instruction
stringclasses
3 values
input
stringlengths
33
307
output
stringlengths
66
248
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@FedEx #AirandGround #Johnson David Johnson is a tank!" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "FedEx" STOCK: 31/01/2017 DATE: 189.11
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @FedEx.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0360107873724286 2_DAY_RETURN: 0.0360107873724286 3_DAY_RETURN: 0.0132198191528739 7_DAY_RETURN: 2952325.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0218920205171592 PX_VOLUME: 26.114 VOLATILITY_10D: 19.31900000000001 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @FedEx
Predicted 1_DAY_RETURN: 0.0360107873724286 Predicted 2_DAY_RETURN: 0.0360107873724286 Predicted 7_DAY_RETURN: 2952325.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @E9Catholic: You can also follow us on @facebook here: https://t.co/KFDmAc4xvN #Catholic #Hackney https://t.co/lEDrl0Tz6i" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Facebook" STOCK: 31/01/2017 DATE: 130.32
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @facebook.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0142725598526704 2_DAY_RETURN: 0.0142725598526704 3_DAY_RETURN: -0.0072897483118476 7_DAY_RETURN: 19790484.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0050644567219152 PX_VOLUME: 15.121 VOLATILITY_10D: 16.219 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @facebook
Predicted 1_DAY_RETURN: 0.0142725598526704 Predicted 2_DAY_RETURN: 0.0142725598526704 Predicted 7_DAY_RETURN: 19790484.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees. To all those tweeting #boycottstarbucks, thanks for the… " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @bertkreischer: Oh shit - @billburr's NEW @netflix SPECIAL is out today!!! #WalkYourWayOut Please share w/ a friend! " STOCK: Netflix DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.21130275974025967.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Netflix 1_DAY_RETURN: 0.0036244758723615 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: 0.0123658588586453 7_DAY_RETURN: -0.0042640892616018
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Netflix LAST_PRICE: 140.71 PX_VOLUME: 4411631.0 VOLATILITY_10D: 27.398000000000003 VOLATILITY_30D: 24.135 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.21130275974025967
Predicted 1_DAY_RETURN: 0.0036244758723615 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: -0.0042640892616018
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@greeneyes0084 @HarveyStaub1 @Starbucks And millions just stopped buying their swill." STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.1 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.1 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0162984425932632 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 14307985.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@madebygoogle @GooglePlayMusic @verizon at least it's better than AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Verizon" STOCK: 31/01/2017 DATE: 49.01
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.1 and the TextBlob polarity score is @verizon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0120383595184656 2_DAY_RETURN: 0.0120383595184656 3_DAY_RETURN: 0.0226484390940624 7_DAY_RETURN: 16844160.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0073454397061824 PX_VOLUME: 25.613000000000003 VOLATILITY_10D: 19.725 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.1 TEXTBLOB_POLARITY: @verizon
Predicted 1_DAY_RETURN: 0.0120383595184656 Predicted 2_DAY_RETURN: 0.0120383595184656 Predicted 7_DAY_RETURN: 16844160.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@KAPPKVEW @amazon cancelling my prime & ordering somewhere else. Stick to selling, not politics. " STOCK: Amazon DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Amazon 1_DAY_RETURN: 0.0083790741730217 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: 0.0149244668965851 7_DAY_RETURN: -0.0012629329188322
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Amazon LAST_PRICE: 823.48 PX_VOLUME: 3137196.0 VOLATILITY_10D: 13.447 VOLATILITY_30D: 16.992 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0083790741730217 Predicted 2_DAY_RETURN: 0.0149244668965851 Predicted 7_DAY_RETURN: -0.0012629329188322
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @map2271: It #Soldout ! Check out my other cool items in my @eBay store! https://t.co/817Y1RMBE4 https://t.co/YqjRUQAa4k" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @NachoBidnith: Leftist don't care that CEO Howard Schultz is a fellow traveler & still break @Starbucks windows. I have no sympath… " STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.05 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.05 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0162984425932632 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 14307985.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @LetToysBeToys: Dear @Tesco don't you think this 'Girls Town Map Rug' with hair salon, shoes, lots pink etc promotes stereotypes?… " STOCK: Tesco DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is -0.1.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Tesco 1_DAY_RETURN: 0.0164439876670093 2_DAY_RETURN: 0.0614080164439877 3_DAY_RETURN: 0.0614080164439877 7_DAY_RETURN: -0.0125899280575539
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Tesco LAST_PRICE: 194.6 PX_VOLUME: 79257504.0 VOLATILITY_10D: 60.469 VOLATILITY_30D: 39.887 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: -0.1
Predicted 1_DAY_RETURN: 0.0164439876670093 Predicted 2_DAY_RETURN: 0.0614080164439877 Predicted 7_DAY_RETURN: -0.0125899280575539
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out WILDFOX COUTURE Flags & Stars Contrast Reversible Bikini Swim Bottoms P/S - NWT https://t.co/4DwTX7gXGM via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: France's Fillon and his wife questioned in 'fake work' probe: https://t.co/6Ng39kM6H6 https://t.co/zxDoukPkpi" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.5 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.5 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @andreaggarcia7: i need help can you guys dm me @ATT" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "AT&T" STOCK: 31/01/2017 DATE: 42.16
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @ATT.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: -0.0035578747628083 2_DAY_RETURN: -0.0035578747628083 3_DAY_RETURN: -0.0189753320683111 7_DAY_RETURN: 25405353.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0080645161290321 PX_VOLUME: 14.379 VOLATILITY_10D: 15.465 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @ATT
Predicted 1_DAY_RETURN: -0.0035578747628083 Predicted 2_DAY_RETURN: -0.0035578747628083 Predicted 7_DAY_RETURN: 25405353.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@L337I57 @Starbucks I've bought my last Starbucks coffee. Plenty of other choices out there." STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0162984425932632 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 14307985.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees. To all those tweeting #boycottstarbucks, thanks for the… " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "I don't actually drink Coke or coffee, but I'm going to start. @CocaCola and @Starbucks have a new fan! https://t.co/e3hCBlhoP4 " STOCK: CocaCola DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: CocaCola 1_DAY_RETURN: -0.0045706038008178 2_DAY_RETURN: -0.0028866971373586 3_DAY_RETURN: -0.0028866971373586 7_DAY_RETURN: 0.0079384171277363
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: CocaCola LAST_PRICE: 41.57 PX_VOLUME: 12677977.0 VOLATILITY_10D: 10.545 VOLATILITY_30D: 8.264 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: -0.0045706038008178 Predicted 2_DAY_RETURN: -0.0028866971373586 Predicted 7_DAY_RETURN: 0.0079384171277363
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Have you seen the new @Disney #BeautyAndTheBest trailer yet? We've got the video and preview pics too! https://t.co/1JB984xoxH " STOCK: Disney DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.13636363636363635.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Disney 1_DAY_RETURN: 0.0026208766380478 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0122006326253954 7_DAY_RETURN: -0.0248531405332128
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Disney LAST_PRICE: 110.65 PX_VOLUME: 8485838.0 VOLATILITY_10D: 12.229 VOLATILITY_30D: 12.982 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.13636363636363635
Predicted 1_DAY_RETURN: 0.0026208766380478 Predicted 2_DAY_RETURN: -0.0122006326253954 Predicted 7_DAY_RETURN: -0.0248531405332128
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: BREAKING: San Francisco is first city to sue over Trump directive to withhold federal money from sanctuary cities. https://t.c…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.25 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.25 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @StudentBunker: #Competition time! 💖 Simply #RT, #Like & #Share to #WIN a £20 @ASOS gift card! #Competition ends Weds @ MIDNIGHT 💖 " STOCK: ASOS DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: ASOS 1_DAY_RETURN: -0.0125332320546904 2_DAY_RETURN: 0.0083554880364603 3_DAY_RETURN: 0.0083554880364603 7_DAY_RETURN: -0.0206988226357766
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: ASOS LAST_PRICE: 5266.0 PX_VOLUME: 342823.0 VOLATILITY_10D: 32.806999999999995 VOLATILITY_30D: 28.367 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: -0.0125332320546904 Predicted 2_DAY_RETURN: 0.0083554880364603 Predicted 7_DAY_RETURN: -0.0206988226357766
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @AniroC_2: RT 4 SHARKS! #BoycottFedEx by shipping 📦 📦 via @UPS til @FedEx STOPS shipping #shark fins! #FedExtinction https://t.co/KEprm7… " STOCK: UPS DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: UPS 1_DAY_RETURN: 0.0723907266562815 2_DAY_RETURN: 0.0821039127645927 3_DAY_RETURN: 0.0821039127645927 7_DAY_RETURN: 0.0634106111976541
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: UPS LAST_PRICE: 109.13 PX_VOLUME: 12755479.0 VOLATILITY_10D: 40.751 VOLATILITY_30D: 23.277 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0723907266562815 Predicted 2_DAY_RETURN: 0.0821039127645927 Predicted 7_DAY_RETURN: 0.0634106111976541
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@adidasMeg now what do I have to do to get some cardinal or maroon ultra boost or NMD? I'm trying to rep @adidas and Troy at the same time!" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan