instruction
stringclasses 3
values | input
stringlengths 33
307
| output
stringlengths 66
248
|
---|---|---|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds | Predicted 1_DAY_RETURN: 0.002365994941666
Predicted 2_DAY_RETURN: 0.002365994941666
Predicted 7_DAY_RETURN: 3733323.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Utah T-mobile used to be good (about 7MB data) now it's 0.7 MB for LTE. what is it all about? @JohnLegere @TMobile #TMobileslow" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "TMobile" STOCK: 31/01/2017 DATE: 62.27 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.7 and the TextBlob polarity score is @TMobile. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0024088646218082 2_DAY_RETURN: 0.0024088646218082 3_DAY_RETURN: -0.0329211498313795 7_DAY_RETURN: 4502211.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0183073711257427 PX_VOLUME: 32.289 VOLATILITY_10D: 25.912 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.7 TEXTBLOB_POLARITY: @TMobile | Predicted 1_DAY_RETURN: 0.0024088646218082
Predicted 2_DAY_RETURN: 0.0024088646218082
Predicted 7_DAY_RETURN: 4502211.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "How awesome would it be if @Google shut everything they have down/off for a day in #protest? It would be amazing! #resist" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Google" STOCK: 31/01/2017 DATE: 820.19 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1.0 and the TextBlob polarity score is @Google. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0302856655165265 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0357721991245929 7_DAY_RETURN: 2020180.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0044379960740803 PX_VOLUME: 21.549 VOLATILITY_10D: 14.953 VOLATILITY_30D: 1.0 LSTM_POLARITY: 1.0 TEXTBLOB_POLARITY: @Google | Predicted 1_DAY_RETURN: 0.0302856655165265
Predicted 2_DAY_RETURN: 0.0302856655165265
Predicted 7_DAY_RETURN: 2020180.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @57Veronica: @netflix We love #BatB Beauty and the Beast! That's why we ask you to add this amazing show to your original programming! #β¦" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.625 and the TextBlob polarity score is @netflix. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.625 TEXTBLOB_POLARITY: @netflix | Predicted 1_DAY_RETURN: 0.0123658588586453
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: 4411631.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out New Vintage Telogreika Padded jacket USSR Size 2 3 4 S M L VALENTINE'S GIFT IDEA https://t.co/gQw0LPuyDv via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.13636363636363635 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.13636363636363635 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @kris_dera: #BATB deserves more&more seasons β€β€ Pls @netflix add it as Ur original programm.π #NetflixSaveBatb https://t.co/2VZGHhl0tf" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.375 and the TextBlob polarity score is @netflix. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.375 TEXTBLOB_POLARITY: @netflix | Predicted 1_DAY_RETURN: 0.0123658588586453
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: 4411631.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Just saw this on Amazon: Kerry Washington 24X36 New Printed Poster R... by The Night's Watch for $24.49 https://t.co/oSCrjTfD0A via @amazon" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.13636363636363635 and the TextBlob polarity score is @amazon. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.13636363636363635 TEXTBLOB_POLARITY: @amazon | Predicted 1_DAY_RETURN: 0.0149244668965851
Predicted 2_DAY_RETURN: 0.0149244668965851
Predicted 7_DAY_RETURN: 3137196.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @pscoordsen13: @netflix Are you ready to do this, make #BatB your original program, cause we sure are!
#NetflixSaveBatB https://t.co/Y4β¦
" STOCK: Netflix DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.4. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Netflix 1_DAY_RETURN: 0.0036244758723615 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: 0.0123658588586453 7_DAY_RETURN: -0.0042640892616018 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Netflix LAST_PRICE: 140.71 PX_VOLUME: 4411631.0 VOLATILITY_10D: 27.398000000000003 VOLATILITY_30D: 24.135 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.4 | Predicted 1_DAY_RETURN: 0.0036244758723615
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: -0.0042640892616018 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@netflix #BATB Adding this show to your original programming would make fans so happy π¬π¬π¬ #NetflixSaveBatB" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5875 and the TextBlob polarity score is @netflix. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.5875 TEXTBLOB_POLARITY: @netflix | Predicted 1_DAY_RETURN: 0.0123658588586453
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: 4411631.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @debwebb4: #BoycottStarbucks @Starbucks Starbucks you had one job, make the coffee and you just couldn't do it. Heading to Joβ¦
" STOCK: Starbucks DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0123143788482433
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 0.0583122057225642 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@Ebminor @AmazonUK @AmazonHelp @amazon shocked by the fact that they hung up on you after nearly a 2 hour call with no resolution!" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.2875 and the TextBlob polarity score is @amazon. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.2875 TEXTBLOB_POLARITY: @amazon | Predicted 1_DAY_RETURN: 0.0149244668965851
Predicted 2_DAY_RETURN: 0.0149244668965851
Predicted 7_DAY_RETURN: 3137196.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds | Predicted 1_DAY_RETURN: 0.002365994941666
Predicted 2_DAY_RETURN: 0.002365994941666
Predicted 7_DAY_RETURN: 3733323.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out SOFTSPOTS Slip On Clogs Womens Sz 6.5 M Tan Brown Leather Fur Wedge Shoes #Softspots https://t.co/vIcMdEPGSA via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@Audi @robdahm you know what you need to do https://t.co/0RZjMgK7Hj" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Audi" STOCK: 31/01/2017 DATE: 677.0 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Audi. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0059084194977843 2_DAY_RETURN: -0.0059084194977843 3_DAY_RETURN: -0.0358936484490398 7_DAY_RETURN: 217.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0012983751846379 PX_VOLUME: 15.606 VOLATILITY_10D: 17.509 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Audi | Predicted 1_DAY_RETURN: -0.0059084194977843
Predicted 2_DAY_RETURN: -0.0059084194977843
Predicted 7_DAY_RETURN: 217.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @pamcoordsen: @netflix No other show has kisses like #BatB VinCat kisses...a viewer favorite π #NetflixSaveBatB https://t.co/IoYABg4BD1" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.28125 and the TextBlob polarity score is @netflix. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.28125 TEXTBLOB_POLARITY: @netflix | Predicted 1_DAY_RETURN: 0.0123658588586453
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: 4411631.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @57Veronica2: @netflix @NetflixNL Talking about dedicated! Look at those 4 consecutive PCA's that #BatB won! Please #NetflixSaveBatB" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @netflix. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @netflix | Predicted 1_DAY_RETURN: 0.0123658588586453
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: 4411631.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Disney: Forever sweethearts. π https://t.co/lVlVqkpF7A" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Disney" STOCK: 31/01/2017 DATE: 110.65 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Disney. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0122006326253954 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0248531405332128 7_DAY_RETURN: 8485838.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0026208766380478 PX_VOLUME: 12.229 VOLATILITY_10D: 12.982 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Disney | Predicted 1_DAY_RETURN: -0.0122006326253954
Predicted 2_DAY_RETURN: -0.0122006326253954
Predicted 7_DAY_RETURN: 8485838.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @pamcoordsen: @netflix Austin Basis is our "KingBeastie" & as JT plays a pivotal character to the #BatB story. #NetflixSaveBatB https://β¦
" STOCK: Netflix DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.5. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Netflix 1_DAY_RETURN: 0.0036244758723615 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: 0.0123658588586453 7_DAY_RETURN: -0.0042640892616018 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Netflix LAST_PRICE: 140.71 PX_VOLUME: 4411631.0 VOLATILITY_10D: 27.398000000000003 VOLATILITY_30D: 24.135 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.5 | Predicted 1_DAY_RETURN: 0.0036244758723615
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: -0.0042640892616018 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out White Stag Woman's Blue w/ Multi Color Floral Nightgown Size M (8/10) #WhiteStag #Gowns https://t.co/gw5rDCfw65 via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.