instruction
stringclasses 3
values | input
stringlengths 33
307
| output
stringlengths 66
248
|
---|---|---|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees.
To all those tweeting #boycottstarbucks, thanks for the…
" STOCK: Starbucks DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2 | Predicted 1_DAY_RETURN: 0.0123143788482433
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 0.0583122057225642 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@djregular @BraidXIV @ATT Yep, I believe that. The first time I called one guy told me it was impossible to put in a landline...
" STOCK: AT&T DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: AT&T 1_DAY_RETURN: -0.0080645161290321 2_DAY_RETURN: -0.0035578747628083 3_DAY_RETURN: -0.0035578747628083 7_DAY_RETURN: -0.0189753320683111 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: AT&T LAST_PRICE: 42.16 PX_VOLUME: 25405353.0 VOLATILITY_10D: 14.379 VOLATILITY_30D: 15.465 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: -0.0080645161290321
Predicted 2_DAY_RETURN: -0.0035578747628083
Predicted 7_DAY_RETURN: -0.0189753320683111 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds | Predicted 1_DAY_RETURN: 0.002365994941666
Predicted 2_DAY_RETURN: 0.002365994941666
Predicted 7_DAY_RETURN: 3733323.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out VINTAGE KANSAS CITY CHIEFS REEBOK SPRING TRAINING CAP RIVER FALLS WISCONSIN #Reebok https://t.co/TFuQNobhkR via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Huge clear out prior to moving house!!! Loads of stuff to be added too.... #ebay https://t.co/UFUucq03Bh @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.1666666666666667 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.1666666666666667 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @pepsi: We’ve got @LadyGaga’s #PepsiHalftime show under the 🔬 and it’s looking 🔥🔥🔥. Check out this #BehindTheScenes 📹 👆of h… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Pepsi" STOCK: 31/01/2017 DATE: 103.78 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @pepsi. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0028907303912121 2_DAY_RETURN: -0.0028907303912121 3_DAY_RETURN: 0.0089612642127576 7_DAY_RETURN: 3846647.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0008672191173636 PX_VOLUME: 8.876 VOLATILITY_10D: 8.55 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @pepsi | Predicted 1_DAY_RETURN: -0.0028907303912121
Predicted 2_DAY_RETURN: -0.0028907303912121
Predicted 7_DAY_RETURN: 3846647.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@exxonmobil Develops Efficient New Technology to Dehydrate Natural Gas #energy https://t.co/fLZ8mVPlv3" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Exxon" STOCK: 31/01/2017 DATE: 83.89 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.11818181818181818 and the TextBlob polarity score is @exxonmobil. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0193110025032781 2_DAY_RETURN: 0.0193110025032781 3_DAY_RETURN: 0.0143044462987245 7_DAY_RETURN: 19128106.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0115627607581356 PX_VOLUME: 15.645 VOLATILITY_10D: 13.653 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.11818181818181818 TEXTBLOB_POLARITY: @exxonmobil | Predicted 1_DAY_RETURN: 0.0193110025032781
Predicted 2_DAY_RETURN: 0.0193110025032781
Predicted 7_DAY_RETURN: 19128106.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out TAMIYA 1/12 Ferrari F50 Yellow Diecast Semi-assembled model kit MIB #Tamiya #Ferrari https://t.co/pRfj1ERceR via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @21CF: 21CF internal memo from Executive Chairman Lachlan Murdoch and CEO James Murdoch on U.S. immigration policies:… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "21CF" STOCK: 31/01/2017 DATE: 31.38 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @21CF. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.002868068833652 2_DAY_RETURN: -0.002868068833652 3_DAY_RETURN: -0.0350541746335244 7_DAY_RETURN: 5170587.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0003186743148501 PX_VOLUME: 16.864 VOLATILITY_10D: 14.768 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @21CF | Predicted 1_DAY_RETURN: -0.002868068833652
Predicted 2_DAY_RETURN: -0.002868068833652
Predicted 7_DAY_RETURN: 5170587.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Easter outfit for 18 inch doll complete with bunny hat check it out!
https://t.co/I9Al37I2UT via @eBay https://t.co/AlD3cFgE2Q
" STOCK: eBay DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.125. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: eBay 1_DAY_RETURN: 0.0106817467797676 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: 0.021363493559535 7_DAY_RETURN: -0.0578071002199183 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: eBay LAST_PRICE: 31.83 PX_VOLUME: 9469076.0 VOLATILITY_10D: 33.029 VOLATILITY_30D: 22.932 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.125 | Predicted 1_DAY_RETURN: 0.0106817467797676
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: -0.0578071002199183 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Reuters: EXCLUSIVE: 49 percent of Americans agree with Trump's travel ban - Reuters/Ipsos poll. https://t.co/Dcq1Qp76NK https://t.co/RS…" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @pepsi: We’ve got @LadyGaga’s #PepsiHalftime show under the 🔬 and it’s looking 🔥🔥🔥. Check out this #BehindTheScenes 📹 👆of h… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Pepsi" STOCK: 31/01/2017 DATE: 103.78 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @pepsi. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0028907303912121 2_DAY_RETURN: -0.0028907303912121 3_DAY_RETURN: 0.0089612642127576 7_DAY_RETURN: 3846647.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0008672191173636 PX_VOLUME: 8.876 VOLATILITY_10D: 8.55 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @pepsi | Predicted 1_DAY_RETURN: -0.0028907303912121
Predicted 2_DAY_RETURN: -0.0028907303912121
Predicted 7_DAY_RETURN: 3846647.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @jfgroves: Hi @katepurchase. Why only @FoxNews? @Reuters still has this information up as well.
https://t.co/wchvBA93aU
" STOCK: Reuters DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Reuters 1_DAY_RETURN: -0.0026767256477695 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0031221716708478 7_DAY_RETURN: 0.0044605344947324 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Reuters LAST_PRICE: 49.3887 PX_VOLUME: 547029.0 VOLATILITY_10D: 9.665 VOLATILITY_30D: 9.094 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: -0.0026767256477695
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 0.0044605344947324 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @greeneyes0084: 🚨Breaking: @Starbucks will be changing it's name to Refugeebucks to honor the people taking jobs from Americans..… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks | Predicted 1_DAY_RETURN: 0.0162984425932632
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 14307985.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out Hummel Look A Like Figurine Boy with Flowers Umbrella And Back Pack 10" Tall https://t.co/ujsFQtavZG via @eBay
" STOCK: eBay DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: eBay 1_DAY_RETURN: 0.0106817467797676 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: 0.021363493559535 7_DAY_RETURN: -0.0578071002199183 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: eBay LAST_PRICE: 31.83 PX_VOLUME: 9469076.0 VOLATILITY_10D: 33.029 VOLATILITY_30D: 22.932 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0106817467797676
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: -0.0578071002199183 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds | Predicted 1_DAY_RETURN: 0.002365994941666
Predicted 2_DAY_RETURN: 0.002365994941666
Predicted 7_DAY_RETURN: 3733323.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds | Predicted 1_DAY_RETURN: 0.002365994941666
Predicted 2_DAY_RETURN: 0.002365994941666
Predicted 7_DAY_RETURN: 3733323.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Reuters: JUST IN: Roughly 900 State Department officials sign dissent memo critical of Trump immigration order - source. https://t.co/6…" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.05 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.05 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @FaithHill: #ICYMI Tim and I will be doing a @facebook LIVE tonight at 5:30pm EST for a #Soul2Soul The World Tour 2017 announce… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Facebook" STOCK: 31/01/2017 DATE: 130.32 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.13636363636363635 and the TextBlob polarity score is @facebook. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.