instruction
stringclasses 3
values | input
stringlengths 33
307
| output
stringlengths 66
248
|
---|---|---|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Apple" STOCK: 01/02/2017 DATE: 128.75
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.2 and the TextBlob polarity score is @Apple.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: -0.0553009708737864 2_DAY_RETURN: -0.0528155339805825 3_DAY_RETURN: -0.0533592233009709 7_DAY_RETURN: 111985040.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: -0.0574757281553398 PX_VOLUME: 32.204 VOLATILITY_10D: 19.196 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.2 TEXTBLOB_POLARITY: @Apple
|
Predicted 1_DAY_RETURN: -0.0553009708737864
Predicted 2_DAY_RETURN: -0.0528155339805825
Predicted 7_DAY_RETURN: 111985040.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @amazon: When you justify daily #AmazonPrime orders by claiming they keep your cat happy... #AmazonAddict https://t.co/ysexzX5agG" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Amazon" STOCK: 01/02/2017 DATE: 832.35
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.4 and the TextBlob polarity score is @amazon.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: -0.0023667928155223 2_DAY_RETURN: 0.0041088484411605 3_DAY_RETURN: 0.0050099116958009 7_DAY_RETURN: 3850181.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: -0.0106565747582146 PX_VOLUME: 14.201 VOLATILITY_10D: 16.989 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.4 TEXTBLOB_POLARITY: @amazon
|
Predicted 1_DAY_RETURN: -0.0023667928155223
Predicted 2_DAY_RETURN: 0.0041088484411605
Predicted 7_DAY_RETURN: 3850181.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @HP: Up your style game. https://t.co/TbFMgSS4LP
Credit: @CHRISELLEtweets https://t.co/d3HcplTYVq
" STOCK: HP DATE: 01/02/2017
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is -0.4.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: HP 1_DAY_RETURN: 0.0040026684456304 2_DAY_RETURN: -0.010006671114076 3_DAY_RETURN: -0.0126751167444962 7_DAY_RETURN: 0.0133422281521013
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: HP LAST_PRICE: 14.99 PX_VOLUME: 12433763.0 VOLATILITY_10D: 26.395 VOLATILITY_30D: 19.843 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: -0.4
|
Predicted 1_DAY_RETURN: 0.0040026684456304
Predicted 2_DAY_RETURN: -0.010006671114076
Predicted 7_DAY_RETURN: 0.0133422281521013
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @TheRickWilson: U.N. Security Council expresses 'grave concern' over Ukraine https://t.co/eW9OPEtL8l via @Reuters" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@usaf48 It is Super Bowl time @1VoiceMatters @ZachIsBack765 @Starbucks @ndb4ever @kbwilson76 @NorseShadowRunr… https://t.co/yu5scC1FC5" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.3333333333333333 and the TextBlob polarity score is @Starbucks.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0371057513914656 2_DAY_RETURN: 0.0411873840445268 3_DAY_RETURN: 0.0890538033395177 7_DAY_RETURN: 18796871.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0244897959183673 PX_VOLUME: 25.781 VOLATILITY_10D: 18.576 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.3333333333333333 TEXTBLOB_POLARITY: @Starbucks
|
Predicted 1_DAY_RETURN: 0.0371057513914656
Predicted 2_DAY_RETURN: 0.0411873840445268
Predicted 7_DAY_RETURN: 18796871.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "U.S. House Republicans finalize list of rules to kill in Wednesday vote https://t.co/O4nLRfjoVu via @Reuters" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: Warren Buffett says he bought $12 billion of stock after Trump won. More here: https://t.co/Doh57zpobG https://t.co/NCrlbSQo3m" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: Challenges to Trump's immigration orders spread to more U.S. states https://t.co/SuOdXe1cr7 https://t.co/YZte1JNu1G" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@ATT I need help!!" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "AT&T" STOCK: 01/02/2017 DATE: 42.06
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @ATT.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: -0.0057061340941512 2_DAY_RETURN: -0.0011887779362816 3_DAY_RETURN: -0.0159296243461721 7_DAY_RETURN: 32082528.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0023775558725628 PX_VOLUME: 14.7 VOLATILITY_10D: 15.146 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @ATT
|
Predicted 1_DAY_RETURN: -0.0057061340941512
Predicted 2_DAY_RETURN: -0.0011887779362816
Predicted 7_DAY_RETURN: 32082528.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: JUST IN: Roughly 900 State Department officials sign dissent memo critical of Trump immigration order - source. https://t.co/6…" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.05 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.05 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: JUST IN: Roughly 900 State Department officials sign dissent memo critical of Trump immigration order - source. https://t.co/6…" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.05 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.05 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@Starbucks Keep your coffee and drink it with a REFUGEE! Make sure they were vetted if you don't believe me ask a Swede/Norwegian/or Dane!" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0371057513914656 2_DAY_RETURN: 0.0411873840445268 3_DAY_RETURN: 0.0890538033395177 7_DAY_RETURN: 18796871.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0244897959183673 PX_VOLUME: 25.781 VOLATILITY_10D: 18.576 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks
|
Predicted 1_DAY_RETURN: 0.0371057513914656
Predicted 2_DAY_RETURN: 0.0411873840445268
Predicted 7_DAY_RETURN: 18796871.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@netflix all these new shows just mean imma be locked up in the house for the next few weeks" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Netflix" STOCK: 01/02/2017 DATE: 140.78
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.09403409090909093 and the TextBlob polarity score is @netflix.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0031254439551072 2_DAY_RETURN: 0.0118624804659751 3_DAY_RETURN: -0.0089501349623525 7_DAY_RETURN: 6033422.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: -0.0004972297201306 PX_VOLUME: 19.491 VOLATILITY_10D: 24.09800000000001 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.09403409090909093 TEXTBLOB_POLARITY: @netflix
|
Predicted 1_DAY_RETURN: 0.0031254439551072
Predicted 2_DAY_RETURN: 0.0118624804659751
Predicted 7_DAY_RETURN: 6033422.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: Challenges to Trump's immigration orders spread to more U.S. states https://t.co/SuOdXe1cr7 https://t.co/YZte1JNu1G" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @quentin_roelfs: I'm gonna just leave this here for you @McDonalds those cheese curds I just had we're straight trash. https://t.co/UWcc…" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.2 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.2 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @nikitakhara: Thank you, @Starbucks CEO for committing to hire 10,000 refugees.
To all those tweeting #boycottstarbucks, thanks for the…
" STOCK: Starbucks DATE: 01/02/2017
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
|
Predicted 1_DAY_RETURN: 0.0244897959183673
Predicted 2_DAY_RETURN: 0.0371057513914656
Predicted 7_DAY_RETURN: 0.0890538033395177
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Check out Wind Shear The Game of Weather Educational Tool Ages 12+ Trivia Science Cards #Harlow https://t.co/SZgOUk5bFW via @eBay" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.