instruction
stringclasses
3 values
input
stringlengths
33
307
output
stringlengths
66
248
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @lhfang: CEO statements are worthwhile, but at the end of the day firms like @Google support Trump's agenda by funding GOP groups like t… " STOCK: Google DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.5.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Google 1_DAY_RETURN: 0.0044379960740803 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0302856655165265 7_DAY_RETURN: 0.0357721991245929
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Google LAST_PRICE: 820.19 PX_VOLUME: 2020180.0 VOLATILITY_10D: 21.549 VOLATILITY_30D: 14.953 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.5
Predicted 1_DAY_RETURN: 0.0044379960740803 Predicted 2_DAY_RETURN: 0.0302856655165265 Predicted 7_DAY_RETURN: 0.0357721991245929
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Best deal https://t.co/3q5GxuDnFe #chargers #USB @eBay @eBay_UK @eBayDE @eBayDeals @eBayCanada @eBayAU @woot @amazon" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1.0 and the TextBlob polarity score is @amazon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: 1.0 LSTM_POLARITY: 1.0 TEXTBLOB_POLARITY: @amazon
Predicted 1_DAY_RETURN: 0.0149244668965851 Predicted 2_DAY_RETURN: 0.0149244668965851 Predicted 7_DAY_RETURN: 3137196.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Disney: See The Newest Trailer for #BeautyAndTheBeast: https://t.co/JfINQL6EbV https://t.co/jZjNR0GRk9" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Disney" STOCK: 31/01/2017 DATE: 110.65
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Disney.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: -0.0122006326253954 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0248531405332128 7_DAY_RETURN: 8485838.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0026208766380478 PX_VOLUME: 12.229 VOLATILITY_10D: 12.982 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Disney
Predicted 1_DAY_RETURN: -0.0122006326253954 Predicted 2_DAY_RETURN: -0.0122006326253954 Predicted 7_DAY_RETURN: 8485838.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @netflix: Using this as an excuse in awkward social situations from now on. #TheOA https://t.co/azK2X4J5S1" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.2055555555555556 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.2055555555555556 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @renomarky: #BoycottStarbucks ⭐⭐⭐⭐⭐⭐⭐ Every RT alerts @Starbucks that you absolutely positively will never enter one of their… " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.2272727272727273.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.2272727272727273
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out 4 placemats country snows 16 x15 cotton placemats washable in cool water #Handmade https://t.co/K2cfbXQA5v via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.35 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.35 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "should be "secret" nor R they #legal @yonatanzunger @Google @SecurityStrateg @facebook @stanfordmarch @salesforce @NSAGov in @EU_Commission " STOCK: Google DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is -0.4.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Google 1_DAY_RETURN: 0.0044379960740803 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0302856655165265 7_DAY_RETURN: 0.0357721991245929
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Google LAST_PRICE: 820.19 PX_VOLUME: 2020180.0 VOLATILITY_10D: 21.549 VOLATILITY_30D: 14.953 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: -0.4
Predicted 1_DAY_RETURN: 0.0044379960740803 Predicted 2_DAY_RETURN: 0.0302856655165265 Predicted 7_DAY_RETURN: 0.0357721991245929
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Disney: Leave the little town for the great wide somewhere in #BeautyAndTheBeast March 17. Tickets available here:… " STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Disney" STOCK: 31/01/2017 DATE: 110.65
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.17083333333333334 and the TextBlob polarity score is @Disney.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: -0.0122006326253954 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0248531405332128 7_DAY_RETURN: 8485838.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0026208766380478 PX_VOLUME: 12.229 VOLATILITY_10D: 12.982 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.17083333333333334 TEXTBLOB_POLARITY: @Disney
Predicted 1_DAY_RETURN: -0.0122006326253954 Predicted 2_DAY_RETURN: -0.0122006326253954 Predicted 7_DAY_RETURN: 8485838.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees. To all those tweeting #boycottstarbucks, thanks for the… " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees. To all those tweeting #boycottstarbucks, thanks for the… " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @cesarmor: Check out 2015 P Star Trek Spock 1oz .999 Silver Proof Coin In Original Mint Packaging UNC https://t.co/CnxhJ7adxY via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.375 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.375 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@facebook ist mobile first #Agenturgipfel #IHK https://t.co/e7GTWcKSkA" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Facebook" STOCK: 31/01/2017 DATE: 130.32
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.25 and the TextBlob polarity score is @facebook.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0142725598526704 2_DAY_RETURN: 0.0142725598526704 3_DAY_RETURN: -0.0072897483118476 7_DAY_RETURN: 19790484.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0050644567219152 PX_VOLUME: 15.121 VOLATILITY_10D: 16.219 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.25 TEXTBLOB_POLARITY: @facebook
Predicted 1_DAY_RETURN: 0.0142725598526704 Predicted 2_DAY_RETURN: 0.0142725598526704 Predicted 7_DAY_RETURN: 19790484.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "#McDonalds to open at least 50 new #restaurants in #Russia in 2017 https://t.co/UTsLXkJGxU via @Reuters https://t.co/yDMrs24B6f" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.054545454545454536 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.054545454545454536 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "#Tweets4Sweets My favorite donuts are coffee cream filled @CBS" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "CBS" STOCK: 31/01/2017 DATE: 64.49
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.45 and the TextBlob polarity score is @CBS.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0038765700108543 2_DAY_RETURN: 0.0038765700108543 3_DAY_RETURN: -0.0234144828655605 7_DAY_RETURN: 3523867.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0013955652039074 PX_VOLUME: 16.338 VOLATILITY_10D: 16.302 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.45 TEXTBLOB_POLARITY: @CBS
Predicted 1_DAY_RETURN: 0.0038765700108543 Predicted 2_DAY_RETURN: 0.0038765700108543 Predicted 7_DAY_RETURN: 3523867.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out Route 66 Women's Size 2X Blue Animal Print Fleece Jacket Button Up Coat #Route66 https://t.co/FXOjwxVx6W via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Lrihendry: We have 93 Million unemployed American citizens and @Starbucks offers to hire 10k #Syrianrefugees #BoycottStarbucks #MAGA" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.05 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.05 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0162984425932632 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 14307985.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@Walmart hello. Can I use a visa gift card during check out on https://t.co/MyZlyZaeMZ?" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Walmart" STOCK: 31/01/2017 DATE: 66.74
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Walmart.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: -0.0161821995804614 2_DAY_RETURN: -0.0161821995804614 3_DAY_RETURN: 0.0098891219658377 7_DAY_RETURN: 9320880.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0047947258016181 PX_VOLUME: 15.265999999999998 VOLATILITY_10D: 14.808 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Walmart
Predicted 1_DAY_RETURN: -0.0161821995804614 Predicted 2_DAY_RETURN: -0.0161821995804614 Predicted 7_DAY_RETURN: 9320880.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @followingsea2: @psuba98 @Lawrence @Reuters Very bad time to be a soldier when you're top Commander (in this case Trump) is dumb as a ro…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.2616666666666666 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.2616666666666666 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out Rainbow Trout/ English Setter Avon Mini Stein https://t.co/ZwpX7cYV49 via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @BtuflyBoutique: Celestial Seasonings Sweet Harvest Pumpkin Black Tea 120 Teabags 6 Boxes https://t.co/Bjvvp8uZQB @eBay https://t.co/sjY…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.