*\'.\n Do not change roles!\n Do not speak from the perspective of anyone else.\n Speak only from the perspective of {character_name}.\n Stop speaking the moment you finish speaking from your perspective.\n Never forget to keep your response to {word_limit} words!\n Do not add anything else.\n """'}), '(content=\n f"""{character_header}\n You will speak in the style of {character_name}, and exaggerate their personality.\n You will come up with creative ideas related to {topic}.\n Do not say the same things over and over again.\n Speak in the first person from the perspective of {character_name}\n For describing your own body movements, wrap your description in \'*\'.\n Do not change roles!\n Do not speak from the perspective of anyone else.\n Speak only from the perspective of {character_name}.\n Stop speaking the moment you finish speaking from your perspective.\n Never forget to keep your response to {word_limit} words!\n Do not add anything else.\n """\n )\n', (6161, 6860), False, 'from langchain.schema import AIMessage, HumanMessage, SystemMessage, BaseMessage\n'), ((5165, 5491), 'langchain.schema.HumanMessage', 'HumanMessage', ([], {'content': 'f"""{game_description}\n Please reply with a creative description of the presidential candidate, {character_name}, in {word_limit} words or less, that emphasizes their personalities. \n Speak directly to {character_name}.\n Do not add anything else."""'}), '(content=\n f"""{game_description}\n Please reply with a creative description of the presidential candidate, {character_name}, in {word_limit} words or less, that emphasizes their personalities. \n Speak directly to {character_name}.\n Do not add anything else."""\n )\n', (5177, 5491), False, 'from langchain.schema import AIMessage, HumanMessage, SystemMessage, BaseMessage\n'), ((5558, 5585), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'temperature': '(1.0)'}), '(temperature=1.0)\n', (5568, 5585), False, 'from langchain.chat_models import ChatOpenAI\n'), ((4098, 4203), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['message_history', 'recent_message']", 'template': 'self.bidding_template'}), "(input_variables=['message_history', 'recent_message'],\n template=self.bidding_template)\n", (4112, 4203), False, 'from langchain import PromptTemplate\n'), ((4415, 4444), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': 'prompt'}), '(content=prompt)\n', (4428, 4444), False, 'from langchain.schema import AIMessage, HumanMessage, SystemMessage, BaseMessage\n')]
import torch from transformers import BitsAndBytesConfig from langchain import HuggingFacePipeline from langchain import PromptTemplate, LLMChain from pathlib import Path import langchain import json import chromadb from chromadb.config import Settings from langchain.llms import HuggingFacePipeline from langchain.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.chains import RetrievalQA from langchain.vectorstores import Chroma from langchain.document_loaders import DirectoryLoader from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from sentence_transformers import SentenceTransformer, util from sklearn.metrics.pairwise import cosine_similarity import utils with open("config.json", "r") as content: config = json.load(content) with open("book_config.json", "r") as content: book_config = json.load(content) book = config.get("book") output_json = "output_json" dir_path = rf"books/{book}/part" rootdir = rf"books/{book}/" wiki_url = book_config.get(book).get("wikipedia_link") person = book.replace("_", " ") print(book) Path(rf"{output_json}/{book}").mkdir(parents=True, exist_ok=True) loader = DirectoryLoader(rootdir, glob="**/*.txt", loader_cls=TextLoader, loader_kwargs={"encoding": "utf-8"}) data=loader.load() ####################### text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) all_splits = text_splitter.split_documents(data) model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {"device": "cuda"} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) ####################### vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db") quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) model_id = "mistralai/Mistral-7B-Instruct-v0.1" model_4bit = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto",quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model_4bit, tokenizer=tokenizer, use_cache=True, device_map="auto", max_length=2000, do_sample=True, top_k=5, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) llm = HuggingFacePipeline(pipeline=pipe) # Retriving Top n Chunks most Similar to query. retriever = vectordb.as_retriever(search_kwargs={"k": 2}) ####################### qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", # chain_type="map_reduce", retriever=retriever, verbose=True ) def run_my_rag(qa, query): # print(f"Query: {query}\n") result = qa.run(query) # print("\nResult: ", result) return result def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) wikipedia_content = utils.get_wikipedia_content(wiki_url) generated_content = {} for section_name, section_content in wikipedia_content.items(): query_stage_1 = f"""You are an AI assistant in writing Wikipedia articles on personalities and your task is to expand the existing content of the given Wikipedia section about the personality: "{person}" from the source documents. Can you add 3-4 most relevant sentences to the existing content? DO NOT use any external information. Existing content: "{section_content}" New relevant sentences: """ result = qa({"query": query_stage_1}) ## Using the retrieved document as context to query the LLM context = format_docs(result.get("source_documents", [])) query_stage_2 = f"""You are an AI assistant in writing Wikipedia articles on personalities and your task is to expand the existing content of the given Wikipedia section about the personality: "{person}" from the given context. Using the context generate a coherent, insightful and neutral expansion of the existing content. STRCTLY Do not generate more than 4 sentences. If it is not possible to expand the content from the context, say so. context: "{context}" Existing content: "{section_name}: {section_content}" Expanded content: """ generated_content[section_name] = llm(query_stage_2) # print("="*50) # print(section_content) # print("*"*25) # print(llm(query_stage_2)) old_wikipedia_content = " ".join(wikipedia_content.values()) text = "" for section_name, text in generated_content.items(): print(text) print("="*20) if "not possible" not in text.lower(): wikipedia_content[section_name] += text with open(f"{output_json}/{book}/e2e_RAG_generated_content.json", "w") as content: json.dump(generated_content, content) updated_wikipedia_content = " ".join(wikipedia_content.values()) old_score = utils.calculate_quality(old_wikipedia_content) updated_score = utils.calculate_quality(updated_wikipedia_content) # Calculate the difference between corresponding values difference_dict = {key: updated_score[key] - old_score[key] for key in old_score} print(difference_dict)
[ "langchain.document_loaders.DirectoryLoader", "langchain.embeddings.HuggingFaceEmbeddings", "langchain.chains.RetrievalQA.from_chain_type", "langchain.text_splitter.RecursiveCharacterTextSplitter", "langchain.llms.HuggingFacePipeline", "langchain.vectorstores.Chroma.from_documents" ]
[((1266, 1371), 'langchain.document_loaders.DirectoryLoader', 'DirectoryLoader', (['rootdir'], {'glob': '"""**/*.txt"""', 'loader_cls': 'TextLoader', 'loader_kwargs': "{'encoding': 'utf-8'}"}), "(rootdir, glob='**/*.txt', loader_cls=TextLoader,\n loader_kwargs={'encoding': 'utf-8'})\n", (1281, 1371), False, 'from langchain.document_loaders import DirectoryLoader\n'), ((1428, 1494), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(200)'}), '(chunk_size=1000, chunk_overlap=200)\n', (1458, 1494), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1646, 1717), 'langchain.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': 'model_name', 'model_kwargs': 'model_kwargs'}), '(model_name=model_name, model_kwargs=model_kwargs)\n', (1667, 1717), False, 'from langchain.embeddings import HuggingFaceEmbeddings\n'), ((1754, 1854), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', ([], {'documents': 'all_splits', 'embedding': 'embeddings', 'persist_directory': '"""chroma_db"""'}), "(documents=all_splits, embedding=embeddings,\n persist_directory='chroma_db')\n", (1775, 1854), False, 'from langchain.vectorstores import Chroma\n'), ((1874, 2012), 'transformers.BitsAndBytesConfig', 'BitsAndBytesConfig', ([], {'load_in_4bit': '(True)', 'bnb_4bit_compute_dtype': 'torch.float16', 'bnb_4bit_quant_type': '"""nf4"""', 'bnb_4bit_use_double_quant': '(True)'}), "(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16,\n bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True)\n", (1892, 2012), False, 'from transformers import BitsAndBytesConfig\n'), ((2090, 2200), 'transformers.AutoModelForCausalLM.from_pretrained', 'AutoModelForCausalLM.from_pretrained', (['model_id'], {'device_map': '"""auto"""', 'quantization_config': 'quantization_config'}), "(model_id, device_map='auto',\n quantization_config=quantization_config)\n", (2126, 2200), False, 'from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n'), ((2211, 2250), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['model_id'], {}), '(model_id)\n', (2240, 2250), False, 'from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n'), ((2260, 2513), 'transformers.pipeline', 'pipeline', (['"""text-generation"""'], {'model': 'model_4bit', 'tokenizer': 'tokenizer', 'use_cache': '(True)', 'device_map': '"""auto"""', 'max_length': '(2000)', 'do_sample': '(True)', 'top_k': '(5)', 'num_return_sequences': '(1)', 'eos_token_id': 'tokenizer.eos_token_id', 'pad_token_id': 'tokenizer.eos_token_id'}), "('text-generation', model=model_4bit, tokenizer=tokenizer,\n use_cache=True, device_map='auto', max_length=2000, do_sample=True,\n top_k=5, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id,\n pad_token_id=tokenizer.eos_token_id)\n", (2268, 2513), False, 'from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n'), ((2599, 2633), 'langchain.llms.HuggingFacePipeline', 'HuggingFacePipeline', ([], {'pipeline': 'pipe'}), '(pipeline=pipe)\n', (2618, 2633), False, 'from langchain.llms import HuggingFacePipeline\n'), ((2771, 2867), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'llm', 'chain_type': '"""stuff"""', 'retriever': 'retriever', 'verbose': '(True)'}), "(llm=llm, chain_type='stuff', retriever=\n retriever, verbose=True)\n", (2798, 2867), False, 'from langchain.chains import RetrievalQA\n'), ((3154, 3191), 'utils.get_wikipedia_content', 'utils.get_wikipedia_content', (['wiki_url'], {}), '(wiki_url)\n', (3181, 3191), False, 'import utils\n'), ((5051, 5097), 'utils.calculate_quality', 'utils.calculate_quality', (['old_wikipedia_content'], {}), '(old_wikipedia_content)\n', (5074, 5097), False, 'import utils\n'), ((5114, 5164), 'utils.calculate_quality', 'utils.calculate_quality', (['updated_wikipedia_content'], {}), '(updated_wikipedia_content)\n', (5137, 5164), False, 'import utils\n'), ((869, 887), 'json.load', 'json.load', (['content'], {}), '(content)\n', (878, 887), False, 'import json\n'), ((954, 972), 'json.load', 'json.load', (['content'], {}), '(content)\n', (963, 972), False, 'import json\n'), ((4933, 4970), 'json.dump', 'json.dump', (['generated_content', 'content'], {}), '(generated_content, content)\n', (4942, 4970), False, 'import json\n'), ((1190, 1219), 'pathlib.Path', 'Path', (['f"""{output_json}/{book}"""'], {}), "(f'{output_json}/{book}')\n", (1194, 1219), False, 'from pathlib import Path\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # 配置环境变量 import os from LangChain_study.common import ChatParam os.environ["OPENAI_API_KEY"] = ChatParam.OPENAI_API_KEY os.environ["OPENAI_API_BASE"] = ChatParam.OPENAI_API_BASE # 初始化LLM模型 import langchain from langchain.llms import OpenAI llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2) # 利用内存缓存返回结果:结果会缓存到内存中,在此问相同的问题会直接从内存中读取结果 from langchain.cache import InMemoryCache langchain.llm_cache = InMemoryCache() print(llm("Tell me a joke")) print("----------- 在此提问 ————————————————") print(llm("Tell me a joke")) # 支持的缓存方式:SQLite 、Redis(支持语义缓存) 、GPTCache(精确匹配缓存或基于语义相似性缓存)、Momento缓存、SQLAlchemy 缓存
[ "langchain.cache.InMemoryCache", "langchain.llms.OpenAI" ]
[((295, 348), 'langchain.llms.OpenAI', 'OpenAI', ([], {'model_name': '"""text-davinci-002"""', 'n': '(2)', 'best_of': '(2)'}), "(model_name='text-davinci-002', n=2, best_of=2)\n", (301, 348), False, 'from langchain.llms import OpenAI\n'), ((457, 472), 'langchain.cache.InMemoryCache', 'InMemoryCache', ([], {}), '()\n', (470, 472), False, 'from langchain.cache import InMemoryCache\n')]
import streamlit as st import langchain_helper as lch st.title("🐶 Pets Name Generator") animal_type = st.sidebar.selectbox( "What is your pet?", ("Dog", "Cat", "Hamster", "Rat", "Snake", "Lizard", "Cow") ) if animal_type == "Dog": pet_color = st.sidebar.text_area(label="What color is your dog?", max_chars=15) if animal_type == "Cat": pet_color = st.sidebar.text_area(label="What color is your cat?", max_chars=15) if animal_type == "Hamster": pet_color = st.sidebar.text_area(label="What color is your hamster?", max_chars=15) if animal_type == "Rat": pet_color = st.sidebar.text_area(label="What color is your rat?", max_chars=25) if animal_type == "Snake": pet_color = st.sidebar.text_area(label="What color is your snake?", max_chars=25) if animal_type == "Lizard": pet_color = st.sidebar.text_area(label="What color is your lizard?", max_chars=25) if animal_type == "Cow": pet_color = st.sidebar.text_area(label="What color is your cow?", max_chars=25) with st.sidebar: openai_api_key = st.text_input( "OpenAI API Key", key="langchain_search_api_key_openai", type="password" ) "[Get an OpenAI API key](https://platform.openai.com/account/api-keys)" "[View the source code](https://github.com/rishabkumar7/pets-name-langchain/tree/main)" if pet_color: if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() response = lch.generate_pet_name(animal_type, pet_color, openai_api_key) st.text(response["pet_name"])
[ "langchain_helper.generate_pet_name" ]
[((55, 88), 'streamlit.title', 'st.title', (['"""🐶 Pets Name Generator"""'], {}), "('🐶 Pets Name Generator')\n", (63, 88), True, 'import streamlit as st\n'), ((104, 209), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""What is your pet?"""', "('Dog', 'Cat', 'Hamster', 'Rat', 'Snake', 'Lizard', 'Cow')"], {}), "('What is your pet?', ('Dog', 'Cat', 'Hamster', 'Rat',\n 'Snake', 'Lizard', 'Cow'))\n", (124, 209), True, 'import streamlit as st\n'), ((255, 322), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your dog?"""', 'max_chars': '(15)'}), "(label='What color is your dog?', max_chars=15)\n", (275, 322), True, 'import streamlit as st\n'), ((365, 432), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your cat?"""', 'max_chars': '(15)'}), "(label='What color is your cat?', max_chars=15)\n", (385, 432), True, 'import streamlit as st\n'), ((479, 550), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your hamster?"""', 'max_chars': '(15)'}), "(label='What color is your hamster?', max_chars=15)\n", (499, 550), True, 'import streamlit as st\n'), ((593, 660), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your rat?"""', 'max_chars': '(25)'}), "(label='What color is your rat?', max_chars=25)\n", (613, 660), True, 'import streamlit as st\n'), ((705, 774), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your snake?"""', 'max_chars': '(25)'}), "(label='What color is your snake?', max_chars=25)\n", (725, 774), True, 'import streamlit as st\n'), ((820, 890), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your lizard?"""', 'max_chars': '(25)'}), "(label='What color is your lizard?', max_chars=25)\n", (840, 890), True, 'import streamlit as st\n'), ((933, 1000), 'streamlit.sidebar.text_area', 'st.sidebar.text_area', ([], {'label': '"""What color is your cow?"""', 'max_chars': '(25)'}), "(label='What color is your cow?', max_chars=25)\n", (953, 1000), True, 'import streamlit as st\n'), ((1040, 1132), 'streamlit.text_input', 'st.text_input', (['"""OpenAI API Key"""'], {'key': '"""langchain_search_api_key_openai"""', 'type': '"""password"""'}), "('OpenAI API Key', key='langchain_search_api_key_openai', type\n ='password')\n", (1053, 1132), True, 'import streamlit as st\n'), ((1448, 1509), 'langchain_helper.generate_pet_name', 'lch.generate_pet_name', (['animal_type', 'pet_color', 'openai_api_key'], {}), '(animal_type, pet_color, openai_api_key)\n', (1469, 1509), True, 'import langchain_helper as lch\n'), ((1514, 1543), 'streamlit.text', 'st.text', (["response['pet_name']"], {}), "(response['pet_name'])\n", (1521, 1543), True, 'import streamlit as st\n'), ((1360, 1414), 'streamlit.info', 'st.info', (['"""Please add your OpenAI API key to continue."""'], {}), "('Please add your OpenAI API key to continue.')\n", (1367, 1414), True, 'import streamlit as st\n'), ((1423, 1432), 'streamlit.stop', 'st.stop', ([], {}), '()\n', (1430, 1432), True, 'import streamlit as st\n')]
import pandas as pd from langchain.document_loaders.word_document import Docx2txtLoader # this does not work, some how, I can not install some of its requirement libs. from langchain.document_loaders.word_document import UnstructuredWordDocumentLoader # from langchain.text_splitter import CharacterTextSplitter import langchain.text_splitter as ts from langchain.embeddings import HuggingFaceInstructEmbeddings # from langchain.vectorstores import FAISS import re loader = Docx2txtLoader( "../../data/raw/6. HR.03.V3.2023. Nội quy Lao động_Review by Labor Department - Final.DOCX") doc = loader.load()[0].page_content.lower() doc = doc.replace("\t", "") doc = re.sub(r"\n+", r".\n\n ", doc) replace_mapping = { # this is for replacing some unwanted characters "..\n": ".\n", ". .\n": ".\n", "?.\n": "?\n", "? .\n": "?\n", ":.\n": ":\n", ": .\n": ":\n", ";.\n": ",\n", ": .\n": ";\n" } for pattern, replacement in replace_mapping.items(): doc = doc.replace(pattern, replacement) print(doc) # splitting into chunks char_splt = ts.CharacterTextSplitter(separator='.', chunk_size=1000) doc_chunks = char_splt.split_text(text=doc) # ------ Segmenting vietnamese # this model is for segmenting vietnamese text before tokenizing. import py_vncorenlp model = py_vncorenlp.VnCoreNLP(save_dir="../../models/VnCoreNLP") # model.word_segment(doc) # this chunked the text into pieces already segmented_chunks = [] for i in doc_chunks: i = model.word_segment(i) segmented_chunks.append(i) segmented_chunks2=[] # now we have to rejoin each element of the list for chunks_list in segmented_chunks: chunks_string="\n".join(chunks_list) segmented_chunks2.append(chunks_string) # type(segmented_chunks2[0]) # def plotting_len_text_list(tex_list): # len_series = pd.Series([len(i) for i in tex_list]) # len_series.plot(kind='barh', figsize=(5, len(len_series)/3)) # plotting_len_text_list(segmented_chunks2) # ------ import torch from transformers import AutoModel, AutoTokenizer # from langchain.text_splitter import TextSplitter phobert = AutoModel.from_pretrained("vinai/phobert-base-v2") tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2") # With TensorFlow 2.0+: # from transformers import TFAutoModel # phobert = TFAutoModel.from_pretrained("vinai/phobert-base") # # reading the text # file = open('../../data/processed/6. HR.03.V3.2023. Nội quy Lao động_Review by Labor Department - Final.txt', 'r') # input_txt = file.read() # file.close() token_tensors=[] # this stores the token_tensor of word tokenization for each segmented text_chunk for chunk in segmented_chunks2: input_ids = torch.tensor([tokenizer.encode(chunk)]) token_tensors.append(input_ids) # vocab_dict=tokenizer.get_vocab() # get the vocab_dict of the tokenizer # for id in input_ids[0].tolist(): # print out the index ot the word after getting tokenized # for key, val in vocab_dict.items(): # if val==id: # print(id, key) features_list=[] for tensor in token_tensors[:10]: with torch.no_grad(): features = phobert(tensor).pooler_output # Models outputs are now tuples features_list.append(features) # I think this works, but not with text_chunks which is to big, the model will not process. # with torch.no_grad(): # features = phobert(token_tensors[0]) """___note___ features.keys()=odict_keys(['last_hidden_state', 'pooler_output']) features.last_hidden_state is the tensor that store vectors for word-embedding. if the input_ids has 37 tokens, features.last_hidden_state has 37 vectors length 768. features.pooler_output is the tensor that store vectors for sentence-embedding contains only 1 vector length 768. """ len(features.last_hidden_state[0]) word_vectors_list=features.last_hidden_state[0].tolist() for index, vector in enumerate(word_vectors_list): print(index, len(vector)) len(features.pooler_output[0]) # # ---- # def get_text_chunks(text): # text_splitter = CharacterTextSplitter( # separator="\n", # chunk_size=1000, # chunk_overlap=200, # length_function=len # ) # chunks = text_splitter.split_text(text) # return chunks # chunks=get_text_chunks(text=input_txt.lower()) # for i in chunks: # print() # print(len(i), "\n", i) # def get_vectorstore(text_chunks): # embeddings = HuggingFaceInstructEmbeddings(model_name="vinai/phobert-base-v2") # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) # return vectorstore # vector_store = get_vectorstore(text_chunks=chunks) # this does not work # vector_store = get_vectorstore(text_chunks=segmented_chunks2[:1]) # this does not work
[ "langchain.text_splitter.CharacterTextSplitter", "langchain.document_loaders.word_document.Docx2txtLoader" ]
[((477, 594), 'langchain.document_loaders.word_document.Docx2txtLoader', 'Docx2txtLoader', (['"""../../data/raw/6. HR.03.V3.2023. Nội quy Lao động_Review by Labor Department - Final.DOCX"""'], {}), "(\n '../../data/raw/6. HR.03.V3.2023. Nội quy Lao động_Review by Labor Department - Final.DOCX'\n )\n", (491, 594), False, 'from langchain.document_loaders.word_document import Docx2txtLoader\n'), ((668, 699), 're.sub', 're.sub', (['"""\\\\n+"""', '""".\\\\n\\\\n """', 'doc'], {}), "('\\\\n+', '.\\\\n\\\\n ', doc)\n", (674, 699), False, 'import re\n'), ((1072, 1128), 'langchain.text_splitter.CharacterTextSplitter', 'ts.CharacterTextSplitter', ([], {'separator': '"""."""', 'chunk_size': '(1000)'}), "(separator='.', chunk_size=1000)\n", (1096, 1128), True, 'import langchain.text_splitter as ts\n'), ((1300, 1357), 'py_vncorenlp.VnCoreNLP', 'py_vncorenlp.VnCoreNLP', ([], {'save_dir': '"""../../models/VnCoreNLP"""'}), "(save_dir='../../models/VnCoreNLP')\n", (1322, 1357), False, 'import py_vncorenlp\n'), ((2099, 2149), 'transformers.AutoModel.from_pretrained', 'AutoModel.from_pretrained', (['"""vinai/phobert-base-v2"""'], {}), "('vinai/phobert-base-v2')\n", (2124, 2149), False, 'from transformers import AutoModel, AutoTokenizer\n'), ((2162, 2216), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['"""vinai/phobert-base-v2"""'], {}), "('vinai/phobert-base-v2')\n", (2191, 2216), False, 'from transformers import AutoModel, AutoTokenizer\n'), ((3071, 3086), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3084, 3086), False, 'import torch\n')]
"""Create a ConversationalRetrievalChain for question/answering.""" import imp import logging import sys from typing import Union from langchain.callbacks.base import BaseCallbackManager, BaseCallbackHandler from langchain.callbacks.tracers import LangChainTracer from langchain.chains import ConversationalRetrievalChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.vectorstores.base import VectorStore from base_bot.prompts import QA_PROMPT, REPHRASE_PROMPT from . import config # dynamic import def dynamic_imp(name): # find_module() method is used # to find the module and return # its description and path try: fp, path, desc = imp.find_module(name, [".", "base_bot/llm"]) except ImportError as e: logging.error("module not found: " + name + " " + str(e)) try: # load_modules loads the module # dynamically and takes the filepath # module and description as parameter return imp.load_module(name, fp, path, desc) except Exception as e: logging.error("error loading module: " + name + " " + str(e)) def get_chain( vectorstore: Union[VectorStore, any], rephrase_handler: BaseCallbackHandler, stream_handler: BaseCallbackHandler, tracing: bool = False ) -> ConversationalRetrievalChain: _vectorstore = vectorstore() if callable(vectorstore) else vectorstore manager = BaseCallbackManager([]) rephrase_manager = BaseCallbackManager([rephrase_handler]) stream_manager = BaseCallbackManager([stream_handler]) if tracing: tracer = LangChainTracer() tracer.load_default_session() manager.add_handler(tracer) rephrase_manager.add_handler(tracer) stream_manager.add_handler(tracer) llm_package = dynamic_imp(config.LLM_MODULE) rephrase_generator_llm = llm_package.getLLM( model=config.LLM_REPRHASING_MODEL, temperature=config.LLM_REPHRASING_TEMPERATURE, verbose=config.LLM_REPHRASING_VERBOSE, callback_manager=rephrase_manager, ) streaming_llm = llm_package.getLLM( streaming=True, callback_manager=stream_manager, verbose=config.LLM_STREAMING_VERBOSE, temperature=config.LLM_STREAMING_TEMPERATURE, model=config.LLM_STREAMING_MODEL, ) rephrase_generator = LLMChain( llm=rephrase_generator_llm, prompt=REPHRASE_PROMPT, callback_manager=manager ) doc_chain = load_qa_chain( streaming_llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=manager ) qa = ConversationalRetrievalChain( retriever=_vectorstore.as_retriever(), combine_docs_chain=doc_chain, question_generator=rephrase_generator, callback_manager=manager, ) return qa
[ "langchain.callbacks.base.BaseCallbackManager", "langchain.chains.question_answering.load_qa_chain", "langchain.callbacks.tracers.LangChainTracer", "langchain.chains.llm.LLMChain" ]
[((1450, 1473), 'langchain.callbacks.base.BaseCallbackManager', 'BaseCallbackManager', (['[]'], {}), '([])\n', (1469, 1473), False, 'from langchain.callbacks.base import BaseCallbackManager, BaseCallbackHandler\n'), ((1497, 1536), 'langchain.callbacks.base.BaseCallbackManager', 'BaseCallbackManager', (['[rephrase_handler]'], {}), '([rephrase_handler])\n', (1516, 1536), False, 'from langchain.callbacks.base import BaseCallbackManager, BaseCallbackHandler\n'), ((1558, 1595), 'langchain.callbacks.base.BaseCallbackManager', 'BaseCallbackManager', (['[stream_handler]'], {}), '([stream_handler])\n', (1577, 1595), False, 'from langchain.callbacks.base import BaseCallbackManager, BaseCallbackHandler\n'), ((2381, 2471), 'langchain.chains.llm.LLMChain', 'LLMChain', ([], {'llm': 'rephrase_generator_llm', 'prompt': 'REPHRASE_PROMPT', 'callback_manager': 'manager'}), '(llm=rephrase_generator_llm, prompt=REPHRASE_PROMPT,\n callback_manager=manager)\n', (2389, 2471), False, 'from langchain.chains.llm import LLMChain\n'), ((2498, 2594), 'langchain.chains.question_answering.load_qa_chain', 'load_qa_chain', (['streaming_llm'], {'chain_type': '"""stuff"""', 'prompt': 'QA_PROMPT', 'callback_manager': 'manager'}), "(streaming_llm, chain_type='stuff', prompt=QA_PROMPT,\n callback_manager=manager)\n", (2511, 2594), False, 'from langchain.chains.question_answering import load_qa_chain\n'), ((736, 780), 'imp.find_module', 'imp.find_module', (['name', "['.', 'base_bot/llm']"], {}), "(name, ['.', 'base_bot/llm'])\n", (751, 780), False, 'import imp\n'), ((1033, 1070), 'imp.load_module', 'imp.load_module', (['name', 'fp', 'path', 'desc'], {}), '(name, fp, path, desc)\n', (1048, 1070), False, 'import imp\n'), ((1629, 1646), 'langchain.callbacks.tracers.LangChainTracer', 'LangChainTracer', ([], {}), '()\n', (1644, 1646), False, 'from langchain.callbacks.tracers import LangChainTracer\n')]
from dotenv import load_dotenv load_dotenv() from langchain.pydantic_v1 import BaseModel, Field, validator from langchain.chat_models import ChatOpenAI from langchain.chains.openai_functions import create_structured_output_chain from typing import Optional from langchain.prompts import ChatPromptTemplate import langchain class Person(BaseModel): """Identifying information about a person.""" name: str = Field(..., description="The person's name") age: int = Field(..., description="The person's age") fav_food: Optional[str] = Field(None, description="The person's favorite food") @validator("fav_food") def is_valid_food(cls, field): raise ValueError("This is not a valid food") # If we pass in a model explicitly, we need to make sure it supports the OpenAI function-calling API. llm = ChatOpenAI(model="gpt-4", temperature=0) prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are a world class algorithm for extracting information in structured formats.", ), ( "human", "Use the given format to extract information from the following input: {input}", ), ("human", "Tip: Make sure to answer in the correct format"), ] ) chain = create_structured_output_chain( Person, llm, prompt, ) # result = chain.run("Sally is 13") # print(result) result = chain.apply( [ {"input": "Sally is 13"}, {"input": "Angela is 13 and likes pizza"}, ] ) print(result)
[ "langchain.pydantic_v1.Field", "langchain.chains.openai_functions.create_structured_output_chain", "langchain.pydantic_v1.validator", "langchain.chat_models.ChatOpenAI", "langchain.prompts.ChatPromptTemplate.from_messages" ]
[((32, 45), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (43, 45), False, 'from dotenv import load_dotenv\n'), ((831, 871), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model': '"""gpt-4"""', 'temperature': '(0)'}), "(model='gpt-4', temperature=0)\n", (841, 871), False, 'from langchain.chat_models import ChatOpenAI\n'), ((881, 1183), 'langchain.prompts.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (["[('system',\n 'You are a world class algorithm for extracting information in structured formats.'\n ), ('human',\n 'Use the given format to extract information from the following input: {input}'\n ), ('human', 'Tip: Make sure to answer in the correct format')]"], {}), "([('system',\n 'You are a world class algorithm for extracting information in structured formats.'\n ), ('human',\n 'Use the given format to extract information from the following input: {input}'\n ), ('human', 'Tip: Make sure to answer in the correct format')])\n", (913, 1183), False, 'from langchain.prompts import ChatPromptTemplate\n'), ((1282, 1333), 'langchain.chains.openai_functions.create_structured_output_chain', 'create_structured_output_chain', (['Person', 'llm', 'prompt'], {}), '(Person, llm, prompt)\n', (1312, 1333), False, 'from langchain.chains.openai_functions import create_structured_output_chain\n'), ((419, 462), 'langchain.pydantic_v1.Field', 'Field', (['...'], {'description': '"""The person\'s name"""'}), '(..., description="The person\'s name")\n', (424, 462), False, 'from langchain.pydantic_v1 import BaseModel, Field, validator\n'), ((478, 520), 'langchain.pydantic_v1.Field', 'Field', (['...'], {'description': '"""The person\'s age"""'}), '(..., description="The person\'s age")\n', (483, 520), False, 'from langchain.pydantic_v1 import BaseModel, Field, validator\n'), ((551, 604), 'langchain.pydantic_v1.Field', 'Field', (['None'], {'description': '"""The person\'s favorite food"""'}), '(None, description="The person\'s favorite food")\n', (556, 604), False, 'from langchain.pydantic_v1 import BaseModel, Field, validator\n'), ((611, 632), 'langchain.pydantic_v1.validator', 'validator', (['"""fav_food"""'], {}), "('fav_food')\n", (620, 632), False, 'from langchain.pydantic_v1 import BaseModel, Field, validator\n')]
# Drive Imports import yaml import asyncio from deferred_imports import langchain, imports_done import webbrowser # Global Variables dictionaries_folder_path="" structure_dictionary_path="" information_dictionary_path="" folder_dictionary_path="" # Information Mapping async def a_update_mapping(your_dictionary,override=False): tasks=[] for key in list(your_dictionary.keys()): if override or 'mappedDate' not in your_dictionary[key] or not your_dictionary[key]['mappedDate'] or your_dictionary[key]['modifiedDate'] > your_dictionary[key]['mappedDate']: tasks.append(a_generate_mapping(your_dictionary[key]['content'],your_dictionary[key]['title'],your_dictionary[key]['path'],key)) results=await asyncio.gather(*tasks) for item in results: id=list(item.keys())[0] your_dictionary[id]['mapping'] = item[id] your_dictionary[id]['mapped']=True your_dictionary[id]['mappedDate'] = your_dictionary[id]['modifiedDate'] return your_dictionary # Information Mapping async def a_generate_mapping(content,title,parent,id): imports_done.wait() from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) # Define the templates system_template="I want you to give a summary of the of the document the user gives you as if you were describing it and what it is for, the user will also tell you the path of the parent directory of the document and its title which you should use to understand what the summary should be, for example a 'book summaries' document's summary should include that it is a summary of books and not simply the contents of the books." human_template="Here is my document title-{title}, with parent directory-{parent}, and here is content of the document:\n{content}" system_template2="""You are to provide a useful summary and description so that someone reading your description would know what you are refering to. Use the context of the title and parent directory to understand what the description and summary should be. Think before begin to describe the document. Break down the path into sections splitting with each \\ and think about them out loud, tell me what the meaning of each directory is in your interpretation. After you are finished thinking give your description . Your response should follow this template: \"'Thoughts: 'what your thoughts are on the meaning of the document are and what it is for with relation to its title and parent directory' Description: 'your description and summary based on your thoughts so someone would know what this is for'\"""" # Create the prompt system_message=SystemMessagePromptTemplate.from_template(system_template) human_message=HumanMessagePromptTemplate.from_template(human_template) system_message2=SystemMessagePromptTemplate.from_template(system_template2) message_list=[system_message,human_message,system_message2] chat_prompt=ChatPromptTemplate.from_messages(message_list) # Generate the mapping formated_prompt=chat_prompt.format_prompt(content=content, title=title, parent=parent).to_messages() raw_string_prompt="" for item in formated_prompt: raw_string_prompt+=item.type+": "+item.content+"\n\n" if len(raw_string_prompt)>9000: model_name="gpt-3.5-turbo-16k" else: model_name="gpt-3.5-turbo" chat=ChatOpenAI(model=model_name,temperature=0.3) chat_response=await chat.agenerate([formated_prompt]) print(title+" "+parent+" "+chat_response.generations[0][0].text+"\n\n") output_string=chat_response.generations[0][0].text # Parse the mapping mapped_result="" mapped_result=(output_string).split("Description: ")[-1] if mapped_result=="": mapped_result=(output_string).split("Description:")[-1] return {id:mapped_result} # Folder Mapping async def a_update_folder_mapping(folder_dictionary,information_dictionary,override=False): finished_folders=[] length_folders=len(list(folder_dictionary.keys())) results=[] while(length_folders>len(finished_folders)): tasks=[] print("finished folders: "+str(len(finished_folders))+"/"+str(length_folders)) for key in list(folder_dictionary.keys()): #check if the key is already mapped if not override and 'mappedDate' in folder_dictionary[key] and folder_dictionary[key]['mappedDate'] and folder_dictionary[key]['modifiedDate'] <= folder_dictionary[key]['mappedDate']: finished_folders.append(key) print("Already done: "+key) else: print("Not done: "+key, override, 'mappedDate' in folder_dictionary[key], folder_dictionary[key]['mappedDate'], folder_dictionary[key]['modifiedDate'] <= folder_dictionary[key]['mappedDate']) if key not in finished_folders: if folder_dictionary[key]["contained_folder_ids"]==[]: #Create task contents="" for file_id in folder_dictionary[key]["contained_file_ids"]: contents+=(information_dictionary[file_id]["mapping"])+"\n" for folder_id in folder_dictionary[key]["contained_folder_ids"]: contents+=(folder_dictionary[folder_id]["mapping"])+"\n" tasks.append(a_generate_folder_mapping(contents,folder_dictionary[key]['title'],folder_dictionary[key]['path'],key)) finished_folders.append(key) else: all_completed=True for cf in folder_dictionary[key]["contained_folder_ids"]: if cf not in finished_folders: all_completed=False if all_completed: #Create task contents="" for file_id in folder_dictionary[key]["contained_file_ids"]: contents+=(information_dictionary[file_id]["mapping"])+"\n" for folder_id in folder_dictionary[key]["contained_folder_ids"]: contents+=(folder_dictionary[folder_id]["mapping"])+"\n" tasks.append(a_generate_folder_mapping(contents,folder_dictionary[key]['title'],folder_dictionary[key]['path'],key)) finished_folders.append(key) results.append(await asyncio.gather(*tasks)) for result in results: for item in result: id=list(item.keys())[0] folder_dictionary[id]['mapping'] = item[id] folder_dictionary[id]['mapped']=True folder_dictionary[id]['mappedDate'] = folder_dictionary[id]['modifiedDate'] return(folder_dictionary) # Folder Mapping async def a_generate_folder_mapping(contents,title,parent,id): # Setup imports imports_done.wait() from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) # Define the templates system_template="I want you to give a summary of the of the folder the user gives you as if you were describing it and what it is for, the user will also tell you the path of the parent directory of the folder, the folder title, and the descriptions of the contents of the files or folders the folder contains which you should use to understand what the description should be." human_template="Here is my folder title-{title}, with parent directory-{parent}, and here are the contents of the folder:\n{contents}" system_template2="""You are to provide a useful summary and description so that someone reading your description would know what you are refering to. Use the context of the title and parent directory to understand what the description and summary should be. Think before you begin to describe the document. Break down the path into sections splitting with each \\ and think about them out loud, tell me what the meaning of each directory is in your interpretation. After you are finished thinking give your description . Your response should follow this template: \"'Thoughts: 'what your thoughts are on the meaning of the folder are and what it is for with relation to its title and parent directory' Description: 'your description and summary based on your thoughts so someone would know what this is for'\"""" # Create the prompt system_message=SystemMessagePromptTemplate.from_template(system_template) human_message=HumanMessagePromptTemplate.from_template(human_template) system_message2=SystemMessagePromptTemplate.from_template(system_template2) message_list=[system_message,human_message,system_message2] chat_prompt=ChatPromptTemplate.from_messages(message_list) # Get the response of the mapping for the item formated_prompt=chat_prompt.format_prompt(contents=contents, title=title, parent=parent).to_messages() raw_string_prompt="" for item in formated_prompt: raw_string_prompt+=item.type+": "+item.content+"\n\n" if len(raw_string_prompt)>9000: model_name="gpt-3.5-turbo-16k" else: model_name="gpt-3.5-turbo" chat=ChatOpenAI(model=model_name,temperature=0.3) chat_response=await chat.agenerate([formated_prompt]) print(title+" "+parent+" "+chat_response.generations[0][0].text+"\n\n") output_string=chat_response.generations[0][0].text # Parse the mapping mapped_result=(output_string).split("Description: ")[-1] if mapped_result=="": mapped_result=(output_string).split("Description:")[-1] return {id:mapped_result} # Generate Mappings def map(override=False): # Setup dictionary paths global dictionaries_folder_path, structure_dictionary_path, information_dictionary_path, folder_dictionary_path # map information dictionary with open(information_dictionary_path, "r") as file: information_dict = yaml.load(file, Loader=yaml.FullLoader) information_dict=asyncio.run(a_update_mapping(information_dict,override=override)) with open(information_dictionary_path, 'w') as outfile: yaml.dump(information_dict, outfile) # Map the folder dictionary with open(information_dictionary_path, "r") as file: information_dict = yaml.load(file, Loader=yaml.FullLoader) with open(folder_dictionary_path, "r") as file: folder_dictionary = yaml.load(file, Loader=yaml.FullLoader) folder_dictionary=asyncio.run(a_update_folder_mapping(folder_dictionary,information_dict,override=False)) with open(folder_dictionary_path, 'w') as outfile: yaml.dump(folder_dictionary, outfile) print("Done mapping") # Update Database def update_vectordb(persist_directory,finish_que): # Setup imports imports_done.wait() from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings # Create custom Document class class Document: def __init__(self, page_content="",source="",dict_id="",mimeType="",title=""): self.page_content = page_content self.metadata={'source': source, 'id': dict_id, "mimeType":mimeType,"title":title} def __repr__(self): attributes = ", ".join(f"{k}={v!r}" for k, v in vars(self).items()) return f"Document({attributes})" # Read from information dictionary global dictionaries_folder_path, structure_dictionary_path, information_dictionary_path, folder_dictionary_path if "information" in persist_directory: base_dict_file_name=information_dictionary_path elif "folder" in persist_directory: base_dict_file_name=folder_dictionary_path with open(base_dict_file_name) as f: base_dict = yaml.load(f, Loader=yaml.FullLoader) # Create list of documents my_documents = [] for key in list(base_dict.keys()): if base_dict[key]["path"]=="": my_documents.append(Document(base_dict[key]["mapping"],source=base_dict[key]["path"]+"none id:"+base_dict[key]["id"]+":mimeType:"+base_dict[key]["mimeType"], dict_id=base_dict[key]["id"],mimeType=base_dict[key]["mimeType"],title=base_dict[key]["title"])) else: my_documents.append(Document(base_dict[key]["mapping"],source=base_dict[key]["path"]+" id:"+base_dict[key]["id"]+":mimeType:"+base_dict[key]["mimeType"], dict_id=base_dict[key]["id"],mimeType=base_dict[key]["mimeType"],title=base_dict[key]["title"])) # Delete and regenerate the database embedding = OpenAIEmbeddings(model="text-embedding-ada-002") vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) try: vectordb.delete_collection() vectordb.persist() except Exception as e: print(e) vectordb = Chroma.from_documents( documents=my_documents, embedding=embedding, persist_directory=persist_directory ) vectordb.persist() vectordb = None # Depricated queue usage finish_que.put(True) # Make Vector Database with files and folders def combine_vectordb(persist_directory): #Setup imports and paths imports_done.wait() from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings global dictionaries_folder_path, structure_dictionary_path, information_dictionary_path, folder_dictionary_path # Create custom Document class class Document: def __init__(self, page_content="",source="",dict_id="",mimeType="",title=""): self.page_content = page_content self.metadata={'source': source, 'id': dict_id, "mimeType":mimeType,"title":title} def __repr__(self): attributes = ", ".join(f"{k}={v!r}" for k, v in vars(self).items()) return f"Document({attributes})" # Dicitonary to list of documents function def add_documents(base_dict): my_documents = [] for key in list(base_dict.keys()): if base_dict[key]["path"]=="": my_documents.append(Document(base_dict[key]["mapping"],source=base_dict[key]["path"]+"none id:"+base_dict[key]["id"]+":mimeType:"+base_dict[key]["mimeType"], dict_id=base_dict[key]["id"],mimeType=base_dict[key]["mimeType"],title=base_dict[key]["title"])) else: my_documents.append(Document(base_dict[key]["mapping"],source=base_dict[key]["path"]+" id:"+base_dict[key]["id"]+":mimeType:"+base_dict[key]["mimeType"], dict_id=base_dict[key]["id"],mimeType=base_dict[key]["mimeType"],title=base_dict[key]["title"])) return(my_documents) # Read from information and folder dictionaries with open(information_dictionary_path) as f: information_dict = yaml.load(f, Loader=yaml.FullLoader) with open(folder_dictionary_path) as f: folder_dict = yaml.load(f, Loader=yaml.FullLoader) # Turn dictionaries into document list my_documents=add_documents(information_dict)+add_documents(folder_dict) # Delete and regenerate the combined_db database embedding = OpenAIEmbeddings(model="text-embedding-ada-002") vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) try: vectordb.delete_collection() vectordb.persist() except Exception as e: print(e) vectordb = Chroma.from_documents( documents=my_documents, embedding=embedding, persist_directory=persist_directory ) vectordb.persist() vectordb = None print("Finished combining databases") # Retrieve From Information def retrieve_from_information(user_question,return_que): # Setup imports imports_done.wait() from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings # Get vectordb persist_directory = 'combined_db' embedding = OpenAIEmbeddings(model="text-embedding-ada-002") vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) # Retrive documents docs_and_scores = vectordb.similarity_search_with_score(user_question) # Get docs from docs_and_scores docs=[] scores=[] for item in docs_and_scores: docs.append(item[0]) scores.append(item[1]) print(scores) # Open the website for the first doc open_website(docs[0]) # Pass the docs to the main app return_que.put(docs) # Retrieve From Folder def retrieve_from_folder(user_question): # Setup imports imports_done.wait() from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings # Get vectordb persist_directory = 'folder_db' embedding = OpenAIEmbeddings(model="text-embedding-ada-002") vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) # Retrive documents docs_and_scores = vectordb.similarity_search_with_score(user_question) # Get docs from docs_and_scores docs=[] scores=[] for item in docs_and_scores: docs.append(item[0]) scores.append(item[1]) print(scores) # Open the website for the first doc open_website(docs[0]) # Opens website of a document def open_website(doc): if doc==None: print("No documents found") else: url=None if "spreadsheet" in doc.metadata["mimeType"]: url = "https://docs.google.com/spreadsheets/d/"+doc.metadata["id"] elif "document" in doc.metadata["mimeType"]: url = "https://docs.google.com/document/d/"+doc.metadata["id"] elif "folder" in doc.metadata["mimeType"]: url = "https://drive.google.com/drive/folders/"+doc.metadata["id"] print(url) if url != None: webbrowser.open(url)
[ "langchain.prompts.chat.SystemMessagePromptTemplate.from_template", "langchain.chat_models.ChatOpenAI", "langchain.vectorstores.Chroma.from_documents", "langchain.prompts.chat.HumanMessagePromptTemplate.from_template", "langchain.embeddings.OpenAIEmbeddings", "langchain.prompts.chat.ChatPromptTemplate.from_messages", "langchain.vectorstores.Chroma" ]
[((1100, 1119), 'deferred_imports.imports_done.wait', 'imports_done.wait', ([], {}), '()\n', (1117, 1119), False, 'from deferred_imports import langchain, imports_done\n'), ((2780, 2838), 'langchain.prompts.chat.SystemMessagePromptTemplate.from_template', 'SystemMessagePromptTemplate.from_template', (['system_template'], {}), '(system_template)\n', (2821, 2838), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((2857, 2913), 'langchain.prompts.chat.HumanMessagePromptTemplate.from_template', 'HumanMessagePromptTemplate.from_template', (['human_template'], {}), '(human_template)\n', (2897, 2913), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((2934, 2993), 'langchain.prompts.chat.SystemMessagePromptTemplate.from_template', 'SystemMessagePromptTemplate.from_template', (['system_template2'], {}), '(system_template2)\n', (2975, 2993), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((3074, 3120), 'langchain.prompts.chat.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (['message_list'], {}), '(message_list)\n', (3106, 3120), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((3504, 3549), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model': 'model_name', 'temperature': '(0.3)'}), '(model=model_name, temperature=0.3)\n', (3514, 3549), False, 'from langchain.chat_models import ChatOpenAI\n'), ((7004, 7023), 'deferred_imports.imports_done.wait', 'imports_done.wait', ([], {}), '()\n', (7021, 7023), False, 'from deferred_imports import langchain, imports_done\n'), ((8639, 8697), 'langchain.prompts.chat.SystemMessagePromptTemplate.from_template', 'SystemMessagePromptTemplate.from_template', (['system_template'], {}), '(system_template)\n', (8680, 8697), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((8716, 8772), 'langchain.prompts.chat.HumanMessagePromptTemplate.from_template', 'HumanMessagePromptTemplate.from_template', (['human_template'], {}), '(human_template)\n', (8756, 8772), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((8793, 8852), 'langchain.prompts.chat.SystemMessagePromptTemplate.from_template', 'SystemMessagePromptTemplate.from_template', (['system_template2'], {}), '(system_template2)\n', (8834, 8852), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((8933, 8979), 'langchain.prompts.chat.ChatPromptTemplate.from_messages', 'ChatPromptTemplate.from_messages', (['message_list'], {}), '(message_list)\n', (8965, 8979), False, 'from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n'), ((9388, 9433), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model': 'model_name', 'temperature': '(0.3)'}), '(model=model_name, temperature=0.3)\n', (9398, 9433), False, 'from langchain.chat_models import ChatOpenAI\n'), ((10991, 11010), 'deferred_imports.imports_done.wait', 'imports_done.wait', ([], {}), '()\n', (11008, 11010), False, 'from deferred_imports import langchain, imports_done\n'), ((12729, 12777), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""'}), "(model='text-embedding-ada-002')\n", (12745, 12777), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((12793, 12866), 'langchain.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': 'persist_directory', 'embedding_function': 'embedding'}), '(persist_directory=persist_directory, embedding_function=embedding)\n', (12799, 12866), False, 'from langchain.vectorstores import Chroma\n'), ((12999, 13106), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', ([], {'documents': 'my_documents', 'embedding': 'embedding', 'persist_directory': 'persist_directory'}), '(documents=my_documents, embedding=embedding,\n persist_directory=persist_directory)\n', (13020, 13106), False, 'from langchain.vectorstores import Chroma\n'), ((13356, 13375), 'deferred_imports.imports_done.wait', 'imports_done.wait', ([], {}), '()\n', (13373, 13375), False, 'from deferred_imports import langchain, imports_done\n'), ((15282, 15330), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""'}), "(model='text-embedding-ada-002')\n", (15298, 15330), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((15346, 15419), 'langchain.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': 'persist_directory', 'embedding_function': 'embedding'}), '(persist_directory=persist_directory, embedding_function=embedding)\n', (15352, 15419), False, 'from langchain.vectorstores import Chroma\n'), ((15552, 15659), 'langchain.vectorstores.Chroma.from_documents', 'Chroma.from_documents', ([], {'documents': 'my_documents', 'embedding': 'embedding', 'persist_directory': 'persist_directory'}), '(documents=my_documents, embedding=embedding,\n persist_directory=persist_directory)\n', (15573, 15659), False, 'from langchain.vectorstores import Chroma\n'), ((15885, 15904), 'deferred_imports.imports_done.wait', 'imports_done.wait', ([], {}), '()\n', (15902, 15904), False, 'from deferred_imports import langchain, imports_done\n'), ((16079, 16127), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""'}), "(model='text-embedding-ada-002')\n", (16095, 16127), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((16143, 16216), 'langchain.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': 'persist_directory', 'embedding_function': 'embedding'}), '(persist_directory=persist_directory, embedding_function=embedding)\n', (16149, 16216), False, 'from langchain.vectorstores import Chroma\n'), ((16717, 16736), 'deferred_imports.imports_done.wait', 'imports_done.wait', ([], {}), '()\n', (16734, 16736), False, 'from deferred_imports import langchain, imports_done\n'), ((16909, 16957), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'model': '"""text-embedding-ada-002"""'}), "(model='text-embedding-ada-002')\n", (16925, 16957), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((16973, 17046), 'langchain.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': 'persist_directory', 'embedding_function': 'embedding'}), '(persist_directory=persist_directory, embedding_function=embedding)\n', (16979, 17046), False, 'from langchain.vectorstores import Chroma\n'), ((735, 757), 'asyncio.gather', 'asyncio.gather', (['*tasks'], {}), '(*tasks)\n', (749, 757), False, 'import asyncio\n'), ((10144, 10183), 'yaml.load', 'yaml.load', (['file'], {'Loader': 'yaml.FullLoader'}), '(file, Loader=yaml.FullLoader)\n', (10153, 10183), False, 'import yaml\n'), ((10339, 10375), 'yaml.dump', 'yaml.dump', (['information_dict', 'outfile'], {}), '(information_dict, outfile)\n', (10348, 10375), False, 'import yaml\n'), ((10497, 10536), 'yaml.load', 'yaml.load', (['file'], {'Loader': 'yaml.FullLoader'}), '(file, Loader=yaml.FullLoader)\n', (10506, 10536), False, 'import yaml\n'), ((10617, 10656), 'yaml.load', 'yaml.load', (['file'], {'Loader': 'yaml.FullLoader'}), '(file, Loader=yaml.FullLoader)\n', (10626, 10656), False, 'import yaml\n'), ((10830, 10867), 'yaml.dump', 'yaml.dump', (['folder_dictionary', 'outfile'], {}), '(folder_dictionary, outfile)\n', (10839, 10867), False, 'import yaml\n'), ((11954, 11990), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (11963, 11990), False, 'import yaml\n'), ((14948, 14984), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (14957, 14984), False, 'import yaml\n'), ((15051, 15087), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (15060, 15087), False, 'import yaml\n'), ((17972, 17992), 'webbrowser.open', 'webbrowser.open', (['url'], {}), '(url)\n', (17987, 17992), False, 'import webbrowser\n'), ((6557, 6579), 'asyncio.gather', 'asyncio.gather', (['*tasks'], {}), '(*tasks)\n', (6571, 6579), False, 'import asyncio\n')]
import tensorflow import dotenv import transformers from tensorflow import keras from dotenv import find_dotenv, load_dotenv from transformers import pipeline import langchain from langchain import PromptTemplate, LLMChain, OpenAI import requests import os import openai import streamlit as st HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") openai.api_key = os.getenv("OPENAI_API_KEY") load_dotenv(find_dotenv()) # img to text def img2text(data): image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text(data)[0]["generated_text"] print(text) return text # llm def generate_story(scenario): template = """ You are a story teller; You can generate a short story based on a simple narrative, the story should be no more than 20 words; CONTEXT: {scenario} STORY: """ prompt = PromptTemplate(template=template, input_variables=["scenario"]) story_llm = LLMChain(llm=OpenAI(model_name='gpt-3.5-turbo', temperature=1), prompt=prompt, verbose=True) story = story_llm.predict(scenario=scenario) print(story) return story # txt to speech def text2speech(message): API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} payload = { "inputs": message } response = requests.post(API_URL, headers=headers, json=payload) with open('audio.flac', 'wb') as file: file.write(response.content) def main(): st.set_page_config(page_title="Image to Speech", page_icon="🤗") uploaded_file = st.file_uploader("Choose an image...", type="jpg") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, 'wb') as file: file.write(bytes_data) st.image(bytes_data, caption='Uploaded Image.', use_column_width=True) scenario = img2text(uploaded_file.name) story = generate_story(scenario) text2speech(story) with st.expander("scenario"): st.write(scenario) with st.expander("story"): st.write(story) st.audio('audio.flac') if __name__ == '__main__': main()
[ "langchain.OpenAI", "langchain.PromptTemplate" ]
[((324, 361), 'os.getenv', 'os.getenv', (['"""HUGGINGFACEHUB_API_TOKEN"""'], {}), "('HUGGINGFACEHUB_API_TOKEN')\n", (333, 361), False, 'import os\n'), ((379, 406), 'os.getenv', 'os.getenv', (['"""OPENAI_API_KEY"""'], {}), "('OPENAI_API_KEY')\n", (388, 406), False, 'import os\n'), ((420, 433), 'dotenv.find_dotenv', 'find_dotenv', ([], {}), '()\n', (431, 433), False, 'from dotenv import find_dotenv, load_dotenv\n'), ((491, 563), 'transformers.pipeline', 'pipeline', (['"""image-to-text"""'], {'model': '"""Salesforce/blip-image-captioning-base"""'}), "('image-to-text', model='Salesforce/blip-image-captioning-base')\n", (499, 563), False, 'from transformers import pipeline\n'), ((905, 968), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'template', 'input_variables': "['scenario']"}), "(template=template, input_variables=['scenario'])\n", (919, 968), False, 'from langchain import PromptTemplate, LLMChain, OpenAI\n'), ((1449, 1502), 'requests.post', 'requests.post', (['API_URL'], {'headers': 'headers', 'json': 'payload'}), '(API_URL, headers=headers, json=payload)\n', (1462, 1502), False, 'import requests\n'), ((1601, 1664), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""Image to Speech"""', 'page_icon': '"""🤗"""'}), "(page_title='Image to Speech', page_icon='🤗')\n", (1619, 1664), True, 'import streamlit as st\n'), ((1685, 1735), 'streamlit.file_uploader', 'st.file_uploader', (['"""Choose an image..."""'], {'type': '"""jpg"""'}), "('Choose an image...', type='jpg')\n", (1701, 1735), True, 'import streamlit as st\n'), ((1942, 2012), 'streamlit.image', 'st.image', (['bytes_data'], {'caption': '"""Uploaded Image."""', 'use_column_width': '(True)'}), "(bytes_data, caption='Uploaded Image.', use_column_width=True)\n", (1950, 2012), True, 'import streamlit as st\n'), ((2287, 2309), 'streamlit.audio', 'st.audio', (['"""audio.flac"""'], {}), "('audio.flac')\n", (2295, 2309), True, 'import streamlit as st\n'), ((999, 1048), 'langchain.OpenAI', 'OpenAI', ([], {'model_name': '"""gpt-3.5-turbo"""', 'temperature': '(1)'}), "(model_name='gpt-3.5-turbo', temperature=1)\n", (1005, 1048), False, 'from langchain import PromptTemplate, LLMChain, OpenAI\n'), ((2151, 2174), 'streamlit.expander', 'st.expander', (['"""scenario"""'], {}), "('scenario')\n", (2162, 2174), True, 'import streamlit as st\n'), ((2188, 2206), 'streamlit.write', 'st.write', (['scenario'], {}), '(scenario)\n', (2196, 2206), True, 'import streamlit as st\n'), ((2220, 2240), 'streamlit.expander', 'st.expander', (['"""story"""'], {}), "('story')\n", (2231, 2240), True, 'import streamlit as st\n'), ((2254, 2269), 'streamlit.write', 'st.write', (['story'], {}), '(story)\n', (2262, 2269), True, 'import streamlit as st\n')]
"""Chat with a model using LangChain""" from dotenv import load_dotenv from langchain_core.messages import HumanMessage, SystemMessage from genai import Client, Credentials from genai.extensions.langchain.chat_llm import LangChainChatInterface from genai.schema import ( DecodingMethod, ModerationHAP, ModerationParameters, TextGenerationParameters, TextGenerationReturnOptions, ) # make sure you have a .env file under genai root with # GENAI_KEY=<your-genai-key> # GENAI_API=<genai-api-endpoint> (optional) DEFAULT_API = "https://bam-api.res.ibm.com" load_dotenv() def heading(text: str) -> str: """Helper function for centering text.""" return "\n" + f" {text} ".center(80, "=") + "\n" llm = LangChainChatInterface( client=Client(credentials=Credentials.from_env()), model_id="meta-llama/llama-2-70b-chat", parameters=TextGenerationParameters( decoding_method=DecodingMethod.SAMPLE, max_new_tokens=100, min_new_tokens=10, temperature=0.5, top_k=50, top_p=1, return_options=TextGenerationReturnOptions(input_text=False, input_tokens=True), ), moderations=ModerationParameters( # Threshold is set to very low level to flag everything (testing purposes) # or set to True to enable HAP with default settings hap=ModerationHAP(input=True, output=False, threshold=0.01) ), ) print(heading("Start conversation with langchain")) prompt = "Describe what is Python in one sentence." print(f"Request: {prompt}") result = llm.generate( messages=[ [ SystemMessage( content="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something incorrectly. If you don't know the answer to a question, please don't share false information. """, ), HumanMessage(content=prompt), ] ], ) conversation_id = result.generations[0][0].generation_info["meta"]["conversation_id"] print(f"New conversation with ID '{conversation_id}' has been created!") print(f"Response: {result.generations[0][0].text}") print(result.llm_output) print(result.generations[0][0].generation_info) print(heading("Continue conversation with langchain")) prompt = "Show me some simple code example." print(f"Request: {prompt}") result = llm.generate( messages=[[HumanMessage(content=prompt)]], conversation_id=conversation_id, use_conversation_parameters=True ) print(f"Response: {result.generations[0][0].text}")
[ "langchain_core.messages.HumanMessage", "langchain_core.messages.SystemMessage" ]
[((576, 589), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (587, 589), False, 'from dotenv import load_dotenv\n'), ((784, 806), 'genai.Credentials.from_env', 'Credentials.from_env', ([], {}), '()\n', (804, 806), False, 'from genai import Client, Credentials\n'), ((1079, 1143), 'genai.schema.TextGenerationReturnOptions', 'TextGenerationReturnOptions', ([], {'input_text': '(False)', 'input_tokens': '(True)'}), '(input_text=False, input_tokens=True)\n', (1106, 1143), False, 'from genai.schema import DecodingMethod, ModerationHAP, ModerationParameters, TextGenerationParameters, TextGenerationReturnOptions\n'), ((1346, 1401), 'genai.schema.ModerationHAP', 'ModerationHAP', ([], {'input': '(True)', 'output': '(False)', 'threshold': '(0.01)'}), '(input=True, output=False, threshold=0.01)\n', (1359, 1401), False, 'from genai.schema import DecodingMethod, ModerationHAP, ModerationParameters, TextGenerationParameters, TextGenerationReturnOptions\n'), ((1604, 2150), 'langchain_core.messages.SystemMessage', 'SystemMessage', ([], {'content': '"""You are a helpful, respectful and honest assistant.\nAlways answer as helpfully as possible, while being safe.\nYour answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.\nPlease ensure that your responses are socially unbiased and positive in nature. If a question does not make\nany sense, or is not factually coherent, explain why instead of answering something incorrectly.\nIf you don\'t know the answer to a question, please don\'t share false information.\n"""'}), '(content=\n """You are a helpful, respectful and honest assistant.\nAlways answer as helpfully as possible, while being safe.\nYour answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.\nPlease ensure that your responses are socially unbiased and positive in nature. If a question does not make\nany sense, or is not factually coherent, explain why instead of answering something incorrectly.\nIf you don\'t know the answer to a question, please don\'t share false information.\n"""\n )\n', (1617, 2150), False, 'from langchain_core.messages import HumanMessage, SystemMessage\n'), ((2185, 2213), 'langchain_core.messages.HumanMessage', 'HumanMessage', ([], {'content': 'prompt'}), '(content=prompt)\n', (2197, 2213), False, 'from langchain_core.messages import HumanMessage, SystemMessage\n'), ((2685, 2713), 'langchain_core.messages.HumanMessage', 'HumanMessage', ([], {'content': 'prompt'}), '(content=prompt)\n', (2697, 2713), False, 'from langchain_core.messages import HumanMessage, SystemMessage\n')]
from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from redundant_filter_retriever import RedundantFilterRetriever from dotenv import load_dotenv import langchain langchain.debug = True load_dotenv() chat = ChatOpenAI() embeddings = OpenAIEmbeddings() db = Chroma( persist_directory="emb", embedding_function=embeddings ) retriever = RedundantFilterRetriever( embeddings=embeddings, chroma=db ) chain = RetrievalQA.from_chain_type( llm=chat, retriever=retriever, chain_type="stuff" ) result = chain.run("What is an interesting fact about the English language?") print(result)
[ "langchain.vectorstores.Chroma", "langchain.embeddings.OpenAIEmbeddings", "langchain.chains.RetrievalQA.from_chain_type", "langchain.chat_models.ChatOpenAI" ]
[((315, 328), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (326, 328), False, 'from dotenv import load_dotenv\n'), ((337, 349), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {}), '()\n', (347, 349), False, 'from langchain.chat_models import ChatOpenAI\n'), ((363, 381), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (379, 381), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((387, 449), 'langchain.vectorstores.Chroma', 'Chroma', ([], {'persist_directory': '"""emb"""', 'embedding_function': 'embeddings'}), "(persist_directory='emb', embedding_function=embeddings)\n", (393, 449), False, 'from langchain.vectorstores import Chroma\n'), ((472, 530), 'redundant_filter_retriever.RedundantFilterRetriever', 'RedundantFilterRetriever', ([], {'embeddings': 'embeddings', 'chroma': 'db'}), '(embeddings=embeddings, chroma=db)\n', (496, 530), False, 'from redundant_filter_retriever import RedundantFilterRetriever\n'), ((550, 628), 'langchain.chains.RetrievalQA.from_chain_type', 'RetrievalQA.from_chain_type', ([], {'llm': 'chat', 'retriever': 'retriever', 'chain_type': '"""stuff"""'}), "(llm=chat, retriever=retriever, chain_type='stuff')\n", (577, 628), False, 'from langchain.chains import RetrievalQA\n')]
from llama_index.llms import LangChainLLM from langchain.llms import Clarifai from llama_index import VectorStoreIndex, SummaryIndex from llama_index import ServiceContext from llama_index import Document from llama_index import SimpleDirectoryReader from llama_index.prompts import PromptTemplate from llama_index.chat_engine.simple import SimpleChatEngine from llama_index import LLMPredictor from pypdf import PdfReader import streamlit as st # Your PAT (Personal Access Token) can be found in the portal under Authentification PAT = st.secrets.cf_pat # Specify the correct user_id/app_id pairings # Since you're making inferences outside your app's scope USER_ID = 'anthropic' APP_ID = 'completion' # Change these to whatever model and text URL you want to use MODEL_ID = 'claude-v2' MODEL_VERSION_ID = 'ad16eda6ac054796bf9f348ab6733c72' class LLM_Hander: def __init__(self): pat = PAT Cfllm = LangChainLLM(llm = Clarifai( pat=pat, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID )) self.documents = [] self.chat_template = """ I want you to act as a teacher's assistant. Your task is to help teachers in cutting down their boring tasks. Follow the instructions given by the teacher and produce the outputs that the teacher is requesting. Retrieve information from the vector index about current input within the service context. Also follow the below rules when you respond. 1. Avoid generating single quotes in your response. 2. DONOT return JSON response. 3. Use easy to understand english. """ self.service_context = ServiceContext.from_defaults(llm_predictor=LLMPredictor(llm=Cfllm), system_prompt=self.chat_template) self.query_index = None self.summary_index = None def loadData(self, files): texts = [] for f in files: st.session_state.fnames.append(f.name) reader = PdfReader(f) text = "" numPages = reader.pages for page in numPages: text += f'Page number: {reader.get_page_number(page)} \n Content : {page.extract_text()}' texts.append(text) self.documents = [Document(text=t) for t in texts] def prepareIndex(self): self.query_index = VectorStoreIndex.from_documents(self.documents, service_context=self.service_context) self.summary_index = SummaryIndex.from_documents(self.documents, service_context=self.service_context) def prepareBots(self): self.query_engine = self.query_index.as_query_engine() self.chat_engine = self.summary_index.as_chat_engine(chat_mode='react', verbose=True) def firePrompt(self, role, prompt): if role == 'student': try: return self.query_engine.query(prompt) except: return 'some error occured. please retry' if role == 'teacher': try: return self.chat_engine.chat(prompt) except: return 'some error occured. please retry' def clearHistory(self): self.chat_engine.reset()
[ "langchain.llms.Clarifai" ]
[((2438, 2528), 'llama_index.VectorStoreIndex.from_documents', 'VectorStoreIndex.from_documents', (['self.documents'], {'service_context': 'self.service_context'}), '(self.documents, service_context=self.\n service_context)\n', (2469, 2528), False, 'from llama_index import VectorStoreIndex, SummaryIndex\n'), ((2553, 2639), 'llama_index.SummaryIndex.from_documents', 'SummaryIndex.from_documents', (['self.documents'], {'service_context': 'self.service_context'}), '(self.documents, service_context=self.\n service_context)\n', (2580, 2639), False, 'from llama_index import VectorStoreIndex, SummaryIndex\n'), ((2016, 2054), 'streamlit.session_state.fnames.append', 'st.session_state.fnames.append', (['f.name'], {}), '(f.name)\n', (2046, 2054), True, 'import streamlit as st\n'), ((2076, 2088), 'pypdf.PdfReader', 'PdfReader', (['f'], {}), '(f)\n', (2085, 2088), False, 'from pypdf import PdfReader\n'), ((2345, 2361), 'llama_index.Document', 'Document', ([], {'text': 't'}), '(text=t)\n', (2353, 2361), False, 'from llama_index import Document\n'), ((942, 1010), 'langchain.llms.Clarifai', 'Clarifai', ([], {'pat': 'pat', 'user_id': 'USER_ID', 'app_id': 'APP_ID', 'model_id': 'MODEL_ID'}), '(pat=pat, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)\n', (950, 1010), False, 'from langchain.llms import Clarifai\n'), ((1735, 1758), 'llama_index.LLMPredictor', 'LLMPredictor', ([], {'llm': 'Cfllm'}), '(llm=Cfllm)\n', (1747, 1758), False, 'from llama_index import LLMPredictor\n')]
# Import necessary modules for Hubspot API integration and Langchain analysis import hubspot import langchain def retrieve_and_store_feedback(appointment_id): """ Function to retrieve and store customer feedback and ratings from the Hubspot App. Input: appointment_id - ID of the appointment for which feedback is to be retrieved Output: Returns the feedback and rating data in the form of a dictionary """ hubspot_api_key = "<your_hubspot_api_key>" hubspot_client = hubspot.Client(api_key=hubspot_api_key) # Use the Hubspot API to retrieve feedback and rating data for the given appointment ID feedback_data = hubspot_client.crm.feedback.survey_results_api.get_all( object_id=appointment_id, object_type="APPOINTMENT" ) # Store this data in Langchain analysis to generate personalized appointment reminders langchain_client = langchain.Client(api_key="<your_langchain_api_key>") langchain_client.store_feedback_data(appointment_id, feedback_data) return feedback_data
[ "langchain.Client" ]
[((507, 546), 'hubspot.Client', 'hubspot.Client', ([], {'api_key': 'hubspot_api_key'}), '(api_key=hubspot_api_key)\n', (521, 546), False, 'import hubspot\n'), ((966, 1018), 'langchain.Client', 'langchain.Client', ([], {'api_key': '"""<your_langchain_api_key>"""'}), "(api_key='<your_langchain_api_key>')\n", (982, 1018), False, 'import langchain\n')]