|
--- |
|
dataset_info: |
|
- config_name: main_group |
|
features: |
|
- name: publication_number |
|
dtype: string |
|
- name: labels |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 369885895 |
|
num_examples: 7491648 |
|
- name: test |
|
num_bytes: 43089767 |
|
num_examples: 832405 |
|
download_size: 163987062 |
|
dataset_size: 412975662 |
|
- config_name: subgroup |
|
features: |
|
- name: publication_number |
|
dtype: string |
|
- name: labels |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 693083457 |
|
num_examples: 7492144 |
|
- name: test |
|
num_bytes: 80785020 |
|
num_examples: 832461 |
|
download_size: 399887593 |
|
dataset_size: 773868477 |
|
configs: |
|
- config_name: main_group |
|
data_files: |
|
- split: train |
|
path: main_group/train-* |
|
- split: test |
|
path: main_group/test-* |
|
- config_name: subgroup |
|
data_files: |
|
- split: train |
|
path: subgroup/train-* |
|
- split: test |
|
path: subgroup/test-* |
|
default: true |
|
license: cc-by-sa-4.0 |
|
task_categories: |
|
- text-classification |
|
tags: |
|
- legal |
|
pretty_name: CPC classification datasets |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
# CPC classification datasets |
|
|
|
These datasets have been used to train the CPC ([Cooperative Patent Classification](https://www.cooperativepatentclassification.org/home)) classification models mentioned in the article **_Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360_**. |
|
|
|
Columns: |
|
- `publication_number`: the patent publication number, the content of the publication can be looked up using e.g. [Espacenet](https://worldwide.espacenet.com/patent/search?q=EP4030126A1) or the [EPO’s Open Patent Services](https://www.epo.org/en/searching-for-patents/data/web-services/ops) |
|
- `labels`: the CPC symbols used as prediction labels (CPC release 2024.01) |
|
|
|
## Datasets |
|
### Subgroup dataset |
|
Used to train the _subgroup_ model with 224 542 labels. |
|
|
|
How to load the dataset: |
|
```python |
|
from datasets import load_dataset |
|
dataset = load_dataset("mwirth-epo/cpc-classification-data", name="subgroup") |
|
``` |
|
|
|
### Main group dataset |
|
Used to train the _main group_ model with 9 025 labels. |
|
|
|
This dataset was created from the subgroup dataset with a filter excluding main groups with less than 20 documents. |
|
|
|
How to load the dataset: |
|
```python |
|
from datasets import load_dataset |
|
dataset = load_dataset("mwirth-epo/cpc-classification-data", name="main_group") |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
```bibtex |
|
@article{HAHNKE2025102360, |
|
title = {Encoder models at the European Patent Office: Pre-training and use cases}, |
|
journal = {World Patent Information}, |
|
volume = {81}, |
|
pages = {102360}, |
|
year = {2025}, |
|
issn = {0172-2190}, |
|
doi = {https://doi.org/10.1016/j.wpi.2025.102360}, |
|
url = {https://www.sciencedirect.com/science/article/pii/S0172219025000274}, |
|
author = {Volker D. Hähnke and Arnaud Wéry and Matthias Wirth and Alexander Klenner-Bajaja}, |
|
keywords = {Natural language processing, Language model, Encoder network, Classification, Cooperative Patent Classification} |
|
} |
|
``` |
|
|
|
**APA:** |
|
|
|
Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360 |
|
|