|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"rads", |
|
"age", |
|
"lesion_shape", |
|
"margin", |
|
"density", |
|
"is_severe" |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"age", |
|
"lesion_shape", |
|
"margin", |
|
"density", |
|
"is_severe" |
|
] |
|
_ENCODING_DICS = { |
|
"lesion_shape": { |
|
"1": "round", |
|
"2": "oval", |
|
"3": "lobular", |
|
"4": "irregular", |
|
}, |
|
"margin": { |
|
"1": "circumbscribed", |
|
"2": "microlobulated", |
|
"3": "obscured", |
|
"4": "ill-defined", |
|
"5": "spiculated", |
|
}, |
|
"density": { |
|
"1": "high", |
|
"2": "iso", |
|
"3": "low", |
|
"4": "fat-containing", |
|
"5": "spiculated", |
|
} |
|
} |
|
|
|
DESCRIPTION = "Mammography dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Mammography" |
|
_URLS = ("https://huggingface.co/datasets/mstz/mammography/raw/mammography_masses.data") |
|
_CITATION = """ |
|
@misc{misc_mammographic_mass_161, |
|
author = {Elter,Matthias}, |
|
title = {{Mammographic Mass}}, |
|
year = {2007}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C53K6Z}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/mammography/raw/main/mammographic_masses.data" |
|
} |
|
features_types_per_config = { |
|
"mammography": { |
|
"age": datasets.Value("int8"), |
|
"lesion_shape": datasets.Value("string"), |
|
"margin": datasets.Value("string"), |
|
"density": datasets.Value("string"), |
|
"is_severe": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class MammographyConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(MammographyConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Mammography(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "mammography" |
|
BUILDER_CONFIGS = [ |
|
MammographyConfig(name="mammography", |
|
description="Mammography for binary classification.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data.columns = _ORIGINAL_FEATURE_NAMES |
|
|
|
data.drop("rads", axis="columns", inplace=True) |
|
data = data[data.age != "?"] |
|
data = data[data.lesion_shape != "?"] |
|
data = data[data.margin != "?"] |
|
data = data[data.density != "?"] |
|
data = data.infer_objects() |
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|