method_name
stringlengths 3
45
| method_body
stringlengths 9
6.25k
| full_code
stringlengths 35
7.02k
| docstring
stringlengths 18
4.7k
⌀ |
---|---|---|---|
forward | hidden_states = self.model(input_ids, positions, kv_caches, input_metadata)
return hidden_states | def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[KVCache], input_metadata: InputMetadata) ->torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches, input_metadata)
return hidden_states | null |
_init_workers_ray | if self.parallel_config.tensor_parallel_size == 1:
num_gpus = self.cache_config.gpu_memory_utilization
else:
num_gpus = 1
self.driver_dummy_worker: RayWorkerVllm = None
self.workers: List[RayWorkerVllm] = []
driver_ip = get_ip()
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
if not bundle.get('GPU', 0):
continue
scheduling_strategy = PlacementGroupSchedulingStrategy(placement_group=
placement_group, placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_id)
worker = ray.remote(num_cpus=0, num_gpus=num_gpus, scheduling_strategy=
scheduling_strategy, **ray_remote_kwargs)(RayWorkerVllm).remote(self
.model_config.trust_remote_code)
worker_ip = ray.get(worker.get_node_ip.remote())
if worker_ip == driver_ip and self.driver_dummy_worker is None:
self.driver_dummy_worker = worker
else:
self.workers.append(worker)
if self.driver_dummy_worker is None:
raise ValueError(
'Ray does not allocate any GPUs on the driver node. Consider adjusting the Ray placement group or running the driver on a GPU node.'
)
driver_node_id, driver_gpu_ids = ray.get(self.driver_dummy_worker.
get_node_and_gpu_ids.remote())
worker_node_and_gpu_ids = ray.get([worker.get_node_and_gpu_ids.remote() for
worker in self.workers])
node_workers = defaultdict(list)
node_gpus = defaultdict(list)
node_workers[driver_node_id].append(0)
node_gpus[driver_node_id].extend(driver_gpu_ids)
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids, start=1):
node_workers[node_id].append(i)
node_gpus[node_id].extend(gpu_ids)
for node_id, gpu_ids in node_gpus.items():
node_gpus[node_id] = sorted(gpu_ids)
set_cuda_visible_devices(node_gpus[driver_node_id])
for worker, (node_id, _) in zip(self.workers, worker_node_and_gpu_ids):
worker.set_cuda_visible_devices.remote(node_gpus[node_id])
distributed_init_method = f'tcp://{driver_ip}:{get_open_port()}'
from vllm.worker.worker import Worker
model_config = copy.deepcopy(self.model_config)
parallel_config = copy.deepcopy(self.parallel_config)
scheduler_config = copy.deepcopy(self.scheduler_config)
for rank, (worker, (node_id, _)) in enumerate(zip(self.workers,
worker_node_and_gpu_ids), start=1):
local_rank = node_workers[node_id].index(rank)
worker.init_worker.remote(lambda rank=rank, local_rank=local_rank:
Worker(model_config, parallel_config, scheduler_config, local_rank,
rank, distributed_init_method))
driver_rank = 0
driver_local_rank = node_workers[driver_node_id].index(driver_rank)
self.driver_worker = Worker(model_config, parallel_config, scheduler_config,
driver_local_rank, driver_rank, distributed_init_method,
is_driver_worker=True)
self._run_workers('init_model')
self._run_workers('load_model', max_concurrent_workers=self.parallel_config
.max_parallel_loading_workers) | def _init_workers_ray(self, placement_group: 'PlacementGroup', **
ray_remote_kwargs):
if self.parallel_config.tensor_parallel_size == 1:
num_gpus = self.cache_config.gpu_memory_utilization
else:
num_gpus = 1
self.driver_dummy_worker: RayWorkerVllm = None
self.workers: List[RayWorkerVllm] = []
driver_ip = get_ip()
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
if not bundle.get('GPU', 0):
continue
scheduling_strategy = PlacementGroupSchedulingStrategy(placement_group
=placement_group, placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_id)
worker = ray.remote(num_cpus=0, num_gpus=num_gpus,
scheduling_strategy=scheduling_strategy, **ray_remote_kwargs)(
RayWorkerVllm).remote(self.model_config.trust_remote_code)
worker_ip = ray.get(worker.get_node_ip.remote())
if worker_ip == driver_ip and self.driver_dummy_worker is None:
self.driver_dummy_worker = worker
else:
self.workers.append(worker)
if self.driver_dummy_worker is None:
raise ValueError(
'Ray does not allocate any GPUs on the driver node. Consider adjusting the Ray placement group or running the driver on a GPU node.'
)
driver_node_id, driver_gpu_ids = ray.get(self.driver_dummy_worker.
get_node_and_gpu_ids.remote())
worker_node_and_gpu_ids = ray.get([worker.get_node_and_gpu_ids.remote() for
worker in self.workers])
node_workers = defaultdict(list)
node_gpus = defaultdict(list)
node_workers[driver_node_id].append(0)
node_gpus[driver_node_id].extend(driver_gpu_ids)
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids, start=1):
node_workers[node_id].append(i)
node_gpus[node_id].extend(gpu_ids)
for node_id, gpu_ids in node_gpus.items():
node_gpus[node_id] = sorted(gpu_ids)
set_cuda_visible_devices(node_gpus[driver_node_id])
for worker, (node_id, _) in zip(self.workers, worker_node_and_gpu_ids):
worker.set_cuda_visible_devices.remote(node_gpus[node_id])
distributed_init_method = f'tcp://{driver_ip}:{get_open_port()}'
from vllm.worker.worker import Worker
model_config = copy.deepcopy(self.model_config)
parallel_config = copy.deepcopy(self.parallel_config)
scheduler_config = copy.deepcopy(self.scheduler_config)
for rank, (worker, (node_id, _)) in enumerate(zip(self.workers,
worker_node_and_gpu_ids), start=1):
local_rank = node_workers[node_id].index(rank)
worker.init_worker.remote(lambda rank=rank, local_rank=local_rank:
Worker(model_config, parallel_config, scheduler_config,
local_rank, rank, distributed_init_method))
driver_rank = 0
driver_local_rank = node_workers[driver_node_id].index(driver_rank)
self.driver_worker = Worker(model_config, parallel_config,
scheduler_config, driver_local_rank, driver_rank,
distributed_init_method, is_driver_worker=True)
self._run_workers('init_model')
self._run_workers('load_model', max_concurrent_workers=self.
parallel_config.max_parallel_loading_workers) | null |
_check_if_gpu_supports_dtype | if torch_dtype == torch.bfloat16:
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError(
f'Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your {gpu_name} GPU has compute capability {compute_capability[0]}.{compute_capability[1]}.'
) | def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
if torch_dtype == torch.bfloat16:
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError(
f'Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your {gpu_name} GPU has compute capability {compute_capability[0]}.{compute_capability[1]}.'
) | null |
initialize_engine | """Initialize the LLMEngine from the command line arguments."""
engine_args = EngineArgs.from_cli_args(args)
return LLMEngine.from_engine_args(engine_args) | def initialize_engine(args: argparse.Namespace) ->LLMEngine:
"""Initialize the LLMEngine from the command line arguments."""
engine_args = EngineArgs.from_cli_args(args)
return LLMEngine.from_engine_args(engine_args) | Initialize the LLMEngine from the command line arguments. |
__init__ | super().__init__()
hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.self_attention = FalconAttention(config, linear_method)
self.mlp = FalconMLP(config, linear_method)
self.config = config
if config.new_decoder_architecture:
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon
)
if not config.parallel_attn:
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.
layer_norm_epsilon)
self.reduce_row_parallel_results = not (config.new_decoder_architecture or
config.parallel_attn) | def __init__(self, config: FalconConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.self_attention = FalconAttention(config, linear_method)
self.mlp = FalconMLP(config, linear_method)
self.config = config
if config.new_decoder_architecture:
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.input_layernorm = LayerNorm(hidden_size, eps=config.
layer_norm_epsilon)
if not config.parallel_attn:
self.post_attention_layernorm = LayerNorm(hidden_size, eps=
config.layer_norm_epsilon)
self.reduce_row_parallel_results = not (config.new_decoder_architecture or
config.parallel_attn) | null |
_init_engine | return MockEngine() | def _init_engine(self, *args, **kwargs):
return MockEngine() | null |
sample | head = self.lm_head.linear
next_tokens = self.sampler(head.weight, hidden_states, sampling_metadata,
head.bias)
return next_tokens | def sample(self, hidden_states: torch.Tensor, sampling_metadata:
SamplingMetadata) ->Optional[SamplerOutput]:
head = self.lm_head.linear
next_tokens = self.sampler(head.weight, hidden_states,
sampling_metadata, head.bias)
return next_tokens | null |
test_reshape_and_cache | random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpu_id = f'cuda:{device}'
num_slots = block_size * num_blocks
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.long, device=gpu_id)
qkv = torch.randn(num_tokens, 3, num_heads, head_size, dtype=dtype, device=
gpu_id)
_, key, value = qkv.unbind(dim=1)
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
num_heads, head_size, dtype, seed, gpu_id)
key_cache, value_cache = key_caches[0], value_caches[0]
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping)
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
block_indicies = torch.div(slot_mapping, block_size, rounding_mode='floor')
block_indicies = block_indicies.cpu().tolist()
block_offsets = slot_mapping % block_size
block_offsets = block_offsets.cpu().tolist()
for i in range(num_tokens):
block_idx = block_indicies[i]
block_offset = block_offsets[i]
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache) | @pytest.mark.parametrize('num_tokens', NUM_TOKENS)
@pytest.mark.parametrize('num_heads', NUM_HEADS)
@pytest.mark.parametrize('head_size', HEAD_SIZES)
@pytest.mark.parametrize('block_size', BLOCK_SIZES)
@pytest.mark.parametrize('num_blocks', NUM_BLOCKS)
@pytest.mark.parametrize('dtype', DTYPES)
@pytest.mark.parametrize('seed', SEEDS)
@pytest.mark.parametrize('device', DEVICES)
@torch.inference_mode()
def test_reshape_and_cache(kv_cache_factory, num_tokens: int, num_heads:
int, head_size: int, block_size: int, num_blocks: int, dtype: torch.
dtype, seed: int, device: int) ->None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpu_id = f'cuda:{device}'
num_slots = block_size * num_blocks
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.long, device=gpu_id)
qkv = torch.randn(num_tokens, 3, num_heads, head_size, dtype=dtype,
device=gpu_id)
_, key, value = qkv.unbind(dim=1)
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
num_heads, head_size, dtype, seed, gpu_id)
key_cache, value_cache = key_caches[0], value_caches[0]
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
slot_mapping)
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
block_indicies = torch.div(slot_mapping, block_size, rounding_mode='floor')
block_indicies = block_indicies.cpu().tolist()
block_offsets = slot_mapping % block_size
block_offsets = block_offsets.cpu().tolist()
for i in range(num_tokens):
block_idx = block_indicies[i]
block_offset = block_offsets[i]
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache) | null |
get_len | return self.data.get_len() | def get_len(self) ->int:
return self.data.get_len() | null |
get_special_tokens_mask | """
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0,
token_ids_1=token_ids_1, already_has_special_tokens=True)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + [0] * len(token_ids_0) + eos_token_id
return bos_token_id + [0] * len(token_ids_0) + eos_token_id + bos_token_id + [0
] * len(token_ids_1) + eos_token_id | def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1:
Optional[List[int]]=None, already_has_special_tokens: bool=False) ->List[
int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0,
token_ids_1=token_ids_1, already_has_special_tokens=True)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + [0] * len(token_ids_0) + eos_token_id
return bos_token_id + [0] * len(token_ids_0
) + eos_token_id + bos_token_id + [0] * len(token_ids_1) + eos_token_id | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
add_global_metrics_labels | labels.update(kwargs) | def add_global_metrics_labels(**kwargs):
labels.update(kwargs) | null |
forward | qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output | def forward(self, positions: torch.Tensor, hidden_states: torch.Tensor,
kv_cache: KVCache, input_metadata: InputMetadata) ->torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output | null |
model_parallel_is_initialized | """Check if tensor and pipeline parallel groups are initialized."""
return _TENSOR_MODEL_PARALLEL_GROUP is not None and _PIPELINE_MODEL_PARALLEL_GROUP is not None | def model_parallel_is_initialized():
"""Check if tensor and pipeline parallel groups are initialized."""
return (_TENSOR_MODEL_PARALLEL_GROUP is not None and
_PIPELINE_MODEL_PARALLEL_GROUP is not None) | Check if tensor and pipeline parallel groups are initialized. |
swap_in | self._swap(self.cpu_cache, self.gpu_cache, src_to_dst) | def swap_in(self, src_to_dst: Dict[int, int]) ->None:
self._swap(self.cpu_cache, self.gpu_cache, src_to_dst) | null |
__init__ | self.is_prompt = is_prompt
self.max_context_len = max_context_len
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.block_tables = block_tables
self.use_cuda_graph = use_cuda_graph
self.attn_bias = None | def __init__(self, is_prompt: bool, slot_mapping: torch.Tensor,
max_context_len: Optional[int], context_lens: Optional[torch.Tensor],
block_tables: Optional[torch.Tensor], use_cuda_graph: bool) ->None:
self.is_prompt = is_prompt
self.max_context_len = max_context_len
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.block_tables = block_tables
self.use_cuda_graph = use_cuda_graph
self.attn_bias = None | null |
_append_logical_block | block = LogicalTokenBlock(block_number=len(self.logical_token_blocks),
block_size=self.block_size)
self.logical_token_blocks.append(block) | def _append_logical_block(self) ->None:
block = LogicalTokenBlock(block_number=len(self.logical_token_blocks),
block_size=self.block_size)
self.logical_token_blocks.append(block) | null |
__init__ | self.step_calls = 0
self.add_request_calls = 0
self.abort_request_calls = 0
self.request_id = None | def __init__(self):
self.step_calls = 0
self.add_request_calls = 0
self.abort_request_calls = 0
self.request_id = None | null |
forward | qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.dense(attn_output)
return output | def forward(self, position_ids: torch.Tensor, hidden_states: torch.Tensor,
kv_cache: KVCache, input_metadata: InputMetadata) ->torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.dense(attn_output)
return output | null |
from_engine_args | """Creates an LLM engine from the engine arguments."""
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
placement_group = initialize_cluster(parallel_config)
engine = cls(*engine_configs, placement_group, log_stats=not engine_args.
disable_log_stats)
return engine | @classmethod
def from_engine_args(cls, engine_args: EngineArgs) ->'LLMEngine':
"""Creates an LLM engine from the engine arguments."""
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
placement_group = initialize_cluster(parallel_config)
engine = cls(*engine_configs, placement_group, log_stats=not
engine_args.disable_log_stats)
return engine | Creates an LLM engine from the engine arguments. |
abort_seq_group | if isinstance(request_id, str):
request_id = request_id,
request_ids = set(request_id)
for state_queue in [self.waiting, self.running, self.swapped]:
for seq_group in reversed(state_queue):
if seq_group.request_id in request_ids:
state_queue.remove(seq_group)
for seq in seq_group.get_seqs():
if seq.is_finished():
continue
seq.status = SequenceStatus.FINISHED_ABORTED
self.free_seq(seq)
request_ids.remove(seq_group.request_id)
if not request_ids:
return | def abort_seq_group(self, request_id: Union[str, Iterable[str]]) ->None:
if isinstance(request_id, str):
request_id = request_id,
request_ids = set(request_id)
for state_queue in [self.waiting, self.running, self.swapped]:
for seq_group in reversed(state_queue):
if seq_group.request_id in request_ids:
state_queue.remove(seq_group)
for seq in seq_group.get_seqs():
if seq.is_finished():
continue
seq.status = SequenceStatus.FINISHED_ABORTED
self.free_seq(seq)
request_ids.remove(seq_group.request_id)
if not request_ids:
return | null |
forward | hidden_states = self.embed_in(input_ids)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(position_ids, hidden_states, kv_caches[i],
input_metadata)
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states | def forward(self, input_ids: torch.Tensor, position_ids: torch.Tensor,
kv_caches: List[KVCache], input_metadata: InputMetadata) ->torch.Tensor:
hidden_states = self.embed_in(input_ids)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(position_ids, hidden_states, kv_caches[i],
input_metadata)
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states | null |
get_vocab | """Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab | def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab | Returns vocab as a dict |
forward | del kv_caches
self.input_buffers['input_ids'].copy_(input_ids, non_blocking=True)
self.input_buffers['positions'].copy_(positions, non_blocking=True)
self.input_buffers['slot_mapping'].copy_(input_metadata.slot_mapping,
non_blocking=True)
self.input_buffers['context_lens'].copy_(input_metadata.context_lens,
non_blocking=True)
self.input_buffers['block_tables'].copy_(input_metadata.block_tables,
non_blocking=True)
self.graph.replay()
return self.output_buffers['hidden_states'] | def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]], input_metadata:
InputMetadata) ->torch.Tensor:
del kv_caches
self.input_buffers['input_ids'].copy_(input_ids, non_blocking=True)
self.input_buffers['positions'].copy_(positions, non_blocking=True)
self.input_buffers['slot_mapping'].copy_(input_metadata.slot_mapping,
non_blocking=True)
self.input_buffers['context_lens'].copy_(input_metadata.context_lens,
non_blocking=True)
self.input_buffers['block_tables'].copy_(input_metadata.block_tables,
non_blocking=True)
self.graph.replay()
return self.output_buffers['hidden_states'] | null |
get_sliding_window | return getattr(self.hf_config, 'sliding_window', None) | def get_sliding_window(self) ->Optional[int]:
return getattr(self.hf_config, 'sliding_window', None) | null |
step | """Performs one decoding iteration and returns newly generated results.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results.
"""
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
if not scheduler_outputs.is_empty():
all_outputs = self._run_workers('execute_model', driver_kwargs={
'seq_group_metadata_list': seq_group_metadata_list,
'blocks_to_swap_in': scheduler_outputs.blocks_to_swap_in,
'blocks_to_swap_out': scheduler_outputs.blocks_to_swap_out,
'blocks_to_copy': scheduler_outputs.blocks_to_copy})
output = all_outputs[0]
else:
output = []
return self._process_model_outputs(output, scheduler_outputs) | def step(self) ->List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results.
"""
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
if not scheduler_outputs.is_empty():
all_outputs = self._run_workers('execute_model', driver_kwargs={
'seq_group_metadata_list': seq_group_metadata_list,
'blocks_to_swap_in': scheduler_outputs.blocks_to_swap_in,
'blocks_to_swap_out': scheduler_outputs.blocks_to_swap_out,
'blocks_to_copy': scheduler_outputs.blocks_to_copy})
output = all_outputs[0]
else:
output = []
return self._process_model_outputs(output, scheduler_outputs) | Performs one decoding iteration and returns newly generated results.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results. |
get_pipeline_model_parallel_prev_rank | """Return the global rank that preceeds the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, 'Pipeline parallel group is not initialized'
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size] | def get_pipeline_model_parallel_prev_rank():
"""Return the global rank that preceeds the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, 'Pipeline parallel group is not initialized'
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size] | Return the global rank that preceeds the caller in the pipeline |
create_weights | """Create weights for a linear layer."""
raise NotImplementedError | @abstractmethod
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int, output_size: int,
params_dtype: torch.dtype) ->Dict[str, Any]:
"""Create weights for a linear layer."""
raise NotImplementedError | Create weights for a linear layer. |
get_num_free_gpu_blocks | return self.gpu_allocator.get_num_free_blocks() | def get_num_free_gpu_blocks(self) ->int:
return self.gpu_allocator.get_num_free_blocks() | null |
_schedule | blocks_to_swap_in: Dict[int, int] = {}
blocks_to_swap_out: Dict[int, int] = {}
blocks_to_copy: Dict[int, List[int]] = {}
now = time.monotonic()
if not self.swapped:
ignored_seq_groups: List[SequenceGroup] = []
scheduled: List[SequenceGroup] = []
num_curr_seqs = sum(seq_group.get_max_num_running_seqs() for seq_group in
self.running)
seq_lens: List[int] = []
while self.waiting:
seq_group = self.waiting[0]
waiting_seqs = seq_group.get_seqs(status=SequenceStatus.WAITING)
assert len(waiting_seqs
) == 1, 'Waiting sequence group should have only one prompt sequence.'
num_prompt_tokens = waiting_seqs[0].get_len()
if num_prompt_tokens > self.prompt_limit:
logger.warning(
f'Input prompt ({num_prompt_tokens} tokens) is too long and exceeds limit of {self.prompt_limit}'
)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
self.waiting.pop(0)
continue
can_allocate = self.block_manager.can_allocate(seq_group)
if can_allocate == AllocStatus.LATER:
break
elif can_allocate == AllocStatus.NEVER:
logger.warning(
f'Input prompt ({num_prompt_tokens} tokens) is too long and exceeds the capacity of block_manager'
)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
self.waiting.pop(0)
continue
new_seq_lens = seq_lens + [num_prompt_tokens]
num_batched_tokens = len(new_seq_lens) * max(new_seq_lens)
if num_batched_tokens > self.scheduler_config.max_num_batched_tokens:
break
num_new_seqs = seq_group.get_max_num_running_seqs()
if num_curr_seqs + num_new_seqs > self.scheduler_config.max_num_seqs:
break
num_paddings = num_batched_tokens - sum(new_seq_lens)
if num_paddings > self.scheduler_config.max_paddings:
break
seq_lens = new_seq_lens
seq_group = self.waiting.pop(0)
self._allocate(seq_group)
self.running.append(seq_group)
num_curr_seqs += num_new_seqs
scheduled.append(seq_group)
if scheduled or ignored_seq_groups:
scheduler_outputs = SchedulerOutputs(scheduled_seq_groups=scheduled,
prompt_run=True, num_batched_tokens=len(seq_lens) * max(
seq_lens) if seq_lens else 0, blocks_to_swap_in=
blocks_to_swap_in, blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy, ignored_seq_groups=
ignored_seq_groups)
return scheduler_outputs
self.running = self.policy.sort_by_priority(now, self.running)
running: List[SequenceGroup] = []
preempted: List[SequenceGroup] = []
while self.running:
seq_group = self.running.pop(0)
while not self.block_manager.can_append_slot(seq_group):
if self.running:
victim_seq_group = self.running.pop(-1)
self._preempt(victim_seq_group, blocks_to_swap_out)
preempted.append(victim_seq_group)
else:
self._preempt(seq_group, blocks_to_swap_out)
preempted.append(seq_group)
break
else:
self._append_slot(seq_group, blocks_to_copy)
running.append(seq_group)
self.running = running
self.swapped = self.policy.sort_by_priority(now, self.swapped)
if not preempted:
num_curr_seqs = sum(seq_group.get_max_num_running_seqs() for seq_group in
self.running)
while self.swapped:
seq_group = self.swapped[0]
if not self.block_manager.can_swap_in(seq_group):
break
num_new_seqs = seq_group.get_max_num_running_seqs()
if num_curr_seqs + num_new_seqs > self.scheduler_config.max_num_seqs:
break
seq_group = self.swapped.pop(0)
self._swap_in(seq_group, blocks_to_swap_in)
self._append_slot(seq_group, blocks_to_copy)
num_curr_seqs += num_new_seqs
self.running.append(seq_group)
num_batched_tokens = sum(seq_group.num_seqs(status=SequenceStatus.RUNNING) for
seq_group in self.running)
scheduler_outputs = SchedulerOutputs(scheduled_seq_groups=self.running,
prompt_run=False, num_batched_tokens=num_batched_tokens,
blocks_to_swap_in=blocks_to_swap_in, blocks_to_swap_out=
blocks_to_swap_out, blocks_to_copy=blocks_to_copy, ignored_seq_groups=[])
return scheduler_outputs | def _schedule(self) ->SchedulerOutputs:
blocks_to_swap_in: Dict[int, int] = {}
blocks_to_swap_out: Dict[int, int] = {}
blocks_to_copy: Dict[int, List[int]] = {}
now = time.monotonic()
if not self.swapped:
ignored_seq_groups: List[SequenceGroup] = []
scheduled: List[SequenceGroup] = []
num_curr_seqs = sum(seq_group.get_max_num_running_seqs() for
seq_group in self.running)
seq_lens: List[int] = []
while self.waiting:
seq_group = self.waiting[0]
waiting_seqs = seq_group.get_seqs(status=SequenceStatus.WAITING)
assert len(waiting_seqs
) == 1, 'Waiting sequence group should have only one prompt sequence.'
num_prompt_tokens = waiting_seqs[0].get_len()
if num_prompt_tokens > self.prompt_limit:
logger.warning(
f'Input prompt ({num_prompt_tokens} tokens) is too long and exceeds limit of {self.prompt_limit}'
)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
self.waiting.pop(0)
continue
can_allocate = self.block_manager.can_allocate(seq_group)
if can_allocate == AllocStatus.LATER:
break
elif can_allocate == AllocStatus.NEVER:
logger.warning(
f'Input prompt ({num_prompt_tokens} tokens) is too long and exceeds the capacity of block_manager'
)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
self.waiting.pop(0)
continue
new_seq_lens = seq_lens + [num_prompt_tokens]
num_batched_tokens = len(new_seq_lens) * max(new_seq_lens)
if (num_batched_tokens > self.scheduler_config.
max_num_batched_tokens):
break
num_new_seqs = seq_group.get_max_num_running_seqs()
if (num_curr_seqs + num_new_seqs > self.scheduler_config.
max_num_seqs):
break
num_paddings = num_batched_tokens - sum(new_seq_lens)
if num_paddings > self.scheduler_config.max_paddings:
break
seq_lens = new_seq_lens
seq_group = self.waiting.pop(0)
self._allocate(seq_group)
self.running.append(seq_group)
num_curr_seqs += num_new_seqs
scheduled.append(seq_group)
if scheduled or ignored_seq_groups:
scheduler_outputs = SchedulerOutputs(scheduled_seq_groups=
scheduled, prompt_run=True, num_batched_tokens=len(seq_lens
) * max(seq_lens) if seq_lens else 0, blocks_to_swap_in=
blocks_to_swap_in, blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy, ignored_seq_groups=
ignored_seq_groups)
return scheduler_outputs
self.running = self.policy.sort_by_priority(now, self.running)
running: List[SequenceGroup] = []
preempted: List[SequenceGroup] = []
while self.running:
seq_group = self.running.pop(0)
while not self.block_manager.can_append_slot(seq_group):
if self.running:
victim_seq_group = self.running.pop(-1)
self._preempt(victim_seq_group, blocks_to_swap_out)
preempted.append(victim_seq_group)
else:
self._preempt(seq_group, blocks_to_swap_out)
preempted.append(seq_group)
break
else:
self._append_slot(seq_group, blocks_to_copy)
running.append(seq_group)
self.running = running
self.swapped = self.policy.sort_by_priority(now, self.swapped)
if not preempted:
num_curr_seqs = sum(seq_group.get_max_num_running_seqs() for
seq_group in self.running)
while self.swapped:
seq_group = self.swapped[0]
if not self.block_manager.can_swap_in(seq_group):
break
num_new_seqs = seq_group.get_max_num_running_seqs()
if (num_curr_seqs + num_new_seqs > self.scheduler_config.
max_num_seqs):
break
seq_group = self.swapped.pop(0)
self._swap_in(seq_group, blocks_to_swap_in)
self._append_slot(seq_group, blocks_to_copy)
num_curr_seqs += num_new_seqs
self.running.append(seq_group)
num_batched_tokens = sum(seq_group.num_seqs(status=SequenceStatus.
RUNNING) for seq_group in self.running)
scheduler_outputs = SchedulerOutputs(scheduled_seq_groups=self.running,
prompt_run=False, num_batched_tokens=num_batched_tokens,
blocks_to_swap_in=blocks_to_swap_in, blocks_to_swap_out=
blocks_to_swap_out, blocks_to_copy=blocks_to_copy,
ignored_seq_groups=[])
return scheduler_outputs | null |
get_last_token_id | assert self.num_tokens > 0
return self.token_ids[self.num_tokens - 1] | def get_last_token_id(self) ->int:
assert self.num_tokens > 0
return self.token_ids[self.num_tokens - 1] | null |
forward | if residual is not None:
ops.fused_add_rms_norm(x, residual, self.weight.data, self.variance_epsilon
)
return x, residual
out = torch.empty_like(x)
ops.rms_norm(out, x, self.weight.data, self.variance_epsilon)
return out | def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor]=None
) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
if residual is not None:
ops.fused_add_rms_norm(x, residual, self.weight.data, self.
variance_epsilon)
return x, residual
out = torch.empty_like(x)
ops.rms_norm(out, x, self.weight.data, self.variance_epsilon)
return out | null |
get_supported_act_dtypes | return [torch.half] | @classmethod
def get_supported_act_dtypes(cls) ->List[torch.dtype]:
return [torch.half] | null |
weight_loader | param_data = param.data
output_dim = getattr(param, 'output_dim', None)
if loaded_shard_id is None:
if output_dim is None:
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
return
current_shard_offset = 0
shard_offsets = []
for i, output_size in enumerate(self.output_sizes):
shard_offsets.append((i, current_shard_offset, output_size))
current_shard_offset += output_size
packed_dim = getattr(param, 'packed_dim', None)
for shard_id, shard_offset, shard_size in shard_offsets:
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
loaded_weight_shard = loaded_weight.narrow(output_dim, shard_offset,
shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
assert loaded_shard_id < len(self.output_sizes)
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
if output_dim is not None:
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
packed_dim = getattr(param, 'packed_dim', None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
param_data = param_data.narrow(output_dim, shard_offset, shard_size)
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
else:
ignore_warning = getattr(param, 'ignore_warning', False)
if not ignore_warning:
logger.warning(
'Loading a weight without `output_dim` attribute in MergedColumnParallelLinear, assume the weight is the same for all partitions.'
)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight) | def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor,
loaded_shard_id: Optional[int]=None):
param_data = param.data
output_dim = getattr(param, 'output_dim', None)
if loaded_shard_id is None:
if output_dim is None:
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
return
current_shard_offset = 0
shard_offsets = []
for i, output_size in enumerate(self.output_sizes):
shard_offsets.append((i, current_shard_offset, output_size))
current_shard_offset += output_size
packed_dim = getattr(param, 'packed_dim', None)
for shard_id, shard_offset, shard_size in shard_offsets:
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
loaded_weight_shard = loaded_weight.narrow(output_dim,
shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
assert loaded_shard_id < len(self.output_sizes)
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
if output_dim is not None:
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
packed_dim = getattr(param, 'packed_dim', None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
param_data = param_data.narrow(output_dim, shard_offset, shard_size)
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
else:
ignore_warning = getattr(param, 'ignore_warning', False)
if not ignore_warning:
logger.warning(
'Loading a weight without `output_dim` attribute in MergedColumnParallelLinear, assume the weight is the same for all partitions.'
)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight) | null |
propagate_exception | """Propagate an exception to request streams
(all if request_id is None)."""
if request_id is not None:
self._request_streams[request_id].put(exc)
else:
for stream in self._request_streams.values():
stream.put(exc) | def propagate_exception(self, exc: Exception, request_id: Optional[str]=None
) ->None:
"""Propagate an exception to request streams
(all if request_id is None)."""
if request_id is not None:
self._request_streams[request_id].put(exc)
else:
for stream in self._request_streams.values():
stream.put(exc) | Propagate an exception to request streams
(all if request_id is None). |
get_token_ids | return self.data.get_token_ids() | def get_token_ids(self) ->List[int]:
return self.data.get_token_ids() | null |
add_cli_args | """Shared CLI arguments for vLLM engine."""
parser.add_argument('--model', type=str, default='facebook/opt-125m', help=
'name or path of the huggingface model to use')
parser.add_argument('--tokenizer', type=str, default=EngineArgs.tokenizer,
help='name or path of the huggingface tokenizer to use')
parser.add_argument('--revision', type=str, default=None, help=
'the specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.'
)
parser.add_argument('--tokenizer-revision', type=str, default=None, help=
'the specific tokenizer version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.'
)
parser.add_argument('--tokenizer-mode', type=str, default=EngineArgs.
tokenizer_mode, choices=['auto', 'slow'], help=
'tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer.'
)
parser.add_argument('--trust-remote-code', action='store_true', help=
'trust remote code from huggingface')
parser.add_argument('--download-dir', type=str, default=EngineArgs.
download_dir, help=
'directory to download and load the weights, default to the default cache dir of huggingface'
)
parser.add_argument('--load-format', type=str, default=EngineArgs.
load_format, choices=['auto', 'pt', 'safetensors', 'npcache', 'dummy'],
help=
'The format of the model weights to load. "auto" will try to load the weights in the safetensors format and fall back to the pytorch bin format if safetensors format is not available. "pt" will load the weights in the pytorch bin format. "safetensors" will load the weights in the safetensors format. "npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading. "dummy" will initialize the weights with random values, which is mainly for profiling.'
)
parser.add_argument('--dtype', type=str, default=EngineArgs.dtype, choices=
['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], help=
'data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.'
)
parser.add_argument('--max-model-len', type=int, default=None, help=
'model context length. If unspecified, will be automatically derived from the model.'
)
parser.add_argument('--worker-use-ray', action='store_true', help=
'use Ray for distributed serving, will be automatically set when using more than 1 GPU'
)
parser.add_argument('--pipeline-parallel-size', '-pp', type=int, default=
EngineArgs.pipeline_parallel_size, help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=
EngineArgs.tensor_parallel_size, help='number of tensor parallel replicas')
parser.add_argument('--max-parallel-loading-workers', type=int, help=
'load model sequentially in multiple batches, to avoid RAM OOM when using tensor parallel and large models'
)
parser.add_argument('--block-size', type=int, default=EngineArgs.block_size,
choices=[8, 16, 32], help='token block size')
parser.add_argument('--seed', type=int, default=EngineArgs.seed, help=
'random seed')
parser.add_argument('--swap-space', type=int, default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument('--gpu-memory-utilization', type=float, default=
EngineArgs.gpu_memory_utilization, help=
'the fraction of GPU memory to be used for the model executor, which can range from 0 to 1.If unspecified, will use the default value of 0.9.'
)
parser.add_argument('--max-num-batched-tokens', type=int, default=
EngineArgs.max_num_batched_tokens, help=
'maximum number of batched tokens per iteration')
parser.add_argument('--max-num-seqs', type=int, default=EngineArgs.
max_num_seqs, help='maximum number of sequences per iteration')
parser.add_argument('--max-paddings', type=int, default=EngineArgs.
max_paddings, help='maximum number of paddings in a batch')
parser.add_argument('--disable-log-stats', action='store_true', help=
'disable logging statistics')
parser.add_argument('--quantization', '-q', type=str, choices=['awq',
'gptq', 'squeezellm', None], default=None, help=
'Method used to quantize the weights. If None, we first check the `quantization_config` attribute in the model config file. If that is None, we assume the model weights are not quantized and use `dtype` to determine the data type of the weights.'
)
parser.add_argument('--enforce-eager', action='store_true', help=
'Always use eager-mode PyTorch. If False, will use eager mode and CUDA graph in hybrid for maximal performance and flexibility.'
)
parser.add_argument('--max-context-len-to-capture', type=int, default=
EngineArgs.max_context_len_to_capture, help=
'maximum context length covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode.'
)
return parser | @staticmethod
def add_cli_args(parser: argparse.ArgumentParser) ->argparse.ArgumentParser:
"""Shared CLI arguments for vLLM engine."""
parser.add_argument('--model', type=str, default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument('--tokenizer', type=str, default=EngineArgs.
tokenizer, help='name or path of the huggingface tokenizer to use')
parser.add_argument('--revision', type=str, default=None, help=
'the specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.'
)
parser.add_argument('--tokenizer-revision', type=str, default=None,
help=
'the specific tokenizer version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.'
)
parser.add_argument('--tokenizer-mode', type=str, default=EngineArgs.
tokenizer_mode, choices=['auto', 'slow'], help=
'tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer.'
)
parser.add_argument('--trust-remote-code', action='store_true', help=
'trust remote code from huggingface')
parser.add_argument('--download-dir', type=str, default=EngineArgs.
download_dir, help=
'directory to download and load the weights, default to the default cache dir of huggingface'
)
parser.add_argument('--load-format', type=str, default=EngineArgs.
load_format, choices=['auto', 'pt', 'safetensors', 'npcache',
'dummy'], help=
'The format of the model weights to load. "auto" will try to load the weights in the safetensors format and fall back to the pytorch bin format if safetensors format is not available. "pt" will load the weights in the pytorch bin format. "safetensors" will load the weights in the safetensors format. "npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading. "dummy" will initialize the weights with random values, which is mainly for profiling.'
)
parser.add_argument('--dtype', type=str, default=EngineArgs.dtype,
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help=
'data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.'
)
parser.add_argument('--max-model-len', type=int, default=None, help=
'model context length. If unspecified, will be automatically derived from the model.'
)
parser.add_argument('--worker-use-ray', action='store_true', help=
'use Ray for distributed serving, will be automatically set when using more than 1 GPU'
)
parser.add_argument('--pipeline-parallel-size', '-pp', type=int,
default=EngineArgs.pipeline_parallel_size, help=
'number of pipeline stages')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=
EngineArgs.tensor_parallel_size, help=
'number of tensor parallel replicas')
parser.add_argument('--max-parallel-loading-workers', type=int, help=
'load model sequentially in multiple batches, to avoid RAM OOM when using tensor parallel and large models'
)
parser.add_argument('--block-size', type=int, default=EngineArgs.
block_size, choices=[8, 16, 32], help='token block size')
parser.add_argument('--seed', type=int, default=EngineArgs.seed, help=
'random seed')
parser.add_argument('--swap-space', type=int, default=EngineArgs.
swap_space, help='CPU swap space size (GiB) per GPU')
parser.add_argument('--gpu-memory-utilization', type=float, default=
EngineArgs.gpu_memory_utilization, help=
'the fraction of GPU memory to be used for the model executor, which can range from 0 to 1.If unspecified, will use the default value of 0.9.'
)
parser.add_argument('--max-num-batched-tokens', type=int, default=
EngineArgs.max_num_batched_tokens, help=
'maximum number of batched tokens per iteration')
parser.add_argument('--max-num-seqs', type=int, default=EngineArgs.
max_num_seqs, help='maximum number of sequences per iteration')
parser.add_argument('--max-paddings', type=int, default=EngineArgs.
max_paddings, help='maximum number of paddings in a batch')
parser.add_argument('--disable-log-stats', action='store_true', help=
'disable logging statistics')
parser.add_argument('--quantization', '-q', type=str, choices=['awq',
'gptq', 'squeezellm', None], default=None, help=
'Method used to quantize the weights. If None, we first check the `quantization_config` attribute in the model config file. If that is None, we assume the model weights are not quantized and use `dtype` to determine the data type of the weights.'
)
parser.add_argument('--enforce-eager', action='store_true', help=
'Always use eager-mode PyTorch. If False, will use eager mode and CUDA graph in hybrid for maximal performance and flexibility.'
)
parser.add_argument('--max-context-len-to-capture', type=int, default=
EngineArgs.max_context_len_to_capture, help=
'maximum context length covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode.'
)
return parser | Shared CLI arguments for vLLM engine. |
__repr__ | return f'SqueezeLLMConfig(weight_bits={self.weight_bits})' | def __repr__(self) ->str:
return f'SqueezeLLMConfig(weight_bits={self.weight_bits})' | null |
__init__ | self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id,
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **
kwargs) | def __init__(self, vocab_size=64000, hidden_size=4096, intermediate_size=
11008, num_hidden_layers=32, num_attention_heads=32, hidden_act='silu',
max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=
1e-06, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2,
tie_word_embeddings=False, **kwargs):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id,
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings,
**kwargs) | null |
test_gelu_new | torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpu_id = f'cuda:{device}'
x = torch.randn(num_tokens, d, dtype=dtype, device=gpu_id)
layer = NewGELU()
out = layer(x)
ref_out = layer._forward(x)
assert torch.allclose(out, ref_out, atol=1e-05, rtol=1e-05) | @pytest.mark.parametrize('num_tokens', NUM_TOKENS)
@pytest.mark.parametrize('d', D)
@pytest.mark.parametrize('dtype', DTYPES)
@pytest.mark.parametrize('seed', SEEDS)
@pytest.mark.parametrize('device', DEVICES)
@torch.inference_mode()
def test_gelu_new(num_tokens: int, d: int, dtype: torch.dtype, seed: int,
device: int) ->None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpu_id = f'cuda:{device}'
x = torch.randn(num_tokens, d, dtype=dtype, device=gpu_id)
layer = NewGELU()
out = layer(x)
ref_out = layer._forward(x)
assert torch.allclose(out, ref_out, atol=1e-05, rtol=1e-05) | null |
prepare_input_tensors | if self.is_driver_worker:
is_prompt = seq_group_metadata_list[0].is_prompt
if is_prompt:
input_tokens, input_positions, input_metadata, prompt_lens = (self.
_prepare_prompt(seq_group_metadata_list))
else:
input_tokens, input_positions, input_metadata = self._prepare_decode(
seq_group_metadata_list)
prompt_lens = []
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
prompt_lens)
def get_size_or_none(x: Optional[torch.Tensor]):
return x.size() if x is not None else None
py_data = {'input_tokens_size': input_tokens.size(),
'input_positions_size': input_positions.size(), 'is_prompt':
input_metadata.is_prompt, 'slot_mapping_size': get_size_or_none(
input_metadata.slot_mapping), 'max_context_len': input_metadata.
max_context_len, 'context_lens_size': get_size_or_none(
input_metadata.context_lens), 'block_tables_size': get_size_or_none
(input_metadata.block_tables), 'use_cuda_graph': input_metadata.
use_cuda_graph, 'selected_token_indices_size': sampling_metadata.
selected_token_indices.size()}
broadcast_object_list([py_data], src=0)
broadcast(input_tokens, src=0)
broadcast(input_positions, src=0)
if input_metadata.slot_mapping is not None:
broadcast(input_metadata.slot_mapping, src=0)
if input_metadata.context_lens is not None:
broadcast(input_metadata.context_lens, src=0)
if input_metadata.block_tables is not None:
broadcast(input_metadata.block_tables, src=0)
broadcast(sampling_metadata.selected_token_indices, src=0)
else:
receving_list = [None]
broadcast_object_list(receving_list, src=0)
py_data = receving_list[0]
input_tokens = torch.empty(*py_data['input_tokens_size'], dtype=torch.
long, device='cuda')
broadcast(input_tokens, src=0)
input_positions = torch.empty(*py_data['input_positions_size'], dtype=
torch.long, device='cuda')
broadcast(input_positions, src=0)
if py_data['slot_mapping_size'] is not None:
slot_mapping = torch.empty(*py_data['slot_mapping_size'], dtype=
torch.long, device='cuda')
broadcast(slot_mapping, src=0)
else:
slot_mapping = None
if py_data['context_lens_size'] is not None:
context_lens = torch.empty(*py_data['context_lens_size'], dtype=
torch.int, device='cuda')
broadcast(context_lens, src=0)
else:
context_lens = None
if py_data['block_tables_size'] is not None:
block_tables = torch.empty(*py_data['block_tables_size'], dtype=
torch.int, device='cuda')
broadcast(block_tables, src=0)
else:
block_tables = None
selected_token_indices = torch.empty(*py_data[
'selected_token_indices_size'], dtype=torch.long, device='cuda')
broadcast(selected_token_indices, src=0)
input_metadata = InputMetadata(is_prompt=py_data['is_prompt'],
slot_mapping=slot_mapping, max_context_len=py_data[
'max_context_len'], context_lens=context_lens, block_tables=
block_tables, use_cuda_graph=py_data['use_cuda_graph'])
sampling_metadata = SamplingMetadata(seq_groups=None, seq_data=None,
prompt_lens=None, selected_token_indices=selected_token_indices,
categorized_sample_indices=None, perform_sampling=False)
return input_tokens, input_positions, input_metadata, sampling_metadata | def prepare_input_tensors(self, seq_group_metadata_list: Optional[List[
SequenceGroupMetadata]]) ->Tuple[torch.Tensor, torch.Tensor,
InputMetadata, SamplingMetadata]:
if self.is_driver_worker:
is_prompt = seq_group_metadata_list[0].is_prompt
if is_prompt:
input_tokens, input_positions, input_metadata, prompt_lens = (self
._prepare_prompt(seq_group_metadata_list))
else:
input_tokens, input_positions, input_metadata = (self.
_prepare_decode(seq_group_metadata_list))
prompt_lens = []
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
prompt_lens)
def get_size_or_none(x: Optional[torch.Tensor]):
return x.size() if x is not None else None
py_data = {'input_tokens_size': input_tokens.size(),
'input_positions_size': input_positions.size(), 'is_prompt':
input_metadata.is_prompt, 'slot_mapping_size': get_size_or_none
(input_metadata.slot_mapping), 'max_context_len':
input_metadata.max_context_len, 'context_lens_size':
get_size_or_none(input_metadata.context_lens),
'block_tables_size': get_size_or_none(input_metadata.
block_tables), 'use_cuda_graph': input_metadata.use_cuda_graph,
'selected_token_indices_size': sampling_metadata.
selected_token_indices.size()}
broadcast_object_list([py_data], src=0)
broadcast(input_tokens, src=0)
broadcast(input_positions, src=0)
if input_metadata.slot_mapping is not None:
broadcast(input_metadata.slot_mapping, src=0)
if input_metadata.context_lens is not None:
broadcast(input_metadata.context_lens, src=0)
if input_metadata.block_tables is not None:
broadcast(input_metadata.block_tables, src=0)
broadcast(sampling_metadata.selected_token_indices, src=0)
else:
receving_list = [None]
broadcast_object_list(receving_list, src=0)
py_data = receving_list[0]
input_tokens = torch.empty(*py_data['input_tokens_size'], dtype=
torch.long, device='cuda')
broadcast(input_tokens, src=0)
input_positions = torch.empty(*py_data['input_positions_size'],
dtype=torch.long, device='cuda')
broadcast(input_positions, src=0)
if py_data['slot_mapping_size'] is not None:
slot_mapping = torch.empty(*py_data['slot_mapping_size'], dtype
=torch.long, device='cuda')
broadcast(slot_mapping, src=0)
else:
slot_mapping = None
if py_data['context_lens_size'] is not None:
context_lens = torch.empty(*py_data['context_lens_size'], dtype
=torch.int, device='cuda')
broadcast(context_lens, src=0)
else:
context_lens = None
if py_data['block_tables_size'] is not None:
block_tables = torch.empty(*py_data['block_tables_size'], dtype
=torch.int, device='cuda')
broadcast(block_tables, src=0)
else:
block_tables = None
selected_token_indices = torch.empty(*py_data[
'selected_token_indices_size'], dtype=torch.long, device='cuda')
broadcast(selected_token_indices, src=0)
input_metadata = InputMetadata(is_prompt=py_data['is_prompt'],
slot_mapping=slot_mapping, max_context_len=py_data[
'max_context_len'], context_lens=context_lens, block_tables=
block_tables, use_cuda_graph=py_data['use_cuda_graph'])
sampling_metadata = SamplingMetadata(seq_groups=None, seq_data=None,
prompt_lens=None, selected_token_indices=selected_token_indices,
categorized_sample_indices=None, perform_sampling=False)
return input_tokens, input_positions, input_metadata, sampling_metadata | null |
__init__ | super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
self.h = nn.ModuleList([GPTJBlock(config, linear_method) for _ in range(
config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | def __init__(self, config: GPTJConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
self.h = nn.ModuleList([GPTJBlock(config, linear_method) for _ in range
(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | null |
rotary | return not self.alibi | @property
def rotary(self):
return not self.alibi | null |
forward | qkv, _ = self.Wqkv(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.out_proj(attn_output)
return output | def forward(self, position_ids: torch.Tensor, hidden_states: torch.Tensor,
kv_cache: KVCache, input_metadata: InputMetadata) ->torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.out_proj(attn_output)
return output | null |
forward | residual = hidden_states
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states=hidden_states, kv_cache=
kv_cache, input_metadata=input_metadata)
hidden_states = residual + hidden_states
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
hidden_states = residual + hidden_states
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states | def forward(self, hidden_states: torch.Tensor, kv_cache: KVCache,
input_metadata: InputMetadata) ->torch.Tensor:
residual = hidden_states
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states=hidden_states, kv_cache=
kv_cache, input_metadata=input_metadata)
hidden_states = residual + hidden_states
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
hidden_states = residual + hidden_states
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states | null |
_beam_search_sample | sample_idx = 0
results = []
for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
seq_ids, sampling_params = seq_group
num_parent_seqs = len(seq_ids)
beam_width = sampling_params.best_of
seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
if is_prompt:
assert num_parent_seqs == 1, 'Prompt input should have only one seq.'
parent_ids = [0] * (2 * beam_width)
_, next_token_ids = torch.topk(seq_group_logprobs[0], 2 * beam_width)
next_token_ids = next_token_ids.tolist()
else:
cumulative_logprobs = [seq_data[seq_id].cumulative_logprob for
seq_id in seq_ids]
cumulative_logprobs = torch.tensor(cumulative_logprobs, dtype=torch
.float, device=seq_group_logprobs.device)
seq_group_logprobs = (seq_group_logprobs + cumulative_logprobs.
unsqueeze(dim=1))
_, topk_ids = torch.topk(seq_group_logprobs.flatten(), 2 * beam_width)
topk_ids = topk_ids.tolist()
vocab_size = seq_group_logprobs.size(-1)
parent_ids = [(i // vocab_size) for i in topk_ids]
next_token_ids = [(i % vocab_size) for i in topk_ids]
results.append((next_token_ids, parent_ids))
sample_idx += num_parent_seqs
assert sample_idx == logprobs.size(0)
return results | def _beam_search_sample(selected_seq_groups: List[Tuple[List[int],
SamplingParams]], is_prompts: List[bool], seq_data: Dict[int,
SequenceData], logprobs: torch.Tensor) ->List[Tuple[List[int], List[int]]]:
sample_idx = 0
results = []
for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
seq_ids, sampling_params = seq_group
num_parent_seqs = len(seq_ids)
beam_width = sampling_params.best_of
seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
if is_prompt:
assert num_parent_seqs == 1, 'Prompt input should have only one seq.'
parent_ids = [0] * (2 * beam_width)
_, next_token_ids = torch.topk(seq_group_logprobs[0], 2 *
beam_width)
next_token_ids = next_token_ids.tolist()
else:
cumulative_logprobs = [seq_data[seq_id].cumulative_logprob for
seq_id in seq_ids]
cumulative_logprobs = torch.tensor(cumulative_logprobs, dtype=
torch.float, device=seq_group_logprobs.device)
seq_group_logprobs = (seq_group_logprobs + cumulative_logprobs.
unsqueeze(dim=1))
_, topk_ids = torch.topk(seq_group_logprobs.flatten(), 2 *
beam_width)
topk_ids = topk_ids.tolist()
vocab_size = seq_group_logprobs.size(-1)
parent_ids = [(i // vocab_size) for i in topk_ids]
next_token_ids = [(i % vocab_size) for i in topk_ids]
results.append((next_token_ids, parent_ids))
sample_idx += num_parent_seqs
assert sample_idx == logprobs.size(0)
return results | null |
get_from_keys | """Get a value from the model's quantization config."""
for key in keys:
if key in config:
return config[key]
raise ValueError(
f"Cannot find any of {keys} in the model's quantization config.") | @staticmethod
def get_from_keys(config: Dict[str, Any], keys: List[str]) ->Any:
"""Get a value from the model's quantization config."""
for key in keys:
if key in config:
return config[key]
raise ValueError(
f"Cannot find any of {keys} in the model's quantization config.") | Get a value from the model's quantization config. |
get_pipeline_model_parallel_group | """Get the pipeline model parallel group the caller rank belongs to."""
assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, 'pipeline model parallel group is not initialized'
return _PIPELINE_MODEL_PARALLEL_GROUP | def get_pipeline_model_parallel_group():
"""Get the pipeline model parallel group the caller rank belongs to."""
assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, 'pipeline model parallel group is not initialized'
return _PIPELINE_MODEL_PARALLEL_GROUP | Get the pipeline model parallel group the caller rank belongs to. |
__init__ | super().__init__(*args, **kwargs, disable=True) | def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, disable=True) | null |
__init__ | self.cache_config = cache_config
self.model_config = model_config
self.parallel_config = parallel_config
self.head_size = model_config.get_head_size()
self.num_layers = model_config.get_num_layers(parallel_config)
self.num_heads = model_config.get_num_kv_heads(parallel_config)
self.dtype = model_config.dtype
self.block_size = cache_config.block_size
self.num_gpu_blocks = cache_config.num_gpu_blocks
self.num_cpu_blocks = cache_config.num_cpu_blocks
self.gpu_cache = self.allocate_gpu_cache()
self.cpu_cache = self.allocate_cpu_cache()
self.cache_stream = torch.cuda.Stream()
assert self.cache_stream != torch.cuda.current_stream()
self.events = [torch.cuda.Event() for _ in range(self.num_layers)] | def __init__(self, cache_config: CacheConfig, model_config: ModelConfig,
parallel_config: ParallelConfig) ->None:
self.cache_config = cache_config
self.model_config = model_config
self.parallel_config = parallel_config
self.head_size = model_config.get_head_size()
self.num_layers = model_config.get_num_layers(parallel_config)
self.num_heads = model_config.get_num_kv_heads(parallel_config)
self.dtype = model_config.dtype
self.block_size = cache_config.block_size
self.num_gpu_blocks = cache_config.num_gpu_blocks
self.num_cpu_blocks = cache_config.num_cpu_blocks
self.gpu_cache = self.allocate_gpu_cache()
self.cpu_cache = self.allocate_cpu_cache()
self.cache_stream = torch.cuda.Stream()
assert self.cache_stream != torch.cuda.current_stream()
self.events = [torch.cuda.Event() for _ in range(self.num_layers)] | null |
_prune_hidden_states | hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
return hidden_states.index_select(0, sampling_metadata.selected_token_indices) | def _prune_hidden_states(hidden_states: torch.Tensor, sampling_metadata:
SamplingMetadata) ->torch.Tensor:
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
return hidden_states.index_select(0, sampling_metadata.
selected_token_indices) | null |
__init__ | self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
if self.is_driver_worker:
assert self.rank == 0, 'The driver worker must have rank 0.'
self.model_runner = ModelRunner(model_config, parallel_config,
scheduler_config, is_driver_worker)
self.cache_config = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None | def __init__(self, model_config: ModelConfig, parallel_config:
ParallelConfig, scheduler_config: SchedulerConfig, local_rank: int,
rank: int, distributed_init_method: str, is_driver_worker: bool=False
) ->None:
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
if self.is_driver_worker:
assert self.rank == 0, 'The driver worker must have rank 0.'
self.model_runner = ModelRunner(model_config, parallel_config,
scheduler_config, is_driver_worker)
self.cache_config = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None | null |
__init__ | logging.Formatter.__init__(self, fmt, datefmt) | def __init__(self, fmt, datefmt=None):
logging.Formatter.__init__(self, fmt, datefmt) | null |
__init__ | self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
self.worker_use_ray = worker_use_ray
self.max_parallel_loading_workers = max_parallel_loading_workers
self.world_size = pipeline_parallel_size * tensor_parallel_size
if self.world_size > 1:
self.worker_use_ray = True
self._verify_args() | def __init__(self, pipeline_parallel_size: int, tensor_parallel_size: int,
worker_use_ray: bool, max_parallel_loading_workers: Optional[int]=None
) ->None:
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
self.worker_use_ray = worker_use_ray
self.max_parallel_loading_workers = max_parallel_loading_workers
self.world_size = pipeline_parallel_size * tensor_parallel_size
if self.world_size > 1:
self.worker_use_ray = True
self._verify_args() | null |
has_unfinished_seqs | return self.waiting or self.running or self.swapped | def has_unfinished_seqs(self) ->bool:
return self.waiting or self.running or self.swapped | null |
_verify_quantization | supported_quantization = ['awq', 'gptq', 'squeezellm']
rocm_not_supported_quantization = ['awq']
if self.quantization is not None:
self.quantization = self.quantization.lower()
hf_quant_config = getattr(self.hf_config, 'quantization_config', None)
if hf_quant_config is not None:
hf_quant_method = str(hf_quant_config['quant_method']).lower()
if self.quantization is None:
self.quantization = hf_quant_method
elif self.quantization != hf_quant_method:
raise ValueError(
f'Quantization method specified in the model config ({hf_quant_method}) does not match the quantization method specified in the `quantization` argument ({self.quantization}).'
)
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
f'Unknown quantization method: {self.quantization}. Must be one of {supported_quantization}.'
)
if is_hip() and self.quantization in rocm_not_supported_quantization:
raise ValueError(
f'{self.quantization} quantization is currently not supported in ROCm.'
)
logger.warning(
f'{self.quantization} quantization is not fully optimized yet. The speed can be slower than non-quantized models.'
) | def _verify_quantization(self) ->None:
supported_quantization = ['awq', 'gptq', 'squeezellm']
rocm_not_supported_quantization = ['awq']
if self.quantization is not None:
self.quantization = self.quantization.lower()
hf_quant_config = getattr(self.hf_config, 'quantization_config', None)
if hf_quant_config is not None:
hf_quant_method = str(hf_quant_config['quant_method']).lower()
if self.quantization is None:
self.quantization = hf_quant_method
elif self.quantization != hf_quant_method:
raise ValueError(
f'Quantization method specified in the model config ({hf_quant_method}) does not match the quantization method specified in the `quantization` argument ({self.quantization}).'
)
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
f'Unknown quantization method: {self.quantization}. Must be one of {supported_quantization}.'
)
if is_hip() and self.quantization in rocm_not_supported_quantization:
raise ValueError(
f'{self.quantization} quantization is currently not supported in ROCm.'
)
logger.warning(
f'{self.quantization} quantization is not fully optimized yet. The speed can be slower than non-quantized models.'
) | null |
__init__ | super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.head_dim = hidden_size // self.total_num_heads
self.c_attn = QKVParallelLinear(hidden_size, self.head_dim, self.
total_num_heads, bias=True, linear_method=linear_method)
self.c_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
hidden_size, bias=False, linear_method=linear_method)
self.scaling = self.head_dim ** -0.5
self.rotary_emb = get_rope(self.head_dim, rotary_dim=self.head_dim,
max_position=max_position_embeddings, base=rope_theta, rope_scaling=
rope_scaling)
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling) | def __init__(self, hidden_size: int, num_heads: int,
max_position_embeddings: int, rope_theta: float=10000, rope_scaling:
Optional[Dict[str, Any]]=None, linear_method: Optional[LinearMethodBase
]=None):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.head_dim = hidden_size // self.total_num_heads
self.c_attn = QKVParallelLinear(hidden_size, self.head_dim, self.
total_num_heads, bias=True, linear_method=linear_method)
self.c_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
hidden_size, bias=False, linear_method=linear_method)
self.scaling = self.head_dim ** -0.5
self.rotary_emb = get_rope(self.head_dim, rotary_dim=self.head_dim,
max_position=max_position_embeddings, base=rope_theta, rope_scaling
=rope_scaling)
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling) | null |
_compute_inv_freq | """Compute the inverse frequency."""
inv_freq = 1.0 / base ** (torch.arange(0, self.rotary_dim, 2, dtype=torch.
float, device='cuda') / self.rotary_dim)
return inv_freq | def _compute_inv_freq(self, base: Union[int, float]) ->torch.Tensor:
"""Compute the inverse frequency."""
inv_freq = 1.0 / base ** (torch.arange(0, self.rotary_dim, 2, dtype=
torch.float, device='cuda') / self.rotary_dim)
return inv_freq | Compute the inverse frequency. |
parse_args | parser = argparse.ArgumentParser(description=
'vLLM OpenAI-Compatible RESTful API server.')
parser.add_argument('--host', type=str, default=None, help='host name')
parser.add_argument('--port', type=int, default=8000, help='port number')
parser.add_argument('--allow-credentials', action='store_true', help=
'allow credentials')
parser.add_argument('--allowed-origins', type=json.loads, default=['*'],
help='allowed origins')
parser.add_argument('--allowed-methods', type=json.loads, default=['*'],
help='allowed methods')
parser.add_argument('--allowed-headers', type=json.loads, default=['*'],
help='allowed headers')
parser.add_argument('--served-model-name', type=str, default=None, help=
'The model name used in the API. If not specified, the model name will be the same as the huggingface name.'
)
parser.add_argument('--chat-template', type=str, default=None, help=
'The file path to the chat template, or the template in single-line form for the specified model'
)
parser.add_argument('--response-role', type=str, default='assistant', help=
'The role name to return if `request.add_generation_prompt=true`.')
parser.add_argument('--ssl-keyfile', type=str, default=None, help=
'The file path to the SSL key file')
parser.add_argument('--ssl-certfile', type=str, default=None, help=
'The file path to the SSL cert file')
parser = AsyncEngineArgs.add_cli_args(parser)
return parser.parse_args() | def parse_args():
parser = argparse.ArgumentParser(description=
'vLLM OpenAI-Compatible RESTful API server.')
parser.add_argument('--host', type=str, default=None, help='host name')
parser.add_argument('--port', type=int, default=8000, help='port number')
parser.add_argument('--allow-credentials', action='store_true', help=
'allow credentials')
parser.add_argument('--allowed-origins', type=json.loads, default=['*'],
help='allowed origins')
parser.add_argument('--allowed-methods', type=json.loads, default=['*'],
help='allowed methods')
parser.add_argument('--allowed-headers', type=json.loads, default=['*'],
help='allowed headers')
parser.add_argument('--served-model-name', type=str, default=None, help
=
'The model name used in the API. If not specified, the model name will be the same as the huggingface name.'
)
parser.add_argument('--chat-template', type=str, default=None, help=
'The file path to the chat template, or the template in single-line form for the specified model'
)
parser.add_argument('--response-role', type=str, default='assistant',
help='The role name to return if `request.add_generation_prompt=true`.'
)
parser.add_argument('--ssl-keyfile', type=str, default=None, help=
'The file path to the SSL key file')
parser.add_argument('--ssl-certfile', type=str, default=None, help=
'The file path to the SSL cert file')
parser = AsyncEngineArgs.add_cli_args(parser)
return parser.parse_args() | null |
generate_greedy | greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
outputs = self.generate(prompts, greedy_params)
return [(output_ids[0], output_str[0]) for output_ids, output_str in outputs] | def generate_greedy(self, prompts: List[str], max_tokens: int) ->List[Tuple
[List[int], str]]:
greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
outputs = self.generate(prompts, greedy_params)
return [(output_ids[0], output_str[0]) for output_ids, output_str in
outputs] | null |
__repr__ | return f'SequenceOutput(parent_seq_id={self.parent_seq_id}, output_token={self.output_token}, logprobs={self.logprobs})' | def __repr__(self) ->str:
return (
f'SequenceOutput(parent_seq_id={self.parent_seq_id}, output_token={self.output_token}, logprobs={self.logprobs})'
) | null |
prepare_hf_model_weights | is_local = os.path.isdir(model_name_or_path)
use_safetensors = False
if load_format == 'auto':
allow_patterns = ['*.safetensors', '*.bin']
elif load_format == 'safetensors':
use_safetensors = True
allow_patterns = ['*.safetensors']
elif load_format == 'pt':
allow_patterns = ['*.pt']
elif load_format == 'npcache':
allow_patterns = ['*.bin']
else:
raise ValueError(f'Unknown load_format: {load_format}')
if fall_back_to_pt:
allow_patterns += ['*.pt']
if not is_local:
with get_lock(model_name_or_path, cache_dir):
hf_folder = snapshot_download(model_name_or_path, allow_patterns=
allow_patterns, cache_dir=cache_dir, tqdm_class=Disabledtqdm,
revision=revision)
else:
hf_folder = model_name_or_path
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
if len(hf_weights_files) > 0:
if pattern == '*.safetensors':
use_safetensors = True
break
if not use_safetensors:
blacklist = ['training_args.bin', 'optimizer.bin', 'optimizer.pt',
'scheduler.pt', 'scaler.pt']
hf_weights_files = [f for f in hf_weights_files if not any(f.endswith(x
) for x in blacklist)]
if len(hf_weights_files) == 0:
raise RuntimeError(
f'Cannot find any model weights with `{model_name_or_path}`')
return hf_folder, hf_weights_files, use_safetensors | def prepare_hf_model_weights(model_name_or_path: str, cache_dir: Optional[
str]=None, load_format: str='auto', fall_back_to_pt: bool=True,
revision: Optional[str]=None) ->Tuple[str, List[str], bool]:
is_local = os.path.isdir(model_name_or_path)
use_safetensors = False
if load_format == 'auto':
allow_patterns = ['*.safetensors', '*.bin']
elif load_format == 'safetensors':
use_safetensors = True
allow_patterns = ['*.safetensors']
elif load_format == 'pt':
allow_patterns = ['*.pt']
elif load_format == 'npcache':
allow_patterns = ['*.bin']
else:
raise ValueError(f'Unknown load_format: {load_format}')
if fall_back_to_pt:
allow_patterns += ['*.pt']
if not is_local:
with get_lock(model_name_or_path, cache_dir):
hf_folder = snapshot_download(model_name_or_path,
allow_patterns=allow_patterns, cache_dir=cache_dir,
tqdm_class=Disabledtqdm, revision=revision)
else:
hf_folder = model_name_or_path
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
if len(hf_weights_files) > 0:
if pattern == '*.safetensors':
use_safetensors = True
break
if not use_safetensors:
blacklist = ['training_args.bin', 'optimizer.bin', 'optimizer.pt',
'scheduler.pt', 'scaler.pt']
hf_weights_files = [f for f in hf_weights_files if not any(f.
endswith(x) for x in blacklist)]
if len(hf_weights_files) == 0:
raise RuntimeError(
f'Cannot find any model weights with `{model_name_or_path}`')
return hf_folder, hf_weights_files, use_safetensors | null |
__init__ | super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.bias = getattr(config, 'attention_bias', True)
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.query_key_value = QKVParallelLinear(config.hidden_size, self.head_size,
self.total_num_heads, bias=self.bias, linear_method=linear_method)
self.dense = RowParallelLinear(config.hidden_size, config.hidden_size, bias
=self.bias, linear_method=linear_method)
scaling = self.head_size ** -0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0
rope_theta = getattr(config, 'rope_theta', 10000)
max_position_embeddings = getattr(config, 'max_position_embeddings', 8192)
self.rotary_emb = get_rope(self.head_size, rotary_dim=rotary_dim,
max_position=max_position_embeddings, base=rope_theta)
self.attn = PagedAttention(self.num_heads, self.head_size, scaling) | def __init__(self, config: GPTNeoXConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.bias = getattr(config, 'attention_bias', True)
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.query_key_value = QKVParallelLinear(config.hidden_size, self.
head_size, self.total_num_heads, bias=self.bias, linear_method=
linear_method)
self.dense = RowParallelLinear(config.hidden_size, config.hidden_size,
bias=self.bias, linear_method=linear_method)
scaling = self.head_size ** -0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0
rope_theta = getattr(config, 'rope_theta', 10000)
max_position_embeddings = getattr(config, 'max_position_embeddings', 8192)
self.rotary_emb = get_rope(self.head_size, rotary_dim=rotary_dim,
max_position=max_position_embeddings, base=rope_theta)
self.attn = PagedAttention(self.num_heads, self.head_size, scaling) | null |
_get_alibi_slopes | next_power_of_2 = 2 ** math.ceil(math.log2(total_num_heads))
m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
m = m.mul(alibi_bias_max / next_power_of_2)
slopes = 1.0 / torch.pow(2, m)
if next_power_of_2 != total_num_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
return slopes | def _get_alibi_slopes(total_num_heads: int, alibi_bias_max: int
) ->torch.Tensor:
next_power_of_2 = 2 ** math.ceil(math.log2(total_num_heads))
m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
m = m.mul(alibi_bias_max / next_power_of_2)
slopes = 1.0 / torch.pow(2, m)
if next_power_of_2 != total_num_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
return slopes | null |
__init__ | super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, 'rope_theta', 10000)
self.self_attn = MixtralAttention(hidden_size=self.hidden_size, num_heads=
config.num_attention_heads, max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta,
sliding_window=config.sliding_window, linear_method=linear_method)
self.block_sparse_moe = MixtralMoE(config=config, linear_method=linear_method)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.
rms_norm_eps) | def __init__(self, config: MixtralConfig, linear_method: Optional[
LinearMethodBase]=None) ->None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, 'rope_theta', 10000)
self.self_attn = MixtralAttention(hidden_size=self.hidden_size,
num_heads=config.num_attention_heads, max_position=config.
max_position_embeddings, num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta, sliding_window=config.sliding_window,
linear_method=linear_method)
self.block_sparse_moe = MixtralMoE(config=config, linear_method=
linear_method)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.
rms_norm_eps) | null |
__init__ | """
AquilaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps | def __init__(self, hidden_size, eps=1e-06):
"""
AquilaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps | AquilaRMSNorm is equivalent to T5LayerNorm |
__init__ | super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, 'rope_theta', 10000)
max_position_embeddings = getattr(config, 'max_position_embeddings', 8192)
self.self_attn = InternLMAttention(hidden_size=self.hidden_size, num_heads=
config.num_attention_heads, bias=config.bias, rope_theta=rope_theta,
max_position_embeddings=max_position_embeddings, linear_method=
linear_method, rope_scaling=getattr(config, 'rope_scaling', None))
self.mlp = InternLMMLP(hidden_size=self.hidden_size, intermediate_size=
config.intermediate_size, hidden_act=config.hidden_act, linear_method=
linear_method)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.
rms_norm_eps) | def __init__(self, config: LlamaConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, 'rope_theta', 10000)
max_position_embeddings = getattr(config, 'max_position_embeddings', 8192)
self.self_attn = InternLMAttention(hidden_size=self.hidden_size,
num_heads=config.num_attention_heads, bias=config.bias, rope_theta=
rope_theta, max_position_embeddings=max_position_embeddings,
linear_method=linear_method, rope_scaling=getattr(config,
'rope_scaling', None))
self.mlp = InternLMMLP(hidden_size=self.hidden_size, intermediate_size=
config.intermediate_size, hidden_act=config.hidden_act,
linear_method=linear_method)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.
rms_norm_eps) | null |
num_finished_seqs | return len(self.get_finished_seqs()) | def num_finished_seqs(self) ->int:
return len(self.get_finished_seqs()) | null |
__init__ | super().__init__()
self.hidden_size = config.hidden_size
self.total_num_heads = config.n_head
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
self.query_key_value = QKVParallelLinear(self.hidden_size, self.head_dim,
self.total_num_heads, bias=True, linear_method=linear_method)
self.dense = RowParallelLinear(self.hidden_size, self.hidden_size, bias=
True, linear_method=linear_method)
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
scaling = self.head_dim ** -0.5
self.attn = PagedAttention(self.num_heads, self.head_dim, scaling,
alibi_slopes=alibi_slopes) | def __init__(self, config: BloomConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
self.hidden_size = config.hidden_size
self.total_num_heads = config.n_head
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
self.query_key_value = QKVParallelLinear(self.hidden_size, self.
head_dim, self.total_num_heads, bias=True, linear_method=linear_method)
self.dense = RowParallelLinear(self.hidden_size, self.hidden_size, bias
=True, linear_method=linear_method)
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
scaling = self.head_dim ** -0.5
self.attn = PagedAttention(self.num_heads, self.head_dim, scaling,
alibi_slopes=alibi_slopes) | null |
__init__ | super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(hidden_size, intermediate_size, bias=True,
linear_method=linear_method)
self.c_proj = RowParallelLinear(intermediate_size, hidden_size, bias=True,
linear_method=linear_method)
quant_config = getattr(linear_method, 'quant_config', None)
self.act = get_act_fn(config.activation_function, quant_config,
intermediate_size) | def __init__(self, intermediate_size: int, config: GPTBigCodeConfig,
linear_method: Optional[LinearMethodBase]=None):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(hidden_size, intermediate_size, bias=
True, linear_method=linear_method)
self.c_proj = RowParallelLinear(intermediate_size, hidden_size, bias=
True, linear_method=linear_method)
quant_config = getattr(linear_method, 'quant_config', None)
self.act = get_act_fn(config.activation_function, quant_config,
intermediate_size) | null |
forward | hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states | def forward(self, hidden_states):
hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states | null |
free_seq | self.block_manager.free(seq) | def free_seq(self, seq: Sequence) ->None:
self.block_manager.free(seq) | null |
get_vllm_version | version = find_version(get_path('vllm', '__init__.py'))
if _is_hip():
hipcc_version = get_hipcc_rocm_version()
if hipcc_version != MAIN_CUDA_VERSION:
rocm_version_str = hipcc_version.replace('.', '')[:3]
version += f'+rocm{rocm_version_str}'
else:
cuda_version = str(nvcc_cuda_version)
if cuda_version != MAIN_CUDA_VERSION:
cuda_version_str = cuda_version.replace('.', '')[:3]
version += f'+cu{cuda_version_str}'
return version | def get_vllm_version() ->str:
version = find_version(get_path('vllm', '__init__.py'))
if _is_hip():
hipcc_version = get_hipcc_rocm_version()
if hipcc_version != MAIN_CUDA_VERSION:
rocm_version_str = hipcc_version.replace('.', '')[:3]
version += f'+rocm{rocm_version_str}'
else:
cuda_version = str(nvcc_cuda_version)
if cuda_version != MAIN_CUDA_VERSION:
cuda_version_str = cuda_version.replace('.', '')[:3]
version += f'+cu{cuda_version_str}'
return version | null |
forward | inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds, _ = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states, _ = self.project_out(hidden_states)
return hidden_states | def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[KVCache], input_metadata: InputMetadata) ->torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds, _ = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states, _ = self.project_out(hidden_states)
return hidden_states | null |
convert_bin_to_safetensor_file | loaded = torch.load(pt_filename, map_location='cpu')
if 'state_dict' in loaded:
loaded = loaded['state_dict']
shared = _shared_pointers(loaded)
for shared_weights in shared:
for name in shared_weights[1:]:
loaded.pop(name)
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={'format': 'pt'})
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(
f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
"""
)
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f'The output tensors do not match for key {k}') | def convert_bin_to_safetensor_file(pt_filename: str, sf_filename: str) ->None:
loaded = torch.load(pt_filename, map_location='cpu')
if 'state_dict' in loaded:
loaded = loaded['state_dict']
shared = _shared_pointers(loaded)
for shared_weights in shared:
for name in shared_weights[1:]:
loaded.pop(name)
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={'format': 'pt'})
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(
f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
"""
)
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f'The output tensors do not match for key {k}') | null |
set_tokenizer | self.llm_engine.tokenizer = tokenizer | def set_tokenizer(self, tokenizer: Union[PreTrainedTokenizer,
PreTrainedTokenizerFast]) ->None:
self.llm_engine.tokenizer = tokenizer | null |
get_total_num_kv_heads | """Returns the total number of KV heads."""
falcon_model_types = ['falcon', 'RefinedWeb', 'RefinedWebModel']
new_decoder_arch_falcon = (self.hf_config.model_type in falcon_model_types and
getattr(self.hf_config, 'new_decoder_architecture', False))
if not new_decoder_arch_falcon and getattr(self.hf_config, 'multi_query', False
):
return 1
attributes = ['n_head_kv', 'num_kv_heads', 'num_key_value_heads',
'multi_query_group_num']
for attr in attributes:
num_kv_heads = getattr(self.hf_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
return self.hf_config.num_attention_heads | def get_total_num_kv_heads(self) ->int:
"""Returns the total number of KV heads."""
falcon_model_types = ['falcon', 'RefinedWeb', 'RefinedWebModel']
new_decoder_arch_falcon = (self.hf_config.model_type in
falcon_model_types and getattr(self.hf_config,
'new_decoder_architecture', False))
if not new_decoder_arch_falcon and getattr(self.hf_config,
'multi_query', False):
return 1
attributes = ['n_head_kv', 'num_kv_heads', 'num_key_value_heads',
'multi_query_group_num']
for attr in attributes:
num_kv_heads = getattr(self.hf_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
return self.hf_config.num_attention_heads | Returns the total number of KV heads. |
__init__ | self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(
bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(
eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(
unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(
pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=
unk_token, pad_token=pad_token, add_bos_token=add_bos_token,
add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) | def __init__(self, vocab_file, unk_token='<unk>', bos_token='<s>',
eos_token='</s>', pad_token=None, sp_model_kwargs: Optional[Dict[str,
Any]]=None, add_bos_token=True, add_eos_token=False,
clean_up_tokenization_spaces=False, **kwargs):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False
) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False
) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False
) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False
) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=
unk_token, pad_token=pad_token, add_bos_token=add_bos_token,
add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) | null |
main | """Main function that sets up and runs the prompt processing."""
engine = initialize_engine(args)
test_prompts = create_test_prompts()
process_requests(engine, test_prompts) | def main(args: argparse.Namespace):
"""Main function that sets up and runs the prompt processing."""
engine = initialize_engine(args)
test_prompts = create_test_prompts()
process_requests(engine, test_prompts) | Main function that sets up and runs the prompt processing. |
_raise_exception_on_finish | msg = (
'Task finished unexpectedly. This should never happen! Please open an issue on Github.'
)
try:
try:
task.result()
except asyncio.CancelledError:
return
except Exception as exc:
raise AsyncEngineDeadError(msg +
' See stack trace above for the actual cause.') from exc
raise AsyncEngineDeadError(msg)
except Exception as exc:
request_tracker.propagate_exception(exc)
raise exc | def _raise_exception_on_finish(task: asyncio.Task, request_tracker:
'RequestTracker') ->None:
msg = (
'Task finished unexpectedly. This should never happen! Please open an issue on Github.'
)
try:
try:
task.result()
except asyncio.CancelledError:
return
except Exception as exc:
raise AsyncEngineDeadError(msg +
' See stack trace above for the actual cause.') from exc
raise AsyncEngineDeadError(msg)
except Exception as exc:
request_tracker.propagate_exception(exc)
raise exc | null |
initialize_dummy_weights | """Initialize model weights with random values.
The model weights must be randomly initialized for accurate performance
measurements. Additionally, the model weights should not cause NaNs in the
forward pass. We empirically found that initializing the weights with
values between -1e-3 and 1e-3 works well for most models.
"""
for param in model.state_dict().values():
if torch.is_floating_point(param):
param.data.uniform_(low, high) | def initialize_dummy_weights(model: torch.nn.Module, low: float=-0.001,
high: float=0.001) ->None:
"""Initialize model weights with random values.
The model weights must be randomly initialized for accurate performance
measurements. Additionally, the model weights should not cause NaNs in the
forward pass. We empirically found that initializing the weights with
values between -1e-3 and 1e-3 works well for most models.
"""
for param in model.state_dict().values():
if torch.is_floating_point(param):
param.data.uniform_(low, high) | Initialize model weights with random values.
The model weights must be randomly initialized for accurate performance
measurements. Additionally, the model weights should not cause NaNs in the
forward pass. We empirically found that initializing the weights with
values between -1e-3 and 1e-3 works well for most models. |
get_policy | return cls._POLICY_REGISTRY[policy_name](**kwargs) | @classmethod
def get_policy(cls, policy_name: str, **kwargs) ->Policy:
return cls._POLICY_REGISTRY[policy_name](**kwargs) | null |
from_cli_args | attrs = [attr.name for attr in dataclasses.fields(cls)]
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args | @classmethod
def from_cli_args(cls, args: argparse.Namespace) ->'EngineArgs':
attrs = [attr.name for attr in dataclasses.fields(cls)]
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args | null |
create_test_prompts | """Create a list of test prompts with their sampling parameters."""
return [('A robot may not injure a human being', SamplingParams(temperature
=0.0, logprobs=1, prompt_logprobs=1)), ('To be or not to be,',
SamplingParams(temperature=0.8, top_k=5, presence_penalty=0.2)), (
'What is the meaning of life?', SamplingParams(n=2, best_of=5,
temperature=0.8, top_p=0.95, frequency_penalty=0.1)), (
'It is only with the heart that one can see rightly', SamplingParams(n=
3, best_of=3, use_beam_search=True, temperature=0.0))] | def create_test_prompts() ->List[Tuple[str, SamplingParams]]:
"""Create a list of test prompts with their sampling parameters."""
return [('A robot may not injure a human being', SamplingParams(
temperature=0.0, logprobs=1, prompt_logprobs=1)), (
'To be or not to be,', SamplingParams(temperature=0.8, top_k=5,
presence_penalty=0.2)), ('What is the meaning of life?',
SamplingParams(n=2, best_of=5, temperature=0.8, top_p=0.95,
frequency_penalty=0.1)), (
'It is only with the heart that one can see rightly',
SamplingParams(n=3, best_of=3, use_beam_search=True, temperature=0.0))] | Create a list of test prompts with their sampling parameters. |
_process_model_outputs | scheduled_seq_groups = scheduler_outputs.scheduled_seq_groups
for seq_group, outputs in zip(scheduled_seq_groups, output):
self._process_sequence_group_outputs(seq_group, outputs)
self.scheduler.free_finished_seq_groups()
request_outputs: List[RequestOutput] = []
for seq_group in (scheduled_seq_groups + scheduler_outputs.ignored_seq_groups):
request_output = RequestOutput.from_seq_group(seq_group)
request_outputs.append(request_output)
if self.log_stats:
self._log_system_stats(scheduler_outputs.prompt_run, scheduler_outputs.
num_batched_tokens)
return request_outputs | def _process_model_outputs(self, output: SamplerOutput, scheduler_outputs:
SchedulerOutputs) ->List[RequestOutput]:
scheduled_seq_groups = scheduler_outputs.scheduled_seq_groups
for seq_group, outputs in zip(scheduled_seq_groups, output):
self._process_sequence_group_outputs(seq_group, outputs)
self.scheduler.free_finished_seq_groups()
request_outputs: List[RequestOutput] = []
for seq_group in (scheduled_seq_groups + scheduler_outputs.
ignored_seq_groups):
request_output = RequestOutput.from_seq_group(seq_group)
request_outputs.append(request_output)
if self.log_stats:
self._log_system_stats(scheduler_outputs.prompt_run,
scheduler_outputs.num_batched_tokens)
return request_outputs | null |
__init__ | super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
vocab_size = (config.vocab_size + 63) // 64 * 64
self.embed_tokens = VocabParallelEmbedding(vocab_size, config.hidden_size)
self.layers = nn.ModuleList([InternLMDecoderLayer(config, linear_method) for
_ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | def __init__(self, config: LlamaConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
vocab_size = (config.vocab_size + 63) // 64 * 64
self.embed_tokens = VocabParallelEmbedding(vocab_size, config.hidden_size)
self.layers = nn.ModuleList([InternLMDecoderLayer(config, linear_method
) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | null |
sample | next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens | def sample(self, hidden_states: torch.Tensor, sampling_metadata:
SamplingMetadata) ->Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens | null |
get_cpu_memory | """Returns the total CPU memory of the node in bytes."""
return psutil.virtual_memory().total | def get_cpu_memory() ->int:
"""Returns the total CPU memory of the node in bytes."""
return psutil.virtual_memory().total | Returns the total CPU memory of the node in bytes. |
load_model | self.model = get_model(self.model_config) | def load_model(self) ->None:
self.model = get_model(self.model_config) | null |
__init__ | super().__init__()
self.embed_dim = config.hidden_size
self.word_embeddings = VocabParallelEmbedding(config.vocab_size, self.embed_dim
)
self.word_embeddings_layernorm = nn.LayerNorm(self.embed_dim, eps=config.
layer_norm_epsilon)
self.h = nn.ModuleList([BloomBlock(config, linear_method) for _ in range(
config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | def __init__(self, config: BloomConfig, linear_method: Optional[
LinearMethodBase]=None):
super().__init__()
self.embed_dim = config.hidden_size
self.word_embeddings = VocabParallelEmbedding(config.vocab_size, self.
embed_dim)
self.word_embeddings_layernorm = nn.LayerNorm(self.embed_dim, eps=
config.layer_norm_epsilon)
self.h = nn.ModuleList([BloomBlock(config, linear_method) for _ in
range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | null |
_compute_cos_sin_cache | max_len = self.max_position_embeddings * self.scaling_factor
base = self.base * (self.scaling_factor * max_len / self.
max_position_embeddings - (self.scaling_factor - 1)) ** (self.
rotary_dim / (self.rotary_dim - 2))
inv_freq = self._compute_inv_freq(base)
t = torch.arange(max_len, dtype=torch.float, device='cuda')
freqs = torch.einsum('i,j -> ij', t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
return cache | def _compute_cos_sin_cache(self) ->torch.Tensor:
max_len = self.max_position_embeddings * self.scaling_factor
base = self.base * (self.scaling_factor * max_len / self.
max_position_embeddings - (self.scaling_factor - 1)) ** (self.
rotary_dim / (self.rotary_dim - 2))
inv_freq = self._compute_inv_freq(base)
t = torch.arange(max_len, dtype=torch.float, device='cuda')
freqs = torch.einsum('i,j -> ij', t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
return cache | null |
random_uuid | return str(uuid.uuid4().hex) | def random_uuid() ->str:
return str(uuid.uuid4().hex) | null |
__init__ | self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.output_attentions = output_attentions
self.rope_theta = rope_theta
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id,
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **
kwargs) | def __init__(self, vocab_size=64000, hidden_size=4096, intermediate_size=
11008, num_hidden_layers=32, num_attention_heads=32,
num_key_value_heads=4, hidden_act='silu', max_position_embeddings=4096,
initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True,
pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=
False, output_attentions=False, rope_theta=5000000.0, **kwargs):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.output_attentions = output_attentions
self.rope_theta = rope_theta
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id,
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings,
**kwargs) | null |
copy | key_caches = [key_cache for key_cache, _ in self.gpu_cache]
value_caches = [value_cache for _, value_cache in self.gpu_cache]
cache_ops.copy_blocks(key_caches, value_caches, src_to_dsts) | def copy(self, src_to_dsts: Dict[int, List[int]]) ->None:
key_caches = [key_cache for key_cache, _ in self.gpu_cache]
value_caches = [value_cache for _, value_cache in self.gpu_cache]
cache_ops.copy_blocks(key_caches, value_caches, src_to_dsts) | null |
forward | hidden_states = self.model(input_ids, positions, kv_caches, input_metadata)
return hidden_states | def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[KVCache], input_metadata: InputMetadata) ->torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches, input_metadata)
return hidden_states | null |
__init__ | self.model = LLM(model=model_name, tokenizer=tokenizer_name,
trust_remote_code=True, dtype=dtype, swap_space=0) | def __init__(self, model_name: str, tokenizer_name: Optional[str]=None,
dtype: str='half') ->None:
self.model = LLM(model=model_name, tokenizer=tokenizer_name,
trust_remote_code=True, dtype=dtype, swap_space=0) | null |
forward | hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states, kv_caches[i],
input_metadata, residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states | def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[KVCache], input_metadata: InputMetadata) ->torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states, kv_caches
[i], input_metadata, residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states | null |
forward | x, bias = self.dense_h_to_4h(x)
if bias is not None:
x += bias
x = self.act(x)
x, bias = self.dense_4h_to_h(x)
return x, bias | def forward(self, x: torch.Tensor) ->torch.Tensor:
x, bias = self.dense_h_to_4h(x)
if bias is not None:
x += bias
x = self.act(x)
x, bias = self.dense_4h_to_h(x)
return x, bias | null |
divide | """Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator | def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator | Ensure that numerator is divisible by the denominator and return
the division value. |
test_multi_process_tensor_parallel | set_start_method('spawn', force=True)
distributed_init_port = get_open_port()
processes = []
for rank in range(tensor_parallel_size):
p = Process(target=test_target, args=(tensor_parallel_size, rank,
distributed_init_port))
p.start()
processes.append(p)
for p in processes:
p.join()
assert all(p.exitcode == 0 for p in processes) | @pytest.mark.skipif(torch.cuda.device_count() < 2, reason=
'Need at least 2 GPUs to run the test.')
@pytest.mark.parametrize('tensor_parallel_size', [2])
@pytest.mark.parametrize('test_target', [all_reduce_test_worker,
all_gather_test_worker])
def test_multi_process_tensor_parallel(tensor_parallel_size, test_target):
set_start_method('spawn', force=True)
distributed_init_port = get_open_port()
processes = []
for rank in range(tensor_parallel_size):
p = Process(target=test_target, args=(tensor_parallel_size, rank,
distributed_init_port))
p.start()
processes.append(p)
for p in processes:
p.join()
assert all(p.exitcode == 0 for p in processes) | null |
forward | hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states, kv_caches[i],
input_metadata, residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states | def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
kv_caches: List[KVCache], input_metadata: InputMetadata) ->torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states, kv_caches
[i], input_metadata, residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states | null |