instruction
stringclasses
3 values
input
stringlengths
33
307
output
stringlengths
66
248
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees. To all those tweeting #boycottstarbucks, thanks for the… " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "No @Walmart We want you to fail... you had your fun taking from the poor & teaming up w/ #altright & #China good l… https://t.co/paAmX0SKZt" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Walmart" STOCK: 31/01/2017 DATE: 66.74
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.02499999999999997 and the TextBlob polarity score is @Walmart.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: -0.0161821995804614 2_DAY_RETURN: -0.0161821995804614 3_DAY_RETURN: 0.0098891219658377 7_DAY_RETURN: 9320880.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0047947258016181 PX_VOLUME: 15.265999999999998 VOLATILITY_10D: 14.808 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.02499999999999997 TEXTBLOB_POLARITY: @Walmart
Predicted 1_DAY_RETURN: -0.0161821995804614 Predicted 2_DAY_RETURN: -0.0161821995804614 Predicted 7_DAY_RETURN: 9320880.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: San Francisco sues Trump over sanctuary city order https://t.co/fXQXO6qX1D" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Just got my daily dose of happiness!! Would love to have this picked up as a series @netflix @AmazonVideo @hulu https://t.co/xNXuLscBRZ" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out Franklin Mint Heirloom Collector Plate "FOREVER FREE" Eagle Plate-Fine Porcelain https://t.co/LDdHxPxg7h @eBay #eagles #America " STOCK: eBay DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.4.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: eBay 1_DAY_RETURN: 0.0106817467797676 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: 0.021363493559535 7_DAY_RETURN: -0.0578071002199183
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: eBay LAST_PRICE: 31.83 PX_VOLUME: 9469076.0 VOLATILITY_10D: 33.029 VOLATILITY_30D: 22.932 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.4
Predicted 1_DAY_RETURN: 0.0106817467797676 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: -0.0578071002199183
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@Reuters I really don't get this. Sanctuary cities are against Federal law. State laws cannot override federal laws; how do they hope to win" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.2 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.2 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Dear @Lisa_Herbold Please vote YES to cancel Seattle’s $3B contract with @WellsFargo #NoDAPL" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Wells Fargo" STOCK: 31/01/2017 DATE: 56.33
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @WellsFargo.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0046156577312267 2_DAY_RETURN: 0.0046156577312267 3_DAY_RETURN: -0.0289366234688442 7_DAY_RETURN: 22409081.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0044381324338718 PX_VOLUME: 23.833 VOLATILITY_10D: 20.068 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @WellsFargo
Predicted 1_DAY_RETURN: 0.0046156577312267 Predicted 2_DAY_RETURN: 0.0046156577312267 Predicted 7_DAY_RETURN: 22409081.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@Lrihendry @Starbucks @DunkinDonuts Short Starbucks (SBUX)! This company clearly does not have it's shareholders in… https://t.co/ntRmhISwhv" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0162984425932632 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 14307985.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@sankayrob @US521 @EA_1974 @Lrihendry @Starbucks YOU are disrespecting them. PLENTY of us have critical thinking sk… https://t.co/GCiW38VeAh" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0162984425932632 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 14307985.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @DeadPatriotsMSC: @McDonalds I went to McDonald's today. Tried the new grand Mac, it's the only thing I ate all day, gross! I'm sick as… " STOCK: McDonald's DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: McDonald's 1_DAY_RETURN: 0.0036713714612058 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: 0.002365994941666 7_DAY_RETURN: -0.0124010769356285
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: McDonald's LAST_PRICE: 122.57 PX_VOLUME: 3733323.0 VOLATILITY_10D: 7.972 VOLATILITY_30D: 9.585 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0036713714612058 Predicted 2_DAY_RETURN: 0.002365994941666 Predicted 7_DAY_RETURN: -0.0124010769356285
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @MarkSimoneNY: Hey @Starbucks, instead of hiring 10,000 refugees, how about hiring 10,000 veterans. " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @pepsi: Get ready to 💙 💙 💙 this exclusive new look #BTS of @ladygaga rehearsing for #PepsiHalftime! https://t.co/YHihjI9gW6" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Pepsi" STOCK: 31/01/2017 DATE: 103.78
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.18522727272727274 and the TextBlob polarity score is @pepsi.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: -0.0028907303912121 2_DAY_RETURN: -0.0028907303912121 3_DAY_RETURN: 0.0089612642127576 7_DAY_RETURN: 3846647.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0008672191173636 PX_VOLUME: 8.876 VOLATILITY_10D: 8.55 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.18522727272727274 TEXTBLOB_POLARITY: @pepsi
Predicted 1_DAY_RETURN: -0.0028907303912121 Predicted 2_DAY_RETURN: -0.0028907303912121 Predicted 7_DAY_RETURN: 3846647.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@Lloyd__Sauce seriously @facebook and @Twitter need to look into a dislike button, cause this is where I would use it. " STOCK: Facebook DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is -0.3333333333333333.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Facebook 1_DAY_RETURN: 0.0050644567219152 2_DAY_RETURN: 0.0142725598526704 3_DAY_RETURN: 0.0142725598526704 7_DAY_RETURN: -0.0072897483118476
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Facebook LAST_PRICE: 130.32 PX_VOLUME: 19790484.0 VOLATILITY_10D: 15.121 VOLATILITY_30D: 16.219 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: -0.3333333333333333
Predicted 1_DAY_RETURN: 0.0050644567219152 Predicted 2_DAY_RETURN: 0.0142725598526704 Predicted 7_DAY_RETURN: -0.0072897483118476
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out 2015 Star Trek Proof Silver 2 Coin Set Signed By William Shatner NGC PF70UC ER https://t.co/EfNxtXToWJ via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Excited to spend some time on the @Google Campus! #SMX #GoogleDance" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Google" STOCK: 31/01/2017 DATE: 820.19
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.46875 and the TextBlob polarity score is @Google.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0302856655165265 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0357721991245929 7_DAY_RETURN: 2020180.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0044379960740803 PX_VOLUME: 21.549 VOLATILITY_10D: 14.953 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.46875 TEXTBLOB_POLARITY: @Google
Predicted 1_DAY_RETURN: 0.0302856655165265 Predicted 2_DAY_RETURN: 0.0302856655165265 Predicted 7_DAY_RETURN: 2020180.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: EU chair labels Trump a 'threat' as Europeans debate U.S. ties https://t.co/FtSPol7cxh" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: EU chair labels Trump a 'threat' as Europeans debate U.S. ties https://t.co/FtSPol7cxh" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@Reuters Trump's the treat in Europe is he??? Very interest thoughts from the EU. https://t.co/c3ph8n5VQh" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: EU chair labels Trump a 'threat' as Europeans debate U.S. ties https://t.co/FtSPol7cxh" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan