mwirth-epo's picture
Update README.md
8c9af4b verified
---
dataset_info:
- config_name: main_group
features:
- name: publication_number
dtype: string
- name: labels
sequence: string
splits:
- name: train
num_bytes: 369885895
num_examples: 7491648
- name: test
num_bytes: 43089767
num_examples: 832405
download_size: 163987062
dataset_size: 412975662
- config_name: subgroup
features:
- name: publication_number
dtype: string
- name: labels
sequence: string
splits:
- name: train
num_bytes: 693083457
num_examples: 7492144
- name: test
num_bytes: 80785020
num_examples: 832461
download_size: 399887593
dataset_size: 773868477
configs:
- config_name: main_group
data_files:
- split: train
path: main_group/train-*
- split: test
path: main_group/test-*
- config_name: subgroup
data_files:
- split: train
path: subgroup/train-*
- split: test
path: subgroup/test-*
default: true
license: cc-by-sa-4.0
task_categories:
- text-classification
tags:
- legal
pretty_name: CPC classification datasets
size_categories:
- 1M<n<10M
---
# CPC classification datasets
These datasets have been used to train the CPC ([Cooperative Patent Classification](https://www.cooperativepatentclassification.org/home)) classification models mentioned in the article **_Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360_**.
Columns:
- `publication_number`: the patent publication number, the content of the publication can be looked up using e.g. [Espacenet](https://worldwide.espacenet.com/patent/search?q=EP4030126A1) or the [EPO’s Open Patent Services](https://www.epo.org/en/searching-for-patents/data/web-services/ops)
- `labels`: the CPC symbols used as prediction labels (CPC release 2024.01)
## Datasets
### Subgroup dataset
Used to train the _subgroup_ model with 224 542 labels.
How to load the dataset:
```python
from datasets import load_dataset
dataset = load_dataset("mwirth-epo/cpc-classification-data", name="subgroup")
```
### Main group dataset
Used to train the _main group_ model with 9 025 labels.
This dataset was created from the subgroup dataset with a filter excluding main groups with less than 20 documents.
How to load the dataset:
```python
from datasets import load_dataset
dataset = load_dataset("mwirth-epo/cpc-classification-data", name="main_group")
```
## Citation
**BibTeX:**
```bibtex
@article{HAHNKE2025102360,
title = {Encoder models at the European Patent Office: Pre-training and use cases},
journal = {World Patent Information},
volume = {81},
pages = {102360},
year = {2025},
issn = {0172-2190},
doi = {https://doi.org/10.1016/j.wpi.2025.102360},
url = {https://www.sciencedirect.com/science/article/pii/S0172219025000274},
author = {Volker D. Hähnke and Arnaud Wéry and Matthias Wirth and Alexander Klenner-Bajaja},
keywords = {Natural language processing, Language model, Encoder network, Classification, Cooperative Patent Classification}
}
```
**APA:**
Hähnke, V. D., Wéry, A., Wirth, M., & Klenner-Bajaja, A. (2025). Encoder models at the European Patent Office: Pre-training and use cases. World Patent Information, 81, 102360. https://doi.org/10.1016/j.wpi.2025.102360