Datasets:
File size: 3,879 Bytes
d7ddc8f 075c1ce d7ddc8f e7b6823 ffe71c5 e7b6823 d7ddc8f 99d0192 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 99d0192 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 99d0192 7b3e7e2 d7ddc8f fec5a17 d7ddc8f 02946b6 d7ddc8f e45a77e d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f 7b3e7e2 d7ddc8f e7355a7 7b3e7e2 d7ddc8f 7b3e7e2 ee98e6a d7ddc8f e7355a7 ee98e6a 06cecdb d7ddc8f 7b3e7e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
DESCRIPTION = "Car dataset from the UCI repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/19/car+evaluation"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/19/car+evaluation")
_CITATION = """
@misc{misc_car_evaluation_19,
author = {Bohanec,Marko},
title = {{Car Evaluation}},
year = {1997},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C5JP48}}
}
"""
# Dataset info
_BASE_FEATURE_NAMES = [
"buying",
"maint",
"doors",
"persons",
"lug_boot",
"safety",
"acceptability_level"
]
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/car/raw/main/car.data"
}
features_types_per_config = {
"car": {
"buying": datasets.Value("int8"),
"maint": datasets.Value("int8"),
"doors": datasets.Value("int8"),
"persons": datasets.Value("int8"),
"lug_boot": datasets.Value("int8"),
"safety": datasets.Value("int8"),
"acceptability_level": datasets.ClassLabel(num_classes=4,
names=("unacceptable", "acceptable", "good", "very good"))
},
"car_binary": {
"buying": datasets.Value("int8"),
"maint": datasets.Value("int8"),
"doors": datasets.Value("int8"),
"persons": datasets.Value("int8"),
"lug_boot": datasets.Value("int8"),
"safety": datasets.Value("int8"),
"acceptability_level": datasets.ClassLabel(num_classes=2,
names=("unacceptable", "acceptable"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
_ENCODING_DICS = {
"buying": {
"vhigh": 3,
"high": 2,
"med": 1,
"low": 0
},
"maint": {
"vhigh": 3,
"high": 2,
"med": 1,
"low": 0
},
"doors": {
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5more": 5
},
"persons": {
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"more": 5
},
"lug_boot": {
"big": 2,
"med": 1,
"small": 0,
},
"safety": {
"high": 2,
"med": 1,
"low": 0,
},
"acceptability_level": {
"unacc": 0,
"acc": 1,
"good": 2,
"vgood": 3
}
}
class CarConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(CarConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Car(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "car"
BUILDER_CONFIGS = [
CarConfig(name="car",
description="Car for 4-ary classification."),
CarConfig(name="car_binary",
description="Car for binary classification."),
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data[feature] = data[feature].apply(encoding_function)
if self.config.name == "car_binary":
data["acceptability_level"] = data["acceptability_level"].apply(lambda x: 0 if x == 0 else 1)
return data
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
|