File size: 3,806 Bytes
6b806dc e34749f 5c9769f 6b806dc 70c1e5d 6b806dc 70c1e5d 6b806dc 06505e3 e34749f 6b806dc ddb9474 f663ae7 ddb9474 0e9430a 70c1e5d e34749f 70c1e5d 322348f e34749f 70c1e5d ddb9474 f663ae7 52e77a5 e28833c 52e77a5 e28833c 355ea74 e28833c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
language:
- zh
tags:
- game
- hoyoverse
- video
- audio
- multimodal
- vision-language
- text
---
# Game Playthrough
## Description (English)
This is a collection of playthrough videos of Honkai Impact 3rd from Hoyoverse, along with efforts to build a Chinese text corpus (with OCR and MLLM-based parsing).
The language setting is Chinese.
All credits to [the source author from BiliBili](https://www.bilibili.com/video/BV12W411h76f)
The dataset contains the following contents:
- [x] Videos: The video-only files, corresponding to all videos in the [source](https://www.bilibili.com/video/BV12W411h76f). Mostly in 1280x720 aspect ratio, HEVC encoding.
- [x] Audios: The audio-only files, coresponding to all the videos. Mostly in M4A format with various kbps.
- [ ] OCR-Results (Raw): The OCR results for all the frames every 1 second. This process is done by using [Paddle-OCR](https://github.com/PaddlePaddle/PaddleOCR).
- [ ] VLM-Parsed corpus: Given the OCR-results and image frames, hopefully we will parse the raw info into structured story narrations and dialogues (with associated speaker & content). This process will be done by using strong vision language models.
Up-to-date: 2024.08.08
Latest video: [P186]主线第二部03间章:一个梦游者的苦痛-02[720P 高清]
## Description (Chinese)
本 Repo 收集了崩坏3的CG + 剧情对话视频,同时基于 OCR 和多模态大语言模型构造相应的中文崩坏3剧情语料。
感谢 [B站视频Up主](https://www.bilibili.com/video/BV12W411h76f)。
数据集包括以下部分:
- [x] 视频:纯视频文件 [source](https://www.bilibili.com/video/BV12W411h76f). 大部分都在 1280x720 分辨率, HEVC 编码。
- [x] 音频:纯音频文件. 均为 M4A 格式,不同的 kbps。
- [ ] OCR 结果 (无任何后处理):对所有视频每隔1秒取一帧,使用 [Paddle-OCR](https://github.com/PaddlePaddle/PaddleOCR) 对每一帧执行 OCR,获取画面上的任何可识别文字。
- [ ] 多模态大模型解析结果:对所有 OCR 结果 + 图像信息,调用多模态大模型将其解析成结构化剧情数据,包含旁白、说话人、说话内容等信息。
时间截止:2024.08.08
最新视频:[P186]主线第二部03间章:一个梦游者的苦痛-02[720P 高清]
## Illustration for text corpus construction pipeline
Here we show how text information is parsed from raw videos.
1. Extracting Video Frames
Save each frame as a image.
![frame_130.jpg](img%2Fframe_130.jpg)
2. OCR on video frame
Apply an OCR model to recognize texts that appear in a frame.
```json
[{"box": [[1161.0, 17.0], [1250.0, 20.0], [1249.0, 49.0], [1160.0, 46.0]], "text": "跳过I", "score": 0.8165686130523682}, {"box": [[539.0, 154.0], [724.0, 136.0], [726.0, 158.0], [542.0, 177.0]], "text": "SOURCEUNKNOWN", "score": 0.9888437986373901}, {"box": [[541.0, 475.0], [645.0, 475.0], [645.0, 499.0], [541.0, 499.0]], "text": "不明通讯", "score": 0.9979484677314758}, {"box": [[807.0, 476.0], [976.0, 481.0], [976.0, 508.0], [806.0, 504.0]], "text": "无量塔姬子", "score": 0.9982650876045227}, {"box": [[544.0, 509.0], [1107.0, 534.0], [1106.0, 567.0], [542.0, 542.0]], "text": "防御系统已经解除,我们暂时安全了。但还是", "score": 0.9949256777763367}, {"box": [[548.0, 545.0], [786.0, 558.0], [784.0, 585.0], [546.0, 573.0]], "text": "不知道琪亚娜在哪里。", "score": 0.9898449182510376}]
```
3. Vision-Language Understanding
Prompt a performant VLM to understand the frame image as well as OCR result (prevent hallucinations), and output structured information as follows:
```json
{
"role": "无量塔姬子",
"content": "防御系统已经解除,我们暂时安全了。但还是不知道琪亚娜在哪里。"
}
```
|