File size: 3,879 Bytes
d7ddc8f
075c1ce
d7ddc8f
 
 
 
 
 
 
 
 
 
 
 
e7b6823
 
 
 
 
 
ffe71c5
e7b6823
 
d7ddc8f
 
 
 
 
 
 
 
 
99d0192
d7ddc8f
 
7b3e7e2
d7ddc8f
 
7b3e7e2
 
d7ddc8f
 
 
 
 
99d0192
 
7b3e7e2
d7ddc8f
7b3e7e2
d7ddc8f
 
 
 
 
99d0192
 
7b3e7e2
 
d7ddc8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec5a17
 
 
 
 
 
 
 
d7ddc8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02946b6
d7ddc8f
e45a77e
d7ddc8f
 
 
 
 
7b3e7e2
 
 
d7ddc8f
 
 
7b3e7e2
 
 
 
 
d7ddc8f
7b3e7e2
 
d7ddc8f
 
7b3e7e2
 
 
d7ddc8f
7b3e7e2
 
 
 
d7ddc8f
7b3e7e2
 
 
 
 
 
d7ddc8f
 
7b3e7e2
 
d7ddc8f
7b3e7e2
d7ddc8f
e7355a7
7b3e7e2
d7ddc8f
7b3e7e2
 
ee98e6a
d7ddc8f
e7355a7
ee98e6a
06cecdb
d7ddc8f
7b3e7e2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")


DESCRIPTION = "Car dataset from the UCI repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/19/car+evaluation"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/19/car+evaluation")
_CITATION = """
@misc{misc_car_evaluation_19,
  author       = {Bohanec,Marko},
  title        = {{Car Evaluation}},
  year         = {1997},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5JP48}}
}
"""

# Dataset info
_BASE_FEATURE_NAMES = [
	"buying",
	"maint",
	"doors",
	"persons",
	"lug_boot",
	"safety",
	"acceptability_level"
]
urls_per_split = {
	"train": "https://huggingface.co/datasets/mstz/car/raw/main/car.data"
}
features_types_per_config = {
	"car": {
		"buying": datasets.Value("int8"),
		"maint": datasets.Value("int8"),
		"doors": datasets.Value("int8"),
		"persons": datasets.Value("int8"),
		"lug_boot": datasets.Value("int8"),
		"safety": datasets.Value("int8"),
		"acceptability_level": datasets.ClassLabel(num_classes=4,
									 			   names=("unacceptable", "acceptable", "good", "very good"))
	},
	"car_binary": {
		"buying": datasets.Value("int8"),
		"maint": datasets.Value("int8"),
		"doors": datasets.Value("int8"),
		"persons": datasets.Value("int8"),
		"lug_boot": datasets.Value("int8"),
		"safety": datasets.Value("int8"),
		"acceptability_level": datasets.ClassLabel(num_classes=2,
												   names=("unacceptable", "acceptable"))
	},
	
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}

_ENCODING_DICS = {
	"buying": {
		"vhigh": 3,
		"high": 2,
		"med": 1,
		"low": 0
	},
	"maint": {
		"vhigh": 3,
		"high": 2,
		"med": 1,
		"low": 0
	},
	"doors": {
		"0": 0,
		"1": 1,
		"2": 2,
		"3": 3,
		"4": 4,
		"5more": 5
	},
	"persons": {
		"0": 0,
		"1": 1,
		"2": 2,
		"3": 3,
		"4": 4,
		"more": 5
	},
	"lug_boot": {
		"big": 2,
		"med": 1,
		"small": 0,
	},
	"safety": {
		"high": 2,
		"med": 1,
		"low": 0,
	},
	"acceptability_level": {
		"unacc": 0,
		"acc": 1,
		"good": 2,
		"vgood": 3
	}
	
}

class CarConfig(datasets.BuilderConfig):
	def __init__(self, **kwargs):
		super(CarConfig, self).__init__(version=VERSION, **kwargs)
		self.features = features_per_config[kwargs["name"]]


class Car(datasets.GeneratorBasedBuilder):
	# dataset versions
	DEFAULT_CONFIG = "car"
	BUILDER_CONFIGS = [
		CarConfig(name="car",
					description="Car for 4-ary classification."),
		CarConfig(name="car_binary",
					description="Car for binary classification."),
		]


	def _info(self):       
		info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
									features=features_per_config[self.config.name])

		return info
	
	def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
		downloads = dl_manager.download_and_extract(urls_per_split)

		return [
			datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
		]
	
	def _generate_examples(self, filepath: str):
		data = pandas.read_csv(filepath, header=None)
		data = self.preprocess(data)

		for row_id, row in data.iterrows():
			data_row = dict(row)

			yield row_id, data_row
	
	def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
		data.columns = _BASE_FEATURE_NAMES

		for feature in _ENCODING_DICS:
			encoding_function = partial(self.encode, feature)
			data[feature] = data[feature].apply(encoding_function)

		if self.config.name == "car_binary":
			data["acceptability_level"] = data["acceptability_level"].apply(lambda x: 0 if x == 0 else 1)

		return data
	
	def encode(self, feature, value):
		if feature in _ENCODING_DICS:
			return _ENCODING_DICS[feature][value]
		raise ValueError(f"Unknown feature: {feature}")