instance_id
stringlengths 10
57
| patch
stringlengths 261
37.7k
| repo
stringlengths 7
53
| base_commit
stringlengths 40
40
| hints_text
stringclasses 301
values | test_patch
stringlengths 212
2.22M
| problem_statement
stringlengths 23
37.7k
| version
stringclasses 1
value | environment_setup_commit
stringlengths 40
40
| FAIL_TO_PASS
listlengths 1
4.94k
| PASS_TO_PASS
listlengths 0
7.82k
| meta
dict | created_at
stringlengths 25
25
| license
stringclasses 8
values | __index_level_0__
int64 0
6.41k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sdementen__piecash-182
|
diff --git a/CHANGELOG.rst b/CHANGELOG.rst
index 1d965e0..3a45556 100644
--- a/CHANGELOG.rst
+++ b/CHANGELOG.rst
@@ -1,6 +1,11 @@
What's new
==========
+devel
+~~~~~
+
+- fix tzlocal>=2.3 issue with change of tz type returned by tzlocal.get_localzone() (fix #180)
+
Version 1.1.7 (2021-04-04)
~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/piecash/sa_extra.py b/piecash/sa_extra.py
index 8b8a8c5..49f148f 100644
--- a/piecash/sa_extra.py
+++ b/piecash/sa_extra.py
@@ -69,7 +69,7 @@ class DeclarativeBase(object):
return str(self)
-tz = tzlocal.get_localzone()
+tz = pytz.timezone(str(tzlocal.get_localzone()))
utc = pytz.utc
@@ -158,8 +158,8 @@ class _DateAsDateTime(types.TypeDecorator):
def process_result_value(self, value, dialect):
if value is not None:
- r = utc.localize(value).astimezone(tz).date()
- return r
+ r = utc.localize(value).astimezone(tz)
+ return r.date()
class _Date(types.TypeDecorator):
|
sdementen/piecash
|
5621c1d22f747f42eae53b10b1adce06d0a34cb8
|
diff --git a/tests/test_factories.py b/tests/test_factories.py
index 6cf2bbd..e13dd12 100644
--- a/tests/test_factories.py
+++ b/tests/test_factories.py
@@ -5,6 +5,7 @@ from datetime import datetime
from decimal import Decimal
import pytest
+import pytz
import tzlocal
from piecash import GnucashException, Commodity
@@ -127,13 +128,13 @@ class TestFactoriesTransactions(object):
assert sp2.account == book_basic.accounts(name="asset")
assert sp1.value == -sp2.value
assert sp1.quantity == sp1.value
- assert tr.enter_date == tzlocal.get_localzone().localize(
+ assert tr.enter_date == pytz.timezone(str(tzlocal.get_localzone())).localize(
today.replace(microsecond=0)
)
- assert tr.post_date == tzlocal.get_localzone().localize(today).date()
+ assert tr.post_date == pytz.timezone(str(tzlocal.get_localzone())).localize(today).date()
def test_single_transaction_tz(self, book_basic):
- today = tzlocal.get_localzone().localize(datetime.today())
+ today = pytz.timezone(str(tzlocal.get_localzone())).localize(datetime.today())
tr = factories.single_transaction(
today.date(),
today,
@@ -148,7 +149,7 @@ class TestFactoriesTransactions(object):
assert tr.enter_date == today.replace(microsecond=0)
def test_single_transaction_rollback(self, book_basic):
- today = tzlocal.get_localzone().localize(datetime.today())
+ today = pytz.timezone(str(tzlocal.get_localzone())).localize(datetime.today())
factories.single_transaction(
today.date(),
today,
|
TZLocal update to 3.0 breaks piecash
2.1 works fine.
Throws this exception:
```
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/gnucash_reports/wrapper.py", line 241, in get_balance_on_date
).order_by(piecash.Price.date.desc()).limit(1).one_or_none()
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/orm/query.py", line 3459, in one_or_none
ret = list(self)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/orm/query.py", line 3535, in __iter__
return self._execute_and_instances(context)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/orm/query.py", line 3560, in _execute_and_instances
result = conn.execute(querycontext.statement, self._params)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1011, in execute
return meth(self, multiparams, params)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/sql/elements.py", line 298, in _execute_on_connection
return connection._execute_clauseelement(self, multiparams, params)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1130, in _execute_clauseelement
distilled_params,
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1207, in _execute_context
e, util.text_type(statement), parameters, None, None
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1511, in _handle_dbapi_exception
sqlalchemy_exception, with_traceback=exc_info[2], from_=e
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/util/compat.py", line 182, in raise_
raise exception
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1204, in _execute_context
context = constructor(dialect, self, conn, *args)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/engine/default.py", line 854, in _init_compiled
param.append(processors[key](compiled_params[key]))
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/sqlalchemy/sql/type_api.py", line 1232, in process
return process_param(value, dialect)
File "/usr/local/data/laminar/run/accounts_update/1055/accounts/env/lib/python3.7/site-packages/piecash/sa_extra.py", line 140, in process_bind_param
result = tz.localize(datetime.datetime.combine(value, datetime.time(0, 0, 0))) \
sqlalchemy.exc.StatementError: (builtins.AttributeError) 'backports.zoneinfo.ZoneInfo' object has no attribute 'localize'
[SQL: SELECT prices.value_num AS prices_value_num, prices.value_denom AS prices_value_denom, prices.guid AS prices_guid, prices.commodity_guid AS prices_commodity_guid, prices.currency_guid AS prices_currency_guid, prices.date AS prices_date, prices.source AS prices_source, prices.type AS prices_type
FROM prices
WHERE %s = prices.commodity_guid AND %s = prices.currency_guid AND prices.date <= %s ORDER BY prices.date DESC
LIMIT %s]
```
|
0.0
|
5621c1d22f747f42eae53b10b1adce06d0a34cb8
|
[
"tests/test_factories.py::TestFactoriesTransactions::test_single_transaction[None]",
"tests/test_factories.py::TestFactoriesTransactions::test_single_transaction[sqlite:////root/data/temp_dir/tmpy4n44f3x/sdementen__piecash__0.0/tests/foozbar.sqlite]"
] |
[
"tests/test_factories.py::TestFactoriesCommodities::test_create_stock_accounts_simple[None]",
"tests/test_factories.py::TestFactoriesCommodities::test_create_stock_accounts_simple[sqlite:////root/data/temp_dir/tmpy4n44f3x/sdementen__piecash__0.0/tests/foozbar.sqlite]",
"tests/test_factories.py::TestFactoriesCommodities::test_create_stock_accounts_incomeaccounts[None]",
"tests/test_factories.py::TestFactoriesCommodities::test_create_stock_accounts_incomeaccounts[sqlite:////root/data/temp_dir/tmpy4n44f3x/sdementen__piecash__0.0/tests/foozbar.sqlite]",
"tests/test_factories.py::TestFactoriesCommodities::test_create_currency_from_ISO[None]",
"tests/test_factories.py::TestFactoriesCommodities::test_create_currency_from_ISO[sqlite:////root/data/temp_dir/tmpy4n44f3x/sdementen__piecash__0.0/tests/foozbar.sqlite]",
"tests/test_factories.py::TestFactoriesTransactions::test_single_transaction_tz[None]",
"tests/test_factories.py::TestFactoriesTransactions::test_single_transaction_tz[sqlite:////root/data/temp_dir/tmpy4n44f3x/sdementen__piecash__0.0/tests/foozbar.sqlite]",
"tests/test_factories.py::TestFactoriesTransactions::test_single_transaction_rollback[None]",
"tests/test_factories.py::TestFactoriesTransactions::test_single_transaction_rollback[sqlite:////root/data/temp_dir/tmpy4n44f3x/sdementen__piecash__0.0/tests/foozbar.sqlite]"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-08-18 15:45:23+00:00
|
mit
| 5,435 |
|
sdepy__sdepy-21
|
diff --git a/sdepy/integration.py b/sdepy/integration.py
index 60aa665..6557a3e 100644
--- a/sdepy/integration.py
+++ b/sdepy/integration.py
@@ -714,7 +714,7 @@ class integrator(paths_generator):
x = xw[0]
# compute A, dZ and make them available as attributes
A, dZ = self.A(s, x), self.dZ(s, ds)
- xw[1][...] = x + sum(A[id]*dZ[id] for id in A.keys())
+ xw[1][...] = x + sum(A.get(id, 0)*dZ[id] for id in A.keys())
if self.getinfo:
iv.update(last_t=s, last_dt=ds,
@@ -1186,13 +1186,29 @@ class SDE:
# algorithm of the integrator class
# -----------------------------------
+ def _check_sde_values(self, A):
+ if not isinstance(A, dict):
+ raise TypeError(
+ 'invalid {} return values: a dict, not a {} object expected'
+ .format(self.sde, type(A))
+ )
+ if not set(A.keys()).issubset(self.sources):
+ raise KeyError(
+ 'invalid {} return values: {} entries expected (one per '
+ 'stochasticity source), not {}'
+ .format(self.sde, set(self.sources), set(A.keys()))
+ )
+
def A(self, t, x):
"""See documentation integrator.A"""
sde_args_eval = {
k: (z(t) if callable(z) else z)
for (k, z) in self._get_args(self._sde_args_keys).items()
}
- return self.sde(t, x, **sde_args_eval)
+ # get and check sde values
+ A_ = self.sde(t, x, **sde_args_eval)
+ self._check_sde_values(A_)
+ return A_
def dZ(self, t, dt):
"""See documentation of integrator.dZ"""
@@ -1642,6 +1658,20 @@ class SDEs(SDE):
# algorithm of the integrator class
# -----------------------------------
+ def _check_sde_values(self, As):
+ if not isinstance(As, (list, tuple)):
+ raise TypeError(
+ 'invalid {} return values: a list or tuple of {} dict '
+ '(one per equation) expected, not a {} object'
+ .format(self.sde, self.q, type(As))
+ )
+ if len(As) != self.q:
+ raise ValueError(
+ 'invalid {} return values: {} equations expected, '
+ 'not {}'.format(self.sde, self.q, len(As)))
+ for a in As:
+ super()._check_sde_values(a)
+
def A(self, t, X):
"""See documentation of integrator.A"""
sde_args_eval = {
@@ -1653,12 +1683,13 @@ class SDEs(SDE):
# of arrays (one per equation)
xs = self.unpack(X)
- # get sde values, as a list of dicts (one per equation)
+ # get and check sde values
As = self.sde(t, *xs, **sde_args_eval)
+ self._check_sde_values(As)
A_ids = set()
for a in As:
- A_ids.update(a)
- A = {id: self.pack(tuple(a[id] for a in As))
+ A_ids.update(a.keys())
+ A = {id: self.pack(tuple(a.get(id, 0) for a in As))
for id in A_ids}
return A
@@ -1739,7 +1770,6 @@ class SDEs(SDE):
Parameters
----------
-
t : float
Time point at which the SDE should be evaluated.
x, y, ... : arrays
@@ -1751,9 +1781,8 @@ class SDEs(SDE):
Returns
-------
-
- sde_terms : list of dict of arrays
- A list of dictionaries, one per equation.
+ sde_terms : list or tuple of dict of arrays
+ A list or tuple of dictionaries, one per equation.
See documentation of ``SDE.sde``.
Notes
|
sdepy/sdepy
|
6396bfdb9e690afcc6c549bc4a0bd8f0263307ff
|
diff --git a/sdepy/tests/test_integrator.py b/sdepy/tests/test_integrator.py
index a06788e..47bf979 100644
--- a/sdepy/tests/test_integrator.py
+++ b/sdepy/tests/test_integrator.py
@@ -386,3 +386,62 @@ def test_SDE():
xs2 = integrate(f)(x0=(1.,)*4, dw=tw, paths=11, steps=30)(t)
for u, v in zip(xs1, xs2):
assert_allclose(xs1, xs2, rtol=eps(u.dtype))
+
+ # 4 equations with terms partially omitted
+ # (formerly a cause of error)
+ # ----------------------------------------
+ @integrate
+ def f_process(t, x=0, y=0, z=0, w=0):
+ return ({'dt': 1, 'dw': 1}, {'dt': 1}, {'dw': 1}, {})
+ xs = f_process(x0=(1,)*4, paths=11, steps=30)(t)
+
+ # SDE class from integrate
+ # ------------------------
+ @integrate(q=1, sources={'dw', 'dt'})
+ def f_process(t, x):
+ return {'dt': 1, 'dw': 1}
+ assert_(issubclass(f_process, SDE))
+ assert_(issubclass(f_process, SDEs)) # FIXME: should be SDE subclass only
+
+ @integrate
+ def f_process(t, x):
+ return {'dt': 1, 'dw': 1}
+ assert_ (issubclass(f_process, SDE))
+ assert_(not issubclass(f_process, SDEs)) # this is ok
+
+ # test errors
+ # -----------
+
+ # SDE: ok
+ class f_process(SDE, integrator):
+ def sde(self, t, x):
+ return {'dt': 1, 'dw': 1}
+ x = f_process(x0=1, paths=11, steps=30)(t)
+
+ # SDE: wrong type
+ f_process.sde = lambda self, t, x: x
+ assert_raises(TypeError, f_process(x0=1, paths=11, steps=30), t)
+
+ # SDE: wrong sde entry
+ f_process.sde = lambda self, t, x: {'dt': 1, 'dzzz': 1}
+ assert_raises(KeyError, f_process(x0=1, paths=11, steps=30), t)
+
+ # SDEs: ok
+ @integrate(q=2, sources=('dt', 'dw'))
+ def f_process(t, x, y):
+ return {'dt': 1, 'dw': 1}, {'dt': 1}
+ assert f_process.q == 2
+ x, y = f_process(x0=(1,)*2, paths=11, steps=30)(t)
+
+ # SDEs: wrong type
+ f_process.sde = lambda self, t, x, y: {'dt': 1, 'dw': 1}
+ assert f_process.q == 2
+ assert_raises(TypeError, f_process(x0=(1,)*2, paths=11, steps=30), t)
+
+ # SDEs: wrong number of equations
+ f_process.sde = lambda self, t, x, y: ({'dt': 1, 'dw': 1},)
+ assert_raises(ValueError, f_process(x0=(1,)*2, paths=11, steps=30), t)
+
+ # SDEs: wrong sde entry
+ f_process.sde = lambda self, t, x, y: ({'dt': 1}, {'dzzz': 1})
+ assert_raises(KeyError, f_process(x0=(1,)*2, paths=11, steps=30), t)
|
Improve checks on 'sde()' method for user defined 'SDE' or 'SDEs' subclasses
An improper setup of user defined ``SDE`` or ``SDEs`` subclasses
(e.g. ``sde()`` method returning an number of equation terms inconsistent
with its arguments, or same method inherited without adaptations
from ``SDE`` to ``SDEs`` subclasses) results in ungraceful failures upon integration,
with opaque tracebacks.
|
0.0
|
6396bfdb9e690afcc6c549bc4a0bd8f0263307ff
|
[
"sdepy/tests/test_integrator.py::test_SDE"
] |
[
"sdepy/tests/test_integrator.py::test_generator_t",
"sdepy/tests/test_integrator.py::test_generator_steps",
"sdepy/tests/test_integrator.py::test_generator_depth"
] |
{
"failed_lite_validators": [
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-04-24 11:49:38+00:00
|
bsd-3-clause
| 5,436 |
|
sdispater__pendulum-174
|
diff --git a/pendulum/pendulum.py b/pendulum/pendulum.py
index cbbf94a..6cca7f6 100644
--- a/pendulum/pendulum.py
+++ b/pendulum/pendulum.py
@@ -1980,16 +1980,10 @@ class Pendulum(Date, datetime.datetime):
return(self, )
def _getstate(self, protocol=3):
- tz = self.timezone_name
-
- # Fix for fixed timezones not being properly unpickled
- if isinstance(self.tz, FixedTimezone):
- tz = self.offset_hours
-
return (
self.year, self.month, self.day,
self.hour, self.minute, self.second, self.microsecond,
- tz,
+ self.tzinfo,
self.fold
)
diff --git a/pendulum/tz/timezone.py b/pendulum/tz/timezone.py
index cb520de..416b352 100644
--- a/pendulum/tz/timezone.py
+++ b/pendulum/tz/timezone.py
@@ -512,7 +512,7 @@ class FixedTimezone(Timezone):
return (dt + self._tzinfo.adjusted_offset).replace(tzinfo=self._tzinfo)
def __getinitargs__(self):
- return self._offset
+ return (self._offset, )
class _UTC(FixedTimezone):
|
sdispater/pendulum
|
5a596b0ab75960a8e86700cbe0f9ae6ec4fe1442
|
diff --git a/tests/pendulum_tests/test_behavior.py b/tests/pendulum_tests/test_behavior.py
index 12a1285..76d90ed 100644
--- a/tests/pendulum_tests/test_behavior.py
+++ b/tests/pendulum_tests/test_behavior.py
@@ -6,6 +6,7 @@ from copy import deepcopy
from datetime import datetime, date, time, timedelta
from pendulum import Pendulum, timezone
from pendulum.tz.timezone import Timezone
+from pendulum.tz.loader import Loader
from .. import AbstractTestCase
@@ -101,6 +102,14 @@ class BehaviorTest(AbstractTestCase):
self.assertEqual(dt1, dt2)
+ def test_pickle_with_empty_tzinfo_name(self):
+ empty_timezone = Timezone('', *Loader.load('Europe/Paris'))
+ dt1 = Pendulum(2016, 8, 27, 12, 34, 56, 123456, empty_timezone)
+ s = pickle.dumps(dt1)
+ dt2 = pickle.loads(s)
+
+ self.assertEqual(dt1, dt2)
+
def test_proper_dst(self):
dt = pendulum.create(1941, 7, 1, tz='Europe/Amsterdam')
|
Timezone is empty on Windows 10 bash shell, causing error while unpickling Pendulum objects
Hello.
This is maybe related to #161, but I'm not sure.
When I run this using the Windows 10 bash shell:
```python
import pendulum
import pendulum.version
import pickle
import sys
print("Python version:", sys.version)
print("Pendulum version:", pendulum.version.VERSION)
now = pendulum.now()
print(now, now.timezone)
pickled = pickle.dumps(now)
pickle.loads(pickled)
```
It raises an error (but it works fine with W10 Python installation):
```
Python version: 3.6.3 (default, Oct 4 2017, 02:55:45) [GCC 5.4.0 20160609]
Pendulum version: 1.3.2
2017-12-11T20:31:49.750107+01:00 <Timezone []>
Traceback (most recent call last):
File "test.py", line 12, in <module>
pickle.loads(pickled)
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pendulum/pendulum.py", line 155, in __init__
self._tz = self._safe_create_datetime_zone(tzinfo)
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pendulum/pendulum.py", line 82, in _safe_create_datetime_zone
return cls._timezone(obj)
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pendulum/pendulum.py", line 107, in _timezone
return Timezone.load(zone)
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pendulum/tz/timezone.py", line 90, in load
utc_transition_times) = Loader.load(name)
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pendulum/tz/loader.py", line 33, in load
with tz_file(name) as f:
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pytzdata/__init__.py", line 32, in tz_file
filepath = tz_path(name)
File "/mnt/c/Users/delgan/Desktop/project/env/lib/python3.6/site-packages/pytzdata/__init__.py", line 62, in tz_path
raise ValueError('Invalid timezone')
ValueError: Invalid timezone
```
As you can see, the timezone is empty, which causes an exception equivalent to `pendulum.now(tz='')`. Yet, the `now()` worked fine because the time contains `+01:00`.
Do you have any idea where the bug might come from?
|
0.0
|
5a596b0ab75960a8e86700cbe0f9ae6ec4fe1442
|
[
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_pickle_with_empty_tzinfo_name"
] |
[
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_astimezone",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_combine",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_ctime",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_date",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_deepcopy",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_deepcopy_datetime",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_dst",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_fromordinal",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_fromtimestamp",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_hash",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_isocalendar",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_isoformat",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_isoweekday",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_pickle",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_pickle_timezone",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_pickle_with_integer_tzinfo",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_proper_dst",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_time",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_timetuple",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_timetz",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_toordinal",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_tzname",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_utcfromtimestamp",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_utcoffset",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_utctimetuple",
"tests/pendulum_tests/test_behavior.py::BehaviorTest::test_weekday"
] |
{
"failed_lite_validators": [
"has_issue_reference",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-01-26 00:08:01+00:00
|
mit
| 5,437 |
|
sdispater__pendulum-540
|
diff --git a/pendulum/locales/cs/__init__.py b/pendulum/locales/cs/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/pendulum/locales/cs/custom.py b/pendulum/locales/cs/custom.py
new file mode 100644
index 0000000..5f66b69
--- /dev/null
+++ b/pendulum/locales/cs/custom.py
@@ -0,0 +1,23 @@
+"""
+cs custom locale file.
+"""
+
+translations = {
+ "units": {"few_second": "pár vteřin"},
+ # Relative time
+ "ago": "{} zpět",
+ "from_now": "za {}",
+ "after": "{0} po",
+ "before": "{0} zpět",
+ # Ordinals
+ "ordinal": {"one": ".", "two": ".", "few": ".", "other": "."},
+ # Date formats
+ "date_formats": {
+ "LTS": "h:mm:ss",
+ "LT": "h:mm",
+ "L": "DD. M. YYYY",
+ "LL": "D. MMMM, YYYY",
+ "LLL": "D. MMMM, YYYY h:mm",
+ "LLLL": "dddd, D. MMMM, YYYY h:mm",
+ },
+}
diff --git a/pendulum/locales/cs/locale.py b/pendulum/locales/cs/locale.py
new file mode 100644
index 0000000..2c51c78
--- /dev/null
+++ b/pendulum/locales/cs/locale.py
@@ -0,0 +1,266 @@
+from .custom import translations as custom_translations
+
+
+"""
+cs locale file.
+
+It has been generated automatically and must not be modified directly.
+"""
+
+
+locale = {
+ "plural": lambda n: "few"
+ if ((n == n and (n >= 2 and n <= 4)) and (0 == 0 and (0 == 0)))
+ else "many"
+ if (not (0 == 0 and (0 == 0)))
+ else "one"
+ if ((n == n and (n == 1)) and (0 == 0 and (0 == 0)))
+ else "other",
+ "ordinal": lambda n: "other",
+ "translations": {
+ "days": {
+ "abbreviated": {
+ 0: "ne",
+ 1: "po",
+ 2: "út",
+ 3: "st",
+ 4: "čt",
+ 5: "pá",
+ 6: "so",
+ },
+ "narrow": {
+ 0: "N",
+ 1: "P",
+ 2: "Ú",
+ 3: "S",
+ 4: "Č",
+ 5: "P",
+ 6: "S",
+ },
+ "short": {
+ 0: "ne",
+ 1: "po",
+ 2: "út",
+ 3: "st",
+ 4: "čt",
+ 5: "pá",
+ 6: "so",
+ },
+ "wide": {
+ 0: "neděle",
+ 1: "pondělí",
+ 2: "úterý",
+ 3: "středa",
+ 4: "čtvrtek",
+ 5: "pátek",
+ 6: "sobota",
+ },
+ },
+ "months": {
+ "abbreviated": {
+ 1: "led",
+ 2: "úno",
+ 3: "bře",
+ 4: "dub",
+ 5: "kvě",
+ 6: "čvn",
+ 7: "čvc",
+ 8: "srp",
+ 9: "zář",
+ 10: "říj",
+ 11: "lis",
+ 12: "pro",
+ },
+ "narrow": {
+ 1: "1",
+ 2: "2",
+ 3: "3",
+ 4: "4",
+ 5: "5",
+ 6: "6",
+ 7: "7",
+ 8: "8",
+ 9: "9",
+ 10: "10",
+ 11: "11",
+ 12: "12",
+ },
+ "wide": {
+ 1: "ledna",
+ 2: "února",
+ 3: "března",
+ 4: "dubna",
+ 5: "května",
+ 6: "června",
+ 7: "července",
+ 8: "srpna",
+ 9: "září",
+ 10: "října",
+ 11: "listopadu",
+ 12: "prosince",
+ },
+ },
+ "units": {
+ "year": {
+ "one": "{0} rok",
+ "few": "{0} roky",
+ "many": "{0} roku",
+ "other": "{0} let",
+ },
+ "month": {
+ "one": "{0} měsíc",
+ "few": "{0} měsíce",
+ "many": "{0} měsíce",
+ "other": "{0} měsíců",
+ },
+ "week": {
+ "one": "{0} týden",
+ "few": "{0} týdny",
+ "many": "{0} týdne",
+ "other": "{0} týdnů",
+ },
+ "day": {
+ "one": "{0} den",
+ "few": "{0} dny",
+ "many": "{0} dne",
+ "other": "{0} dní",
+ },
+ "hour": {
+ "one": "{0} hodina",
+ "few": "{0} hodiny",
+ "many": "{0} hodiny",
+ "other": "{0} hodin",
+ },
+ "minute": {
+ "one": "{0} minuta",
+ "few": "{0} minuty",
+ "many": "{0} minuty",
+ "other": "{0} minut",
+ },
+ "second": {
+ "one": "{0} sekunda",
+ "few": "{0} sekundy",
+ "many": "{0} sekundy",
+ "other": "{0} sekund",
+ },
+ "microsecond": {
+ "one": "{0} mikrosekunda",
+ "few": "{0} mikrosekundy",
+ "many": "{0} mikrosekundy",
+ "other": "{0} mikrosekund",
+ },
+ },
+ "relative": {
+ "year": {
+ "future": {
+ "other": "za {0} let",
+ "one": "za {0} rok",
+ "few": "za {0} roky",
+ "many": "za {0} roku",
+ },
+ "past": {
+ "other": "před {0} lety",
+ "one": "před {0} rokem",
+ "few": "před {0} lety",
+ "many": "před {0} roku",
+ },
+ },
+ "month": {
+ "future": {
+ "other": "za {0} měsíců",
+ "one": "za {0} měsíc",
+ "few": "za {0} měsíce",
+ "many": "za {0} měsíce",
+ },
+ "past": {
+ "other": "před {0} měsíci",
+ "one": "před {0} měsícem",
+ "few": "před {0} měsíci",
+ "many": "před {0} měsíce",
+ },
+ },
+ "week": {
+ "future": {
+ "other": "za {0} týdnů",
+ "one": "za {0} týden",
+ "few": "za {0} týdny",
+ "many": "za {0} týdne",
+ },
+ "past": {
+ "other": "před {0} týdny",
+ "one": "před {0} týdnem",
+ "few": "před {0} týdny",
+ "many": "před {0} týdne",
+ },
+ },
+ "day": {
+ "future": {
+ "other": "za {0} dní",
+ "one": "za {0} den",
+ "few": "za {0} dny",
+ "many": "za {0} dne",
+ },
+ "past": {
+ "other": "před {0} dny",
+ "one": "před {0} dnem",
+ "few": "před {0} dny",
+ "many": "před {0} dne",
+ },
+ },
+ "hour": {
+ "future": {
+ "other": "za {0} hodin",
+ "one": "za {0} hodinu",
+ "few": "za {0} hodiny",
+ "many": "za {0} hodiny",
+ },
+ "past": {
+ "other": "před {0} hodinami",
+ "one": "před {0} hodinou",
+ "few": "před {0} hodinami",
+ "many": "před {0} hodiny",
+ },
+ },
+ "minute": {
+ "future": {
+ "other": "za {0} minut",
+ "one": "za {0} minutu",
+ "few": "za {0} minuty",
+ "many": "za {0} minuty",
+ },
+ "past": {
+ "other": "před {0} minutami",
+ "one": "před {0} minutou",
+ "few": "před {0} minutami",
+ "many": "před {0} minuty",
+ },
+ },
+ "second": {
+ "future": {
+ "other": "za {0} sekund",
+ "one": "za {0} sekundu",
+ "few": "za {0} sekundy",
+ "many": "za {0} sekundy",
+ },
+ "past": {
+ "other": "před {0} sekundami",
+ "one": "před {0} sekundou",
+ "few": "před {0} sekundami",
+ "many": "před {0} sekundy",
+ },
+ },
+ },
+ "day_periods": {
+ "midnight": "půlnoc",
+ "am": "dop.",
+ "noon": "poledne",
+ "pm": "odp.",
+ "morning1": "ráno",
+ "morning2": "dopoledne",
+ "afternoon1": "odpoledne",
+ "evening1": "večer",
+ "night1": "v noci",
+ },
+ },
+ "custom": custom_translations,
+}
|
sdispater/pendulum
|
0ba5cc17644ec46eba1bfd54a5c1488d3479f6d7
|
diff --git a/tests/localization/test_cs.py b/tests/localization/test_cs.py
new file mode 100644
index 0000000..f1c6b94
--- /dev/null
+++ b/tests/localization/test_cs.py
@@ -0,0 +1,108 @@
+import pendulum
+
+
+locale = "cs"
+
+
+def test_diff_for_humans():
+ with pendulum.test(pendulum.datetime(2016, 8, 29)):
+ diff_for_humans()
+
+
+def diff_for_humans():
+ d = pendulum.now().subtract(seconds=1)
+ assert d.diff_for_humans(locale=locale) == "pár vteřin zpět"
+
+ d = pendulum.now().subtract(seconds=2)
+ assert d.diff_for_humans(locale=locale) == "pár vteřin zpět"
+
+ d = pendulum.now().subtract(seconds=20)
+ assert d.diff_for_humans(locale=locale) == "před 20 sekundami"
+
+ d = pendulum.now().subtract(minutes=1)
+ assert d.diff_for_humans(locale=locale) == "před 1 minutou"
+
+ d = pendulum.now().subtract(minutes=2)
+ assert d.diff_for_humans(locale=locale) == "před 2 minutami"
+
+ d = pendulum.now().subtract(minutes=5)
+ assert d.diff_for_humans(locale=locale) == "před 5 minutami"
+
+ d = pendulum.now().subtract(hours=1)
+ assert d.diff_for_humans(locale=locale) == "před 1 hodinou"
+
+ d = pendulum.now().subtract(hours=2)
+ assert d.diff_for_humans(locale=locale) == "před 2 hodinami"
+
+ d = pendulum.now().subtract(hours=5)
+ assert d.diff_for_humans(locale=locale) == "před 5 hodinami"
+
+ d = pendulum.now().subtract(days=1)
+ assert d.diff_for_humans(locale=locale) == "před 1 dnem"
+
+ d = pendulum.now().subtract(days=2)
+ assert d.diff_for_humans(locale=locale) == "před 2 dny"
+
+ d = pendulum.now().subtract(weeks=1)
+ assert d.diff_for_humans(locale=locale) == "před 1 týdnem"
+
+ d = pendulum.now().subtract(weeks=2)
+ assert d.diff_for_humans(locale=locale) == "před 2 týdny"
+
+ d = pendulum.now().subtract(months=1)
+ assert d.diff_for_humans(locale=locale) == "před 1 měsícem"
+
+ d = pendulum.now().subtract(months=2)
+ assert d.diff_for_humans(locale=locale) == "před 2 měsíci"
+
+ d = pendulum.now().subtract(months=5)
+ assert d.diff_for_humans(locale=locale) == "před 5 měsíci"
+
+ d = pendulum.now().subtract(years=1)
+ assert d.diff_for_humans(locale=locale) == "před 1 rokem"
+
+ d = pendulum.now().subtract(years=2)
+ assert d.diff_for_humans(locale=locale) == "před 2 lety"
+
+ d = pendulum.now().subtract(years=5)
+ assert d.diff_for_humans(locale=locale) == "před 5 lety"
+
+ d = pendulum.now().add(seconds=1)
+ assert d.diff_for_humans(locale=locale) == "za pár vteřin"
+
+ d = pendulum.now().add(seconds=1)
+ d2 = pendulum.now()
+ assert d.diff_for_humans(d2, locale=locale) == "pár vteřin po"
+ assert d2.diff_for_humans(d, locale=locale) == "pár vteřin zpět"
+
+ assert d.diff_for_humans(d2, True, locale=locale) == "pár vteřin"
+ assert d2.diff_for_humans(d.add(seconds=1), True, locale=locale) == "pár vteřin"
+
+ d = pendulum.now().add(seconds=20)
+ d2 = pendulum.now()
+ assert d.diff_for_humans(d2, locale=locale) == "20 sekund po"
+ assert d2.diff_for_humans(d, locale=locale) == "20 sekund zpět"
+
+ d = pendulum.now().add(seconds=10)
+ d2 = pendulum.now()
+ assert d.diff_for_humans(d2, True, locale=locale) == "pár vteřin"
+ assert d2.diff_for_humans(d.add(seconds=1), True, locale=locale) == "11 sekund"
+
+
+def test_format():
+ d = pendulum.datetime(2016, 8, 29, 7, 3, 6, 123456)
+ assert d.format("dddd", locale=locale) == "pondělí"
+ assert d.format("ddd", locale=locale) == "po"
+ assert d.format("MMMM", locale=locale) == "srpna"
+ assert d.format("MMM", locale=locale) == "srp"
+ assert d.format("A", locale=locale) == "dop."
+ assert d.format("Qo", locale=locale) == "3."
+ assert d.format("Mo", locale=locale) == "8."
+ assert d.format("Do", locale=locale) == "29."
+
+ assert d.format("LT", locale=locale) == "7:03"
+ assert d.format("LTS", locale=locale) == "7:03:06"
+ assert d.format("L", locale=locale) == "29. 8. 2016"
+ assert d.format("LL", locale=locale) == "29. srpna, 2016"
+ assert d.format("LLL", locale=locale) == "29. srpna, 2016 7:03"
+ assert d.format("LLLL", locale=locale) == "pondělí, 29. srpna, 2016 7:03"
|
Missing Czech [cs] locale
- [x] I have searched the [issues](https://github.com/sdispater/pendulum/issues) of this repo and believe that this is not a duplicate.
- [x] I have searched the [documentation](https://pendulum.eustace.io/docs/) and believe that my question is not covered.
## Feature Request
Missing localization for Czech language.
I will take care of the code and open PR.
|
0.0
|
0ba5cc17644ec46eba1bfd54a5c1488d3479f6d7
|
[
"tests/localization/test_cs.py::test_diff_for_humans",
"tests/localization/test_cs.py::test_format"
] |
[] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_added_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-03-30 11:05:43+00:00
|
mit
| 5,438 |
|
sdispater__pendulum-593
|
diff --git a/pendulum/duration.py b/pendulum/duration.py
index 45df13d..47a6a38 100644
--- a/pendulum/duration.py
+++ b/pendulum/duration.py
@@ -23,6 +23,10 @@ def _divide_and_round(a, b):
# Based on the reference implementation for divmod_near
# in Objects/longobject.c.
q, r = divmod(a, b)
+
+ if isinstance(q, float):
+ q = int(q)
+
# round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
# The expression r / b > 0.5 is equivalent to 2 * r > b if b is
# positive, 2 * r < b if b negative.
|
sdispater/pendulum
|
8012a7e8600c2348f1978eebb22fdd2535a8cca9
|
diff --git a/tests/duration/test_arithmetic.py b/tests/duration/test_arithmetic.py
index fad38b6..0f3283a 100644
--- a/tests/duration/test_arithmetic.py
+++ b/tests/duration/test_arithmetic.py
@@ -38,12 +38,24 @@ def test_divide():
assert isinstance(mul, pendulum.Duration)
assert_duration(mul, 0, 0, 0, 1, 0, 0, 17, 761111)
+ it = pendulum.duration(days=2, seconds=35, microseconds=522222)
+ mul = it / 1.1
+
+ assert isinstance(mul, pendulum.Duration)
+ assert_duration(mul, 0, 0, 0, 1, 19, 38, 43, 202020)
+
it = pendulum.duration(years=2, months=4, days=2, seconds=35, microseconds=522222)
mul = it / 2
assert isinstance(mul, pendulum.Duration)
assert_duration(mul, 1, 2, 0, 1, 0, 0, 17, 761111)
+ it = pendulum.duration(years=2, months=4, days=2, seconds=35, microseconds=522222)
+ mul = it / 2.0
+
+ assert isinstance(mul, pendulum.Duration)
+ assert_duration(mul, 1, 2, 0, 1, 0, 0, 17, 761111)
+
def test_floor_divide():
it = pendulum.duration(days=2, seconds=34, microseconds=522222)
|
Error dividing duration by float
<!--
Hi there! Thank you for discovering and submitting an issue.
Before you submit this; let's make sure of a few things.
Please make sure the following boxes are ticked if they are correct.
If not, please try and fulfill these first.
-->
<!-- Checked checkbox should look like this: [x] -->
- [x] I am on the [latest](https://github.com/sdispater/pendulum/releases/latest) Pendulum version.
- [x] I have searched the [issues](https://github.com/sdispater/pendulum/issues) of this repo and believe that this is not a duplicate.
<!--
Once those are done, if you're able to fill in the following list with your information,
it'd be very helpful to whoever handles the issue.
-->
- **OS version and name**: Windows 10, version 20H2
- **Pendulum version**: 2.1.2
## Issue
<!-- Now feel free to write your issue, but please be descriptive! Thanks again 🙌 ❤️ -->
In pendulum:
```python
import pendulum
d = pendulum.duration(hours=4, minutes=5)
d / 1.1
```
It gives the following error:
```python
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Python\lib\site-packages\pendulum\duration.py", line 396, in __truediv__
months=_divide_and_round(self._months, other),
File "C:\Python\lib\site-packages\pendulum\duration.py", line 66, in __new__
raise ValueError("Float year and months are not supported")
ValueError: Float year and months are not supported
```
Using datetime.timedelta:
```python
from datetime import timedelta
t = timedelta(seconds=4*3600+5*60)
t / 1.1
# datetime.timedelta(seconds=13363, microseconds=636364)
```
It doesn't raise any error. Both objects represent the same amount of time:
```python
from datetime import timedelta
import pendulum
d = pendulum.duration(hours=4, minutes=5)
t = timedelta(seconds=4*3600+5*60)
assert d.as_timedelta() == t
```
|
0.0
|
8012a7e8600c2348f1978eebb22fdd2535a8cca9
|
[
"tests/duration/test_arithmetic.py::test_divide"
] |
[
"tests/duration/test_arithmetic.py::test_multiply",
"tests/duration/test_arithmetic.py::test_floor_divide"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2021-12-21 19:41:50+00:00
|
mit
| 5,439 |
|
sdispater__pendulum-726
|
diff --git a/pendulum/interval.py b/pendulum/interval.py
index 0c77305..2721494 100644
--- a/pendulum/interval.py
+++ b/pendulum/interval.py
@@ -448,3 +448,6 @@ class Interval(Duration):
)
else:
return self.as_duration() == other
+
+ def __ne__(self, other: object) -> bool:
+ return not self.__eq__(other)
|
sdispater/pendulum
|
377dc2f808ac2bcf77ec5a4b87004b3a425aa0aa
|
diff --git a/tests/interval/test_behavior.py b/tests/interval/test_behavior.py
index b5e057a..29636bd 100644
--- a/tests/interval/test_behavior.py
+++ b/tests/interval/test_behavior.py
@@ -52,3 +52,16 @@ def test_equality_to_timedelta():
period = dt2 - dt1
assert period == timedelta(days=2)
+
+
+def test_inequality():
+ dt1 = pendulum.datetime(2016, 11, 18)
+ dt2 = pendulum.datetime(2016, 11, 20)
+ dt3 = pendulum.datetime(2016, 11, 22)
+
+ period1 = dt2 - dt1
+ period2 = dt3 - dt2
+ period3 = dt3 - dt1
+
+ assert period1 != period2
+ assert period1 != period3
|
Period inequality does not work as expected
- [x] I am on the [latest](https://github.com/sdispater/pendulum/releases/latest) Pendulum version.
- [x] I have searched the [issues](https://github.com/sdispater/pendulum/issues) of this repo and believe that this is not a duplicate.
- **OS version and name**: WSL2 on Win10, Ubuntu-20.04, Python 3.9.13
- **Pendulum version**: 2.1.2
## Issue
Only equality (`_eq` method) is defined for `Period`.
However, when testing for inequality, the results are not consistent with $A \neq B \Leftrightarrow \neg (A = B)$.
```py
>>> # Initialization
>>> import pendulum
>>> dt0 = pendulum.datetime(2000,1,1, 0)
>>> dt1 = pendulum.datetime(2000,1,1, 1)
>>> dt2 = pendulum.datetime(2000,1,1, 2)
>>> p1 = dt1 - dt0
>>> p2 = dt2 - dt1
>>> p1 == p1, p2 == p2
(True, True)
>>> # ^ This is expected and correct
>>> p1 == p2, p2 == p1
(False, False)
>>> # ^ This is also expected and correct
>>> p1 != p2, p2 != p1
(False, False)
>>> # ^ This is unexpected and incorrect, should be (True, True)
```
I believe the same issue applies to the new `Interval`.
|
0.0
|
377dc2f808ac2bcf77ec5a4b87004b3a425aa0aa
|
[
"tests/interval/test_behavior.py::test_inequality"
] |
[
"tests/interval/test_behavior.py::test_pickle",
"tests/interval/test_behavior.py::test_comparison_to_timedelta",
"tests/interval/test_behavior.py::test_equality_to_timedelta"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2023-08-06 20:32:22+00:00
|
mit
| 5,440 |
|
sdispater__pendulum-99
|
diff --git a/pendulum/exceptions.py b/pendulum/exceptions.py
index 2695c6d..b777018 100644
--- a/pendulum/exceptions.py
+++ b/pendulum/exceptions.py
@@ -1,5 +1,7 @@
# -*- coding: utf-8 -*-
+from .parsing.exceptions import ParserError
+
class PendulumException(BaseException):
diff --git a/pendulum/formatting/difference_formatter.py b/pendulum/formatting/difference_formatter.py
index 771f756..e3457e3 100644
--- a/pendulum/formatting/difference_formatter.py
+++ b/pendulum/formatting/difference_formatter.py
@@ -63,9 +63,9 @@ class DifferenceFormatter(object):
if diff.remaining_days > 3:
count += 1
- elif diff.days > 0:
+ elif diff.remaining_days > 0:
unit = 'day'
- count = diff.days
+ count = diff.remaining_days
elif diff.hours > 0:
unit = 'hour'
count = diff.hours
diff --git a/pendulum/period.py b/pendulum/period.py
index 2966c68..82b0abb 100644
--- a/pendulum/period.py
+++ b/pendulum/period.py
@@ -99,6 +99,14 @@ class Period(WordableIntervalMixin, BaseInterval):
def remaining_days(self):
return abs(self._delta['days']) % 7 * self._sign(self._days)
+ @property
+ def hours(self):
+ return self._delta['hours']
+
+ @property
+ def minutes(self):
+ return self._delta['minutes']
+
@property
def start(self):
return self._start
|
sdispater/pendulum
|
c2a0a5987f3171cd5e9defd71afbe4ab77cfbe7b
|
diff --git a/tests/date_tests/test_diff.py b/tests/date_tests/test_diff.py
index 1ba9a5a..a84b1f1 100644
--- a/tests/date_tests/test_diff.py
+++ b/tests/date_tests/test_diff.py
@@ -284,6 +284,17 @@ class DiffTest(AbstractTestCase):
self.assertEqual('1 year', Date.today().diff_for_humans(Date.today().subtract(years=1), True))
self.assertEqual('1 year', Date.today().diff_for_humans(Date.today().add(years=1), True))
+ def test_diff_accuracy(self):
+ # DST
+ today = Pendulum.create(2017, 3, 7, tz='America/Toronto')
+
+ with self.wrap_with_test_now(today):
+ diff = today.add(days=6).diff(today, abs=True)
+ self.assertEqual(5, diff.days)
+ self.assertEqual(6, diff.remaining_days)
+ self.assertEqual(0, diff.hours)
+ self.assertEqual('6 days', diff.in_words())
+
def test_diff_for_humans_accuracy(self):
today = Pendulum.today()
@@ -297,6 +308,11 @@ class DiffTest(AbstractTestCase):
self.assertEqual('2 weeks', today.add(days=14).diff_for_humans(absolute=True))
self.assertEqual('2 weeks', today.add(days=13).diff_for_humans(absolute=True))
+ # DST
+ today = Pendulum.create(2017, 3, 7, tz='America/Toronto')
+ with self.wrap_with_test_now(today):
+ self.assertEqual('6 days', today.add(days=6).diff_for_humans(absolute=True))
+
def test_subtraction(self):
d = Date(2016, 7, 5)
future_dt = date(2016, 7, 6)
diff --git a/tests/pendulum_tests/test_diff.py b/tests/pendulum_tests/test_diff.py
index a633a32..c0f2e6d 100644
--- a/tests/pendulum_tests/test_diff.py
+++ b/tests/pendulum_tests/test_diff.py
@@ -573,6 +573,11 @@ class DiffTest(AbstractTestCase):
self.assertEqual('1 year', now.add(years=1, months=3).diff_for_humans(absolute=True))
self.assertEqual('2 years', now.add(years=1, months=8).diff_for_humans(absolute=True))
+ # DST
+ now = Pendulum.create(2017, 3, 7, tz='America/Toronto')
+ with self.wrap_with_test_now(now):
+ self.assertEqual('6 days', now.add(days=6).diff_for_humans(absolute=True))
+
def test_seconds_since_midnight(self):
d = Pendulum.create(2016, 7, 5, 12, 32, 25, 0)
self.assertEqual(25 + 32 * 60 + 12 * 3600, d.seconds_since_midnight())
|
Expose ParserError exception to top level imports
Currently if you want to catch the `ParserError` when calling `pendulum.parse('string')`, you have to catch it with:
```
try:
pendulum.parse('string')
except pendulum.parsing.exceptions.ParserError:
pass
```
unless you've explicitly imported that part of the module in. There is already a `pendulum.exceptions`, so is there any reason why the `ParserError` couldn't be put into that same module or imported into the base init? I can make the PR for it, I just wanted to get clarity around whether this was by design or if it was something that wasn't a use case. I don't want to catch `ValueError`, mostly because that's not the exception being thrown.
|
0.0
|
c2a0a5987f3171cd5e9defd71afbe4ab77cfbe7b
|
[
"tests/date_tests/test_diff.py::DiffTest::test_diff_accuracy",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_accuracy",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_accuracy"
] |
[
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_days",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_months",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_weeks",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_years",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_day",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_days",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_day",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_days",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_months",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_weeks",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_years",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_months",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_weeks",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_years",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_day",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_days",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_day",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_days",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_months",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_weeks",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_years",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_months",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_month",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_week",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_weeks",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_year",
"tests/date_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_years",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_days_negative_no_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_days_negative_with_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_days_positive",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_days_vs_default_now",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_months_ensure_is_truncated",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_months_negative_no_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_months_negative_with_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_months_positive",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_months_vs_default_now",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weekdays_negative_no_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weekdays_negative_with_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weekdays_positive",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weekend_days_negative_no_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weekend_days_negative_with_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weekend_days_positive",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weeks_ensure_is_truncated",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weeks_negative_no_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weeks_negative_with_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weeks_positive",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_weeks_vs_default_now",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_years_ensure_is_truncated",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_years_negative_no_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_years_negative_with_sign",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_years_positive",
"tests/date_tests/test_diff.py::DiffTest::test_diff_in_years_vs_default_now",
"tests/date_tests/test_diff.py::DiffTest::test_subtraction",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_days",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_hours",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_minutes",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_months",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_seconds",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_weeks",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_absolute_years",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_days",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_days",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_hours",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_minutes",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_months",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_second",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_seconds",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_weeks",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_future_years",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_hours",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_minutes",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_months",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_future_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_nearly_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_second",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_second_with_timezone",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_seconds",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_weeks",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_now_and_years",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_days",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_days",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_hours",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_minutes",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_months",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_second",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_seconds",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_weeks",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_future_years",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_hours",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_minutes",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_months",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_future_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_hour",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_minute",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_month",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_nearly_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_second",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_seconds",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_week",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_weeks",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_year",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_for_humans_other_and_years",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_days_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_days_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_days_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_days_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_days_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_hours_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_hours_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_hours_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_hours_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_hours_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_minutes_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_minutes_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_minutes_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_minutes_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_minutes_positive_big",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_minutes_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_months_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_months_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_months_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_months_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_months_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_positive_big",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_seconds_with_timezones",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weekdays_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weekdays_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weekdays_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weekend_days_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weekend_days_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weekend_days_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weeks_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weeks_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weeks_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weeks_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_weeks_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_years_ensure_is_truncated",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_years_negative_no_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_years_negative_with_sign",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_years_positive",
"tests/pendulum_tests/test_diff.py::DiffTest::test_diff_in_years_vs_default_now",
"tests/pendulum_tests/test_diff.py::DiffTest::test_seconds_since_midnight",
"tests/pendulum_tests/test_diff.py::DiffTest::test_seconds_until_end_of_day",
"tests/pendulum_tests/test_diff.py::DiffTest::test_subtraction"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2017-03-07 04:56:46+00:00
|
mit
| 5,441 |
|
sdss__clu-88
|
diff --git a/CHANGELOG.md b/CHANGELOG.md
index a58e639..1535cef 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,5 +1,12 @@
# Changelog
+## Next version
+
+### ✨ Improved
+
+* [#77](https://github.com/sdss/clu/issues/77) Child commands will never emit ``:`` or ``f`` messages that may be confused as the parent being done.
+
+
## 1.1.2 - May 31, 2021
### 🔧 Fixed
diff --git a/python/clu/actor.py b/python/clu/actor.py
index 8c80281..8a29502 100644
--- a/python/clu/actor.py
+++ b/python/clu/actor.py
@@ -424,7 +424,7 @@ class JSONActor(ClickParser, TCPBaseActor):
async def multiline(command: Command, on: bool):
"""Set multiline mode for the transport."""
- transport: CustomTransportType = getattr(command, "transport", None)
+ transport = getattr(command, "transport", None)
if not transport:
return command.fail("The command has no transport.")
diff --git a/python/clu/command.py b/python/clu/command.py
index a10688b..686a1c1 100644
--- a/python/clu/command.py
+++ b/python/clu/command.py
@@ -265,6 +265,14 @@ class BaseCommand(
command = self if not self.parent else self.parent
+ # If the parent has a command, do not output : or f since it would
+ # confuse the stream and potentially Tron.
+ if self.parent:
+ if message_code == ":":
+ message_code = "i"
+ elif message_code == "f":
+ message_code = "e"
+
self.actor.write(
message_code,
message=message,
|
sdss/clu
|
c61db5fce3dcf5b7700f78217ff9057f4e3697af
|
diff --git a/tests/test_command.py b/tests/test_command.py
index a920549..6d37678 100644
--- a/tests/test_command.py
+++ b/tests/test_command.py
@@ -86,6 +86,30 @@ def test_child_command_write(command):
)
+def test_child_command_finished(command):
+
+ child = Command(command_string="new-command", parent=command)
+
+ child.finish(text="Finished")
+ command.actor.write.assert_called_with(
+ "i", message={}, text="Finished", command=command, broadcast=False, **{}
+ )
+
+ assert child.status.did_succeed
+
+
+def test_child_command_failed(command):
+
+ child = Command(command_string="new-command", parent=command)
+
+ child.fail(error="Failed")
+ command.actor.write.assert_called_with(
+ "e", message={}, error="Failed", command=command, broadcast=False, **{}
+ )
+
+ assert child.status.did_fail
+
+
def test_write_str(command):
command.write("i", "hello")
|
Avoid child commands to finish parent
Child commands should not finish or fail the parent command, I think. Instead `finish` can probably be output as `info` and `fail` as `error`.
Also, not set the command running again if it already is.
|
0.0
|
c61db5fce3dcf5b7700f78217ff9057f4e3697af
|
[
"tests/test_command.py::test_child_command_finished",
"tests/test_command.py::test_child_command_failed"
] |
[
"tests/test_command.py::test_command",
"tests/test_command.py::test_set_status",
"tests/test_command.py::test_set_done_command",
"tests/test_command.py::test_set_status_fails",
"tests/test_command.py::test_set_status_int",
"tests/test_command.py::test_set_status_str",
"tests/test_command.py::test_set_status_str_fails",
"tests/test_command.py::test_child_command",
"tests/test_command.py::test_child_command_write",
"tests/test_command.py::test_write_str",
"tests/test_command.py::test_write_dict",
"tests/test_command.py::test_write_bad_message",
"tests/test_command.py::test_write_no_actor",
"tests/test_command.py::test_wait_for_status",
"tests/test_command.py::test_status_callback"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-06-03 02:20:37+00:00
|
bsd-3-clause
| 5,442 |
|
sdss__sdss_access-17
|
diff --git a/CHANGELOG.rst b/CHANGELOG.rst
index 9632a9f..8636412 100644
--- a/CHANGELOG.rst
+++ b/CHANGELOG.rst
@@ -6,6 +6,13 @@ Change Log
This document records the main changes to the sdss_access code.
+1.0.1 (unreleased)
+------------------
+
+- Bug Fix :issue:`16` - HttpAccess used in public mode checks for netrc file
+- Combines separate `set_auth` methods in `BaseAccess` and `HttpAccess` into a single `set_auth` available as `AuthMixin`
+- `Auth.set_netrc` now raises an `AccessError` on failure to find a value netrc file.
+
1.0.0 (2020-05-07)
------------------
diff --git a/python/sdss_access/sync/__init__.py b/python/sdss_access/sync/__init__.py
index ddf2c1f..7519b10 100644
--- a/python/sdss_access/sync/__init__.py
+++ b/python/sdss_access/sync/__init__.py
@@ -1,4 +1,4 @@
-from .auth import Auth
+from .auth import Auth, AuthMixin
from .cli import Cli
from .stream import Stream
from .http import HttpAccess
diff --git a/python/sdss_access/sync/auth.py b/python/sdss_access/sync/auth.py
index deb281c..91dfbbe 100644
--- a/python/sdss_access/sync/auth.py
+++ b/python/sdss_access/sync/auth.py
@@ -1,15 +1,19 @@
from __future__ import absolute_import, division, print_function, unicode_literals
from six.moves import input
from sdss_access import is_posix
+from sdss_access.path import AccessError
from os.path import join
from os import environ
class Auth(object):
+ ''' class for setting up SAS authenticaton for SDSS users '''
def __init__(self, netloc=None, public=False, verbose=False):
self.public = public
self.verbose = verbose
+ self.username = None
+ self.password = None
self.set_netloc(netloc=netloc)
self.set_netrc()
@@ -24,52 +28,109 @@ class Auth(object):
Windows: recommending _netrc following
https://stackoverflow.com/questions/6031214/git-how-to-use-netrc-file-on-windows-to-save-user-and-password
"""
+ # set blank netrc
+ self.netrc = None
+
+ # if public do nothing
+ if self.public:
+ return
+
+ # try to get the netrc file
try:
from netrc import netrc
except Exception as e:
netrc = None
if self.verbose:
- print("SDSS_ACCESS> AUTH NETRC: %r" % e)
+ print("SDSS_ACCESS> AUTH NETRC: {0}".format(e))
+
if netrc:
- file = join(environ['HOME'], "_netrc") if not is_posix else None
+ netfile = join(environ['HOME'], "_netrc") if not is_posix else None
try:
- self.netrc = netrc(file) if not self.public else None
- except Exception as e:
- print("SDSS_ACCESS> Error %r" % e)
- else:
- self.netrc = None
+ self.netrc = netrc(netfile)
+ except FileNotFoundError as e:
+ raise AccessError("No netrc file found. Please create one. {0}".format(e))
def set_netloc(self, netloc=None):
+ ''' sets the url domain location '''
self.netloc = netloc
- def set_username(self, username=None, inquire=False):
+ def set_username(self, username=None, inquire=None):
+ ''' sets the authentication username
+
+ Parameters:
+ username: str
+ The username for SDSS SAS access
+ inquire: bool
+ If True, prompts for input of username.
+ '''
self.username = input("user [sdss]: ") or "sdss" if inquire else username
- def set_password(self, password=None, inquire=False):
+ def set_password(self, password=None, inquire=None):
+ ''' sets the authentication password
+
+ Parameters:
+ password: str
+ The password for SDSS SAS access
+ inquire: bool
+ If True, prompts for input of password.
+ '''
try:
from getpass import getpass
self.password = getpass("password: ") if inquire else password
except Exception as e:
if self.verbose:
- print("SDSS_ACCESS> AUTH PASSWORD: %r" % e)
+ print("SDSS_ACCESS> AUTH PASSWORD: {0}".format(e))
self.password = None
def ready(self):
return self.username and self.password
def load(self):
+ ''' Sets the username and password from the local netrc file '''
if self.netloc and self.netrc:
authenticators = self.netrc.authenticators(self.netloc)
if authenticators and len(authenticators) == 3:
self.set_username(authenticators[0])
self.set_password(authenticators[2])
if self.verbose:
- print("authentication for netloc=%r set for username=%r " % (self.netloc, self.username))
+ print("authentication for netloc={0} set for username={1}".format(self.netloc, self.username))
else:
if self.verbose:
- print("cannot find %r in ~/.netrc" % self.netloc)
+ print("cannot find {0} in ~/.netrc".format(self.netloc))
self.set_username()
self.set_password()
else:
self.set_username()
self.set_password()
+
+
+class AuthMixin(object):
+ ''' Mixin class to provide authentication method to other classes '''
+
+ def set_auth(self, username=None, password=None, inquire=True):
+ ''' Set the authentication
+
+ Parameters:
+ username: str
+ The username for SDSS SAS access
+ password: str
+ The password for SDSS SAS access
+ inquire: bool
+ If True, prompts for input of username/password.
+ '''
+ self.auth = Auth(public=self.public, netloc=self.netloc, verbose=self.verbose)
+ self.auth.set_username(username)
+ self.auth.set_password(password)
+
+ # if public then exit
+ if self.public:
+ return
+
+ # try to load the username and password
+ if not self.auth.ready():
+ self.auth.load()
+
+ # if still not ready then prompt for username and password
+ if not self.auth.ready():
+ self.auth.set_username(inquire=inquire)
+ self.auth.set_password(inquire=inquire)
diff --git a/python/sdss_access/sync/baseaccess.py b/python/sdss_access/sync/baseaccess.py
index f6f2878..06a7553 100644
--- a/python/sdss_access/sync/baseaccess.py
+++ b/python/sdss_access/sync/baseaccess.py
@@ -5,12 +5,12 @@ import abc
import six
from os.path import join, sep
from sdss_access import SDSSPath
-from sdss_access.sync.auth import Auth
+from sdss_access.sync.auth import Auth, AuthMixin
from sdss_access.sync.stream import Stream
from sdss_access import is_posix, AccessError
-class BaseAccess(six.with_metaclass(abc.ABCMeta, SDSSPath)):
+class BaseAccess(six.with_metaclass(abc.ABCMeta, AuthMixin, SDSSPath)):
"""Class for providing Rsync or Curl access to SDSS SAS Paths
"""
remote_scheme = None
@@ -116,18 +116,6 @@ class BaseAccess(six.with_metaclass(abc.ABCMeta, SDSSPath)):
stream = Stream(stream_count=self.stream_count, verbose=self.verbose)
return stream
- def set_auth(self, username=None, password=None, inquire=True):
- ''' set the authentication for accessing data '''
- self.auth = Auth(public=self.public, netloc=self.netloc, verbose=self.verbose)
- self.auth.set_username(username)
- self.auth.set_password(password)
- if not self.public:
- if not self.auth.ready():
- self.auth.load()
- if not self.auth.ready():
- self.auth.set_username(inquire=inquire)
- self.auth.set_password(inquire=inquire)
-
def reset(self):
''' Reset all streams '''
diff --git a/python/sdss_access/sync/http.py b/python/sdss_access/sync/http.py
index 5b3300a..3637607 100644
--- a/python/sdss_access/sync/http.py
+++ b/python/sdss_access/sync/http.py
@@ -12,26 +12,19 @@ except:
from os import makedirs
from os.path import isfile, exists, dirname
from sdss_access import SDSSPath
-from sdss_access.sync.auth import Auth
+from sdss_access.sync.auth import Auth, AuthMixin
-class HttpAccess(SDSSPath):
+class HttpAccess(AuthMixin, SDSSPath):
"""Class for providing HTTP access via urllib.request (python3) or urllib2 (python2) to SDSS SAS Paths
"""
- def __init__(self, verbose=False, public=False, release=None, label='sdss_http'):
+ def __init__(self, verbose=None, public=None, release=None, label='sdss_http'):
super(HttpAccess, self).__init__(public=public, release=release, verbose=verbose)
self.verbose = verbose
self.label = label
self._remote = False
- def set_auth(self, username=None, password=None):
- self.auth = Auth(netloc=self.netloc, verbose=self.verbose)
- self.auth.set_username(username)
- self.auth.set_password(password)
- if not self.auth.ready():
- self.auth.load()
-
def remote(self, remote_base=None, username=None, password=None):
"""
Configures remote access
|
sdss/sdss_access
|
f949ec106d25bc504f40753812d2c4c8e7fbf9ee
|
diff --git a/tests/conftest.py b/tests/conftest.py
index 8d90a5e..a08ccca 100644
--- a/tests/conftest.py
+++ b/tests/conftest.py
@@ -232,3 +232,10 @@ def gzcompress(filename):
shutil.copyfileobj(f_in, f_out)
os.remove(filename)
yield
+
+
[email protected]()
+def monkeyhome(monkeypatch, tmp_path):
+ ''' monkeypatch the HOME directory '''
+ path = (tmp_path / 'tmp').mkdir()
+ monkeypatch.setenv("HOME", str(path))
diff --git a/tests/sync/test_auth.py b/tests/sync/test_auth.py
index a4375d9..4a301fb 100644
--- a/tests/sync/test_auth.py
+++ b/tests/sync/test_auth.py
@@ -9,18 +9,103 @@
from __future__ import print_function, division, absolute_import
+import importlib
+import six.moves
import pytest
-from sdss_access.sync.auth import Auth
+import sdss_access
+from sdss_access.sync.auth import Auth, AuthMixin
+from sdss_access.path import AccessError
[email protected]
-def test_set_username_interactively():
- """If authentication via `.netrc` file fails, then test for interactive prompt.
+class TestAuth(object):
- The interactive prompt raises an IOError (merged into OSError in Python 3.3), which this test
- expects.
- """
- with pytest.raises((IOError, OSError)):
- auth = Auth(netloc='data.sdss.org', public=False)
+ def test_nonetrc_fails(self, monkeyhome):
+ ''' test raise error when no netrc present '''
+ with pytest.raises(AccessError) as cm:
+ Auth()
+ assert 'No netrc file found. Please create one.' in str(cm.value)
+
+ def test_nonetrc_public_pass(self, monkeyhome):
+ ''' test public access does not fail when no netrc '''
+ auth = Auth(public=True)
+ assert auth.public is True
+ assert auth.ready() is None
+ assert auth.netrc is None
+
+ @pytest.mark.parametrize('netloc', [('data.sdss.org'), ('dtn01.sdss.org')])
+ def test_setnetloc(self, netloc):
+ ''' test setting a url domain location '''
+ auth = Auth(public=True, netloc=netloc)
+ assert auth.netloc == netloc
+
+ def test_auth_goodnetrc(self):
+ ''' test for a netrc loaded '''
+ auth = Auth()
+ assert auth.netrc is not None
+ assert 'data.sdss.org' in auth.netrc.hosts.keys()
+
+ @pytest.mark.parametrize('public', [(True), (False)])
+ def test_auth_defaultuser(self, public):
+ ''' test auth load default user '''
+ auth = Auth(netloc='data.sdss.org', public=public)
+ auth.load()
+ if public:
+ assert auth.username is None
+ else:
+ assert auth.username == auth.netrc.authenticators('data.sdss.org')[0]
+
+ def test_auth_setuserpass(self):
+ ''' test set userpass '''
+ auth = Auth(netloc='data.sdss.org')
+ assert auth.username is None
+ assert auth.password is None
+ auth.set_username('testuser')
+ auth.set_password('testpass')
+ assert auth.username == 'testuser'
+ assert auth.password == 'testpass'
+
+ @pytest.mark.parametrize('prompt, exp', [('blah', 'blah'), (None, 'sdss')])
+ def test_user_inquire(self, monkeypatch, prompt, exp):
+ ''' test username input prompt '''
+ # mock the six.moves.input
+ def mockinput(value):
+ return prompt
+
+ monkeypatch.setattr(six.moves, 'input', mockinput)
+ # reload the auth module
+ importlib.reload(sdss_access.sync.auth)
+ from sdss_access.sync.auth import Auth
+
+ # run the test
+ auth = Auth()
auth.set_username(inquire=True)
+ assert auth.username == exp
+
+
+class TmpAccess(AuthMixin, object):
+ def __init__(self, public=None, netloc=None, verbose=None):
+ self.public = public
+ self.netloc = netloc
+ self.verbose = verbose
+
+
+class TestAuthMixin(object):
+
+ def test_set_auth(self):
+ ''' test the set_auth method '''
+ ta = TmpAccess(netloc='data.sdss.org')
+ ta.set_auth()
+ assert ta.netloc == 'data.sdss.org'
+ assert ta.auth is not None
+ assert ta.auth.netloc == 'data.sdss.org'
+ assert ta.auth.username == 'sdss'
+
+ def test_set_auth_public(self):
+ ''' test the public option '''
+ ta = TmpAccess(netloc='data.sdss.org', public=True)
+ ta.set_auth()
+ assert ta.auth is not None
+ assert ta.auth.public is True
+ assert ta.auth.username is None
+
diff --git a/tests/sync/test_http.py b/tests/sync/test_http.py
index 6e2798f..7818048 100644
--- a/tests/sync/test_http.py
+++ b/tests/sync/test_http.py
@@ -14,7 +14,7 @@
from __future__ import print_function, division, absolute_import
import os
import pytest
-from sdss_access import tree
+from sdss_access import tree, AccessError
from sdss_access.sync import HttpAccess
@@ -57,3 +57,18 @@ class TestHttp(object):
mangaid='1-42007', remote=True)
assert os.path.exists(full)
+
+ def test_nonetrc_fails(self, monkeyhome):
+ ''' test raise error when no netrc present '''
+ with pytest.raises(AccessError) as cm:
+ http = HttpAccess()
+ http.remote()
+ assert 'No netrc file found. Please create one.' in str(cm.value)
+
+ def test_nonetrc_public_pass(self, monkeyhome):
+ ''' test public access does not fail when no netrc '''
+ http = HttpAccess(release='DR14')
+ http.remote()
+ assert http.public is True
+ assert http.auth.username is None
+ assert http.auth.ready() is None
|
HttpAccess cannot download public file, but RsyncAccess can
**Description**
I can access public data products using `sdss_access.RsyncAccess`, but the same products cannot be downloaded using `sdss_access.HttpAccess`.
**Expected behaviour**
I don't think any authorization should be required (or even checked) for accessing public data products.
**Steps to recreate**
````python
from sdss_access import RsyncAccess, HttpAccess
kwds = dict(
public=True,
release="DR16",
verbose=True
)
apstar_kwds = dict(
apred="r12",
apstar="stars",
telescope="apo25m",
field="000+14",
prefix="ap",
obj="2M16544175-2148453",
)
# Works:
rsync = RsyncAccess(**kwds)
rsync.remote()
rsync.add("apStar", **apstar_kwds)
rsync.set_stream()
rsync.commit()
# Fails:
http = HttpAccess(**kwds)
http.remote()
http.get("apStar", **apstar_kwds)
````
The stack trace reads:
````python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-4-1abe27f23dc9> in <module>
21 # Fails:
22 http = HttpAccess(**kwds)
---> 23 http.remote()
24 http.get("apStar", **apstar_kwds)
~/anaconda3/envs/astra/lib/python3.7/site-packages/sdss_access/sync/http.py in remote(self, remote_base, username, password)
49 self.remote_base = remote_base
50 self._remote = True
---> 51 self.set_auth(username=username, password=password)
52 if self.auth.ready():
53 passman = HTTPPasswordMgrWithDefaultRealm()
~/anaconda3/envs/astra/lib/python3.7/site-packages/sdss_access/sync/http.py in set_auth(self, username, password)
31 self.auth.set_password(password)
32 if not self.auth.ready():
---> 33 self.auth.load()
34
35 def remote(self, remote_base=None, username=None, password=None):
~/anaconda3/envs/astra/lib/python3.7/site-packages/sdss_access/sync/auth.py in load(self)
59
60 def load(self):
---> 61 if self.netloc and self.netrc:
62 authenticators = self.netrc.authenticators(self.netloc)
63 if authenticators and len(authenticators) == 3:
AttributeError: 'Auth' object has no attribute 'netrc'
````
**Additional context**
The [documentation for `sdss_access.sync.auth.Auth.set_netrc`](https://sdss-access.readthedocs.io/en/latest/api.html?highlight=netrc#sdss_access.sync.auth.Auth.set_netrc) says to add a line to my `~/.netrc` file. I did that (using the correct password) and then a new exception occurs due to permissions. Admittedly the documentation for `set_netrc` *does* tell me to set the permissions correctly, but I would expect no authorization is required -- at all -- for public data.
````python
SDSS_ACCESS> Error NetrcParseError('~/.netrc access too permissive: access permissions must restrict access to only the owner')
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
~/anaconda3/envs/astra/lib/python3.7/io.py in <module>
21 # Fails:
22 http = HttpAccess(**kwds)
---> 23 http.remote()
24 http.get("apStar", **apstar_kwds)
~/anaconda3/envs/astra/lib/python3.7/site-packages/sdss_access/sync/http.py in remote(self, remote_base, username, password)
49 self.remote_base = remote_base
50 self._remote = True
---> 51 self.set_auth(username=username, password=password)
52 if self.auth.ready():
53 passman = HTTPPasswordMgrWithDefaultRealm()
~/anaconda3/envs/astra/lib/python3.7/site-packages/sdss_access/sync/http.py in set_auth(self, username, password)
31 self.auth.set_password(password)
32 if not self.auth.ready():
---> 33 self.auth.load()
34
35 def remote(self, remote_base=None, username=None, password=None):
~/anaconda3/envs/astra/lib/python3.7/site-packages/sdss_access/sync/auth.py in load(self)
59
60 def load(self):
---> 61 if self.netloc and self.netrc:
62 authenticators = self.netrc.authenticators(self.netloc)
63 if authenticators and len(authenticators) == 3:
AttributeError: 'Auth' object has no attribute 'netrc'
````
I am using the the [bleeding edge](https://github.com/sdss/sdss_access/commit/f949ec106d25bc504f40753812d2c4c8e7fbf9ee) version of `sdss_access`.
|
0.0
|
f949ec106d25bc504f40753812d2c4c8e7fbf9ee
|
[
"tests/sync/test_auth.py::TestAuth::test_nonetrc_fails",
"tests/sync/test_auth.py::TestAuth::test_nonetrc_public_pass",
"tests/sync/test_auth.py::TestAuth::test_setnetloc[data.sdss.org]",
"tests/sync/test_auth.py::TestAuth::test_setnetloc[dtn01.sdss.org]",
"tests/sync/test_auth.py::TestAuth::test_auth_defaultuser[True]",
"tests/sync/test_auth.py::TestAuthMixin::test_set_auth_public",
"tests/sync/test_http.py::TestHttp::test_http[datapath0-DR15]",
"tests/sync/test_http.py::TestHttp::test_svn_exist",
"tests/sync/test_http.py::TestHttp::test_svn_get",
"tests/sync/test_http.py::TestHttp::test_nonetrc_fails",
"tests/sync/test_http.py::TestHttp::test_nonetrc_public_pass"
] |
[] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-05-28 14:51:27+00:00
|
bsd-3-clause
| 5,443 |
|
sdss__sdss_access-20
|
diff --git a/python/sdss_access/path/path.py b/python/sdss_access/path/path.py
index 542c9ec..b94538e 100644
--- a/python/sdss_access/path/path.py
+++ b/python/sdss_access/path/path.py
@@ -63,7 +63,7 @@ class BasePath(object):
"mirror": "data.mirror.sdss.org", 'svn': 'svn.sdss.org'}
def __init__(self, release=None, public=False, mirror=False, verbose=False, force_modules=None):
- self.release = release or 'sdsswork'
+ self.release = release or os.getenv('TREE_VER', 'sdsswork')
self.public = 'dr' in self.release.lower() or public
self.mirror = mirror
self.verbose = verbose
@@ -685,7 +685,8 @@ class BasePath(object):
for c in alternates if re.search(self._comp_regex, c)]))
if suffixes:
assert len(suffixes) == 1, 'should only be one suffix per file template '
- template = template + suffixes[0]
+ if not template.endswith(suffixes[0]):
+ template = template + suffixes[0]
return template
|
sdss/sdss_access
|
a4894ffad2c56940605aecc7f89639d8810488b3
|
diff --git a/tests/conftest.py b/tests/conftest.py
index a08ccca..30fd0f6 100644
--- a/tests/conftest.py
+++ b/tests/conftest.py
@@ -9,6 +9,7 @@
# @Last Modified time: 2019-08-07 12:30:00
from __future__ import print_function, division, absolute_import
+import glob
import gzip
import os
import pytest
@@ -134,6 +135,7 @@ def radd(rsync, expdata):
''' fixture to add a path to an rsync object '''
rsync.add(expdata['name'], **expdata['params'])
yield rsync
+ rsync.reset()
@pytest.fixture(scope='session')
@@ -141,6 +143,7 @@ def rstream(radd):
''' fixture to set the stream for an parametrized rsync object '''
radd.set_stream()
yield radd
+ radd.reset()
@pytest.fixture(scope='session')
@@ -195,7 +198,6 @@ def monkeysas(tmpdir, monkeypatch, path):
path.replant_tree()
-
@pytest.fixture()
def copydata(tmpdir, request):
''' fixture to copy a file into a temporary directory '''
@@ -210,6 +212,21 @@ def copydata(tmpdir, request):
yield destpath
[email protected]()
+def copymulti(tmpdir, request):
+ ''' Fixture to copy multiple files into a temporary directory '''
+ srcpath = os.path.join(os.getenv("SAS_BASE_DIR"), request.param)
+ files = glob.glob(srcpath)
+ if not files:
+ pytest.skip('Files do not exist, cannot copy')
+ for item in files:
+ loc = item.split(os.getenv("SAS_BASE_DIR") + '/')[-1]
+ sasdir = tmpdir / 'sas'
+ destpath = sasdir / loc
+ os.makedirs(os.path.dirname(destpath), exist_ok=True)
+ shutil.copy(item, destpath)
+
+
@contextlib.contextmanager
def gzuncompress(filename):
''' Context manager than gunzips a file temporarily. '''
diff --git a/tests/data/paths.yaml b/tests/data/paths.yaml
index bfda7d5..dcd9e95 100644
--- a/tests/data/paths.yaml
+++ b/tests/data/paths.yaml
@@ -8,4 +8,7 @@ paths:
work: mangawork
params: {drpver: v2_4_3, plate: 8485, ifu: 1901, wave: LOG}
location: manga/spectro/redux/v2_4_3/8485/stack/manga-8485-1901-LOGCUBE.fits.gz
-
+ - name: spec-lite
+ work: ebosswork
+ params: {run2d: v5_10_0, plateid: 3606, mjd: 55182, fiberid: 537}
+ location: eboss/spectro/redux/v5_10_0/spectra/lite/3606/spec-3606-55182-0537.fits
diff --git a/tests/path/test_path.py b/tests/path/test_path.py
index 91036d2..2852b53 100644
--- a/tests/path/test_path.py
+++ b/tests/path/test_path.py
@@ -152,9 +152,11 @@ class TestPath(object):
def test_uncompress(self, copydata, monkeysas, path):
''' test to find unzipped files with zipped path templates '''
assert path.templates['mangacube'].endswith('.gz')
+ assert path.templates['mangacube'].count('.gz') == 1
with gzuncompress(copydata) as f:
full = path.full('mangacube', drpver='v2_4_3', plate=8485, ifu=1901, wave='LOG')
assert not full.endswith('.gz')
+ assert full.count('.gz') == 0
assert full.endswith('.fits')
@pytest.mark.parametrize('copydata',
@@ -163,16 +165,31 @@ class TestPath(object):
def test_compress(self, copydata, monkeysas, path):
''' test to find zipped files with non-zipped path templates '''
assert not path.templates['mangaimage'].endswith('.gz')
+ assert path.templates['mangaimage'].count('.gz') == 0
with gzcompress(copydata) as f:
full = path.full('mangaimage', drpver='v2_5_3', plate=8485, ifu=1901)
assert not full.endswith('.png')
assert full.endswith('.gz')
+ assert full.count('.gz') == 1
def test_uncompress_nofileexists(self, monkeysas, path):
''' test if no file exists, full returns original template path '''
assert path.templates['mangacube'].endswith('.gz')
- full = path.full('mangacube', drpver='v2_4_3', plate=8485, ifu=1901, wave='LOG')
+ full = path.full('mangacube', drpver='v2_4_3', plate=8888, ifu=12345, wave='LOG')
assert full.endswith('.gz')
+ assert full.count('.gz') == 1
+
+ @pytest.mark.parametrize('copymulti',
+ [('mangawork/manga/spectro/redux/v2_4_3/8485/stack/manga-8485-*-LOGCUBE.fits.gz')],
+ indirect=True, ids=['data'])
+ @pytest.mark.parametrize('plate, ifu', [(8888, '*'), (8888, 12345),
+ (8485, 1901), (8485, '*')],
+ ids=['nodata-wild', 'nodata', 'glob', 'glob-wild'])
+ def test_compression_wildcards(self, copymulti, monkeysas, path, plate, ifu):
+ assert path.templates['mangacube'].endswith('.gz')
+ full = path.full('mangacube', drpver='v2_4_3', plate=plate, ifu=ifu, wave='LOG')
+ assert full.endswith('.gz')
+ assert full.count('.gz') == 1
@pytest.mark.parametrize('mirror', [(True), (False)])
def test_netloc(self, mirror):
@@ -247,6 +264,24 @@ class TestPath(object):
ff = path.full('mangapreimg', designid=8405, designgrp='D0084XX', mangaid='1-42007', force_module=True)
assert 'mangapreim/trunk/data' in ff
+ @pytest.mark.parametrize('tree_ver', [('sdsswork'), ('dr15'), ('sdss5'), ('mpl8')])
+ def test_release_from_module(self, monkeypatch, tree_ver):
+ monkeypatch.setenv('TREE_VER', tree_ver)
+ path = Path()
+ assert path.release == tree_ver
+
+ def test_sdss5_paths(self, monkeypatch):
+ path = Path(release='sdss5')
+ assert 'rsFields' in path.templates
+ f1 = path.full('rsFields', plan='001', observatory='APO')
+
+ monkeypatch.setenv('TREE_VER', 'sdss5')
+ path = Path()
+ assert 'rsFields' in path.templates
+ f2 = path.full('rsFields', plan='001', observatory='APO')
+
+ assert f1 == f2
+
@pytest.fixture()
def monkeyoos(monkeypatch):
diff --git a/tests/sync/test_http.py b/tests/sync/test_http.py
index 7818048..bf267ef 100644
--- a/tests/sync/test_http.py
+++ b/tests/sync/test_http.py
@@ -72,3 +72,13 @@ class TestHttp(object):
assert http.public is True
assert http.auth.username is None
assert http.auth.ready() is None
+
+ @pytest.mark.parametrize('tree_ver, exp', [('sdsswork', 'work'), ('dr15', 'dr15'),
+ ('dr13', 'dr13'), ('mpl8', 'work')])
+ def test_release_from_module(self, monkeypatch, tree_ver, exp, datapath):
+ monkeypatch.setenv('TREE_VER', tree_ver)
+ http = HttpAccess()
+ full = http.full(datapath['name'], **datapath['params'])
+ assert http.release == tree_ver
+ assert exp in full
+
diff --git a/tests/sync/test_rsync.py b/tests/sync/test_rsync.py
index eda53d9..d41afd4 100644
--- a/tests/sync/test_rsync.py
+++ b/tests/sync/test_rsync.py
@@ -12,6 +12,7 @@ from __future__ import print_function, division, absolute_import
import os
import pytest
from sdss_access import Access, AccessError
+from sdss_access.sync import RsyncAccess
class TestRsync(object):
@@ -44,6 +45,17 @@ class TestRsync(object):
assert os.path.exists(path) is True
assert os.path.isfile(path) is True
+ @pytest.mark.parametrize('tree_ver, exp', [('sdsswork', 'work'), ('dr15', 'dr15'),
+ ('dr13', 'dr13'), ('mpl8', 'work')])
+ def test_release_from_module(self, monkeypatch, tree_ver, exp, datapath):
+ monkeypatch.setenv('TREE_VER', tree_ver)
+ rsync = RsyncAccess()
+ rsync.remote()
+ rsync.add(datapath['name'], **datapath['params'])
+ loc = rsync.initial_stream.task[0]['location']
+ assert rsync.release == tree_ver
+ assert exp in loc
+
class TestRsyncFails(object):
|
make sdss_access work with loaded module files
enable `sdss_access` to use non-sdsswork modules. When a user performs `module load tree/dr15` and runs `Path()` without a release, `sdss_access` should recognize that it's a DR15 release from the loaded module file.
|
0.0
|
a4894ffad2c56940605aecc7f89639d8810488b3
|
[
"tests/path/test_path.py::TestPath::test_release_from_module[dr15]",
"tests/path/test_path.py::TestPath::test_release_from_module[sdss5]",
"tests/path/test_path.py::TestPath::test_release_from_module[mpl8]",
"tests/sync/test_http.py::TestHttp::test_release_from_module[datapath1-dr15-dr15]",
"tests/sync/test_http.py::TestHttp::test_release_from_module[datapath1-dr13-dr13]",
"tests/sync/test_rsync.py::TestRsync::test_release_from_module[datapath1-dr15-dr15]",
"tests/sync/test_rsync.py::TestRsync::test_release_from_module[datapath1-dr13-dr13]",
"tests/sync/test_http.py::TestHttp::test_release_from_module[datapath0-dr15-dr15]",
"tests/sync/test_http.py::TestHttp::test_release_from_module[datapath0-dr13-dr13]",
"tests/sync/test_rsync.py::TestRsync::test_release_from_module[datapath0-dr15-dr15]",
"tests/sync/test_rsync.py::TestRsync::test_release_from_module[datapath0-dr13-dr13]"
] |
[
"tests/path/test_path.py::TestPath::test_extract_source",
"tests/path/test_path.py::TestPath::test_netloc[True]",
"tests/path/test_path.py::TestPath::test_netloc[False]",
"tests/path/test_path.py::TestPath::test_svn_urls[True]",
"tests/path/test_path.py::TestPath::test_svn_url_tag",
"tests/path/test_path.py::TestPath::test_release_from_module[sdsswork]",
"tests/path/test_path.py::TestPath::test_sdss5_paths",
"tests/sync/test_http.py::TestHttp::test_http[datapath0-DR15]",
"tests/sync/test_rsync.py::TestRsync::test_rsync[DR15-datapath0]",
"tests/sync/test_rsync.py::TestStream::test_initial_stream[DR15-datapath0]",
"tests/sync/test_rsync.py::TestRsync::test_rsync[DR15-datapath1]",
"tests/sync/test_http.py::TestHttp::test_svn_exist",
"tests/sync/test_http.py::TestHttp::test_svn_get",
"tests/sync/test_http.py::TestHttp::test_nonetrc_fails",
"tests/sync/test_http.py::TestHttp::test_nonetrc_public_pass"
] |
{
"failed_lite_validators": [
"has_short_problem_statement"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-05-29 20:02:00+00:00
|
bsd-3-clause
| 5,444 |
|
sdss__sdsstools-14
|
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 03b5541..63e6960 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -2,6 +2,7 @@
## [Next version](https://github.com/sdss/sdsstools/compare/0.2.1...HEAD)
+- Feature [#7](https://github.com/sdss/sdsstools/issues/7): add support for a tag `!extends` in YAML files when read with `read_yaml_file`.
- Bug [#8](https://github.com/sdss/sdsstools/issues/8): log `StreamHandler` to `stderr` when the record level is `ERROR` or greater.
- Support [#11](https://github.com/sdss/sdsstools/issues/11): replaced `colored_formatter` with a propper `Formatter` and added tests for logging.
- Support [#12](https://github.com/sdss/sdsstools/issues/12): move `color_print` to `sdsstools._vendor`.
diff --git a/README.md b/README.md
index 1f7e05f..9647d13 100644
--- a/README.md
+++ b/README.md
@@ -70,6 +70,36 @@ In addition to the (recommended) location `~/.config/sdss/<NAME>.yaml`, `get_con
`sdsstools.configuration` includes two other tools, `merge_config`, that allows to merge dictionaries recursively, and `read_yaml_file`, to read a YAML file.
+### Extending a YAML file
+
+`read_yaml_file` provides a non-standard feature that allows you to extend one YAML file with another. To achieve this you need to add the tag `!extends <base-file>` at the top of the file that you want to extend. For example, if you have a file `base.yaml`
+
+```yaml
+cat1:
+ key1: value2
+
+cat2:
+ key2: 1
+```
+
+that you want to use as a template for `extendable.yaml`
+
+```yaml
+#!extends base.yaml
+
+cat1:
+ key1: value1
+```
+
+you can use `read_yaml_file` to parse the result
+
+```python
+>>> read_yaml_file('extendable.yaml')
+{'cat1': {'key1': 'value2'}, 'cat2': {'key2': 1}}
+```
+
+The path to the base file must be absolute, or relative to the location of the file to be extended.
+
## Metadata
sdsscore provides tools to locate and parse metadata files (`pyproject.toml`, `setup.cfg`, `setup.py`). `get_metadata_files` locates the path of the metadata file relative to a given `path`. `get_package_version` tries to find the version of the package by looking for a version string in the metadata file or in the egg/wheel metadata file, if the package has been installed. To use it
diff --git a/src/sdsstools/configuration.py b/src/sdsstools/configuration.py
index cd8fd40..3782a94 100644
--- a/src/sdsstools/configuration.py
+++ b/src/sdsstools/configuration.py
@@ -43,15 +43,34 @@ yaml.add_implicit_resolver('!env', env_matcher)
yaml.add_constructor('!env', env_constructor)
-def read_yaml_file(path):
+def read_yaml_file(path, use_extends=True, loader=yaml.FullLoader):
"""Read a YAML file and returns a dictionary."""
if isinstance(path, (str, pathlib.Path)):
- with open(path, 'r') as fp:
- config = yaml.load(fp, Loader=yaml.FullLoader)
+ fp = open(path, 'r')
else:
- # Assume it's an stream
- config = yaml.load(path, Loader=yaml.FullLoader)
+ fp = path
+
+ fp.seek(0)
+ config = yaml.load(fp, Loader=loader)
+
+ if use_extends:
+ fp.seek(0)
+ while True:
+ line = fp.readline()
+ if line.strip().startswith('#!extends'):
+ base_file = line.strip().split()[1]
+ if not os.path.isabs(base_file) and hasattr(fp, 'buffer'):
+ base_file = os.path.join(os.path.dirname(path), base_file)
+ if not os.path.exists(base_file):
+ raise FileExistsError(f'cannot find !extends file {base_file}.')
+ return merge_config(read_yaml_file(base_file),
+ read_yaml_file(path, use_extends=False))
+ elif line.strip().startswith('#') or line.strip() == '':
+ continue
+ else:
+ fp.seek(0)
+ break
return config
|
sdss/sdsstools
|
c75fa6dd59ccd5c4bd58fd7c2a82765389d31eab
|
diff --git a/test/test_configuration.py b/test/test_configuration.py
index 31a0788..d84ab84 100644
--- a/test/test_configuration.py
+++ b/test/test_configuration.py
@@ -7,18 +7,38 @@
# @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause)
import inspect
+import io
import os
import unittest.mock
import pytest
from sdsstools import Configuration, get_config
-from sdsstools.configuration import DEFAULT_PATHS
+from sdsstools.configuration import DEFAULT_PATHS, read_yaml_file
BASE_CONFIG_FILE = os.path.join(os.path.dirname(__file__), 'etc/test.yml')
+BASE = """
+cat1:
+ key1: base_value
+
+cat2:
+ key2: 1
+"""
+
+EXTENDABLE = """
+#
+
+#!extends {base_path}
+
+cat1:
+ # test
+ key1: value1
+"""
+
+
@pytest.fixture(autouse=True)
def cleanup():
@@ -64,6 +84,15 @@ def set_envvar():
del os.environ['A_TEST_VARIABLE']
[email protected]
+def extendable(tmp_path):
+
+ base_path = tmp_path / 'base.yaml'
+ base_path.write_text(BASE)
+
+ yield io.StringIO(EXTENDABLE.format(base_path=str(base_path))), base_path
+
+
def test_configuration(config_file):
config = Configuration()
@@ -155,3 +184,47 @@ def test_get_config_bad_module(mock_func):
config = get_config('test')
assert config == {}
+
+
+def test_extends(extendable):
+
+ stream, __ = extendable
+ data = read_yaml_file(stream)
+
+ assert data['cat1']['key1'] == 'base_value'
+ assert 'cat2' in data
+
+
+def test_extends_file_not_found(extendable):
+
+ stream, base_path = extendable
+ base_path.unlink()
+
+ with pytest.raises(FileExistsError):
+ read_yaml_file(stream)
+
+
+def test_dont_extend(extendable):
+
+ stream, __ = extendable
+ data = read_yaml_file(stream, use_extends=False)
+
+ assert data['cat1']['key1'] == 'value1'
+ assert 'cat2' not in data
+
+
+def test_extends_from_file(tmp_path):
+
+ base_path = tmp_path / 'subdir' / 'base.yaml'
+ (tmp_path / 'subdir').mkdir()
+ base_path.touch()
+ base_path.write_text(BASE)
+
+ extendable_path = tmp_path / 'extendable.yaml'
+ extendable_relative = EXTENDABLE.format(base_path='subdir/base.yaml')
+ extendable_path.write_text(extendable_relative)
+
+ data = read_yaml_file(extendable_path)
+
+ assert data['cat1']['key1'] == 'base_value'
+ assert 'cat2' in data
|
Add !extends constructor
Add a PyYAML constructor to base a YAML file on another. For example
```yaml
# file: a.yml
a: 1
b:
c: 3
d: 4
```
```yaml
# file: b.yaml
!extends a.yml
b:
c: 42
```
would be parsed into `{a: 1, b: {c: 42, d: 4}}`.
This would be useful for example for APO/LCO configuration files in which on can be made the template and the other can just extend and modify it.
|
0.0
|
c75fa6dd59ccd5c4bd58fd7c2a82765389d31eab
|
[
"test/test_configuration.py::test_extends",
"test/test_configuration.py::test_extends_file_not_found",
"test/test_configuration.py::test_dont_extend",
"test/test_configuration.py::test_extends_from_file"
] |
[
"test/test_configuration.py::test_configuration",
"test/test_configuration.py::test_configuration_user",
"test/test_configuration.py::test_configuration_envvar",
"test/test_configuration.py::test_configuration_envvar_defaults",
"test/test_configuration.py::test_configurations_bad_value",
"test/test_configuration.py::test_get_config_etc",
"test/test_configuration.py::test_get_config_etc_with_user",
"test/test_configuration.py::test_get_config_etc_with_user_str",
"test/test_configuration.py::test_get_config_default_path",
"test/test_configuration.py::test_get_config_envvar_path",
"test/test_configuration.py::test_get_config_no_update",
"test/test_configuration.py::test_get_config_bad_module"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-08-02 01:27:27+00:00
|
bsd-3-clause
| 5,445 |
|
sdss__sdsstools-27
|
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 8fb9b18..86a6720 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,5 +1,10 @@
# Changelog
+## [0.4.8](https://github.com/sdss/sdsstools/compare/0.4.7...HEAD)
+
+- Feature [#26]: allow rollover of file logger on `start_file_logger`.
+
+
## [0.4.7](https://github.com/sdss/sdsstools/compare/0.4.6...0.4.7) - 2021-02-12
- Bug [#24]: update dependencies so that `importlib_metadata` is installed for Python<=3.7 (it was Python<3.7).
diff --git a/src/sdsstools/logger.py b/src/sdsstools/logger.py
index 5808389..0867a42 100644
--- a/src/sdsstools/logger.py
+++ b/src/sdsstools/logger.py
@@ -7,6 +7,7 @@
# @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause)
import copy
+import datetime
import logging
import os
import re
@@ -199,22 +200,29 @@ class SDSSLogger(logging.Logger):
shutil.copyfile(self.log_filename, os.path.expanduser(path))
def start_file_logger(self, path, log_level=logging.DEBUG,
- mode='a', rotating=True):
+ mode='a', rotating=True, rollover=False):
"""Start file logging."""
log_file_path = os.path.expanduser(path)
logdir = os.path.dirname(log_file_path)
+ SUFFIX = '%Y-%m-%d_%H:%M:%S'
+
try:
if not os.path.exists(logdir):
os.makedirs(logdir)
+ if os.path.exists(log_file_path) and rotating and rollover:
+ now = datetime.datetime.utcnow()
+ dst = str(log_file_path) + '.' + now.strftime(SUFFIX)
+ shutil.move(str(log_file_path), dst)
+
if rotating:
self.fh = TimedRotatingFileHandler(str(log_file_path),
when='midnight',
utc=True)
- self.fh.suffix = '%Y-%m-%d_%H:%M:%S'
+ self.fh.suffix = SUFFIX
else:
self.fh = logging.FileHandler(str(log_file_path), mode=mode)
|
sdss/sdsstools
|
2845932bef2f593507269e47164c1d1f45c27c3b
|
diff --git a/test/test_logger.py b/test/test_logger.py
index eca0dc6..ffa16ab 100644
--- a/test/test_logger.py
+++ b/test/test_logger.py
@@ -170,3 +170,18 @@ async def test_asyncio_exception_handler(logger, caplog, event_loop):
assert caplog.record_tuples[0][1] == logging.ERROR
assert 'An error in a task.' in caplog.record_tuples[0][2]
+
+
+def test_logger_rotating_rollover(tmp_path):
+
+ log_file = tmp_path / 'logs' / 'test_log.log'
+
+ logger1 = get_logger(str(uuid.uuid4()))
+ logger1.start_file_logger(log_file)
+
+ assert len(list((tmp_path / 'logs').glob('*'))) == 1
+
+ logger2 = get_logger(str(uuid.uuid4()))
+ logger2.start_file_logger(log_file, rollover=True)
+
+ assert len(list((tmp_path / 'logs').glob('*'))) == 2
|
Allow rotate log when starting file logger
When the file logger starts, if `rotating=True`, the new log is appended. In some cases one may want the new log to start a new file and the previous log to be rolled over.
<!-- Edit the body of your new issue then click the ✓ "Create Issue" button in the top right of the editor. The first line will be the issue title. Assignees and Labels follow after a blank line. Leave an empty line before beginning the body of the issue. -->
|
0.0
|
2845932bef2f593507269e47164c1d1f45c27c3b
|
[
"test/test_logger.py::test_logger_rotating_rollover"
] |
[
"test/test_logger.py::test_logger",
"test/test_logger.py::test_set_level",
"test/test_logger.py::test_warning_raised",
"test/test_logger.py::test_warning",
"test/test_logger.py::test_exception_formatting",
"test/test_logger.py::test_catch_exception",
"test/test_logger.py::test_save_log",
"test/test_logger.py::test_get_logger_twice",
"test/test_logger.py::test_bad_fh_path",
"test/test_logger.py::test_fh_no_rotating",
"test/test_logger.py::test_log_non_standard_level",
"test/test_logger.py::test_asyncio_exception_handler"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-02-13 08:48:12+00:00
|
bsd-3-clause
| 5,446 |
|
sdss__tree-51
|
diff --git a/CHANGELOG.rst b/CHANGELOG.rst
index 5f964f9..add00c6 100644
--- a/CHANGELOG.rst
+++ b/CHANGELOG.rst
@@ -6,6 +6,11 @@ Change Log
This document records the main changes to the tree code.
+3.1.5 (unreleased)
+------------------
+- Added new config for IPL-2
+- Make ``sdsstool`` and ``sdss_access`` module dependencies optional in ``setup_tree``
+
3.1.4 (2022-11-29)
------------------
- Adding new config for IPL-1
diff --git a/bin/setup_tree.py b/bin/setup_tree.py
index c4d8bc5..aae7152 100755
--- a/bin/setup_tree.py
+++ b/bin/setup_tree.py
@@ -225,7 +225,7 @@ def check_sas_base_dir(root=None):
os.environ['SAS_BASE_DIR'] = sasbasedir
-def write_header(term='bash', tree_dir=None, name=None):
+def write_header(term='bash', tree_dir=None, name=None, add_mod_deps=False):
''' Write proper file header in a given shell format
Parameters:
@@ -246,6 +246,15 @@ def write_header(term='bash', tree_dir=None, name=None):
base = 'export' if term == 'bash' else 'setenv'
sep = '=' if term == 'bash' else ' '
+ # add the optional depdendecies
+ deps = """
+module load sdsstools
+prereq sdsstools
+module load sdss_access
+prereq sdss_access
+ """ if add_mod_deps else ""
+
+
if term != 'modules':
hdr = """# Set up tree/{0} for {1}
{2} TREE_DIR{4}{3}
@@ -264,10 +273,7 @@ set product tree
set version {1}
conflict $product
-module load sdsstools
-prereq sdsstools
-module load sdss_access
-prereq sdss_access
+{2}
module-whatis "Sets up $product/$version in your environment"
@@ -277,7 +283,7 @@ setenv [string toupper $product]_VER $version
prepend-path PATH $PRODUCT_DIR/bin
prepend-path PYTHONPATH $PRODUCT_DIR/python
- """.format(product_dir, name)
+ """.format(product_dir, name, deps)
return hdr.strip()
@@ -288,7 +294,8 @@ def write_version(name):
return modules_version
-def write_file(environ, term='bash', out_dir=None, tree_dir=None, default=None):
+def write_file(environ, term='bash', out_dir=None, tree_dir=None,
+ default=None, add_mod_deps=None):
''' Write a tree environment file
Loops over the tree environ and writes them out to a bash, tsch, or
@@ -310,7 +317,7 @@ def write_file(environ, term='bash', out_dir=None, tree_dir=None, default=None):
# get the proper name, header and file extension
name = environ['default']['name']
- header = write_header(term=term, name=name, tree_dir=tree_dir)
+ header = write_header(term=term, name=name, tree_dir=tree_dir, add_mod_deps=add_mod_deps)
exts = {'bash': '.sh', 'tsch': '.csh', 'modules': '.module'}
ext = exts[term]
@@ -498,7 +505,8 @@ def get_parser():
help='Custom output path to copy environment files')
parser.add_argument('-f', '--force', action='store_true', dest='force',
help='Force overwrite of existing modulefiles', default=False)
-
+ parser.add_argument('-a', '--add-module-deps', action='store_true', dest='add_mod_deps',
+ help='Add the sdsstools and sdss-access module prereq dependencies', default=False)
return parser
@@ -548,7 +556,7 @@ def main(opts):
continue
create_env(tree.environ, mirror=opts.mirror)
else:
- write_file(tree.environ, term='modules', out_dir=etcdir, tree_dir=opts.treedir, default=opts.default)
+ write_file(tree.environ, term='modules', out_dir=etcdir, tree_dir=opts.treedir, default=opts.default, add_mod_deps=opts.add_mod_deps)
write_file(tree.environ, term='bash', out_dir=etcdir, tree_dir=opts.treedir)
write_file(tree.environ, term='tsch', out_dir=etcdir, tree_dir=opts.treedir)
diff --git a/docs/sphinx/config.rst b/docs/sphinx/config.rst
index 943dd46..90d828b 100644
--- a/docs/sphinx/config.rst
+++ b/docs/sphinx/config.rst
@@ -24,6 +24,7 @@ configurations are the following:
* :ref:`DR8 <dr8>`
* :ref:`sdss5 <sdss5>` - the latest working configuration for SDSS-V
* :ref:`ipl1 <ipl1>` - the IPL-1 configuration for SDSS-V
+* :ref:`ipl2 <ipl2>` - the IPL-2 configuration for SDSS-V
.. _tree_evolve:
diff --git a/docs/sphinx/tree_envs.rst b/docs/sphinx/tree_envs.rst
index 1affa04..a6c1412 100644
--- a/docs/sphinx/tree_envs.rst
+++ b/docs/sphinx/tree_envs.rst
@@ -172,4 +172,16 @@ This is the configuration for IPL-1
.. datamodel:: tree.tree:Tree
:prog: ipl-1
:title: ipl-1
+ :remove-sasbase:
+
+.. _ipl2:
+
+IPL-2
+-----
+
+This is the configuration for IPL-2
+
+.. datamodel:: tree.tree:Tree
+ :prog: ipl-2
+ :title: ipl-2
:remove-sasbase:
\ No newline at end of file
diff --git a/setup.cfg b/setup.cfg
index d2815f1..56581ef 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -72,13 +72,14 @@ dev =
wheel>=0.33.6
docs =
- Sphinx>=2.1.0
+ Sphinx>=3.0.0
sphinx_bootstrap_theme>=0.4.12
recommonmark>=0.6
sphinx-argparse>=0.2.5
sphinx-issues>=1.2.0
importlib_metadata>=1.6.0
jinja2<3.1
+ six>=1.14
[isort]
line_length = 100
|
sdss/tree
|
130c12e63ada6efca9234fffc94eb38f9a802656
|
diff --git a/tests/test_setup.py b/tests/test_setup.py
index bfa1033..ba0402f 100644
--- a/tests/test_setup.py
+++ b/tests/test_setup.py
@@ -129,6 +129,30 @@ def test_create_files(tree, config):
assert os.path.exists(os.path.join(moduledir, config))
+def test_no_mod_deps(tree):
+ """ test that the module deps are not in module file """
+ etcdir = os.path.join(os.getenv('TREE_DIR'), 'etc')
+ stdout = run_cmd(args=[])
+ files = glob.glob(os.path.join(etcdir, 'dr18.module'))
+ assert os.path.exists(os.path.join(etcdir, 'dr18.module'))
+ with open(files[0], 'r') as f:
+ data = f.read()
+ assert "module load sdsstools" not in data
+ assert "prereq sdss_access" not in data
+
+
+def test_add_mod_deps(tree):
+ """ test that the module deps are not in module file """
+ etcdir = os.path.join(os.getenv('TREE_DIR'), 'etc')
+ stdout = run_cmd(args=['-a'])
+ files = glob.glob(os.path.join(etcdir, 'dr18.module'))
+ assert os.path.exists(os.path.join(etcdir, 'dr18.module'))
+ with open(files[0], 'r') as f:
+ data = f.read()
+ assert "module load sdsstools" in data
+ assert "prereq sdss_access" in data
+
+
@pytest.fixture()
def resetmod(monkeypatch):
mdir = os.environ.get('MODULES_DIR')
|
make module dependencies optional
Hi @havok2063
I ran some tests installing the SDSS software framework via pip install sdss-access which then installs sdss-tree, and sdsstools (without modules). I then ran setup_tree.py by following https://sdss-tree.readthedocs.io/en/latest/tree_setup.html#creating-environment-symlinks. This worked great, except the resulting modulefiles include module load dependencies for sdsstools and sdss_access, which is broken since those dependencies were pip installed and do not have modulefiles, and if they did the pythonpath would over-ride the pip installed paths, so this usecase is broken.
Can we remove the module file dependencies so that tree does not look for module files for sdss_access or sdsstools or do you have another way to fix this?
Thanks,
Joel
|
0.0
|
130c12e63ada6efca9234fffc94eb38f9a802656
|
[
"tests/test_setup.py::test_no_mod_deps",
"tests/test_setup.py::test_add_mod_deps"
] |
[
"tests/test_setup.py::test_intemp",
"tests/test_setup.py::test_envlinks[mangahi]",
"tests/test_setup.py::test_envlinks[redux]",
"tests/test_setup.py::test_env_only[mangahi]",
"tests/test_setup.py::test_env_only[redux]",
"tests/test_setup.py::test_env_mirror[False-SDSS-IV",
"tests/test_setup.py::test_env_mirror[True-SDSS-IV",
"tests/test_setup.py::test_create_files[dr15]",
"tests/test_setup.py::test_create_files[dr14]",
"tests/test_setup.py::test_create_files[sdsswork]",
"tests/test_setup.py::test_create_files[sdss5]",
"tests/test_setup.py::test_emptymodulepath[copy1]",
"tests/test_setup.py::test_emptymodulepath[copy2]",
"tests/test_setup.py::test_emptymodulepath[copyall]"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-03-01 19:12:28+00:00
|
bsd-3-clause
| 5,447 |
|
sealor__junkie-4
|
diff --git a/junkie/core_context.py b/junkie/core_context.py
index 46baafd..6001fc1 100644
--- a/junkie/core_context.py
+++ b/junkie/core_context.py
@@ -1,5 +1,6 @@
import inspect
import logging
+from collections import OrderedDict
from contextlib import contextmanager, ExitStack
from typing import Union, Set, List, Dict, Callable, Tuple
@@ -68,8 +69,7 @@ class CoreContext:
yield self._call(constructor, stack, constructor.__name__)
def _call(self, factory_func: Callable, stack: ExitStack, instance_name: str):
- arg_instances = []
- arg_names = []
+ args = OrderedDict()
for name, annotation in inspect.signature(factory_func).parameters.items():
if name in self._instances:
@@ -78,14 +78,16 @@ class CoreContext:
elif name in self._factories:
arg = self._call(self._factories[name], stack, name)
+ elif annotation.default is not inspect.Parameter.empty:
+ continue
+
else:
raise Exception("Not found: " + name)
- arg_instances.append(arg)
- arg_names.append(name)
+ args[name] = arg
- self.logger.debug("%s = %s(%s)", instance_name, factory_func.__name__, arg_names)
- instance = factory_func(*arg_instances)
+ self.logger.debug("%s = %s(%s)", instance_name, factory_func.__name__, list(args.keys()))
+ instance = factory_func(**args)
if hasattr(instance, "__enter__"):
self.logger.debug("%s.__enter__()", instance_name)
|
sealor/junkie
|
cae457a5131bb1c7cea020687076daa1edc7d13a
|
diff --git a/test/core_context_test.py b/test/core_context_test.py
index 9c134ca..696be01 100644
--- a/test/core_context_test.py
+++ b/test/core_context_test.py
@@ -87,6 +87,36 @@ class CoreContextTest(unittest.TestCase):
self.assertNotEqual(instance1, instance2)
+ def test_default_argument_usage(self):
+ class MyClassWithDefaultArguments:
+ def __init__(self, argument: str, default_argument: int = 10, default_argument2: str = None):
+ self.argument = argument
+ self.default_argument = default_argument
+ self.default_argument2 = default_argument2 or "Hello"
+
+ core_context = CoreContext()
+ core_context.add_instances({"argument": "value"})
+
+ with core_context.build_instance_by_type(MyClassWithDefaultArguments) as instance:
+ self.assertEqual("value", instance.argument)
+ self.assertEqual(10, instance.default_argument)
+ self.assertEqual("Hello", instance.default_argument2)
+
+ def test_partial_default_arguments_usage(self):
+ class MyClassWithDefaultArguments:
+ def __init__(self, argument: str, default_argument: int = 10, default_argument2: str = None):
+ self.argument = argument
+ self.default_argument = default_argument
+ self.default_argument2 = default_argument2 or "Hello"
+
+ core_context = CoreContext()
+ core_context.add_instances({"argument": "value", "default_argument2": "set from context"})
+
+ with core_context.build_instance_by_type(MyClassWithDefaultArguments) as instance:
+ self.assertEqual("value", instance.argument)
+ self.assertEqual(10, instance.default_argument)
+ self.assertEqual("set from context", instance.default_argument2)
+
def test_context_manager_enter_and_exit(self):
class Class:
def __init__(self, message_service, database_context):
|
Support default arguments
How to reproduce:
```
from junkie import Context
class Foo:
def __init__(self, bar=None):
self.bar = bar
context = Context({
"foo": Foo
})
with context.build(Foo) as foo:
pass
```
Current behaviour: `Exception: Not found: bar`
Expected behaviour: Since `bar` has a default value, one would expect using that default value if not found in the context.
|
0.0
|
cae457a5131bb1c7cea020687076daa1edc7d13a
|
[
"test/core_context_test.py::CoreContextTest::test_default_argument_usage",
"test/core_context_test.py::CoreContextTest::test_partial_default_arguments_usage"
] |
[
"test/core_context_test.py::CoreContextTest::test_build_instance_by_dict_with_list_in_right_order",
"test/core_context_test.py::CoreContextTest::test_build_instance_by_name",
"test/core_context_test.py::CoreContextTest::test_build_instance_by_names",
"test/core_context_test.py::CoreContextTest::test_build_instance_by_type",
"test/core_context_test.py::CoreContextTest::test_context_manager_enter_and_exit",
"test/core_context_test.py::CoreContextTest::test_factory_using_other_factory",
"test/core_context_test.py::CoreContextTest::test_logging",
"test/core_context_test.py::CoreContextTest::test_simple_factory",
"test/core_context_test.py::CoreContextTest::test_simple_instance"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2020-03-26 11:57:49+00:00
|
mit
| 5,448 |
|
sec-edgar__sec-edgar-118
|
diff --git a/docs/source/whatsnew/v0.1.7.rst b/docs/source/whatsnew/v0.1.7.rst
new file mode 100644
index 0000000..0826855
--- /dev/null
+++ b/docs/source/whatsnew/v0.1.7.rst
@@ -0,0 +1,12 @@
+v0.1.7
+------
+
+Highlights
+~~~~~~~~~~
+
+* Fixes `DailyFilings` bug to properly fetch daily filings.
+
+Contributors
+~~~~~~~~~~~~
+
+- jonzd
\ No newline at end of file
diff --git a/secedgar/__init__.py b/secedgar/__init__.py
index 2fb2513..124e462 100644
--- a/secedgar/__init__.py
+++ b/secedgar/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '0.1.6'
+__version__ = '0.1.7'
diff --git a/secedgar/filings/daily.py b/secedgar/filings/daily.py
index efafbd4..b11d124 100644
--- a/secedgar/filings/daily.py
+++ b/secedgar/filings/daily.py
@@ -47,8 +47,13 @@ class DailyFilings(AbstractFiling):
@property
def path(self):
- """str: Path added to client base."""
- return "Archives/edgar/daily-index/{year}/QTR{num}".format(
+ """str: Path added to client base.
+
+ .. note::
+ The trailing slash at the end of the path is important.
+ Omitting will raise EDGARQueryError.
+ """
+ return "Archives/edgar/daily-index/{year}/QTR{num}/".format(
year=self._date.year, num=self.quarter)
@property
@@ -72,6 +77,22 @@ class DailyFilings(AbstractFiling):
self._quarterly_directory = self.client.get_response(self.path, self.params, **kwargs)
return self._quarterly_directory
+ def _get_idx_formatted_date(self):
+ """Format date for idx file.
+
+ EDGAR changed its master.idx file format twice. In 1995 QTR 1 and in 1998 QTR 2.
+ The format went from MMDDYY to YYMMDD to YYYYMMDD.
+
+ Returns:
+ date (str): Correctly formatted date for master.idx file.
+ """
+ if self._date.year < 1995:
+ return self._date.strftime("%m%d%y")
+ elif self._date < datetime.datetime(1998, 3, 31):
+ return self._date.strftime("%y%m%d")
+ else:
+ return self._date.strftime("%Y%m%d")
+
def _get_master_idx_file(self, update_cache=False, **kwargs):
"""Get master file with all filings from given date.
@@ -81,19 +102,20 @@ class DailyFilings(AbstractFiling):
kwargs: Keyword arguments to pass to `client.get_response`.
Returns:
- text (str): Idx file as string.
+ text (str): Idx file text.
Raises:
EDGARQueryError: If no file of the form master.<DATE>.idx
is found.
"""
if self._master_idx_file is None or update_cache:
- formatted_date = datetime.datetime.strftime("%y%m%d", self._date)
+ formatted_date = self._get_idx_formatted_date()
formatted_file_name = "master.{date}.idx".format(date=formatted_date)
if formatted_file_name in self._get_quarterly_directory().text:
master_idx_url = "{path}/master.{date}.idx".format(
path=self.path, date=formatted_date)
- self._master_idx_file = self.client.get_response(master_idx_url, **kwargs).text
+ self._master_idx_file = self.client.get_response(
+ master_idx_url, self.params, **kwargs).text
else:
raise EDGARQueryError("""File master.{date}.idx not found.
There may be no filings for this day.""".format(
diff --git a/secedgar/utils/cik_map.py b/secedgar/utils/cik_map.py
index 40822f5..03b6cd4 100644
--- a/secedgar/utils/cik_map.py
+++ b/secedgar/utils/cik_map.py
@@ -14,7 +14,7 @@ def get_cik_map(key="ticker"):
Returns:
Dictionary with either ticker or company name as keys, depending on
- ``key`` argument, and corresponding CIK as values.
+ ``key`` argument, and corresponding CIK as values.
.. versionadded:: 0.1.6
"""
|
sec-edgar/sec-edgar
|
4e1f9597946d4cedceabc1ea3c5526dc17e46e91
|
diff --git a/secedgar/tests/client/test_network_client.py b/secedgar/tests/client/test_network_client.py
index ae4c5a0..ce6bd1d 100644
--- a/secedgar/tests/client/test_network_client.py
+++ b/secedgar/tests/client/test_network_client.py
@@ -8,7 +8,7 @@ from secedgar.tests.utils import datapath
@pytest.fixture
def client():
- return NetworkClient()
+ return NetworkClient(pause=0.01)
class MockNoCIKFoundBadResponse:
diff --git a/secedgar/tests/filings/test_daily.py b/secedgar/tests/filings/test_daily.py
index 13da078..05a9a85 100644
--- a/secedgar/tests/filings/test_daily.py
+++ b/secedgar/tests/filings/test_daily.py
@@ -113,14 +113,32 @@ class TestDaily:
)
def test_path_property(self, year, month, day, quarter):
daily_filing = DailyFilings(datetime(year, month, day))
- assert daily_filing.path == "Archives/edgar/daily-index/{year}/QTR{quarter}".format(
+ assert daily_filing.path == "Archives/edgar/daily-index/{year}/QTR{quarter}/".format(
year=year, quarter=quarter)
def test_no_params(self):
+ """Params should always be empty."""
daily_filing = DailyFilings(datetime(2020, 1, 1))
- # params should always be empty
assert not daily_filing.params
+ @pytest.mark.parametrize(
+ "date_tuple,formatted",
+ [
+ ((1994, 1, 2), "010294"),
+ ((1994, 12, 31), "123194"),
+ ((1995, 1, 1), "950101"),
+ ((1995, 1, 2), "950102"),
+ ((1998, 1, 1), "980101"),
+ ((1998, 1, 2), "980102"),
+ ((1998, 3, 31), "19980331"),
+ ((1998, 4, 1), "19980401"),
+ ((1999, 1, 1), "19990101"),
+ ]
+ )
+ def test_master_idx_date_format(self, date_tuple, formatted):
+ daily_filing = DailyFilings(datetime(*date_tuple))
+ assert daily_filing._get_idx_formatted_date() == formatted
+
@pytest.mark.parametrize(
"subdir,file",
[
|
DailyFilings not working
Using the DailyFilings function to get a day's filings does not work, Line 92 of daily.py has a problem with datetime.strftime.
TypeError: descriptor 'strftime' requires a 'datetime.date' object but received a 'str'
When I changed datetime.datetime.strftime to formatted_date = self._date.strftime("%y%m%d"), network_client.py gives a client-side error.
Thanks!
|
0.0
|
4e1f9597946d4cedceabc1ea3c5526dc17e46e91
|
[
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2018-1-1-1]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2017-5-1-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2016-6-30-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2015-7-1-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2014-9-30-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2013-10-1-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2012-11-20-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2011-12-31-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple0-010294]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple1-123194]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple2-950101]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple3-950102]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple4-980101]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple5-980102]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple6-19980331]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple7-19980401]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple8-19990101]"
] |
[
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_response_raises_error",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_good_response_single_filing_type_passes",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_good_response_multiple_cik_results_passes",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_good_response_single_filing_passes",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_response_codes[203]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_response_codes[400]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_response_codes[401]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_response_codes[500]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_response_codes[501]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_retry_count_setter[0.5-expectation0]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_retry_count_setter[2-expectation1]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_retry_count_setter[-1-expectation2]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_pause_setter[2-expectation0]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_pause_setter[-0.5-expectation1]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_pause_setter[-1-expectation2]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_count_setter[0.5-expectation0]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_count_setter[1-expectation1]",
"secedgar/tests/client/test_network_client.py::TestNetworkClient::test_client_bad_count_setter[0-expectation2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date0-1]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date1-1]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date2-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date3-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date4-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date5-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date6-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date7-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_bad_date_format_fails[1.0]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_bad_date_format_fails[12]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_bad_date_format_fails[12/31/2018]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[http://www.sec.gov/Archives/edgar/data/1000228/0001209191-18-064398.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046093.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046095.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046101.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046102.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_quarterly_directory",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[HENRY",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[ROYAL",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[NOVAVAX",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[BROOKFIELD",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[PERUSAHAAN",
"secedgar/tests/filings/test_daily.py::TestDaily::test_no_params",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[HENRY",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[ROYAL",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[NOVAVAX",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[BROOKFIELD",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[BANK"
] |
{
"failed_lite_validators": [
"has_added_files",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-06-27 15:18:05+00:00
|
apache-2.0
| 5,449 |
|
sec-edgar__sec-edgar-131
|
diff --git a/docs/source/whatsnew/v0.2.1.rst b/docs/source/whatsnew/v0.2.1.rst
new file mode 100644
index 0000000..766d80f
--- /dev/null
+++ b/docs/source/whatsnew/v0.2.1.rst
@@ -0,0 +1,13 @@
+v0.2.1
+------
+
+Highlights
+~~~~~~~~~~
+
+* Fixes bug where ``Filing`` does not work when ``count`` is not specified (thanks to formvoltron!)
+
+Contributors
+~~~~~~~~~~~~
+
+- jackmoody11
+- formvoltron
\ No newline at end of file
diff --git a/secedgar/filings/filing.py b/secedgar/filings/filing.py
index edf13a8..3af48af 100644
--- a/secedgar/filings/filing.py
+++ b/secedgar/filings/filing.py
@@ -80,6 +80,8 @@ class Filing(AbstractFiling):
if val is not None:
self._start_date = val
self._params['datea'] = sanitize_date(val)
+ else:
+ self._start_date = None
@property
def end_date(self):
@@ -111,7 +113,7 @@ class Filing(AbstractFiling):
@count.setter
def count(self, val):
if val is None:
- pass
+ self._count = None
elif not isinstance(val, int):
raise TypeError("Count must be positive integer or None.")
elif val < 1:
@@ -182,7 +184,7 @@ class Filing(AbstractFiling):
txt_urls = [link[:link.rfind("-")].strip() + ".txt" for link in links]
- if len(txt_urls) < self.count:
+ if isinstance(self.count, int) and len(txt_urls) < self.count:
warnings.warn("Only {num} of {count} filings were found for {cik}.".format(
num=len(txt_urls), count=self.count, cik=cik))
|
sec-edgar/sec-edgar
|
e89db9c12c13aeae47bca40944fc19f093ec12c9
|
diff --git a/secedgar/tests/filings/test_filings.py b/secedgar/tests/filings/test_filings.py
index c17271b..6ed1a63 100644
--- a/secedgar/tests/filings/test_filings.py
+++ b/secedgar/tests/filings/test_filings.py
@@ -9,7 +9,6 @@ from secedgar.utils.exceptions import FilingTypeError, EDGARQueryError
class TestFiling(object):
- @pytest.mark.slow
def test_count_returns_exact(self,
mock_cik_validator_get_single_cik,
mock_single_cik_filing):
@@ -21,6 +20,53 @@ class TestFiling(object):
Got {0}, but expected {1} URLs.""".format(
urls, count))
+ @pytest.mark.parametrize(
+ "count",
+ [
+ None,
+ 5,
+ 10,
+ 15,
+ 27,
+ 33
+ ]
+ )
+ def test_count_setter_on_init(self, count):
+ filing = Filing(cik_lookup='aapl', filing_type=FilingType.FILING_10Q, count=count)
+ assert filing.count == count
+
+ @pytest.mark.parametrize(
+ "start_date",
+ [
+ datetime.datetime(2020, 1, 1),
+ datetime.datetime(2020, 2, 1),
+ datetime.datetime(2020, 3, 1),
+ datetime.datetime(2020, 4, 1),
+ datetime.datetime(2020, 5, 1),
+ "20200101",
+ 20200101,
+ None
+ ]
+ )
+ def test_good_start_date_setter_on_init(self, start_date):
+ filing = Filing(cik_lookup='aapl', filing_type=FilingType.FILING_10Q, start_date=start_date)
+ assert filing.start_date == start_date
+
+ @pytest.mark.parametrize(
+ "bad_start_date",
+ [
+ 1,
+ 2020010101,
+ "2020010101",
+ "2020",
+ "0102"
+ ]
+ )
+ def test_bad_start_date_setter_on_init(self, bad_start_date):
+ with pytest.raises(TypeError):
+ Filing(cik_lookup='aapl', filing_type=FilingType.FILING_10Q,
+ start_date=bad_start_date)
+
@pytest.mark.parametrize(
"count,expected_error",
[
@@ -33,9 +79,9 @@ class TestFiling(object):
)
def test_count_setter_bad_values(self, count, expected_error):
with pytest.raises(expected_error):
- _ = Filing(cik_lookup='aapl',
- filing_type=FilingType.FILING_10Q,
- count=count)
+ Filing(cik_lookup='aapl',
+ filing_type=FilingType.FILING_10Q,
+ count=count)
def test_date_is_sanitized(self):
start_date = datetime.datetime(2012, 3, 1)
@@ -221,3 +267,9 @@ class TestFiling(object):
# Should raise assertion error since no UserWarning should be found
except AssertionError:
pass
+
+ @pytest.mark.skip
+ @pytest.mark.smoke
+ def test_filing_simple_example(self, tmp_data_directory):
+ my_filings = Filing(cik_lookup='IBM', filing_type=FilingType.FILING_10Q)
+ my_filings.save(tmp_data_directory)
|
error running simple example
**Describe the bug**
The example:
from secedgar.filings import Filing, FilingType
my_filings = Filing(cik_lookup='IBM', filing_type=FilingType.FILING_10Q)
my_filings.save('./filings')
-----------------------------
Gives the error.
Traceback (most recent call last):
File "testit.py", line 4, in <module>
my_filings.save('./filings')
File "/yada/sec-edgar/secedgar/filings/filing.py", line 224, in save
urls = self.get_urls()
File "/yada/sec-edgar/secedgar/filings/filing.py", line 152, in get_urls
for key, cik in self.cik_lookup.lookup_dict.items()
File "/yada/sec-edgar/secedgar/filings/filing.py", line 152, in <dictcomp>
for key, cik in self.cik_lookup.lookup_dict.items()
File "/yada/sec-edgar/secedgar/filings/filing.py", line 176, in _get_urls_for_cik
while self.count is None or len(links) < self.count:
File "/yada/sec-edgar/secedgar/filings/filing.py", line 109, in count
return self._count
AttributeError: 'Filing' object has no attribute '_count'
**Desktop (please complete the following information):**
macOs python3. Also tried on ubuntu, same error.
**Additional context**
Using tag 0.2.0
|
0.0
|
e89db9c12c13aeae47bca40944fc19f093ec12c9
|
[
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_on_init[None]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[None]"
] |
[
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_returns_exact",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_on_init[5]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_on_init[10]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_on_init[15]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_on_init[27]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_on_init[33]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[start_date0]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[start_date1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[start_date2]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[start_date3]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[start_date4]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[20200101_0]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_good_start_date_setter_on_init[20200101_1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_start_date_setter_on_init[1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_start_date_setter_on_init[2020010101_0]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_start_date_setter_on_init[2020010101_1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_start_date_setter_on_init[2020]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_start_date_setter_on_init[0102]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_bad_values[-1-ValueError]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_bad_values[0-ValueError]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_bad_values[0.0-TypeError]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_bad_values[1.0-TypeError]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_count_setter_bad_values[1-TypeError]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_date_is_sanitized",
"secedgar/tests/filings/test_filings.py::TestFiling::test_date_is_sanitized_when_changed",
"secedgar/tests/filings/test_filings.py::TestFiling::test_end_date_setter[20120101-20120101_0]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_end_date_setter[20120101-20120101_1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_end_date_setter[date2-20120101]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_txt_urls",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_type_setter[FilingType.FILING_10K]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_type_setter[FilingType.FILING_8K]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_type_setter[FilingType.FILING_13F]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_type_setter[FilingType.FILING_SD]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_filing_type_setter[10-k]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_filing_type_setter[10k]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_filing_type_setter[10-q]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_filing_type_setter[10q]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_bad_filing_type_setter[123]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_invalid_filing_type_types[10-j]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_invalid_filing_type_types[10-k]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_invalid_filing_type_types[ssd]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_invalid_filing_type_types[invalid]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_invalid_filing_type_types[1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_validate_cik_type_inside_filing[1234567891011]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_validate_cik_type_inside_filing[12345]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_validate_cik_type_inside_filing[123.0]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_validate_cik_inside_filing",
"secedgar/tests/filings/test_filings.py::TestFiling::test_save_no_filings_raises_error[no_urls0]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_save_no_filings_raises_error[no_urls1]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_save_multiple_ciks",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_save_single_cik",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_get_urls_returns_single_list_of_urls",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_returns_correct_number_of_urls[10]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_returns_correct_number_of_urls[25]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_returns_correct_number_of_urls[30]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_raises_warning_when_less_filings_than_count[20-True]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_raises_warning_when_less_filings_than_count[30-True]",
"secedgar/tests/filings/test_filings.py::TestFiling::test_filing_raises_warning_when_less_filings_than_count[40-True]"
] |
{
"failed_lite_validators": [
"has_added_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-07-27 17:04:42+00:00
|
apache-2.0
| 5,450 |
|
sec-edgar__sec-edgar-138
|
diff --git a/docs/source/whatsnew.rst b/docs/source/whatsnew.rst
index 6c246e6..c637790 100644
--- a/docs/source/whatsnew.rst
+++ b/docs/source/whatsnew.rst
@@ -6,6 +6,8 @@ What's New
New features, bug fixes, and improvements for each release.
+.. include:: whatsnew/v0.2.2.rst
+
.. include:: whatsnew/v0.2.1.rst
.. include:: whatsnew/v0.2.0.rst
diff --git a/docs/source/whatsnew/v0.2.2.rst b/docs/source/whatsnew/v0.2.2.rst
new file mode 100644
index 0000000..ed0bb99
--- /dev/null
+++ b/docs/source/whatsnew/v0.2.2.rst
@@ -0,0 +1,13 @@
+v0.2.1
+------
+
+Highlights
+~~~~~~~~~~
+
+* Fixes bug where ``DailyFilings`` and ``MasterFilings`` does not use correct URLs when calling `save` method (thanks to alpbozkurt!)
+
+Contributors
+~~~~~~~~~~~~
+
+- jackmoody11
+- alpbozkurt
\ No newline at end of file
diff --git a/secedgar/__init__.py b/secedgar/__init__.py
index fc79d63..020ed73 100644
--- a/secedgar/__init__.py
+++ b/secedgar/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '0.2.1'
+__version__ = '0.2.2'
diff --git a/secedgar/filings/_base.py b/secedgar/filings/_base.py
index ebbe5e2..ddd526b 100644
--- a/secedgar/filings/_base.py
+++ b/secedgar/filings/_base.py
@@ -34,7 +34,8 @@ class AbstractFiling(ABC):
kwargs: Anything to be passed to requests when making GET request.
Returns:
- urls (list): List of urls for txt files to download.
+ urls (dict): Dictionary of urls for txt files to download.
+ Keys are lookup terms and values are list of URLs.
"""
pass # pragma: no cover
@@ -69,3 +70,19 @@ class AbstractFiling(ABC):
allowed = string.digits + string.ascii_letters + string.whitespace
stripped = "".join(c for c in path if c in allowed)
return stripped.replace(" ", "_")
+
+ def _check_urls_exist(self):
+ """Wrapper around `get_urls` to check if there is a positive number of URLs.
+
+ .. note:: This method will not check if the URLs are valid. Simply if they exist.
+
+ Raises:
+ ValueError: If no URLs exist, then ValueError is raised.
+
+ Returns:
+ urls (dict): Result of `get_urls` method.
+ """
+ urls = self.get_urls()
+ if all(len(urls[cik]) == 0 for cik in urls.keys()):
+ raise ValueError("No filings available.")
+ return urls
diff --git a/secedgar/filings/_index.py b/secedgar/filings/_index.py
index 10d4638..95bb216 100644
--- a/secedgar/filings/_index.py
+++ b/secedgar/filings/_index.py
@@ -27,7 +27,7 @@ class IndexFilings(AbstractFiling):
self._master_idx_file = None
self._filings_dict = None
self._paths = []
- self._urls = []
+ self._urls = {}
@property
def client(self):
@@ -115,16 +115,19 @@ class IndexFilings(AbstractFiling):
# Will have CIK as keys and list of FilingEntry namedtuples as values
self._filings_dict = {}
FilingEntry = namedtuple(
- "FilingEntry", ["cik", "company_name", "form_type", "date_filed", "file_name"])
+ "FilingEntry", ["cik", "company_name", "form_type", "date_filed", "file_name",
+ "path"])
# idx file will have lines of the form CIK|Company Name|Form Type|Date Filed|File Name
entries = re.findall(r'^[0-9]+[|].+[|].+[|][0-9\-]+[|].+$', idx_file, re.MULTILINE)
for entry in entries:
fields = entry.split("|")
+ path = "Archives/{file_name}".format(file_name=fields[-1])
+ entry = FilingEntry(*fields, path=path)
# Add new filing entry to CIK's list
if fields[0] in self._filings_dict:
- self._filings_dict[fields[0]].append(FilingEntry(*fields))
+ self._filings_dict[fields[0]].append(entry)
else:
- self._filings_dict[fields[0]] = [FilingEntry(*fields)]
+ self._filings_dict[fields[0]] = [entry]
return self._filings_dict
def make_url(self, path):
@@ -138,28 +141,6 @@ class IndexFilings(AbstractFiling):
"""
return "{base}{path}".format(base=self.client._BASE, path=path)
- def get_paths(self, update_cache=False):
- """Gets all paths for given day.
-
- Each path will look something like
- "edgar/data/1000228/0001209191-18-064398.txt".
-
- Args:
- update_cache (bool, optional): Whether urls should be updated on each method call.
- Defaults to False.
-
- Returns:
- urls (list of str): List of urls.
- """
- if len(self._paths) == 0:
- for entries in self.get_filings_dict().values():
- for entry in entries:
- # Will be of the form
- self._paths.append(
- "Archives/{file_name}".format(
- file_name=entry.file_name))
- return self._paths
-
def get_urls(self):
"""Get all URLs for day.
@@ -168,43 +149,38 @@ class IndexFilings(AbstractFiling):
Returns:
urls (list of str): List of all URLs to get.
"""
- if len(self._urls) == 0:
- paths = self.get_paths()
- self._urls = [self.make_url(path) for path in paths]
+ if not self._urls:
+ filings_dict = self.get_filings_dict()
+ self._urls = {company: [self.make_url(entry.path) for entry in entries]
+ for company, entries in filings_dict.items()}
return self._urls
def save_filings(self, directory):
"""Save all filings.
- Will store all filings for each unique company name under a separate subdirectory
+ Will store all filings for each unique CIK under a separate subdirectory
within given directory argument.
Ex:
my_directory
|
- ---- Apple Inc.
+ ---- CIK 1
|
---- ...txt files
- ---- Microsoft Corp.
+ ---- CIK 2
|
---- ...txt files
Args:
- directory (str): Directory where filings should be stored. Will be broken down
- further by company name and form type.
+ directory (str): Directory where filings should be stored.
"""
- self.get_filings_dict()
- for filings in self._filings_dict.values():
- # take the company name from the first filing and make that the subdirectory name
- clean_company_name = self.clean_directory_path(filings[0].company_name)
- subdirectory = os.path.join(directory, clean_company_name)
- # TODO: Clean company name to make valid directory name (get rid of special characters)
- make_path(subdirectory)
- for filing in filings:
- filename = self.get_accession_number(filing.file_name)
- filing_path = os.path.join(
- subdirectory, filename)
- url = self.make_url(filename)
- data = requests.get(url).text
- with open(filing_path, 'w') as f:
+ urls = self._check_urls_exist()
+
+ for company, links in urls.items():
+ for link in links:
+ data = requests.get(link).text
+ path = os.path.join(directory, company)
+ make_path(path)
+ path = os.path.join(path, self.get_accession_number(link))
+ with open(path, "w") as f:
f.write(data)
diff --git a/secedgar/filings/filing.py b/secedgar/filings/filing.py
index 3af48af..7759b3a 100644
--- a/secedgar/filings/filing.py
+++ b/secedgar/filings/filing.py
@@ -191,23 +191,6 @@ class Filing(AbstractFiling):
# Takes `count` filings at most
return txt_urls[:self.count]
- def _get_accession_numbers(self, links):
- """Gets accession numbers given list of links.
-
- Of the form https://www.sec.gov/Archives/edgar/data/<cik>/
- <first part of accession number before '-'>/<accession number>-index.htm.
-
- Args:
- links (list): List of links to extract accession numbers from.
-
- Returns:
- List of accession numbers for given links.
- """
- self._accession_numbers = [self.get_accession_number(
- link).replace('-index.htm', '') for link in links]
- return self._accession_numbers
-
- # TODO: break this method down further
def save(self, directory):
"""Save files in specified directory.
@@ -223,9 +206,7 @@ class Filing(AbstractFiling):
Raises:
ValueError: If no text urls are available for given filing object.
"""
- urls = self.get_urls()
- if all(len(urls[cik]) == 0 for cik in urls.keys()):
- raise ValueError("No filings available.")
+ urls = self._check_urls_exist()
for cik, links in urls.items():
for link in links:
diff --git a/setup.cfg b/setup.cfg
index 51b50a0..e749bba 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -1,2 +1,7 @@
[flake8]
-max-line-length = 100
\ No newline at end of file
+max-line-length = 100
+
+[tool:pytest]
+markers =
+ smoke: marks tests as smoke tests (deselect with -m not smoke)
+ slow: marks tests as slow (deselect with -m not slow)
\ No newline at end of file
|
sec-edgar/sec-edgar
|
51ee1639641f6dfb7b1c7b8daf2c252056624957
|
diff --git a/secedgar/tests/filings/test_daily.py b/secedgar/tests/filings/test_daily.py
index 1ae926a..a29f373 100644
--- a/secedgar/tests/filings/test_daily.py
+++ b/secedgar/tests/filings/test_daily.py
@@ -54,18 +54,18 @@ class TestDaily:
DailyFilings(bad_date)
@pytest.mark.parametrize(
- "url",
+ "key,url",
[
- "http://www.sec.gov/Archives/edgar/data/1000228/0001209191-18-064398.txt",
- "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046093.txt",
- "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046095.txt",
- "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046101.txt",
- "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046102.txt"
+ ("1000228", "http://www.sec.gov/Archives/edgar/data/1000228/0001209191-18-064398.txt"),
+ ("1000275", "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046093.txt"),
+ ("1000275", "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046095.txt"),
+ ("1000275", "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046101.txt"),
+ ("1000275", "http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046102.txt")
]
)
- def test_get_urls(self, mock_daily_quarter_directory, mock_daily_idx_file, url):
+ def test_get_urls(self, mock_daily_quarter_directory, mock_daily_idx_file, key, url):
daily_filing = DailyFilings(datetime(2018, 12, 31))
- assert url in daily_filing.get_urls()
+ assert url in daily_filing.get_urls()[key]
def test_get_listings_directory(self, mock_daily_quarter_directory):
assert DailyFilings(datetime(2018, 12, 31)).get_listings_directory().status_code == 200
@@ -134,11 +134,11 @@ class TestDaily:
@pytest.mark.parametrize(
"subdir,file",
[
- ("HENRY_SCHEIN_INC", "0001209191-18-064398.txt"),
- ("ROYAL_BANK_OF_CANADA", "0001140361-18-046093.txt"),
- ("NOVAVAX_INC", "0001144204-18-066754.txt"),
- ("BROOKFIELD_ASSET_MANAGEMENT_INC", "0001104659-18-075315.txt"),
- ("BANK_OF_SOUTH_CAROLINA_CORP", "0001225208-18-017075.txt")
+ ("1000228", "0001209191-18-064398.txt"),
+ ("1000275", "0001140361-18-046093.txt"),
+ ("1000694", "0001144204-18-066754.txt"),
+ ("1001085", "0001104659-18-075315.txt"),
+ ("1007273", "0001225208-18-017075.txt")
]
)
def test_save(self, tmp_data_directory,
diff --git a/secedgar/tests/filings/test_master.py b/secedgar/tests/filings/test_master.py
index f08bfbd..cf90359 100644
--- a/secedgar/tests/filings/test_master.py
+++ b/secedgar/tests/filings/test_master.py
@@ -65,11 +65,11 @@ class TestMaster:
@pytest.mark.parametrize(
"subdir,file",
[
- ("SAGE_CAPITAL_LP", "9999999997-02-056978.txt"),
- ("BETHLEHEM_STEEL_CORP_DE", "0000011860-94-000005.txt"),
- ("CAPITAL_HOLDING_CORP", "0000017206-94-000007.txt"),
- ("DATAPOINT_CORP", "0000205239-94-000003.txt"),
- ("CLARK_REFINING__MARKETING_INC", "0000950131-94-000025.txt"),
+ ("1095785", "9999999997-02-056978.txt"),
+ ("11860", "0000011860-94-000005.txt"),
+ ("17206", "0000017206-94-000007.txt"),
+ ("205239", "0000205239-94-000003.txt"),
+ ("20762", "0000950131-94-000025.txt"),
]
)
def test_save(self, tmp_data_directory,
|
Daily filings with DailyFilings class all have "404 - Not Found" content
**Describe the bug**
With DailyFilings usage, 'save_filings' method of IndexFilings class generates wrong URLs for calls to 'requests.get', which results in "404 - Not Found" page in all downloaded files. I.e: URL: http://www.sec.gov/0001140361-20-015873.txt
Interstingly, 'get_urls' method generates correct URL list but 'save_filings' method don't use it and generates URLs in some other way, which is wrong.
Also, the accompanying tests don't check the downloaded content, so 404 page content is not caught by those tests.
**To Reproduce**
Steps to reproduce the behavior:
1. filings_client = DailyFilings(date)
2. filings_client.get_urls() # correct URLs listed
3. filings_client.save(folder) # All files have 404 page content
**Expected behavior**
'save' method for DailyFilings should generate correct URLs and download filings, not 404 page content.
**Possible Fix**
In 'save_filings' method of 'IndexFilings' class:
<< url = self.make_url(filename)
>> archive_filename = "Archives/%s" % filing.file_name # may not work with Python < 3 ?
>> url = self.make_url(archive_filename)
Tested this in Python 3.8
A better fix might be the use of 'get_urls' the way 'Filing.save' method does.
I can create a PR for whichever way you choose.
**Desktop (please complete the following information):**
Ubuntu 20.04
|
0.0
|
51ee1639641f6dfb7b1c7b8daf2c252056624957
|
[
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[1000228-http://www.sec.gov/Archives/edgar/data/1000228/0001209191-18-064398.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[1000275-http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046093.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[1000275-http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046095.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[1000275-http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046101.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_urls[1000275-http://www.sec.gov/Archives/edgar/data/1000275/0001140361-18-046102.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[1000228-0001209191-18-064398.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[1000275-0001140361-18-046093.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[1000694-0001144204-18-066754.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[1001085-0001104659-18-075315.txt]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_save[1007273-0001225208-18-017075.txt]",
"secedgar/tests/filings/test_master.py::TestMaster::test_save[1095785-9999999997-02-056978.txt]",
"secedgar/tests/filings/test_master.py::TestMaster::test_save[11860-0000011860-94-000005.txt]",
"secedgar/tests/filings/test_master.py::TestMaster::test_save[17206-0000017206-94-000007.txt]",
"secedgar/tests/filings/test_master.py::TestMaster::test_save[205239-0000205239-94-000003.txt]",
"secedgar/tests/filings/test_master.py::TestMaster::test_save[20762-0000950131-94-000025.txt]"
] |
[
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date0-1]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date1-1]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date2-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date3-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date4-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date5-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date6-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_quarter[date7-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_idx_filename[date0-master.20200101.idx]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_idx_filename[date1-master.20200331.idx]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_idx_filename[date2-master.20200401.idx]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_idx_filename[date3-master.20200630.idx]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_bad_date_format_fails[1.0]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_bad_date_format_fails[12]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_bad_date_format_fails[12/31/2018]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_listings_directory",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[HENRY",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[ROYAL",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[NOVAVAX",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[BROOKFIELD",
"secedgar/tests/filings/test_daily.py::TestDaily::test_get_master_idx_file[PERUSAHAAN",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2018-1-1-1]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2017-5-1-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2016-6-30-2]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2015-7-1-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2014-9-30-3]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2013-10-1-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2012-11-20-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_path_property[2011-12-31-4]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_no_params",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple0-010294]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple1-123194]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple2-950101]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple3-950102]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple4-980101]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple5-980102]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple6-19980331]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple7-19980401]",
"secedgar/tests/filings/test_daily.py::TestDaily::test_master_idx_date_format[date_tuple8-19990101]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[-1-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[0.0-TypeError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[1990-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[1991-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[1992-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[1993-TypeError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_year[1993.0-TypeError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_good_year",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[0.0-TypeError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[1.0-TypeError0]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[1-TypeError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[1.0-TypeError1]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[0-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[5-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[6-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_bad_quarter[2020-ValueError]",
"secedgar/tests/filings/test_master.py::TestMaster::test_good_quarters",
"secedgar/tests/filings/test_master.py::TestMaster::test_idx_filename_is_always_the_same[2018-1]",
"secedgar/tests/filings/test_master.py::TestMaster::test_idx_filename_is_always_the_same[2019-2]",
"secedgar/tests/filings/test_master.py::TestMaster::test_idx_filename_is_always_the_same[2020-3]",
"secedgar/tests/filings/test_master.py::TestMaster::test_clean_path[Apple",
"secedgar/tests/filings/test_master.py::TestMaster::test_clean_path[Microsoft",
"secedgar/tests/filings/test_master.py::TestMaster::test_clean_path[Bed,",
"secedgar/tests/filings/test_master.py::TestMaster::test_clean_path[Company"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_added_files",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-10-25 20:53:10+00:00
|
apache-2.0
| 5,451 |
|
sec-edgar__sec-edgar-249
|
diff --git a/docs/source/whatsnew/v0.4.0.rst b/docs/source/whatsnew/v0.4.0.rst
index 84a8249..52354c6 100644
--- a/docs/source/whatsnew/v0.4.0.rst
+++ b/docs/source/whatsnew/v0.4.0.rst
@@ -17,6 +17,8 @@ Many breaking changes, as this update does a lot of restructuring.
- Fix issue where daily CLI command would not work due to ``date_cleanup`` returning ``datetime.datetime`` instead of ``datetime.date``
- Fix issue where ``CompanyFilings`` includes links that are not exact matches to ``filing_type``.
- Add NSAR filing types. Thanks to mjkoo91!
+- Get rid of caching behavior that was causing issues when downloading filings.
+- Simplify ``ComboFilings`` logic for getting quarterly and daily dates.
- Fix issue where ``get_cik_map`` fails due to the SEC providing ``None`` for title or ticker.
Contributors
diff --git a/secedgar/core/_index.py b/secedgar/core/_index.py
index be2cdcf..71cd44a 100644
--- a/secedgar/core/_index.py
+++ b/secedgar/core/_index.py
@@ -142,43 +142,39 @@ class IndexFilings(AbstractFiling):
.format(filename=self.idx_filename))
return self._master_idx_file
- def get_filings_dict(self, update_cache=False, **kwargs):
+ def get_filings_dict(self, **kwargs):
"""Get all filings inside an idx file.
Args:
- update_cache (bool, optional): Whether filings dict should be
- updated on each method call. Defaults to False.
-
kwargs: Any kwargs to pass to _get_master_idx_file. See
``secedgar.core.daily.DailyFilings._get_master_idx_file``.
"""
- if self._filings_dict is None or update_cache:
- idx_file = self._get_master_idx_file(**kwargs)
- # Will have CIK as keys and list of FilingEntry namedtuples as values
- self._filings_dict = {}
- FilingEntry = namedtuple("FilingEntry", [
- "cik", "company_name", "form_type", "date_filed", "file_name",
- "path", "num_previously_valid"
- ])
- # idx file will have lines of the form CIK|Company Name|Form Type|Date Filed|File Name
- current_count = 0
- entries = re.findall(r'^[0-9]+[|].+[|].+[|][0-9\-]+[|].+$',
- idx_file, re.MULTILINE)
- for entry in entries:
- fields = entry.split("|")
- path = "Archives/{file_name}".format(file_name=fields[-1])
- entry = FilingEntry(*fields,
- path=path,
- num_previously_valid=current_count)
- if self.entry_filter is not None and not self.entry_filter(
- entry):
- continue
- current_count += 1
- # Add new filing entry to CIK's list
- if entry.cik in self._filings_dict:
- self._filings_dict[entry.cik].append(entry)
- else:
- self._filings_dict[entry.cik] = [entry]
+ idx_file = self._get_master_idx_file(**kwargs)
+ # Will have CIK as keys and list of FilingEntry namedtuples as values
+ self._filings_dict = {}
+ FilingEntry = namedtuple("FilingEntry", [
+ "cik", "company_name", "form_type", "date_filed", "file_name",
+ "path", "num_previously_valid"
+ ])
+ # idx file will have lines of the form CIK|Company Name|Form Type|Date Filed|File Name
+ current_count = 0
+ entries = re.findall(r'^[0-9]+[|].+[|].+[|][0-9\-]+[|].+$',
+ idx_file, re.MULTILINE)
+ for entry in entries:
+ fields = entry.split("|")
+ path = "Archives/{file_name}".format(file_name=fields[-1])
+ entry = FilingEntry(*fields,
+ path=path,
+ num_previously_valid=current_count)
+ if self.entry_filter is not None and not self.entry_filter(
+ entry):
+ continue
+ current_count += 1
+ # Add new filing entry to CIK's list
+ if entry.cik in self._filings_dict:
+ self._filings_dict[entry.cik].append(entry)
+ else:
+ self._filings_dict[entry.cik] = [entry]
return self._filings_dict
def get_urls(self):
@@ -189,13 +185,12 @@ class IndexFilings(AbstractFiling):
Returns:
urls (list of str): List of all URLs to get.
"""
- if not self._urls:
- filings_dict = self.get_filings_dict()
- self._urls = {
- company:
- [self.client._prepare_query(entry.path) for entry in entries]
- for company, entries in filings_dict.items()
- }
+ filings_dict = self.get_filings_dict()
+ self._urls = {
+ company:
+ [self.client._prepare_query(entry.path) for entry in entries]
+ for company, entries in filings_dict.items()
+ }
return self._urls
@staticmethod
diff --git a/secedgar/core/combo.py b/secedgar/core/combo.py
index 604ba04..788e310 100644
--- a/secedgar/core/combo.py
+++ b/secedgar/core/combo.py
@@ -2,12 +2,32 @@ from datetime import date, timedelta
from functools import reduce
from typing import Union
+from secedgar.client import NetworkClient
from secedgar.core.daily import DailyFilings
from secedgar.core.quarterly import QuarterlyFilings
from secedgar.exceptions import EDGARQueryError, NoFilingsError
from secedgar.utils import add_quarter, get_month, get_quarter
+def fill_days(start, end, include_start=False, include_end=False):
+ """Get dates for days in between start and end date.
+
+ Args:
+ start (``datetime.date``): Start date.
+ end (``datetime.date``): End date.
+ include_start (bool, optional): Whether or not to include start date in range.
+ Defaults to False.
+ include_end (bool, optional): Whether or not to include end date in range.
+ Defaults to False.
+
+ Returns:
+ list of ``datetime.date``: List of dates between ``start`` and ``end``.
+ """
+ start_range = 0 if include_start else 1
+ end_range = (end - start).days + 1 if include_end else (end - start).days
+ return [start + timedelta(days=d) for d in range(start_range, end_range)]
+
+
class ComboFilings:
"""Class for retrieving all filings between specified dates.
@@ -64,92 +84,154 @@ class ComboFilings:
self.entry_filter = entry_filter
self.start_date = start_date
self.end_date = end_date
- self.user_agent = user_agent
- self.quarterly = QuarterlyFilings(year=self.start_date.year,
- quarter=get_quarter(self.start_date),
- user_agent=user_agent,
- client=client,
- entry_filter=self.entry_filter,
- **kwargs)
- self.daily = DailyFilings(date=self.start_date,
- user_agent=user_agent,
- client=client,
- entry_filter=self.entry_filter,
- **kwargs)
- self.balancing_point = balancing_point
- self._recompute()
-
- def _recompute(self):
- """Recompute the best list of quarters and days to use based on the start and end date."""
+ self._client = client or NetworkClient(user_agent=user_agent, **kwargs)
+ self._balancing_point = balancing_point
+
+ @property
+ def entry_filter(self):
+ """A boolean function to be tested on each listing entry.
+
+ This is tested regardless of download method.
+ """
+ return self._entry_filter
+
+ @entry_filter.setter
+ def entry_filter(self, fn):
+ if callable(fn):
+ self._entry_filter = fn
+ else:
+ raise ValueError('entry_filter must be a function or lambda.')
+
+ @property
+ def client(self):
+ """``secedgar.client.NetworkClient``: Client to use to make requests."""
+ return self._client
+
+ @property
+ def start_date(self):
+ """Union([datetime.date]): Date before which no filings fetched."""
+ return self._start_date
+
+ @start_date.setter
+ def start_date(self, val):
+ if val:
+ self._start_date = val
+ else:
+ self._start_date = None
+
+ @property
+ def end_date(self):
+ """Union([datetime.date]): Date after which no filings fetched."""
+ return self._end_date
+
+ @end_date.setter
+ def end_date(self, val):
+ self._end_date = val
+
+ @property
+ def balancing_point(self):
+ """int: Point after which to use ``QuarterlyFilings`` with ``entry_filter`` to get data."""
+ return self._balancing_point
+
+ def _get_quarterly_daily_date_lists(self):
+ """Break down date range into combination of quarters and single dates.
+
+ Returns:
+ tuple of lists: Quarterly date list and daily date list.
+ """
+ # Initialize quarter and date lists
current_date = self.start_date
- self.quarterly_date_list = []
- self.daily_date_list = []
+ quarterly_date_list = []
+ daily_date_list = []
+
while current_date <= self.end_date:
current_quarter = get_quarter(current_date)
current_year = current_date.year
next_year, next_quarter = add_quarter(current_year, current_quarter)
- next_start_quarter_date = date(next_year, get_month(next_quarter),
- 1)
+ next_start_quarter_date = date(next_year, get_month(next_quarter), 1)
days_till_next_quarter = (next_start_quarter_date -
current_date).days
days_till_end = (self.end_date - current_date).days
+
+ # If there are more days until the end date than there are
+ # in the quarter, add
if days_till_next_quarter <= days_till_end:
current_start_quarter_date = date(current_year,
get_month(current_quarter), 1)
if current_start_quarter_date == current_date:
- self.quarterly_date_list.append(
+ quarterly_date_list.append(
(current_year, current_quarter, lambda x: True))
current_date = next_start_quarter_date
elif days_till_next_quarter > self.balancing_point:
- self.quarterly_date_list.append(
+ quarterly_date_list.append(
(current_year, current_quarter,
lambda x: date(x['date_filed']) >= self.start_date))
current_date = next_start_quarter_date
else:
- while current_date < next_start_quarter_date:
- self.daily_date_list.append(current_date)
- current_date += timedelta(days=1)
+ daily_date_list.extend(fill_days(start=current_date,
+ end=next_start_quarter_date,
+ include_start=True,
+ include_end=False))
+ current_date = next_start_quarter_date
else:
if days_till_end > self.balancing_point:
if days_till_next_quarter - 1 == days_till_end:
- self.quarterly_date_list.append(
+ quarterly_date_list.append(
(current_year, current_quarter, lambda x: True))
current_date = next_start_quarter_date
else:
- self.quarterly_date_list.append(
+ quarterly_date_list.append(
(current_year, current_quarter,
lambda x: date(x['date_filed']) <= self.end_date))
current_date = self.end_date
else:
- while current_date <= self.end_date:
- self.daily_date_list.append(current_date)
- current_date += timedelta(days=1)
+ daily_date_list.extend(fill_days(start=current_date,
+ end=self.end_date,
+ include_start=True,
+ include_end=True))
+ break
+ return quarterly_date_list, daily_date_list
+
+ @property
+ def quarterly_date_list(self):
+ """List of tuples: List of tuples with year, quarter, and ``entry_filter`` to use."""
+ return self._get_quarterly_daily_date_lists()[0] # 0 = quarterly
+
+ @property
+ def daily_date_list(self):
+ """List of ``datetime.date``: List of dates for which to fetch daily data."""
+ return self._get_quarterly_daily_date_lists()[1] # 1 = daily
def get_urls(self):
"""Get all urls between ``start_date`` and ``end_date``."""
# Use functools.reduce for speed
# see https://stackoverflow.com/questions/10461531/merge-and-sum-of-two-dictionaries
- def reducer(accumulator, dictionary):
+ def _reducer(accumulator, dictionary):
for key, value in dictionary.items():
accumulator[key] = accumulator.get(key, []) + value
return accumulator
list_of_dicts = []
for (year, quarter, f) in self.quarterly_date_list:
- self.quarterly.year = year
- self.quarterly.quarter = quarter
- self.quarterly.entry_filter = lambda x: f(x) and self.entry_filter(x)
- list_of_dicts.append(self.quarterly.get_urls())
+ q = QuarterlyFilings(year=year,
+ quarter=quarter,
+ user_agent=self.user_agent,
+ client=self.client,
+ entry_filter=lambda x: f(x) and self.entry_filter(x))
+ list_of_dicts.append(q.get_urls())
- for d in self.daily_date_list:
- self.daily.date = d
+ for _date in self.daily_date_list:
+ d = DailyFilings(date=_date,
+ user_agent=self.user_agent,
+ client=self.client,
+ entry_filter=self.entry_filter)
try:
- list_of_dicts.append(self.daily.get_urls())
- except EDGARQueryError:
- pass
+ list_of_dicts.append(d.get_urls())
+ except EDGARQueryError: # continue if no URLs available for given day
+ continue
- complete_dictionary = reduce(reducer, list_of_dicts, {})
+ complete_dictionary = reduce(_reducer, list_of_dicts, {})
return complete_dictionary
def save(self,
@@ -173,22 +255,28 @@ class ComboFilings:
daily_date_format (str, optional): Format string to use for the `{date}` pattern.
Defaults to "%Y%m%d".
"""
+ # Go through all quarters and dates and save filings using appropriate class
for (year, quarter, f) in self.quarterly_date_list:
- self.quarterly.year = year
- self.quarterly.quarter = quarter
- self.quarterly.entry_filter = lambda x: f(x) and self.entry_filter(x)
- self.quarterly.save(directory=directory,
- dir_pattern=dir_pattern,
- file_pattern=file_pattern,
- download_all=download_all)
-
- for d in self.daily_date_list:
- self.daily.date = d
+ q = QuarterlyFilings(year=year,
+ quarter=quarter,
+ user_agent=self.client.user_agent,
+ client=self.client,
+ entry_filter=lambda x: f(x) and self.entry_filter(x))
+ q.save(directory=directory,
+ dir_pattern=dir_pattern,
+ file_pattern=file_pattern,
+ download_all=download_all)
+
+ for date_ in self.daily_date_list:
+ d = DailyFilings(date=date_,
+ user_agent=self.client.user_agent,
+ client=self.client,
+ entry_filter=self.entry_filter)
try:
- self.daily.save(directory=directory,
- dir_pattern=dir_pattern,
- file_pattern=file_pattern,
- download_all=download_all,
- date_format=daily_date_format)
- except (EDGARQueryError, NoFilingsError):
- pass
+ d.save(directory=directory,
+ dir_pattern=dir_pattern,
+ file_pattern=file_pattern,
+ download_all=download_all,
+ date_format=daily_date_format)
+ except (EDGARQueryError, NoFilingsError): # continue if no filings for given day
+ continue
|
sec-edgar/sec-edgar
|
65320eae7c5b256cd197da00c16348824aadc807
|
diff --git a/secedgar/tests/core/test_combo.py b/secedgar/tests/core/test_combo.py
index 55ea6a2..bab68c7 100644
--- a/secedgar/tests/core/test_combo.py
+++ b/secedgar/tests/core/test_combo.py
@@ -1,8 +1,9 @@
from datetime import date
import pytest
+
from secedgar.client import NetworkClient
-from secedgar.core.combo import ComboFilings
+from secedgar.core.combo import ComboFilings, fill_days
def lambda_matches(a, b):
@@ -18,6 +19,22 @@ def quarterly_list_matches(l1, l2):
class TestComboFilings:
+ @pytest.mark.parametrize(
+ "include_start,include_end,expected",
+ [
+ (True, True, [date(2020, 1, i) for i in (1, 2, 3)]),
+ (True, False, [date(2020, 1, i) for i in (1, 2)]),
+ (False, False, [date(2020, 1, 2)]),
+ (False, True, [date(2020, 1, i) for i in (2, 3)]),
+ ]
+ )
+ def test_fill_days(self, include_start, include_end, expected):
+ result = fill_days(start=date(2020, 1, 1),
+ end=date(2020, 1, 3),
+ include_start=include_start,
+ include_end=include_end)
+ assert result == expected
+
def test_user_agent_client_none(self):
with pytest.raises(TypeError):
_ = ComboFilings(start_date=date(2020, 1, 1),
@@ -30,8 +47,7 @@ class TestComboFilings:
combo = ComboFilings(start_date=date(2020, 1, 1),
end_date=date(2020, 12, 31),
client=client)
- assert combo.quarterly.client == client
- assert combo.daily.client == client
+ assert combo.client == client
def test_combo_quarterly_only_one_year(self, mock_user_agent):
combo = ComboFilings(start_date=date(2020, 1, 1),
@@ -102,9 +118,60 @@ class TestComboFilings:
assert [str(s) for s in combo.daily_date_list] == daily_expected
assert quarterly_list_matches(combo.quarterly_date_list, quarterly_expected)
- def test_user_agent_passed_to_client(self, mock_user_agent):
+ def test_properties_on_init(self, mock_user_agent):
+ start = date(2020, 1, 1)
+ end = date(2020, 5, 30)
+ bp = 25
+ combo = ComboFilings(start_date=start,
+ end_date=end,
+ user_agent=mock_user_agent,
+ balancing_point=bp)
+
+ assert combo.start_date == start
+ assert combo.end_date == end
+ assert combo.balancing_point == bp
+ assert combo.client.user_agent == mock_user_agent
+
+ @pytest.mark.parametrize(
+ "bad_entry_filter",
+ [
+ None,
+ [],
+ (),
+ 0,
+ ""]
+ )
+ def test_bad_entry_filter(self, bad_entry_filter):
+ with pytest.raises(ValueError):
+ _ = ComboFilings(start_date=date(2020, 1, 1),
+ end_date=date(2020, 5, 30),
+ entry_filter=bad_entry_filter)
+
+ @pytest.mark.parametrize(
+ "good_entry_filter",
+ [
+ lambda x: True,
+ lambda x: False,
+ lambda f: f.form_type.lower() == "10-k"
+ ]
+ )
+ def test_good_entry_filter(self, good_entry_filter, mock_user_agent):
+ combo = ComboFilings(date(2020, 1, 1),
+ date(2020, 5, 30),
+ entry_filter=good_entry_filter,
+ user_agent=mock_user_agent)
+ assert combo.entry_filter == good_entry_filter
+
+ def test_client_read_only(self, mock_user_agent):
+ combo = ComboFilings(start_date=date(2020, 1, 1),
+ end_date=date(2020, 1, 3),
+ user_agent=mock_user_agent)
+ with pytest.raises(AttributeError):
+ combo.client = None
+
+ def test_balancing_point_read_only(self, mock_user_agent):
combo = ComboFilings(start_date=date(2020, 1, 1),
- end_date=date(2021, 1, 1),
+ end_date=date(2020, 1, 3),
user_agent=mock_user_agent)
- assert combo.quarterly.client.user_agent == mock_user_agent
- assert combo.daily.client.user_agent == mock_user_agent
+ with pytest.raises(AttributeError):
+ combo.balancing_point = 20
|
The same and only file gets downloaded for all years and quarters and filing types
**Describe the bug**
When running a sample piece of code from the official documentation (with addition of a custom `client`), the data that is downloaded is the same and the only file that gets downloaded for all years, quarters and filing types. See screenshot
**To Reproduce**
Steps to reproduce the behavior:
1. Run the code snippet below
```
from datetime import date
from secedgar import filings
a = NetworkClient(rate_limit=1,user_agent="Mozilla")
limit_to_form13 = lambda f: f.form_type in ("13F-HR", "13F-HR/A")
daily_filings_limited = filings(start_date=date(1993, 1 ,1),
end_date=date(2021, 3, 31),
client=a,
entry_filter=limit_to_form13)
daily_filings_limited.save("./data_13F")
```
**Expected behavior**
All 13F filings being downloaded for all companies and all years
**Screenshots**

**Desktop (please complete the following information):**
Windows 11
v0.4.0-alpha.2
**Additional context**
Add any other context about the problem here.
|
0.0
|
65320eae7c5b256cd197da00c16348824aadc807
|
[
"secedgar/tests/core/test_combo.py::TestComboFilings::test_fill_days[True-True-expected0]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_fill_days[True-False-expected1]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_fill_days[False-False-expected2]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_fill_days[False-True-expected3]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_user_agent_client_none",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_client_passed_to_objects",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_quarterly_only_one_year",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_quarterly_only_multiple_years",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_daily_only_single_day",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_daily_only_multiple_days",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_daily_quarterly_mixed[start_date0-end_date0-quarterly_expected0-daily_expected0]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_daily_quarterly_mixed[start_date1-end_date1-quarterly_expected1-daily_expected1]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_daily_quarterly_mixed[start_date2-end_date2-quarterly_expected2-daily_expected2]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_combo_daily_quarterly_mixed[start_date3-end_date3-quarterly_expected3-daily_expected3]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_properties_on_init",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_bad_entry_filter[None]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_bad_entry_filter[bad_entry_filter1]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_bad_entry_filter[bad_entry_filter2]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_bad_entry_filter[0]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_bad_entry_filter[]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_good_entry_filter[<lambda>0]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_good_entry_filter[<lambda>1]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_good_entry_filter[<lambda>2]",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_client_read_only",
"secedgar/tests/core/test_combo.py::TestComboFilings::test_balancing_point_read_only"
] |
[] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_media",
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-11-29 02:42:01+00:00
|
apache-2.0
| 5,452 |
|
sec-edgar__sec-edgar-251
|
diff --git a/docs/source/whatsnew/v0.4.0.rst b/docs/source/whatsnew/v0.4.0.rst
index 52354c6..af6620b 100644
--- a/docs/source/whatsnew/v0.4.0.rst
+++ b/docs/source/whatsnew/v0.4.0.rst
@@ -16,6 +16,7 @@ Many breaking changes, as this update does a lot of restructuring.
- Fix use of ``user_agent`` by ``NetworkClient`` and require its use by all filings classes/functions
- Fix issue where daily CLI command would not work due to ``date_cleanup`` returning ``datetime.datetime`` instead of ``datetime.date``
- Fix issue where ``CompanyFilings`` includes links that are not exact matches to ``filing_type``.
+- Fix issue where ``get_urls`` does not reset ``params`` after getting company filings URLs.
- Add NSAR filing types. Thanks to mjkoo91!
- Get rid of caching behavior that was causing issues when downloading filings.
- Simplify ``ComboFilings`` logic for getting quarterly and daily dates.
diff --git a/secedgar/core/company.py b/secedgar/core/company.py
index c4fa20e..b4480c4 100644
--- a/secedgar/core/company.py
+++ b/secedgar/core/company.py
@@ -107,12 +107,10 @@ class CompanyFilings(AbstractFiling):
ownership="include",
match_format="ALL",
**kwargs):
- # Leave params before other setters
self._params = {
"action": "getcompany",
"output": "xml",
- "owner": ownership,
- "start": 0,
+ "start": 0
}
self.start_date = start_date
self.end_date = end_date
@@ -123,6 +121,7 @@ class CompanyFilings(AbstractFiling):
self._client = client or NetworkClient(user_agent=user_agent, **kwargs)
# make CIKLookup object for users if not given
self.cik_lookup = cik_lookup
+ self.ownership = ownership
@property
def path(self):
@@ -132,6 +131,17 @@ class CompanyFilings(AbstractFiling):
@property
def params(self):
""":obj:`dict`: Parameters to include in requests."""
+ if self.start_date:
+ self._params["datea"] = sanitize_date(self.start_date)
+ else:
+ self._params.pop("datea", None) # if no start date, make sure it isn't in params
+
+ if self.end_date:
+ self._params["dateb"] = sanitize_date(self.end_date)
+ else:
+ self._params.pop("dateb", None) # if no end date, make sure it isn't in params
+
+ self._params["ownership"] = self.ownership
return self._params
@property
@@ -151,18 +161,14 @@ class CompanyFilings(AbstractFiling):
@match_format.setter
def match_format(self, val):
- if val in ["EXACT", "AMEND", "ALL"]:
- self._match_format = val
- else:
- raise ValueError("Format must be one of EXACT,AMEND,ALL")
+ if val not in ("EXACT", "AMEND", "ALL"):
+ raise ValueError("Format must be 'EXACT', 'AMEND', or 'ALL'.")
+ self._match_format = val
@start_date.setter
def start_date(self, val):
- if val is not None:
- self._params["datea"] = sanitize_date(val)
- self._start_date = val
- else:
- self._start_date = None
+ sanitize_date(val) # make sure start date is valid
+ self._start_date = val
@property
def end_date(self):
@@ -171,7 +177,7 @@ class CompanyFilings(AbstractFiling):
@end_date.setter
def end_date(self, val):
- self._params["dateb"] = sanitize_date(val)
+ sanitize_date(val) # make sure end date is valid
self._end_date = val
@property
@@ -184,7 +190,9 @@ class CompanyFilings(AbstractFiling):
if isinstance(filing_type, FilingType):
self._params["type"] = filing_type.value
elif filing_type is not None:
- raise FilingTypeError
+ raise FilingTypeError(
+ f"filing_type must be of type FilingType. Given {type(filing_type)}."
+ )
self._filing_type = filing_type
@property
@@ -215,6 +223,17 @@ class CompanyFilings(AbstractFiling):
val = CIKLookup(val, client=self.client)
self._cik_lookup = val
+ @property
+ def ownership(self):
+ """str: Whether or not to include ownership in search."""
+ return self._ownership
+
+ @ownership.setter
+ def ownership(self, val):
+ if val not in ("include", "exclude"):
+ raise ValueError(f"Ownership must be 'include' or 'exclude'. Given {val}.")
+ self._ownership = val
+
def get_urls(self, **kwargs):
"""Get urls for all CIKs given to Filing object.
|
sec-edgar/sec-edgar
|
d210e7d340863d14f862866786e6ca28194bed81
|
diff --git a/secedgar/tests/core/test_company.py b/secedgar/tests/core/test_company.py
index 238cfe9..744e8e7 100644
--- a/secedgar/tests/core/test_company.py
+++ b/secedgar/tests/core/test_company.py
@@ -72,6 +72,24 @@ def mock_single_cik_filing_limited_responses(monkeypatch):
class TestCompanyFilings:
+ valid_dates = [
+ datetime.datetime(2020, 1, 1),
+ datetime.datetime(2020, 2, 1),
+ datetime.datetime(2020, 3, 1),
+ datetime.datetime(2020, 4, 1),
+ datetime.datetime(2020, 5, 1),
+ "20200101",
+ 20200101,
+ None
+ ]
+ bad_dates = [
+ 1,
+ 2020010101,
+ "2020010101",
+ "2020",
+ "0102"
+ ]
+
class TestCompanyFilingsClient:
def test_user_agent_client_none(self):
@@ -114,13 +132,7 @@ class TestCompanyFilings:
count=count)
assert filing.count == count
- @pytest.mark.parametrize("start_date", [
- datetime.datetime(2020, 1, 1),
- datetime.datetime(2020, 2, 1),
- datetime.datetime(2020, 3, 1),
- datetime.datetime(2020, 4, 1),
- datetime.datetime(2020, 5, 1), "20200101", 20200101, None
- ])
+ @pytest.mark.parametrize("start_date", valid_dates)
def test_good_start_date_setter_on_init(self, start_date, mock_user_agent):
filing = CompanyFilings(
cik_lookup="aapl",
@@ -129,8 +141,7 @@ class TestCompanyFilings:
user_agent=mock_user_agent)
assert filing.start_date == start_date
- @pytest.mark.parametrize("bad_start_date",
- [1, 2020010101, "2020010101", "2020", "0102"])
+ @pytest.mark.parametrize("bad_start_date", bad_dates)
def test_bad_start_date_setter_on_init(self, mock_user_agent, bad_start_date):
with pytest.raises(TypeError):
CompanyFilings(user_agent=mock_user_agent,
@@ -138,6 +149,23 @@ class TestCompanyFilings:
filing_type=FilingType.FILING_10Q,
start_date=bad_start_date)
+ @pytest.mark.parametrize("end_date", valid_dates)
+ def test_good_end_date_setter_on_init(self, end_date, mock_user_agent):
+ filing = CompanyFilings(
+ cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ end_date=end_date,
+ user_agent=mock_user_agent)
+ assert filing.end_date == end_date
+
+ @pytest.mark.parametrize("bad_end_date", bad_dates)
+ def test_bad_end_date_setter_on_init(self, mock_user_agent, bad_end_date):
+ with pytest.raises(TypeError):
+ CompanyFilings(user_agent=mock_user_agent,
+ cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ end_date=bad_end_date)
+
@pytest.mark.parametrize("count,expected_error", [(-1, ValueError),
(0, ValueError),
(0.0, TypeError),
@@ -325,7 +353,6 @@ class TestCompanyFilings:
my_filings.save(tmp_data_directory)
def test__filter_filing_links(self, mock_user_agent, mock_single_cik_filing):
- # data =
f = CompanyFilings(cik_lookup="aapl",
filing_type=FilingType.FILING_10Q,
user_agent=mock_user_agent)
@@ -333,3 +360,85 @@ class TestCompanyFilings:
links = f._filter_filing_links(data)
assert len(links) == 10
assert all(["BAD_LINK" not in link for link in links])
+
+ def test_same_urls_fetched(self, mock_user_agent, mock_single_cik_filing):
+ # mock_single_filing_cik has more than 10 URLs
+ # using count = 5 should help test whether the same URLs
+ # are fetched each time
+ f = CompanyFilings(cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ count=5)
+ first_urls = f.get_urls()
+ second_urls = f.get_urls()
+ assert all(f == s for f, s in zip(first_urls, second_urls))
+
+ @pytest.mark.parametrize(
+ "bad_ownership",
+ [
+ "notright",
+ "_exclude",
+ "_include",
+ "notvalid",
+ 1,
+ True,
+ False
+ ]
+ )
+ def test_ownership(self, bad_ownership, mock_user_agent):
+ with pytest.raises(ValueError):
+ CompanyFilings(
+ cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ ownership=bad_ownership
+ )
+
+ def test_good_ownership(self, mock_user_agent):
+ shared_params = dict(
+ cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ )
+ f_include = CompanyFilings(
+ **shared_params,
+ ownership="include"
+ )
+ f_exclude = CompanyFilings(
+ **shared_params,
+ ownership="exclude"
+ )
+ assert f_include.ownership == "include"
+ assert f_exclude.ownership == "exclude"
+
+ # Change ownership type
+ f_include.ownership = "exclude"
+ assert f_include.ownership == "exclude"
+
+ def test_start_date_change_to_none(self, mock_user_agent):
+ start_date = datetime.date(2020, 1, 1)
+ f = CompanyFilings(
+ cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ start_date=start_date
+ )
+ assert f.start_date == start_date
+ assert f.params["datea"] == "20200101"
+ f.start_date = None
+ assert f.start_date is None
+ assert "datea" not in f.params
+
+ def test_end_date_change_to_none(self, mock_user_agent):
+ end_date = datetime.date(2020, 1, 1)
+ f = CompanyFilings(
+ cik_lookup="aapl",
+ filing_type=FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ end_date=end_date
+ )
+ assert f.end_date == end_date
+ assert f.params["dateb"] == "20200101"
+ f.end_date = None
+ assert f.end_date is None
+ assert "dateb" not in f.params
|
Count/params not resetting after `get_urls`
**Describe the bug**
`CompanyFilings` not resetting start parameter after using `get_urls` method.
**To Reproduce**
```python
from secedgar.core.company import CompanyFilings
a = CompanyFilings(cik_lookup='aapl', start_date=datetime(2021,2,28))
print(a.params)
first_urls = a.get_urls() # returns urls
print(a.params)
second_urls = a.get_urls() # Will not return same urls as first_urls
```
**Expected behavior**
Should reset start parameter after while loop.
|
0.0
|
d210e7d340863d14f862866786e6ca28194bed81
|
[
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[notright]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[_exclude]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[_include]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[notvalid]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[False]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_ownership",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_start_date_change_to_none",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_change_to_none"
] |
[
"secedgar/tests/core/test_company.py::TestCompanyFilings::TestCompanyFilingsClient::test_user_agent_client_none",
"secedgar/tests/core/test_company.py::TestCompanyFilings::TestCompanyFilingsClient::test_user_agent_set_to_client",
"secedgar/tests/core/test_company.py::TestCompanyFilings::TestCompanyFilingsClient::test_client_property_set",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_returns_exact",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[5]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[10]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[15]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[27]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[33]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date2]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date3]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date4]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[20200101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[20200101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[2020010101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[2020010101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[2020]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[0102]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date2]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date3]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date4]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[20200101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[20200101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[2020010101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[2020010101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[2020]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[0102]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[-1-ValueError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[0-ValueError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[0.0-TypeError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[1.0-TypeError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[1-TypeError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_date_is_sanitized",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_date_is_sanitized_when_changed",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_setter[20120101-20120101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_setter[20120101-20120101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_setter[date2-20120101]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_txt_urls",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_10K]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_8K]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_13FHR]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_SD]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10-k]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10k]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10-q]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10q]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[123]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[10-j]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[10-k]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[ssd]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[invalid]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_validate_cik_type_inside_filing[1234567891011]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_validate_cik_type_inside_filing[12345]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_validate_cik_type_inside_filing[123.0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_save_no_filings_raises_error[no_urls0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_save_no_filings_raises_error[no_urls1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_save_multiple_ciks",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_save_single_cik",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_get_urls_returns_single_list_of_urls",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_returns_correct_number_of_urls[10]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_returns_correct_number_of_urls[25]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_returns_correct_number_of_urls[30]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[20-True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[30-True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[40-True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test__filter_filing_links",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_same_urls_fetched"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-12-05 16:04:32+00:00
|
apache-2.0
| 5,453 |
|
sec-edgar__sec-edgar-254
|
diff --git a/docs/source/parser.rst b/docs/source/parser.rst
index a13e72b..d684367 100644
--- a/docs/source/parser.rst
+++ b/docs/source/parser.rst
@@ -16,4 +16,9 @@ Parsing Meta Data
-----------------
.. autoclass:: secedgar.parser.MetaParser
+ :members:
+
+Parsing Form 4 Data
+
+.. autoclass:: secedgar.parser.F4Parser
:members:
\ No newline at end of file
diff --git a/secedgar/parser.py b/secedgar/parser.py
index bbb0a4c..cd3cb6b 100644
--- a/secedgar/parser.py
+++ b/secedgar/parser.py
@@ -4,8 +4,26 @@ import os
import re
import uu
+from secedgar.exceptions import FilingTypeError
from secedgar.utils import make_path
+value_pattern = r"<value>(.*?)</value>"
+non_derivative_trans_pattern = r"<nonDerivativeTransaction>(.*?)</nonDerivativeTransaction>"
+sec_title_pattern = r"<securityTitle>(.*?)</securityTitle>"
+trans_date_pattern = r"<transactionDate>(.*?)</transactionDate>"
+trans_shares_pattern = r"<transactionShares>(.*?)</transactionShares>"
+trans_pps_pattern = r"<transactionPricePerShare>(.*?)</transactionPricePerShare>"
+trans_disp_code_pattern = (
+ r"<transactionAcquiredDisposedCode>"
+ r"(.*?)"
+ r"</transactionAcquiredDisposedCode>"
+ )
+soft_pattern = r"<sharesOwnedFollowingTransaction>(.*?)</sharesOwnedFollowingTransaction>"
+doio_pattern = r"<directOrIndirectOwnership>(.*?)</directOrIndirectOwnership>"
+trans_form_type_pattern = r"<transactionFormType>(.*?)</transactionFormType>"
+trans_code_pattern = r"<transactionCode>(.*?)</transactionCode>"
+equity_swap_involved_pattern = r"<equitySwapInvolved>(.*?)</equitySwapInvolved>"
+
class MetaParser:
"""Utility class to extract metadata and documents from a single text file.
@@ -203,6 +221,7 @@ class MetaParser:
Return:
dict: Dictionary with fields parsed from document.
+
"""
metadata_doc = {}
@@ -221,3 +240,100 @@ class MetaParser:
metadata_doc["filename"] = fn_m.group(1)
return metadata_doc
+
+
+class F4Parser:
+ """Utility class to extract actionable data and documents from a single text file.
+
+ .. warning::
+ The ``F4Parser`` class is still experimental. Use with caution.
+
+ .. versionadded:: 0.4.0
+ """
+
+ @staticmethod
+ def process(doc):
+ """Process the actionable data of the document.
+
+ Args:
+ doc (str): Document from which to extract core data.
+
+ Return:
+ data (dict): Tradable buy/sell/gift data from document.
+
+ """
+ metadata = MetaParser.process_document_metadata(doc)
+
+ if metadata["type"] == "4":
+ # Regex find all nested values.
+ def nested_findall(parent_pattern, doc, child_pattern=value_pattern):
+ matches = [
+ re.search(child_pattern, match).group(1)
+ for match
+ in re.findall(parent_pattern, doc, re.S)]
+ return matches
+
+ # Find core data from document.
+ security_title_matches = nested_findall(sec_title_pattern, doc)
+ trans_date_matches = nested_findall(trans_date_pattern, doc)
+ trans_shares_matches = nested_findall(trans_shares_pattern, doc)
+ trans_pps_matches = nested_findall(trans_pps_pattern, doc)
+ trans_disp_code_matches = nested_findall(trans_disp_code_pattern, doc)
+ soft_matches = nested_findall(soft_pattern, doc)
+ doio_matches = nested_findall(doio_pattern, doc)
+ trans_form_matches = re.findall(trans_form_type_pattern, doc)
+ trans_code_matches = re.findall(trans_code_pattern, doc)
+ equity_swap_matches = re.findall(equity_swap_involved_pattern, doc)
+
+ # Map core data to dict
+ data = {
+ "nonDerivativeTable": {
+ "nonDerivativeTransaction": [
+ {
+ "securityTitle": securityTitle,
+ "transactionDate": transactionDate,
+ "transactionCoding": {
+ "transactionFormType": transactionFormType,
+ "transactionCode": transactionCode,
+ "equitySwapInvolved": equitySwapInvolved
+ },
+ "transactionAmounts": {
+ "transactionShares": transactionShares,
+ "transactionPricePerShare": transactionPricePerShare,
+ "transactionAcquiredDisposedCode": transactionAcquiredDisposedCode
+ },
+ "postTransactionAmounts": {
+ "sharesOwnedFollowingTransaction": sharesOwnedFollowingTransaction
+ },
+ "ownershipNature": {
+ "directOrIndirectOwnership": directOrIndirectOwnership
+ }
+ }
+ for securityTitle,
+ transactionDate,
+ transactionFormType,
+ transactionCode,
+ equitySwapInvolved,
+ transactionShares,
+ transactionPricePerShare,
+ transactionAcquiredDisposedCode,
+ sharesOwnedFollowingTransaction,
+ directOrIndirectOwnership
+ in zip(
+ security_title_matches,
+ trans_date_matches,
+ trans_form_matches,
+ trans_code_matches,
+ equity_swap_matches,
+ trans_shares_matches,
+ trans_pps_matches,
+ trans_disp_code_matches,
+ soft_matches,
+ doio_matches
+ )
+ ]
+ }
+ }
+ return data
+ else:
+ raise FilingTypeError
|
sec-edgar/sec-edgar
|
42f32806c1d3d0c73b27bcc3762d8bb0f32f0398
|
diff --git a/secedgar/tests/test_parser.py b/secedgar/tests/test_parser.py
index 6528f8a..a6407d3 100644
--- a/secedgar/tests/test_parser.py
+++ b/secedgar/tests/test_parser.py
@@ -1,5 +1,5 @@
import pytest
-from secedgar.parser import MetaParser
+from secedgar.parser import F4Parser, MetaParser
class TestParser:
@@ -26,3 +26,136 @@ class TestParser:
def test_bad_filetypes_raises_error(self, bad_filetype):
with pytest.raises(ValueError):
self.parser.process(infile="test.{0}".format(bad_filetype))
+
+
+class TestF4Parser:
+
+ parser = F4Parser()
+
+ def test_process_document_metadata_form_4(self):
+ doc = """<TYPE>4
+ <SEQUENCE>123
+ <FILENAME>test-filename.txt
+ <nonDerivativeTable>
+ <nonDerivativeTransaction>
+ <securityTitle>
+ <value>Common Stock</value>
+ </securityTitle>
+ <transactionDate>
+ <value>2021-05-14</value>
+ </transactionDate>
+ <transactionCoding>
+ <transactionFormType>5</transactionFormType>
+ <transactionCode>G</transactionCode>
+ <equitySwapInvolved>0</equitySwapInvolved>
+ </transactionCoding>
+ <transactionTimeliness>
+ <value>E</value>
+ </transactionTimeliness>
+ <transactionAmounts>
+ <transactionShares>
+ <value>4010</value>
+ </transactionShares>
+ <transactionPricePerShare>
+ <value>0</value>
+ </transactionPricePerShare>
+ <transactionAcquiredDisposedCode>
+ <value>D</value>
+ </transactionAcquiredDisposedCode>
+ </transactionAmounts>
+ <postTransactionAmounts>
+ <sharesOwnedFollowingTransaction>
+ <value>324164</value>
+ </sharesOwnedFollowingTransaction>
+ </postTransactionAmounts>
+ <ownershipNature>
+ <directOrIndirectOwnership>
+ <value>D</value>
+ </directOrIndirectOwnership>
+ </ownershipNature>
+ </nonDerivativeTransaction>
+ <nonDerivativeTransaction>
+ <securityTitle>
+ <value>Common Stock</value>
+ <footnoteId id="F1"/>
+ </securityTitle>
+ <transactionDate>
+ <value>2021-08-02</value>
+ </transactionDate>
+ <transactionCoding>
+ <transactionFormType>4</transactionFormType>
+ <transactionCode>S</transactionCode>
+ <equitySwapInvolved>0</equitySwapInvolved>
+ </transactionCoding>
+ <transactionAmounts>
+ <transactionShares>
+ <value>15600</value>
+ </transactionShares>
+ <transactionPricePerShare>
+ <value>145.83</value>
+ <footnoteId id="F2"/>
+ </transactionPricePerShare>
+ <transactionAcquiredDisposedCode>
+ <value>D</value>
+ </transactionAcquiredDisposedCode>
+ </transactionAmounts>
+ <postTransactionAmounts>
+ <sharesOwnedFollowingTransaction>
+ <value>308564</value>
+ </sharesOwnedFollowingTransaction>
+ </postTransactionAmounts>
+ <ownershipNature>
+ <directOrIndirectOwnership>
+ <value>D</value>
+ </directOrIndirectOwnership>
+ </ownershipNature>
+ </nonDerivativeTransaction>
+ </nonDerivativeTable>
+ """
+ data = self.parser.process(doc)
+ assert data == {
+ "nonDerivativeTable": {
+ "nonDerivativeTransaction": [
+ {
+ "securityTitle": "Common Stock",
+ "transactionDate": "2021-05-14",
+ "transactionCoding": {
+ "transactionFormType": "5",
+ "transactionCode": "G",
+ "equitySwapInvolved": "0"
+ },
+ "transactionAmounts": {
+ "transactionShares": "4010",
+ "transactionPricePerShare": "0",
+ "transactionAcquiredDisposedCode": "D"
+ },
+ "postTransactionAmounts": {
+ "sharesOwnedFollowingTransaction": "324164"
+ },
+ "ownershipNature": {
+ "directOrIndirectOwnership": "D"
+ }
+ },
+ {
+ "securityTitle": "Common Stock",
+ "transactionDate": "2021-08-02",
+ "transactionCoding": {
+ "transactionFormType": "4",
+ "transactionCode": "S",
+ "equitySwapInvolved": "0"
+ },
+ "transactionAmounts": {
+ "transactionShares": "15600",
+ "transactionPricePerShare": "145.83",
+ "transactionAcquiredDisposedCode": "D"
+ },
+ "postTransactionAmounts": {
+ "sharesOwnedFollowingTransaction": "308564"
+ },
+ "ownershipNature": {
+ "directOrIndirectOwnership": "D"
+ }
+ }
+ ]
+ }
+ }
|
Form 4 Parser
**Is your feature request related to a problem? Please describe.**
Insider trading information has become a hot commodity for retail investors. The parser does not currently extract pertinent data on buying and selling of securities by insiders.
**Describe the solution you'd like**
Add a function to the parser to extract non-derivative transaction information pertinent to retail investors intending to track trades of insiders.
**Describe alternatives you've considered**
All other alternatives are closed-source/proprietary and paid.
**Additional context**
No additional context.
|
0.0
|
42f32806c1d3d0c73b27bcc3762d8bb0f32f0398
|
[
"secedgar/tests/test_parser.py::TestParser::test_process_document_metadata",
"secedgar/tests/test_parser.py::TestParser::test_bad_filetypes_raises_error[xml]",
"secedgar/tests/test_parser.py::TestParser::test_bad_filetypes_raises_error[json]",
"secedgar/tests/test_parser.py::TestParser::test_bad_filetypes_raises_error[html]",
"secedgar/tests/test_parser.py::TestParser::test_bad_filetypes_raises_error[txt.gz]",
"secedgar/tests/test_parser.py::TestParser::test_bad_filetypes_raises_error[zip]",
"secedgar/tests/test_parser.py::TestF4Parser::test_process_document_metadata_form_4"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-12-18 03:36:03+00:00
|
apache-2.0
| 5,454 |
|
sec-edgar__sec-edgar-274
|
diff --git a/docs/source/index.rst b/docs/source/index.rst
index 776f001..a3b7971 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -16,6 +16,7 @@ Welcome to secedgar's documentation!
ciklookup
filings
filingtypes
+ rest_api
cikmap
client
parser
diff --git a/docs/source/rest_api.rst b/docs/source/rest_api.rst
new file mode 100644
index 0000000..fdb2961
--- /dev/null
+++ b/docs/source/rest_api.rst
@@ -0,0 +1,24 @@
+.. _rest_api:
+
+REST API
+========
+
+The SEC recently released an API which can be used to more easily access data on companies.
+For a complete overview of the API, you can
+`read more here <https://www.sec.gov/edgar/sec-api-documentation>`_.
+
+
+Wrapper
+-------
+
+In order to make this information even easier to extract, ``secedgar`` contains functions that
+wrap around the EDGAR API to make the data even more accessible. Below are the functions available
+via ``secedgar``.
+
+.. autofunction:: secedgar.core.rest.get_submissions
+
+.. autofunction:: secedgar.core.rest.get_company_concepts
+
+.. autofunction:: secedgar.core.rest.get_company_facts
+
+.. autofunction:: secedgar.core.rest.get_xbrl_frames
\ No newline at end of file
diff --git a/docs/source/whatsnew.rst b/docs/source/whatsnew.rst
index bbe2b34..1673705 100644
--- a/docs/source/whatsnew.rst
+++ b/docs/source/whatsnew.rst
@@ -6,6 +6,10 @@ What's New
New features, bug fixes, and improvements for each release.
+.. include:: whatsnew/v0.5.0.rst
+
+.. include:: whatsnew/v0.4.1.rst
+
.. include:: whatsnew/v0.4.0.rst
.. include:: whatsnew/v0.3.4.rst
diff --git a/docs/source/whatsnew/v0.5.0.rst b/docs/source/whatsnew/v0.5.0.rst
new file mode 100644
index 0000000..b4f1550
--- /dev/null
+++ b/docs/source/whatsnew/v0.5.0.rst
@@ -0,0 +1,14 @@
+v0.5.0
+------
+
+Highlights
+~~~~~~~~~~
+
+- Add access to SEC's REST API via ``secedgar.core.rest`` module
+- New functions include ``get_submissions``, ``get_company_concepts``, ``get_company_facts``, and ``get_xbrl_frames``.
+- Set ``client`` keyword arg to ``None`` by default for ``CIKLookup``. This will create client object automatically instead of requiring user to provide client.
+
+Contributors
+~~~~~~~~~~~~
+
+- jackmoody11
\ No newline at end of file
diff --git a/secedgar/__init__.py b/secedgar/__init__.py
index 89c9884..ca7abca 100644
--- a/secedgar/__init__.py
+++ b/secedgar/__init__.py
@@ -1,4 +1,4 @@
-__version__ = '0.4.1'
+__version__ = '0.5.0'
from secedgar.core.combo import ComboFilings # noqa: F401
from secedgar.core.company import CompanyFilings # noqa: F401
diff --git a/secedgar/cik_lookup.py b/secedgar/cik_lookup.py
index 4b51964..167d522 100644
--- a/secedgar/cik_lookup.py
+++ b/secedgar/cik_lookup.py
@@ -43,13 +43,19 @@ class CIKLookup:
Args:
lookup (Union[str, list]): Ticker, company name, or list of tickers and/or company names.
- client (secedgar.client.NetworkClient): A network client object to use. See
- :class:`secedgar.client.NetworkClient` for more details.
+ client (Union[None, secedgar.client.NetworkClient]): A network client object to use.
+ If ``None`` is given, then will pass kwargs to :class:`secedgar.client.NetworkClient`.
+ See :class:`secedgar.client.NetworkClient` for more details. Defaults to ``None``.
+
+ .. warning::
+
+ If ``None`` is passed to client, you must specify your ``user_agent`` in ``kwargs``.
+ For example, ``CIKLookup(lookup=["aapl"], user_agent="Name ([email protected]")``.
.. versionadded:: 0.1.5
"""
- def __init__(self, lookups, client, **kwargs):
+ def __init__(self, lookups, client=None, **kwargs):
if lookups and isinstance(lookups, str):
self._lookups = [lookups] # make single string into list
else:
diff --git a/secedgar/core/rest.py b/secedgar/core/rest.py
new file mode 100644
index 0000000..766e406
--- /dev/null
+++ b/secedgar/core/rest.py
@@ -0,0 +1,205 @@
+from typing import List, Union
+
+import requests
+
+from secedgar.cik_lookup import CIKLookup
+
+API_BASE = "https://data.sec.gov/api/"
+XBRL_BASE = "{0}xbrl/".format(API_BASE)
+
+
+def _get_lookup_dict(lookups: List[str], user_agent: str):
+ """Utility function to get CIKs for lookups.
+
+ Args:
+ lookups (list of str): List of tickers or company names to get CIKs for.
+ user_agent (str): User agent to give to SEC.
+
+ Returns:
+ dict: Dictionary with lookup and CIK key-value pairs.
+ """
+ cik_lookup = CIKLookup(lookups=lookups,
+ user_agent=user_agent,
+ client=None)
+ return cik_lookup.lookup_dict
+
+
+def _combine_dicts(*dicts):
+ """Utility function to combine dictionary values when values are lists.
+
+ Returns:
+ dict: Dictionaries combined into one.
+
+ Examples:
+ >>> a = {"A": [1, 2, 3], "B": [4, 5, 6]}
+ >>> b = {"A": [7, 8], "B": [0, 1, 2]}
+ >>> _combine_dicts(a, b)
+ {'A': [1, 2, 3, 7, 8], 'B': [4, 5, 6, 0, 1, 2]}
+ >>> _combine_dicts(a)
+ {'A': [1, 2, 3], 'B': [4, 5, 6]}
+ """
+ final = {}
+ for d in dicts:
+ for k, v in d.items():
+ if k in final:
+ final[k] += v
+ else:
+ final[k] = v
+ return final
+
+
+def get_submissions(lookups: Union[List[str], str],
+ user_agent: str,
+ recent: bool = True) -> dict:
+ """Get information about submissions for entities.
+
+ Args:
+ lookups (list of str or str): Tickers or CIKs to get submission data for.
+ user_agent (str): User agent to provide the SEC.
+ recent (bool, optional): Whether or not to only get the most recent.
+ Setting ``recent`` to True will give at least one year of filings or 1000 filings
+ (whichever is more). Setting ``recent`` to False will return all filings.
+ Defaults to True.
+
+ Returns:
+ dict: Dictionary with keys being the lookups and values being the responses from the API.
+ """
+ lookup_dict = _get_lookup_dict(lookups=lookups, user_agent=user_agent)
+ submissions_dict = dict()
+ url_base = "https://data.sec.gov/submissions/"
+ for lookup, cik in lookup_dict.items():
+ resp = requests.get("{0}CIK{1}.json".format(url_base, cik.zfill(10)),
+ headers={"user-agent": user_agent})
+ resp_json = resp.json()
+ if not recent:
+ try:
+ older_submission_files = resp_json["filings"]["files"]
+ except KeyError:
+ pass
+
+ # Get data for older submission files and add to recent
+ older_submissions = [requests.get("{0}{1}".format(url_base, f["name"]),
+ headers={"user-agent": user_agent}).json()
+ for f in older_submission_files]
+
+ resp_json["filings"]["recent"] = _combine_dicts(resp_json["filings"]["recent"],
+ *older_submissions)
+ submissions_dict[lookup] = resp_json
+ return submissions_dict
+
+
+def get_company_concepts(lookups: Union[List[str], str],
+ user_agent: str,
+ concept_name: str) -> dict:
+ """Get company concepts using SEC's REST API.
+
+ Args:
+ lookups (list of str or str): Tickers or CIKs to get concepts for.
+ user_agent (str): User agent to send to SEC.
+ concept_name (str): Name of the concept to get data for.
+
+ Returns:
+ dict: Dictionary with concept data for given lookups.
+
+ Example:
+ .. code::
+
+ concept = "AccountsPayableCurrent"
+ get_company_concepts(lookups=["AAPL"],
+ user_agent="Name ([email protected])",
+ concept_name=concept)
+ """
+ lookup_dict = _get_lookup_dict(lookups=lookups, user_agent=user_agent)
+ company_concepts = dict()
+ for lookup, cik in lookup_dict.items():
+ url = "{0}companyconcept/CIK{1}/us-gaap/{2}.json".format(
+ XBRL_BASE,
+ cik.zfill(10),
+ concept_name
+ )
+ resp = requests.get(url,
+ headers={"user-agent": user_agent})
+ company_concepts[lookup] = resp.json()
+ return company_concepts
+
+
+def get_company_facts(lookups: Union[List[str], str], user_agent: str) -> dict:
+ """Get company facts for lookups.
+
+ Args:
+ lookups (list of str or str): Tickers or CIKs to get company facts for.
+ user_agent (str): User agent to send to SEC.
+
+ Returns:
+ dict: Dictionary with lookups as keys and company fact dictionaries as values.
+
+ Examples:
+ >>> facts = get_company_facts(["aapl"], "Name ([email protected])")
+ >>> single_fact = facts["aapl"]["facts"]["us-gaap"]["Assets"]["units"]["USD"][0]
+ >>> single_fact["val"]
+ 39572000000
+ >>> single_fact["fy"]
+ 2009
+ >>> single_fact["fp"]
+ Q3
+ >>> single_fact["form"]
+ '10-Q'
+ >>> single_fact["filed"]
+ '2009-07-22'
+ """
+ lookup_dict = _get_lookup_dict(lookups=lookups, user_agent=user_agent)
+ company_facts = dict()
+ for lookup, cik in lookup_dict.items():
+ url = "{0}companyfacts/CIK{1}.json".format(XBRL_BASE, cik.zfill(10))
+ resp = requests.get(url, headers={"user-agent": user_agent})
+ company_facts[lookup] = resp.json()
+ return company_facts
+
+
+def get_xbrl_frames(user_agent: str,
+ concept_name: str,
+ year: int,
+ quarter: Union[None, int] = None,
+ currency: str = "USD",
+ instantaneous: bool = False) -> dict:
+ """Get data for concept name in year (and quarter, if given).
+
+ Args:
+ user_agent (str): User agent to send to the SEC.
+ concept_name (str): Concept name to get. For example, "Assets".
+ year (int): Year to get concept data for.
+ quarter (Union[int, NoneType], optional): Quarter to get data for. If given None,
+ will look for data for the entire year. Defaults to None.
+ instantaneous (bool, optional): Whether to look for instantaneous data.
+ See `SEC website for more <https://www.sec.gov/edgar/sec-api-documentation>`_.
+ Defaults to False.
+
+ Returns:
+ dict: Dictionary with information about concept_name.
+ Dig into the data key for all period data.
+
+ Examples:
+ .. code::
+
+ frames = get_xbrl_frames(user_agent="Name ([email protected])",
+ concept_name="Assets",
+ year=2020,
+ quarter=3,
+ instantaneous=True)
+ print(frames["data"][-1]["entityName"])
+ # Prints "MOXIAN (BVI) INC"
+ print(frames["data"][-1]["val"])
+ # Prints 2295657
+ print(frames["data"][-1]["accn"])
+ # Prints "0001493152-22-013323"
+ """
+ # Create URL
+ period = "CY{0}".format(year) if quarter is None else "CY{0}Q{1}".format(year, quarter)
+ if instantaneous:
+ period += "I"
+ url = "{0}frames/us-gaap/{1}/{2}/{3}.json".format(XBRL_BASE, concept_name, currency, period)
+ print(url)
+ # Request and add to dictionary
+ resp = requests.get(url, headers={"user-agent": user_agent})
+ xbrl_frames = resp.json()
+ return xbrl_frames
|
sec-edgar/sec-edgar
|
dfbca033a65a38614094c4386fa83ee29b0d9799
|
diff --git a/secedgar/tests/core/test_company.py b/secedgar/tests/core/test_company.py
index ec7e80c..26c1375 100644
--- a/secedgar/tests/core/test_company.py
+++ b/secedgar/tests/core/test_company.py
@@ -3,6 +3,7 @@ import datetime
import os
import pytest
+
from secedgar.cik_lookup import CIKLookup
from secedgar.client import NetworkClient
from secedgar.core import CompanyFilings, FilingType
@@ -291,6 +292,45 @@ class TestCompanyFilings:
f.save(tmp_data_directory)
assert len(os.listdir(tmp_data_directory)) > 0
+ @pytest.mark.parametrize(
+ "match_format",
+ [
+ "EXACT",
+ "AMEND",
+ "ALL"
+ ]
+ )
+ def test_match_format_good(self, mock_user_agent, match_format):
+ f = CompanyFilings(["aapl", "amzn", "msft"],
+ FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ count=3,
+ match_format=match_format)
+
+ assert f.match_format == match_format
+
+ @pytest.mark.parametrize(
+ "match_format",
+ [
+ "exact",
+ "amend",
+ "all",
+ "none",
+ None,
+ True,
+ False,
+ 1,
+ 0
+ ]
+ )
+ def test_match_format_bad(self, mock_user_agent, match_format):
+ with pytest.raises(ValueError):
+ CompanyFilings(["aapl", "amzn", "msft"],
+ FilingType.FILING_10Q,
+ user_agent=mock_user_agent,
+ count=3,
+ match_format=match_format)
+
@pytest.mark.smoke
def test_filing_save_multiple_ciks_smoke(self, tmp_data_directory,
real_test_client):
diff --git a/secedgar/tests/core/test_rest.py b/secedgar/tests/core/test_rest.py
new file mode 100644
index 0000000..743763f
--- /dev/null
+++ b/secedgar/tests/core/test_rest.py
@@ -0,0 +1,104 @@
+import pytest
+
+from secedgar.core.rest import (_combine_dicts, get_company_concepts,
+ get_company_facts, get_submissions,
+ get_xbrl_frames)
+
+
+class TestRest:
+ @pytest.mark.parametrize("dicts,expected",
+ [
+ ([{"A": [1, 2, 3], "B": [4, 5, 6]},
+ {"A": [7, 8], "B": [0, 1, 2]}],
+ {'A': [1, 2, 3, 7, 8], 'B': [4, 5, 6, 0, 1, 2]}),
+ ([{"A": [1, 2, 3]},
+ {"B": [4, 5, 6]}],
+ {"A": [1, 2, 3], "B": [4, 5, 6]}),
+ ([{"A": [1]}],
+ {"A": [1]})
+ ]
+ )
+ def test__combine_dicts(self, dicts, expected):
+ assert _combine_dicts(*dicts) == expected
+
+ @pytest.mark.parametrize(
+ "recent",
+ [True, False]
+ )
+ @pytest.mark.smoke
+ def test_get_submissions(self, mock_user_agent, recent):
+ submissions = get_submissions(lookups=["aapl"],
+ user_agent=mock_user_agent,
+ recent=recent)
+ assert submissions
+ # Make sure Apple's CIK shows up properly
+ assert str(submissions["aapl"]["cik"]) == "320193"
+
+ # Make sure there are accession numbers
+ assert submissions["aapl"]["filings"]["recent"]["accessionNumber"]
+
+ # Result should be dictionary
+ assert isinstance(submissions, dict)
+
+ @pytest.mark.smoke
+ def test_get_company_concepts(self, mock_user_agent):
+ concept = "AccountsPayableCurrent"
+ concepts = get_company_concepts(lookups=["AAPL"],
+ user_agent=mock_user_agent,
+ concept_name=concept)
+ assert concepts
+ # Ensure CIK is correct
+ assert str(concepts["AAPL"]["cik"]) == "320193"
+
+ # Make sure that there are results for accounts payable
+ assert concepts["AAPL"]["units"]["USD"]
+
+ # Result should be dictionary
+ assert isinstance(concepts, dict)
+
+ @pytest.mark.smoke
+ def test_get_company_facts(self, mock_user_agent):
+ facts = get_company_facts(lookups=["aapl"], user_agent=mock_user_agent)
+
+ assert facts
+ # Ensure CIK is correct - sometimes will give number, so cast to string
+ assert str(facts["aapl"]["cik"]) == "320193"
+
+ # Make sure there are facts
+ assert facts["aapl"]["facts"]
+
+ # Make sure that us-gaap and dei both are keys
+ assert "us-gaap" in facts["aapl"]["facts"]
+ assert "dei" in facts["aapl"]["facts"]
+
+ # Make sure we can get Revenues for Apple
+ assert facts["aapl"]["facts"]["us-gaap"]["Revenues"]["units"]["USD"]
+
+ # Result should be dictionary
+ assert isinstance(facts, dict)
+
+ @pytest.mark.smoke
+ @pytest.mark.parametrize(
+ "concept,instantaneous",
+ [
+ ("Revenues", False),
+ ("Revenues", True)
+ ]
+ )
+ def test_get_xbrl_frames(self, mock_user_agent, concept, instantaneous):
+ frames = get_xbrl_frames(user_agent=mock_user_agent,
+ concept_name=concept,
+ year=2020,
+ quarter=1,
+ instantaneous=instantaneous)
+ # Check to make sure we got the right frame
+ assert frames["tag"] == concept
+
+ # Make sure there is data
+ assert frames["data"]
+
+ # Data should have accn and cik as keys
+ assert "accn" in frames["data"][0]
+ assert "cik" in frames["data"][0]
+
+ assert isinstance(frames, dict)
diff --git a/secedgar/tests/test_cik_lookup.py b/secedgar/tests/test_cik_lookup.py
index 165c229..5587ac8 100644
--- a/secedgar/tests/test_cik_lookup.py
+++ b/secedgar/tests/test_cik_lookup.py
@@ -235,3 +235,8 @@ class TestCIKLookup(object):
cik_map = get_cik_map()
assert "ticker" in cik_map and "title" in cik_map
assert cik_map["ticker"] and cik_map["title"]
+
+ def test_cik_lookup_client_none(self, ticker_lookups, mock_user_agent):
+ lookup = CIKLookup(lookups=ticker_lookups, user_agent=mock_user_agent, client=None)
+ assert isinstance(lookup.client, NetworkClient)
+ assert lookup.lookups == ticker_lookups
|
Add compatibility with EDGAR APIs
**Is your feature request related to a problem? Please describe.**
The SEC is currently offering a RESTful API in beta! See more [here](https://www.sec.gov/edgar/sec-api-documentation). Not sure exactly what the best way to integrate this into the package would be, but want to put it out there so that it can be discussed.
**Describe the solution you'd like**
Not sure yet. Add an api package that provides utilities to easily access the API? Should be able to reuse `NetworkClient` code.
|
0.0
|
dfbca033a65a38614094c4386fa83ee29b0d9799
|
[
"secedgar/tests/core/test_company.py::TestCompanyFilings::TestCompanyFilingsClient::test_user_agent_client_none",
"secedgar/tests/core/test_company.py::TestCompanyFilings::TestCompanyFilingsClient::test_user_agent_set_to_client",
"secedgar/tests/core/test_company.py::TestCompanyFilings::TestCompanyFilingsClient::test_client_property_set",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_returns_exact",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[5]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[10]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[15]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[27]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_on_init[33]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date2]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date3]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[start_date4]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[20200101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[20200101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_start_date_setter_on_init[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[2020010101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[2020010101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[2020]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_start_date_setter_on_init[0102]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date2]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date3]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[end_date4]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[20200101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[20200101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_end_date_setter_on_init[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[2020010101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[2020010101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[2020]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_end_date_setter_on_init[0102]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[-1-ValueError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[0-ValueError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[0.0-TypeError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[1.0-TypeError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_count_setter_bad_values[1-TypeError]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_date_is_sanitized",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_date_is_sanitized_when_changed",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_setter[20120101-20120101_0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_setter[20120101-20120101_1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_setter[date2-20120101]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_txt_urls",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_10K]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_8K]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_13FHR]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_type_setter[FilingType.FILING_SD]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10-k]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10k]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10-q]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[10q]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_bad_filing_type_setter[123]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[10-j]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[10-k]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[ssd]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[invalid]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_invalid_filing_type_types[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_validate_cik_type_inside_filing[1234567891011]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_validate_cik_type_inside_filing[12345]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_validate_cik_type_inside_filing[123.0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_save_no_filings_raises_error[no_urls0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_save_no_filings_raises_error[no_urls1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_save_multiple_ciks",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_good[EXACT]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_good[AMEND]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_good[ALL]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[exact]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[amend]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[all]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[none]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[None]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[False]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_match_format_bad[0]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_save_multiple_ciks_smoke",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_save_single_cik",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_save_single_cik_smoke",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_get_urls_returns_single_list_of_urls",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_returns_correct_number_of_urls[10]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_returns_correct_number_of_urls[25]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_returns_correct_number_of_urls[30]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[5-False]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[10-False]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[20-True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[30-True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filings_warning_lt_count[40-True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_filing_simple_example_smoke",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test__filter_filing_links",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_same_urls_fetched",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[notright]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[_exclude]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[_include]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[notvalid]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[1]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[True]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_ownership[False]",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_good_ownership",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_start_date_change_to_none",
"secedgar/tests/core/test_company.py::TestCompanyFilings::test_end_date_change_to_none",
"secedgar/tests/core/test_rest.py::TestRest::test__combine_dicts[dicts0-expected0]",
"secedgar/tests/core/test_rest.py::TestRest::test__combine_dicts[dicts1-expected1]",
"secedgar/tests/core/test_rest.py::TestRest::test__combine_dicts[dicts2-expected2]",
"secedgar/tests/core/test_rest.py::TestRest::test_get_xbrl_frames[Revenues-False]",
"secedgar/tests/core/test_rest.py::TestRest::test_get_xbrl_frames[Revenues-True]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup0-expected0]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup1-expected1]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup2-expected2]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup3-expected3]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup4-expected4]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup5-expected5]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup6-expected6]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values[lookup7-expected7]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup0-expected0]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup1-expected1]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup2-expected2]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup3-expected3]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup4-expected4]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup5-expected5]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup6-expected6]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_returns_correct_values_smoke[lookup7-expected7]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_lookups_property",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_multiple_results_company_name_search",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_multiple_results_raises_warnings",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_cik_hits_request",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_cik_bypasses_request",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik__is_string[1234567890]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik__is_string[123.0]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_after_cik_lookup",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_client_property",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_bad_lookups_raises_type_error[bad_lookups0]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_bad_lookups_raises_type_error[]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_bad_lookups_raises_type_error[bad_lookups2]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_lookups_property",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_lookup[]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_lookup[4]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_on_bad_ciks[1234_0]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_on_bad_ciks[1234_1]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_on_bad_ciks[1234567890]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_on_bad_ciks[AAPL]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_on_bad_ciks[]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_validate_cik_on_bad_ciks[None]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_params_reset_after_get_cik",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_tickers[aapl-320193]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_tickers[AMZN-1018724]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_tickers[Msft-789019]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_tickers_smoke[aapl-320193]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_tickers_smoke[AMZN-1018724]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_tickers_smoke[Msft-789019]",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_company_names[meta",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_company_names[Alphabet",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_company_names_smoke[meta",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_company_names_smoke[Alphabet",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_get_cik_map_smoke",
"secedgar/tests/test_cik_lookup.py::TestCIKLookup::test_cik_lookup_client_none"
] |
[] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_added_files",
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-05-27 20:52:58+00:00
|
apache-2.0
| 5,455 |
|
secure-systems-lab__securesystemslib-486
|
diff --git a/.github/workflows/check-upstream-ed25519.yml b/.github/workflows/check-upstream-ed25519.yml
index ce01c30..dee5d60 100644
--- a/.github/workflows/check-upstream-ed25519.yml
+++ b/.github/workflows/check-upstream-ed25519.yml
@@ -13,7 +13,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out repository
- uses: actions/checkout@755da8c3cf115ac066823e79a1e1788f8940201b
+ uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
- name: Test if ed25519 upstream master HEAD is what we expect
id: test_ed25519
run: |
diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 68a022e..fe24767 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -38,7 +38,7 @@ jobs:
steps:
- name: Checkout securesystemslib
- uses: actions/checkout@755da8c3cf115ac066823e79a1e1788f8940201b
+ uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@5ccb29d8773c3f3f653e1705f474dfaa8a06a912
diff --git a/securesystemslib/signer/__init__.py b/securesystemslib/signer/__init__.py
index 0b06507..d5c816d 100644
--- a/securesystemslib/signer/__init__.py
+++ b/securesystemslib/signer/__init__.py
@@ -5,12 +5,12 @@ This module provides extensible interfaces for public keys and signers:
Some implementations are provided by default but more can be added by users.
"""
from securesystemslib.signer._gcp_signer import GCPSigner
+from securesystemslib.signer._gpg_signer import GPGSigner
from securesystemslib.signer._hsm_signer import HSMSigner
from securesystemslib.signer._key import KEY_FOR_TYPE_AND_SCHEME, Key, SSlibKey
-from securesystemslib.signer._signature import GPGSignature, Signature
+from securesystemslib.signer._signature import Signature
from securesystemslib.signer._signer import (
SIGNER_FOR_URI_SCHEME,
- GPGSigner,
SecretsHandler,
Signer,
SSlibSigner,
diff --git a/securesystemslib/signer/_gpg_signer.py b/securesystemslib/signer/_gpg_signer.py
new file mode 100644
index 0000000..6d48b0e
--- /dev/null
+++ b/securesystemslib/signer/_gpg_signer.py
@@ -0,0 +1,75 @@
+"""Signer implementation for OpenPGP """
+from typing import Dict, Optional
+
+import securesystemslib.gpg.functions as gpg
+from securesystemslib.signer._key import Key
+from securesystemslib.signer._signer import SecretsHandler, Signature, Signer
+
+
+class GPGSigner(Signer):
+ """OpenPGP Signer
+
+ Runs command in ``GNUPG`` environment variable to sign, fallback commands are
+ ``gpg2`` and ``gpg``.
+
+ Supported signing schemes are: "pgp+rsa-pkcsv1.5", "pgp+dsa-fips-180-2" and
+ "pgp+eddsa-ed25519", with SHA-256 hashing.
+
+
+ Arguments:
+ keyid: GnuPG local user signing key id. If not passed, the default key is used.
+ homedir: GnuPG home directory path. If not passed, the default homedir is used.
+
+ """
+
+ def __init__(
+ self, keyid: Optional[str] = None, homedir: Optional[str] = None
+ ):
+ self.keyid = keyid
+ self.homedir = homedir
+
+ @classmethod
+ def from_priv_key_uri(
+ cls,
+ priv_key_uri: str,
+ public_key: Key,
+ secrets_handler: Optional[SecretsHandler] = None,
+ ) -> "GPGSigner":
+ raise NotImplementedError("Incompatible with private key URIs")
+
+ @staticmethod
+ def _to_gpg_sig(sig: Signature) -> Dict:
+ """Helper to convert Signature -> internal gpg signature format."""
+ sig_dict = sig.to_dict()
+ sig_dict["signature"] = sig_dict.pop("sig")
+ return sig_dict
+
+ @staticmethod
+ def _from_gpg_sig(sig_dict: Dict) -> Signature:
+ """Helper to convert internal gpg signature format -> Signature."""
+ sig_dict["sig"] = sig_dict.pop("signature")
+ return Signature.from_dict(sig_dict)
+
+ def sign(self, payload: bytes) -> Signature:
+ """Signs payload with ``gpg``.
+
+ Arguments:
+ payload: bytes to be signed.
+
+ Raises:
+ ValueError: The gpg command failed to create a valid signature.
+ OSError: the gpg command is not present or non-executable.
+ securesystemslib.exceptions.UnsupportedLibraryError: The gpg
+ command is not available, or the cryptography library is
+ not installed.
+ securesystemslib.gpg.exceptions.CommandError: The gpg command
+ returned a non-zero exit code.
+ securesystemslib.gpg.exceptions.KeyNotFoundError: The used gpg
+ version is not fully supported.
+
+ Returns:
+ Signature.
+ """
+ return self._from_gpg_sig(
+ gpg.create_signature(payload, self.keyid, self.homedir)
+ )
diff --git a/securesystemslib/signer/_signature.py b/securesystemslib/signer/_signature.py
index 190afc3..1869125 100644
--- a/securesystemslib/signer/_signature.py
+++ b/securesystemslib/signer/_signature.py
@@ -81,55 +81,3 @@ class Signature:
"sig": self.signature,
**self.unrecognized_fields,
}
-
-
-class GPGSignature(Signature):
- """A container class containing information about a gpg signature.
-
- Besides the signature, it also contains other meta information
- needed to uniquely identify the key used to generate the signature.
-
- Attributes:
- keyid: HEX string used as a unique identifier of the key.
- signature: HEX string representing the signature.
- other_headers: HEX representation of additional GPG headers.
- """
-
- def __init__(
- self,
- keyid: str,
- signature: str,
- other_headers: str,
- ):
- super().__init__(keyid, signature)
- self.other_headers = other_headers
-
- @classmethod
- def from_dict(cls, signature_dict: Dict) -> "GPGSignature":
- """Creates a GPGSignature object from its JSON/dict representation.
-
- Args:
- signature_dict: Dict containing valid "keyid", "signature" and
- "other_fields" fields.
-
- Raises:
- KeyError: If any of the "keyid", "sig" or "other_headers" fields
- are missing from the signature_dict.
-
- Returns:
- GPGSignature instance.
- """
-
- return cls(
- signature_dict["keyid"],
- signature_dict["signature"],
- signature_dict["other_headers"],
- )
-
- def to_dict(self) -> Dict:
- """Returns the JSON-serializable dictionary representation of self."""
- return {
- "keyid": self.keyid,
- "signature": self.signature,
- "other_headers": self.other_headers,
- }
diff --git a/securesystemslib/signer/_signer.py b/securesystemslib/signer/_signer.py
index 42a8281..6a767ed 100644
--- a/securesystemslib/signer/_signer.py
+++ b/securesystemslib/signer/_signer.py
@@ -6,10 +6,9 @@ from abc import ABCMeta, abstractmethod
from typing import Callable, Dict, Optional, Type
from urllib import parse
-import securesystemslib.gpg.functions as gpg
import securesystemslib.keys as sslib_keys
from securesystemslib.signer._key import Key, SSlibKey
-from securesystemslib.signer._signature import GPGSignature, Signature
+from securesystemslib.signer._signature import Signature
logger = logging.getLogger(__name__)
@@ -212,62 +211,3 @@ class SSlibSigner(Signer):
"""
sig_dict = sslib_keys.create_signature(self.key_dict, payload)
return Signature(**sig_dict)
-
-
-class GPGSigner(Signer):
- """A securesystemslib gpg implementation of the "Signer" interface.
-
- Provides a sign method to generate a cryptographic signature with gpg, using
- an RSA, DSA or EdDSA private key identified by the keyid on the instance.
- """
-
- def __init__(
- self, keyid: Optional[str] = None, homedir: Optional[str] = None
- ):
- self.keyid = keyid
- self.homedir = homedir
-
- @classmethod
- def from_priv_key_uri(
- cls,
- priv_key_uri: str,
- public_key: Key,
- secrets_handler: Optional[SecretsHandler] = None,
- ) -> "GPGSigner":
- raise NotImplementedError("Incompatible with private key URIs")
-
- def sign(self, payload: bytes) -> GPGSignature:
- """Signs a given payload by the key assigned to the GPGSigner instance.
-
- Calls the gpg command line utility to sign the passed content with the
- key identified by the passed keyid from the gpg keyring at the passed
- homedir.
-
- The executed base command is defined in
- securesystemslib.gpg.constants.gpg_sign_command.
-
- Arguments:
- payload: The bytes to be signed.
-
- Raises:
- securesystemslib.exceptions.FormatError:
- If the keyid was passed and does not match
- securesystemslib.formats.KEYID_SCHEMA.
-
- ValueError: the gpg command failed to create a valid signature.
- OSError: the gpg command is not present or non-executable.
- securesystemslib.exceptions.UnsupportedLibraryError: the gpg
- command is not available, or the cryptography library is
- not installed.
- securesystemslib.gpg.exceptions.CommandError: the gpg command
- returned a non-zero exit code.
- securesystemslib.gpg.exceptions.KeyNotFoundError: the used gpg
- version is not fully supported and no public key can be found
- for short keyid.
-
- Returns:
- Returns a "GPGSignature" class instance.
- """
-
- sig_dict = gpg.create_signature(payload, self.keyid, self.homedir)
- return GPGSignature(**sig_dict)
|
secure-systems-lab/securesystemslib
|
c10b0e9c38f0d9bac833b1adc71308158a4afb69
|
diff --git a/.github/workflows/test-kms.yml b/.github/workflows/test-kms.yml
index 6b63854..d843074 100644
--- a/.github/workflows/test-kms.yml
+++ b/.github/workflows/test-kms.yml
@@ -16,7 +16,7 @@ jobs:
steps:
- name: Checkout securesystemslib
- uses: actions/checkout@755da8c3cf115ac066823e79a1e1788f8940201b
+ uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
- name: Set up Python
uses: actions/setup-python@5ccb29d8773c3f3f653e1705f474dfaa8a06a912
diff --git a/tests/test_signer.py b/tests/test_signer.py
index 5224858..c296f49 100644
--- a/tests/test_signer.py
+++ b/tests/test_signer.py
@@ -22,7 +22,6 @@ from securesystemslib.gpg.functions import verify_signature as verify_sig
from securesystemslib.signer import (
KEY_FOR_TYPE_AND_SCHEME,
SIGNER_FOR_URI_SCHEME,
- GPGSignature,
GPGSigner,
Key,
SecretsHandler,
@@ -398,11 +397,11 @@ class TestGPGRSA(unittest.TestCase):
def test_gpg_sign_and_verify_object_with_default_key(self):
"""Create a signature using the default key on the keyring."""
-
+ # pylint: disable=protected-access
signer = GPGSigner(homedir=self.gnupg_home)
signature = signer.sign(self.test_data)
- signature_dict = signature.to_dict()
+ signature_dict = GPGSigner._to_gpg_sig(signature)
key_data = export_pubkey(self.default_keyid, self.gnupg_home)
self.assertTrue(verify_sig(signature_dict, key_data, self.test_data))
@@ -410,27 +409,28 @@ class TestGPGRSA(unittest.TestCase):
def test_gpg_sign_and_verify_object(self):
"""Create a signature using a specific key on the keyring."""
-
+ # pylint: disable=protected-access
signer = GPGSigner(self.signing_subkey_keyid, self.gnupg_home)
signature = signer.sign(self.test_data)
- signature_dict = signature.to_dict()
+ signature_dict = GPGSigner._to_gpg_sig(signature)
key_data = export_pubkey(self.signing_subkey_keyid, self.gnupg_home)
self.assertTrue(verify_sig(signature_dict, key_data, self.test_data))
self.assertFalse(verify_sig(signature_dict, key_data, self.wrong_data))
- def test_gpg_serialization(self):
- """Tests from_dict and to_dict methods of GPGSignature."""
-
- sig_dict = {
- "keyid": "f4f90403af58eef6",
- "signature": "c39f86e70e12e70e11d87eb7e3ab7d3b",
- "other_headers": "d8f8a89b5d71f07b842a",
- }
-
- signature = GPGSignature.from_dict(sig_dict)
- self.assertEqual(sig_dict, signature.to_dict())
+ def test_gpg_signature_data_structure(self):
+ """Test custom fields and legacy data structure in gpg signatures."""
+ # pylint: disable=protected-access
+ signer = GPGSigner(homedir=self.gnupg_home)
+ sig = signer.sign(self.test_data)
+ self.assertIn("other_headers", sig.unrecognized_fields)
+
+ sig_dict = GPGSigner._to_gpg_sig(sig)
+ self.assertIn("signature", sig_dict)
+ self.assertNotIn("sig", sig_dict)
+ sig2 = GPGSigner._from_gpg_sig(sig_dict)
+ self.assertEqual(sig, sig2)
# Run the unit tests.
|
GPGSigner (and gpg.functions.create_signature) produce invalid signature dicts
```python
signer = GPGSigner(self.signing_subkey_keyid, self.gnupg_home)
signature = signer.sign(self.test_data)
print(signature.to_dict())
```
The result does not look like a TUF compliant signature (notice the key name "signature" instead of "sig"):
```
{
'keyid': 'c5a0abe6ec19d0d65f85e2c39be9df5131d924e9',
'signature': '5630c9b9436ed438cdf1386abe9ca3201612c24dee868e7294f6f4592fa05820a194cf1f87fd21f5ea0a596578a20491ca8829ef8d352df1139a953e28cf2176e3c3dc484e669782f65a1cc7ac4d1798ef3874e1f4a113aa59e5b6d350aacfa3c9c58a3ef2770995396971db3aae93d122a73795bb6b6b8d6e5b49a9be64bed8c13f849b09d43c7e916366a6290e92e41987636107703147b2fc86eec59909ddf1d002f39655c11176c18f04b927ecce48781258aa4e8f715014e2e30332839475528afa7faac0c48b425984eb726176092a2cbc3ece7d7e7eea372b8ffdf82715564536b961e5d195f1746b578ccaea19a5eb5936a2d38e0187af490ecc902a',
'other_headers': '04000108001d162104c5a0abe6ec19d0d65f85e2c39be9df5131d924e90502635bbb2e'
}
```
Did no-one ever actually try to put a GPG signature in TUF metadata?
|
0.0
|
c10b0e9c38f0d9bac833b1adc71308158a4afb69
|
[
"tests/test_signer.py::TestGPGRSA::test_gpg_sign_and_verify_object",
"tests/test_signer.py::TestGPGRSA::test_gpg_sign_and_verify_object_with_default_key",
"tests/test_signer.py::TestGPGRSA::test_gpg_signature_data_structure"
] |
[
"tests/test_signer.py::TestKey::test_custom_key",
"tests/test_signer.py::TestKey::test_key_from_to_dict",
"tests/test_signer.py::TestKey::test_key_verify_signature",
"tests/test_signer.py::TestKey::test_sslib_key_from_dict_invalid",
"tests/test_signer.py::TestKey::test_unsupported_key",
"tests/test_signer.py::TestSigner::test_custom_signer",
"tests/test_signer.py::TestSigner::test_signature_eq_",
"tests/test_signer.py::TestSigner::test_signature_from_to_dict",
"tests/test_signer.py::TestSigner::test_signer_sign_with_enc_file_uri",
"tests/test_signer.py::TestSigner::test_signer_sign_with_envvar_uri",
"tests/test_signer.py::TestSigner::test_signer_sign_with_file_uri",
"tests/test_signer.py::TestSigner::test_signer_sign_with_incorrect_uri",
"tests/test_signer.py::TestSigner::test_sslib_signer_sign"
] |
{
"failed_lite_validators": [
"has_git_commit_hash",
"has_added_files",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-12-15 09:42:52+00:00
|
mit
| 5,456 |
|
sedders123__phial-169
|
diff --git a/.circleci/config.yml b/.circleci/config.yml
index e2a4b2d..ae2a87d 100644
--- a/.circleci/config.yml
+++ b/.circleci/config.yml
@@ -5,8 +5,9 @@ jobs:
- image: circleci/python:3.7
steps:
- checkout
+ - run: echo "$CIRCLE_JOB" > _circle_job
- restore_cache:
- key: v1-deps-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
+ key: v1-deps-{{ checksum "_circle_job" }}-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
- run:
name: Create Virtual Env
command: |
@@ -22,7 +23,7 @@ jobs:
. venv/bin/activate
pip install -e .
- save_cache:
- key: v1-deps-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
+ key: v1-deps-{{ checksum "_circle_job" }}-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
paths:
- "venv"
- run:
@@ -44,7 +45,7 @@ jobs:
name: Upload coverage
command: |
. venv/bin/activate
- if [ -z $COVERALLS_REPO_TOKEN ]; then echo "No Coveralls Token"; else coveralls; fi
+ if [ -z $COVERALLS_REPO_TOKEN ] || [ "$CIRCLE_JOB" != "build" ]; then echo "No Coveralls Token"; else coveralls; fi
test-3.6:
<<: *template
@@ -61,9 +62,9 @@ jobs:
- image: circleci/python:3.7
steps:
- checkout
-
+ - run: echo "build" > build_job
- restore_cache:
- key: v1-deps-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
+ key: v1-deps-{{checksum "build_job"}}--{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
- run:
name: Create Virtual Env
@@ -83,7 +84,7 @@ jobs:
pip install -e .
- save_cache:
- key: v1-deps-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
+ key: v1-deps-{{checksum "build_job"}}-{{ checksum "dev-requirements.txt" }}-{{ checksum "setup.py" }}
paths:
- "venv"
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 0149024..7658e83 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -9,6 +9,7 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
### Added
- Added 'loopDelay' config option. Specifes how to long to sleep for in the main loop, this helps to prevent super high CPU usage while doing nothing. Defaults to 0.001
+ - Added `hide_from_help_command` argument to command creation. This hides the command from the list generated by inbuilt help command.
### Changed
- Python 3.6.1 is now marked as incompatible due to an issue with the `NoReturn` type
diff --git a/examples/starter.py b/examples/starter.py
index b91b49e..ec5defe 100644
--- a/examples/starter.py
+++ b/examples/starter.py
@@ -67,7 +67,7 @@ def case_sensitive():
@slackbot.command('messageWithAttachment')
def get_message_with_attachment():
'''
- A command that posts a message with a Slack attachment
+ A command that posts a message with a Slack attachment.
Read more: https://api.slack.com/docs/message-attachments
'''
attachments = [{
@@ -78,6 +78,14 @@ def get_message_with_attachment():
return Response(channel=command.channel, attachments=attachments)
[email protected]('hidden', hide_from_help_command=True)
+def hidden():
+ '''
+ A command that is hidden from the default help command
+ '''
+ return "Suprise"
+
+
@slackbot.fallback_command()
def fallback_command(command):
return "Thats not a command"
diff --git a/phial/bot.py b/phial/bot.py
index 33d0eb4..ced4ecb 100644
--- a/phial/bot.py
+++ b/phial/bot.py
@@ -43,7 +43,7 @@ class Phial:
self.scheduler = Scheduler()
self.fallback_func = None # type: Optional[Callable[[Message], PhialResponse]] # noqa: E501
self.logger = logging.getLogger(__name__)
- if not self.logger.hasHandlers():
+ if not self.logger.hasHandlers(): # pragma: nocover
handler = logging.StreamHandler()
formatter = logging.Formatter(
fmt="%(asctime)s [%(name)s] - %(message)s")
@@ -57,7 +57,8 @@ class Phial:
pattern: str,
func: Callable[..., PhialResponse],
case_sensitive: bool = False,
- help_text_override: Optional[str] = None) -> None:
+ help_text_override: Optional[str] = None,
+ hide_from_help_command: Optional[bool] = False) -> None:
"""
Registers a command with the bot.
@@ -80,6 +81,12 @@ class Phial:
help text.
Defaults to None
+ :param hide_from_help_command: A flag to specify whether or not
+ the inbuilt help command should
+ hide this command from the list
+ it generates.
+
+ Defaults to False
:raises ValueError: If command with the same pattern is already
registered
@@ -110,7 +117,11 @@ class Phial:
.format(pattern.split("<")[0]))
# Create and add command
- command = Command(pattern, func, case_sensitive, help_text_override)
+ command = Command(pattern,
+ func,
+ case_sensitive,
+ help_text_override=help_text_override,
+ hide_from_help_command=hide_from_help_command)
self.commands.append(command)
self.logger.debug("Command {0} added"
.format(pattern))
@@ -118,7 +129,8 @@ class Phial:
def command(self,
pattern: str,
case_sensitive: bool = False,
- help_text_override: Optional[str] = None) -> Callable:
+ help_text_override: Optional[str] = None,
+ hide_from_help_command: Optional[bool] = False) -> Callable:
"""
Registers a command with the bot.
@@ -139,6 +151,12 @@ class Phial:
help text.
Defaults to None
+ :param hide_from_help_command: A flag to specify whether or not
+ the inbuilt help command should
+ hide this command from the list
+ it generates.
+
+ Defaults to False
.. rubric:: Example
@@ -154,7 +172,10 @@ class Phial:
"""
def decorator(f: Callable) -> Callable:
- self.add_command(pattern, f, case_sensitive, help_text_override)
+ self.add_command(pattern, f,
+ case_sensitive,
+ help_text_override=help_text_override,
+ hide_from_help_command=hide_from_help_command)
return f
return decorator
diff --git a/phial/commands.py b/phial/commands.py
index f696d2e..cb6be4d 100644
--- a/phial/commands.py
+++ b/phial/commands.py
@@ -13,6 +13,8 @@ def help_command(bot: 'Phial') -> str:
if help_text:
help_text += "\n"
for command in bot.commands:
+ if command.hide_from_help_command:
+ continue
command_doc = command.help_text
if not command_doc:
# If no help text default to blank string
diff --git a/phial/types.py b/phial/types.py
index f215336..074230d 100644
--- a/phial/types.py
+++ b/phial/types.py
@@ -1,7 +1,7 @@
"""Shared types for phial."""
from typing import TYPE_CHECKING, Union
-if TYPE_CHECKING:
+if TYPE_CHECKING: # pragma: nocover
from phial.wrappers import Response, Attachment # noqa
#: A union of all response types phial can use
diff --git a/phial/wrappers.py b/phial/wrappers.py
index 57fddea..d30b5fd 100644
--- a/phial/wrappers.py
+++ b/phial/wrappers.py
@@ -151,19 +151,23 @@ class Command:
sensitivity
:param help_text_override: Overrides the function's docstring in the
standard help command
+ :param hide_from_help_command: Prevents function from being displayed by
+ the standard help command
"""
def __init__(self,
pattern: str,
func: Callable[..., PhialResponse],
case_sensitive: bool = False,
- help_text_override: Optional[str] = None):
+ help_text_override: Optional[str] = None,
+ hide_from_help_command: Optional[bool] = False):
self.pattern_string = pattern
self.pattern = self._build_pattern_regex(pattern, case_sensitive)
self.alias_patterns = self._get_alias_patterns(func)
self.func = func
self.case_sensitive = case_sensitive
self.help_text_override = help_text_override
+ self.hide_from_help_command = hide_from_help_command
def __repr__(self) -> str:
return "<Command: {0}>".format(self.pattern_string)
|
sedders123/phial
|
36d86f63670e9872c618eb13b6dbc4c7fb31b42c
|
diff --git a/tests/commands/test_help_command.py b/tests/commands/test_help_command.py
index 00db3f1..1972141 100644
--- a/tests/commands/test_help_command.py
+++ b/tests/commands/test_help_command.py
@@ -33,6 +33,37 @@ def test_returns_help_string_correctly_when_no_help_text() -> None:
assert help_text == expected_help_text
+def test_hide_from_help_command_hides_correctly() -> None:
+ """Test returns help text correctly when none set."""
+ bot = Phial('token')
+
+ @bot.command("test", hide_from_help_command=True)
+ def test() -> None:
+ pass
+
+ help_text = help_command(bot)
+ expected_help_text = ("All available commands:\n*!help* - List all"
+ " available commmands\n")
+
+ assert help_text == expected_help_text
+
+
+def test_help_text_override_overrides_correctly() -> None:
+ """Test returns help text correctly when none set."""
+ bot = Phial('token')
+
+ @bot.command("test", help_text_override="Override")
+ def test() -> None:
+ """Not this."""
+ pass
+
+ help_text = help_command(bot)
+ expected_help_text = ("All available commands:\n*!help* - List all"
+ " available commmands\n*!test* - Override\n")
+
+ assert help_text == expected_help_text
+
+
def test_returns_help_string_correctly_when_no_base() -> None:
"""Test returns help text correctly when no base."""
bot = Phial('token', {'registerHelpCommand': False,
|
Have ability to hide a command from !help
Allow users to hide a command from the in built help command if passed a parameter.
|
0.0
|
36d86f63670e9872c618eb13b6dbc4c7fb31b42c
|
[
"tests/commands/test_help_command.py::test_hide_from_help_command_hides_correctly"
] |
[
"tests/commands/test_help_command.py::test_returns_help_string_correctly",
"tests/commands/test_help_command.py::test_returns_help_string_correctly_when_no_help_text",
"tests/commands/test_help_command.py::test_help_text_override_overrides_correctly",
"tests/commands/test_help_command.py::test_returns_help_string_correctly_when_no_base"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2019-05-30 15:56:33+00:00
|
mit
| 5,457 |
|
sedders123__phial-29
|
diff --git a/README.rst b/README.rst
index e6aceda..67b6459 100644
--- a/README.rst
+++ b/README.rst
@@ -1,15 +1,13 @@
phial
=====
-|Documentation Status| |CircleCI| |Coverage Status|
+|Documentation Status| |CircleCI| |Coverage Status| |PyPi|
A simple framework for building slack bots
Phial is a slack bot framework, modelled loosely on
`flask <https://github.com/pallets/flask/>`__.
-NOTE: This package is still in early development, things are likely to
-change
Table of Contents
-----------------
@@ -90,3 +88,5 @@ Erlenmeyer Flask by Iconic from the Noun Project - `CC BY
:target: https://circleci.com/gh/sedders123/phial
.. |Coverage Status| image:: https://coveralls.io/repos/github/sedders123/phial/badge.svg?branch=develop
:target: https://coveralls.io/github/sedders123/phial?branch=develop
+.. |PyPi| image:: https://badge.fury.io/py/phial-slack.svg
+ :target: https://badge.fury.io/py/phial-slack
diff --git a/phial/bot.py b/phial/bot.py
index 9f25b14..9d7cc3c 100644
--- a/phial/bot.py
+++ b/phial/bot.py
@@ -1,6 +1,7 @@
from slackclient import SlackClient # type: ignore
import re
from typing import Dict, List, Pattern, Callable, Union, Tuple, Any # noqa
+import logging
from .globals import _command_ctx_stack, command, _global_ctx_stack
from .wrappers import Command, Response, Message, Attachment
@@ -17,12 +18,17 @@ class Phial():
'prefix': '!'
}
- def __init__(self, token: str, config: dict = default_config) -> None:
+ def __init__(self,
+ token: str,
+ config: dict = default_config,
+ logger: logging.Logger = logging.getLogger(__name__)) -> None:
self.slack_client = SlackClient(token)
self.commands = {} # type: Dict
self.middleware_functions = [] # type: List
self.config = config
self.running = False
+ self.logger = logger
+
_global_ctx_stack.push({})
@staticmethod
@@ -69,6 +75,8 @@ class Phial():
case_sensitive)
if command_pattern not in self.commands:
self.commands[command_pattern] = command_func
+ self.logger.debug("Command {0} added"
+ .format(command_pattern_template))
else:
raise ValueError('Command {0} already exists'
.format(command_pattern.split("<")[0]))
@@ -158,7 +166,7 @@ class Phial():
'''
def decorator(f: Callable) -> Callable:
- self.middleware_functions.append(f)
+ self.add_middleware(f)
return f
return decorator
@@ -183,6 +191,10 @@ class Phial():
middleware_func(func): The function to be added to the middleware
pipeline
'''
+ self.logger.debug("Middleware {0} added"
+ .format(getattr(middleware_func,
+ '__name__',
+ repr(middleware_func))))
self.middleware_functions.append(middleware_func)
def alias(self,
@@ -247,6 +259,8 @@ class Phial():
if output_list and len(output_list) > 0:
for output in output_list:
if(output and 'text' in output):
+ self.logger.debug("Message recieved from Slack: {0}"
+ .format(output))
bot_id = None
if 'bot_id' in output:
bot_id = output['bot_id']
@@ -359,7 +373,7 @@ class Phial():
response = self._handle_command(command)
self._execute_response(response)
except ValueError as err:
- print('ValueError: {}'.format(err))
+ self.logger.exception('ValueError: {}'.format(err))
finally:
_command_ctx_stack.pop()
@@ -370,7 +384,7 @@ class Phial():
if not slack_client.rtm_connect():
raise ValueError("Connection failed. Invalid Token or bot ID")
- print("Phial connected and running!")
+ self.logger.info("Phial connected and running!")
while self._is_running():
try:
message = self._parse_slack_output(slack_client
@@ -378,4 +392,4 @@ class Phial():
if message:
self._handle_message(message)
except Exception as e:
- print("Error: {0}".format(e))
+ self.logger.exception("Error: {0}".format(e))
|
sedders123/phial
|
b786240e7834e6b5d98d447638144612869027c2
|
diff --git a/tests/test_bot.py b/tests/test_bot.py
index 93faed7..19d905c 100644
--- a/tests/test_bot.py
+++ b/tests/test_bot.py
@@ -4,7 +4,7 @@ from phial import Phial, command, Response, Attachment, g
import phial.wrappers
import phial.globals
import re
-from .helpers import captured_output, MockTrueFunc
+from .helpers import MockTrueFunc
class TestPhialBotIsRunning(unittest.TestCase):
@@ -580,12 +580,13 @@ class TestRun(TestPhialBot):
'user_id',
'timestamp')
self.bot._parse_slack_output = MagicMock(return_value=test_command)
- with captured_output() as (out, err):
- self.bot.run()
- output = out.getvalue().strip()
expected_msg = 'ValueError: Command "test" has not been registered'
- self.assertTrue(expected_msg in output)
+ with self.assertLogs(logger='phial.bot', level='ERROR') as cm:
+ self.bot.run()
+
+ error = cm.output[0]
+ self.assertIn(expected_msg, error)
class TestGlobalContext(unittest.TestCase):
|
Add support for logger
Allow a user to pass in a `logger` and log when events of interest happen.
|
0.0
|
b786240e7834e6b5d98d447638144612869027c2
|
[
"tests/test_bot.py::TestRun::test_errors_with_invalid_command"
] |
[
"tests/test_bot.py::TestPhialBotIsRunning::test_returns_expected_value",
"tests/test_bot.py::TestCommandDecarator::test_command_decorator_calls_add_command",
"tests/test_bot.py::TestCommandDecarator::test_command_decorator_functionality",
"tests/test_bot.py::TestAliasDecarator::test_command_decorator_calls_add_command_case_insensitive",
"tests/test_bot.py::TestAliasDecarator::test_command_decorator_calls_add_command_case_sensitive",
"tests/test_bot.py::TestAliasDecarator::test_command_decorator_functionality",
"tests/test_bot.py::TestAddCommand::test_add_command_errors_on_duplicate_name",
"tests/test_bot.py::TestAddCommand::test_add_command_functionality",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_multiple_substition_case_sensitive",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_multiple_substition_ignore_case",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_no_substition_case_sensitive",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_no_substition_ignore_case",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_single_substition_case_sensitive",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_single_substition_ignore_case",
"tests/test_bot.py::TestGetCommandMatch::test_basic_functionality",
"tests/test_bot.py::TestGetCommandMatch::test_multi_substition_matching",
"tests/test_bot.py::TestGetCommandMatch::test_returns_none_correctly",
"tests/test_bot.py::TestGetCommandMatch::test_single_substition_matching",
"tests/test_bot.py::TestCreateCommand::test_basic_functionality",
"tests/test_bot.py::TestCreateCommand::test_basic_functionality_with_args",
"tests/test_bot.py::TestCreateCommand::test_errors_when_no_command_match",
"tests/test_bot.py::TestHandleCommand::test_handle_command_basic_functionality",
"tests/test_bot.py::TestCommandContextWorksCorrectly::test_command_context_pops_correctly",
"tests/test_bot.py::TestCommandContextWorksCorrectly::test_command_context_works_correctly",
"tests/test_bot.py::TestParseSlackOutput::test_basic_functionality",
"tests/test_bot.py::TestParseSlackOutput::test_returns_message_correctly_for_normal_message",
"tests/test_bot.py::TestParseSlackOutput::test_returns_message_with_bot_id_correctly",
"tests/test_bot.py::TestParseSlackOutput::test_returns_none_correctly_if_no_messages",
"tests/test_bot.py::TestSendMessage::test_send_message",
"tests/test_bot.py::TestSendMessage::test_send_reply",
"tests/test_bot.py::TestSendReaction::test_basic_functionality",
"tests/test_bot.py::TestUploadAttachment::test_basic_functionality",
"tests/test_bot.py::TestExecuteResponse::test_errors_on_invalid_response",
"tests/test_bot.py::TestExecuteResponse::test_errors_with_invalid_attachment",
"tests/test_bot.py::TestExecuteResponse::test_errors_with_reaction_and_reply",
"tests/test_bot.py::TestExecuteResponse::test_send_message",
"tests/test_bot.py::TestExecuteResponse::test_send_reaction",
"tests/test_bot.py::TestExecuteResponse::test_send_reply",
"tests/test_bot.py::TestExecuteResponse::test_send_string",
"tests/test_bot.py::TestExecuteResponse::test_upload_attachment",
"tests/test_bot.py::TestMiddleware::test_add_function",
"tests/test_bot.py::TestMiddleware::test_decarator",
"tests/test_bot.py::TestMiddleware::test_halts_message_when_none_returned",
"tests/test_bot.py::TestMiddleware::test_passes_on_message_correctly",
"tests/test_bot.py::TestHandleMessage::test_bot_message_does_not_trigger_command",
"tests/test_bot.py::TestRun::test_basic_functionality",
"tests/test_bot.py::TestRun::test_errors_with_invalid_token",
"tests/test_bot.py::TestGlobalContext::test_global_context_in_command"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-04-19 21:06:41+00:00
|
mit
| 5,458 |
|
sedders123__phial-40
|
diff --git a/phial/bot.py b/phial/bot.py
index 43d0251..0f1d678 100644
--- a/phial/bot.py
+++ b/phial/bot.py
@@ -279,22 +279,28 @@ class Phial():
message(Response): message object to be sent to Slack
'''
+
+ api_method = ('chat.postEphemeral' if message.ephemeral
+ else 'chat.postMessage')
+
if message.original_ts:
- self.slack_client.api_call("chat.postMessage",
+ self.slack_client.api_call(api_method,
channel=message.channel,
text=message.text,
thread_ts=message.original_ts,
attachments=json.dumps(
message.attachments,
default=lambda o: o.__dict__),
+ user=message.user,
as_user=True)
else:
- self.slack_client.api_call("chat.postMessage",
+ self.slack_client.api_call(api_method,
channel=message.channel,
text=message.text,
attachments=json.dumps(
message.attachments,
default=lambda o: o.__dict__),
+ user=message.user,
as_user=True)
def send_reaction(self, response: Response) -> None:
diff --git a/phial/wrappers.py b/phial/wrappers.py
index 397dded..dbe3145 100644
--- a/phial/wrappers.py
+++ b/phial/wrappers.py
@@ -164,6 +164,8 @@ class Response():
List[Dict[str, Dict[str, str]]]]):
A list of MessageAttachment objects to be attached
to the message
+ ephemeral(bool): Whether to send the message as an ephemeral message
+ user(str): The user id to display the ephemeral message to
Examples:
The following would send a message to a slack channel when executed ::
@@ -195,12 +197,16 @@ class Response():
original_ts: Optional[str] = None,
attachments: Optional[Union[List[MessageAttachment],
List[MessageAttachmentJson]]] = None,
- reaction: Optional[str] = None) -> None:
+ reaction: Optional[str] = None,
+ ephemeral: bool = False,
+ user: Optional[str] = None) -> None:
self.channel = channel
self.text = text
self.original_ts = original_ts
self.reaction = reaction
self.attachments = attachments
+ self.ephemeral = ephemeral
+ self.user = user
def __repr__(self) -> str:
return "<Response: {0}>".format(self.text)
|
sedders123/phial
|
8f6c931b420b4ad29fd8ea32164786c9c6d5f4ed
|
diff --git a/tests/test_bot.py b/tests/test_bot.py
index 18f2261..3b25849 100644
--- a/tests/test_bot.py
+++ b/tests/test_bot.py
@@ -346,7 +346,8 @@ class TestSendMessage(TestPhialBot):
channel='channel_id',
text='Hi test',
as_user=True,
- attachments='null')
+ attachments='null',
+ user=None)
def test_send_reply(self):
self.bot.slack_client = MagicMock()
@@ -362,7 +363,8 @@ class TestSendMessage(TestPhialBot):
text='Hi test',
thread_ts='timestamp',
as_user=True,
- attachments='null')
+ attachments='null',
+ user=None)
class TestSendMessageWithMessageAttachments(TestPhialBot):
@@ -430,7 +432,8 @@ class TestSendMessageWithMessageAttachments(TestPhialBot):
channel='channel_id',
as_user=True,
attachments=json.dumps(json.loads(attachments)),
- text=None)
+ text=None,
+ user=None)
class TestSendMessageWithMessageAttachmentsDictionary(TestPhialBot):
@@ -503,7 +506,42 @@ class TestSendMessageWithMessageAttachmentsDictionary(TestPhialBot):
channel='channel_id',
as_user=True,
attachments=json.dumps(json.loads(expected_attachments)),
- text=None)
+ text=None,
+ user=None)
+
+
+class TestSendEphemeralMessage(TestPhialBot):
+ '''Test phial's send_message function when sending an ephemeral message'''
+
+ def test_ephemeral(self):
+ self.bot.slack_client = MagicMock()
+ message = Response(channel="channel_id",
+ ephemeral=True,
+ text="Test text",
+ user="user_id")
+ self.bot.send_message(message)
+
+ self.bot.slack_client.api_call.assert_called_with(
+ 'chat.postEphemeral',
+ channel='channel_id',
+ as_user=True,
+ attachments='null',
+ text='Test text',
+ user='user_id')
+
+ def test_ephemeral_defaults_to_false(self):
+ self.bot.slack_client = MagicMock()
+ message = Response(channel="channel_id",
+ text="Test text")
+ self.bot.send_message(message)
+
+ self.bot.slack_client.api_call.assert_called_with(
+ 'chat.postMessage',
+ channel='channel_id',
+ as_user=True,
+ attachments='null',
+ text='Test text',
+ user=None)
class TestSendReaction(TestPhialBot):
|
Allow sending of ephemeral messages
Add a `ephemeral` property to `Response` that defaults to false. If its true send an ephemeral message.
[Slack Docs](https://api.slack.com/methods/chat.postEphemeral)
|
0.0
|
8f6c931b420b4ad29fd8ea32164786c9c6d5f4ed
|
[
"tests/test_bot.py::TestSendMessage::test_send_message",
"tests/test_bot.py::TestSendMessage::test_send_reply",
"tests/test_bot.py::TestSendMessageWithMessageAttachments::test_send_message",
"tests/test_bot.py::TestSendMessageWithMessageAttachmentsDictionary::test_send_message",
"tests/test_bot.py::TestSendEphemeralMessage::test_ephemeral",
"tests/test_bot.py::TestSendEphemeralMessage::test_ephemeral_defaults_to_false"
] |
[
"tests/test_bot.py::TestPhialBotIsRunning::test_returns_expected_value",
"tests/test_bot.py::TestCommandDecarator::test_command_decorator_calls_add_command",
"tests/test_bot.py::TestCommandDecarator::test_command_decorator_functionality",
"tests/test_bot.py::TestAliasDecarator::test_command_decorator_calls_add_command_case_insensitive",
"tests/test_bot.py::TestAliasDecarator::test_command_decorator_calls_add_command_case_sensitive",
"tests/test_bot.py::TestAliasDecarator::test_command_decorator_functionality",
"tests/test_bot.py::TestAddCommand::test_add_command_errors_on_duplicate_name",
"tests/test_bot.py::TestAddCommand::test_add_command_functionality",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_multiple_substition_case_sensitive",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_multiple_substition_ignore_case",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_no_substition_case_sensitive",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_no_substition_ignore_case",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_single_substition_case_sensitive",
"tests/test_bot.py::TestBuildCommandPattern::test_build_command_pattern_single_substition_ignore_case",
"tests/test_bot.py::TestGetCommandMatch::test_basic_functionality",
"tests/test_bot.py::TestGetCommandMatch::test_multi_substition_matching",
"tests/test_bot.py::TestGetCommandMatch::test_returns_none_correctly",
"tests/test_bot.py::TestGetCommandMatch::test_single_substition_matching",
"tests/test_bot.py::TestCreateCommand::test_basic_functionality",
"tests/test_bot.py::TestCreateCommand::test_basic_functionality_with_args",
"tests/test_bot.py::TestCreateCommand::test_errors_when_no_command_match",
"tests/test_bot.py::TestHandleCommand::test_handle_command_basic_functionality",
"tests/test_bot.py::TestCommandContextWorksCorrectly::test_command_context_pops_correctly",
"tests/test_bot.py::TestCommandContextWorksCorrectly::test_command_context_works_correctly",
"tests/test_bot.py::TestParseSlackOutput::test_basic_functionality",
"tests/test_bot.py::TestParseSlackOutput::test_returns_message_correctly_for_normal_message",
"tests/test_bot.py::TestParseSlackOutput::test_returns_message_with_bot_id_correctly",
"tests/test_bot.py::TestParseSlackOutput::test_returns_none_correctly_if_no_messages",
"tests/test_bot.py::TestSendReaction::test_basic_functionality",
"tests/test_bot.py::TestUploadAttachment::test_basic_functionality",
"tests/test_bot.py::TestExecuteResponse::test_errors_on_invalid_response",
"tests/test_bot.py::TestExecuteResponse::test_errors_with_invalid_attachment",
"tests/test_bot.py::TestExecuteResponse::test_errors_with_reaction_and_reply",
"tests/test_bot.py::TestExecuteResponse::test_send_message",
"tests/test_bot.py::TestExecuteResponse::test_send_message_attachments",
"tests/test_bot.py::TestExecuteResponse::test_send_reaction",
"tests/test_bot.py::TestExecuteResponse::test_send_reply",
"tests/test_bot.py::TestExecuteResponse::test_send_string",
"tests/test_bot.py::TestExecuteResponse::test_upload_attachment",
"tests/test_bot.py::TestMiddleware::test_add_function",
"tests/test_bot.py::TestMiddleware::test_decarator",
"tests/test_bot.py::TestMiddleware::test_halts_message_when_none_returned",
"tests/test_bot.py::TestMiddleware::test_passes_on_message_correctly",
"tests/test_bot.py::TestHandleMessage::test_bot_message_does_not_trigger_command",
"tests/test_bot.py::TestRun::test_basic_functionality",
"tests/test_bot.py::TestRun::test_errors_with_invalid_command",
"tests/test_bot.py::TestRun::test_errors_with_invalid_token",
"tests/test_bot.py::TestGlobalContext::test_global_context_in_command"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-06-09 23:48:26+00:00
|
mit
| 5,459 |
|
seddonym__import-linter-79
|
diff --git a/AUTHORS.rst b/AUTHORS.rst
index b34e861..b0fa74b 100644
--- a/AUTHORS.rst
+++ b/AUTHORS.rst
@@ -9,3 +9,4 @@ Contributors
============
* Anthony Sottile - https://github.com/asottile
+* Łukasz Skarżyński - https://github.com/skarzi
diff --git a/CHANGELOG.rst b/CHANGELOG.rst
index 49ecc2c..3df7df3 100644
--- a/CHANGELOG.rst
+++ b/CHANGELOG.rst
@@ -87,3 +87,5 @@ latest
------
* Upgrade Grimp to 1.2.2.
+* Add SetField
+* Use a SetField for ignore_imports options
diff --git a/src/importlinter/contracts/forbidden.py b/src/importlinter/contracts/forbidden.py
index 89a10de..6badb2b 100644
--- a/src/importlinter/contracts/forbidden.py
+++ b/src/importlinter/contracts/forbidden.py
@@ -14,8 +14,8 @@ class ForbiddenContract(Contract):
- source_modules: A list of Modules that should not import the forbidden modules.
- forbidden_modules: A list of Modules that should not be imported by the source modules.
- - ignore_imports: A list of DirectImports. These imports will be ignored: if the import
- would cause a contract to be broken, adding it to the list will cause
+ - ignore_imports: A set of DirectImports. These imports will be ignored: if the import
+ would cause a contract to be broken, adding it to the set will cause
the contract be kept instead. (Optional.)
"""
@@ -23,7 +23,7 @@ class ForbiddenContract(Contract):
source_modules = fields.ListField(subfield=fields.ModuleField())
forbidden_modules = fields.ListField(subfield=fields.ModuleField())
- ignore_imports = fields.ListField(subfield=fields.DirectImportField(), required=False)
+ ignore_imports = fields.SetField(subfield=fields.DirectImportField(), required=False)
def check(self, graph: ImportGraph) -> ContractCheck:
is_kept = True
diff --git a/src/importlinter/contracts/independence.py b/src/importlinter/contracts/independence.py
index 71a7ff7..14f206e 100644
--- a/src/importlinter/contracts/independence.py
+++ b/src/importlinter/contracts/independence.py
@@ -16,15 +16,15 @@ class IndependenceContract(Contract):
Configuration options:
- modules: A list of Modules that should be independent from each other.
- - ignore_imports: A list of DirectImports. These imports will be ignored: if the import
- would cause a contract to be broken, adding it to the list will cause
+ - ignore_imports: A set of DirectImports. These imports will be ignored: if the import
+ would cause a contract to be broken, adding it to the set will cause
the contract be kept instead. (Optional.)
"""
type_name = "independence"
modules = fields.ListField(subfield=fields.ModuleField())
- ignore_imports = fields.ListField(subfield=fields.DirectImportField(), required=False)
+ ignore_imports = fields.SetField(subfield=fields.DirectImportField(), required=False)
def check(self, graph: ImportGraph) -> ContractCheck:
is_kept = True
diff --git a/src/importlinter/contracts/layers.py b/src/importlinter/contracts/layers.py
index 6aa43b5..cf15223 100644
--- a/src/importlinter/contracts/layers.py
+++ b/src/importlinter/contracts/layers.py
@@ -42,8 +42,8 @@ class LayersContract(Contract):
- layers: An ordered list of layers. Each layer is the name of a module relative
to its parent package. The order is from higher to lower level layers.
- containers: A list of the parent Modules of the layers (optional).
- - ignore_imports: A list of DirectImports. These imports will be ignored: if the import
- would cause a contract to be broken, adding it to the list will cause
+ - ignore_imports: A set of DirectImports. These imports will be ignored: if the import
+ would cause a contract to be broken, adding it to the set will cause
the contract be kept instead. (Optional.)
"""
@@ -51,7 +51,7 @@ class LayersContract(Contract):
layers = fields.ListField(subfield=LayerField())
containers = fields.ListField(subfield=fields.StringField(), required=False)
- ignore_imports = fields.ListField(subfield=fields.DirectImportField(), required=False)
+ ignore_imports = fields.SetField(subfield=fields.DirectImportField(), required=False)
def check(self, graph: ImportGraph) -> ContractCheck:
is_kept = True
diff --git a/src/importlinter/domain/fields.py b/src/importlinter/domain/fields.py
index 7809113..e226ec9 100644
--- a/src/importlinter/domain/fields.py
+++ b/src/importlinter/domain/fields.py
@@ -1,16 +1,18 @@
import abc
import re
-from typing import Any, List, Union
+from typing import Generic, Iterable, List, Set, TypeVar, Union
from importlinter.domain.imports import DirectImport, Module
+FieldValue = TypeVar("FieldValue")
+
class ValidationError(Exception):
def __init__(self, message: str) -> None:
self.message = message
-class Field(abc.ABC):
+class Field(Generic[FieldValue], abc.ABC):
"""
Base class for containers for some data on a Contract.
@@ -21,7 +23,7 @@ class Field(abc.ABC):
self.required = required
@abc.abstractmethod
- def parse(self, raw_data: Union[str, List[str]]) -> Any:
+ def parse(self, raw_data: Union[str, List[str]]) -> FieldValue:
"""
Given some raw data supplied by a user, return some clean data.
@@ -42,16 +44,13 @@ class StringField(Field):
return str(raw_data)
-class ListField(Field):
+class BaseMultipleValueField(Field):
"""
- A field for multiple values of any type.
+ An abstract field for multiple values of any type.
Arguments:
- - subfield: An instance of a single-value Field. Each item in the list will be the return
- value of this subfield.
- Usage:
-
- field = ListField(subfield=AnotherField())
+ - subfield: An instance of a single-value Field. Each item in the iterable will be
+ the return value of this subfield.
"""
@@ -59,7 +58,8 @@ class ListField(Field):
super().__init__(*args, **kwargs)
self.subfield = subfield
- def parse(self, raw_data: Union[str, List]) -> List[Any]:
+ @abc.abstractmethod
+ def parse(self, raw_data: Union[str, List]) -> Iterable[FieldValue]:
if isinstance(raw_data, tuple):
raw_data = list(raw_data)
if not isinstance(raw_data, list):
@@ -70,6 +70,37 @@ class ListField(Field):
return clean_list
+class ListField(BaseMultipleValueField):
+ """
+ A field for multiple values of any type.
+
+ Fields values are returned in list sorted by parsing order.
+
+ Usage:
+
+ field = ListField(subfield=AnotherField())
+ """
+
+ def parse(self, raw_data: Union[str, List]) -> List[FieldValue]:
+ return list(super().parse(raw_data))
+
+
+class SetField(BaseMultipleValueField):
+ """
+ A field for multiple, unique values of any type.
+
+ Fields values are returned inordered in set.
+
+ Usage:
+
+ field = SetField(subfield=AnotherField())
+
+ """
+
+ def parse(self, raw_data: Union[str, List]) -> Set[FieldValue]:
+ return set(super().parse(raw_data))
+
+
class ModuleField(Field):
"""
A field for Modules.
|
seddonym/import-linter
|
334b4d1b85bae7f21f7678e5bda17af0e7487af2
|
diff --git a/tests/unit/contracts/test_forbidden.py b/tests/unit/contracts/test_forbidden.py
index 684d8eb..e69dc93 100644
--- a/tests/unit/contracts/test_forbidden.py
+++ b/tests/unit/contracts/test_forbidden.py
@@ -125,6 +125,19 @@ class TestForbiddenContract:
):
contract.check(graph=graph)
+ def test_ignore_imports_tolerates_duplicates(self):
+ graph = self._build_graph()
+ contract = self._build_contract(
+ forbidden_modules=("mypackage.blue", "mypackage.yellow"),
+ ignore_imports=(
+ "mypackage.three -> mypackage.green",
+ "mypackage.utils -> mypackage.purple",
+ "mypackage.three -> mypackage.green",
+ ),
+ include_external_packages=False,
+ )
+ assert contract.check(graph=graph)
+
def _build_graph(self):
graph = ImportGraph()
for module in (
@@ -171,7 +184,9 @@ class TestForbiddenContract:
)
return graph
- def _build_contract(self, forbidden_modules, include_external_packages=False):
+ def _build_contract(
+ self, forbidden_modules, ignore_imports=None, include_external_packages=False
+ ):
session_options = {"root_packages": ["mypackage"]}
if include_external_packages:
session_options["include_external_packages"] = "True"
@@ -182,6 +197,7 @@ class TestForbiddenContract:
contract_options={
"source_modules": ("mypackage.one", "mypackage.two", "mypackage.three"),
"forbidden_modules": forbidden_modules,
+ "ignore_imports": ignore_imports or [],
},
)
diff --git a/tests/unit/contracts/test_independence.py b/tests/unit/contracts/test_independence.py
index fefc36d..db3ba26 100644
--- a/tests/unit/contracts/test_independence.py
+++ b/tests/unit/contracts/test_independence.py
@@ -392,3 +392,30 @@ def test_missing_module():
with pytest.raises(ValueError, match=("Module 'mypackage.bar' does not exist.")):
contract.check(graph=graph)
+
+
+def test_ignore_imports_tolerates_duplicates():
+ graph = ImportGraph()
+ graph.add_module("mypackage")
+ graph.add_import(
+ importer="mypackage.a", imported="mypackage.b", line_number=1, line_contents="-"
+ )
+ graph.add_import(
+ importer="mypackage.a", imported="mypackage.c", line_number=2, line_contents="-"
+ )
+ contract = IndependenceContract(
+ name="Independence contract",
+ session_options={"root_packages": ["mypackage"]},
+ contract_options={
+ "modules": ("mypackage.a", "mypackage.b"),
+ "ignore_imports": [
+ "mypackage.a -> mypackage.b",
+ "mypackage.a -> mypackage.c",
+ "mypackage.a -> mypackage.b",
+ ],
+ },
+ )
+
+ contract_check = contract.check(graph=graph)
+
+ assert contract_check.kept
diff --git a/tests/unit/contracts/test_layers.py b/tests/unit/contracts/test_layers.py
index 36b1086..82231c4 100644
--- a/tests/unit/contracts/test_layers.py
+++ b/tests/unit/contracts/test_layers.py
@@ -765,6 +765,20 @@ class TestIgnoreImports:
with pytest.raises(MissingImport):
contract.check(graph=graph)
+ def test_ignore_imports_tolerates_duplicates(self):
+ contract = self._build_contract(
+ ignore_imports=[
+ "mypackage.low.black -> mypackage.medium.orange",
+ "mypackage.utils.foo -> mypackage.utils.bar",
+ "mypackage.low.black -> mypackage.medium.orange",
+ ]
+ )
+ graph = self._build_graph()
+
+ contract_check = contract.check(graph=graph)
+
+ assert contract_check.kept
+
def _build_graph(self):
graph = ImportGraph()
for module in (
diff --git a/tests/unit/domain/test_fields.py b/tests/unit/domain/test_fields.py
index 851404a..76883f0 100644
--- a/tests/unit/domain/test_fields.py
+++ b/tests/unit/domain/test_fields.py
@@ -7,6 +7,7 @@ from importlinter.domain.fields import (
Field,
ListField,
ModuleField,
+ SetField,
StringField,
ValidationError,
)
@@ -83,9 +84,23 @@ class TestDirectImportField(BaseFieldTest):
"raw_data, expected_value",
(
(["mypackage.foo", "mypackage.bar"], [Module("mypackage.foo"), Module("mypackage.bar")]),
+ (["mypackage.foo", "mypackage.foo"], [Module("mypackage.foo"), Module("mypackage.foo")]),
("singlevalue", [Module("singlevalue")]),
),
)
class TestListField(BaseFieldTest):
field_class = ListField
field_kwargs = dict(subfield=ModuleField())
+
+
[email protected](
+ "raw_data, expected_value",
+ (
+ (["mypackage.foo", "mypackage.bar"], {Module("mypackage.foo"), Module("mypackage.bar")}),
+ (["mypackage.foo", "mypackage.foo"], {Module("mypackage.foo")}),
+ ("singlevalue", {Module("singlevalue")}),
+ ),
+)
+class TestSetField(BaseFieldTest):
+ field_class = SetField
+ field_kwargs = dict(subfield=ModuleField())
|
Duplicate ignored_imports lead to confusing error
If you include an ignored import twice in a contract, you get the following error (as it tries to remove it the second time):
```
The edge mypackage.foo-mypackage.bar not in graph.
```
|
0.0
|
334b4d1b85bae7f21f7678e5bda17af0e7487af2
|
[
"tests/unit/contracts/test_forbidden.py::TestForbiddenContract::test_is_kept_when_no_forbidden_modules_imported",
"tests/unit/contracts/test_forbidden.py::TestForbiddenContract::test_is_broken_when_forbidden_modules_imported",
"tests/unit/contracts/test_forbidden.py::TestForbiddenContract::test_is_broken_when_forbidden_external_modules_imported",
"tests/unit/contracts/test_forbidden.py::TestForbiddenContract::test_is_invalid_when_forbidden_externals_but_graph_does_not_include_externals",
"tests/unit/contracts/test_forbidden.py::TestForbiddenContract::test_ignore_imports_tolerates_duplicates",
"tests/unit/contracts/test_forbidden.py::test_render_broken_contract",
"tests/unit/contracts/test_independence.py::TestIndependenceContract::test_when_modules_are_independent",
"tests/unit/contracts/test_independence.py::TestIndependenceContract::test_when_root_imports_root_directly",
"tests/unit/contracts/test_independence.py::TestIndependenceContract::test_when_root_imports_root_indirectly",
"tests/unit/contracts/test_independence.py::TestIndependenceContract::test_chains_via_other_independent_modules",
"tests/unit/contracts/test_independence.py::TestIndependenceContract::test_when_child_imports_child",
"tests/unit/contracts/test_independence.py::TestIndependenceContract::test_when_grandchild_imports_root",
"tests/unit/contracts/test_independence.py::test_ignore_imports[ignore_imports0-False]",
"tests/unit/contracts/test_independence.py::test_ignore_imports[ignore_imports1-True]",
"tests/unit/contracts/test_independence.py::test_ignore_imports[ignore_imports2-True]",
"tests/unit/contracts/test_independence.py::test_render_broken_contract",
"tests/unit/contracts/test_independence.py::test_missing_module",
"tests/unit/contracts/test_independence.py::test_ignore_imports_tolerates_duplicates",
"tests/unit/contracts/test_layers.py::TestLayerContractSingleContainers::test_no_illegal_imports_means_contract_is_kept",
"tests/unit/contracts/test_layers.py::TestLayerContractSingleContainers::test_illegal_child_imports_means_contract_is_broken",
"tests/unit/contracts/test_layers.py::TestLayerContractSingleContainers::test_illegal_grandchild_to_child_means_contract_is_broken",
"tests/unit/contracts/test_layers.py::TestLayerMultipleContainers::test_no_illegal_imports_means_contract_is_kept",
"tests/unit/contracts/test_layers.py::TestLayerMultipleContainers::test_imports_from_low_to_high_but_in_different_container_doesnt_break_contract",
"tests/unit/contracts/test_layers.py::TestLayerMultipleContainers::test_illegal_grandchild_imports_means_contract_is_broken",
"tests/unit/contracts/test_layers.py::TestLayerContractPopulatesMetadata::test_layer_contract_populates_metadata",
"tests/unit/contracts/test_layers.py::TestLayerContractPopulatesMetadata::test_layer_contract_populates_extra_firsts_one_indirect",
"tests/unit/contracts/test_layers.py::TestLayerContractPopulatesMetadata::test_layer_contract_populates_extra_firsts_two_indirects",
"tests/unit/contracts/test_layers.py::TestLayerContractPopulatesMetadata::test_layer_contract_populates_extra_lasts_one_indirect",
"tests/unit/contracts/test_layers.py::TestLayerContractPopulatesMetadata::test_layer_contract_populates_extra_lasts_two_indirects",
"tests/unit/contracts/test_layers.py::TestLayerContractPopulatesMetadata::test_layer_contract_populates_firsts_and_lasts_three_indirects",
"tests/unit/contracts/test_layers.py::TestIgnoreImports::test_one_ignored_from_each_chain_means_contract_is_kept",
"tests/unit/contracts/test_layers.py::TestIgnoreImports::test_ignore_only_one_chain_should_fail_because_of_the_other",
"tests/unit/contracts/test_layers.py::TestIgnoreImports::test_multiple_ignore_from_same_chain_should_not_error",
"tests/unit/contracts/test_layers.py::TestIgnoreImports::test_ignore_from_nonexistent_importer_raises_missing_import",
"tests/unit/contracts/test_layers.py::TestIgnoreImports::test_ignore_from_nonexistent_imported_raises_missing_import",
"tests/unit/contracts/test_layers.py::TestIgnoreImports::test_ignore_imports_tolerates_duplicates",
"tests/unit/contracts/test_layers.py::test_optional_layers[True-False]",
"tests/unit/contracts/test_layers.py::test_missing_containerless_layers_raise_value_error",
"tests/unit/contracts/test_layers.py::test_render_broken_contract",
"tests/unit/contracts/test_layers.py::test_invalid_container[notingraph]",
"tests/unit/contracts/test_layers.py::test_invalid_container[notingraph.foo]",
"tests/unit/contracts/test_layers.py::test_invalid_container[notinpackage]",
"tests/unit/contracts/test_layers.py::test_invalid_container[notinpackage.foo]",
"tests/unit/contracts/test_layers.py::test_invalid_container[notinpackage.foo.one]",
"tests/unit/contracts/test_layers.py::test_invalid_container[mypackagebeginscorrectly]",
"tests/unit/contracts/test_layers.py::test_invalid_container_multiple_packages",
"tests/unit/contracts/test_layers.py::TestLayerContractNoContainer::test_no_illegal_imports_means_contract_is_kept",
"tests/unit/contracts/test_layers.py::TestLayerContractNoContainer::test_illegal_imports_means_contract_is_broken",
"tests/unit/contracts/test_layers.py::TestLayerContractNoContainer::test_no_illegal_imports_across_multiple_root_packages_means_contract_is_kept",
"tests/unit/contracts/test_layers.py::TestLayerContractNoContainer::test_illegal_imports_across_multiple_root_packages_means_contract_is_broken",
"tests/unit/contracts/test_layers.py::TestGetIndirectCollapsedChains::test_no_chains",
"tests/unit/contracts/test_layers.py::TestGetIndirectCollapsedChains::test_direct_imports_raises_value_error",
"tests/unit/contracts/test_layers.py::TestGetIndirectCollapsedChains::test_chain_length_2_is_included",
"tests/unit/contracts/test_layers.py::TestGetIndirectCollapsedChains::test_chain_length_3_is_included",
"tests/unit/contracts/test_layers.py::TestGetIndirectCollapsedChains::test_multiple_chains_of_length_2_same_segment",
"tests/unit/contracts/test_layers.py::TestGetIndirectCollapsedChains::test_multiple_chains_of_length_3_same_segment",
"tests/unit/contracts/test_layers.py::TestPopDirectImports::test_direct_import_between_descendants",
"tests/unit/contracts/test_layers.py::TestPopDirectImports::test_direct_import_between_roots",
"tests/unit/contracts/test_layers.py::TestPopDirectImports::test_direct_import_root_to_descendant",
"tests/unit/contracts/test_layers.py::TestPopDirectImports::test_direct_import_descendant_to_root",
"tests/unit/domain/test_fields.py::TestStringField::test_field[Hello,",
"tests/unit/domain/test_fields.py::TestStringField::test_field[raw_data1-expected_value1]",
"tests/unit/domain/test_fields.py::TestModuleField::test_field[mypackage.foo.bar-expected_value0]",
"tests/unit/domain/test_fields.py::TestModuleField::test_field[raw_data1-expected_value1]",
"tests/unit/domain/test_fields.py::TestDirectImportField::test_field[mypackage.foo",
"tests/unit/domain/test_fields.py::TestDirectImportField::test_field[raw_data1-expected_value1]",
"tests/unit/domain/test_fields.py::TestListField::test_field[raw_data0-expected_value0]",
"tests/unit/domain/test_fields.py::TestListField::test_field[raw_data1-expected_value1]",
"tests/unit/domain/test_fields.py::TestListField::test_field[singlevalue-expected_value2]",
"tests/unit/domain/test_fields.py::TestSetField::test_field[raw_data0-expected_value0]",
"tests/unit/domain/test_fields.py::TestSetField::test_field[raw_data1-expected_value1]",
"tests/unit/domain/test_fields.py::TestSetField::test_field[singlevalue-expected_value2]"
] |
[] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-07-26 10:23:27+00:00
|
bsd-2-clause
| 5,460 |
|
seek-oss__aec-376
|
diff --git a/src/aec/__init__.py b/src/aec/__init__.py
index a7c8d66..71ed17d 100644
--- a/src/aec/__init__.py
+++ b/src/aec/__init__.py
@@ -1,1 +1,1 @@
-__version__ = "2.5.5"
+__version__ = "2.5.6"
diff --git a/src/aec/command/ec2.py b/src/aec/command/ec2.py
index d76bbdc..9adc37c 100755
--- a/src/aec/command/ec2.py
+++ b/src/aec/command/ec2.py
@@ -250,6 +250,10 @@ def tag(
parts = t.split("=")
tagdefs.append({"Key": parts[0], "Value": parts[1]})
+ if not name and not name_match:
+ # avoid tagging all instances when there's no name
+ raise NoInstancesError(name=name, name_match=name_match)
+
instances = describe(config, name, name_match)
ids = [i["InstanceId"] for i in instances]
@@ -317,6 +321,10 @@ def start(config: Config, name: str) -> List[Instance]:
print(f"Starting instances with the name {name} ... ")
+ if not name:
+ # avoid starting all instances when there's no name
+ raise NoInstancesError(name=name)
+
instances = describe(config, name)
if not instances:
@@ -336,6 +344,10 @@ def stop(config: Config, name: str) -> List[Dict[str, Any]]:
ec2_client = boto3.client("ec2", region_name=config.get("region", None))
+ if not name:
+ # avoid stopping all instances when there's no name
+ raise NoInstancesError(name=name)
+
instances = describe(config, name)
if not instances:
@@ -351,6 +363,10 @@ def terminate(config: Config, name: str) -> List[Dict[str, Any]]:
ec2_client = boto3.client("ec2", region_name=config.get("region", None))
+ if not name:
+ # avoid terminating all instances when there's no name
+ raise NoInstancesError(name=name)
+
instances = describe(config, name)
if not instances:
@@ -368,6 +384,10 @@ def modify(config: Config, name: str, type: str) -> List[Instance]:
ec2_client = boto3.client("ec2", region_name=config.get("region", None))
+ if not name:
+ # avoid modifying all instances when there's no name
+ raise NoInstancesError(name=name)
+
instances = describe(config, name)
if not instances:
@@ -399,6 +419,10 @@ def logs(config: Config, name: str) -> str:
ec2_client = boto3.client("ec2", region_name=config.get("region", None))
+ if not name:
+ # avoid describing all instances when there's no name
+ raise NoInstancesError(name=name)
+
instances = describe(config, name)
if not instances:
|
seek-oss/aec
|
f0b8372ce5e36014c0cba8da94bae9feecb1656a
|
diff --git a/tests/test_ec2.py b/tests/test_ec2.py
index b6ce0ea..0632ec1 100644
--- a/tests/test_ec2.py
+++ b/tests/test_ec2.py
@@ -357,6 +357,18 @@ def test_terminate(mock_aws_config):
terminate(config=mock_aws_config, name="alice")
+def test_terminate_empty_name_does_not_delete_all_instances(mock_aws_config):
+ launch(mock_aws_config, "alice", ami_id)
+
+ with pytest.raises(ValueError) as exc_info:
+ terminate(config=mock_aws_config, name="")
+ print(exc_info.value.args[0])
+ assert exc_info.value.args[0] == """Missing name or name_match"""
+
+ instances = describe(config=mock_aws_config)
+ assert len(instances) == 1
+
+
def test_logs(mock_aws_config):
launch(mock_aws_config, "alice", ami_id)
|
Inadvertant termination of ALL ec2 instances in region
I am using aec via a bash script, which because of a configuration error executed `aec ec2 terminate "$instanceId"` with an empty `$instanceId`.
This had the rather unfortunate effect of terminating *all* of the ec2 instances visible to my role in the selected region. Looking at `ec2.py` it looks like the empty `name` argument was passed through to describe which happily returned all of the instances which where then deleted.
I think that terminate (and probably start and stop) should probably refuse to operate on more than one instance at a time, or alternatively guard against an empty name filter.
|
0.0
|
f0b8372ce5e36014c0cba8da94bae9feecb1656a
|
[
"tests/test_ec2.py::test_terminate_empty_name_does_not_delete_all_instances"
] |
[
"tests/test_ec2.py::test_launch",
"tests/test_ec2.py::test_launch_template",
"tests/test_ec2.py::test_launch_multiple_security_groups",
"tests/test_ec2.py::test_launch_without_instance_profile",
"tests/test_ec2.py::test_launch_no_region_specified",
"tests/test_ec2.py::test_launch_with_ami_match_string",
"tests/test_ec2.py::test_override_key_name",
"tests/test_ec2.py::test_override_volume_size",
"tests/test_ec2.py::test_config_override_volume_size",
"tests/test_ec2.py::test_launch_has_userdata",
"tests/test_ec2.py::test_describe",
"tests/test_ec2.py::test_describe_instance_without_tags",
"tests/test_ec2.py::test_tag",
"tests/test_ec2.py::test_describe_by_name",
"tests/test_ec2.py::test_describe_by_name_match",
"tests/test_ec2.py::test_describe_terminated",
"tests/test_ec2.py::test_describe_running_only",
"tests/test_ec2.py::test_describe_instance_id",
"tests/test_ec2.py::test_describe_sort_by",
"tests/test_ec2.py::test_describe_columns",
"tests/test_ec2.py::test_tags",
"tests/test_ec2.py::test_tags_volume",
"tests/test_ec2.py::test_tags_filter",
"tests/test_ec2.py::test_stop_start",
"tests/test_ec2.py::test_modify",
"tests/test_ec2.py::test_status",
"tests/test_ec2.py::test_terminate",
"tests/test_ec2.py::test_logs",
"tests/test_ec2.py::test_ebs_encrypted_by_default",
"tests/test_ec2.py::test_ebs_encrypt_with_kms",
"tests/test_ec2.py::test_create_key_pair"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-07-27 08:44:33+00:00
|
mit
| 5,461 |
|
seequent__methoddispatch-9
|
diff --git a/README.md b/README.md
index ba94edb..68fd599 100644
--- a/README.md
+++ b/README.md
@@ -2,12 +2,10 @@
[](https://travis-ci.com/seequent/methoddispatch)
+Python 3.4 added the ``singledispatch`` decorator to the ``functools`` standard library module.
+This library extends this functionality to instance methods (and works for functions too).
-[PEP 443](http://www.python.org/dev/peps/pep-0443) proposed to expose a mechanism in the ``functools`` standard library module in Python 3.4 that provides a simple form of generic programming known as single-dispatch generic functions.
-
-This library extends this functionality to instance methods (and works for functions too)
-
-To define a generic method , decorate it with the ``@singledispatch`` decorator. Note that the dispatch happens on the type of the first argument, create your function accordingly::
+To define a generic method , decorate it with the ``@singledispatch`` decorator. Note that the dispatch happens on the type of the first argument, create your function accordingly.
>>> from methoddispatch import singledispatch, register, SingleDispatch
@@ -110,16 +108,20 @@ Decorating class methods requires the class to inherit from ``SingleDispatch``
'int'
Subclasses can extend the type registry of the function on the base class with their own overrides.
-Because the ``foo`` function is not in scope, the ``methoddispatch.register`` decorator must be used instead
+Because we do not want to modify the base class ``foo`` registry the ``methoddispatch.register`` decorator must be used instead of ``foo.register``. The module level ``register`` function takes either the method name or the method itself as the first parameter and the dispatch type as the second.
>>> class SubClass(BaseClass):
... @register('foo', float)
... def foo_float(self, bar):
... return 'float'
...
+ ... @register(BaseClass.foo, str)
+ ... def foo_str(self, bar):
+ ... return 'str'
+ ...
>>> s = SubClass()
- >>> s.foo(1)
- 'int'
+ >>> s.foo('')
+ 'str'
>>> s.foo(1.0)
'float'
@@ -144,7 +146,7 @@ Decorating a method override with a different type (not a good idea) will regist
In Python 3.7 and later, for functions annotated with types, the decorator will infer the type of the first argument automatically as shown below
- >>> class BaseClass(SingleDispatch):
+ >>> class BaseClassAnno(SingleDispatch):
... @singledispatch
... def foo(self, bar):
... return 'default'
@@ -153,13 +155,13 @@ In Python 3.7 and later, for functions annotated with types, the decorator will
... def foo_int(self, bar: int):
... return 'int'
...
- >>> class SubClass(BaseClass):
+ >>> class SubClassAnno(BaseClassAnno):
... @register('foo')
... def foo_float(self, bar: float):
... return 'float'
In Python 3.6 and earlier, the ``SingleDispatch`` class uses a meta-class ``SingleDispatchMeta`` to manage the dispatch registries. However in Python 3.7 and later the ``__init_subclass__`` method is used instead.
-If your class also inhertits from an ABC interface you can use the ``SingleDispatchABCMeta`` metaclass in Python 3.6 and earlier.
+If your class also inherits from an ABC interface you can use the ``SingleDispatchABCMeta`` metaclass in Python 3.6 and earlier.
Finally, accessing the method ``foo`` via a class will use the dispatch registry for that class
diff --git a/methoddispatch/__init__.py b/methoddispatch/__init__.py
index 242cd91..ea0cd33 100644
--- a/methoddispatch/__init__.py
+++ b/methoddispatch/__init__.py
@@ -2,11 +2,12 @@
"""
# methoddispatch
- [PEP 443](http://www.python.org/dev/peps/pep-0443) proposed to expose a mechanism in the ``functools`` standard library module in Python 3.4 that provides a simple form of generic programming known as single-dispatch generic functions.
+[](https://travis-ci.com/seequent/methoddispatch)
-This library extends this functionality to instance methods (and works for functions too)
+Python 3.4 added the ``singledispatch`` decorator to the ``functools`` standard library module.
+This library extends this functionality to instance methods (and works for functions too).
-To define a generic method , decorate it with the ``@singledispatch`` decorator. Note that the dispatch happens on the type of the first argument, create your function accordingly::
+To define a generic method , decorate it with the ``@singledispatch`` decorator. Note that the dispatch happens on the type of the first argument, create your function accordingly.
>>> from methoddispatch import singledispatch, register, SingleDispatch
@@ -109,16 +110,20 @@ Decorating class methods requires the class to inherit from ``SingleDispatch``
'int'
Subclasses can extend the type registry of the function on the base class with their own overrides.
-Because the ``foo`` function is not in scope, the ``methoddispatch.register`` decorator must be used instead
+Because we do not want to modify the base class ``foo`` registry the ``methoddispatch.register`` decorator must be used instead of ``foo.register``. The module level ``register`` function takes either the method name or the method itself as the first parameter and the dispatch type as the second.
>>> class SubClass(BaseClass):
... @register('foo', float)
... def foo_float(self, bar):
... return 'float'
...
+ ... @register(BaseClass.foo, str)
+ ... def foo_str(self, bar):
+ ... return 'str'
+ ...
>>> s = SubClass()
- >>> s.foo(1)
- 'int'
+ >>> s.foo('')
+ 'str'
>>> s.foo(1.0)
'float'
@@ -143,7 +148,7 @@ Decorating a method override with a different type (not a good idea) will regist
In Python 3.7 and later, for functions annotated with types, the decorator will infer the type of the first argument automatically as shown below
- >>> class BaseClass2(SingleDispatch):
+ >>> class BaseClassAnno(SingleDispatch):
... @singledispatch
... def foo(self, bar):
... return 'default'
@@ -152,13 +157,13 @@ In Python 3.7 and later, for functions annotated with types, the decorator will
... def foo_int(self, bar: int):
... return 'int'
...
- >>> class SubClass2(BaseClass2):
+ >>> class SubClassAnno(BaseClassAnno):
... @register('foo')
... def foo_float(self, bar: float):
... return 'float'
In Python 3.6 and earlier, the ``SingleDispatch`` class uses a meta-class ``SingleDispatchMeta`` to manage the dispatch registries. However in Python 3.7 and later the ``__init_subclass__`` method is used instead.
-If your class also inhertits from an ABC interface you can use the ``SingleDispatchABCMeta`` metaclass in Python 3.6 and earlier.
+If your class also inherits from an ABC interface you can use the ``SingleDispatchABCMeta`` metaclass in Python 3.6 and earlier.
Finally, accessing the method ``foo`` via a class will use the dispatch registry for that class
diff --git a/methoddispatch/methoddispatch2.py b/methoddispatch/methoddispatch2.py
index df42610..d136ad4 100644
--- a/methoddispatch/methoddispatch2.py
+++ b/methoddispatch/methoddispatch2.py
@@ -265,17 +265,20 @@ class sd_method(object):
return self.dispatch(args[0].__class__)(self._instance, *args, **kwargs)
-def _fixup_class_attributes(attributes, bases):
+def _fixup_class_attributes(cls):
generics = []
- for base in bases:
+ attributes = cls.__dict__
+ patched = set()
+ for base in cls.mro()[1:]:
if isinstance(base, SingleDispatchMeta):
for name, value in base.__dict__.items():
- if isinstance(value, singledispatch):
+ if isinstance(value, singledispatch) and name not in patched:
if name in attributes:
raise RuntimeError('Cannot override generic function. '
- 'Try @register({}, object) instead.'.format(name))
+ 'Try @register("{}", object) instead.'.format(name))
generic = value.copy()
- attributes[name] = generic
+ setattr(cls, name, generic)
+ patched.add(name)
generics.append(generic)
for name, value in attributes.items():
if not callable(value) or isinstance(value, singledispatch):
@@ -298,8 +301,8 @@ class SingleDispatchMeta(type):
so that registered types on sub-classes do not modify the base class.
"""
def __new__(mcs, clsname, bases, attributes):
- _fixup_class_attributes(attributes, bases)
cls = super(SingleDispatchMeta, mcs).__new__(mcs, clsname, bases, attributes)
+ _fixup_class_attributes(cls)
return cls
@@ -317,9 +320,10 @@ class SingleDispatchABC(object):
def register(name, cls):
""" Decorator for methods on a sub-class to register an overload on a base-class generic method
- name is the name of the generic method on the base class
- cls is the type to register
+ :param name: is the name of the generic method on the base class, or the unbound method itself
+ :param cls: is the type to register
"""
+ name = getattr(name, '__name__', name) # __name__ exists on sd_method courtesy of update_wrapper
def wrapper(func):
overloads = getattr(func, 'overloads', [])
overloads.append((name, cls))
diff --git a/methoddispatch/methoddispatch3.py b/methoddispatch/methoddispatch3.py
index 7efe791..bb82d51 100644
--- a/methoddispatch/methoddispatch3.py
+++ b/methoddispatch/methoddispatch3.py
@@ -1,7 +1,7 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from abc import get_cache_token, ABCMeta
-from functools import update_wrapper, _find_impl, _c3_mro
+from functools import update_wrapper, _find_impl
from types import MappingProxyType
from weakref import WeakKeyDictionary
@@ -111,15 +111,17 @@ class sd_method(object):
def _fixup_class_attributes(cls):
generics = []
attributes = cls.__dict__
+ patched = set()
for base in cls.mro()[1:]:
if isinstance(base, SingleDispatchMeta):
for name, value in base.__dict__.items():
- if isinstance(value, singledispatch):
+ if isinstance(value, singledispatch) and name not in patched:
if name in attributes:
raise RuntimeError('Cannot override generic function. '
- 'Try @register({}, object) instead.'.format(name))
+ 'Try @register("{}", object) instead.'.format(name))
generic = value.copy()
setattr(cls, name, generic)
+ patched.add(name)
generics.append(generic)
for name, value in attributes.items():
if not callable(value) or isinstance(value, singledispatch):
@@ -158,12 +160,12 @@ class SingleDispatch(metaclass=SingleDispatchMeta):
class SingleDispatchABC(metaclass=SingleDispatchABCMeta):
pass
-
def register(name, cls):
- """ Decorator for methods on a sub-class to register an overload on a base-class generic method
- name is the name of the generic method on the base class
- cls is the type to register
+ """ Decorator for methods on a sub-class to register an overload on a base-class generic method.
+ :param name: is the name of the generic method on the base class, or the unbound method itself
+ :param cls: is the type to register
"""
+ name = getattr(name, '__name__', name) # __name__ exists on sd_method courtesy of update_wrapper
def wrapper(func):
overloads = getattr(func, 'overloads', [])
overloads.append((name, cls))
diff --git a/methoddispatch/methoddispatch37.py b/methoddispatch/methoddispatch37.py
index 6c5e80c..06be769 100644
--- a/methoddispatch/methoddispatch37.py
+++ b/methoddispatch/methoddispatch37.py
@@ -84,7 +84,7 @@ class singledispatch(object):
def __get__(self, instance, cls=None):
if cls is not None and not issubclass(cls, SingleDispatch):
- raise ValueError('singledispatch can only be used on methods of SingleDispatchMeta types')
+ raise ValueError('singledispatch can only be used on methods of SingleDispatch subclasses')
wrapper = sd_method(self, instance)
update_wrapper(wrapper, self.func)
return wrapper
@@ -124,40 +124,46 @@ class sd_method(object):
return self.dispatch(args[0].__class__)(self._instance, *args, **kwargs)
+def _fixup_class_attributes(cls):
+ generics = []
+ attributes = cls.__dict__
+ patched = set()
+ for base in cls.mro()[1:]:
+ if issubclass(base, SingleDispatch):
+ for name, value in base.__dict__.items():
+ if isinstance(value, singledispatch) and name not in patched:
+ if name in attributes:
+ raise RuntimeError('Cannot override generic function. '
+ 'Try @register("{}", object) instead.'.format(name))
+ generic = value.copy()
+ setattr(cls, name, generic)
+ patched.add(name)
+ generics.append(generic)
+ for name, value in attributes.items():
+ if not callable(value) or isinstance(value, singledispatch):
+ continue
+ if hasattr(value, 'overloads'):
+ for generic_name, cls in value.overloads:
+ generic = attributes[generic_name]
+ if cls is None:
+ generic.register(value)
+ else:
+ generic.register(cls, value)
+ else: # register over-ridden methods
+ for generic in generics:
+ for cls, f in generic.registry.items():
+ if name == f.__name__:
+ generic.register(cls, value)
+ break
+
+
class SingleDispatch(object):
"""
Base or mixin class to enable single dispatch on methods.
"""
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
- generics = []
- attributes = cls.__dict__
- for base in cls.mro()[1:]:
- if issubclass(base, SingleDispatch):
- for name, value in base.__dict__.items():
- if isinstance(value, singledispatch):
- if name in attributes:
- raise RuntimeError('Cannot override generic function. '
- 'Try @register("{}", object) instead.'.format(name))
- generic = value.copy()
- setattr(cls, name, generic)
- generics.append(generic)
- for name, value in attributes.items():
- if not callable(value) or isinstance(value, singledispatch):
- continue
- if hasattr(value, 'overloads'):
- for generic_name, cls in value.overloads:
- generic = attributes[generic_name]
- if cls is None:
- generic.register(value)
- else:
- generic.register(cls, value)
- else: # register over-ridden methods
- for generic in generics:
- for cls, f in generic.registry.items():
- if name == f.__name__:
- generic.register(cls, value)
- break
+ _fixup_class_attributes(cls)
SingleDispatchABC = SingleDispatch # for backwards compatibility
@@ -165,9 +171,10 @@ SingleDispatchABC = SingleDispatch # for backwards compatibility
def register(name, cls=None):
""" Decorator for methods on a sub-class to register an overload on a base-class generic method.
- :param name: is the name of the generic method on the base class
+ :param name: is the name of the generic method on the base class, or the unbound method itself
:param cls: is the type to register or may be omitted or None to use the annotated parameter type.
"""
+ name = getattr(name, '__name__', name) # __name__ exists on sd_method courtesy of update_wrapper
def wrapper(func):
overloads = getattr(func, 'overloads', [])
overloads.append((name, cls))
|
seequent/methoddispatch
|
233ca14427acd92bb3a0bcf734c171b6cb1f36a6
|
diff --git a/test.py b/test.py
index 4de209f..66710aa 100644
--- a/test.py
+++ b/test.py
@@ -27,6 +27,15 @@ class SubClass(BaseClass):
def foo_int(self, bar):
return 'sub int'
+ @register(BaseClass.foo, str)
+ def foo_str(self, bar):
+ return 'str'
+
+class SubSubClass(SubClass):
+ @register('foo', list)
+ def foo_list(self, bar):
+ return 'list'
+
@six.add_metaclass(abc.ABCMeta)
class IFoo(object):
@@ -64,9 +73,18 @@ class TestMethodDispatch(unittest.TestCase):
def test_sub_class(self):
s = SubClass()
- self.assertEqual(s.foo('text'), 'default')
+ self.assertEqual(s.foo([]), 'default')
+ self.assertEqual(s.foo(1), 'sub int')
+ self.assertEqual(s.foo(1.0), 'float')
+ self.assertEqual(s.foo(''), 'str')
+
+ def test_sub_sub_class(self):
+ # this checks that we are using MRO and not just bases.
+ s = SubSubClass()
+ self.assertEqual(s.foo([]), 'list')
self.assertEqual(s.foo(1), 'sub int')
self.assertEqual(s.foo(1.0), 'float')
+ self.assertEqual(s.foo(''), 'str')
def test_independence(self):
b = BaseClass()
@@ -100,7 +118,7 @@ class TestMethodDispatch(unittest.TestCase):
self.assertTrue(hasattr(SubClass.foo, 'dispatch'))
self.assertTrue(hasattr(SubClass.foo, 'registry'))
self.assertIs(SubClass.foo.dispatch(float), SubClass.__dict__['foo_float'])
- self.assertEqual(set(SubClass.foo.registry.keys()), set([float, object, int]))
+ self.assertEqual(set(SubClass.foo.registry.keys()), set([float, object, int, str]))
def test_instance_extra_attributes(self):
""" Check that dispatch and registry attributes are accessible """
@@ -108,7 +126,7 @@ class TestMethodDispatch(unittest.TestCase):
self.assertTrue(hasattr(s.foo, 'dispatch'))
self.assertTrue(hasattr(s.foo, 'registry'))
self.assertIs(s.foo.dispatch(float), SubClass.__dict__['foo_float'])
- self.assertEqual(set(s.foo.registry.keys()), set([float, object, int]))
+ self.assertEqual(set(s.foo.registry.keys()), set([float, object, int, str]))
@unittest.skipIf(six.PY2, 'docs are in python3 syntax')
def test_docs(self):
@@ -119,10 +137,10 @@ class TestMethodDispatch(unittest.TestCase):
@unittest.skipIf(sys.version_info < (3, 7), 'python < 3.7')
def test_annotations(self):
- exec(py_37_tests)
+ exec(annotation_tests)
-py_37_tests = """
+annotation_tests = """
def test_annotations(self):
class AnnClass(BaseClass):
@register('foo')
|
Allow passing method object to register
You can't navigate from a string to the method you are dispatching.
permit:
```
class SubClass(BaseClass):
@register(BaseClass.foo, int)
def foo_int(self, bar):
...
```
|
0.0
|
233ca14427acd92bb3a0bcf734c171b6cb1f36a6
|
[
"test.py::TestMethodDispatch::test_abc_interface_support",
"test.py::TestMethodDispatch::test_annotations",
"test.py::TestMethodDispatch::test_attempted_override",
"test.py::TestMethodDispatch::test_base_class",
"test.py::TestMethodDispatch::test_class_access",
"test.py::TestMethodDispatch::test_class_extra_attributes",
"test.py::TestMethodDispatch::test_docs",
"test.py::TestMethodDispatch::test_independence",
"test.py::TestMethodDispatch::test_instance_extra_attributes",
"test.py::TestMethodDispatch::test_pure_funcs",
"test.py::TestMethodDispatch::test_sub_class",
"test.py::TestMethodDispatch::test_sub_sub_class"
] |
[] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-07-03 02:57:32+00:00
|
bsd-3-clause
| 5,462 |
|
seequent__pure_interface-48
|
diff --git a/pure_interface.py b/pure_interface.py
index ab4c2e0..8643394 100644
--- a/pure_interface.py
+++ b/pure_interface.py
@@ -755,6 +755,44 @@ def register_adapter(adapter, from_type, to_interface):
adapters[from_type] = weakref.ref(adapter, on_gone)
+class AdapterTracker(object):
+ """ The idiom of checking if `x is b` is broken for adapted objects because a new adapter is potentially
+ instantiated each time x or b is adapted. Also in some context we adapt the same objects many times and don't
+ want the overhead of lots of copies. This class provides adapt() and adapt_or_none() methods that track adaptions.
+ Thus if `x is b` is `True` then `adapter.adapt(x, I) is adapter.adapt(b, I)` is `True`.
+ """
+ def __init__(self, mapping_factory=dict):
+ self._factory = mapping_factory
+ self._adapters = mapping_factory()
+
+ def adapt(self, obj, interface):
+ """ Adapts `obj` to `interface`"""
+ try:
+ return self._adapters[interface][obj]
+ except KeyError:
+ return self._adapt(obj, interface)
+
+ def adapt_or_none(self, obj, interface):
+ """ Adapt obj to interface returning None on failure."""
+ try:
+ return self.adapt(obj, interface)
+ except ValueError:
+ return None
+
+ def clear(self):
+ """ Clears the cached adapters."""
+ self._adapters = self._factory()
+
+ def _adapt(self, obj, interface):
+ adapted = interface.adapt(obj)
+ try:
+ adapters = self._adapters[interface]
+ except KeyError:
+ adapters = self._adapters[interface] = self._factory()
+ adapters[obj] = adapted
+ return adapted
+
+
def type_is_pure_interface(cls):
# type: (Type[Any]) -> bool
""" Return True if cls is a pure interface"""
|
seequent/pure_interface
|
a65ae43cec46701249104cafeea6aec09a95628d
|
diff --git a/tests/test_tracker.py b/tests/test_tracker.py
new file mode 100644
index 0000000..3bea47e
--- /dev/null
+++ b/tests/test_tracker.py
@@ -0,0 +1,86 @@
+# -*- coding: utf-8 -*-
+from __future__ import absolute_import, division, print_function, unicode_literals
+
+import unittest
+
+from pure_interface import *
+
+
+class ISpeaker(PureInterface):
+ def speak(self, volume):
+ pass
+
+
+class ISleeper(PureInterface):
+ is_asleep = None
+
+
+class Talker(object):
+ def __init__(self, saying='talk'):
+ self._saying = saying
+
+ def talk(self):
+ return self._saying
+
+
+class Sleeper(Concrete, ISleeper):
+ def __init__(self, is_asleep=False):
+ self.is_asleep = is_asleep
+
+
+@adapts(Talker, ISleeper)
+def talker_to_sleeper(talker):
+ return Sleeper(talker.talk() == 'zzz')
+
+
+@adapts(Talker)
+class TalkerToSpeaker(Concrete, ISpeaker):
+ def __init__(self, talker):
+ self._talker = talker
+
+ def speak(self, volume):
+ return self._talker.talk()
+
+
+class TestAdapterTracker(unittest.TestCase):
+ def test_adapt_is_same(self):
+ tracker = AdapterTracker()
+ t = Talker()
+
+ speaker1 = tracker.adapt(t, ISpeaker)
+ speaker2 = tracker.adapt(t, ISpeaker)
+ self.assertIsInstance(speaker1, ISpeaker)
+ self.assertIsInstance(speaker2, ISpeaker)
+ self.assertIs(speaker1, speaker2)
+
+ def test_adapt_multiple_interfaces(self):
+ tracker = AdapterTracker()
+ t = Talker()
+
+ speaker = tracker.adapt(t, ISpeaker)
+ sleeper = tracker.adapt(t, ISleeper)
+ self.assertIsInstance(speaker, ISpeaker)
+ self.assertIsInstance(sleeper, ISleeper)
+
+ def test_adapt_multiple_instances(self):
+ tracker = AdapterTracker()
+ t1 = Talker('hello')
+ t2 = Talker('zzz')
+
+ speaker1 = tracker.adapt(t1, ISpeaker)
+ speaker2 = tracker.adapt(t2, ISpeaker)
+ self.assertEqual('hello', speaker1.speak(5))
+ self.assertEqual('zzz', speaker2.speak(5))
+
+ def test_mapping_factory_is_used(self):
+ mocks = []
+
+ def factory():
+ mocks.append(dict())
+ return mocks[-1]
+
+ tracker = AdapterTracker(mapping_factory=factory)
+ t = Talker('hello')
+
+ tracker.adapt(t, ISpeaker)
+ self.assertTrue(len(mocks) > 1)
|
Add adapter tracking class
This idiom of checking if `x is b` is broken for adapted objects because a new adapter is potentially instantiated each time x or b is adapted.
Add a class for tracking and re-using adapters for use in contexts where this is required.
Starting point:
```
class InterfaceAdapter(object):
def __init__(self, interface, mapping_factory=weakref.WeakValueDictionary):
self._factory = mapping_factory
self._interface = interface
self._adapters = mapping_factory()
def clear(self):
self._adapters = self._factory()
def adapt(self, obj):
try:
return self._adapters[obj]
except KeyError:
adapted = self._interface.adapt(obj)
self._adapters[obj] = adapted
return adapted
def adapt_or_none(self, obj):
try:
return self.adapt(obj)
except ValueError:
return None
```
Should use weak value dict for mapping.
|
0.0
|
a65ae43cec46701249104cafeea6aec09a95628d
|
[
"tests/test_tracker.py::TestAdapterTracker::test_adapt_is_same",
"tests/test_tracker.py::TestAdapterTracker::test_adapt_multiple_instances",
"tests/test_tracker.py::TestAdapterTracker::test_adapt_multiple_interfaces",
"tests/test_tracker.py::TestAdapterTracker::test_mapping_factory_is_used"
] |
[] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2019-04-12 00:41:54+00:00
|
mit
| 5,463 |
|
seequent__pure_interface-54
|
diff --git a/.gitignore b/.gitignore
index 4fbf9db..4dc0b15 100644
--- a/.gitignore
+++ b/.gitignore
@@ -93,3 +93,9 @@ ENV/
# PyCharm
.idea/
+
+# MyPy
+.mypy_cache/
+
+# build output
+dist/
diff --git a/pure_interface.py b/pure_interface.py
index c3d38f8..511959e 100644
--- a/pure_interface.py
+++ b/pure_interface.py
@@ -40,7 +40,7 @@ else:
super(abstractstaticmethod, self).__init__(callable)
-__version__ = '3.4.0'
+__version__ = '3.4.1'
is_development = not hasattr(sys, 'frozen')
@@ -473,13 +473,13 @@ class PureInterfaceType(abc.ABCMeta):
* if the type is a concrete class then patch the abstract properties with AttributeProperies.
"""
- def __new__(mcs, clsname, bases, attributes):
+ def __new__(mcs, clsname, bases, attributes, **kwargs):
# PureInterface is not in globals() when we are constructing the PureInterface class itself.
has_interface = any(PureInterface in base.mro() for base in bases) if 'PureInterface' in globals() else True
if not has_interface:
# Don't interfere if meta class is only included to permit interface inheritance,
# but no actual interface is being used.
- cls = super(PureInterfaceType, mcs).__new__(mcs, clsname, bases, attributes)
+ cls = super(PureInterfaceType, mcs).__new__(mcs, clsname, bases, attributes, **kwargs)
cls._pi = _PIAttributes(False, (), {}, ())
return cls
@@ -546,7 +546,7 @@ class PureInterfaceType(abc.ABCMeta):
'pi_partial_implementation attribute, not it''s value')
# create class
- cls = super(PureInterfaceType, mcs).__new__(mcs, clsname, bases, namespace)
+ cls = super(PureInterfaceType, mcs).__new__(mcs, clsname, bases, namespace, **kwargs)
cls._pi = _PIAttributes(type_is_interface, abstract_properties,
interface_method_signatures, interface_attribute_names)
diff --git a/setup.py b/setup.py
index d28b81f..1304da6 100644
--- a/setup.py
+++ b/setup.py
@@ -3,7 +3,7 @@ from setuptools import setup
setup(
name='pure_interface',
- version='3.4.0',
+ version='3.4.1',
py_modules=['pure_interface', 'pure_contracts'],
url='https://github.com/aranzgeo/pure_interface',
install_requires=['six', 'typing'],
|
seequent/pure_interface
|
d3717fad8acb27d8f71a9fee7d9de798fdee8c16
|
diff --git a/tests/test_py3/test_impl3_checks.py b/tests/test_py3/test_impl3_checks.py
index c936bab..12b7404 100644
--- a/tests/test_py3/test_impl3_checks.py
+++ b/tests/test_py3/test_impl3_checks.py
@@ -22,3 +22,16 @@ class TestImplementationChecks(unittest.TestCase):
self.assertIn('a', get_interface_attribute_names(IAnnotation))
self.assertIn('b', get_interface_attribute_names(IAnnotation))
+
+ def test_works_with_init_subclass_kwargs(self):
+ saved_kwargs = {}
+
+ class ReceivesClassKwargs:
+ def __init_subclass__(cls, **kwargs):
+ super().__init_subclass__()
+ saved_kwargs.update(kwargs)
+
+ class Receiver(ReceivesClassKwargs, PureInterface, x=1, y=2, z=3):
+ pass
+
+ self.assertEqual(saved_kwargs, dict(x=1, y=2, z=3))
|
PI does not work with __init_subclass__ with kwargs
See this case for the related ABC change that was made in 3.7: [https://bugs.python.org/issue29581](url)
Since __init_subclass__ landed into 3.6, it's now possible to define classes that support arbitrary keyword arguments in the class definition, like:
`class Foo(Bar, Baz=True):`
However, these kwargs need to be handled by __new__ and passed along (eventually) to init subclass. Currently classes that are PIType do not support this and give a TypeError on declaration.
Simply patching new to pass the kwargs through seems to do the job:
[pi_kwargs.zip](https://github.com/seequent/pure_interface/files/3105569/pi_kwargs.zip)
|
0.0
|
d3717fad8acb27d8f71a9fee7d9de798fdee8c16
|
[
"tests/test_py3/test_impl3_checks.py::TestImplementationChecks::test_works_with_init_subclass_kwargs"
] |
[
"tests/test_py3/test_impl3_checks.py::TestImplementationChecks::test_annotations",
"tests/test_py3/test_impl3_checks.py::TestImplementationChecks::test_annotations2"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2019-04-23 03:04:59+00:00
|
mit
| 5,464 |
|
sendgrid__sendgrid-python-233
|
diff --git a/sendgrid/helpers/mail/mail.py b/sendgrid/helpers/mail/mail.py
index 48d25f1..661c036 100644
--- a/sendgrid/helpers/mail/mail.py
+++ b/sendgrid/helpers/mail/mail.py
@@ -117,7 +117,11 @@ class Mail(object):
def add_header(self, header):
if self.headers is None:
self.headers = []
- self.headers.append(header)
+ if isinstance(header, dict):
+ (k,v) = list(header.items())[0]
+ self.headers.append(Header(k,v))
+ else:
+ self.headers.append(header)
def add_category(self, category):
if self.categories is None:
|
sendgrid/sendgrid-python
|
ca96c8dcd66224e13b38ab8fd2d2b429dd07dd02
|
diff --git a/test/test_mail.py b/test/test_mail.py
index e0dc945..9b482dc 100644
--- a/test/test_mail.py
+++ b/test/test_mail.py
@@ -100,6 +100,8 @@ class UnitTests(unittest.TestCase):
mail.add_header(Header("X-Test1", "test1"))
mail.add_header(Header("X-Test3", "test2"))
+ mail.add_header({"X-Test4" : "test4"})
+
mail.add_category(Category("May"))
mail.add_category(Category("2016"))
@@ -131,4 +133,4 @@ class UnitTests(unittest.TestCase):
mail.set_reply_to(Email("[email protected]"))
- self.assertEqual(json.dumps(mail.get(), sort_keys=True), '{"asm": {"group_id": 99, "groups_to_display": [4, 5, 6, 7, 8]}, "attachments": [{"content": "TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNvbnNlY3RldHVyIGFkaXBpc2NpbmcgZWxpdC4gQ3JhcyBwdW12", "content_id": "Balance Sheet", "disposition": "attachment", "filename": "balance_001.pdf", "type": "application/pdf"}, {"content": "BwdW", "content_id": "Banner", "disposition": "inline", "filename": "banner.png", "type": "image/png"}], "batch_id": "sendgrid_batch_id", "categories": ["May", "2016"], "content": [{"type": "text/plain", "value": "some text here"}, {"type": "text/html", "value": "<html><body>some text here</body></html>"}], "custom_args": {"campaign": "welcome", "weekday": "morning"}, "from": {"email": "[email protected]", "name": "Example User"}, "headers": {"X-Test1": "test1", "X-Test3": "test2"}, "ip_pool_name": "24", "mail_settings": {"bcc": {"email": "[email protected]", "enable": true}, "bypass_list_management": {"enable": true}, "footer": {"enable": true, "html": "<html><body>Footer Text</body></html>", "text": "Footer Text"}, "sandbox_mode": {"enable": true}, "spam_check": {"enable": true, "post_to_url": "https://spamcatcher.sendgrid.com", "threshold": 1}}, "personalizations": [{"bcc": [{"email": "[email protected]"}, {"email": "[email protected]"}], "cc": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}], "custom_args": {"type": "marketing", "user_id": "343"}, "headers": {"X-Mock": "true", "X-Test": "test"}, "send_at": 1443636843, "subject": "Hello World from the Personalized SendGrid Python Library", "substitutions": {"%city%": "Denver", "%name%": "Example User"}, "to": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}]}, {"bcc": [{"email": "[email protected]"}, {"email": "[email protected]"}], "cc": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}], "custom_args": {"type": "marketing", "user_id": "343"}, "headers": {"X-Mock": "true", "X-Test": "test"}, "send_at": 1443636843, "subject": "Hello World from the Personalized SendGrid Python Library", "substitutions": {"%city%": "Denver", "%name%": "Example User"}, "to": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}]}], "reply_to": {"email": "[email protected]"}, "sections": {"%section1%": "Substitution Text for Section 1", "%section2%": "Substitution Text for Section 2"}, "send_at": 1443636842, "subject": "Hello World from the SendGrid Python Library", "template_id": "13b8f94f-bcae-4ec6-b752-70d6cb59f932", "tracking_settings": {"click_tracking": {"enable": true, "enable_text": true}, "ganalytics": {"enable": true, "utm_campaign": "some campaign", "utm_content": "some content", "utm_medium": "some medium", "utm_source": "some source", "utm_term": "some term"}, "open_tracking": {"enable": true, "substitution_tag": "Optional tag to replace with the open image in the body of the message"}, "subscription_tracking": {"enable": true, "html": "<html><body>html to insert into the text/html portion of the message</body></html>", "substitution_tag": "Optional tag to replace with the open image in the body of the message", "text": "text to insert into the text/plain portion of the message"}}}')
+ self.assertEqual(json.dumps(mail.get(), sort_keys=True), '{"asm": {"group_id": 99, "groups_to_display": [4, 5, 6, 7, 8]}, "attachments": [{"content": "TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNvbnNlY3RldHVyIGFkaXBpc2NpbmcgZWxpdC4gQ3JhcyBwdW12", "content_id": "Balance Sheet", "disposition": "attachment", "filename": "balance_001.pdf", "type": "application/pdf"}, {"content": "BwdW", "content_id": "Banner", "disposition": "inline", "filename": "banner.png", "type": "image/png"}], "batch_id": "sendgrid_batch_id", "categories": ["May", "2016"], "content": [{"type": "text/plain", "value": "some text here"}, {"type": "text/html", "value": "<html><body>some text here</body></html>"}], "custom_args": {"campaign": "welcome", "weekday": "morning"}, "from": {"email": "[email protected]", "name": "Example User"}, "headers": {"X-Test1": "test1", "X-Test3": "test2", "X-Test4": "test4"}, "ip_pool_name": "24", "mail_settings": {"bcc": {"email": "[email protected]", "enable": true}, "bypass_list_management": {"enable": true}, "footer": {"enable": true, "html": "<html><body>Footer Text</body></html>", "text": "Footer Text"}, "sandbox_mode": {"enable": true}, "spam_check": {"enable": true, "post_to_url": "https://spamcatcher.sendgrid.com", "threshold": 1}}, "personalizations": [{"bcc": [{"email": "[email protected]"}, {"email": "[email protected]"}], "cc": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}], "custom_args": {"type": "marketing", "user_id": "343"}, "headers": {"X-Mock": "true", "X-Test": "test"}, "send_at": 1443636843, "subject": "Hello World from the Personalized SendGrid Python Library", "substitutions": {"%city%": "Denver", "%name%": "Example User"}, "to": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}]}, {"bcc": [{"email": "[email protected]"}, {"email": "[email protected]"}], "cc": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}], "custom_args": {"type": "marketing", "user_id": "343"}, "headers": {"X-Mock": "true", "X-Test": "test"}, "send_at": 1443636843, "subject": "Hello World from the Personalized SendGrid Python Library", "substitutions": {"%city%": "Denver", "%name%": "Example User"}, "to": [{"email": "[email protected]", "name": "Example User"}, {"email": "[email protected]", "name": "Example User"}]}], "reply_to": {"email": "[email protected]"}, "sections": {"%section1%": "Substitution Text for Section 1", "%section2%": "Substitution Text for Section 2"}, "send_at": 1443636842, "subject": "Hello World from the SendGrid Python Library", "template_id": "13b8f94f-bcae-4ec6-b752-70d6cb59f932", "tracking_settings": {"click_tracking": {"enable": true, "enable_text": true}, "ganalytics": {"enable": true, "utm_campaign": "some campaign", "utm_content": "some content", "utm_medium": "some medium", "utm_source": "some source", "utm_term": "some term"}, "open_tracking": {"enable": true, "substitution_tag": "Optional tag to replace with the open image in the body of the message"}, "subscription_tracking": {"enable": true, "html": "<html><body>html to insert into the text/html portion of the message</body></html>", "substitution_tag": "Optional tag to replace with the open image in the body of the message", "text": "text to insert into the text/plain portion of the message"}}}')
|
Using .add_header() raises a TypeError
### Issue Summary
.add_header() cannot be used because python raises a TypeError exception.
### Steps to Reproduce
1. Create an instance of Mail `mail = Mail( Email(from_email), subject, Email(to_emails), Content('text/html', message) )`
2. Add a header to the instance
`mail.add_header( {'Reply-To' : '[email protected], [email protected]'} )`
3. Send the Request
`response = sg.client.mail.send.post(request_body=mail.get())`
### Stack Trace
[File "mail.py", line 63](https://github.com/sendgrid/sendgrid-python/blob/master/sendgrid/helpers/mail/mail.py#L63), in **get**
> headers.update(key**.get()**)
TypeError: get expected at least 1 arguments, got 0
|
0.0
|
ca96c8dcd66224e13b38ab8fd2d2b429dd07dd02
|
[
"test/test_mail.py::UnitTests::test_kitchenSink"
] |
[
"test/test_mail.py::UnitTests::test_helloEmail"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2016-10-11 13:11:27+00:00
|
mit
| 5,465 |
|
sendgrid__sendgrid-python-348
|
diff --git a/sendgrid/helpers/mail/mail.py b/sendgrid/helpers/mail/mail.py
index de41bad..a2159b2 100644
--- a/sendgrid/helpers/mail/mail.py
+++ b/sendgrid/helpers/mail/mail.py
@@ -262,11 +262,15 @@ class Email(object):
def __init__(self, email=None, name=None):
self._name = None
self._email = None
-
- if email is not None:
- self.email = email
- if name is not None:
- self.name = name
+ if name or email:
+ if not name:
+ # allows passing emails as "dude Fella <[email protected]>"
+ self.parse_email(email)
+ else:
+ #allows backwards compatibility for Email(email, name)
+ if email is not None:
+ self.email = email
+ self.name = name
@property
def name(self):
@@ -293,6 +297,28 @@ class Email(object):
email["email"] = self.email
return email
+ def parse_email(self, email_info):
+ try:
+ import rfc822
+ except ImportError:
+ import email.utils as rfc822
+
+ name, email = rfc822.parseaddr(email_info)
+
+ # more than likely a string was passed here instead of an email address
+ if "@" not in email:
+ name = email
+ email = None
+
+ if not name:
+ name = None
+
+ if not email:
+ email = None
+
+ self.name = name
+ self.email = email
+ return name, email
class Content(object):
|
sendgrid/sendgrid-python
|
08845196565bee2cdc1efafdd9d27018c2530eea
|
diff --git a/test/test_email.py b/test/test_email.py
new file mode 100644
index 0000000..92ae10a
--- /dev/null
+++ b/test/test_email.py
@@ -0,0 +1,59 @@
+# -*- coding: utf-8 -*-
+import json
+
+from sendgrid.helpers.mail import (Email)
+
+try:
+ import unittest2 as unittest
+except ImportError:
+ import unittest
+
+
+class TestEmailObject(unittest.TestCase):
+ def test_add_email_address(self):
+ address = "[email protected]"
+ email = Email(address)
+
+ self.assertEqual(email.email, "[email protected]")
+
+ def test_add_name(self):
+ name = "SomeName"
+ email = Email(name=name)
+
+ self.assertEqual(email.name, name)
+
+ def test_add_name_email(self):
+ name = "SomeName"
+ address = "[email protected]"
+ email = Email(email=address, name=name)
+ self.assertEqual(email.name, name)
+ self.assertEqual(email.email, "[email protected]")
+
+ def test_add_rfc_function_finds_name_not_email(self):
+ name = "SomeName"
+ email = Email(name)
+
+ self.assertEqual(email.name, name)
+ self.assertIsNone(email.email)
+
+ def test_add_rfc_email(self):
+ name = "SomeName"
+ address = "[email protected]"
+ name_address = "{0} <{1}>".format(name, address)
+ email = Email(name_address)
+ self.assertEqual(email.name, name)
+ self.assertEqual(email.email, "[email protected]")
+
+ def test_empty_obj_add_name(self):
+ email = Email()
+ name = "SomeName"
+ email.name = name
+
+ self.assertEqual(email.name, name)
+
+ def test_empty_obj_add_email(self):
+ email = Email()
+ address = "[email protected]"
+ email.email = address
+
+ self.assertEqual(email.email, address)
\ No newline at end of file
|
Inconsistent format of email from header “name <email>”
#### Issue Summary
Current implementation restrict use default `email_from` behavior. For more info please see https://tools.ietf.org/html/rfc2822#section-3.4
#### Steps to Reproduce
1. When user try to create `Email` instance from https://github.com/sendgrid/sendgrid-python/blob/master/sendgrid/helpers/mail/mail.py#L173-L179. You must specify
`from_email` and `from_name` as seperate parametrs
```
def get(self):
email = {}
if self.name != None:
email["name"] = self.name
if self.email != None:
email["email"] = self.email
return email
from_email = Email("[email protected]", "Example Name")
```
As a result client should split `from_email`:
```
try:
import rfc822
except ImportError:
import email.utils as rfc822
from_name, from_email = rfc822.parseaddr(email.from_email)
# Python sendgrid client should improve
# sendgrid/helpers/mail/mail.py:164
if not from_name:
from_name = None
Mail(from_email, from_name)
```
Proposal to how to improve this bahaviour.
Because if user now create `Email` from:
```
from_email = Email("Andrii Soldatenko <[email protected]>")
```
**Actual result:**

#### Technical details:
* sendgrid-python Version: master
* Python Version: all
#### References:
- https://github.com/sendgrid/sendgrid-python/issues/277
- RFC: https://tools.ietf.org/html/rfc2822#section-3.4
- Django docs: https://docs.djangoproject.com/en/1.10/topics/email/#emailmessage-objects
**NOTE:**
In `sengrid-python==1.4` this feature is working
|
0.0
|
08845196565bee2cdc1efafdd9d27018c2530eea
|
[
"test/test_email.py::TestEmailObject::test_add_rfc_email",
"test/test_email.py::TestEmailObject::test_add_rfc_function_finds_name_not_email"
] |
[
"test/test_email.py::TestEmailObject::test_add_email_address",
"test/test_email.py::TestEmailObject::test_add_name",
"test/test_email.py::TestEmailObject::test_add_name_email",
"test/test_email.py::TestEmailObject::test_empty_obj_add_email",
"test/test_email.py::TestEmailObject::test_empty_obj_add_name"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_media"
],
"has_test_patch": true,
"is_lite": false
}
|
2017-10-01 18:30:18+00:00
|
mit
| 5,466 |
|
sendgrid__sendgrid-python-454
|
diff --git a/sendgrid/helpers/mail/mail.py b/sendgrid/helpers/mail/mail.py
index 116afb4..7d131f4 100644
--- a/sendgrid/helpers/mail/mail.py
+++ b/sendgrid/helpers/mail/mail.py
@@ -293,7 +293,14 @@ class Mail(object):
:type content: Content
"""
- self._contents.append(content)
+ if self._contents is None:
+ self._contents = []
+
+ # Text content should be before HTML content
+ if content._type == "text/plain":
+ self._contents.insert(0, content)
+ else:
+ self._contents.append(content)
@property
def attachments(self):
|
sendgrid/sendgrid-python
|
718ff6a1f91f7696b25c4ffd5b1dff9892e76f54
|
diff --git a/test/test_mail.py b/test/test_mail.py
index 8b88f5b..0941fa7 100644
--- a/test/test_mail.py
+++ b/test/test_mail.py
@@ -68,6 +68,39 @@ class UnitTests(unittest.TestCase):
self.assertTrue(isinstance(str(mail), str))
+ def test_helloEmailAdditionalContent(self):
+ """Tests bug found in Issue-451 with Content ordering causing a crash"""
+
+ self.maxDiff = None
+
+ """Minimum required to send an email"""
+ mail = Mail()
+
+ mail.from_email = Email("[email protected]")
+
+ mail.subject = "Hello World from the SendGrid Python Library"
+
+ personalization = Personalization()
+ personalization.add_to(Email("[email protected]"))
+ mail.add_personalization(personalization)
+
+ mail.add_content(Content("text/html", "<html><body>some text here</body></html>"))
+ mail.add_content(Content("text/plain", "some text here"))
+
+ self.assertEqual(
+ json.dumps(
+ mail.get(),
+ sort_keys=True),
+ '{"content": [{"type": "text/plain", "value": "some text here"}, '
+ '{"type": "text/html", '
+ '"value": "<html><body>some text here</body></html>"}], '
+ '"from": {"email": "[email protected]"}, "personalizations": '
+ '[{"to": [{"email": "[email protected]"}]}], '
+ '"subject": "Hello World from the SendGrid Python Library"}'
+ )
+
+ self.assertTrue(isinstance(str(mail), str))
+
def test_kitchenSink(self):
self.maxDiff = None
|
text/plain must precede text/html content
#### Issue Summary
Requests to send mail with both plain text and HTML content fail if the HTML content is specified first.
#### Code
```
sg = sendgrid.SendGridAPIClient(apikey=sendgrid_key)
mail = Mail()
from_email = Email("[email protected]")
to_email = Email("[email protected]")
subject = "Sending with SendGrid is Fun"
per = Personalization()
mail.from_email = from_email
mail.subject = subject
html_content = Content("text/html", "<html><body>some text here</body></html>")
plain_content = Content("text/plain", "and easy to do anywhere, even with Python")
### Add plain content first
mail.add_content(plain_content)
### Add HTML content next
mail.add_content(html_content)
per.add_to(to_email)
mail.add_personalization(per)
response = sg.client.mail.send.post(request_body=mail.get())
```
#### Steps to Reproduce
1. The above code works properly, but if you reverse the order of the add_content lines, http-client throws a BadRequestsError
#### Expected Result
The library should sort content into the order that the API expects. (I'm not clear why the order should matter to the API—perhaps this should be fixed there instead.)
#### Technical details:
* sendgrid-python Version: master (latest commit: [b12728a53d4c997832c56289c7559f22acf1ff90])
* Python Version: 2.7.13
|
0.0
|
718ff6a1f91f7696b25c4ffd5b1dff9892e76f54
|
[
"test/test_mail.py::UnitTests::test_helloEmailAdditionalContent"
] |
[
"test/test_mail.py::UnitTests::test_asm_display_group_limit",
"test/test_mail.py::UnitTests::test_disable_tracking",
"test/test_mail.py::UnitTests::test_helloEmail",
"test/test_mail.py::UnitTests::test_kitchenSink",
"test/test_mail.py::UnitTests::test_unicode_values_in_substitutions_helper"
] |
{
"failed_lite_validators": [
"has_git_commit_hash"
],
"has_test_patch": true,
"is_lite": false
}
|
2017-10-27 15:41:53+00:00
|
mit
| 5,467 |
|
sendgrid__sendgrid-python-583
|
diff --git a/examples/helpers/mail/mail_example.py b/examples/helpers/mail/mail_example.py
index 93b3fb6..b2de7f0 100644
--- a/examples/helpers/mail/mail_example.py
+++ b/examples/helpers/mail/mail_example.py
@@ -30,7 +30,7 @@ def build_personalization(personalization):
mock_personalization.add_to(cc_addr)
for bcc_addr in personalization['bcc_list']:
- mock_personalization.add_bc(bcc_addr)
+ mock_personalization.add_bcc(bcc_addr)
for header in personalization['headers']:
mock_personalization.add_header(header)
@@ -216,4 +216,4 @@ def send_kitchen_sink():
send_hello_email()
# this will only send an email if you set SandBox Mode to False
-send_kitchen_sink()
\ No newline at end of file
+send_kitchen_sink()
diff --git a/sendgrid/helpers/mail/personalization.py b/sendgrid/helpers/mail/personalization.py
index e49432c..8bb4bed 100644
--- a/sendgrid/helpers/mail/personalization.py
+++ b/sendgrid/helpers/mail/personalization.py
@@ -116,7 +116,7 @@ class Personalization(object):
@substitutions.setter
def substitutions(self, value):
- self.substitutions = value
+ self._substitutions = value
def add_substitution(self, substitution):
"""Add a new Substitution to this Personalization.
|
sendgrid/sendgrid-python
|
86708c7908102b171a9dbc92d31c5740aa218423
|
diff --git a/test/test_mail.py b/test/test_mail.py
index 86f21c0..7721b52 100644
--- a/test/test_mail.py
+++ b/test/test_mail.py
@@ -558,3 +558,7 @@ class UnitTests(unittest.TestCase):
tracking_settings.get(),
{'click_tracking': {'enable': False, 'enable_text': False}}
)
+
+ def test_directly_setting_substitutions(self):
+ personalization = Personalization()
+ personalization.substitutions = [{'a': 0}]
|
Attempting to set substitutions on Personalization helper causes infinite regress
#### Issue Summary
Attempting to set substitutions on a `Personalization` helper directly (rather than with `add_substitution`) throws a `RecursionError`.
#### Steps to Reproduce
```python
from sendgrid.helpers.mail import Personalization
p = Personalization()
p.substitutions = [{'a': 0}, {'b': 1}]
```
This throws a `RecursionError`. The offending line is [personalization.py#L119](https://github.com/sendgrid/sendgrid-python/blob/master/sendgrid/helpers/mail/personalization.py#L119).
I will open a PR as this is an easy fix.
#### Technical details:
* sendgrid-python Version: `5.3.0`
* Python Version: 3.6
|
0.0
|
86708c7908102b171a9dbc92d31c5740aa218423
|
[
"test/test_mail.py::UnitTests::test_directly_setting_substitutions"
] |
[
"test/test_mail.py::UnitTests::test_asm_display_group_limit",
"test/test_mail.py::UnitTests::test_disable_tracking",
"test/test_mail.py::UnitTests::test_helloEmail",
"test/test_mail.py::UnitTests::test_helloEmailAdditionalContent",
"test/test_mail.py::UnitTests::test_kitchenSink",
"test/test_mail.py::UnitTests::test_sendgridAPIKey",
"test/test_mail.py::UnitTests::test_unicode_values_in_substitutions_helper"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-06-08 14:00:59+00:00
|
mit
| 5,468 |
|
sendgrid__sendgrid-python-593
|
diff --git a/examples/helpers/mail/mail_example.py b/examples/helpers/mail_example.py
similarity index 91%
rename from examples/helpers/mail/mail_example.py
rename to examples/helpers/mail_example.py
index b2de7f0..0a5b868 100644
--- a/examples/helpers/mail/mail_example.py
+++ b/examples/helpers/mail_example.py
@@ -1,8 +1,6 @@
-import json
-import os
-import urllib2
+from sendgrid import SendGridAPIClient
from sendgrid.helpers.mail import *
-from sendgrid import *
+
# NOTE: you will need move this file to the root
# directory of this project to execute properly.
@@ -217,3 +215,27 @@ send_hello_email()
# this will only send an email if you set SandBox Mode to False
send_kitchen_sink()
+
+
+def dynamic_template_usage():
+ """
+ Sample usage of dynamic (handlebars) transactional templates.
+ To make this work, you should have dynamic template created within your
+ SendGrid account. For this particular example, template may be like::
+
+ <p>Hello, {{name}}! Your current balance is {{balance}}<p>
+
+ """
+ mail = Mail()
+ mail.from_email = '[email protected]'
+ mail.template_id = 'd-your-dynamic-template-uid'
+ p = Personalization()
+ p.add_to(Email('[email protected]'))
+ p.dynamic_template_data = {
+ 'name': 'Bob',
+ 'balance': 42
+ }
+ mail.add_personalization(p)
+
+ sg = SendGridAPIClient(apikey='SG.your-api-key')
+ sg.client.mail.send.post(request_body=mail.get())
diff --git a/sendgrid/helpers/mail/personalization.py b/sendgrid/helpers/mail/personalization.py
index 8bb4bed..8032af9 100644
--- a/sendgrid/helpers/mail/personalization.py
+++ b/sendgrid/helpers/mail/personalization.py
@@ -1,6 +1,10 @@
class Personalization(object):
"""A Personalization defines who should receive an individual message and
how that message should be handled.
+
+ :var dynamic_template_data: data for dynamic transactional template.
+ Should be JSON-serializeable structure. No pre-processing sill be done
+ prior to sending this via http client.
"""
def __init__(self):
@@ -13,6 +17,7 @@ class Personalization(object):
self._substitutions = []
self._custom_args = []
self._send_at = None
+ self.dynamic_template_data = None
@property
def tos(self):
@@ -198,4 +203,8 @@ class Personalization(object):
if self.send_at is not None:
personalization["send_at"] = self.send_at
+
+ if self.dynamic_template_data is not None:
+ personalization['dynamic_template_data'] = self.dynamic_template_data
+
return personalization
diff --git a/use_cases/transational_templates.md b/use_cases/transational_templates.md
index d3e3a00..2d74f92 100644
--- a/use_cases/transational_templates.md
+++ b/use_cases/transational_templates.md
@@ -66,6 +66,38 @@ print(response.body)
print(response.headers)
```
+### With dynamic templates
+
+Sendgrid dynamic templates let you leverage power of [handlebars](https://handlebarsjs.com/)
+syntax to easily manage complex dynamic content in transactional emails.
+
+To check this example snippet, create
+[transactional email template](https://sendgrid.com/dynamic_templates) with code like
+```html
+<p>Hello, {{name}}! Your current balance is {{balance}}<p>
+```
+
+Than send email based on it, providing context for substitutions:
+```python
+from sendgrid import SendGridAPIClient
+from sendgrid.helpers.mail import Email, Personalization
+
+
+sg = SendGridAPIClient(apikey='SG.your-api-key')
+
+mail = Mail()
+mail.from_email='[email protected]'
+mail.template_id = 'd-your-dynamic-template-uid'
+p = Personalization()
+p.add_to(Email('[email protected]'))
+p.dynamic_template_data = {'name': 'Bob', 'balance': 42}
+mail.add_personalization(p)
+
+sg.client.mail.send.post(request_body=mail.get())
+```
+
+Read more about dynamic templates in [docs](https://sendgrid.com/docs/User_Guide/Transactional_Templates/how_to_send_an_email_with_transactional_templates.html)
+
## Without Mail Helper Class
```python
@@ -113,4 +145,4 @@ except urllib.HTTPError as e:
print(response.status_code)
print(response.body)
print(response.headers)
-```
\ No newline at end of file
+```
|
sendgrid/sendgrid-python
|
1ac58c6fc491554bc24573393ae6242e579dbabb
|
diff --git a/test/test_mail.py b/test/test_mail.py
index 7721b52..08d0feb 100644
--- a/test/test_mail.py
+++ b/test/test_mail.py
@@ -80,7 +80,6 @@ class UnitTests(unittest.TestCase):
else:
self.fail("Should have failed as SendGrid API key included")
-
def test_helloEmail(self):
self.max_diff = None
@@ -130,7 +129,7 @@ class UnitTests(unittest.TestCase):
personalization = Personalization()
personalization.add_to(Email("[email protected]"))
mail.add_personalization(personalization)
-
+
mail.add_content(Content("text/html", "<html><body>some text here</body></html>"))
mail.add_content(Content("text/plain", "some text here"))
@@ -562,3 +561,26 @@ class UnitTests(unittest.TestCase):
def test_directly_setting_substitutions(self):
personalization = Personalization()
personalization.substitutions = [{'a': 0}]
+
+ def test_dynamic_template_data(self):
+ p = Personalization()
+ p.add_to(Email('[email protected]'))
+ p.dynamic_template_data = {
+ 'customer': {
+ 'name': 'Bob',
+ 'returning': True
+ },
+ 'total': 42
+ }
+
+ expected = {
+ 'to': [{'email': '[email protected]'}],
+ 'dynamic_template_data': {
+ 'customer': {
+ 'name': 'Bob',
+ 'returning': True
+ },
+ 'total': 42
+ }
+ }
+ self.assertDictEqual(p.get(), expected)
|
Add Dynamic Template Support
#### Issue Summary
On 7/24/2018, our team publicly launched dynamic content for transactional templates. It is now available for all customers sending over v3 of our Mail Send API. Iterate over lists, handle conditionals and more, thanks to native support for a subset of Handlebars syntax!
More information can be found in our [blog post announcement](https://sendgrid.com/blog/how-to-use-sendgrids-dynamic-templates-for-your-transactional-emails/).
You can currently use this feature by manually creating the request body as [shown here](https://github.com/sendgrid/sendgrid-python/blob/master/USAGE.md#v3-mail-send).
Now, we need to create helper code and examples for this SDK.
#### Acceptance Criteria
* [Implement a helper similar to what we have for the legacy templates](https://github.com/sendgrid/sendgrid-python/blob/master/use_cases/transational_templates.md)
* Update the [transactional_templates.md](https://github.com/sendgrid/sendgrid-python/blob/master/use_cases/transational_templates.md) example to demonstrate the new *Dynamic Templates* using the helper and re-name the current example to *Legacy*
#### Documentation
- [Reference Implementation](https://github.com/sendgrid/sendgrid-nodejs/pull/691#issuecomment-407490342)
- [How to Send an Email With Dynamic Transactional Templates](https://sendgrid.com/docs/User_Guide/Transactional_Templates/how_to_send_an_email_with_transactional_templates.html)
- [Using Handlebars](https://sendgrid.com/docs/User_Guide/Transactional_Templates/Using_handlebars.html)
- [Interactive API Docs](https://dynamic-templates.api-docs.io/3.0/mail-send-with-dynamic-transactional-templates/v3-mail-send)
|
0.0
|
1ac58c6fc491554bc24573393ae6242e579dbabb
|
[
"test/test_mail.py::UnitTests::test_dynamic_template_data"
] |
[
"test/test_mail.py::UnitTests::test_asm_display_group_limit",
"test/test_mail.py::UnitTests::test_directly_setting_substitutions",
"test/test_mail.py::UnitTests::test_disable_tracking",
"test/test_mail.py::UnitTests::test_helloEmail",
"test/test_mail.py::UnitTests::test_helloEmailAdditionalContent",
"test/test_mail.py::UnitTests::test_kitchenSink",
"test/test_mail.py::UnitTests::test_sendgridAPIKey",
"test/test_mail.py::UnitTests::test_unicode_values_in_substitutions_helper"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-08-01 17:31:20+00:00
|
mit
| 5,469 |
|
sensein__cmixf-2
|
diff --git a/README.md b/README.md
index 3788677..5958bbb 100644
--- a/README.md
+++ b/README.md
@@ -4,6 +4,10 @@
A library to parse [CMIXF-12](https://people.csail.mit.edu/jaffer/MIXF/CMIXF-12).
+This will install a CLI `cmixf` when installed.
+
+At present this assumes that a number is provided before any unit.
+
## For developers:
After cloning the repo do:
diff --git a/cmixf/parser.py b/cmixf/parser.py
index 209e82f..db429d4 100644
--- a/cmixf/parser.py
+++ b/cmixf/parser.py
@@ -2,13 +2,17 @@ from sly import Lexer, Parser
decimalsubmultiple = r"(a|c|d|f|m|n|p|u|y|z)"
decimalmultiple = r"(E|G|M|P|T|Y|Z|da|h|k)"
-unitb = (
- r"([A-Z][A-Z][A-Z]|A|Bq|C|F|Gy|H|Hz|J|K|N|Ohm|Pa|Sv|S|T|V|W|Wb"
- r"|bit|cd|eV|g|kat|lm|lx|mol|m|s)"
-)
-unitn = r"(L|Np|oC|o|rad|sr)"
-unitp = r"(Bd|B|r|t)"
binary = r"(Ei|Gi|Ki|Mi|Pi|Ti)"
+unitc = [r"[A-Z][A-Z][A-Z]|A|Bq|C",
+ r"dB|d|h|min|u",
+ r"F|Gy|Hz|H|J|K|Np|N|(Ohm|Ω)|Pa|Sv|S|T|V|W|Wb",
+ r"L|(oC|°C)|o|rad|sr",
+ r"bit|cd|eV|g|kat|lm|lx|mol|m|s|µ",
+ r"Bd|B|r|t"]
+unitb = r"(" + r'|'.join([unitc[0], unitc[2], unitc[4]]) + r")"
+unitn = r"(" + unitc[3] + r")"
+unitp = r"(" + unitc[5] + r")"
+units = r"(" + unitc[2] + r")"
class CMIXFLexer(Lexer):
@@ -19,10 +23,7 @@ class CMIXFLexer(Lexer):
SUBMULTIN,
MULTIB,
SUBMULTIB,
- UNITP,
- UNITN,
- UNITB,
- UNITS,
+ UNITC,
DOT,
DIV,
LPAREN,
@@ -40,16 +41,13 @@ class CMIXFLexer(Lexer):
EXP = r"\^"
REAL = r"-?\d*\.?\d+(?:[eE][-+]?\d+)?"
DOT = r"\."
+ BIT = binary + r"bit"
+ BYTE = binary + r"B"
+ UNITC = r'|'.join(unitc)
MULTIP = decimalmultiple + unitp
SUBMULTIN = decimalsubmultiple + unitn
MULTIB = decimalmultiple + unitb
SUBMULTIB = decimalsubmultiple + unitb
- BIT = binary + r"bit"
- BYTE = binary + r"B"
- UNITS = r"(dB|d|h|min|u)"
- UNITB = unitb
- UNITN = unitn
- UNITP = unitp
def error(self, t):
raise ValueError("Line %d: Bad character %r" % (self.lineno, t.value[0]))
@@ -193,21 +191,9 @@ class CMIXFParser(Parser):
def punit(self, p):
return p.BIT
- @_("UNITP")
- def punit(self, p):
- return p.UNITP
-
- @_("UNITN")
- def punit(self, p):
- return p.UNITN
-
- @_("UNITB")
- def punit(self, p):
- return p.UNITB
-
- @_("UNITS")
+ @_("UNITC")
def punit(self, p):
- return p.UNITS
+ return p.UNITC
@_("REAL")
def real(self, p):
|
sensein/cmixf
|
3e2e9d713584dda9bc3e9f7cb7a82e38a22f76c3
|
diff --git a/cmixf/tests/test_cmixf.py b/cmixf/tests/test_cmixf.py
index 11f51f7..4541261 100644
--- a/cmixf/tests/test_cmixf.py
+++ b/cmixf/tests/test_cmixf.py
@@ -73,6 +73,13 @@ def test_real(text, exception):
"1EUR/kg",
"1JPY/USD",
"1",
+ "1mol/m^3",
+ "1W/sr",
+ "1W/(m^2.sr)",
+ "1J/mol",
+ "1J/(mol.K)",
+ "1nV/Hz^(1/2)",
+ "1Mibit/s",
],
)
def test_cmixf_examples(text):
@@ -81,20 +88,15 @@ def test_cmixf_examples(text):
assert isinstance(parser.parse(lexer.tokenize(text)), str)
[email protected]()
@pytest.mark.parametrize(
"text",
[
- "1mol/m^3",
- "1W/sr",
- "1W/(m^2.sr)",
- "1J/mol",
- "1J/(mol.K)",
- "1nV/Hz^(1/2)",
- "1Mib/s",
+ "1µ",
+ "1°C",
+ "1Ω",
],
)
-def test_cmixf_failures(text):
+def test_bids_chars(text):
lexer = CMIXFLexer()
parser = CMIXFParser()
assert isinstance(parser.parse(lexer.tokenize(text)), str)
|
fix corner cases that depend on ordering of tokens
the use of sly makes tokenizing dependent on order of tokens. this results in a set of units to be not parsed correctly.
https://github.com/sensein/cmixf/blob/master/cmixf/tests/test_cmixf.py#L84
|
0.0
|
3e2e9d713584dda9bc3e9f7cb7a82e38a22f76c3
|
[
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1mol/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/sr]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/(m^2.sr)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/mol]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/(mol.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1nV/Hz^(1/2)]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb5]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb0C]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\u2126]"
] |
[
"cmixf/tests/test_cmixf.py::test_real[12E-True]",
"cmixf/tests/test_cmixf.py::test_real[12E+-True]",
"cmixf/tests/test_cmixf.py::test_real[.-True]",
"cmixf/tests/test_cmixf.py::test_real[12-False]",
"cmixf/tests/test_cmixf.py::test_real[-12-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1-False]",
"cmixf/tests/test_cmixf.py::test_real[-.1-False]",
"cmixf/tests/test_cmixf.py::test_real[.1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1E+1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1E+1-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1e+1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1e+1-False]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[60.s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[60.min]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[24.h]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1s^-1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[6.283185307179586.rad]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m/s^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^-1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kg/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^3/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1A/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1A/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1cd/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1rad/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1rad/s^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Pa.s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1N.m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1N/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/K]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/(kg.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/(m.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1V/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1F/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1H/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Gy/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1r/min]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kat/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1USD/h]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1EUR/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1JPY/USD]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Mibit/s]"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-05-23 22:25:47+00:00
|
mit
| 5,470 |
|
sensein__cmixf-4
|
diff --git a/cmixf/parser.py b/cmixf/parser.py
index db429d4..516a614 100644
--- a/cmixf/parser.py
+++ b/cmixf/parser.py
@@ -1,18 +1,19 @@
from sly import Lexer, Parser
-decimalsubmultiple = r"(a|c|d|f|m|n|p|u|y|z)"
+decimalsubmultiple = r"(a|c|d|f|m|n|p|(u|µ)|y|z)"
decimalmultiple = r"(E|G|M|P|T|Y|Z|da|h|k)"
binary = r"(Ei|Gi|Ki|Mi|Pi|Ti)"
-unitc = [r"[A-Z][A-Z][A-Z]|A|Bq|C",
- r"dB|d|h|min|u",
- r"F|Gy|Hz|H|J|K|Np|N|(Ohm|Ω)|Pa|Sv|S|T|V|W|Wb",
- r"L|(oC|°C)|o|rad|sr",
- r"bit|cd|eV|g|kat|lm|lx|mol|m|s|µ",
- r"Bd|B|r|t"]
-unitb = r"(" + r'|'.join([unitc[0], unitc[2], unitc[4]]) + r")"
-unitn = r"(" + unitc[3] + r")"
-unitp = r"(" + unitc[5] + r")"
-units = r"(" + unitc[2] + r")"
+unitc = {"unitb1": r"[A-Z][A-Z][A-Z]|A|Bq|C",
+ "units": r"dB|d|h|min|u",
+ "unitb2": r"F|Gy|Hz|H|J|K|Np|N|(Ohm|Ω)|Pa|Sv|S|T|V|W|Wb",
+ "unitn": r"L|(oC|°C)|(°|o)|rad|sr",
+ "unitb3": r"bit|cd|eV|g|kat|lm|lx|mol|m|s",
+ "unitp": r"Bd|B|r|t"}
+unitb = r"(" + r'|'.join([unitc["unitb1"], unitc["unitb2"],
+ unitc["unitb3"]]) + r")"
+unitn = r"(" + unitc["unitn"] + r")"
+unitp = r"(" + unitc["unitp"] + r")"
+units = r"(" + unitc["units"] + r")"
class CMIXFLexer(Lexer):
@@ -43,11 +44,11 @@ class CMIXFLexer(Lexer):
DOT = r"\."
BIT = binary + r"bit"
BYTE = binary + r"B"
- UNITC = r'|'.join(unitc)
- MULTIP = decimalmultiple + unitp
- SUBMULTIN = decimalsubmultiple + unitn
MULTIB = decimalmultiple + unitb
SUBMULTIB = decimalsubmultiple + unitb
+ MULTIP = decimalmultiple + unitp
+ UNITC = r'|'.join([val for val in unitc.values()])
+ SUBMULTIN = decimalsubmultiple + unitn
def error(self, t):
raise ValueError("Line %d: Bad character %r" % (self.lineno, t.value[0]))
|
sensein/cmixf
|
69bafbd5de6a2a1a1fe676b36a2b6d253a741c35
|
diff --git a/cmixf/tests/test_cmixf.py b/cmixf/tests/test_cmixf.py
index 4541261..e519fa7 100644
--- a/cmixf/tests/test_cmixf.py
+++ b/cmixf/tests/test_cmixf.py
@@ -91,7 +91,7 @@ def test_cmixf_examples(text):
@pytest.mark.parametrize(
"text",
[
- "1µ",
+ "1µm",
"1°C",
"1Ω",
],
@@ -100,3 +100,18 @@ def test_bids_chars(text):
lexer = CMIXFLexer()
parser = CMIXFParser()
assert isinstance(parser.parse(lexer.tokenize(text)), str)
+
+
[email protected](
+ "text",
+ [
+ "1µV",
+ "1uV",
+ "1ms",
+ "1kBq",
+ ],
+)
+def test_new_errors(text):
+ lexer = CMIXFLexer()
+ parser = CMIXFParser()
+ assert isinstance(parser.parse(lexer.tokenize(text)), str)
|
fails on units like "ms"
Hey @satra thanks for such a clean package!
1. I installed the dev version as described in the README
1. I ran `cmixf` from the CLI to start the program
1. I entered `1ms` which should be 1 millisecond
Traceback:
```
cmixf > 1ms
type='REAL', value='1'
type='UNITC', value='m'
type='UNITC', value='s'
sly: Syntax error at line 1, token=UNITC
Traceback (most recent call last):
File "/home/stefanappelhoff/miniconda3/bin/cmixf", line 11, in <module>
load_entry_point('cmixf', 'console_scripts', 'cmixf')()
File "/home/stefanappelhoff/Desktop/bids/cmixf/cmixf/parser.py", line 218, in main
print(parser.parse(lexer.tokenize(text)))
File "/home/stefanappelhoff/miniconda3/lib/python3.7/site-packages/sly/yacc.py", line 2119, in parse
tok = self.error(errtoken)
File "/home/stefanappelhoff/Desktop/bids/cmixf/cmixf/parser.py", line 204, in error
raise RuntimeError(f"Could not parse {t}")
RuntimeError: Could not parse Token(type='UNITC', value='s', lineno=1, index=2)
```
Similar errors for:
- 1uV
- 1µV
- 1kBq
(and probably more)
|
0.0
|
69bafbd5de6a2a1a1fe676b36a2b6d253a741c35
|
[
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb5m]",
"cmixf/tests/test_cmixf.py::test_new_errors[1\\xb5V]",
"cmixf/tests/test_cmixf.py::test_new_errors[1uV]",
"cmixf/tests/test_cmixf.py::test_new_errors[1ms]",
"cmixf/tests/test_cmixf.py::test_new_errors[1kBq]"
] |
[
"cmixf/tests/test_cmixf.py::test_real[12E-True]",
"cmixf/tests/test_cmixf.py::test_real[12E+-True]",
"cmixf/tests/test_cmixf.py::test_real[.-True]",
"cmixf/tests/test_cmixf.py::test_real[12-False]",
"cmixf/tests/test_cmixf.py::test_real[-12-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1-False]",
"cmixf/tests/test_cmixf.py::test_real[-.1-False]",
"cmixf/tests/test_cmixf.py::test_real[.1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1E+1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1E+1-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1e+1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1e+1-False]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[60.s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[60.min]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[24.h]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1s^-1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[6.283185307179586.rad]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m/s^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^-1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kg/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^3/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1A/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1A/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1cd/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1rad/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1rad/s^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Pa.s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1N.m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1N/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/K]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/(kg.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/(m.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1V/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1F/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1H/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Gy/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1r/min]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kat/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1USD/h]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1EUR/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1JPY/USD]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1mol/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/sr]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/(m^2.sr)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/mol]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/(mol.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1nV/Hz^(1/2)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Mibit/s]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb0C]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\u2126]"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2020-05-25 13:03:54+00:00
|
mit
| 5,471 |
|
sensein__cmixf-7
|
diff --git a/README.md b/README.md
index 70f56a0..8227578 100644
--- a/README.md
+++ b/README.md
@@ -4,43 +4,50 @@
A library to parse [CMIXF-12](https://people.csail.mit.edu/jaffer/MIXF/CMIXF-12).
-This will install a CLI `cmixf` when installed.
+## For users:
-At present this assumes that a number is provided before any unit.
+To install from PyPi.
-## For users:
+```
+$ pip install cmixf
+```
+
+This will install a command line interface called `cmixf`.
+
+```
+$ cmixf --help
+Usage: cmixf [OPTIONS] [TEXT]...
+
+Options:
+ -d, --debug Turn on token debugging
+ --help Show this message and exit.
+```
+
+At present this assumes that a number is provided before any unit. To better
+understand which characters are erroneous you can turn on the debug flag.
+
+1. Without debugging on:
```
-$ pip install cmixf # requires a python 3 environment
$ cmixf
-cmixf > 1mV
-type='REAL', value='1'
-type='SUBMULTIB', value='mV'
+cmixf (Ctrl+d to quit) > 1mV
1mV
-cmixf > 1oC
-type='REAL', value='1'
-type='UNITC', value='oC'
+cmixf (Ctrl+d to quit) > 1oC
1oC
-cmixf > <Ctrl+D to exit>
+cmixf (Ctrl+d to quit) > 1mM
+FAILED: Line 1: Bad character 'M'
+cmixf (Ctrl+d to quit) >
```
-If it fails it will raise an error and exit.
+2. With debugging turned on:
```
-$ cmixf
-cmixf > 1mM
+$ cmixf --debug
+cmixf (Ctrl+d to quit) > 1mM
type='REAL', value='1'
type='UNITC', value='m'
-Traceback (most recent call last):
- File "/Users/satra/software/miniconda3/envs/mixf/bin/cmixf", line 11, in <module>
- load_entry_point('cmixf', 'console_scripts', 'cmixf')()
- File "/Users/satra/software/sensein/cmixf/cmixf/parser.py", line 217, in main
- for tok in lexer.tokenize(text):
- File "/Users/satra/software/miniconda3/envs/mixf/lib/python3.8/site-packages/sly/lex.py", line 443, in tokenize
- tok = self.error(tok)
- File "/Users/satra/software/sensein/cmixf/cmixf/parser.py", line 54, in error
- raise ValueError("Line %d: Bad character %r" % (self.lineno, t.value[0]))
-ValueError: Line 1: Bad character 'M'
+FAILED: Line 1: Bad character 'M'
+cmixf (Ctrl+d to quit) >
```
## For developers:
diff --git a/cmixf/parser.py b/cmixf/parser.py
index 516a614..dd929be 100644
--- a/cmixf/parser.py
+++ b/cmixf/parser.py
@@ -1,19 +1,72 @@
+import click
from sly import Lexer, Parser
-decimalsubmultiple = r"(a|c|d|f|m|n|p|(u|µ)|y|z)"
-decimalmultiple = r"(E|G|M|P|T|Y|Z|da|h|k)"
-binary = r"(Ei|Gi|Ki|Mi|Pi|Ti)"
-unitc = {"unitb1": r"[A-Z][A-Z][A-Z]|A|Bq|C",
- "units": r"dB|d|h|min|u",
- "unitb2": r"F|Gy|Hz|H|J|K|Np|N|(Ohm|Ω)|Pa|Sv|S|T|V|W|Wb",
- "unitn": r"L|(oC|°C)|(°|o)|rad|sr",
- "unitb3": r"bit|cd|eV|g|kat|lm|lx|mol|m|s",
- "unitp": r"Bd|B|r|t"}
-unitb = r"(" + r'|'.join([unitc["unitb1"], unitc["unitb2"],
- unitc["unitb3"]]) + r")"
-unitn = r"(" + unitc["unitn"] + r")"
-unitp = r"(" + unitc["unitp"] + r")"
-units = r"(" + unitc["units"] + r")"
+decimal_multiple_prefix = ['E', 'G', 'M', 'P', 'T', 'Y', 'Z', 'da', 'h', 'k']
+decimal_submultiple_prefix = ['a', 'c', 'd', 'f', 'm', 'n', 'p', ['u', 'µ'],
+ 'y', 'z']
+binary_prefix = ['Ei', 'Gi', 'Ki', 'Mi', 'Pi', 'Ti']
+unit_p_symbol = ['Bd', 'B', 'r', 't']
+unit_n_symbol = ['L', 'Np', ['oC', '°C'], ['o', '°'], 'rad', 'sr']
+unit_b_symbol = ['A', 'Bq', 'C', 'F', 'Gy', 'Hz', 'H', 'J', 'K', 'N',
+ ['Ohm', 'Ω'], 'Pa', 'Sv', 'S', 'T', 'V', 'Wb', 'W', 'bit',
+ 'cd', 'eV', 'g', 'kat', 'lm', 'lx', 'mol', 'm', 's',
+ ]
+unit_b_N_index = unit_b_symbol.index('N')
+unit___symbol = ['dB', 'd', 'h', 'min', 'u']
+currency = ['[A-Z][A-Z][A-Z]']
+
+
+def encapsulate(value_list):
+ if all([isinstance(val, str) for val in value_list]):
+ return r'(' + r'|'.join(value_list) + r')'
+ return encapsulate([val if isinstance(val, str) else encapsulate(val) for val in value_list])
+
+
+def to_regex(components):
+ if not isinstance(components, list):
+ components = [components]
+ return r''.join([encapsulate(comp) for comp in components])
+
+
+def to_list(unit_list):
+ out = []
+ for val in unit_list:
+ if isinstance(val, str):
+ out.append(val)
+ else:
+ out.extend(val)
+ return out
+
+
+def create_combos():
+ """
+ punit
+ : decimal_multiple_prefix unit_p_symbol
+ | decimal_submultiple_prefix unit_n_symbol
+ | decimal_multiple_prefix unit_b_symbol
+ | decimal_submultiple_prefix unit_b_symbol
+ | binary_prefix 'B'
+ | binary_prefix 'bit'
+ | unit_p_symbol
+ | unit_n_symbol
+ | unit_b_symbol
+ | unit___symbol
+ ;
+ """
+ def combine(list1, list2):
+ combos = []
+ for val1 in to_list(list1):
+ for val2 in to_list(list2):
+ combos.append(val1 + val2)
+ return combos
+ combos = combine(decimal_multiple_prefix, unit_p_symbol) + \
+ combine(decimal_submultiple_prefix, unit_n_symbol) + \
+ combine(decimal_multiple_prefix, unit_b_symbol) + \
+ combine(decimal_submultiple_prefix, unit_b_symbol) + \
+ combine(binary_prefix, ["B", "bit"]) + \
+ to_list(unit_p_symbol) + to_list(unit_n_symbol) + \
+ to_list(unit_b_symbol) + to_list(unit___symbol)
+ return ["1"+val for val in combos]
class CMIXFLexer(Lexer):
@@ -42,13 +95,19 @@ class CMIXFLexer(Lexer):
EXP = r"\^"
REAL = r"-?\d*\.?\d+(?:[eE][-+]?\d+)?"
DOT = r"\."
- BIT = binary + r"bit"
- BYTE = binary + r"B"
- MULTIB = decimalmultiple + unitb
- SUBMULTIB = decimalsubmultiple + unitb
- MULTIP = decimalmultiple + unitp
- UNITC = r'|'.join([val for val in unitc.values()])
- SUBMULTIN = decimalsubmultiple + unitn
+ BIT = to_regex([binary_prefix, [r"bit"]])
+ BYTE = to_regex([binary_prefix, [r"B"]])
+ SUBMULTIN = r"mol|" + to_regex([decimal_submultiple_prefix, unit_n_symbol])
+ MULTIB = to_regex([decimal_multiple_prefix, currency + unit_b_symbol])
+ SUBMULTIB = to_regex([decimal_submultiple_prefix, currency + unit_b_symbol])
+ MULTIP = to_regex([decimal_multiple_prefix, unit_p_symbol])
+ UNITC = r'|'.join([encapsulate(val)[1:-1] for val in [currency + unit_b_symbol[:unit_b_N_index],
+ unit___symbol,
+ unit_n_symbol,
+ unit_b_symbol[unit_b_N_index:],
+ unit_p_symbol,
+ ]
+ ])
def error(self, t):
raise ValueError("Line %d: Bad character %r" % (self.lineno, t.value[0]))
@@ -205,15 +264,31 @@ class CMIXFParser(Parser):
raise RuntimeError(f"Could not parse {t}")
-def main():
+def parse(text, debug):
lexer = CMIXFLexer()
parser = CMIXFParser()
+ tokens = lexer.tokenize(text)
+ if debug:
+ for tok in tokens:
+ print("type=%r, value=%r" % (tok.type, tok.value))
+ print(parser.parse(tokens))
+
+
[email protected]()
[email protected]("-d", "--debug", is_flag=True, help="Turn on token debugging")
[email protected]("text", nargs=-1)
+def main(debug, text):
+ if text:
+ for val in text:
+ parse(val, debug)
+ return
while True:
try:
- text = input("cmixf > ")
+ text = input("cmixf (Ctrl+d to quit) > ")
except EOFError:
break
if text:
- for tok in lexer.tokenize(text):
- print("type=%r, value=%r" % (tok.type, tok.value))
- print(parser.parse(lexer.tokenize(text)))
+ try:
+ parse(text, debug)
+ except Exception as e:
+ print("FAILED: ", e)
|
sensein/cmixf
|
22f2f98d67380c1a6b92dcf53eb6ca7e4ffd364c
|
diff --git a/cmixf/tests/test_cmixf.py b/cmixf/tests/test_cmixf.py
index e519fa7..26b65db 100644
--- a/cmixf/tests/test_cmixf.py
+++ b/cmixf/tests/test_cmixf.py
@@ -1,6 +1,6 @@
import pytest
-from ..parser import CMIXFLexer, CMIXFParser
+from ..parser import CMIXFLexer, CMIXFParser, create_combos
@pytest.mark.parametrize(
@@ -80,6 +80,9 @@ def test_real(text, exception):
"1J/(mol.K)",
"1nV/Hz^(1/2)",
"1Mibit/s",
+ "1ms",
+ "1kBq",
+ "1mL",
],
)
def test_cmixf_examples(text):
@@ -94,6 +97,8 @@ def test_cmixf_examples(text):
"1µm",
"1°C",
"1Ω",
+ "1µV",
+ "1uV",
],
)
def test_bids_chars(text):
@@ -104,14 +109,10 @@ def test_bids_chars(text):
@pytest.mark.parametrize(
"text",
- [
- "1µV",
- "1uV",
- "1ms",
- "1kBq",
- ],
+ create_combos()
)
-def test_new_errors(text):
+def test_combos(text):
lexer = CMIXFLexer()
parser = CMIXFParser()
assert isinstance(parser.parse(lexer.tokenize(text)), str)
+
|
Liters are not validated when combined with prefix
```
# 1 Liter works
cmixf > 1L
type='REAL', value='1'
type='UNITC', value='L'
1L
# 1mL does not work
cmixf > 1mL
type='REAL', value='1'
type='UNITC', value='m'
type='UNITC', value='L'
sly: Syntax error at line 1, token=UNITC
Traceback (most recent call last):
File "/home/stefanappelhoff/miniconda3/bin/cmixf", line 11, in <module>
load_entry_point('cmixf', 'console_scripts', 'cmixf')()
File "/home/stefanappelhoff/Desktop/bids/cmixf/cmixf/parser.py", line 219, in main
print(parser.parse(lexer.tokenize(text)))
File "/home/stefanappelhoff/miniconda3/lib/python3.7/site-packages/sly/yacc.py", line 2119, in parse
tok = self.error(errtoken)
File "/home/stefanappelhoff/Desktop/bids/cmixf/cmixf/parser.py", line 205, in error
raise RuntimeError(f"Could not parse {t}")
RuntimeError: Could not parse Token(type='UNITC', value='L', lineno=1, index=2)
```
|
0.0
|
22f2f98d67380c1a6b92dcf53eb6ca7e4ffd364c
|
[
"cmixf/tests/test_cmixf.py::test_real[12E-True]",
"cmixf/tests/test_cmixf.py::test_real[12E+-True]",
"cmixf/tests/test_cmixf.py::test_real[.-True]",
"cmixf/tests/test_cmixf.py::test_real[12-False]",
"cmixf/tests/test_cmixf.py::test_real[-12-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1-False]",
"cmixf/tests/test_cmixf.py::test_real[-.1-False]",
"cmixf/tests/test_cmixf.py::test_real[.1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1E+1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1E+1-False]",
"cmixf/tests/test_cmixf.py::test_real[12.1e+1-False]",
"cmixf/tests/test_cmixf.py::test_real[-12.1e+1-False]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[60.s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[60.min]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[24.h]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1s^-1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[6.283185307179586.rad]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m/s^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^-1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kg/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1m^3/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1A/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1A/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1cd/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1rad/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1rad/s^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Pa.s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1N.m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1N/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/K]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/(kg.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/(m.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1V/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/m^2]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1F/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1H/m]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1C/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Gy/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1r/min]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kat/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1USD/h]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1EUR/kg]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1JPY/USD]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1mol/m^3]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/sr]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1W/(m^2.sr)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/mol]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1J/(mol.K)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1nV/Hz^(1/2)]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1Mibit/s]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1ms]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1kBq]",
"cmixf/tests/test_cmixf.py::test_cmixf_examples[1mL]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb5m]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb0C]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\u2126]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1\\xb5V]",
"cmixf/tests/test_cmixf.py::test_bids_chars[1uV]",
"cmixf/tests/test_cmixf.py::test_combos[1EBd]",
"cmixf/tests/test_cmixf.py::test_combos[1EB]",
"cmixf/tests/test_cmixf.py::test_combos[1Er]",
"cmixf/tests/test_cmixf.py::test_combos[1Et]",
"cmixf/tests/test_cmixf.py::test_combos[1GBd]",
"cmixf/tests/test_cmixf.py::test_combos[1GB]",
"cmixf/tests/test_cmixf.py::test_combos[1Gr]",
"cmixf/tests/test_cmixf.py::test_combos[1Gt]",
"cmixf/tests/test_cmixf.py::test_combos[1MBd]",
"cmixf/tests/test_cmixf.py::test_combos[1MB]",
"cmixf/tests/test_cmixf.py::test_combos[1Mr]",
"cmixf/tests/test_cmixf.py::test_combos[1Mt]",
"cmixf/tests/test_cmixf.py::test_combos[1PBd]",
"cmixf/tests/test_cmixf.py::test_combos[1PB]",
"cmixf/tests/test_cmixf.py::test_combos[1Pr]",
"cmixf/tests/test_cmixf.py::test_combos[1Pt]",
"cmixf/tests/test_cmixf.py::test_combos[1TBd]",
"cmixf/tests/test_cmixf.py::test_combos[1TB]",
"cmixf/tests/test_cmixf.py::test_combos[1Tr]",
"cmixf/tests/test_cmixf.py::test_combos[1Tt]",
"cmixf/tests/test_cmixf.py::test_combos[1YBd]",
"cmixf/tests/test_cmixf.py::test_combos[1YB]",
"cmixf/tests/test_cmixf.py::test_combos[1Yr]",
"cmixf/tests/test_cmixf.py::test_combos[1Yt]",
"cmixf/tests/test_cmixf.py::test_combos[1ZBd]",
"cmixf/tests/test_cmixf.py::test_combos[1ZB]",
"cmixf/tests/test_cmixf.py::test_combos[1Zr]",
"cmixf/tests/test_cmixf.py::test_combos[1Zt]",
"cmixf/tests/test_cmixf.py::test_combos[1daBd]",
"cmixf/tests/test_cmixf.py::test_combos[1daB]",
"cmixf/tests/test_cmixf.py::test_combos[1dar]",
"cmixf/tests/test_cmixf.py::test_combos[1dat]",
"cmixf/tests/test_cmixf.py::test_combos[1hBd]",
"cmixf/tests/test_cmixf.py::test_combos[1hB]",
"cmixf/tests/test_cmixf.py::test_combos[1hr]",
"cmixf/tests/test_cmixf.py::test_combos[1ht]",
"cmixf/tests/test_cmixf.py::test_combos[1kBd]",
"cmixf/tests/test_cmixf.py::test_combos[1kB]",
"cmixf/tests/test_cmixf.py::test_combos[1kr]",
"cmixf/tests/test_cmixf.py::test_combos[1kt]",
"cmixf/tests/test_cmixf.py::test_combos[1aL]",
"cmixf/tests/test_cmixf.py::test_combos[1aNp]",
"cmixf/tests/test_cmixf.py::test_combos[1aoC]",
"cmixf/tests/test_cmixf.py::test_combos[1a\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1ao]",
"cmixf/tests/test_cmixf.py::test_combos[1a\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1arad]",
"cmixf/tests/test_cmixf.py::test_combos[1asr]",
"cmixf/tests/test_cmixf.py::test_combos[1cL]",
"cmixf/tests/test_cmixf.py::test_combos[1cNp]",
"cmixf/tests/test_cmixf.py::test_combos[1coC]",
"cmixf/tests/test_cmixf.py::test_combos[1c\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1co]",
"cmixf/tests/test_cmixf.py::test_combos[1c\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1crad]",
"cmixf/tests/test_cmixf.py::test_combos[1csr]",
"cmixf/tests/test_cmixf.py::test_combos[1dL]",
"cmixf/tests/test_cmixf.py::test_combos[1dNp]",
"cmixf/tests/test_cmixf.py::test_combos[1doC]",
"cmixf/tests/test_cmixf.py::test_combos[1d\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1do]",
"cmixf/tests/test_cmixf.py::test_combos[1d\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1drad]",
"cmixf/tests/test_cmixf.py::test_combos[1dsr]",
"cmixf/tests/test_cmixf.py::test_combos[1fL]",
"cmixf/tests/test_cmixf.py::test_combos[1fNp]",
"cmixf/tests/test_cmixf.py::test_combos[1foC]",
"cmixf/tests/test_cmixf.py::test_combos[1f\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1fo]",
"cmixf/tests/test_cmixf.py::test_combos[1f\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1frad]",
"cmixf/tests/test_cmixf.py::test_combos[1fsr]",
"cmixf/tests/test_cmixf.py::test_combos[1mL]",
"cmixf/tests/test_cmixf.py::test_combos[1mNp]",
"cmixf/tests/test_cmixf.py::test_combos[1moC]",
"cmixf/tests/test_cmixf.py::test_combos[1m\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1mo]",
"cmixf/tests/test_cmixf.py::test_combos[1m\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1mrad]",
"cmixf/tests/test_cmixf.py::test_combos[1msr]",
"cmixf/tests/test_cmixf.py::test_combos[1nL]",
"cmixf/tests/test_cmixf.py::test_combos[1nNp]",
"cmixf/tests/test_cmixf.py::test_combos[1noC]",
"cmixf/tests/test_cmixf.py::test_combos[1n\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1no]",
"cmixf/tests/test_cmixf.py::test_combos[1n\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1nrad]",
"cmixf/tests/test_cmixf.py::test_combos[1nsr]",
"cmixf/tests/test_cmixf.py::test_combos[1pL]",
"cmixf/tests/test_cmixf.py::test_combos[1pNp]",
"cmixf/tests/test_cmixf.py::test_combos[1poC]",
"cmixf/tests/test_cmixf.py::test_combos[1p\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1po]",
"cmixf/tests/test_cmixf.py::test_combos[1p\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1prad]",
"cmixf/tests/test_cmixf.py::test_combos[1psr]",
"cmixf/tests/test_cmixf.py::test_combos[1uL]",
"cmixf/tests/test_cmixf.py::test_combos[1uNp]",
"cmixf/tests/test_cmixf.py::test_combos[1uoC]",
"cmixf/tests/test_cmixf.py::test_combos[1u\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1uo]",
"cmixf/tests/test_cmixf.py::test_combos[1u\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1urad]",
"cmixf/tests/test_cmixf.py::test_combos[1usr]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5L]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Np]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5oC]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5o]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5rad]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5sr]",
"cmixf/tests/test_cmixf.py::test_combos[1yL]",
"cmixf/tests/test_cmixf.py::test_combos[1yNp]",
"cmixf/tests/test_cmixf.py::test_combos[1yoC]",
"cmixf/tests/test_cmixf.py::test_combos[1y\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1yo]",
"cmixf/tests/test_cmixf.py::test_combos[1y\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1yrad]",
"cmixf/tests/test_cmixf.py::test_combos[1ysr]",
"cmixf/tests/test_cmixf.py::test_combos[1zL]",
"cmixf/tests/test_cmixf.py::test_combos[1zNp]",
"cmixf/tests/test_cmixf.py::test_combos[1zoC]",
"cmixf/tests/test_cmixf.py::test_combos[1z\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1zo]",
"cmixf/tests/test_cmixf.py::test_combos[1z\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1zrad]",
"cmixf/tests/test_cmixf.py::test_combos[1zsr]",
"cmixf/tests/test_cmixf.py::test_combos[1EA]",
"cmixf/tests/test_cmixf.py::test_combos[1EBq]",
"cmixf/tests/test_cmixf.py::test_combos[1EC]",
"cmixf/tests/test_cmixf.py::test_combos[1EF]",
"cmixf/tests/test_cmixf.py::test_combos[1EGy]",
"cmixf/tests/test_cmixf.py::test_combos[1EHz]",
"cmixf/tests/test_cmixf.py::test_combos[1EH]",
"cmixf/tests/test_cmixf.py::test_combos[1EJ]",
"cmixf/tests/test_cmixf.py::test_combos[1EK]",
"cmixf/tests/test_cmixf.py::test_combos[1EN]",
"cmixf/tests/test_cmixf.py::test_combos[1EOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1E\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1EPa]",
"cmixf/tests/test_cmixf.py::test_combos[1ESv]",
"cmixf/tests/test_cmixf.py::test_combos[1ES]",
"cmixf/tests/test_cmixf.py::test_combos[1ET]",
"cmixf/tests/test_cmixf.py::test_combos[1EV]",
"cmixf/tests/test_cmixf.py::test_combos[1EWb]",
"cmixf/tests/test_cmixf.py::test_combos[1EW]",
"cmixf/tests/test_cmixf.py::test_combos[1Ebit]",
"cmixf/tests/test_cmixf.py::test_combos[1Ecd]",
"cmixf/tests/test_cmixf.py::test_combos[1EeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Eg]",
"cmixf/tests/test_cmixf.py::test_combos[1Ekat]",
"cmixf/tests/test_cmixf.py::test_combos[1Elm]",
"cmixf/tests/test_cmixf.py::test_combos[1Elx]",
"cmixf/tests/test_cmixf.py::test_combos[1Emol]",
"cmixf/tests/test_cmixf.py::test_combos[1Em]",
"cmixf/tests/test_cmixf.py::test_combos[1Es]",
"cmixf/tests/test_cmixf.py::test_combos[1GA]",
"cmixf/tests/test_cmixf.py::test_combos[1GBq]",
"cmixf/tests/test_cmixf.py::test_combos[1GC]",
"cmixf/tests/test_cmixf.py::test_combos[1GF]",
"cmixf/tests/test_cmixf.py::test_combos[1GGy]",
"cmixf/tests/test_cmixf.py::test_combos[1GHz]",
"cmixf/tests/test_cmixf.py::test_combos[1GH]",
"cmixf/tests/test_cmixf.py::test_combos[1GJ]",
"cmixf/tests/test_cmixf.py::test_combos[1GK]",
"cmixf/tests/test_cmixf.py::test_combos[1GN]",
"cmixf/tests/test_cmixf.py::test_combos[1GOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1G\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1GPa]",
"cmixf/tests/test_cmixf.py::test_combos[1GSv]",
"cmixf/tests/test_cmixf.py::test_combos[1GS]",
"cmixf/tests/test_cmixf.py::test_combos[1GT]",
"cmixf/tests/test_cmixf.py::test_combos[1GV]",
"cmixf/tests/test_cmixf.py::test_combos[1GWb]",
"cmixf/tests/test_cmixf.py::test_combos[1GW]",
"cmixf/tests/test_cmixf.py::test_combos[1Gbit]",
"cmixf/tests/test_cmixf.py::test_combos[1Gcd]",
"cmixf/tests/test_cmixf.py::test_combos[1GeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Gg]",
"cmixf/tests/test_cmixf.py::test_combos[1Gkat]",
"cmixf/tests/test_cmixf.py::test_combos[1Glm]",
"cmixf/tests/test_cmixf.py::test_combos[1Glx]",
"cmixf/tests/test_cmixf.py::test_combos[1Gmol]",
"cmixf/tests/test_cmixf.py::test_combos[1Gm]",
"cmixf/tests/test_cmixf.py::test_combos[1Gs]",
"cmixf/tests/test_cmixf.py::test_combos[1MA]",
"cmixf/tests/test_cmixf.py::test_combos[1MBq]",
"cmixf/tests/test_cmixf.py::test_combos[1MC]",
"cmixf/tests/test_cmixf.py::test_combos[1MF]",
"cmixf/tests/test_cmixf.py::test_combos[1MGy]",
"cmixf/tests/test_cmixf.py::test_combos[1MHz]",
"cmixf/tests/test_cmixf.py::test_combos[1MH]",
"cmixf/tests/test_cmixf.py::test_combos[1MJ]",
"cmixf/tests/test_cmixf.py::test_combos[1MK]",
"cmixf/tests/test_cmixf.py::test_combos[1MN]",
"cmixf/tests/test_cmixf.py::test_combos[1MOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1M\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1MPa]",
"cmixf/tests/test_cmixf.py::test_combos[1MSv]",
"cmixf/tests/test_cmixf.py::test_combos[1MS]",
"cmixf/tests/test_cmixf.py::test_combos[1MT]",
"cmixf/tests/test_cmixf.py::test_combos[1MV]",
"cmixf/tests/test_cmixf.py::test_combos[1MWb]",
"cmixf/tests/test_cmixf.py::test_combos[1MW]",
"cmixf/tests/test_cmixf.py::test_combos[1Mbit]",
"cmixf/tests/test_cmixf.py::test_combos[1Mcd]",
"cmixf/tests/test_cmixf.py::test_combos[1MeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Mg]",
"cmixf/tests/test_cmixf.py::test_combos[1Mkat]",
"cmixf/tests/test_cmixf.py::test_combos[1Mlm]",
"cmixf/tests/test_cmixf.py::test_combos[1Mlx]",
"cmixf/tests/test_cmixf.py::test_combos[1Mmol]",
"cmixf/tests/test_cmixf.py::test_combos[1Mm]",
"cmixf/tests/test_cmixf.py::test_combos[1Ms]",
"cmixf/tests/test_cmixf.py::test_combos[1PA]",
"cmixf/tests/test_cmixf.py::test_combos[1PBq]",
"cmixf/tests/test_cmixf.py::test_combos[1PC]",
"cmixf/tests/test_cmixf.py::test_combos[1PF]",
"cmixf/tests/test_cmixf.py::test_combos[1PGy]",
"cmixf/tests/test_cmixf.py::test_combos[1PHz]",
"cmixf/tests/test_cmixf.py::test_combos[1PH]",
"cmixf/tests/test_cmixf.py::test_combos[1PJ]",
"cmixf/tests/test_cmixf.py::test_combos[1PK]",
"cmixf/tests/test_cmixf.py::test_combos[1PN]",
"cmixf/tests/test_cmixf.py::test_combos[1POhm]",
"cmixf/tests/test_cmixf.py::test_combos[1P\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1PPa]",
"cmixf/tests/test_cmixf.py::test_combos[1PSv]",
"cmixf/tests/test_cmixf.py::test_combos[1PS]",
"cmixf/tests/test_cmixf.py::test_combos[1PT]",
"cmixf/tests/test_cmixf.py::test_combos[1PV]",
"cmixf/tests/test_cmixf.py::test_combos[1PWb]",
"cmixf/tests/test_cmixf.py::test_combos[1PW]",
"cmixf/tests/test_cmixf.py::test_combos[1Pbit]",
"cmixf/tests/test_cmixf.py::test_combos[1Pcd]",
"cmixf/tests/test_cmixf.py::test_combos[1PeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Pg]",
"cmixf/tests/test_cmixf.py::test_combos[1Pkat]",
"cmixf/tests/test_cmixf.py::test_combos[1Plm]",
"cmixf/tests/test_cmixf.py::test_combos[1Plx]",
"cmixf/tests/test_cmixf.py::test_combos[1Pmol]",
"cmixf/tests/test_cmixf.py::test_combos[1Pm]",
"cmixf/tests/test_cmixf.py::test_combos[1Ps]",
"cmixf/tests/test_cmixf.py::test_combos[1TA]",
"cmixf/tests/test_cmixf.py::test_combos[1TBq]",
"cmixf/tests/test_cmixf.py::test_combos[1TC]",
"cmixf/tests/test_cmixf.py::test_combos[1TF]",
"cmixf/tests/test_cmixf.py::test_combos[1TGy]",
"cmixf/tests/test_cmixf.py::test_combos[1THz]",
"cmixf/tests/test_cmixf.py::test_combos[1TH]",
"cmixf/tests/test_cmixf.py::test_combos[1TJ]",
"cmixf/tests/test_cmixf.py::test_combos[1TK]",
"cmixf/tests/test_cmixf.py::test_combos[1TN]",
"cmixf/tests/test_cmixf.py::test_combos[1TOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1T\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1TPa]",
"cmixf/tests/test_cmixf.py::test_combos[1TSv]",
"cmixf/tests/test_cmixf.py::test_combos[1TS]",
"cmixf/tests/test_cmixf.py::test_combos[1TT]",
"cmixf/tests/test_cmixf.py::test_combos[1TV]",
"cmixf/tests/test_cmixf.py::test_combos[1TWb]",
"cmixf/tests/test_cmixf.py::test_combos[1TW]",
"cmixf/tests/test_cmixf.py::test_combos[1Tbit]",
"cmixf/tests/test_cmixf.py::test_combos[1Tcd]",
"cmixf/tests/test_cmixf.py::test_combos[1TeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Tg]",
"cmixf/tests/test_cmixf.py::test_combos[1Tkat]",
"cmixf/tests/test_cmixf.py::test_combos[1Tlm]",
"cmixf/tests/test_cmixf.py::test_combos[1Tlx]",
"cmixf/tests/test_cmixf.py::test_combos[1Tmol]",
"cmixf/tests/test_cmixf.py::test_combos[1Tm]",
"cmixf/tests/test_cmixf.py::test_combos[1Ts]",
"cmixf/tests/test_cmixf.py::test_combos[1YA]",
"cmixf/tests/test_cmixf.py::test_combos[1YBq]",
"cmixf/tests/test_cmixf.py::test_combos[1YC]",
"cmixf/tests/test_cmixf.py::test_combos[1YF]",
"cmixf/tests/test_cmixf.py::test_combos[1YGy]",
"cmixf/tests/test_cmixf.py::test_combos[1YHz]",
"cmixf/tests/test_cmixf.py::test_combos[1YH]",
"cmixf/tests/test_cmixf.py::test_combos[1YJ]",
"cmixf/tests/test_cmixf.py::test_combos[1YK]",
"cmixf/tests/test_cmixf.py::test_combos[1YN]",
"cmixf/tests/test_cmixf.py::test_combos[1YOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1Y\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1YPa]",
"cmixf/tests/test_cmixf.py::test_combos[1YSv]",
"cmixf/tests/test_cmixf.py::test_combos[1YS]",
"cmixf/tests/test_cmixf.py::test_combos[1YT]",
"cmixf/tests/test_cmixf.py::test_combos[1YV]",
"cmixf/tests/test_cmixf.py::test_combos[1YWb]",
"cmixf/tests/test_cmixf.py::test_combos[1YW]",
"cmixf/tests/test_cmixf.py::test_combos[1Ybit]",
"cmixf/tests/test_cmixf.py::test_combos[1Ycd]",
"cmixf/tests/test_cmixf.py::test_combos[1YeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Yg]",
"cmixf/tests/test_cmixf.py::test_combos[1Ykat]",
"cmixf/tests/test_cmixf.py::test_combos[1Ylm]",
"cmixf/tests/test_cmixf.py::test_combos[1Ylx]",
"cmixf/tests/test_cmixf.py::test_combos[1Ymol]",
"cmixf/tests/test_cmixf.py::test_combos[1Ym]",
"cmixf/tests/test_cmixf.py::test_combos[1Ys]",
"cmixf/tests/test_cmixf.py::test_combos[1ZA]",
"cmixf/tests/test_cmixf.py::test_combos[1ZBq]",
"cmixf/tests/test_cmixf.py::test_combos[1ZC]",
"cmixf/tests/test_cmixf.py::test_combos[1ZF]",
"cmixf/tests/test_cmixf.py::test_combos[1ZGy]",
"cmixf/tests/test_cmixf.py::test_combos[1ZHz]",
"cmixf/tests/test_cmixf.py::test_combos[1ZH]",
"cmixf/tests/test_cmixf.py::test_combos[1ZJ]",
"cmixf/tests/test_cmixf.py::test_combos[1ZK]",
"cmixf/tests/test_cmixf.py::test_combos[1ZN]",
"cmixf/tests/test_cmixf.py::test_combos[1ZOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1Z\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1ZPa]",
"cmixf/tests/test_cmixf.py::test_combos[1ZSv]",
"cmixf/tests/test_cmixf.py::test_combos[1ZS]",
"cmixf/tests/test_cmixf.py::test_combos[1ZT]",
"cmixf/tests/test_cmixf.py::test_combos[1ZV]",
"cmixf/tests/test_cmixf.py::test_combos[1ZWb]",
"cmixf/tests/test_cmixf.py::test_combos[1ZW]",
"cmixf/tests/test_cmixf.py::test_combos[1Zbit]",
"cmixf/tests/test_cmixf.py::test_combos[1Zcd]",
"cmixf/tests/test_cmixf.py::test_combos[1ZeV]",
"cmixf/tests/test_cmixf.py::test_combos[1Zg]",
"cmixf/tests/test_cmixf.py::test_combos[1Zkat]",
"cmixf/tests/test_cmixf.py::test_combos[1Zlm]",
"cmixf/tests/test_cmixf.py::test_combos[1Zlx]",
"cmixf/tests/test_cmixf.py::test_combos[1Zmol]",
"cmixf/tests/test_cmixf.py::test_combos[1Zm]",
"cmixf/tests/test_cmixf.py::test_combos[1Zs]",
"cmixf/tests/test_cmixf.py::test_combos[1daA]",
"cmixf/tests/test_cmixf.py::test_combos[1daBq]",
"cmixf/tests/test_cmixf.py::test_combos[1daC]",
"cmixf/tests/test_cmixf.py::test_combos[1daF]",
"cmixf/tests/test_cmixf.py::test_combos[1daGy]",
"cmixf/tests/test_cmixf.py::test_combos[1daHz]",
"cmixf/tests/test_cmixf.py::test_combos[1daH]",
"cmixf/tests/test_cmixf.py::test_combos[1daJ]",
"cmixf/tests/test_cmixf.py::test_combos[1daK]",
"cmixf/tests/test_cmixf.py::test_combos[1daN]",
"cmixf/tests/test_cmixf.py::test_combos[1daOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1da\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1daPa]",
"cmixf/tests/test_cmixf.py::test_combos[1daSv]",
"cmixf/tests/test_cmixf.py::test_combos[1daS]",
"cmixf/tests/test_cmixf.py::test_combos[1daT]",
"cmixf/tests/test_cmixf.py::test_combos[1daV]",
"cmixf/tests/test_cmixf.py::test_combos[1daWb]",
"cmixf/tests/test_cmixf.py::test_combos[1daW]",
"cmixf/tests/test_cmixf.py::test_combos[1dabit]",
"cmixf/tests/test_cmixf.py::test_combos[1dacd]",
"cmixf/tests/test_cmixf.py::test_combos[1daeV]",
"cmixf/tests/test_cmixf.py::test_combos[1dag]",
"cmixf/tests/test_cmixf.py::test_combos[1dakat]",
"cmixf/tests/test_cmixf.py::test_combos[1dalm]",
"cmixf/tests/test_cmixf.py::test_combos[1dalx]",
"cmixf/tests/test_cmixf.py::test_combos[1damol]",
"cmixf/tests/test_cmixf.py::test_combos[1dam]",
"cmixf/tests/test_cmixf.py::test_combos[1das]",
"cmixf/tests/test_cmixf.py::test_combos[1hA]",
"cmixf/tests/test_cmixf.py::test_combos[1hBq]",
"cmixf/tests/test_cmixf.py::test_combos[1hC]",
"cmixf/tests/test_cmixf.py::test_combos[1hF]",
"cmixf/tests/test_cmixf.py::test_combos[1hGy]",
"cmixf/tests/test_cmixf.py::test_combos[1hHz]",
"cmixf/tests/test_cmixf.py::test_combos[1hH]",
"cmixf/tests/test_cmixf.py::test_combos[1hJ]",
"cmixf/tests/test_cmixf.py::test_combos[1hK]",
"cmixf/tests/test_cmixf.py::test_combos[1hN]",
"cmixf/tests/test_cmixf.py::test_combos[1hOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1h\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1hPa]",
"cmixf/tests/test_cmixf.py::test_combos[1hSv]",
"cmixf/tests/test_cmixf.py::test_combos[1hS]",
"cmixf/tests/test_cmixf.py::test_combos[1hT]",
"cmixf/tests/test_cmixf.py::test_combos[1hV]",
"cmixf/tests/test_cmixf.py::test_combos[1hWb]",
"cmixf/tests/test_cmixf.py::test_combos[1hW]",
"cmixf/tests/test_cmixf.py::test_combos[1hbit]",
"cmixf/tests/test_cmixf.py::test_combos[1hcd]",
"cmixf/tests/test_cmixf.py::test_combos[1heV]",
"cmixf/tests/test_cmixf.py::test_combos[1hg]",
"cmixf/tests/test_cmixf.py::test_combos[1hkat]",
"cmixf/tests/test_cmixf.py::test_combos[1hlm]",
"cmixf/tests/test_cmixf.py::test_combos[1hlx]",
"cmixf/tests/test_cmixf.py::test_combos[1hmol]",
"cmixf/tests/test_cmixf.py::test_combos[1hm]",
"cmixf/tests/test_cmixf.py::test_combos[1hs]",
"cmixf/tests/test_cmixf.py::test_combos[1kA]",
"cmixf/tests/test_cmixf.py::test_combos[1kBq]",
"cmixf/tests/test_cmixf.py::test_combos[1kC]",
"cmixf/tests/test_cmixf.py::test_combos[1kF]",
"cmixf/tests/test_cmixf.py::test_combos[1kGy]",
"cmixf/tests/test_cmixf.py::test_combos[1kHz]",
"cmixf/tests/test_cmixf.py::test_combos[1kH]",
"cmixf/tests/test_cmixf.py::test_combos[1kJ]",
"cmixf/tests/test_cmixf.py::test_combos[1kK]",
"cmixf/tests/test_cmixf.py::test_combos[1kN]",
"cmixf/tests/test_cmixf.py::test_combos[1kOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1k\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1kPa]",
"cmixf/tests/test_cmixf.py::test_combos[1kSv]",
"cmixf/tests/test_cmixf.py::test_combos[1kS]",
"cmixf/tests/test_cmixf.py::test_combos[1kT]",
"cmixf/tests/test_cmixf.py::test_combos[1kV]",
"cmixf/tests/test_cmixf.py::test_combos[1kWb]",
"cmixf/tests/test_cmixf.py::test_combos[1kW]",
"cmixf/tests/test_cmixf.py::test_combos[1kbit]",
"cmixf/tests/test_cmixf.py::test_combos[1kcd]",
"cmixf/tests/test_cmixf.py::test_combos[1keV]",
"cmixf/tests/test_cmixf.py::test_combos[1kg]",
"cmixf/tests/test_cmixf.py::test_combos[1kkat]",
"cmixf/tests/test_cmixf.py::test_combos[1klm]",
"cmixf/tests/test_cmixf.py::test_combos[1klx]",
"cmixf/tests/test_cmixf.py::test_combos[1kmol]",
"cmixf/tests/test_cmixf.py::test_combos[1km]",
"cmixf/tests/test_cmixf.py::test_combos[1ks]",
"cmixf/tests/test_cmixf.py::test_combos[1aA]",
"cmixf/tests/test_cmixf.py::test_combos[1aBq]",
"cmixf/tests/test_cmixf.py::test_combos[1aC]",
"cmixf/tests/test_cmixf.py::test_combos[1aF]",
"cmixf/tests/test_cmixf.py::test_combos[1aGy]",
"cmixf/tests/test_cmixf.py::test_combos[1aHz]",
"cmixf/tests/test_cmixf.py::test_combos[1aH]",
"cmixf/tests/test_cmixf.py::test_combos[1aJ]",
"cmixf/tests/test_cmixf.py::test_combos[1aK]",
"cmixf/tests/test_cmixf.py::test_combos[1aN]",
"cmixf/tests/test_cmixf.py::test_combos[1aOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1a\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1aPa]",
"cmixf/tests/test_cmixf.py::test_combos[1aSv]",
"cmixf/tests/test_cmixf.py::test_combos[1aS]",
"cmixf/tests/test_cmixf.py::test_combos[1aT]",
"cmixf/tests/test_cmixf.py::test_combos[1aV]",
"cmixf/tests/test_cmixf.py::test_combos[1aWb]",
"cmixf/tests/test_cmixf.py::test_combos[1aW]",
"cmixf/tests/test_cmixf.py::test_combos[1abit]",
"cmixf/tests/test_cmixf.py::test_combos[1acd]",
"cmixf/tests/test_cmixf.py::test_combos[1aeV]",
"cmixf/tests/test_cmixf.py::test_combos[1ag]",
"cmixf/tests/test_cmixf.py::test_combos[1akat]",
"cmixf/tests/test_cmixf.py::test_combos[1alm]",
"cmixf/tests/test_cmixf.py::test_combos[1alx]",
"cmixf/tests/test_cmixf.py::test_combos[1amol]",
"cmixf/tests/test_cmixf.py::test_combos[1am]",
"cmixf/tests/test_cmixf.py::test_combos[1as]",
"cmixf/tests/test_cmixf.py::test_combos[1cA]",
"cmixf/tests/test_cmixf.py::test_combos[1cBq]",
"cmixf/tests/test_cmixf.py::test_combos[1cC]",
"cmixf/tests/test_cmixf.py::test_combos[1cF]",
"cmixf/tests/test_cmixf.py::test_combos[1cGy]",
"cmixf/tests/test_cmixf.py::test_combos[1cHz]",
"cmixf/tests/test_cmixf.py::test_combos[1cH]",
"cmixf/tests/test_cmixf.py::test_combos[1cJ]",
"cmixf/tests/test_cmixf.py::test_combos[1cK]",
"cmixf/tests/test_cmixf.py::test_combos[1cN]",
"cmixf/tests/test_cmixf.py::test_combos[1cOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1c\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1cPa]",
"cmixf/tests/test_cmixf.py::test_combos[1cSv]",
"cmixf/tests/test_cmixf.py::test_combos[1cS]",
"cmixf/tests/test_cmixf.py::test_combos[1cT]",
"cmixf/tests/test_cmixf.py::test_combos[1cV]",
"cmixf/tests/test_cmixf.py::test_combos[1cWb]",
"cmixf/tests/test_cmixf.py::test_combos[1cW]",
"cmixf/tests/test_cmixf.py::test_combos[1cbit]",
"cmixf/tests/test_cmixf.py::test_combos[1ccd]",
"cmixf/tests/test_cmixf.py::test_combos[1ceV]",
"cmixf/tests/test_cmixf.py::test_combos[1cg]",
"cmixf/tests/test_cmixf.py::test_combos[1ckat]",
"cmixf/tests/test_cmixf.py::test_combos[1clm]",
"cmixf/tests/test_cmixf.py::test_combos[1clx]",
"cmixf/tests/test_cmixf.py::test_combos[1cmol]",
"cmixf/tests/test_cmixf.py::test_combos[1cm]",
"cmixf/tests/test_cmixf.py::test_combos[1cs]",
"cmixf/tests/test_cmixf.py::test_combos[1dA]",
"cmixf/tests/test_cmixf.py::test_combos[1dBq]",
"cmixf/tests/test_cmixf.py::test_combos[1dC]",
"cmixf/tests/test_cmixf.py::test_combos[1dF]",
"cmixf/tests/test_cmixf.py::test_combos[1dGy]",
"cmixf/tests/test_cmixf.py::test_combos[1dHz]",
"cmixf/tests/test_cmixf.py::test_combos[1dH]",
"cmixf/tests/test_cmixf.py::test_combos[1dJ]",
"cmixf/tests/test_cmixf.py::test_combos[1dK]",
"cmixf/tests/test_cmixf.py::test_combos[1dN]",
"cmixf/tests/test_cmixf.py::test_combos[1dOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1d\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1dPa]",
"cmixf/tests/test_cmixf.py::test_combos[1dSv]",
"cmixf/tests/test_cmixf.py::test_combos[1dS]",
"cmixf/tests/test_cmixf.py::test_combos[1dT]",
"cmixf/tests/test_cmixf.py::test_combos[1dV]",
"cmixf/tests/test_cmixf.py::test_combos[1dWb]",
"cmixf/tests/test_cmixf.py::test_combos[1dW]",
"cmixf/tests/test_cmixf.py::test_combos[1dbit]",
"cmixf/tests/test_cmixf.py::test_combos[1dcd]",
"cmixf/tests/test_cmixf.py::test_combos[1deV]",
"cmixf/tests/test_cmixf.py::test_combos[1dg]",
"cmixf/tests/test_cmixf.py::test_combos[1dkat]",
"cmixf/tests/test_cmixf.py::test_combos[1dlm]",
"cmixf/tests/test_cmixf.py::test_combos[1dlx]",
"cmixf/tests/test_cmixf.py::test_combos[1dmol]",
"cmixf/tests/test_cmixf.py::test_combos[1dm]",
"cmixf/tests/test_cmixf.py::test_combos[1ds]",
"cmixf/tests/test_cmixf.py::test_combos[1fA]",
"cmixf/tests/test_cmixf.py::test_combos[1fBq]",
"cmixf/tests/test_cmixf.py::test_combos[1fC]",
"cmixf/tests/test_cmixf.py::test_combos[1fF]",
"cmixf/tests/test_cmixf.py::test_combos[1fGy]",
"cmixf/tests/test_cmixf.py::test_combos[1fHz]",
"cmixf/tests/test_cmixf.py::test_combos[1fH]",
"cmixf/tests/test_cmixf.py::test_combos[1fJ]",
"cmixf/tests/test_cmixf.py::test_combos[1fK]",
"cmixf/tests/test_cmixf.py::test_combos[1fN]",
"cmixf/tests/test_cmixf.py::test_combos[1fOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1f\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1fPa]",
"cmixf/tests/test_cmixf.py::test_combos[1fSv]",
"cmixf/tests/test_cmixf.py::test_combos[1fS]",
"cmixf/tests/test_cmixf.py::test_combos[1fT]",
"cmixf/tests/test_cmixf.py::test_combos[1fV]",
"cmixf/tests/test_cmixf.py::test_combos[1fWb]",
"cmixf/tests/test_cmixf.py::test_combos[1fW]",
"cmixf/tests/test_cmixf.py::test_combos[1fbit]",
"cmixf/tests/test_cmixf.py::test_combos[1fcd]",
"cmixf/tests/test_cmixf.py::test_combos[1feV]",
"cmixf/tests/test_cmixf.py::test_combos[1fg]",
"cmixf/tests/test_cmixf.py::test_combos[1fkat]",
"cmixf/tests/test_cmixf.py::test_combos[1flm]",
"cmixf/tests/test_cmixf.py::test_combos[1flx]",
"cmixf/tests/test_cmixf.py::test_combos[1fmol]",
"cmixf/tests/test_cmixf.py::test_combos[1fm]",
"cmixf/tests/test_cmixf.py::test_combos[1fs]",
"cmixf/tests/test_cmixf.py::test_combos[1mA]",
"cmixf/tests/test_cmixf.py::test_combos[1mBq]",
"cmixf/tests/test_cmixf.py::test_combos[1mC]",
"cmixf/tests/test_cmixf.py::test_combos[1mF]",
"cmixf/tests/test_cmixf.py::test_combos[1mGy]",
"cmixf/tests/test_cmixf.py::test_combos[1mHz]",
"cmixf/tests/test_cmixf.py::test_combos[1mH]",
"cmixf/tests/test_cmixf.py::test_combos[1mJ]",
"cmixf/tests/test_cmixf.py::test_combos[1mK]",
"cmixf/tests/test_cmixf.py::test_combos[1mN]",
"cmixf/tests/test_cmixf.py::test_combos[1mOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1m\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1mPa]",
"cmixf/tests/test_cmixf.py::test_combos[1mSv]",
"cmixf/tests/test_cmixf.py::test_combos[1mS]",
"cmixf/tests/test_cmixf.py::test_combos[1mT]",
"cmixf/tests/test_cmixf.py::test_combos[1mV]",
"cmixf/tests/test_cmixf.py::test_combos[1mWb]",
"cmixf/tests/test_cmixf.py::test_combos[1mW]",
"cmixf/tests/test_cmixf.py::test_combos[1mbit]",
"cmixf/tests/test_cmixf.py::test_combos[1mcd]",
"cmixf/tests/test_cmixf.py::test_combos[1meV]",
"cmixf/tests/test_cmixf.py::test_combos[1mg]",
"cmixf/tests/test_cmixf.py::test_combos[1mkat]",
"cmixf/tests/test_cmixf.py::test_combos[1mlm]",
"cmixf/tests/test_cmixf.py::test_combos[1mlx]",
"cmixf/tests/test_cmixf.py::test_combos[1mmol]",
"cmixf/tests/test_cmixf.py::test_combos[1mm]",
"cmixf/tests/test_cmixf.py::test_combos[1ms]",
"cmixf/tests/test_cmixf.py::test_combos[1nA]",
"cmixf/tests/test_cmixf.py::test_combos[1nBq]",
"cmixf/tests/test_cmixf.py::test_combos[1nC]",
"cmixf/tests/test_cmixf.py::test_combos[1nF]",
"cmixf/tests/test_cmixf.py::test_combos[1nGy]",
"cmixf/tests/test_cmixf.py::test_combos[1nHz]",
"cmixf/tests/test_cmixf.py::test_combos[1nH]",
"cmixf/tests/test_cmixf.py::test_combos[1nJ]",
"cmixf/tests/test_cmixf.py::test_combos[1nK]",
"cmixf/tests/test_cmixf.py::test_combos[1nN]",
"cmixf/tests/test_cmixf.py::test_combos[1nOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1n\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1nPa]",
"cmixf/tests/test_cmixf.py::test_combos[1nSv]",
"cmixf/tests/test_cmixf.py::test_combos[1nS]",
"cmixf/tests/test_cmixf.py::test_combos[1nT]",
"cmixf/tests/test_cmixf.py::test_combos[1nV]",
"cmixf/tests/test_cmixf.py::test_combos[1nWb]",
"cmixf/tests/test_cmixf.py::test_combos[1nW]",
"cmixf/tests/test_cmixf.py::test_combos[1nbit]",
"cmixf/tests/test_cmixf.py::test_combos[1ncd]",
"cmixf/tests/test_cmixf.py::test_combos[1neV]",
"cmixf/tests/test_cmixf.py::test_combos[1ng]",
"cmixf/tests/test_cmixf.py::test_combos[1nkat]",
"cmixf/tests/test_cmixf.py::test_combos[1nlm]",
"cmixf/tests/test_cmixf.py::test_combos[1nlx]",
"cmixf/tests/test_cmixf.py::test_combos[1nmol]",
"cmixf/tests/test_cmixf.py::test_combos[1nm]",
"cmixf/tests/test_cmixf.py::test_combos[1ns]",
"cmixf/tests/test_cmixf.py::test_combos[1pA]",
"cmixf/tests/test_cmixf.py::test_combos[1pBq]",
"cmixf/tests/test_cmixf.py::test_combos[1pC]",
"cmixf/tests/test_cmixf.py::test_combos[1pF]",
"cmixf/tests/test_cmixf.py::test_combos[1pGy]",
"cmixf/tests/test_cmixf.py::test_combos[1pHz]",
"cmixf/tests/test_cmixf.py::test_combos[1pH]",
"cmixf/tests/test_cmixf.py::test_combos[1pJ]",
"cmixf/tests/test_cmixf.py::test_combos[1pK]",
"cmixf/tests/test_cmixf.py::test_combos[1pN]",
"cmixf/tests/test_cmixf.py::test_combos[1pOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1p\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1pPa]",
"cmixf/tests/test_cmixf.py::test_combos[1pSv]",
"cmixf/tests/test_cmixf.py::test_combos[1pS]",
"cmixf/tests/test_cmixf.py::test_combos[1pT]",
"cmixf/tests/test_cmixf.py::test_combos[1pV]",
"cmixf/tests/test_cmixf.py::test_combos[1pWb]",
"cmixf/tests/test_cmixf.py::test_combos[1pW]",
"cmixf/tests/test_cmixf.py::test_combos[1pbit]",
"cmixf/tests/test_cmixf.py::test_combos[1pcd]",
"cmixf/tests/test_cmixf.py::test_combos[1peV]",
"cmixf/tests/test_cmixf.py::test_combos[1pg]",
"cmixf/tests/test_cmixf.py::test_combos[1pkat]",
"cmixf/tests/test_cmixf.py::test_combos[1plm]",
"cmixf/tests/test_cmixf.py::test_combos[1plx]",
"cmixf/tests/test_cmixf.py::test_combos[1pmol]",
"cmixf/tests/test_cmixf.py::test_combos[1pm]",
"cmixf/tests/test_cmixf.py::test_combos[1ps]",
"cmixf/tests/test_cmixf.py::test_combos[1uA]",
"cmixf/tests/test_cmixf.py::test_combos[1uBq]",
"cmixf/tests/test_cmixf.py::test_combos[1uC]",
"cmixf/tests/test_cmixf.py::test_combos[1uF]",
"cmixf/tests/test_cmixf.py::test_combos[1uGy]",
"cmixf/tests/test_cmixf.py::test_combos[1uHz]",
"cmixf/tests/test_cmixf.py::test_combos[1uH]",
"cmixf/tests/test_cmixf.py::test_combos[1uJ]",
"cmixf/tests/test_cmixf.py::test_combos[1uK]",
"cmixf/tests/test_cmixf.py::test_combos[1uN]",
"cmixf/tests/test_cmixf.py::test_combos[1uOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1u\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1uPa]",
"cmixf/tests/test_cmixf.py::test_combos[1uSv]",
"cmixf/tests/test_cmixf.py::test_combos[1uS]",
"cmixf/tests/test_cmixf.py::test_combos[1uT]",
"cmixf/tests/test_cmixf.py::test_combos[1uV]",
"cmixf/tests/test_cmixf.py::test_combos[1uWb]",
"cmixf/tests/test_cmixf.py::test_combos[1uW]",
"cmixf/tests/test_cmixf.py::test_combos[1ubit]",
"cmixf/tests/test_cmixf.py::test_combos[1ucd]",
"cmixf/tests/test_cmixf.py::test_combos[1ueV]",
"cmixf/tests/test_cmixf.py::test_combos[1ug]",
"cmixf/tests/test_cmixf.py::test_combos[1ukat]",
"cmixf/tests/test_cmixf.py::test_combos[1ulm]",
"cmixf/tests/test_cmixf.py::test_combos[1ulx]",
"cmixf/tests/test_cmixf.py::test_combos[1umol]",
"cmixf/tests/test_cmixf.py::test_combos[1um]",
"cmixf/tests/test_cmixf.py::test_combos[1us]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5A]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Bq]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5C]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5F]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Gy]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Hz]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5H]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5J]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5K]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5N]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Ohm]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Pa]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Sv]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5S]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5T]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5V]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5Wb]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5W]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5bit]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5cd]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5eV]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5g]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5kat]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5lm]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5lx]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5mol]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5m]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb5s]",
"cmixf/tests/test_cmixf.py::test_combos[1yA]",
"cmixf/tests/test_cmixf.py::test_combos[1yBq]",
"cmixf/tests/test_cmixf.py::test_combos[1yC]",
"cmixf/tests/test_cmixf.py::test_combos[1yF]",
"cmixf/tests/test_cmixf.py::test_combos[1yGy]",
"cmixf/tests/test_cmixf.py::test_combos[1yHz]",
"cmixf/tests/test_cmixf.py::test_combos[1yH]",
"cmixf/tests/test_cmixf.py::test_combos[1yJ]",
"cmixf/tests/test_cmixf.py::test_combos[1yK]",
"cmixf/tests/test_cmixf.py::test_combos[1yN]",
"cmixf/tests/test_cmixf.py::test_combos[1yOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1y\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1yPa]",
"cmixf/tests/test_cmixf.py::test_combos[1ySv]",
"cmixf/tests/test_cmixf.py::test_combos[1yS]",
"cmixf/tests/test_cmixf.py::test_combos[1yT]",
"cmixf/tests/test_cmixf.py::test_combos[1yV]",
"cmixf/tests/test_cmixf.py::test_combos[1yWb]",
"cmixf/tests/test_cmixf.py::test_combos[1yW]",
"cmixf/tests/test_cmixf.py::test_combos[1ybit]",
"cmixf/tests/test_cmixf.py::test_combos[1ycd]",
"cmixf/tests/test_cmixf.py::test_combos[1yeV]",
"cmixf/tests/test_cmixf.py::test_combos[1yg]",
"cmixf/tests/test_cmixf.py::test_combos[1ykat]",
"cmixf/tests/test_cmixf.py::test_combos[1ylm]",
"cmixf/tests/test_cmixf.py::test_combos[1ylx]",
"cmixf/tests/test_cmixf.py::test_combos[1ymol]",
"cmixf/tests/test_cmixf.py::test_combos[1ym]",
"cmixf/tests/test_cmixf.py::test_combos[1ys]",
"cmixf/tests/test_cmixf.py::test_combos[1zA]",
"cmixf/tests/test_cmixf.py::test_combos[1zBq]",
"cmixf/tests/test_cmixf.py::test_combos[1zC]",
"cmixf/tests/test_cmixf.py::test_combos[1zF]",
"cmixf/tests/test_cmixf.py::test_combos[1zGy]",
"cmixf/tests/test_cmixf.py::test_combos[1zHz]",
"cmixf/tests/test_cmixf.py::test_combos[1zH]",
"cmixf/tests/test_cmixf.py::test_combos[1zJ]",
"cmixf/tests/test_cmixf.py::test_combos[1zK]",
"cmixf/tests/test_cmixf.py::test_combos[1zN]",
"cmixf/tests/test_cmixf.py::test_combos[1zOhm]",
"cmixf/tests/test_cmixf.py::test_combos[1z\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1zPa]",
"cmixf/tests/test_cmixf.py::test_combos[1zSv]",
"cmixf/tests/test_cmixf.py::test_combos[1zS]",
"cmixf/tests/test_cmixf.py::test_combos[1zT]",
"cmixf/tests/test_cmixf.py::test_combos[1zV]",
"cmixf/tests/test_cmixf.py::test_combos[1zWb]",
"cmixf/tests/test_cmixf.py::test_combos[1zW]",
"cmixf/tests/test_cmixf.py::test_combos[1zbit]",
"cmixf/tests/test_cmixf.py::test_combos[1zcd]",
"cmixf/tests/test_cmixf.py::test_combos[1zeV]",
"cmixf/tests/test_cmixf.py::test_combos[1zg]",
"cmixf/tests/test_cmixf.py::test_combos[1zkat]",
"cmixf/tests/test_cmixf.py::test_combos[1zlm]",
"cmixf/tests/test_cmixf.py::test_combos[1zlx]",
"cmixf/tests/test_cmixf.py::test_combos[1zmol]",
"cmixf/tests/test_cmixf.py::test_combos[1zm]",
"cmixf/tests/test_cmixf.py::test_combos[1zs]",
"cmixf/tests/test_cmixf.py::test_combos[1EiB]",
"cmixf/tests/test_cmixf.py::test_combos[1Eibit]",
"cmixf/tests/test_cmixf.py::test_combos[1GiB]",
"cmixf/tests/test_cmixf.py::test_combos[1Gibit]",
"cmixf/tests/test_cmixf.py::test_combos[1KiB]",
"cmixf/tests/test_cmixf.py::test_combos[1Kibit]",
"cmixf/tests/test_cmixf.py::test_combos[1MiB]",
"cmixf/tests/test_cmixf.py::test_combos[1Mibit]",
"cmixf/tests/test_cmixf.py::test_combos[1PiB]",
"cmixf/tests/test_cmixf.py::test_combos[1Pibit]",
"cmixf/tests/test_cmixf.py::test_combos[1TiB]",
"cmixf/tests/test_cmixf.py::test_combos[1Tibit]",
"cmixf/tests/test_cmixf.py::test_combos[1Bd]",
"cmixf/tests/test_cmixf.py::test_combos[1B]",
"cmixf/tests/test_cmixf.py::test_combos[1r]",
"cmixf/tests/test_cmixf.py::test_combos[1t]",
"cmixf/tests/test_cmixf.py::test_combos[1L]",
"cmixf/tests/test_cmixf.py::test_combos[1Np]",
"cmixf/tests/test_cmixf.py::test_combos[1oC]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb0C]",
"cmixf/tests/test_cmixf.py::test_combos[1o]",
"cmixf/tests/test_cmixf.py::test_combos[1\\xb0]",
"cmixf/tests/test_cmixf.py::test_combos[1rad]",
"cmixf/tests/test_cmixf.py::test_combos[1sr]",
"cmixf/tests/test_cmixf.py::test_combos[1A]",
"cmixf/tests/test_cmixf.py::test_combos[1Bq]",
"cmixf/tests/test_cmixf.py::test_combos[1C]",
"cmixf/tests/test_cmixf.py::test_combos[1F]",
"cmixf/tests/test_cmixf.py::test_combos[1Gy]",
"cmixf/tests/test_cmixf.py::test_combos[1Hz]",
"cmixf/tests/test_cmixf.py::test_combos[1H]",
"cmixf/tests/test_cmixf.py::test_combos[1J]",
"cmixf/tests/test_cmixf.py::test_combos[1K]",
"cmixf/tests/test_cmixf.py::test_combos[1N]",
"cmixf/tests/test_cmixf.py::test_combos[1Ohm]",
"cmixf/tests/test_cmixf.py::test_combos[1\\u2126]",
"cmixf/tests/test_cmixf.py::test_combos[1Pa]",
"cmixf/tests/test_cmixf.py::test_combos[1Sv]",
"cmixf/tests/test_cmixf.py::test_combos[1S]",
"cmixf/tests/test_cmixf.py::test_combos[1T]",
"cmixf/tests/test_cmixf.py::test_combos[1V]",
"cmixf/tests/test_cmixf.py::test_combos[1Wb]",
"cmixf/tests/test_cmixf.py::test_combos[1W]",
"cmixf/tests/test_cmixf.py::test_combos[1bit]",
"cmixf/tests/test_cmixf.py::test_combos[1cd]",
"cmixf/tests/test_cmixf.py::test_combos[1eV]",
"cmixf/tests/test_cmixf.py::test_combos[1g]",
"cmixf/tests/test_cmixf.py::test_combos[1kat]",
"cmixf/tests/test_cmixf.py::test_combos[1lm]",
"cmixf/tests/test_cmixf.py::test_combos[1lx]",
"cmixf/tests/test_cmixf.py::test_combos[1mol]",
"cmixf/tests/test_cmixf.py::test_combos[1m]",
"cmixf/tests/test_cmixf.py::test_combos[1s]",
"cmixf/tests/test_cmixf.py::test_combos[1dB]",
"cmixf/tests/test_cmixf.py::test_combos[1d]",
"cmixf/tests/test_cmixf.py::test_combos[1h]",
"cmixf/tests/test_cmixf.py::test_combos[1min]",
"cmixf/tests/test_cmixf.py::test_combos[1u]"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-05-25 20:48:05+00:00
|
mit
| 5,472 |
|
sepandhaghighi__pyrgg-74
|
diff --git a/AUTHORS.md b/AUTHORS.md
index 6cf988f..1c4ab2d 100644
--- a/AUTHORS.md
+++ b/AUTHORS.md
@@ -7,4 +7,4 @@
# Other Contributors #
----------
- [ivanovmg](https://github.com/ivanovmg)
-
+- Ahmad Salimi - Sharif University of Technology ([@ahmadsalimi](https://github.com/ahmadsalimi)) ([[email protected]](mailto:[email protected]))
diff --git a/CHANGELOG.md b/CHANGELOG.md
index d06a231..174d61d 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -5,6 +5,10 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/)
and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html).
## [Unreleased]
+### Changed
+- The `logger` function enhanced.
+- Time format in the `logger` changed to `%Y-%m-%d %H:%M:%S`
+
## [0.9] - 2020-10-07
### Added
- GEXF format
diff --git a/pyrgg/__main__.py b/pyrgg/__main__.py
index 60b34f1..329d6aa 100644
--- a/pyrgg/__main__.py
+++ b/pyrgg/__main__.py
@@ -35,6 +35,7 @@ def run():
input_dict = get_input()
first_time = time.perf_counter()
file_name = input_dict["file_name"]
+ weight = input_dict["weight"]
min_weight = input_dict["min_weight"]
max_weight = input_dict["max_weight"]
vertices_number = input_dict["vertices"]
@@ -68,9 +69,18 @@ def run():
print("Graph Generated in " + elapsed_time_format)
print("Where --> " + SOURCE_DIR)
logger(
+ file_name + ".gr",
vertices_number,
edge_number,
- file_name + ".gr",
+ max_edge,
+ min_edge,
+ direct,
+ sign,
+ multigraph,
+ self_loop,
+ weight,
+ max_weight,
+ min_weight,
elapsed_time_format)
diff --git a/pyrgg/functions.py b/pyrgg/functions.py
index 0ba22e8..d023182 100644
--- a/pyrgg/functions.py
+++ b/pyrgg/functions.py
@@ -120,28 +120,68 @@ def filesize(fileaddr): # pragma: no cover
print("Graph File Size : " + convert_bytes(file_size))
-def logger(vertices_number, edge_number, file_name, elapsed_time):
+def logger(
+ file_name,
+ vertices_number,
+ edge_number,
+ max_edge,
+ min_edge,
+ directed,
+ signed,
+ multigraph,
+ self_loop,
+ weighted,
+ max_weight,
+ min_weight,
+ elapsed_time):
"""
Save generated graphs log.
+ :param file_name: file name
+ :type file_name: str
:param vertices_number: number of vertices
:type vertices_number:int
:param edge_number: number of edges
:type edge_number: int
- :param file_name: file name
- :type file_name: str
+ :param max_edge: maximum number of edges
+ :type max_edge: int
+ :param min_edge: minimum number of edges
+ :type min_edge: int
+ :param directed: directed
+ :type directed: int
+ :param signed: weight sign flag
+ :type signed: int
+ :param multigraph: multigraph flag
+ :type multigraph: int
+ :param self_loop: self loop flag
+ :type self_loop: int
+ :param weighted: weighted flag
+ :type weighted: int
+ :param max_weight: maximum weight
+ :type max_weight: int
+ :param min_weight: minimum weight
+ :type min_weight: int
:param elapsed_time: elapsed time
:type elapsed_time : str
:return: None
"""
try:
with open("logfile.log", "a") as file:
- file.write(str(datetime.datetime.now()) + "\n")
- file.write("Filename : " + file_name + "\n")
- file.write("Vertices : " + str(vertices_number) + "\n")
- file.write("Edges : " + str(edge_number) + "\n")
- file.write("Elapsed Time : " + str(elapsed_time) + "\n")
- file.write("-------------------------------\n")
+ file.write(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + "\n" +
+ "Filename : " + file_name + "\n" +
+ "Vertices : " + str(vertices_number) + "\n" +
+ "Total Edges : " + str(edge_number) + "\n" +
+ "Max Edge : " + str(max_edge) + "\n" +
+ "Min Edge : " + str(min_edge) + "\n" +
+ "Directed : " + str(bool(directed)) + "\n" +
+ "Signed : " + str(bool(signed)) + "\n" +
+ "Multigraph : " + str(bool(multigraph)) + "\n" +
+ "Self Loop : " + str(bool(self_loop)) + "\n" +
+ "Weighted : " + str(bool(weighted)) + "\n" +
+ "Max Weight : " + str(max_weight) + "\n" +
+ "Min Weight : " + str(min_weight) + "\n" +
+ "Elapsed Time : " + elapsed_time + "\n" +
+ "-------------------------------\n")
except Exception:
print(PYRGG_LOGGER_ERROR_MESSAGE)
|
sepandhaghighi/pyrgg
|
35906852a56e2ff81e485b60cb731db85510dfbb
|
diff --git a/pyrgg/test.py b/pyrgg/test.py
index ef15bc1..7084bb3 100644
--- a/pyrgg/test.py
+++ b/pyrgg/test.py
@@ -25,7 +25,7 @@ False
True
>>> is_float(None)
False
->>> logger(2,2,2,2)
+>>> logger(2,2,2,2,2,2,2,2,2,2,2,2,2)
[Error] Logger Failed!
>>> result = input_filter({"file_name": "test","vertices": 5,"max_weight": 1000,"min_weight":455,"min_edge": -45,"max_edge": -11,"sign": 5,"output_format": 19, "direct": 2,"self_loop": 1,"multigraph":1})
>>> result == {'output_format': 1, 'min_weight': 455, 'min_edge': 5, 'max_edge': 5, 'file_name': 'test', 'vertices': 5, 'max_weight': 1000, 'sign': 2, "direct": 2,"self_loop": 1,"multigraph":1}
@@ -39,7 +39,22 @@ True
>>> result = input_filter({"file_name": "test2","vertices": 23,"max_weight": 2,"min_weight": 80,"min_edge": 23,"max_edge": 1,"sign": 1,"output_format": 1, "direct": 2,"self_loop": 10,"multigraph":10})
>>> result == {'min_weight': 2, 'vertices': 23, 'file_name': 'test2', 'max_edge': 23, 'min_edge': 1, 'max_weight': 80, 'output_format': 1, 'sign': 1, "direct": 2,"self_loop": 1,"multigraph":1}
True
->>> logger(100,50,'test','2min')
+>>> logger('test',100,50,1000,10,1,0,0,1,1,20,1,'2min')
+>>> file=open('logfile.log','r')
+>>> print("\n".join(file.read().splitlines()[1:-1]))
+Filename : test
+Vertices : 100
+Total Edges : 50
+Max Edge : 1000
+Min Edge : 10
+Directed : True
+Signed : False
+Multigraph : False
+Self Loop : True
+Weighted : True
+Max Weight : 20
+Min Weight : 1
+Elapsed Time : 2min
>>> convert_bytes(200)
'200.0 bytes'
>>> convert_bytes(6000)
diff --git a/test/functions_test.py b/test/functions_test.py
index 446d310..a8df990 100644
--- a/test/functions_test.py
+++ b/test/functions_test.py
@@ -2,7 +2,7 @@
"""
>>> from pyrgg.functions import *
>>> import random
->>> logger(2,2,2,2)
+>>> logger(2,2,2,2,2,2,2,2,2,2,2,2,2)
[Error] Logger Failed!
>>> description_print()
Webpage : https://www.pyrgg.ir
@@ -37,7 +37,22 @@ True
>>> result = input_filter({"file_name": "test2","vertices": 23,"max_weight": 2,"min_weight": 80,"min_edge": 23,"max_edge": 1,"sign": 1,"output_format": 1, "direct": 2,"self_loop": 10,"multigraph":10})
>>> result == {'min_weight': 2, 'vertices': 23, 'file_name': 'test2', 'max_edge': 23, 'min_edge': 1, 'max_weight': 80, 'output_format': 1, 'sign': 1, "direct": 2,"self_loop": 1,"multigraph":1}
True
->>> logger(100,50,'test','2min')
+>>> logger('test',100,50,1000,10,1,0,0,1,1,20,1,'2min')
+>>> file=open('logfile.log','r')
+>>> print("\\n".join(file.read().splitlines()[1:-1]))
+Filename : test
+Vertices : 100
+Total Edges : 50
+Max Edge : 1000
+Min Edge : 10
+Directed : True
+Signed : False
+Multigraph : False
+Self Loop : True
+Weighted : True
+Max Weight : 20
+Min Weight : 1
+Elapsed Time : 2min
>>> convert_bytes(200)
'200.0 bytes'
>>> convert_bytes(6000)
|
Logger enhancement
#### Description
Optimize logger function
#### Expected Behavior
```
2020-09-09 16:58:02
Filename : test2.gr
Vertices : 2
Total Edges : 4
Max Edge: x
Min Edge: x
Directed: True/False
Signed: True/False
Multigraph: True/False
Self Loop: True/False
Weighted: True/False
Max Weight: x
Min Weight: x
Elapsed Time : 00 days, 00 hour, 00 minutes, 20 seconds
```
#### Actual Behavior
```
2020-09-09 16:58:02.103878
Filename : test2.gr
Vertices : 2
Edges : 4
Elapsed Time : 00 days, 00 hour, 00 minutes, 20 seconds
```
#### Operating System
Windows 10
#### Python Version
3.5.2
#### Pyrgg Version
0.8
|
0.0
|
35906852a56e2ff81e485b60cb731db85510dfbb
|
[
"test/functions_test.py::functions_test"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-10-11 10:40:39+00:00
|
mit
| 5,473 |
|
seperman__deepdiff-239
|
diff --git a/deepdiff/search.py b/deepdiff/search.py
index 4226a6a..5233b10 100644
--- a/deepdiff/search.py
+++ b/deepdiff/search.py
@@ -40,6 +40,8 @@ class DeepSearch(dict):
If True, the value of the object or its children have to exactly match the item.
If False, the value of the item can be a part of the value of the object or its children
+ use_regexp: Boolean, default = False
+
**Returns**
A DeepSearch object that has the matched paths and matched values.
@@ -83,6 +85,7 @@ class DeepSearch(dict):
verbose_level=1,
case_sensitive=False,
match_string=False,
+ use_regexp=False,
**kwargs):
if kwargs:
raise ValueError((
@@ -104,6 +107,9 @@ class DeepSearch(dict):
matched_paths=self.__set_or_dict(),
matched_values=self.__set_or_dict(),
unprocessed=[])
+ self.use_regexp = use_regexp
+ if self.use_regexp:
+ self.search_regexp = re.compile(item)
# Cases where user wants to match exact string item
self.match_string = match_string
@@ -135,7 +141,7 @@ class DeepSearch(dict):
if obj == item:
found = True
# We report the match but also continue inside the match to see if there are
- # furthur matches inside the `looped` object.
+ # further matches inside the `looped` object.
self.__report(report_key='matched_values', key=parent, value=obj)
try:
@@ -205,7 +211,8 @@ class DeepSearch(dict):
str_item = str(item)
if (self.match_string and str_item == new_parent_cased) or\
- (not self.match_string and str_item in new_parent_cased):
+ (not self.match_string and str_item in new_parent_cased) or\
+ (self.use_regexp and self.search_regexp.search(new_parent_cased)):
self.__report(
report_key='matched_paths',
key=new_parent,
@@ -233,7 +240,9 @@ class DeepSearch(dict):
else:
thing_cased = thing.lower()
- if thing_cased == item:
+ if thing_cased == item or \
+ (isinstance(thing_cased, str) and isinstance(item, str) and \
+ self.use_regexp and self.search_regexp.search(thing_cased)):
self.__report(
report_key='matched_values', key=new_parent, value=thing)
else:
@@ -248,7 +257,9 @@ class DeepSearch(dict):
"""Compare strings"""
obj_text = obj if self.case_sensitive else obj.lower()
- if (self.match_string and item == obj_text) or (not self.match_string and item in obj_text):
+ if (self.match_string and item == obj_text) or \
+ (not self.match_string and item in obj_text) or \
+ (self.use_regexp and self.search_regexp.search(obj_text)):
self.__report(report_key='matched_values', key=parent, value=obj)
def __search_numbers(self, obj, item, parent):
|
seperman/deepdiff
|
f1429a03a040f01f7807b074172fdfea0f805a4b
|
diff --git a/tests/test_search.py b/tests/test_search.py
index 247e648..51150bb 100644
--- a/tests/test_search.py
+++ b/tests/test_search.py
@@ -336,6 +336,89 @@ class TestDeepSearch:
result = {'matched_values': {'root.a'}}
assert DeepSearch(obj, item, verbose_level=1) == result
+ def test_dont_use_regex_by_default(self):
+ obj = "long string somewhere"
+ item = "some.*"
+ result = {}
+ assert DeepSearch(obj, item, verbose_level=1) == result
+
+ def test_regex_in_string(self):
+ obj = "long string somewhere"
+ item = "some.*"
+ result = {"matched_values": {"root"}}
+ assert DeepSearch(obj, item, verbose_level=1, use_regexp=True) == result
+
+ def test_regex_in_string_in_tuple(self):
+ obj = ("long", "string", 0, "somewhere")
+ item = "some.*"
+ result = {"matched_values": {"root[3]"}}
+ assert DeepSearch(obj, item, verbose_level=1, use_regexp=True) == result
+
+ def test_regex_in_string_in_list(self):
+ obj = ["long", "string", 0, "somewhere"]
+ item = "some.*"
+ result = {"matched_values": {"root[3]"}}
+ assert DeepSearch(obj, item, verbose_level=1, use_regexp=True) == result
+
+ def test_regex_in_string_in_dictionary(self):
+ obj = {"long": "somewhere", "string": 2, 0: 0, "somewhere": "around"}
+ result = {
+ "matched_paths": {"root['somewhere']"},
+ "matched_values": {"root['long']"},
+ }
+ item = "some.*"
+ ds = DeepSearch(obj, item, verbose_level=1, use_regexp=True)
+ assert ds == result
+
+ def test_regex_in_string_in_dictionary_in_list_verbose(self):
+ obj = [
+ "something somewhere",
+ {"long": "somewhere", "string": 2, 0: 0, "somewhere": "around"},
+ ]
+ result = {
+ "matched_paths": {"root[1]['somewhere']": "around"},
+ "matched_values": {
+ "root[1]['long']": "somewhere",
+ "root[0]": "something somewhere",
+ },
+ }
+ item = "some.*"
+ ds = DeepSearch(obj, item, verbose_level=2, use_regexp=True)
+ assert ds == result
+
+ def test_regex_in_custom_object(self):
+ obj = CustomClass("here, something", "somewhere")
+ result = {"matched_values": {"root.b"}}
+ item = "somew.*"
+ ds = DeepSearch(obj, item, verbose_level=1, use_regexp=True)
+ assert ds == result
+
+ def test_regex_in_custom_object_in_dictionary_verbose(self):
+ obj = {1: CustomClass("here, something", "somewhere out there")}
+ result = {"matched_values": {"root[1].b": "somewhere out there"}}
+ item = "somew.*"
+ ds = DeepSearch(obj, item, verbose_level=2, use_regexp=True)
+ assert ds == result
+
+ def test_regex_in_named_tuples_verbose(self):
+ from collections import namedtuple
+
+ Point = namedtuple("Point", ["x", "somewhere_good"])
+ obj = Point(x="my keys are somewhere", somewhere_good=22)
+ item = "some.*"
+ ds = DeepSearch(obj, item, verbose_level=2, use_regexp=True)
+ result = {
+ "matched_values": {"root.x": "my keys are somewhere"},
+ "matched_paths": {"root.somewhere_good": 22},
+ }
+ assert ds == result
+
+ def test_regex_in_string_in_set_verbose(self):
+ obj = {"long", "string", 0, "somewhere"}
+ # result = {"matched_values": {'root[3]': "somewhere"}}
+ item = "some.*"
+ ds = DeepSearch(obj, item, verbose_level=2, use_regexp=True)
+ assert list(ds["matched_values"].values())[0] == "somewhere"
class TestGrep:
|
Support searching with regular expressions
I'd like to use regular expressions to find elements of a dictionary with `grep`.
```python
(Pdb) entity_attributes
{'alone': {'id_': 'alone', 'name': 'Timothy', 'last_name': 'Jackson', 'country': 'Korea', 'rating': 5491}, 'film': {'id_': 'film', 'name': 'David', 'last_name': 'Howell', 'country': 'Moldova', 'rating': 9731}, 'thought': {'id_': 'thought'
, 'name': 'Jason', 'last_name': 'Roberts', 'country': 'Western Sahara', 'rating': 5484}}
(Pdb) entity_attributes | grep('Da')
{'matched_values': ["root['film']['name']"]}
(Pdb) entity_attributes | grep('Da.*')
{}
```
If you give me some guidance on how to do it, I can make a PR
|
0.0
|
f1429a03a040f01f7807b074172fdfea0f805a4b
|
[
"tests/test_search.py::TestDeepSearch::test_regex_in_string",
"tests/test_search.py::TestDeepSearch::test_regex_in_string_in_tuple",
"tests/test_search.py::TestDeepSearch::test_regex_in_string_in_list",
"tests/test_search.py::TestDeepSearch::test_regex_in_string_in_dictionary",
"tests/test_search.py::TestDeepSearch::test_regex_in_string_in_dictionary_in_list_verbose",
"tests/test_search.py::TestDeepSearch::test_regex_in_custom_object",
"tests/test_search.py::TestDeepSearch::test_regex_in_custom_object_in_dictionary_verbose",
"tests/test_search.py::TestDeepSearch::test_regex_in_named_tuples_verbose",
"tests/test_search.py::TestDeepSearch::test_regex_in_string_in_set_verbose"
] |
[
"tests/test_search.py::TestDeepSearch::test_number_in_list",
"tests/test_search.py::TestDeepSearch::test_number_in_list2",
"tests/test_search.py::TestDeepSearch::test_number_in_list3",
"tests/test_search.py::TestDeepSearch::test_string_in_root",
"tests/test_search.py::TestDeepSearch::test_string_in_root_verbose",
"tests/test_search.py::TestDeepSearch::test_string_in_tuple",
"tests/test_search.py::TestDeepSearch::test_string_in_list",
"tests/test_search.py::TestDeepSearch::test_string_in_list_verbose",
"tests/test_search.py::TestDeepSearch::test_string_in_list_verbose2",
"tests/test_search.py::TestDeepSearch::test_string_in_list_verbose3",
"tests/test_search.py::TestDeepSearch::test_int_in_dictionary",
"tests/test_search.py::TestDeepSearch::test_string_in_dictionary",
"tests/test_search.py::TestDeepSearch::test_string_in_dictionary_case_insensitive",
"tests/test_search.py::TestDeepSearch::test_string_in_dictionary_key_case_insensitive_partial",
"tests/test_search.py::TestDeepSearch::test_string_in_dictionary_verbose",
"tests/test_search.py::TestDeepSearch::test_string_in_dictionary_in_list_verbose",
"tests/test_search.py::TestDeepSearch::test_custom_object",
"tests/test_search.py::TestDeepSearch::test_custom_object_verbose",
"tests/test_search.py::TestDeepSearch::test_custom_object_in_dictionary_verbose",
"tests/test_search.py::TestDeepSearch::test_named_tuples_verbose",
"tests/test_search.py::TestDeepSearch::test_string_in_set_verbose",
"tests/test_search.py::TestDeepSearch::test_loop",
"tests/test_search.py::TestDeepSearch::test_loop_in_lists",
"tests/test_search.py::TestDeepSearch::test_skip_path1",
"tests/test_search.py::TestDeepSearch::test_custom_object_skip_path",
"tests/test_search.py::TestDeepSearch::test_skip_list_path",
"tests/test_search.py::TestDeepSearch::test_skip_dictionary_path",
"tests/test_search.py::TestDeepSearch::test_skip_type_str",
"tests/test_search.py::TestDeepSearch::test_skip_regexp",
"tests/test_search.py::TestDeepSearch::test_skip_regexp2",
"tests/test_search.py::TestDeepSearch::test_unknown_parameters",
"tests/test_search.py::TestDeepSearch::test_bad_attribute",
"tests/test_search.py::TestDeepSearch::test_case_insensitive_of_str_in_list",
"tests/test_search.py::TestDeepSearch::test_case_sensitive_of_str_in_list",
"tests/test_search.py::TestDeepSearch::test_case_sensitive_of_str_in_one_liner",
"tests/test_search.py::TestDeepSearch::test_case_insensitive_of_str_in_one_liner",
"tests/test_search.py::TestDeepSearch::test_none",
"tests/test_search.py::TestDeepSearch::test_complex_obj",
"tests/test_search.py::TestDeepSearch::test_keep_searching_after_obj_match",
"tests/test_search.py::TestDeepSearch::test_search_inherited_attributes",
"tests/test_search.py::TestDeepSearch::test_dont_use_regex_by_default",
"tests/test_search.py::TestGrep::test_grep_dict",
"tests/test_search.py::TestGrep::test_grep_dict_in_dict",
"tests/test_search.py::TestGrep::test_grep_with_non_utf8_chars"
] |
{
"failed_lite_validators": [
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-04-06 13:49:16+00:00
|
mit
| 5,474 |
|
seperman__deepdiff-76
|
diff --git a/AUTHORS b/AUTHORS
index 163de47..6250384 100644
--- a/AUTHORS
+++ b/AUTHORS
@@ -1,13 +1,15 @@
Authors:
- * Seperman
- * Victor Hahn Castell @ Flexoptix
+- Seperman
+- Victor Hahn Castell @ Flexoptix
Also thanks to:
- * nfvs for Travis-CI setup script.
- * brbsix for initial Py3 porting.
- * WangFenjin for unicode support.
- * timoilya for comparing list of sets when ignoring order.
- * Bernhard10 for significant digits comparison.
- * b-jazz for PEP257 cleanup, Standardize on full names, fixing line endings.
- * finnhughes for fixing __slots__
- * moloney for Unicode vs. Bytes default
+- nfvs for Travis-CI setup script.
+- brbsix for initial Py3 porting.
+- WangFenjin for unicode support.
+- timoilya for comparing list of sets when ignoring order.
+- Bernhard10 for significant digits comparison.
+- b-jazz for PEP257 cleanup, Standardize on full names, fixing line endings.
+- finnhughes for fixing __slots__
+- moloney for Unicode vs. Bytes default
+- serv-inc for adding help(deepdiff)
+- movermeyer for updating docs
diff --git a/README.md b/README.md
index 8f5b62f..104b040 100644
--- a/README.md
+++ b/README.md
@@ -165,7 +165,7 @@ Let's say you have a huge nested object and want to see if any item with the wor
```py
from deepdiff import DeepSearch
obj = {"long": "somewhere", "string": 2, 0: 0, "somewhere": "around"}
-ds = DeepSearch(obj, item, verbose_level=2)
+ds = DeepSearch(obj, "somewhere", verbose_level=2)
print(ds)
```
@@ -187,7 +187,7 @@ Just grep through your objects as you would in shell!
```py
from deepdiff import grep
obj = {"long": "somewhere", "string": 2, 0: 0, "somewhere": "around"}
-ds = obj | grep(item)
+ds = obj | grep("somewhere")
print(ds)
```
@@ -788,12 +788,13 @@ I was honored to give a talk about how DeepDiff does what it does at Pycon 2016.
And here is more info: <http://zepworks.com/blog/diff-it-to-digg-it/>
-##Documentation
+## Documentation
<http://deepdiff.readthedocs.io/en/latest/>
-##Changelog
+## Change log
+- v3-2-2: Adding help(deepdiff)
- v3-2-1: Fixing hash of None
- v3-2-0: Adding grep for search: object | grep(item)
- v3-1-3: Unicode vs. Bytes default fix
@@ -845,3 +846,5 @@ Also thanks to:
- b-jazz for PEP257 cleanup, Standardize on full names, fixing line endings.
- finnhughes for fixing __slots__
- moloney for Unicode vs. Bytes default
+- serv-inc for adding help(deepdiff)
+- movermeyer for updating docs
diff --git a/README.txt b/README.txt
index d33f293..a5c2329 100644
--- a/README.txt
+++ b/README.txt
@@ -240,6 +240,7 @@ http://zepworks.com/blog/diff-it-to-digg-it/
**Changelog**
+- v3-2-2: Adding help(deepdiff)
- v3-2-1: Fixing hash of None
- v3-2-0: Adding grep for search: object | grep(item)
- v3-1-3: Unicode vs. Bytes default fix
@@ -291,3 +292,5 @@ Also thanks to:
- b-jazz for PEP257 cleanup, Standardize on full names, fixing line endings.
- finnhughes for fixing __slots__
- moloney for Unicode vs. Bytes default
+- serv-inc for adding help(deepdiff)
+- movermeyer for updating docs
diff --git a/deepdiff/__init__.py b/deepdiff/__init__.py
index 6e608d0..95ad688 100644
--- a/deepdiff/__init__.py
+++ b/deepdiff/__init__.py
@@ -1,3 +1,4 @@
+"""This module offers the DeepDiff, DeepSearch, grep and DeepHash classes."""
import logging
if __name__ == '__main__':
diff --git a/deepdiff/search.py b/deepdiff/search.py
index 26ba882..8c826d8 100644
--- a/deepdiff/search.py
+++ b/deepdiff/search.py
@@ -127,6 +127,11 @@ class DeepSearch(dict):
parents_ids=frozenset({}),
is_namedtuple=False):
"""Search objects"""
+ found = False
+ if obj == item:
+ found = True
+ self.__report(report_key='matched_values', key=parent, value=obj)
+
try:
if is_namedtuple:
obj = obj._asdict()
@@ -136,7 +141,9 @@ class DeepSearch(dict):
try:
obj = {i: getattr(obj, i) for i in obj.__slots__}
except AttributeError:
- self['unprocessed'].append("%s" % parent)
+ if not found:
+ self['unprocessed'].append("%s" % parent)
+
return
self.__search_dict(
diff --git a/docs/index.rst b/docs/index.rst
index 269932a..43b1a1d 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -346,6 +346,7 @@ Indices and tables
Changelog
=========
+- v3-2-2: Adding help(deepdiff)
- v3-2-1: Fixing hash of None
- v3-2-0: Adding grep for search: object | grep(item)
- v3-1-3: Unicode vs. Bytes default fix
|
seperman/deepdiff
|
d4918e17c555df1b46827f865c5c105097199f80
|
diff --git a/tests/test_search.py b/tests/test_search.py
index 49929c6..3f56ceb 100644
--- a/tests/test_search.py
+++ b/tests/test_search.py
@@ -15,6 +15,7 @@ To run a specific test, run this from the root of repo:
"""
import unittest
from deepdiff import DeepSearch, grep
+from datetime import datetime
import logging
logging.disable(logging.CRITICAL)
@@ -286,6 +287,30 @@ class DeepSearchTestCase(unittest.TestCase):
result = {'matched_values': {'root'}}
self.assertEqual(DeepSearch(obj, item, verbose_level=1, case_sensitive=False), result)
+ def test_none(self):
+ obj = item = None
+ result = {'matched_values': {'root'}}
+ self.assertEqual(DeepSearch(obj, item, verbose_level=1), result)
+
+ def test_complex_obj(self):
+ obj = datetime(2017, 5, 4, 1, 1, 1)
+ item = datetime(2017, 5, 4, 1, 1, 1)
+ result = {'matched_values': {'root'}}
+ self.assertEqual(DeepSearch(obj, item, verbose_level=1), result)
+
+ def test_keep_searching_after_obj_match(self):
+ class AlwaysEqual:
+ def __init__(self, recurse=True):
+ if recurse:
+ self.some_attr = AlwaysEqual(recurse=False)
+ def __eq__(self, other):
+ return True
+
+ obj = AlwaysEqual()
+ item = AlwaysEqual()
+ result = {'matched_values': {'root', 'root.some_attr'}}
+ self.assertEqual(DeepSearch(obj, item, verbose_level=1), result)
+
class GrepTestCase(unittest.TestCase):
|
Feature: Search for types/objects
Currently when encountering an object, `DeepSearch` examines that object's `__dict__` without testing whether the object is what's being searched for. By example:
```
>>> from deepdiff import DeepSearch
>>> from uuid import uuid4()
>>> foo = uuid4()
>>> DeepSearch({1: foo}, foo)
{}
```
This would also allow global singletons like `None` and functions to be searched for.
This seems like it'd be a fairly small change, just an `if item == obj` check at the top of `DeepSearch.__search_obj`. If you think this a good idea, I'm happy to make a PR.
|
0.0
|
d4918e17c555df1b46827f865c5c105097199f80
|
[
"tests/test_search.py::DeepSearchTestCase::test_keep_searching_after_obj_match",
"tests/test_search.py::DeepSearchTestCase::test_none"
] |
[
"tests/test_search.py::DeepSearchTestCase::test_bad_attribute",
"tests/test_search.py::DeepSearchTestCase::test_case_insensitive_of_str_in_list",
"tests/test_search.py::DeepSearchTestCase::test_case_insensitive_of_str_in_one_liner",
"tests/test_search.py::DeepSearchTestCase::test_case_sensitive_of_str_in_list",
"tests/test_search.py::DeepSearchTestCase::test_case_sensitive_of_str_in_one_liner",
"tests/test_search.py::DeepSearchTestCase::test_complex_obj",
"tests/test_search.py::DeepSearchTestCase::test_custom_object",
"tests/test_search.py::DeepSearchTestCase::test_custom_object_in_dictionary_verbose",
"tests/test_search.py::DeepSearchTestCase::test_custom_object_skip_path",
"tests/test_search.py::DeepSearchTestCase::test_custom_object_verbose",
"tests/test_search.py::DeepSearchTestCase::test_int_in_dictionary",
"tests/test_search.py::DeepSearchTestCase::test_loop",
"tests/test_search.py::DeepSearchTestCase::test_loop_in_lists",
"tests/test_search.py::DeepSearchTestCase::test_named_tuples_verbose",
"tests/test_search.py::DeepSearchTestCase::test_number_in_list",
"tests/test_search.py::DeepSearchTestCase::test_skip_dictionary_path",
"tests/test_search.py::DeepSearchTestCase::test_skip_list_path",
"tests/test_search.py::DeepSearchTestCase::test_skip_path1",
"tests/test_search.py::DeepSearchTestCase::test_skip_type_str",
"tests/test_search.py::DeepSearchTestCase::test_string_in_dictionary",
"tests/test_search.py::DeepSearchTestCase::test_string_in_dictionary_case_insensitive",
"tests/test_search.py::DeepSearchTestCase::test_string_in_dictionary_in_list_verbose",
"tests/test_search.py::DeepSearchTestCase::test_string_in_dictionary_key_case_insensitive_partial",
"tests/test_search.py::DeepSearchTestCase::test_string_in_dictionary_verbose",
"tests/test_search.py::DeepSearchTestCase::test_string_in_list",
"tests/test_search.py::DeepSearchTestCase::test_string_in_list_verbose",
"tests/test_search.py::DeepSearchTestCase::test_string_in_list_verbose2",
"tests/test_search.py::DeepSearchTestCase::test_string_in_list_verbose3",
"tests/test_search.py::DeepSearchTestCase::test_string_in_root",
"tests/test_search.py::DeepSearchTestCase::test_string_in_root_verbose",
"tests/test_search.py::DeepSearchTestCase::test_string_in_set_verbose",
"tests/test_search.py::DeepSearchTestCase::test_string_in_tuple",
"tests/test_search.py::DeepSearchTestCase::test_unknown_parameters",
"tests/test_search.py::GrepTestCase::test_grep_dict"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2017-06-19 19:34:25+00:00
|
mit
| 5,475 |
|
serge-sans-paille__beniget-50
|
diff --git a/beniget/beniget.py b/beniget/beniget.py
index 6b2cc20..dd77efc 100644
--- a/beniget/beniget.py
+++ b/beniget/beniget.py
@@ -173,7 +173,6 @@ class CollectLocals(ast.NodeVisitor):
def visit_FunctionDef(self, node):
self.Locals.add(node.name)
- # no recursion
visit_AsyncFunctionDef = visit_FunctionDef
@@ -208,6 +207,11 @@ class CollectLocals(ast.NodeVisitor):
def collect_locals(node):
+ '''
+ Compute the set of identifiers local to a given node.
+
+ This is meant to emulate a call to locals()
+ '''
visitor = CollectLocals()
visitor.generic_visit(node)
return visitor.Locals
@@ -271,11 +275,12 @@ class DefUseChains(ast.NodeVisitor):
self._breaks = []
self._continues = []
- # dead code levels
- self.deadcode = 0
-
- # helpers
+ # dead code levels, it's non null for code that cannot be executed
+ self._deadcode = 0
+ #
+ ## helpers
+ #
def dump_definitions(self, node, ignore_builtins=True):
if isinstance(node, ast.Module) and not ignore_builtins:
builtins = {d for d in self._builtins.values()}
@@ -305,12 +310,35 @@ class DefUseChains(ast.NodeVisitor):
location = self.location(node)
print("W: unbound identifier '{}'{}".format(name, location))
- def maybe_unbound_identifier(self, name, node):
- location = self.location(node)
- print("W: identifier '{}' may be unbound at runtime{}".format(name, location))
+ def invalid_name_lookup(self, name, scope, precomputed_locals, local_defs):
+ # We may hit the situation where we refer to a local variable which is
+ # not bound yet. This is a runtime error in Python, so we try to detec
+ # it statically.
+ # not a local variable => fine
+ if name not in precomputed_locals:
+ return
+
+ # It's meant to be a local, but can we resolve it by a local lookup?
+ islocal = any((name in defs or '*' in defs) for defs in local_defs)
+
+ # At class scope, it's ok to refer to a global even if we also have a
+ # local definition for that variable. Stated other wise
+ #
+ # >>> a = 1
+ # >>> def foo(): a = a
+ # >>> foo() # fails, a is a local referenced before being assigned
+ # >>> class bar: a = a
+ # >>> bar() # ok, and `bar.a is a`
+ if isinstance(scope, ast.ClassDef):
+ top_level_definitions = self._definitions[0:-self._scope_depths[0]]
+ isglobal = any((name in top_lvl_def or '*' in top_lvl_def)
+ for top_lvl_def in top_level_definitions)
+ return not islocal and not isglobal
+ else:
+ return not islocal
- def defs(self, node):
+ def defs(self, node, quiet=False):
'''
Performs an actual lookup of node's id in current context, returning
the list of def linked to that use.
@@ -320,7 +348,7 @@ class DefUseChains(ast.NodeVisitor):
# If the `global` keyword has been used, honor it
if any(name in _globals for _globals in self._globals):
- looked_up_definitions = self._definitions[0:1]
+ looked_up_definitions = self._definitions[0:-self._scope_depths[0]]
else:
# List of definitions to check. This includes all non-class
# definitions *and* the last definition. Class definitions are not
@@ -329,25 +357,34 @@ class DefUseChains(ast.NodeVisitor):
scopes_iter = iter(reversed(self._scopes))
depths_iter = iter(reversed(self._scope_depths))
+ precomputed_locals_iter = iter(reversed(self._precomputed_locals))
# Keep the last scope because we could be in class scope, in which
# case we don't need fully qualified access.
lvl = depth = next(depths_iter)
- looked_up_definitions.extend(reversed(self._definitions[depth:]))
- _ = next(scopes_iter)
-
- # Iterate over scopes, filtering out class scopes.
- for scope, depth in zip(scopes_iter, depths_iter):
- if not isinstance(scope, ast.ClassDef):
- looked_up_definitions.extend(
- reversed(self._definitions[lvl + depth: lvl]))
- lvl += depth
-
- for d in looked_up_definitions:
- if name in d:
- return d[name] if not stars else stars + list(d[name])
- if "*" in d:
- stars.extend(d["*"])
+ precomputed_locals = next(precomputed_locals_iter)
+ base_scope = next(scopes_iter)
+ defs = self._definitions[depth:]
+ if not self.invalid_name_lookup(name, base_scope, precomputed_locals, defs):
+ looked_up_definitions.extend(reversed(defs))
+
+ # Iterate over scopes, filtering out class scopes.
+ for scope, depth, precomputed_locals in zip(scopes_iter,
+ depths_iter,
+ precomputed_locals_iter):
+ if not isinstance(scope, ast.ClassDef):
+ defs = self._definitions[lvl + depth: lvl]
+ if self.invalid_name_lookup(name, base_scope, precomputed_locals, defs):
+ looked_up_definitions.clear()
+ break
+ looked_up_definitions.extend(reversed(defs))
+ lvl += depth
+
+ for defs in looked_up_definitions:
+ if name in defs:
+ return defs[name] if not stars else stars + list(defs[name])
+ if "*" in defs:
+ stars.extend(defs["*"])
d = self.chains.setdefault(node, Def(node))
@@ -357,7 +394,7 @@ class DefUseChains(ast.NodeVisitor):
if stars:
return stars + [d]
else:
- if not self._undefs:
+ if not self._undefs and not quiet:
self.unbound_identifier(name, node)
return [d]
@@ -367,10 +404,10 @@ class DefUseChains(ast.NodeVisitor):
if isinstance(stmt, (ast.Break, ast.Continue, ast.Raise)):
if not deadcode:
deadcode = True
- self.deadcode += 1
+ self._deadcode += 1
self.visit(stmt)
if deadcode:
- self.deadcode -= 1
+ self._deadcode -= 1
def process_undefs(self):
for undef_name, _undefs in self._undefs[-1].items():
@@ -385,6 +422,7 @@ class DefUseChains(ast.NodeVisitor):
self.unbound_identifier(undef_name, undef.node)
self._undefs.pop()
+
@contextmanager
def ScopeContext(self, node):
self._scopes.append(node)
@@ -415,14 +453,16 @@ class DefUseChains(ast.NodeVisitor):
self._definitions.pop()
@contextmanager
- def SwitchScopeContext(self, defs, scopes, scope_depths):
+ def SwitchScopeContext(self, defs, scopes, scope_depths, precomputed_locals):
scope_depths, self._scope_depths = self._scope_depths, scope_depths
scopes, self._scopes = self._scopes, scopes
defs, self._definitions = self._definitions, defs
+ precomputed_locals, self._precomputed_locals = self._precomputed_locals, precomputed_locals
yield
self._definitions = defs
self._scopes = scopes
self._scope_depths = scope_depths
+ self._precomputed_locals = precomputed_locals
# stmt
@@ -437,10 +477,11 @@ class DefUseChains(ast.NodeVisitor):
self.process_body(node.body)
# handle function bodies
- for fnode, defs, scopes, scope_depths in self._defered:
+ for fnode, defs, scopes, scope_depths, precomputed_locals in self._defered:
visitor = getattr(self,
"visit_{}".format(type(fnode).__name__))
- with self.SwitchScopeContext(defs, scopes, scope_depths):
+ with self.SwitchScopeContext(defs, scopes, scope_depths,
+ precomputed_locals):
visitor(fnode, step=DefinitionStep)
# various sanity checks
@@ -461,9 +502,10 @@ class DefUseChains(ast.NodeVisitor):
assert not self._definitions
assert not self._scopes
assert not self._scope_depths
+ assert not self._precomputed_locals
def set_definition(self, name, dnode_or_dnodes):
- if self.deadcode:
+ if self._deadcode:
return
if isinstance(dnode_or_dnodes, Def):
self._definitions[-1][name] = ordered_set((dnode_or_dnodes,))
@@ -478,19 +520,19 @@ class DefUseChains(ast.NodeVisitor):
definition[name].update(dnode_or_dnodes)
def extend_definition(self, name, dnode_or_dnodes):
- if self.deadcode:
+ if self._deadcode:
return
DefUseChains.add_to_definition(self._definitions[-1], name,
dnode_or_dnodes)
def extend_global(self, name, dnode_or_dnodes):
- if self.deadcode:
+ if self._deadcode:
return
DefUseChains.add_to_definition(self._definitions[0], name,
dnode_or_dnodes)
def set_or_extend_global(self, name, dnode):
- if self.deadcode:
+ if self._deadcode:
return
if name not in self._definitions[0]:
self.locals[self.module].append(dnode)
@@ -537,7 +579,8 @@ class DefUseChains(ast.NodeVisitor):
self._defered.append((node,
list(self._definitions),
list(self._scopes),
- list(self._scope_depths)))
+ list(self._scope_depths),
+ list(self._precomputed_locals)))
elif step is DefinitionStep:
with self.ScopeContext(node):
for arg in node.args.args:
@@ -617,7 +660,8 @@ class DefUseChains(ast.NodeVisitor):
if any(node.target.id in _globals for _globals in self._globals):
self.extend_global(node.target.id, dtarget)
else:
- loaded_from = [d.name() for d in self.defs(node.target)]
+ loaded_from = [d.name() for d in self.defs(node.target,
+ quiet=True)]
self.set_definition(node.target.id, dtarget)
# If we augassign from a value that comes from '*', let's use
# this node as the definition point.
@@ -996,25 +1040,15 @@ class DefUseChains(ast.NodeVisitor):
self.visit(node.annotation)
elif isinstance(node.ctx, (ast.Load, ast.Del)):
- # We hit the situation where we refer to a local variable that's not
- # bound yet. This is a runtime error in Python, so we issue a warning.
- # Note that because we may be in a condition, it's just a *may* and it
- # *may* be fine to ignore this warning.
- current_locals = self._precomputed_locals[-1]
- if node.id in current_locals and not self.is_in_current_scope(node.id):
- self.maybe_unbound_identifier(node.id, node)
+ node_in_chains = node in self.chains
+ if node_in_chains:
+ dnode = self.chains[node]
+ else:
dnode = Def(node)
+ for d in self.defs(node):
+ d.add_user(dnode)
+ if not node_in_chains:
self.chains[node] = dnode
- else:
- node_in_chains = node in self.chains
- if node_in_chains:
- dnode = self.chains[node]
- else:
- dnode = Def(node)
- for d in self.defs(node):
- d.add_user(dnode)
- if not node_in_chains:
- self.chains[node] = dnode
# currently ignore the effect of a del
else:
raise NotImplementedError()
|
serge-sans-paille/beniget
|
1f063aa472e96db8db14503f7b9f2bdb87118ebe
|
diff --git a/tests/chains.py b/tests/chains.py
index c477328..f82abc1 100644
--- a/tests/chains.py
+++ b/tests/chains.py
@@ -94,6 +94,12 @@ class TestDefUseChains(TestCase):
code = "a = 1; a += 2; a"
self.checkChains(code, ['a -> (a -> (a -> ()))'])
+ def test_read_global_from_branch(self):
+ code = "if 1: a = 1\ndef foo():\n def bar(): global a; return a"
+ self.checkChains(code, ['a -> (a -> ())',
+ 'foo -> ()'])
+
+
def test_expanded_augassign(self):
code = "a = 1; a = a + 2"
self.checkChains(code, ["a -> (a -> (BinOp -> ()))", "a -> ()"])
@@ -344,10 +350,17 @@ while done:
code = "from some import decorator\n@decorator\nclass C:pass"
self.checkChains(code, ["decorator -> (decorator -> (C -> ()))", "C -> ()"])
+ def test_class_base(self):
+ code = "class A:...\nclass B(A):..."
+ self.checkChains(code, ["A -> (A -> (B -> ()))", "B -> ()"])
+
@skipIf(sys.version_info.major < 3, "Python 3 syntax")
def test_def_used_in_self_default(self):
code = "def foo(x:foo): return foo"
- self.checkChains(code, ["foo -> (foo -> ())"])
+ c = beniget.DefUseChains()
+ node = ast.parse(code)
+ c.visit(node)
+ self.assertEqual(c.dump_chains(node), ["foo -> (foo -> ())"])
def test_unbound_class_variable(self):
code = '''
@@ -361,7 +374,7 @@ def middle():
node = ast.parse(code)
c.visit(node)
self.assertEqual(c.dump_chains(node.body[0]), ['x -> (x -> ())', 'mytype -> ()'])
-
+
def test_unbound_class_variable2(self):
code = '''class A:\n a = 10\n def f(self):\n return a # a is not defined'''
c = beniget.DefUseChains()
@@ -375,7 +388,7 @@ def middle():
node = ast.parse(code)
c.visit(node)
self.assertEqual(c.dump_chains(node.body[0]), ['a -> ()', 'I -> ()'])
-
+
def test_unbound_class_variable4(self):
code = '''class A:\n a = 10\n f = lambda: a # a is not defined'''
c = beniget.DefUseChains()
@@ -400,7 +413,7 @@ def middle():
self.checkChains(code, ['x -> (x -> ())', 'foo -> ()'])
@skipIf(sys.version_info.major < 3, "Python 3 syntax")
- def test_class_annotation(self):
+ def test_arg_annotation(self):
code = "type_ = int\ndef foo(bar: type_): pass"
self.checkChains(code, ["type_ -> (type_ -> ())", "foo -> ()"])
@@ -454,22 +467,97 @@ def outer():
def test_maybe_unbound_identifier_message_format(self):
code = "x = 1\ndef foo(): y = x; x = 2"
self.check_message(code,
- ["'x' may be unbound at runtime at <unknown>:2"])
+ ["unbound identifier 'x' at <unknown>:2"])
def test_unbound_local_identifier_in_func(self):
code = "def A():\n x = 1\n class B: x = x"
self.check_message(code,
- ["'x' may be unbound at runtime at <unknown>:3"])
+ ["unbound identifier 'x' at <unknown>:3"])
+
+ @skipIf(sys.version_info < (3, 0), 'Python 3 syntax')
+ def test_unbound_local_identifier_in_method(self):
+ code = "class A:pass\nclass B:\n def A(self) -> A:pass"
+ self.check_message(code, [])
@skipIf(sys.version_info < (3, 0), 'Python 3 syntax')
def test_unbound_local_identifier_nonlocal(self):
code = "def A():\n x = 1\n class B: nonlocal x; x = x"
self.check_message(code, [])
+
+ def test_assign_uses_class_level_name(self):
+ code = '''
+visit_Name = object
+class Visitor:
+ def visit_Name(self, node):...
+ visit_Attribute = visit_Name
+'''
+ node = ast.parse(code)
+ c = beniget.DefUseChains()
+ c.visit(node)
+ self.assertEqual(c.dump_chains(node), ['visit_Name -> ()',
+ 'Visitor -> ()'])
+ self.assertEqual(c.dump_chains(node.body[-1]),
+ ['visit_Name -> (visit_Name -> ())',
+ 'visit_Attribute -> ()'])
+
+
+ def test_base_class_uses_class_level_same_name(self):
+ code = '''
+class Attr(object):...
+class Visitor:
+ class Attr(Attr):...
+ '''
+ node = ast.parse(code)
+ c = beniget.DefUseChains()
+ c.visit(node)
+ self.assertEqual(c.dump_chains(node),
+ ['Attr -> (Attr -> (Attr -> ()))',
+ 'Visitor -> ()'])
+ self.assertEqual(c.dump_chains(node.body[-1]), ['Attr -> ()'])
+
+
+ @skipIf(sys.version_info < (3, 0), 'Python 3 syntax')
+ def test_annotation_uses_class_level_name(self):
+ code = '''
+Thing = object
+def f():...
+class Visitor:
+ Thing = bytes
+ def f(): return f()
+ def visit_Name(self, node:Thing, fn:f):...
+'''
+ node = ast.parse(code)
+ c = beniget.DefUseChains()
+ c.visit(node)
+ self.assertEqual(c.dump_chains(node),
+ ['Thing -> ()',
+ 'f -> (f -> (Call -> ()))',
+ 'Visitor -> ()'])
+ self.assertEqual(c.dump_chains(node.body[-1]),
+ ['Thing -> (Thing -> ())',
+ 'f -> (f -> ())',
+ 'visit_Name -> ()'])
+
+ def test_assign_uses_class_level_same_name(self):
+ code = '''
+def visit_Attribute(self, node):...
+class Visitor:
+ visit_Attribute = visit_Attribute
+'''
+ node = ast.parse(code)
+ c = beniget.DefUseChains()
+ c.visit(node)
+ self.assertEqual(c.dump_chains(node),
+ ['visit_Attribute -> (visit_Attribute -> ())',
+ 'Visitor -> ()'])
+ self.assertEqual(c.dump_chains(node.body[-1]),
+ ['visit_Attribute -> ()'])
+
def test_unbound_local_identifier_in_augassign(self):
code = "def A():\n x = 1\n class B: x += 1"
self.check_message(code,
- ["'x' may be unbound at runtime at <unknown>:3"])
+ ["unbound identifier 'x' at <unknown>:3"])
def test_star_import_with_conditional_redef(self):
code = '''
|
Scoping rule not correctly honored for type annotation
There is no ambiguity in the following code:
```
class Attr:...
class Cls:
def Attr(self) -> Attr:...
```
but beniget issues a warning about `-> Attr` being potentially unbound at runtime.
|
0.0
|
1f063aa472e96db8db14503f7b9f2bdb87118ebe
|
[
"tests/chains.py::TestDefUseChains::test_assign_uses_class_level_same_name",
"tests/chains.py::TestDefUseChains::test_base_class_uses_class_level_same_name",
"tests/chains.py::TestDefUseChains::test_maybe_unbound_identifier_message_format",
"tests/chains.py::TestDefUseChains::test_unbound_local_identifier_in_augassign",
"tests/chains.py::TestDefUseChains::test_unbound_local_identifier_in_func",
"tests/chains.py::TestDefUseChains::test_unbound_local_identifier_in_method"
] |
[
"tests/chains.py::TestDefUseChains::test_annotation_inner_class",
"tests/chains.py::TestDefUseChains::test_annotation_uses_class_level_name",
"tests/chains.py::TestDefUseChains::test_arg_annotation",
"tests/chains.py::TestDefUseChains::test_assign_in_loop",
"tests/chains.py::TestDefUseChains::test_assign_in_loop_in_conditional",
"tests/chains.py::TestDefUseChains::test_assign_in_while_in_conditional",
"tests/chains.py::TestDefUseChains::test_assign_uses_class_level_name",
"tests/chains.py::TestDefUseChains::test_attr",
"tests/chains.py::TestDefUseChains::test_augassign",
"tests/chains.py::TestDefUseChains::test_augassign_in_loop",
"tests/chains.py::TestDefUseChains::test_break_in_loop",
"tests/chains.py::TestDefUseChains::test_class_base",
"tests/chains.py::TestDefUseChains::test_class_decorator",
"tests/chains.py::TestDefUseChains::test_complex_for_orelse",
"tests/chains.py::TestDefUseChains::test_complex_while_orelse",
"tests/chains.py::TestDefUseChains::test_continue_in_loop",
"tests/chains.py::TestDefUseChains::test_def_used_in_self_default",
"tests/chains.py::TestDefUseChains::test_expanded_augassign",
"tests/chains.py::TestDefUseChains::test_expression_chain",
"tests/chains.py::TestDefUseChains::test_for_break",
"tests/chains.py::TestDefUseChains::test_for_pass",
"tests/chains.py::TestDefUseChains::test_functiondef_returns",
"tests/chains.py::TestDefUseChains::test_if_both_branch",
"tests/chains.py::TestDefUseChains::test_if_false_branch",
"tests/chains.py::TestDefUseChains::test_if_in_loop",
"tests/chains.py::TestDefUseChains::test_if_true_branch",
"tests/chains.py::TestDefUseChains::test_ifexp_chain",
"tests/chains.py::TestDefUseChains::test_import_from",
"tests/chains.py::TestDefUseChains::test_import_from_as",
"tests/chains.py::TestDefUseChains::test_method_function_conflict",
"tests/chains.py::TestDefUseChains::test_multiple_import_as",
"tests/chains.py::TestDefUseChains::test_multiple_import_from_as",
"tests/chains.py::TestDefUseChains::test_named_expr_complex",
"tests/chains.py::TestDefUseChains::test_named_expr_simple",
"tests/chains.py::TestDefUseChains::test_named_expr_with_rename",
"tests/chains.py::TestDefUseChains::test_nested_if",
"tests/chains.py::TestDefUseChains::test_nested_if_else",
"tests/chains.py::TestDefUseChains::test_nested_while",
"tests/chains.py::TestDefUseChains::test_no_unbound_local_identifier_in_comp",
"tests/chains.py::TestDefUseChains::test_read_global_from_branch",
"tests/chains.py::TestDefUseChains::test_reassign_in_loop",
"tests/chains.py::TestDefUseChains::test_redef_try_except",
"tests/chains.py::TestDefUseChains::test_simple_except",
"tests/chains.py::TestDefUseChains::test_simple_expression",
"tests/chains.py::TestDefUseChains::test_simple_for",
"tests/chains.py::TestDefUseChains::test_simple_for_orelse",
"tests/chains.py::TestDefUseChains::test_simple_import",
"tests/chains.py::TestDefUseChains::test_simple_import_as",
"tests/chains.py::TestDefUseChains::test_simple_print",
"tests/chains.py::TestDefUseChains::test_simple_redefinition",
"tests/chains.py::TestDefUseChains::test_simple_try",
"tests/chains.py::TestDefUseChains::test_simple_try_except",
"tests/chains.py::TestDefUseChains::test_simple_while",
"tests/chains.py::TestDefUseChains::test_star_import_with_conditional_redef",
"tests/chains.py::TestDefUseChains::test_try_except",
"tests/chains.py::TestDefUseChains::test_type_destructuring_for",
"tests/chains.py::TestDefUseChains::test_type_destructuring_list",
"tests/chains.py::TestDefUseChains::test_type_destructuring_tuple",
"tests/chains.py::TestDefUseChains::test_unbound_class_variable",
"tests/chains.py::TestDefUseChains::test_unbound_class_variable2",
"tests/chains.py::TestDefUseChains::test_unbound_class_variable3",
"tests/chains.py::TestDefUseChains::test_unbound_class_variable4",
"tests/chains.py::TestDefUseChains::test_unbound_class_variable5",
"tests/chains.py::TestDefUseChains::test_unbound_class_variable_reference_message_format",
"tests/chains.py::TestDefUseChains::test_unbound_identifier_message_format",
"tests/chains.py::TestDefUseChains::test_unbound_local_identifier_nonlocal",
"tests/chains.py::TestDefUseChains::test_while_break",
"tests/chains.py::TestDefUseChains::test_while_cond_break",
"tests/chains.py::TestDefUseChains::test_while_cond_continue",
"tests/chains.py::TestDefUseChains::test_while_nested_break",
"tests/chains.py::TestDefUseChains::test_while_orelse_break",
"tests/chains.py::TestDefUseChains::test_with_handler",
"tests/chains.py::TestUseDefChains::test_call",
"tests/chains.py::TestUseDefChains::test_simple_expression"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-04-05 06:02:14+00:00
|
bsd-3-clause
| 5,476 |
|
serge-sans-paille__beniget-70
|
diff --git a/beniget/beniget.py b/beniget/beniget.py
index 50f035b..c964c50 100644
--- a/beniget/beniget.py
+++ b/beniget/beniget.py
@@ -1025,11 +1025,19 @@ class DefUseChains(ast.NodeVisitor):
def visit_Lambda(self, node, step=DeclarationStep):
if step is DeclarationStep:
dnode = self.chains.setdefault(node, Def(node))
+ for default in node.args.defaults:
+ self.visit(default).add_user(dnode)
+ self._defered.append((node,
+ list(self._definitions),
+ list(self._scopes),
+ list(self._scope_depths),
+ list(self._precomputed_locals)))
return dnode
elif step is DefinitionStep:
dnode = self.chains[node]
with self.ScopeContext(node):
- self.visit(node.args)
+ for a in node.args.args:
+ self.visit(a)
self.visit(node.body).add_user(dnode)
return dnode
else:
|
serge-sans-paille/beniget
|
c1c6ae396b54b593f9566861ae9197a7e104c585
|
diff --git a/tests/test_chains.py b/tests/test_chains.py
index e9d33f8..288ccc6 100644
--- a/tests/test_chains.py
+++ b/tests/test_chains.py
@@ -332,6 +332,22 @@ while done:
def test_simple_import_as(self):
code = "import x as y; y()"
self.checkChains(code, ["y -> (y -> (Call -> ()))"])
+
+ def test_simple_lambda(self):
+ node, c = self.checkChains( "lambda y: True", [])
+ self.assertEqual(c.dump_chains(node.body[0].value), ['y -> ()'])
+
+ def test_lambda_defaults(self):
+ node, c = self.checkChains( "x=y=1;(lambda y, x=x: (True, x, y, z)); x=y=z=2",
+ ['x -> (x -> (Lambda -> ()))',
+ 'y -> ()',
+ 'x -> ()',
+ 'y -> ()',
+ 'z -> (z -> (Tuple -> (Lambda -> ())))'])
+ self.assertEqual(c.dump_chains(node.body[1].value), [
+ 'y -> (y -> (Tuple -> (Lambda -> ())))',
+ 'x -> (x -> (Tuple -> (Lambda -> ())))',
+ ])
def test_multiple_import_as(self):
code = "import x as y, z; y"
|
Regression in Lambda functions
This new test was passing in version 0.4.1 and now shows nothing
```python
def test_simple_lambda(self):
code = "lambda y: True"
node = ast.parse(code)
c = beniget.DefUseChains()
c.visit(node)
self.assertEqual(c.dump_chains(node), [])
self.assertEqual(c.dump_chains(node.body[0].value), ['y -> ()'])
```
|
0.0
|
c1c6ae396b54b593f9566861ae9197a7e104c585
|
[
"tests/test_chains.py::TestDefUseChains::test_lambda_defaults",
"tests/test_chains.py::TestDefUseChains::test_simple_lambda"
] |
[
"tests/test_chains.py::TestDefUseChains::test_annotation_in_functions_locals",
"tests/test_chains.py::TestDefUseChains::test_annotation_in_inner_functions_locals",
"tests/test_chains.py::TestDefUseChains::test_annotation_inner_class",
"tests/test_chains.py::TestDefUseChains::test_annotation_inner_inner_fn",
"tests/test_chains.py::TestDefUseChains::test_annotation_unbound",
"tests/test_chains.py::TestDefUseChains::test_annotation_unbound_pep563",
"tests/test_chains.py::TestDefUseChains::test_annotation_use_upper_scope_variables",
"tests/test_chains.py::TestDefUseChains::test_annotation_uses_class_level_name",
"tests/test_chains.py::TestDefUseChains::test_annotation_very_nested",
"tests/test_chains.py::TestDefUseChains::test_arg_annotation",
"tests/test_chains.py::TestDefUseChains::test_assign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_assign_in_loop_in_conditional",
"tests/test_chains.py::TestDefUseChains::test_assign_in_while_in_conditional",
"tests/test_chains.py::TestDefUseChains::test_assign_uses_class_level_name",
"tests/test_chains.py::TestDefUseChains::test_assign_uses_class_level_same_name",
"tests/test_chains.py::TestDefUseChains::test_attr",
"tests/test_chains.py::TestDefUseChains::test_augassign",
"tests/test_chains.py::TestDefUseChains::test_augassign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_base_class_uses_class_level_same_name",
"tests/test_chains.py::TestDefUseChains::test_break_in_loop",
"tests/test_chains.py::TestDefUseChains::test_class_base",
"tests/test_chains.py::TestDefUseChains::test_class_decorator",
"tests/test_chains.py::TestDefUseChains::test_complex_for_orelse",
"tests/test_chains.py::TestDefUseChains::test_complex_while_orelse",
"tests/test_chains.py::TestDefUseChains::test_continue_in_loop",
"tests/test_chains.py::TestDefUseChains::test_def_used_in_self_default",
"tests/test_chains.py::TestDefUseChains::test_expanded_augassign",
"tests/test_chains.py::TestDefUseChains::test_expression_chain",
"tests/test_chains.py::TestDefUseChains::test_for_break",
"tests/test_chains.py::TestDefUseChains::test_for_pass",
"tests/test_chains.py::TestDefUseChains::test_functiondef_returns",
"tests/test_chains.py::TestDefUseChains::test_future_annotation_class_var",
"tests/test_chains.py::TestDefUseChains::test_if_both_branch",
"tests/test_chains.py::TestDefUseChains::test_if_false_branch",
"tests/test_chains.py::TestDefUseChains::test_if_in_loop",
"tests/test_chains.py::TestDefUseChains::test_if_true_branch",
"tests/test_chains.py::TestDefUseChains::test_ifexp_chain",
"tests/test_chains.py::TestDefUseChains::test_import_dotted_name_binds_first_name",
"tests/test_chains.py::TestDefUseChains::test_import_from",
"tests/test_chains.py::TestDefUseChains::test_import_from_as",
"tests/test_chains.py::TestDefUseChains::test_lookup_scopes",
"tests/test_chains.py::TestDefUseChains::test_maybe_unbound_identifier_message_format",
"tests/test_chains.py::TestDefUseChains::test_method_annotation_unbound",
"tests/test_chains.py::TestDefUseChains::test_method_annotation_unbound_pep563",
"tests/test_chains.py::TestDefUseChains::test_method_function_conflict",
"tests/test_chains.py::TestDefUseChains::test_multiple_import_as",
"tests/test_chains.py::TestDefUseChains::test_multiple_import_from_as",
"tests/test_chains.py::TestDefUseChains::test_multiple_wildcards_may_bind",
"tests/test_chains.py::TestDefUseChains::test_named_expr_complex",
"tests/test_chains.py::TestDefUseChains::test_named_expr_simple",
"tests/test_chains.py::TestDefUseChains::test_named_expr_with_rename",
"tests/test_chains.py::TestDefUseChains::test_nested_if",
"tests/test_chains.py::TestDefUseChains::test_nested_if_else",
"tests/test_chains.py::TestDefUseChains::test_nested_while",
"tests/test_chains.py::TestDefUseChains::test_no_unbound_local_identifier_in_comp",
"tests/test_chains.py::TestDefUseChains::test_pep0563_annotations",
"tests/test_chains.py::TestDefUseChains::test_pep563_self_referential_annotation",
"tests/test_chains.py::TestDefUseChains::test_pep563_type_alias_override_class",
"tests/test_chains.py::TestDefUseChains::test_read_global_from_branch",
"tests/test_chains.py::TestDefUseChains::test_reassign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_redef_try_except",
"tests/test_chains.py::TestDefUseChains::test_redefinition_in_comp",
"tests/test_chains.py::TestDefUseChains::test_simple_except",
"tests/test_chains.py::TestDefUseChains::test_simple_expression",
"tests/test_chains.py::TestDefUseChains::test_simple_for",
"tests/test_chains.py::TestDefUseChains::test_simple_for_orelse",
"tests/test_chains.py::TestDefUseChains::test_simple_import",
"tests/test_chains.py::TestDefUseChains::test_simple_import_as",
"tests/test_chains.py::TestDefUseChains::test_simple_print",
"tests/test_chains.py::TestDefUseChains::test_simple_redefinition",
"tests/test_chains.py::TestDefUseChains::test_simple_try",
"tests/test_chains.py::TestDefUseChains::test_simple_try_except",
"tests/test_chains.py::TestDefUseChains::test_simple_while",
"tests/test_chains.py::TestDefUseChains::test_star_import_with_conditional_redef",
"tests/test_chains.py::TestDefUseChains::test_straight_raise",
"tests/test_chains.py::TestDefUseChains::test_try_except",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_for",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_list",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_tuple",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable2",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable3",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable4",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable5",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable_reference_message_format",
"tests/test_chains.py::TestDefUseChains::test_unbound_identifier_message_format",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_augassign",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_func",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_method",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_nonlocal",
"tests/test_chains.py::TestDefUseChains::test_while_break",
"tests/test_chains.py::TestDefUseChains::test_while_cond_break",
"tests/test_chains.py::TestDefUseChains::test_while_cond_continue",
"tests/test_chains.py::TestDefUseChains::test_while_nested_break",
"tests/test_chains.py::TestDefUseChains::test_while_orelse_break",
"tests/test_chains.py::TestDefUseChains::test_wilcard_import_annotation",
"tests/test_chains.py::TestDefUseChains::test_wilcard_import_annotation_and_global_scope",
"tests/test_chains.py::TestDefUseChains::test_wildcard_may_override",
"tests/test_chains.py::TestDefUseChains::test_with_handler",
"tests/test_chains.py::TestUseDefChains::test_call",
"tests/test_chains.py::TestUseDefChains::test_simple_expression"
] |
{
"failed_lite_validators": [
"has_short_problem_statement"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-08-07 18:29:26+00:00
|
bsd-3-clause
| 5,477 |
|
serge-sans-paille__beniget-78
|
diff --git a/beniget/beniget.py b/beniget/beniget.py
index 4faa64d..fe38b13 100644
--- a/beniget/beniget.py
+++ b/beniget/beniget.py
@@ -665,6 +665,14 @@ class DefUseChains(ast.NodeVisitor):
def extend_global(self, name, dnode_or_dnodes):
if self._deadcode:
return
+ # `name` *should* be in self._definitions[0] because we extend the
+ # globals. Yet the original code maybe faulty and we need to cope with
+ # it.
+ if name not in self._definitions[0]:
+ if isinstance(dnode_or_dnodes, Def):
+ self.locals[self.module].append(dnode_or_dnodes)
+ else:
+ self.locals[self.module].extend(dnode_or_dnodes)
DefUseChains.add_to_definition(self._definitions[0], name,
dnode_or_dnodes)
|
serge-sans-paille/beniget
|
dbca2f88948adb19bfcdd5111059b25fc9af5cdf
|
diff --git a/tests/test_chains.py b/tests/test_chains.py
index 1e9bdaa..d2fa72c 100644
--- a/tests/test_chains.py
+++ b/tests/test_chains.py
@@ -111,6 +111,9 @@ class TestDefUseChains(TestCase):
self.checkChains(code, ['a -> (a -> ())',
'foo -> ()'])
+ def test_augassign_undefined_global(self):
+ code = "def foo():\n def bar():\n global x\n x+=1; x"
+ self.checkChains(code, ['foo -> ()', 'x -> (x -> ())'], strict=False)
def test_expanded_augassign(self):
code = "a = 1; a = a + 2"
|
AssertionError in the __debug__ sanity checks when parsing idlelib.config
It can be reproduced as follows, but I don't have a minimal reproducer at the moment.
```
% curl --silent https://raw.githubusercontent.com/python/cpython/3.12/Lib/idlelib/config.py > test.py
% python3 -m beniget test.py
W: unbound identifier 'line' at test.py:885:8
W: unbound identifier 'crc' at test.py:886:50
[...]
File "beniget/beniget.py", line 616, in visit_Module
assert nb_defs == nb_heads + nb_bltns - nb_overloaded_bltns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError
```
|
0.0
|
dbca2f88948adb19bfcdd5111059b25fc9af5cdf
|
[
"tests/test_chains.py::TestDefUseChains::test_augassign_undefined_global"
] |
[
"tests/test_chains.py::TestDefUseChains::test_annotation_in_functions_locals",
"tests/test_chains.py::TestDefUseChains::test_annotation_in_inner_functions_locals",
"tests/test_chains.py::TestDefUseChains::test_annotation_inner_class",
"tests/test_chains.py::TestDefUseChains::test_annotation_inner_inner_fn",
"tests/test_chains.py::TestDefUseChains::test_annotation_unbound",
"tests/test_chains.py::TestDefUseChains::test_annotation_unbound_pep563",
"tests/test_chains.py::TestDefUseChains::test_annotation_use_upper_scope_variables",
"tests/test_chains.py::TestDefUseChains::test_annotation_uses_class_level_name",
"tests/test_chains.py::TestDefUseChains::test_annotation_very_nested",
"tests/test_chains.py::TestDefUseChains::test_arg_annotation",
"tests/test_chains.py::TestDefUseChains::test_assign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_assign_in_loop_in_conditional",
"tests/test_chains.py::TestDefUseChains::test_assign_in_while_in_conditional",
"tests/test_chains.py::TestDefUseChains::test_assign_uses_class_level_name",
"tests/test_chains.py::TestDefUseChains::test_assign_uses_class_level_same_name",
"tests/test_chains.py::TestDefUseChains::test_attr",
"tests/test_chains.py::TestDefUseChains::test_attribute_assignment",
"tests/test_chains.py::TestDefUseChains::test_augassign",
"tests/test_chains.py::TestDefUseChains::test_augassign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_base_class_uses_class_level_same_name",
"tests/test_chains.py::TestDefUseChains::test_break_in_loop",
"tests/test_chains.py::TestDefUseChains::test_call_assignment",
"tests/test_chains.py::TestDefUseChains::test_class_base",
"tests/test_chains.py::TestDefUseChains::test_class_decorator",
"tests/test_chains.py::TestDefUseChains::test_class_scope_comprehension",
"tests/test_chains.py::TestDefUseChains::test_class_scope_comprehension_invalid",
"tests/test_chains.py::TestDefUseChains::test_complex_for_orelse",
"tests/test_chains.py::TestDefUseChains::test_complex_while_orelse",
"tests/test_chains.py::TestDefUseChains::test_continue_in_loop",
"tests/test_chains.py::TestDefUseChains::test_def_used_in_self_default",
"tests/test_chains.py::TestDefUseChains::test_expanded_augassign",
"tests/test_chains.py::TestDefUseChains::test_expression_chain",
"tests/test_chains.py::TestDefUseChains::test_for_break",
"tests/test_chains.py::TestDefUseChains::test_for_pass",
"tests/test_chains.py::TestDefUseChains::test_functiondef_returns",
"tests/test_chains.py::TestDefUseChains::test_future_annotation_class_var",
"tests/test_chains.py::TestDefUseChains::test_if_both_branch",
"tests/test_chains.py::TestDefUseChains::test_if_false_branch",
"tests/test_chains.py::TestDefUseChains::test_if_in_loop",
"tests/test_chains.py::TestDefUseChains::test_if_true_branch",
"tests/test_chains.py::TestDefUseChains::test_ifexp_chain",
"tests/test_chains.py::TestDefUseChains::test_import_dotted_name_binds_first_name",
"tests/test_chains.py::TestDefUseChains::test_import_from",
"tests/test_chains.py::TestDefUseChains::test_import_from_as",
"tests/test_chains.py::TestDefUseChains::test_lambda_defaults",
"tests/test_chains.py::TestDefUseChains::test_lookup_scopes",
"tests/test_chains.py::TestDefUseChains::test_maybe_unbound_identifier_message_format",
"tests/test_chains.py::TestDefUseChains::test_method_annotation_unbound",
"tests/test_chains.py::TestDefUseChains::test_method_annotation_unbound_pep563",
"tests/test_chains.py::TestDefUseChains::test_method_function_conflict",
"tests/test_chains.py::TestDefUseChains::test_multiple_import_as",
"tests/test_chains.py::TestDefUseChains::test_multiple_import_from_as",
"tests/test_chains.py::TestDefUseChains::test_multiple_wildcards_may_bind",
"tests/test_chains.py::TestDefUseChains::test_named_expr_complex",
"tests/test_chains.py::TestDefUseChains::test_named_expr_comprehension",
"tests/test_chains.py::TestDefUseChains::test_named_expr_comprehension_invalid",
"tests/test_chains.py::TestDefUseChains::test_named_expr_simple",
"tests/test_chains.py::TestDefUseChains::test_named_expr_with_rename",
"tests/test_chains.py::TestDefUseChains::test_nested_if",
"tests/test_chains.py::TestDefUseChains::test_nested_if_else",
"tests/test_chains.py::TestDefUseChains::test_nested_while",
"tests/test_chains.py::TestDefUseChains::test_no_unbound_local_identifier_in_comp",
"tests/test_chains.py::TestDefUseChains::test_pep0563_annotations",
"tests/test_chains.py::TestDefUseChains::test_pep563_self_referential_annotation",
"tests/test_chains.py::TestDefUseChains::test_pep563_type_alias_override_class",
"tests/test_chains.py::TestDefUseChains::test_read_global_from_branch",
"tests/test_chains.py::TestDefUseChains::test_reassign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_redef_try_except",
"tests/test_chains.py::TestDefUseChains::test_redefinition_in_comp",
"tests/test_chains.py::TestDefUseChains::test_simple_except",
"tests/test_chains.py::TestDefUseChains::test_simple_expression",
"tests/test_chains.py::TestDefUseChains::test_simple_for",
"tests/test_chains.py::TestDefUseChains::test_simple_for_orelse",
"tests/test_chains.py::TestDefUseChains::test_simple_import",
"tests/test_chains.py::TestDefUseChains::test_simple_import_as",
"tests/test_chains.py::TestDefUseChains::test_simple_lambda",
"tests/test_chains.py::TestDefUseChains::test_simple_print",
"tests/test_chains.py::TestDefUseChains::test_simple_redefinition",
"tests/test_chains.py::TestDefUseChains::test_simple_try",
"tests/test_chains.py::TestDefUseChains::test_simple_try_except",
"tests/test_chains.py::TestDefUseChains::test_simple_while",
"tests/test_chains.py::TestDefUseChains::test_star_assignment",
"tests/test_chains.py::TestDefUseChains::test_star_assignment_nested",
"tests/test_chains.py::TestDefUseChains::test_star_import_with_conditional_redef",
"tests/test_chains.py::TestDefUseChains::test_straight_raise",
"tests/test_chains.py::TestDefUseChains::test_try_except",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_for",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_list",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_starred",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_tuple",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable2",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable3",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable4",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable5",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable_reference_message_format",
"tests/test_chains.py::TestDefUseChains::test_unbound_identifier_message_format",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_augassign",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_func",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_method",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_nonlocal",
"tests/test_chains.py::TestDefUseChains::test_while_break",
"tests/test_chains.py::TestDefUseChains::test_while_cond_break",
"tests/test_chains.py::TestDefUseChains::test_while_cond_continue",
"tests/test_chains.py::TestDefUseChains::test_while_nested_break",
"tests/test_chains.py::TestDefUseChains::test_while_orelse_break",
"tests/test_chains.py::TestDefUseChains::test_wilcard_import_annotation",
"tests/test_chains.py::TestDefUseChains::test_wilcard_import_annotation_and_global_scope",
"tests/test_chains.py::TestDefUseChains::test_wildcard_may_override",
"tests/test_chains.py::TestDefUseChains::test_with_handler",
"tests/test_chains.py::TestUseDefChains::test_call",
"tests/test_chains.py::TestUseDefChains::test_simple_expression"
] |
{
"failed_lite_validators": [
"has_hyperlinks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-09-18 19:44:13+00:00
|
bsd-3-clause
| 5,478 |
|
serge-sans-paille__beniget-80
|
diff --git a/beniget/beniget.py b/beniget/beniget.py
index fe38b13..efe40bb 100644
--- a/beniget/beniget.py
+++ b/beniget/beniget.py
@@ -1058,6 +1058,7 @@ class DefUseChains(ast.NodeVisitor):
dnode = self.chains.setdefault(node, Def(node))
for default in node.args.defaults:
self.visit(default).add_user(dnode)
+ # a lambda never has kw_defaults
self._defered.append((node,
list(self._definitions),
list(self._scopes),
@@ -1067,7 +1068,7 @@ class DefUseChains(ast.NodeVisitor):
elif step is DefinitionStep:
dnode = self.chains[node]
with self.ScopeContext(node):
- for a in node.args.args:
+ for a in _iter_arguments(node.args):
self.visit(a)
self.visit(node.body).add_user(dnode)
return dnode
|
serge-sans-paille/beniget
|
3b3f4498476a136ecedbb954f31d71767d0ae5cc
|
diff --git a/tests/test_chains.py b/tests/test_chains.py
index d2fa72c..ff309e7 100644
--- a/tests/test_chains.py
+++ b/tests/test_chains.py
@@ -357,6 +357,14 @@ while done:
'x -> (x -> (Tuple -> (Lambda -> ())))',
])
+ def test_lambda_varargs(self):
+ node, c = self.checkChains( "lambda *args: args", [])
+ self.assertEqual(c.dump_chains(node.body[0].value), ['args -> (args -> (Lambda -> ()))'])
+
+ def test_lambda_kwargs(self):
+ node, c = self.checkChains( "lambda **kwargs: kwargs", [])
+ self.assertEqual(c.dump_chains(node.body[0].value), ['kwargs -> (kwargs -> (Lambda -> ()))'])
+
def test_multiple_import_as(self):
code = "import x as y, z; y"
self.checkChains(code, ["y -> (y -> ())", "z -> ()"])
|
Variable lenght arguments in lambda are ignored
```python
lambda *args: args
```
The code above generates the following warning:
```
W: unbound identifier 'args' at ./test.py:1:14
```
|
0.0
|
3b3f4498476a136ecedbb954f31d71767d0ae5cc
|
[
"tests/test_chains.py::TestDefUseChains::test_lambda_kwargs",
"tests/test_chains.py::TestDefUseChains::test_lambda_varargs"
] |
[
"tests/test_chains.py::TestDefUseChains::test_annotation_in_functions_locals",
"tests/test_chains.py::TestDefUseChains::test_annotation_in_inner_functions_locals",
"tests/test_chains.py::TestDefUseChains::test_annotation_inner_class",
"tests/test_chains.py::TestDefUseChains::test_annotation_inner_inner_fn",
"tests/test_chains.py::TestDefUseChains::test_annotation_unbound",
"tests/test_chains.py::TestDefUseChains::test_annotation_unbound_pep563",
"tests/test_chains.py::TestDefUseChains::test_annotation_use_upper_scope_variables",
"tests/test_chains.py::TestDefUseChains::test_annotation_uses_class_level_name",
"tests/test_chains.py::TestDefUseChains::test_annotation_very_nested",
"tests/test_chains.py::TestDefUseChains::test_arg_annotation",
"tests/test_chains.py::TestDefUseChains::test_assign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_assign_in_loop_in_conditional",
"tests/test_chains.py::TestDefUseChains::test_assign_in_while_in_conditional",
"tests/test_chains.py::TestDefUseChains::test_assign_uses_class_level_name",
"tests/test_chains.py::TestDefUseChains::test_assign_uses_class_level_same_name",
"tests/test_chains.py::TestDefUseChains::test_attr",
"tests/test_chains.py::TestDefUseChains::test_attribute_assignment",
"tests/test_chains.py::TestDefUseChains::test_augassign",
"tests/test_chains.py::TestDefUseChains::test_augassign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_augassign_undefined_global",
"tests/test_chains.py::TestDefUseChains::test_base_class_uses_class_level_same_name",
"tests/test_chains.py::TestDefUseChains::test_break_in_loop",
"tests/test_chains.py::TestDefUseChains::test_call_assignment",
"tests/test_chains.py::TestDefUseChains::test_class_base",
"tests/test_chains.py::TestDefUseChains::test_class_decorator",
"tests/test_chains.py::TestDefUseChains::test_class_scope_comprehension",
"tests/test_chains.py::TestDefUseChains::test_class_scope_comprehension_invalid",
"tests/test_chains.py::TestDefUseChains::test_complex_for_orelse",
"tests/test_chains.py::TestDefUseChains::test_complex_while_orelse",
"tests/test_chains.py::TestDefUseChains::test_continue_in_loop",
"tests/test_chains.py::TestDefUseChains::test_def_used_in_self_default",
"tests/test_chains.py::TestDefUseChains::test_expanded_augassign",
"tests/test_chains.py::TestDefUseChains::test_expression_chain",
"tests/test_chains.py::TestDefUseChains::test_for_break",
"tests/test_chains.py::TestDefUseChains::test_for_pass",
"tests/test_chains.py::TestDefUseChains::test_functiondef_returns",
"tests/test_chains.py::TestDefUseChains::test_future_annotation_class_var",
"tests/test_chains.py::TestDefUseChains::test_if_both_branch",
"tests/test_chains.py::TestDefUseChains::test_if_false_branch",
"tests/test_chains.py::TestDefUseChains::test_if_in_loop",
"tests/test_chains.py::TestDefUseChains::test_if_true_branch",
"tests/test_chains.py::TestDefUseChains::test_ifexp_chain",
"tests/test_chains.py::TestDefUseChains::test_import_dotted_name_binds_first_name",
"tests/test_chains.py::TestDefUseChains::test_import_from",
"tests/test_chains.py::TestDefUseChains::test_import_from_as",
"tests/test_chains.py::TestDefUseChains::test_lambda_defaults",
"tests/test_chains.py::TestDefUseChains::test_lookup_scopes",
"tests/test_chains.py::TestDefUseChains::test_maybe_unbound_identifier_message_format",
"tests/test_chains.py::TestDefUseChains::test_method_annotation_unbound",
"tests/test_chains.py::TestDefUseChains::test_method_annotation_unbound_pep563",
"tests/test_chains.py::TestDefUseChains::test_method_function_conflict",
"tests/test_chains.py::TestDefUseChains::test_multiple_import_as",
"tests/test_chains.py::TestDefUseChains::test_multiple_import_from_as",
"tests/test_chains.py::TestDefUseChains::test_multiple_wildcards_may_bind",
"tests/test_chains.py::TestDefUseChains::test_named_expr_complex",
"tests/test_chains.py::TestDefUseChains::test_named_expr_comprehension",
"tests/test_chains.py::TestDefUseChains::test_named_expr_comprehension_invalid",
"tests/test_chains.py::TestDefUseChains::test_named_expr_simple",
"tests/test_chains.py::TestDefUseChains::test_named_expr_with_rename",
"tests/test_chains.py::TestDefUseChains::test_nested_if",
"tests/test_chains.py::TestDefUseChains::test_nested_if_else",
"tests/test_chains.py::TestDefUseChains::test_nested_while",
"tests/test_chains.py::TestDefUseChains::test_no_unbound_local_identifier_in_comp",
"tests/test_chains.py::TestDefUseChains::test_pep0563_annotations",
"tests/test_chains.py::TestDefUseChains::test_pep563_self_referential_annotation",
"tests/test_chains.py::TestDefUseChains::test_pep563_type_alias_override_class",
"tests/test_chains.py::TestDefUseChains::test_read_global_from_branch",
"tests/test_chains.py::TestDefUseChains::test_reassign_in_loop",
"tests/test_chains.py::TestDefUseChains::test_redef_try_except",
"tests/test_chains.py::TestDefUseChains::test_redefinition_in_comp",
"tests/test_chains.py::TestDefUseChains::test_simple_except",
"tests/test_chains.py::TestDefUseChains::test_simple_expression",
"tests/test_chains.py::TestDefUseChains::test_simple_for",
"tests/test_chains.py::TestDefUseChains::test_simple_for_orelse",
"tests/test_chains.py::TestDefUseChains::test_simple_import",
"tests/test_chains.py::TestDefUseChains::test_simple_import_as",
"tests/test_chains.py::TestDefUseChains::test_simple_lambda",
"tests/test_chains.py::TestDefUseChains::test_simple_print",
"tests/test_chains.py::TestDefUseChains::test_simple_redefinition",
"tests/test_chains.py::TestDefUseChains::test_simple_try",
"tests/test_chains.py::TestDefUseChains::test_simple_try_except",
"tests/test_chains.py::TestDefUseChains::test_simple_while",
"tests/test_chains.py::TestDefUseChains::test_star_assignment",
"tests/test_chains.py::TestDefUseChains::test_star_assignment_nested",
"tests/test_chains.py::TestDefUseChains::test_star_import_with_conditional_redef",
"tests/test_chains.py::TestDefUseChains::test_straight_raise",
"tests/test_chains.py::TestDefUseChains::test_try_except",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_for",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_list",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_starred",
"tests/test_chains.py::TestDefUseChains::test_type_destructuring_tuple",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable2",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable3",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable4",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable5",
"tests/test_chains.py::TestDefUseChains::test_unbound_class_variable_reference_message_format",
"tests/test_chains.py::TestDefUseChains::test_unbound_identifier_message_format",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_augassign",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_func",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_in_method",
"tests/test_chains.py::TestDefUseChains::test_unbound_local_identifier_nonlocal",
"tests/test_chains.py::TestDefUseChains::test_while_break",
"tests/test_chains.py::TestDefUseChains::test_while_cond_break",
"tests/test_chains.py::TestDefUseChains::test_while_cond_continue",
"tests/test_chains.py::TestDefUseChains::test_while_nested_break",
"tests/test_chains.py::TestDefUseChains::test_while_orelse_break",
"tests/test_chains.py::TestDefUseChains::test_wilcard_import_annotation",
"tests/test_chains.py::TestDefUseChains::test_wilcard_import_annotation_and_global_scope",
"tests/test_chains.py::TestDefUseChains::test_wildcard_may_override",
"tests/test_chains.py::TestDefUseChains::test_with_handler",
"tests/test_chains.py::TestUseDefChains::test_call",
"tests/test_chains.py::TestUseDefChains::test_simple_expression"
] |
{
"failed_lite_validators": [
"has_short_problem_statement"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-09-24 14:56:42+00:00
|
bsd-3-clause
| 5,479 |
|
serge-sans-paille__gast-50
|
diff --git a/gast/ast2.py b/gast/ast2.py
index 0e0a8ed..8968b5b 100644
--- a/gast/ast2.py
+++ b/gast/ast2.py
@@ -40,6 +40,17 @@ class Ast2ToGAst(AstToGAst):
new_node.end_lineno = new_node.end_col_offset = None
return new_node
+ def visit_Assign(self, node):
+ new_node = gast.Assign(
+ self._visit(node.targets),
+ self._visit(node.value),
+ None, # type_comment
+ )
+
+ gast.copy_location(new_node, node)
+ new_node.end_lineno = new_node.end_col_offset = None
+ return new_node
+
def visit_For(self, node):
new_node = gast.For(
self._visit(node.target),
@@ -278,6 +289,15 @@ class GAstToAst2(GAstToAst):
ast.copy_location(new_node, node)
return new_node
+ def visit_Assign(self, node):
+ new_node = ast.Assign(
+ self._visit(node.targets),
+ self._visit(node.value),
+ )
+
+ ast.copy_location(new_node, node)
+ return new_node
+
def visit_For(self, node):
new_node = ast.For(
self._visit(node.target),
diff --git a/gast/ast3.py b/gast/ast3.py
index 2d56fca..d0f0d39 100644
--- a/gast/ast3.py
+++ b/gast/ast3.py
@@ -15,6 +15,17 @@ class Ast3ToGAst(AstToGAst):
def visit_Index(self, node):
return self._visit(node.value)
+ def visit_Assign(self, node):
+ new_node = gast.Assign(
+ self._visit(node.targets),
+ self._visit(node.value),
+ None, # type_comment
+ )
+
+ gast.copy_location(new_node, node)
+ new_node.end_lineno = new_node.end_col_offset = None
+ return new_node
+
if sys.version_info.minor < 8:
def visit_Module(self, node):
new_node = gast.Module(
@@ -247,6 +258,15 @@ class GAstToAst3(GAstToAst):
ast.copy_location(new_node, node)
return new_node
+ def visit_Assign(self, node):
+ new_node = ast.Assign(
+ self._visit(node.targets),
+ self._visit(node.value),
+ )
+
+ ast.copy_location(new_node, node)
+ return new_node
+
if sys.version_info.minor < 8:
def visit_Module(self, node):
diff --git a/gast/gast.py b/gast/gast.py
index 317d4b1..00150ca 100644
--- a/gast/gast.py
+++ b/gast/gast.py
@@ -61,7 +61,7 @@ _nodes = (
('Delete', (('targets',),
('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
(stmt,))),
- ('Assign', (('targets', 'value',),
+ ('Assign', (('targets', 'value', 'type_comment'),
('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
(stmt,))),
('AugAssign', (('target', 'op', 'value',),
|
serge-sans-paille/gast
|
365fa06e88f38c14cdff53d1ae437851a411e7a6
|
diff --git a/tests/test_compat.py b/tests/test_compat.py
index e944647..c04c433 100644
--- a/tests/test_compat.py
+++ b/tests/test_compat.py
@@ -61,7 +61,8 @@ class CompatTestCase(unittest.TestCase):
compile(gast.gast_to_ast(tree), '<test>', 'exec')
norm = ("Module(body=[Assign(targets=[Name(id='e', ctx=Store()"
", annotation=None, type_comment=None"
- ")], value=Constant(value=1, kind=None)), Expr(value="
+ ")], value=Constant(value=1, kind=None), "
+ "type_comment=None), Expr(value="
"JoinedStr(values=[FormattedValue(value=Name(id='e', "
"ctx=Load(), annotation=None, type_comment=None), "
"conversion=-1, format_spec=None)]))], "
@@ -74,7 +75,8 @@ class CompatTestCase(unittest.TestCase):
compile(gast.gast_to_ast(tree), '<test>', 'exec')
norm = ("Module(body=[Assign(targets=[Name(id='e', ctx=Store()"
", annotation=None, type_comment=None"
- ")], value=Constant(value=1, kind=None)), Expr(value="
+ ")], value=Constant(value=1, kind=None), "
+ "type_comment=None), Expr(value="
"JoinedStr(values=[Constant(value='e = ', kind=None), "
"FormattedValue(value=Name(id='e', ctx=Load(), "
"annotation=None, type_comment=None), "
|
ast.Assign need type_comment in Python3.8
In python3.8.5,I use gast to modify ast_node then convert back into ast by`gast_to_ast`. But the result is different with original `ast`.
It works in Python3.5 and Python2.7
The example code:
```python
import ast
import gast
import textwrap
import unittest
def code_gast_ast(source):
"""
Transform source_code into gast.Node and modify it,
then back to ast.Node.
"""
source = textwrap.dedent(source)
root = gast.parse(source)
new_root = GastNodeTransformer(root).apply()
ast_root = gast.gast_to_ast(new_root)
return ast.dump(ast_root)
def code_ast(source):
"""
Transform source_code into ast.Node, then dump it.
"""
source = textwrap.dedent(source)
root = ast.parse(source)
return ast.dump(root)
class GastNodeTransformer(gast.NodeTransformer):
def __init__(self, root):
self.root = root
def apply(self):
return self.generic_visit(self.root)
def visit_Name(self, node):
"""
Param in func is ast.Name in PY2, but ast.arg in PY3.
It will be generally represented by gast.Name in gast.
"""
if isinstance(node.ctx, gast.Param) and node.id != "self":
node.id += '_new'
return node
class TestPythonCompatibility(unittest.TestCase):
def _check_compatibility(self, source, target):
source_dump = code_gast_ast(source)
target_dump = code_ast(target)
self.assertEqual(source_dump, target_dump)
def test_call(self):
source = """
y = foo(*arg)
"""
target = """
y = foo(*arg_new)
"""
self._check_compatibility(source, target)
# source_dump gast-> ast
# Module(body=[Assign(targets=[Name(id='y', ctx=Store())], value=Call(func=Name(id='foo', ctx=Load()), args=[Starred(value=Name(id='arg_new', ctx=Load()), ctx=Load())], keywords=[]))], type_ignores=[])
# target_dump ast
# Module(body=[Assign(targets=[Name(id='y', ctx=Store())], value=Call(func=Name(id='foo', ctx=Load()), args=[Starred(value=Name(id='arg_new', ctx=Load()), ctx=Load())], keywords=[]), type_comment=None)], type_ignores=[])
```
After I modified the defination in `gast.py`, it works in python3.8
from
```
('Assign', (('targets', 'value',),
('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
(stmt,))),
```
into
```
('Assign', (('targets', 'value','type_comment'),
('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
(stmt,))),
```
|
0.0
|
365fa06e88f38c14cdff53d1ae437851a411e7a6
|
[
"tests/test_compat.py::CompatTestCase::test_FormattedValue",
"tests/test_compat.py::CompatTestCase::test_JoinedStr"
] |
[
"tests/test_compat.py::CompatTestCase::test_ArgAnnotation",
"tests/test_compat.py::CompatTestCase::test_Call",
"tests/test_compat.py::CompatTestCase::test_Ellipsis",
"tests/test_compat.py::CompatTestCase::test_ExtSlice",
"tests/test_compat.py::CompatTestCase::test_ExtSliceEllipsis",
"tests/test_compat.py::CompatTestCase::test_ExtSlices",
"tests/test_compat.py::CompatTestCase::test_Index",
"tests/test_compat.py::CompatTestCase::test_KeywordOnlyArgument",
"tests/test_compat.py::CompatTestCase::test_PosonlyArgs",
"tests/test_compat.py::CompatTestCase::test_Raise",
"tests/test_compat.py::CompatTestCase::test_TryExcept",
"tests/test_compat.py::CompatTestCase::test_TryExceptNamed",
"tests/test_compat.py::CompatTestCase::test_TryFinally",
"tests/test_compat.py::CompatTestCase::test_TypeIgnore",
"tests/test_compat.py::CompatTestCase::test_With",
"tests/test_compat.py::CompatTestCase::test_keyword_argument",
"tests/test_compat.py::CompatTestCase::test_star_argument"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-09-05 20:10:22+00:00
|
bsd-3-clause
| 5,480 |
|
serge-sans-paille__gast-59
|
diff --git a/README.rst b/README.rst
index d26f2d7..0fead9d 100644
--- a/README.rst
+++ b/README.rst
@@ -186,6 +186,7 @@ ASDL
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
+ | NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
diff --git a/gast/gast.py b/gast/gast.py
index 11b248a..a745858 100644
--- a/gast/gast.py
+++ b/gast/gast.py
@@ -133,6 +133,9 @@ _nodes = (
('BoolOp', (('op', 'values',),
('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
(expr,))),
+ ('NamedExpr', (('target', 'value',),
+ ('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
+ (expr,))),
('BinOp', (('left', 'op', 'right',),
('lineno', 'col_offset', 'end_lineno', 'end_col_offset',),
(expr,))),
|
serge-sans-paille/gast
|
2271bc2a5a6d675ab8e32d39baffc64a8d8c6b3d
|
diff --git a/tests/test_compat.py b/tests/test_compat.py
index c04c433..bca7683 100644
--- a/tests/test_compat.py
+++ b/tests/test_compat.py
@@ -112,6 +112,16 @@ class CompatTestCase(unittest.TestCase):
"], type_ignores=[])")
self.assertEqual(gast.dump(tree), norm)
+ def test_NamedExpr(self):
+ code = '(x := 1) '
+ tree = gast.parse(code)
+ compile(gast.gast_to_ast(tree), '<test>', 'exec')
+ norm = ("Module(body=[Expr(value=NamedExpr(target=Name(id='x',"
+ " ctx=Store(), annotation=None, type_comment=None), "
+ "value=Constant(value=1, kind=None)))], type_ignores="
+ "[])")
+ self.assertEqual(gast.dump(tree), norm)
+
else:
def test_Bytes(self):
|
gast doesn't seem to parse assignment expressions correctly
It looks like `gast` doesn't correctly parse [assignment expressions](https://docs.python.org/3/whatsnew/3.8.html#assignment-expressions) (the `:=` operator):
`ast`:
```
In [1]: import ast
In [2]: expr = "(x := 1)"
In [3]: ast.dump(ast.parse(expr))
Out[3]: "Module(body=[Expr(value=NamedExpr(target=Name(id='x', ctx=Store()), value=Constant(value=1, kind=None)))], type_ignores=[])"
```
`gast`:
```
In [4]: import gast
In [5]: expr = "(x := 1)"
In [6]: gast.dump(gast.parse(expr))
Out[6]: 'Module(body=[Expr(value=None)], type_ignores=[])'
```
|
0.0
|
2271bc2a5a6d675ab8e32d39baffc64a8d8c6b3d
|
[
"tests/test_compat.py::CompatTestCase::test_NamedExpr"
] |
[
"tests/test_compat.py::CompatTestCase::test_ArgAnnotation",
"tests/test_compat.py::CompatTestCase::test_Call",
"tests/test_compat.py::CompatTestCase::test_Ellipsis",
"tests/test_compat.py::CompatTestCase::test_ExtSlice",
"tests/test_compat.py::CompatTestCase::test_ExtSliceEllipsis",
"tests/test_compat.py::CompatTestCase::test_ExtSlices",
"tests/test_compat.py::CompatTestCase::test_FormattedValue",
"tests/test_compat.py::CompatTestCase::test_Index",
"tests/test_compat.py::CompatTestCase::test_JoinedStr",
"tests/test_compat.py::CompatTestCase::test_KeywordOnlyArgument",
"tests/test_compat.py::CompatTestCase::test_PosonlyArgs",
"tests/test_compat.py::CompatTestCase::test_Raise",
"tests/test_compat.py::CompatTestCase::test_TryExcept",
"tests/test_compat.py::CompatTestCase::test_TryExceptNamed",
"tests/test_compat.py::CompatTestCase::test_TryFinally",
"tests/test_compat.py::CompatTestCase::test_TypeIgnore",
"tests/test_compat.py::CompatTestCase::test_With",
"tests/test_compat.py::CompatTestCase::test_keyword_argument",
"tests/test_compat.py::CompatTestCase::test_star_argument"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-07-23 08:19:35+00:00
|
bsd-3-clause
| 5,481 |
|
seung-lab__cloud-volume-362
|
diff --git a/cloudvolume/frontends/precomputed.py b/cloudvolume/frontends/precomputed.py
index 807561d..6717c5e 100644
--- a/cloudvolume/frontends/precomputed.py
+++ b/cloudvolume/frontends/precomputed.py
@@ -522,6 +522,7 @@ class CloudVolumePrecomputed(object):
slices = self.meta.bbox(self.mip).reify_slices(slices, bounded=self.bounded)
steps = Vec(*[ slc.step for slc in slices ])
+ slices = [ slice(slc.start, slc.stop) for slc in slices ]
channel_slice = slices.pop()
requested_bbox = Bbox.from_slices(slices)
diff --git a/cloudvolume/lib.py b/cloudvolume/lib.py
index e3d00fb..2fae1f0 100644
--- a/cloudvolume/lib.py
+++ b/cloudvolume/lib.py
@@ -403,9 +403,13 @@ class Bbox(object):
slices, bounded=bounded, autocrop=autocrop
)
+ for slc in slices:
+ if slc.step not in (None, 1):
+ raise ValueError("Non-unitary steps are unsupported. Got: " + str(slc.step))
+
return Bbox(
[ slc.start for slc in slices ],
- [ slc.stop for slc in slices ]
+ [ (slc.start if slc.stop < slc.start else slc.stop) for slc in slices ]
)
@classmethod
|
seung-lab/cloud-volume
|
9395505a1d7baca9a1cd78b5150fec579120569b
|
diff --git a/test/test_lib.py b/test/test_lib.py
index c175b5b..0813598 100644
--- a/test/test_lib.py
+++ b/test/test_lib.py
@@ -101,6 +101,21 @@ def test_bbox_division():
bbox /= 3.0
assert np.all(x == point333)
+def test_bbox_slicing():
+ bbx_rect = Bbox.from_slices(np.s_[1:10,1:10,1:10])
+ bbx_plane = Bbox.from_slices(np.s_[1:10,10:1,1:10])
+
+ assert bbx_rect == Bbox((1,1,1), (10,10,10))
+ assert bbx_plane == Bbox((1,10,1), (10, 10, 10))
+
+ try:
+ bbx_plane = Bbox.from_slices(np.s_[1:10,10:1:-1,1:10])
+ assert False
+ except ValueError:
+ pass
+
+ bbx_plane = Bbox.from_slices(np.s_[1:10,10:1:1,1:10])
+ assert bbx_plane == Bbox((1,10,1), (10, 10, 10))
def test_bbox_intersection():
|
Writing to volume (by slicing notation) is not properly checking slice.start < slice.stop
cv[(slice(0,1),slice(0,1),slice(779,344))] = 0 appears to clear out 344:779 rather than the expected behavior of not writing anything because the effective range is empty.
|
0.0
|
9395505a1d7baca9a1cd78b5150fec579120569b
|
[
"test/test_lib.py::test_bbox_slicing"
] |
[
"test/test_lib.py::test_divisors",
"test/test_lib.py::test_find_closest_divisor",
"test/test_lib.py::test_bbox_subvoxel",
"test/test_lib.py::test_vec_division",
"test/test_lib.py::test_bbox_division",
"test/test_lib.py::test_bbox_intersect",
"test/test_lib.py::test_bbox_intersection",
"test/test_lib.py::test_bbox_hashing",
"test/test_lib.py::test_bbox_serialize",
"test/test_lib.py::test_bbox_volume",
"test/test_lib.py::test_jsonify",
"test/test_lib.py::test_bbox_from_filename"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-07-14 18:41:12+00:00
|
bsd-3-clause
| 5,482 |
|
seznam__flexp-11
|
diff --git a/flexp/flexp/core.py b/flexp/flexp/core.py
index 0c4d474..6a14022 100644
--- a/flexp/flexp/core.py
+++ b/flexp/flexp/core.py
@@ -3,6 +3,7 @@ from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
+import shutil
from datetime import datetime
from shutil import copyfile, copystat
import io
@@ -222,8 +223,38 @@ class ExperimentHandler(object):
self._metadata[key] = value
+def clean_experiment_dir(override_dir):
+ """
+ Cleans experiment folder.
+ :param bool override_dir: If true, clean the folder, if false, check it's empty or doesn't exists
+ :return:
+ """
+ experiment_dir = get_file_path("")
+ # Check experiment_dir is empty or doesn't exists
+ if not override_dir:
+ if not os.path.exists(experiment_dir) or not os.listdir(experiment_dir):
+ return
+ else:
+ raise FileExistsError(
+ "Directory '{}' already exists and is not empty! "
+ "Use override_dir=True to clean the directory."
+ .format(name())
+ )
+ else:
+ # Dir doesn't exists, so everything's fine.
+ if not os.path.exists(experiment_dir):
+ return
+ # Remove all files in the directory
+ for the_file in os.listdir(experiment_dir):
+ file_path = os.path.join(experiment_dir, the_file)
+ if os.path.isfile(file_path):
+ os.unlink(file_path)
+ elif os.path.isdir(file_path):
+ shutil.rmtree(file_path)
+
+
def setup(root_dir, exp_name=None, with_date=False, backup=True, default_rights=RWXRWS, loglevel=logging.DEBUG,
- log_filename='log.txt', disable_stderr=False):
+ log_filename='log.txt', disable_stderr=False, override_dir=False):
"""Set up Experiment handler.
:param root_dir: Path to experiments root directory. New directories will be created in the folder.
@@ -234,11 +265,17 @@ def setup(root_dir, exp_name=None, with_date=False, backup=True, default_rights=
:param loglevel: Loglevel, DEBUG by default, can be overriden by FLEXP_LOGLEVEL environment variable.
:param log_filename: Filename of log in experiment dir. 'log.txt' by default. If None, logging to file is disabled.
:param disable_stderr: Enable/disable logging on stderr. False by default.
+ :param bool override_dir: If True, remove all contents of the directory.
+ If False and there is any file in the directory, raise an exception.
"""
if "experiment" in _eh:
raise Exception("flexp.setup() called twice")
_eh["experiment"] = ExperimentHandler(default_rights=default_rights)
_eh["experiment"].setup(root_dir, exp_name, with_date=with_date)
+
+ # Clean the directory or check it's empty
+ clean_experiment_dir(override_dir)
+
if backup:
_eh["experiment"].backup_files([sys.argv[0]])
atexit.register(_eh["experiment"]._write_metadata)
@@ -327,4 +364,5 @@ def set_metadata(key, value):
def disable():
"""Surpress all output and returns /dev/null as path to all files."""
_eh["experiment"].disabled = True
+ _setup_logging(logging.FATAL, None, True)
diff --git a/flexp/flexp/logging.py b/flexp/flexp/logging.py
index aa57d50..b15c269 100644
--- a/flexp/flexp/logging.py
+++ b/flexp/flexp/logging.py
@@ -3,7 +3,6 @@ import warnings
import os
import six
-
log_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
@@ -39,6 +38,7 @@ def get_loglevel_from_env(default_level):
def _setup_logging(level=logging.DEBUG, filename='log.txt', disable_stderr=False):
+ _close_file_handlers()
level = loglevel_from_string(level)
root_logger = logging.getLogger()
root_logger.setLevel(level)
@@ -52,3 +52,9 @@ def _setup_logging(level=logging.DEBUG, filename='log.txt', disable_stderr=False
root_logger.addHandler(stream_handler)
warnings.simplefilter("once")
+
+
+def _close_file_handlers():
+ root_logger = logging.getLogger()
+ for file_handler in root_logger.handlers:
+ file_handler.close()
|
seznam/flexp
|
220a95804f0d682aab153ad9d500291c7d5ff4cf
|
diff --git a/tests/test_flexp.py b/tests/test_flexp.py
index 574e942..e814871 100644
--- a/tests/test_flexp.py
+++ b/tests/test_flexp.py
@@ -30,6 +30,7 @@ def test_working():
if not hasattr(atexit, "unregister") and path.exists(
path.join(expdir, "flexp_info.txt")):
os.unlink(path.join(expdir, "flexp_info.txt"))
+ flexp.disable()
shutil.rmtree(expdir)
diff --git a/tests/test_flexp_override.py b/tests/test_flexp_override.py
new file mode 100644
index 0000000..90623d0
--- /dev/null
+++ b/tests/test_flexp_override.py
@@ -0,0 +1,41 @@
+# coding: utf-8
+
+import atexit
+import io
+import os
+from os import path
+import shutil
+
+import pytest
+
+from flexp import flexp
+
+
+def test_override():
+ expdir = path.join("tests/data/", "exp01")
+
+ # Remove the experiment dir if it exists
+ if os.path.exists(expdir):
+ shutil.rmtree(expdir)
+
+ # We have to reset the _eh to make flexp stop complaining about calling setup twice.
+ flexp.core._eh = {}
+ flexp.setup("tests/data/", "exp01", False, override_dir=False)
+
+ assert path.isdir(expdir), "flexp didn't create experiment dir with override_dir=False"
+
+ # Test that it fails to create the directory, there should be logging file already.
+ with pytest.raises(FileExistsError):
+ flexp.core._eh = {}
+ flexp.setup("tests/data/", "exp01", False, override_dir=False)
+
+ # This should be ok
+ flexp.core._eh = {}
+ flexp.setup("tests/data/", "exp01", False, override_dir=True)
+
+ # Disable logging to be able to delete the experiment directory.
+ flexp.disable()
+
+ # Remove the experiment dir
+ if os.path.exists(expdir):
+ shutil.rmtree(expdir)
|
Flexp.setup doesn't clean the experiment directory.
When creating an experiment, I usually did clean_experiment_folder to get rid of previous results.
Now if I do this:
```python
flexp.setup(EXPS_DIR, DESC, with_date=not SHORT_RUN, default_rights=RWXRWXRWX)
clean_experiment_folder(flexp.get_file_path(""))
```
it will remove the log.txt as well, because it is now created by flexp.setup and not flog. Before calling `flexp.setup`, I don't know what is the experiment dir so I can't clean it.
I suggest adding a switch `clean_experiment_folder`, defaults to True, which removes everything in the experiment folder and only after that creates the log file.
What do you think?
|
0.0
|
220a95804f0d682aab153ad9d500291c7d5ff4cf
|
[
"tests/test_flexp_override.py::test_override"
] |
[
"tests/test_flexp.py::test_working",
"tests/test_flexp.py::test_static"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-10-04 12:59:11+00:00
|
bsd-3-clause
| 5,483 |
|
sgaynetdinov__py-vkontakte-28
|
diff --git a/vk/fetch.py b/vk/fetch.py
index b0eb38e..761408c 100644
--- a/vk/fetch.py
+++ b/vk/fetch.py
@@ -65,7 +65,7 @@ class Session:
items = res['items']
if not items:
- raise StopIteration
+ return None
for i in items:
yield constructor_from_json(self, i)
|
sgaynetdinov/py-vkontakte
|
39a038277d2b439bf1a967f903e6c140fb8d4e49
|
diff --git a/tests/test_fetch.py b/tests/test_fetch.py
index 711b724..ae22ee4 100644
--- a/tests/test_fetch.py
+++ b/tests/test_fetch.py
@@ -1,7 +1,10 @@
import io
+import pytest
+
import vk
from vk.fetch import Session
+from vk.users import User
def test_url_open(mocker):
@@ -29,3 +32,12 @@ def test_upload_photo():
assert b'Content-Type: application/octet-stream' in data
assert b'Python developer and blogger.' in data
assert boundary.encode() in data
+
+def test_fetch_items_stop_iteration(mocker):
+ fetch = mocker.patch('vk.fetch.Session.fetch')
+ fetch.return_value = {'items': []}
+
+ got = Session().fetch_items('test', User.from_json, 10)
+
+ with pytest.raises(StopIteration):
+ next(got)
|
Raise error StopIteration
```
list(group.get_members())
```
python3.7
|
0.0
|
39a038277d2b439bf1a967f903e6c140fb8d4e49
|
[
"tests/test_fetch.py::test_fetch_items_stop_iteration"
] |
[
"tests/test_fetch.py::test_url_open",
"tests/test_fetch.py::test_upload_photo"
] |
{
"failed_lite_validators": [
"has_short_problem_statement"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-01-05 20:03:08+00:00
|
mit
| 5,484 |
|
shaarli__python-shaarli-client-54
|
diff --git a/setup.py b/setup.py
index 5044848..404b2e5 100644
--- a/setup.py
+++ b/setup.py
@@ -40,9 +40,8 @@ setup(
],
},
install_requires=[
- 'requests >= 2.10',
- 'requests-jwt >= 0.4, < 0.5',
- 'pyjwt == 1.7.1'
+ 'requests >= 2.25',
+ 'pyjwt == 2.0.1'
],
classifiers=[
'Development Status :: 3 - Alpha',
diff --git a/shaarli_client/client/v1.py b/shaarli_client/client/v1.py
index 59b0b93..2113abe 100644
--- a/shaarli_client/client/v1.py
+++ b/shaarli_client/client/v1.py
@@ -3,8 +3,8 @@ import calendar
import time
from argparse import Action, ArgumentTypeError
+import jwt
import requests
-from requests_jwt import JWTAuth
def check_positive_integer(value):
@@ -248,8 +248,12 @@ class ShaarliV1Client:
def _request(self, method, endpoint, params, verify_certs=True):
"""Send an HTTP request to this instance"""
- auth = JWTAuth(self.secret, alg='HS512', header_format='Bearer %s')
- auth.add_field('iat', lambda req: calendar.timegm(time.gmtime()))
+ encoded_token = jwt.encode(
+ {'iat': calendar.timegm(time.gmtime())},
+ self.secret,
+ algorithm='HS512',
+ )
+ headers = {'Authorization': 'Bearer %s' % encoded_token}
endpoint_uri = '%s/api/v%d/%s' % (self.uri, self.version, endpoint)
@@ -257,11 +261,16 @@ class ShaarliV1Client:
return requests.request(
method,
endpoint_uri,
- auth=auth,
+ headers=headers,
params=params,
verify=verify_certs
)
- return requests.request(method, endpoint_uri, auth=auth, json=params)
+ return requests.request(
+ method,
+ endpoint_uri,
+ headers=headers,
+ json=params,
+ )
def request(self, args):
"""Send a parameterized request to this instance"""
|
shaarli/python-shaarli-client
|
1748cdfef3c356c7775f1c2dd3fdb9a37ef40d5b
|
diff --git a/tests/client/test_v1.py b/tests/client/test_v1.py
index a08f239..9abee4f 100644
--- a/tests/client/test_v1.py
+++ b/tests/client/test_v1.py
@@ -119,7 +119,7 @@ def test_get_info_uri(request):
request.assert_called_once_with(
'GET',
'%s/api/v1/info' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
verify=True,
params={}
)
@@ -145,7 +145,7 @@ def test_get_links_uri(request):
request.assert_called_once_with(
'GET',
'%s/api/v1/links' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
verify=True,
params={}
)
@@ -187,7 +187,7 @@ def test_post_links_uri(request):
request.assert_called_once_with(
'POST',
'%s/api/v1/links' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
json={}
)
@@ -229,7 +229,7 @@ def test_put_links_uri(request):
request.assert_called_once_with(
'PUT',
'%s/api/v1/links/12' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
json={}
)
@@ -288,7 +288,7 @@ def test_get_tags_uri(request):
request.assert_called_once_with(
'GET',
'%s/api/v1/tags' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
verify=True,
params={}
)
@@ -301,7 +301,7 @@ def test_put_tags_uri(request):
request.assert_called_once_with(
'PUT',
'%s/api/v1/tags/some-tag' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
json={}
)
@@ -340,7 +340,7 @@ def test_delete_tags_uri(request):
request.assert_called_once_with(
'DELETE',
'%s/api/v1/tags/some-tag' % SHAARLI_URL,
- auth=mock.ANY,
+ headers=mock.ANY,
json={}
)
|
Traceback error ( AttributeError: 'str' object has no attribute 'decode')
Python 3.7.3
When I enter `shaarli get-info` (or really any valid command) I get this:
Traceback (most recent call last):
File "/home/pi/.virtualenvs/shaarli/bin/shaarli", line 10, in <module>
sys.exit(main())
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/shaarli_client/main.py", line 58, in main
response = ShaarliV1Client(url, secret).request(args)
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/shaarli_client/client/v1.py", line 267, in request
return self._request(* self._retrieve_http_params(args))
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/shaarli_client/client/v1.py", line 261, in _request
params=params
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/requests/api.py", line 61, in request
return session.request(method=method, url=url, **kwargs)
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/requests/sessions.py", line 528, in request
prep = self.prepare_request(req)
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/requests/sessions.py", line 466, in prepare_request
hooks=merge_hooks(request.hooks, self.hooks),
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/requests/models.py", line 320, in prepare
self.prepare_auth(auth, url)
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/requests/models.py", line 551, in prepare_auth
r = auth(self)
File "/home/pi/.virtualenvs/shaarli/lib/python3.7/site-packages/requests_jwt/__init__.py", line 165, in __call__
request.headers['Authorization'] = self._header_format % token.decode('ascii')
AttributeError: 'str' object has no attribute 'decode'
I do have the correct secret and URL of my instance.
|
0.0
|
1748cdfef3c356c7775f1c2dd3fdb9a37ef40d5b
|
[
"tests/client/test_v1.py::test_get_info_uri",
"tests/client/test_v1.py::test_get_links_uri",
"tests/client/test_v1.py::test_post_links_uri",
"tests/client/test_v1.py::test_put_links_uri",
"tests/client/test_v1.py::test_get_tags_uri",
"tests/client/test_v1.py::test_put_tags_uri",
"tests/client/test_v1.py::test_delete_tags_uri"
] |
[
"tests/client/test_v1.py::test_check_positive_integer",
"tests/client/test_v1.py::test_check_positive_integer_negative",
"tests/client/test_v1.py::test_check_positive_integer_alpha",
"tests/client/test_v1.py::test_invalid_endpoint_parameters_exception",
"tests/client/test_v1.py::test_constructor",
"tests/client/test_v1.py::test_constructor_no_uri",
"tests/client/test_v1.py::test_constructor_no_secret",
"tests/client/test_v1.py::test_constructor_strip_uri[http://domain.tld/shaarli]",
"tests/client/test_v1.py::test_constructor_strip_uri[http://domain.tld/shaarli/]",
"tests/client/test_v1.py::test_constructor_strip_uri[http://domain.tld/shaarli///]",
"tests/client/test_v1.py::test_check_endpoint_params_none",
"tests/client/test_v1.py::test_check_endpoint_params_empty",
"tests/client/test_v1.py::test_check_endpoint_params_ok",
"tests/client/test_v1.py::test_check_endpoint_params_nok",
"tests/client/test_v1.py::test_check_endpoint_params_nok_mixed",
"tests/client/test_v1.py::test_get_info_invalid_uri[http:/shaarli-InvalidURL-No",
"tests/client/test_v1.py::test_get_info_invalid_uri[htp://shaarli-InvalidSchema-No",
"tests/client/test_v1.py::test_retrieve_http_params_get_info",
"tests/client/test_v1.py::test_retrieve_http_params_get_links",
"tests/client/test_v1.py::test_retrieve_http_params_get_links_searchterm",
"tests/client/test_v1.py::test_retrieve_http_params_post_link",
"tests/client/test_v1.py::test_retrieve_http_params_post_empty_link",
"tests/client/test_v1.py::test_retrieve_http_params_put_link",
"tests/client/test_v1.py::test_retrieve_http_params_put_empty_link",
"tests/client/test_v1.py::test_retrieve_http_params_get_tags",
"tests/client/test_v1.py::test_retrieve_http_params_put_tag",
"tests/client/test_v1.py::test_retrieve_http_params_put_empty_tag",
"tests/client/test_v1.py::test_retrieve_http_params_delete_tag",
"tests/client/test_v1.py::test_retrieve_http_params_delete_empty_tag"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-04-07 20:24:24+00:00
|
mit
| 5,485 |
|
shadowmoose__pyderman-20
|
diff --git a/pyderman/drivers/chrome.py b/pyderman/drivers/chrome.py
index 5b54fd6..7859b54 100644
--- a/pyderman/drivers/chrome.py
+++ b/pyderman/drivers/chrome.py
@@ -11,10 +11,16 @@ _base_download = "https://chromedriver.storage.googleapis.com/%s/chromedriver_%s
def get_url(
version: str = "latest", _os: str | None = None, _os_bit: str | None = None
) -> tuple[str, str, str]:
+ match = re.match(r"^(\d*)[.]?(\d*)[.]?(\d*)[.]?(\d*)$", version)
if version == "latest":
resolved_version = downloader.raw(_base_version)
- elif re.match(r"\d+(\.\d+\.\d+)?", version):
- resolved_version = downloader.raw("{}_{}".format(_base_version, version))
+ elif match:
+ major, minor, patch, build = match.groups()
+ if patch:
+ patch_version = "{}.{}.{}".format(major, minor, patch)
+ else:
+ patch_version = major
+ resolved_version = downloader.raw("{}_{}".format(_base_version, patch_version))
else:
resolved_version = version
if not resolved_version:
|
shadowmoose/pyderman
|
d377c81e5684fc637388254f0f78e52748b0df0c
|
diff --git a/pyderman/test.py b/pyderman/test.py
index 7ea9d03..127d25a 100644
--- a/pyderman/test.py
+++ b/pyderman/test.py
@@ -2,10 +2,19 @@ from __future__ import annotations
import os
import platform
+import re
import subprocess
import unittest
from types import ModuleType
+try:
+ # Python 3
+ from urllib.request import urlopen
+except ImportError:
+ # Python 2
+ # noinspection PyUnresolvedReferences
+ from urllib2 import urlopen # type: ignore[import,no-redef]
+
from pyderman import chrome, edge, firefox, install, opera, phantomjs
@@ -59,5 +68,54 @@ class TestDriverInstalls(unittest.TestCase):
process_driver(edge, self)
+class TestChrome(unittest.TestCase):
+ def setUp(self) -> None:
+ version_re = re.compile(r"^(\d+)\.(\d+)\.(\d+)\.(\d+)$")
+ url = "https://chromedriver.storage.googleapis.com/LATEST_RELEASE"
+ resp = urlopen(url, timeout=15)
+ html = resp.read().decode("utf-8", errors="ignore")
+ version_string = str(html)
+ self.latest = version_string
+
+ match = version_re.match(version_string)
+ if not match:
+ raise ValueError("Invalid version string: %r" % version_string)
+
+ major, minor, patch, build = match.groups()
+ self.major = major
+ self.minor = minor
+ self.patch = patch
+ self.build = build
+ return
+
+ def chrome_version(self, version: str) -> None:
+ drvr, url, vers = chrome.get_url(version, _os="mac", _os_bit="64")
+ self.assertEqual(vers, self.latest)
+ self.assertEqual(
+ url,
+ f"https://chromedriver.storage.googleapis.com/{self.latest}/chromedriver_mac64.zip",
+ )
+
+ def test_get_latest(self) -> None:
+ self.chrome_version("latest")
+
+ def test_get_major(self) -> None:
+ self.chrome_version(f"{self.major}")
+
+ def test_get_patch(self) -> None:
+ self.chrome_version(f"{self.major}.{self.minor}.{self.patch}")
+
+ def test_get_build(self) -> None:
+ self.chrome_version(f"{self.latest}")
+
+ def test_get_nonsense(self) -> None:
+ with self.assertRaises(Exception) as exc:
+ self.chrome_version("25.25.25.25")
+ self.assertEqual(
+ str(exc.exception), "Unable to locate ChromeDriver version: 25.25.25.25!"
+ )
+ return
+
+
if __name__ == "__main__":
unittest.main()
|
pyderman.install() returns error when specifying full version of chromedriver.
pyderman.install() returns error when specifying full version of chromedriver.
I'm looking at the latest commit (not officially released yet).
https://github.com/shadowmoose/pyderman/commit/d377c81e5684fc637388254f0f78e52748b0df0c
```python
pyderman.install(browser=pyderman.chrome version="101.0.4951.41")
```
Results in: `Exception: Unable to locate ChromeDriver version: 101.0.4951.41!`
It appears to be related to the changes in https://github.com/shadowmoose/pyderman/pull/13/files
The code assumes that making a request to the following URL will return a version
https://chromedriver.storage.googleapis.com/LATEST_RELEASE_101.0.4951.41
Looking through the xml on https://chromedriver.storage.googleapis.com/ there does not appear to be the option for that version. In fact I'm not seeing any options for `LATEST_RELEASE_X.X.X.X`. The options appear to be limited to `LATEST_RELEASE_X.X.X`
Looking up versions seems to work with the Major and patch versions. These are valid lookups:
- https://chromedriver.storage.googleapis.com/LATEST_RELEASE_101
- https://chromedriver.storage.googleapis.com/LATEST_RELEASE_101.0.4951
|
0.0
|
d377c81e5684fc637388254f0f78e52748b0df0c
|
[
"pyderman/test.py::TestChrome::test_get_build"
] |
[
"pyderman/test.py::TestDriverInstalls::test_chrome",
"pyderman/test.py::TestDriverInstalls::test_details",
"pyderman/test.py::TestDriverInstalls::test_edge",
"pyderman/test.py::TestDriverInstalls::test_phantomjs",
"pyderman/test.py::TestChrome::test_get_latest",
"pyderman/test.py::TestChrome::test_get_major",
"pyderman/test.py::TestChrome::test_get_nonsense",
"pyderman/test.py::TestChrome::test_get_patch"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-05-05 04:36:19+00:00
|
mit
| 5,486 |
|
shinichi-takii__ddlparse-43
|
diff --git a/CHANGELOG.md b/CHANGELOG.md
index adef029..aca4078 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,4 +1,13 @@
# Changelog
+All notable changes to the "ddlparse" module will be documented in this file.
+
+The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
+and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
+
+
+## [1.3.1] - 2019-12-05
+### Fixed
+- Fixed parsing failure for columns include dot at default values.
## [1.3.0] - 2019-06-15
### Added
@@ -8,17 +17,22 @@
- Add supports column comments in BigQuery DDL.
## [1.2.3] - 2019-02-17
+### Fixed
- Fix parse error for MySQL DDL with 'FOREIGN KEY'.
- Fix not completely parsed with block comments.
## [1.2.2] - 2019-02-02
-- Fix FutureWarning of Python 3.7.
+### Added
- Add supports PostgreSQL data type.
- `UUID`
+
+### Fixed
+- Fix FutureWarning of Python 3.7.
- Fix parse `DEFAULT` value.
- Add parse regex of `DEFAULT` value.
## [1.2.1] - 2019-01-27
+### Added
- Add supports for Python 3.7.
- Pass Python 3.7 test.
- Add supports PostgreSQL data type.
@@ -29,6 +43,7 @@
- Add decimal point to `DEFAULT` parse character.
## [1.2.0] - 2019-01-02
+### Added
- Add `DdlParseTable.to_bigquery_ddl` function.
- BigQuery DDL (CREATE TABLE) statement generate function.
- Add `DdlParseColumn.bigquery_legacy_data_type` property.
@@ -38,38 +53,50 @@
- Get BigQuery Standard SQL data property.
## [1.1.3] - 2018-08-02
+### Added
- Add support inline comment.
- Add support constraint name with quotes.
- Add support Oracle Length Semantics for Character Datatypes.
## [1.1.2] - 2018-03-25
+### Added
- Add support Oracle data type.
- `CLOB`, `NCLOB`
- `NUMBER` with no length & scale specification
+
+### Fixed
- Miner fix.
## [1.1.1] - 2018-03-25
+### Fixed
- Fix Postgres/Redshift parse of "::" syntax in field attribute.
## [1.1.0] - 2018-01-14
+### Added
- Add `source_database` option.
- Add `to_bigquery_fields` method to Columns dicttionary(`DdlParseColumnDict` class).
+
+### Fixed
- Fix BigQuery convert of Oracle data type.
- Oracle 'DATE' -> BigQuery 'DATETIME'
- Oracle 'NUMBER' -> BigQuery 'INTEGER' or 'FLOAT'
## [1.0.2] - 2018-01-09
+### Fixed
- Miner enhancement.
- `ddlparse.py` : Exclude unused module.
- `example.py` : Modified comment.
- `README.md` : Miner fix.
## [1.0.1] - 2018-01-07
+### Fixed
- Miner enhancement.
## [1.0.0]
+### Added
- Initial released.
+[1.3.1]: https://github.com/shinichi-takii/ddlparse/compare/v1.3.0...v1.3.1
[1.3.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.2.3...v1.3.0
[1.2.3]: https://github.com/shinichi-takii/ddlparse/compare/v1.2.2...v1.2.3
[1.2.2]: https://github.com/shinichi-takii/ddlparse/compare/v1.2.1...v1.2.2
diff --git a/ddlparse/__init__.py b/ddlparse/__init__.py
index d19584b..e7f3440 100644
--- a/ddlparse/__init__.py
+++ b/ddlparse/__init__.py
@@ -8,7 +8,7 @@
from .ddlparse import *
__copyright__ = 'Copyright (C) 2018-2019 Shinichi Takii'
-__version__ = '1.3.0'
+__version__ = '1.3.1'
__license__ = 'BSD-3-Clause'
__author__ = 'Shinichi Takii'
__author_email__ = '[email protected]'
diff --git a/ddlparse/ddlparse.py b/ddlparse/ddlparse.py
index a4ac93c..44b133c 100644
--- a/ddlparse/ddlparse.py
+++ b/ddlparse/ddlparse.py
@@ -524,7 +524,7 @@ class DdlParse(DdlParseBase):
+ Optional(_LPAR + Regex(r"\d+\s*,*\s*\d*") + Optional(Suppress(_CHAR_SEMANTICS | _BYTE_SEMANTICS)) + _RPAR)
)("type")
+ Optional(Word(r"\[\]"))("array_brackets")
- + Optional(Regex(r"(?!--)(\b(COMMENT|DEFAULT)\b\s+[^,]+|([A-Za-z0-9_'\": -]|[^\x01-\x7E])*)", re.IGNORECASE))("constraint")
+ + Optional(Regex(r"(?!--)(\b(COMMENT|DEFAULT)\b\s+[^,]+|([A-Za-z0-9_\.'\": -]|[^\x01-\x7E])*)", re.IGNORECASE))("constraint")
)("column")
|
_COMMENT
diff --git a/setup.cfg b/setup.cfg
index a5988c6..dddb9d5 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -1,2 +1,2 @@
[tool:pytest]
-addopts = -vs --maxfail=2 --showlocal --durations=0 --cov-report term-missing --cov ./ddlparse
+addopts = -vs --maxfail=2 --showlocals --durations=0 --cov-report term-missing --cov ./ddlparse
|
shinichi-takii/ddlparse
|
3f42a669074d1e7f8e436b19e56ee11692960ec5
|
diff --git a/test-requirements.txt b/test-requirements.txt
index f2afa18..bae867f 100644
--- a/test-requirements.txt
+++ b/test-requirements.txt
@@ -1,5 +1,6 @@
pytest>=3.6
pytest-cov
+tox
coveralls
codecov
codeclimate-test-reporter
diff --git a/test/test_ddlparse.py b/test/test_ddlparse.py
index 944ac17..9bf5a76 100644
--- a/test/test_ddlparse.py
+++ b/test/test_ddlparse.py
@@ -152,6 +152,8 @@ TEST_DATA = {
Col_03 integer,
Col_04 double,
Col_05 datetime,
+ Col_06 decimal(2,1) not null default '0.0',
+ Col_07 integer,
CONSTRAINT const_01 PRIMARY KEY (Col_01, Col_02),
CONSTRAINT \"const_02\" UNIQUE (Col_03, Col_04),
CONSTRAINT \"const_03\" FOREIGN KEY (Col_04, \"Col_05\") REFERENCES ref_table_01 (\"Col_04\", Col_05)
@@ -165,6 +167,8 @@ TEST_DATA = {
{"name" : "Col_03", "type" : "INTEGER", "length" : None, "scale" : None, "array_dimensional" : 0, "not_null" : False, "pk" : False, "unique" : True, "constraint" : "UNIQUE", "description" : None},
{"name" : "Col_04", "type" : "DOUBLE", "length" : None, "scale" : None, "array_dimensional" : 0, "not_null" : False, "pk" : False, "unique" : True, "constraint" : "UNIQUE", "description" : None},
{"name" : "Col_05", "type" : "DATETIME", "length" : None, "scale" : None, "array_dimensional" : 0, "not_null" : False, "pk" : False, "unique" : False, "constraint" : "", "description" : None},
+ {"name" : "Col_06", "type" : "DECIMAL", "length" : 2, "scale" : 1, "array_dimensional" : 0, "not_null" : True, "pk" : False, "unique" : False, "constraint" : "NOT NULL", "description" : None},
+ {"name" : "Col_07", "type" : "INTEGER", "length" : None, "scale" : None, "array_dimensional" : 0, "not_null" : False, "pk" : False, "unique" : False, "constraint" : "", "description" : None},
],
"bq_field" : [
'{"name": "Col_01", "type": "STRING", "mode": "REQUIRED"}',
@@ -172,6 +176,8 @@ TEST_DATA = {
'{"name": "Col_03", "type": "INTEGER", "mode": "NULLABLE"}',
'{"name": "Col_04", "type": "FLOAT", "mode": "NULLABLE"}',
'{"name": "Col_05", "type": "DATETIME", "mode": "NULLABLE"}',
+ '{"name": "Col_06", "type": "FLOAT", "mode": "REQUIRED"}',
+ '{"name": "Col_07", "type": "INTEGER", "mode": "NULLABLE"}',
],
"bq_standard_data_type" : [
"STRING",
@@ -179,6 +185,8 @@ TEST_DATA = {
"INT64",
"FLOAT64",
"DATETIME",
+ "FLOAT64",
+ "INT64",
],
},
|
Parsing failure for columns include dot at default values
# Requirements
* Parsing failure for columns include dot at default values.
## Example code
```python
# -*- coding: utf-8 -*-
from ddlparse import DdlParse
sample_ddl = """
CREATE TABLE Sample_Table (
Col_01 varchar(100),
Col_02 char(200),
Col_03 integer,
Col_04 double,
Col_05 datetime,
Col_06 decimal(2,1) not null default '0.0',
Col_07 integer,
CONSTRAINT const_01 PRIMARY KEY (Col_01, Col_02),
CONSTRAINT \"const_02\" UNIQUE (Col_03, Col_04),
CONSTRAINT \"const_03\" FOREIGN KEY (Col_04, \"Col_05\") REFERENCES ref_table_01 (\"Col_04\", Col_05)
);
"""
parser = DdlParse(sample_ddl)
table = parser.parse()
print("* BigQuery Fields * : normal")
print(table.to_bigquery_fields())
```
## Output
Parsing stops at Col_06...
```json
[{"name": "Col_01", "type": "STRING", "mode": "NULLABLE"},{"name": "Col_02", "type": "STRING", "mode": "NULLABLE"},{"name": "Col_03", "type": "INTEGER", "mode": "NULLABLE"},{"name": "Col_04", "type": "FLOAT", "mode": "NULLABLE"},{"name": "Col_05", "type": "DATETIME", "mode": "NULLABLE"},{"name": "Col_06", "type": "FLOAT", "mode": "REQUIRED"}]
```
|
0.0
|
3f42a669074d1e7f8e436b19e56ee11692960ec5
|
[
"test/test_ddlparse.py::test_parse[basic-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[basic-DDL_SET_PATTERN.property]",
"test/test_ddlparse.py::test_parse[constraint_mysql-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[constraint_postgres_oracle_redshift-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[default_postgres_redshift-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_oracle-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_postgres-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[name_backquote-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[name_doublequote-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[temp_table-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[table_with_schema-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[column_comment-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_bq_ddl[exist_schema_name]",
"test/test_ddlparse.py::test_bq_ddl[no_schema_name]",
"test/test_ddlparse.py::test_bq_ddl[datatype_postgres]",
"test/test_ddlparse.py::test_bq_ddl[column_comment]",
"test/test_ddlparse.py::test_exception_ddl",
"test/test_ddlparse.py::test_exception_bq_data_type",
"test/test_ddlparse.py::test_set_comment"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2019-12-04 12:19:26+00:00
|
bsd-3-clause
| 5,487 |
|
shinichi-takii__ddlparse-52
|
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 405a366..55f0b1d 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -5,6 +5,11 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
+## [1.6.1] - 2020-08-08
+### Fixed
+- Fix parse Redshift `ENCODE` attribute.
+
+
## [1.6.0] - 2020-07-18
### Added
- Add property.
@@ -161,6 +166,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Initial released.
+[1.6.1]: https://github.com/shinichi-takii/ddlparse/compare/v1.6.0...v1.6.1
[1.6.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.5.0...v1.6.0
[1.5.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.4.0...v1.5.0
[1.4.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.3.1...v1.4.0
diff --git a/ddlparse/__init__.py b/ddlparse/__init__.py
index 4a21d65..1e327c9 100644
--- a/ddlparse/__init__.py
+++ b/ddlparse/__init__.py
@@ -8,7 +8,7 @@
from .ddlparse import *
__copyright__ = 'Copyright (C) 2018-2020 Shinichi Takii'
-__version__ = '1.6.0'
+__version__ = '1.6.1'
__license__ = 'BSD-3-Clause'
__author__ = 'Shinichi Takii'
__author_email__ = '[email protected]'
diff --git a/ddlparse/ddlparse.py b/ddlparse/ddlparse.py
index c960ef8..0dc81e6 100644
--- a/ddlparse/ddlparse.py
+++ b/ddlparse/ddlparse.py
@@ -505,13 +505,11 @@ class DdlParse(DdlParseBase):
(
(
\s*\b(?:NOT\s+)NULL?\b
- )?
- (
+ )?(
\s*\bAUTO_INCREMENT\b
)?(
\s*\b(UNIQUE|PRIMARY)(?:\s+KEY)?\b
- )?
- (
+ )?(
\s*\bDEFAULT\b\s+(
([A-Za-z0-9_\.\'\" -]|[^\x01-\x7E])*\:\:[A-Za-z0-9\[\]]+
|
@@ -521,8 +519,7 @@ class DdlParse(DdlParseBase):
|
[^,]+
)
- )?
- (
+ )?(
\s*\bCOMMENT\b\s+(
\'(\\\'|[^\']|,)+\'
|
@@ -530,6 +527,12 @@ class DdlParse(DdlParseBase):
|
[^,]+
)
+ )?(
+ \s*\bENCODE\s+\w+\b
+ )?(
+ \s*\b(?:NOT\s+)NULL?\b
+ )?(
+ \s*\b(UNIQUE|PRIMARY)(?:\s+KEY)?\b
)?
)
"""
|
shinichi-takii/ddlparse
|
4e7e09a906e2f26d3730c8404908b9eedf1a7084
|
diff --git a/test/test_ddlparse.py b/test/test_ddlparse.py
index 76d1515..083ec18 100644
--- a/test/test_ddlparse.py
+++ b/test/test_ddlparse.py
@@ -321,8 +321,8 @@ TEST_DATA = {
"ddl":
"""
CREATE TABLE Sample_Table (
- Col_01 char(1) DEFAULT '0'::bpchar,
- Col_02 char(1) DEFAULT '0'::bpchar,
+ Col_01 char(1) DEFAULT '0'::bpchar PRIMARY KEY,
+ Col_02 char(1) DEFAULT '0'::bpchar ENCODE lzo NOT NULL,
Col_03 integer DEFAULT 0,
Col_04 numeric(10) DEFAULT 0,
Col_05 numeric(20,3) DEFAULT 0.0,
@@ -333,8 +333,8 @@ TEST_DATA = {
"database": None,
"table": {"schema": None, "name": "Sample_Table", "temp": False},
"columns": [
- {"name": "Col_01", "type": "CHAR", "length": 1, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "constraint": "", "description": None},
- {"name": "Col_02", "type": "CHAR", "length": 1, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "constraint": "", "description": None},
+ {"name": "Col_01", "type": "CHAR", "length": 1, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": True, "pk": True, "unique": False, "constraint": "PRIMARY KEY", "description": None},
+ {"name": "Col_02", "type": "CHAR", "length": 1, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": True, "pk": False, "unique": False, "constraint": "NOT NULL", "description": None},
{"name": "Col_03", "type": "INTEGER", "length": None, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "constraint": "", "description": None},
{"name": "Col_04", "type": "NUMERIC", "length": 10, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "constraint": "", "description": None},
{"name": "Col_05", "type": "NUMERIC", "length": 20, "scale": 3, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "constraint": "", "description": None},
@@ -342,8 +342,8 @@ TEST_DATA = {
{"name": "Col_07", "type": "CHARACTER VARYING", "length": None, "scale": None, "array_dimensional": 1, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "constraint": "", "description": None},
],
"bq_field": [
- '{"name": "Col_01", "type": "STRING", "mode": "NULLABLE"}',
- '{"name": "Col_02", "type": "STRING", "mode": "NULLABLE"}',
+ '{"name": "Col_01", "type": "STRING", "mode": "REQUIRED"}',
+ '{"name": "Col_02", "type": "STRING", "mode": "REQUIRED"}',
'{"name": "Col_03", "type": "INTEGER", "mode": "NULLABLE"}',
'{"name": "Col_04", "type": "INTEGER", "mode": "NULLABLE"}',
'{"name": "Col_05", "type": "NUMERIC", "mode": "NULLABLE"}',
|
Postgres/Redshift : Not parse DDL of "::" syntax in field attribute
## Example
### DDL (Redshift)
```sql
CREATE TABLE IF NOT EXISTS "sample_schema"."sample_table"
(
"div_cd" VARCHAR(2) NOT NULL
,"div_name" VARCHAR(30) NOT NULL
,"org_cd" VARCHAR(8) NOT NULL
,"org_name" VARCHAR(60) NOT NULL
,"team_cd" VARCHAR(2) NOT NULL
,"team_name" VARCHAR(120) NOT NULL
,"personal_cd" VARCHAR(7) NOT NULL
,"personal_name" VARCHAR(300) NOT NULL
,"username" VARCHAR(6) NOT NULL
,"staff_flg" CHAR(1) DEFAULT '0'::bpchar ENCODE lzo
,"leader_flg" CHAR(1) DEFAULT '0'::bpchar ENCODE lzo
)
DISTSTYLE EVEN
;
```
### ddlparse output BigQuery JSON schema
Not parse `leader_flg` field.
```javascript
[{
"name": "div_cd", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "div_name", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "org_cd", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "org_name", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "team_cd", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "team_name", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "personal_cd", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "personal_name", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "username", "type": "STRING", "mode": "REQUIRED"
}, {
"name": "staff_flg", "type": "STRING", "mode": "NULLABLE"
}]
```
|
0.0
|
4e7e09a906e2f26d3730c8404908b9eedf1a7084
|
[
"test/test_ddlparse.py::test_parse[default_postgres_redshift-DDL_SET_PATTERN.method]"
] |
[
"test/test_ddlparse.py::test_parse[basic-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[basic-DDL_SET_PATTERN.property]",
"test/test_ddlparse.py::test_parse[constraint_mysql-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[constraint_postgres_oracle_redshift-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_oracle-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_postgres-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_mysql-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[name_backquote-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[name_doublequote-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[temp_table-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[table_with_schema-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[column_comment-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_bq_ddl[exist_schema_name]",
"test/test_ddlparse.py::test_bq_ddl[no_schema_name]",
"test/test_ddlparse.py::test_bq_ddl[datatype_postgres]",
"test/test_ddlparse.py::test_bq_ddl[column_comment]",
"test/test_ddlparse.py::test_exception_ddl",
"test/test_ddlparse.py::test_exception_bq_data_type",
"test/test_ddlparse.py::test_set_comment"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-08-08 03:01:10+00:00
|
bsd-3-clause
| 5,488 |
|
shinichi-takii__ddlparse-70
|
diff --git a/.travis.yml b/.travis.yml
index efe2382..0ea230d 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -7,6 +7,7 @@ python:
- "3.6"
- "3.7"
- "3.8"
+ - "3.9"
# command to install dependencies
install:
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 955ffd3..70cc41d 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -5,6 +5,14 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
+## [1.10.0] - 2021-07-10
+### Added
+- Added supports for Python 3.9
+
+### Fixed
+- Fixed parsing of columns with NULL/NOT NULL constraint.
+
+
## [1.9.0] - 2020-11-04
### Added
- Add supports Cloud Spanner data-type.
@@ -58,7 +66,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- `FIXED`
### Fixed
-- Miner fix.
+- Minor fix.
## [1.5.0] - 2020-07-06
@@ -70,7 +78,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Fixed
- Fix parse for column-constraint.
-- Miner fix.
+- Minor fix.
## [1.4.0] - 2019-12-08
@@ -161,7 +169,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- `NUMBER` with no length & scale specification
### Fixed
-- Miner fix.
+- Minor fix.
## [1.1.1] - 2018-03-25
@@ -182,15 +190,15 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [1.0.2] - 2018-01-09
### Fixed
-- Miner enhancement.
+- Minor enhancement.
- `ddlparse.py` : Exclude unused module.
- `example.py` : Modified comment.
- - `README.md` : Miner fix.
+ - `README.md` : Minor fix.
## [1.0.1] - 2018-01-07
### Fixed
-- Miner enhancement.
+- Minor enhancement.
## [1.0.0]
@@ -198,6 +206,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Initial released.
+[1.10.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.9.0...v1.10.0
[1.9.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.8.0...v1.9.0
[1.8.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.7.0...v1.8.0
[1.7.0]: https://github.com/shinichi-takii/ddlparse/compare/v1.6.1...v1.7.0
diff --git a/README.md b/README.md
index 7e244ec..9719092 100644
--- a/README.md
+++ b/README.md
@@ -2,7 +2,7 @@
[](https://pypi.org/project/ddlparse/)
[](https://pypi.org/project/ddlparse/)
-[](https://travis-ci.org/shinichi-takii/ddlparse)
+[](https://travis-ci.com/shinichi-takii/ddlparse)
[](https://coveralls.io/github/shinichi-takii/ddlparse?branch=master)
[](https://codecov.io/gh/shinichi-takii/ddlparse)
[](https://requires.io/github/shinichi-takii/ddlparse/requirements/?branch=master)
diff --git a/ddlparse/__init__.py b/ddlparse/__init__.py
index 514a3f2..843a9fe 100644
--- a/ddlparse/__init__.py
+++ b/ddlparse/__init__.py
@@ -7,8 +7,8 @@
from .ddlparse import *
-__copyright__ = 'Copyright (C) 2018-2020 Shinichi Takii'
-__version__ = '1.9.0'
+__copyright__ = 'Copyright (C) 2018-2021 Shinichi Takii'
+__version__ = '1.10.0'
__license__ = 'BSD-3-Clause'
__author__ = 'Shinichi Takii'
__author_email__ = '[email protected]'
diff --git a/ddlparse/ddlparse.py b/ddlparse/ddlparse.py
index 6fa4a69..930e670 100644
--- a/ddlparse/ddlparse.py
+++ b/ddlparse/ddlparse.py
@@ -645,7 +645,7 @@ class DdlParse(DdlParseBase):
+ Optional(
Regex(r"(?!--)", re.IGNORECASE)
+ Group(
- Optional(Regex(r"\b(?:NOT\s+)NULL?\b", re.IGNORECASE))("null")
+ Optional(Regex(r"\b(?:NOT\s+)?NULL?\b", re.IGNORECASE))("null")
& Optional(Regex(r"\bAUTO_INCREMENT\b", re.IGNORECASE))("auto_increment")
& Optional(Regex(r"\b(UNIQUE|PRIMARY)(?:\s+KEY)?\b", re.IGNORECASE))("key")
& Optional(Regex(
diff --git a/setup.py b/setup.py
index bf722c3..b227011 100644
--- a/setup.py
+++ b/setup.py
@@ -64,6 +64,7 @@ setup(
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
+ 'Programming Language :: Python :: 3.9',
'Topic :: Database',
'Topic :: Software Development :: Libraries :: Python Modules',
],
diff --git a/tox.ini b/tox.ini
index 0241569..1c9b29e 100644
--- a/tox.ini
+++ b/tox.ini
@@ -1,5 +1,5 @@
[tox]
-envlist = py35,py36,py37,py38
+envlist = py35,py36,py37,py38,py39
[testenv]
deps=
|
shinichi-takii/ddlparse
|
cce0a1eac9d52c38df8206c6b28d9f999e267405
|
diff --git a/test/test_ddlparse.py b/test/test_ddlparse.py
index 7a50697..086a2a3 100644
--- a/test/test_ddlparse.py
+++ b/test/test_ddlparse.py
@@ -65,7 +65,9 @@ TEST_DATA = {
Col_49 number,
Col_50 decimal,
Col_51 string(20),
- Col_52 bytes(20)
+ Col_52 bytes(20),
+ Col_53 char(200) NULL,
+ Col_54 char(200) NOT NULL
);
""",
"database": None,
@@ -123,6 +125,8 @@ TEST_DATA = {
{"name": "Col_50", "type": "DECIMAL", "length": None, "scale": None},
{"name": "Col_51", "type": "STRING", "length": 20, "scale": None},
{"name": "Col_52", "type": "BYTES", "length": 20, "scale": None},
+ {"name": "Col_53", "type": "CHAR", "length": 200, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": False, "pk": False, "unique": False, "description": None},
+ {"name": "Col_54", "type": "CHAR", "length": 200, "scale": None, "array_dimensional": 0, "is_unsigned": False, "is_zerofill": False, "not_null": True, "pk": False, "unique": False, "constraint": "NOT NULL", "description": None},
],
"bq_field": [
'{"name": "Col_01", "type": "STRING", "mode": "REQUIRED"}',
@@ -177,6 +181,8 @@ TEST_DATA = {
'{"name": "Col_50", "type": "INTEGER", "mode": "NULLABLE"}',
'{"name": "Col_51", "type": "STRING", "mode": "NULLABLE"}',
'{"name": "Col_52", "type": "BYTES", "mode": "NULLABLE"}',
+ '{"name": "Col_53", "type": "STRING", "mode": "NULLABLE"}',
+ '{"name": "Col_54", "type": "STRING", "mode": "REQUIRED"}',
],
"bq_standard_data_type": [
"STRING",
@@ -231,6 +237,8 @@ TEST_DATA = {
"INT64",
"STRING",
"BYTES",
+ "STRING",
+ "STRING",
],
},
|
MySQL CREATE TABLE parsing fails. some columns are missing.
I tried to output a BigQuery column definition from a MySQL table definition, but some columns are missing.
Please show me how to avoid it by crafting `CREATE TABLE`, or if I used ddlparse incorrectly.
# reproduce
## environment
```console
$ sw_vers
ProductName: Mac OS X
ProductVersion: 10.15.7
BuildVersion: 19H2
$ python -V
Python 3.8.3
$ ll $(python -c "import site; print (site.getsitepackages()[0])")/ | grep ddlparse
drwxr-xr-x 5 sakamossan staff 160B 9 25 12:49 ddlparse
drwxr-xr-x 8 sakamossan staff 256B 9 25 12:49 ddlparse-1.8.0.dist-info
```
## execution
I used following files
### /tmp/_.sql
```sql
CREATE TABLE `t` (
`id` INT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
`created` DATETIME NULL,
`modified` DATETIME NULL
) ENGINE = InnoDB;
```
### /tmp/_.py
```python
#!/usr/bin/env python
import sys
import json
from ddlparse import DdlParse
sql = sys.stdin.read()
table = DdlParse().parse(ddl=sql, source_database=DdlParse.DATABASE.mysql)
print(table.to_bigquery_fields())
```
```bash
$ cat /tmp/_.json | /tmp/_.py | jq .
[
{
"name": "id",
"type": "INTEGER",
"mode": "REQUIRED"
},
{
"name": "created",
"type": "DATETIME",
"mode": "NULLABLE"
}
]
```
modified column is not output.
|
0.0
|
cce0a1eac9d52c38df8206c6b28d9f999e267405
|
[
"test/test_ddlparse.py::test_parse[basic-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[basic-DDL_SET_PATTERN.property]",
"test/test_ddlparse.py::test_parse[constraint_mysql-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[constraint_postgres_oracle_redshift-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[default_postgres_redshift-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_oracle-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_postgres-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[datatype_mysql-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[name_backquote-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[name_doublequote-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[temp_table-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[table_with_schema-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_parse[column_comment-DDL_SET_PATTERN.method]",
"test/test_ddlparse.py::test_bq_ddl[exist_schema_name]",
"test/test_ddlparse.py::test_bq_ddl[no_schema_name]",
"test/test_ddlparse.py::test_bq_ddl[datatype_postgres]",
"test/test_ddlparse.py::test_bq_ddl[column_comment]",
"test/test_ddlparse.py::test_exception_ddl",
"test/test_ddlparse.py::test_exception_bq_data_type",
"test/test_ddlparse.py::test_set_comment",
"test/test_ddlparse.py::test_constraint_compatibility"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-07-06 11:29:23+00:00
|
bsd-3-clause
| 5,489 |
|
sibson__redbeat-245
|
diff --git a/redbeat/decoder.py b/redbeat/decoder.py
index 5f630c8..a1b1ed0 100644
--- a/redbeat/decoder.py
+++ b/redbeat/decoder.py
@@ -1,11 +1,15 @@
import calendar
import json
-from datetime import datetime
+from datetime import datetime, timedelta, timezone
from celery.schedules import crontab, schedule
-from celery.utils.time import FixedOffset, timezone
from dateutil.rrule import weekday
+try:
+ import zoneinfo
+except ImportError:
+ from backports import zoneinfo
+
from .schedules import rrule
@@ -24,7 +28,7 @@ def get_utcoffset_minutes(dt):
def from_timestamp(seconds, tz_minutes=0):
"""convert seconds since the epoch to an UTC aware datetime"""
- tz = FixedOffset(tz_minutes) if tz_minutes else timezone.utc
+ tz = timezone(timedelta(minutes=tz_minutes)) if tz_minutes else timezone.utc
return datetime.fromtimestamp(seconds, tz=tz)
@@ -41,9 +45,9 @@ class RedBeatJSONDecoder(json.JSONDecoder):
if objtype == 'datetime':
zone = d.pop('timezone', 'UTC')
try:
- tzinfo = FixedOffset(zone / 60)
+ tzinfo = timezone(timedelta(minutes=(zone / 60)))
except TypeError:
- tzinfo = timezone.get_timezone(zone)
+ tzinfo = zoneinfo.ZoneInfo(zone)
return datetime(tzinfo=tzinfo, **d)
if objtype == 'interval':
@@ -74,10 +78,10 @@ class RedBeatJSONEncoder(json.JSONEncoder):
if isinstance(obj, datetime):
if obj.tzinfo is None:
timezone = 'UTC'
- elif obj.tzinfo.zone is None:
- timezone = obj.tzinfo.utcoffset(None).total_seconds()
+ elif hasattr(obj.tzinfo, 'key'):
+ timezone = obj.tzinfo.key
else:
- timezone = obj.tzinfo.zone
+ timezone = obj.tzinfo.utcoffset(None).total_seconds()
return {
'__type__': 'datetime',
diff --git a/requirements-dev.txt b/requirements-dev.txt
index d3f3b16..9d93a24 100644
--- a/requirements-dev.txt
+++ b/requirements-dev.txt
@@ -6,3 +6,4 @@ redis>=3.2
tenacity
twine
wheel
+backports.zoneinfo>=0.2.1; python_version < "3.9.0"
diff --git a/setup.py b/setup.py
index fad7fc4..f76c17b 100644
--- a/setup.py
+++ b/setup.py
@@ -27,6 +27,12 @@ setup(
'Programming Language :: Python :: Implementation :: CPython',
'Operating System :: OS Independent',
],
- install_requires=['redis>=3.2', 'celery>=5.0', 'python-dateutil', 'tenacity'],
+ install_requires=[
+ 'redis>=3.2',
+ 'celery>=5.0',
+ 'python-dateutil',
+ 'tenacity',
+ 'backports.zoneinfo>=0.2.1; python_version < "3.9.0"',
+ ],
tests_require=['pytest'],
)
|
sibson/redbeat
|
d698cc3eae8b26f011836bb6f2e1ab87e9019951
|
diff --git a/tests/test_json.py b/tests/test_json.py
index c08ad50..67ff61c 100644
--- a/tests/test_json.py
+++ b/tests/test_json.py
@@ -1,14 +1,18 @@
import json
-from datetime import datetime
+from datetime import datetime, timedelta, timezone
from unittest import TestCase
from celery.schedules import crontab, schedule
-from celery.utils.time import FixedOffset, timezone
from dateutil import rrule as dateutil_rrule
from redbeat.decoder import RedBeatJSONDecoder, RedBeatJSONEncoder
from redbeat.schedules import rrule
+try:
+ import zoneinfo
+except ImportError:
+ from backports import zoneinfo
+
class JSONTestCase(TestCase):
def dumps(self, d):
@@ -99,14 +103,14 @@ class RedBeatJSONEncoderTestCase(JSONTestCase):
self.assertEqual(json.loads(result), expected)
def test_datetime_with_tz(self):
- dt = self.now(tzinfo=timezone.get_timezone('Asia/Shanghai'))
+ dt = self.now(tzinfo=zoneinfo.ZoneInfo('Asia/Shanghai'))
result = self.dumps(dt)
expected = self.datetime_as_dict(timezone='Asia/Shanghai', __type__='datetime')
self.assertEqual(json.loads(result), expected)
def test_datetime_with_fixedoffset(self):
- dt = self.now(tzinfo=FixedOffset(4 * 60))
+ dt = self.now(tzinfo=timezone(timedelta(hours=4)))
result = self.dumps(dt)
expected = self.datetime_as_dict(timezone=4 * 60 * 60.0)
@@ -134,7 +138,7 @@ class RedBeatJSONEncoderTestCase(JSONTestCase):
self.assertEqual(json.loads(result), self.rrule())
def test_rrule_timezone(self):
- tz = timezone.get_timezone('US/Eastern')
+ tz = zoneinfo.ZoneInfo('US/Eastern')
start1 = datetime(2015, 12, 30, 12, 59, 22, tzinfo=timezone.utc)
start2 = start1.astimezone(tz)
@@ -209,14 +213,14 @@ class RedBeatJSONDecoderTestCase(JSONTestCase):
result = self.loads(json.dumps(d))
d.pop('__type__')
d.pop('timezone')
- self.assertEqual(result, datetime(tzinfo=timezone.get_timezone('Asia/Shanghai'), **d))
+ self.assertEqual(result, datetime(tzinfo=zoneinfo.ZoneInfo('Asia/Shanghai'), **d))
def test_datetime_with_fixed_offset(self):
d = self.datetime_as_dict(__type__='datetime', timezone=5 * 60 * 60)
result = self.loads(json.dumps(d))
d.pop('__type__')
d.pop('timezone')
- self.assertEqual(result, datetime(tzinfo=FixedOffset(5 * 60), **d))
+ self.assertEqual(result, datetime(tzinfo=timezone(timedelta(hours=5)), **d))
def test_schedule(self):
d = self.schedule()
|
Celery 5.3.0rc1 not useable with redbeat anymore.
Since celery 5.3.0rc1 redbeat isnt working anymore. Please see trace. Seems FixedOffset does not exist anymore in Celery 5.3.0:
```
celery-beat | Traceback (most recent call last):
celery-beat | File "/venv/bin/celery", line 8, in <module>
celery-beat | sys.exit(main())
celery-beat | ^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/__main__.py", line 15, in main
celery-beat | sys.exit(_main())
celery-beat | ^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/bin/celery.py", line 235, in main
celery-beat | return celery(auto_envvar_prefix="CELERY")
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/click/core.py", line 1130, in __call__
celery-beat | return self.main(*args, **kwargs)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/click/core.py", line 1055, in main
celery-beat | rv = self.invoke(ctx)
celery-beat | ^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/click/core.py", line 1657, in invoke
celery-beat | return _process_result(sub_ctx.command.invoke(sub_ctx))
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/click/core.py", line 1404, in invoke
celery-beat | return ctx.invoke(self.callback, **ctx.params)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/click/core.py", line 760, in invoke
celery-beat | return __callback(*args, **kwargs)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/click/decorators.py", line 26, in new_func
celery-beat | return f(get_current_context(), *args, **kwargs)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/bin/base.py", line 134, in caller
celery-beat | return f(ctx, *args, **kwargs)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/bin/beat.py", line 72, in beat
celery-beat | return beat().run()
celery-beat | ^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/apps/beat.py", line 84, in run
celery-beat | self.start_scheduler()
celery-beat | File "/venv/lib/python3.11/site-packages/celery/apps/beat.py", line 104, in start_scheduler
celery-beat | print(self.banner(service))
celery-beat | ^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/apps/beat.py", line 126, in banner
celery-beat | c.reset(self.startup_info(service))),
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/apps/beat.py", line 136, in startup_info
celery-beat | scheduler = service.get_scheduler(lazy=True)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/celery/beat.py", line 665, in get_scheduler
celery-beat | return symbol_by_name(self.scheduler_cls, aliases=aliases)(
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/kombu/utils/imports.py", line 58, in symbol_by_name
celery-beat | module = imp(module_name, package=package, **kwargs)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/usr/local/lib/python3.11/importlib/__init__.py", line 126, in import_module
celery-beat | return _bootstrap._gcd_import(name[level:], package, level)
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "<frozen importlib._bootstrap>", line 1206, in _gcd_import
celery-beat | File "<frozen importlib._bootstrap>", line 1178, in _find_and_load
celery-beat | File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked
celery-beat | File "<frozen importlib._bootstrap>", line 690, in _load_unlocked
celery-beat | File "<frozen importlib._bootstrap_external>", line 940, in exec_module
celery-beat | File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
celery-beat | File "/venv/lib/python3.11/site-packages/redbeat/__init__.py", line 3, in <module>
celery-beat | from .schedulers import RedBeatScheduler, RedBeatSchedulerEntry # noqa
celery-beat | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
celery-beat | File "/venv/lib/python3.11/site-packages/redbeat/schedulers.py", line 30, in <module>
celery-beat | from .decoder import RedBeatJSONEncoder, RedBeatJSONDecoder, to_timestamp
celery-beat | File "/venv/lib/python3.11/site-packages/redbeat/decoder.py", line 8, in <module>
celery-beat | from celery.utils.time import timezone, FixedOffset
celery-beat | ImportError: cannot import name 'FixedOffset' from 'celery.utils.time' (/venv/lib/python3.11/site-packages/celery/utils/time.py)
```
|
0.0
|
d698cc3eae8b26f011836bb6f2e1ab87e9019951
|
[
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_crontab",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_datetime_no_tz",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_datetime_with_fixedoffset",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_datetime_with_tz",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_rrule",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_rrule_timezone",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_schedule",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_weekday",
"tests/test_json.py::RedBeatJSONEncoderTestCase::test_weekday_in_rrule",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_crontab",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_datetime_no_timezone",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_datetime_with_fixed_offset",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_datetime_with_timezone",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_rrule",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_schedule",
"tests/test_json.py::RedBeatJSONDecoderTestCase::test_weekday"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-05-16 13:25:41+00:00
|
apache-2.0
| 5,490 |
|
sigasi__SigasiProjectCreator-43
|
diff --git a/src/SigasiProjectCreator/CsvParser.py b/src/SigasiProjectCreator/CsvParser.py
index 408eeba..83e59fc 100644
--- a/src/SigasiProjectCreator/CsvParser.py
+++ b/src/SigasiProjectCreator/CsvParser.py
@@ -5,7 +5,9 @@
"""
import csv
import pathlib
+from collections import defaultdict
+from SigasiProjectCreator import abort_if_false, is_valid_name
from SigasiProjectCreator.ProjectFileParser import ProjectFileParser, project_file_parser, ProjectFileParserResult
@@ -16,18 +18,21 @@ class CsvParser(ProjectFileParser):
super().__init__()
def parse_file(self, csv_file, options=None):
- library_mapping = dict()
+ library_mapping = defaultdict(list)
+ includes = set()
+ defines = []
with open(csv_file, 'r') as f:
reader = csv.reader(f, skipinitialspace=True)
for row in reader:
if row:
library = row[0].strip()
- path = pathlib.Path(row[1].strip()).absolute().resolve()
- if path in library_mapping:
- if isinstance(library_mapping[path], list):
- library_mapping[path].append(library)
- else:
- library_mapping[path] = [library_mapping[path], library]
+ if library == '#define':
+ defines.append(row[1].strip())
else:
- library_mapping[path] = library
- return ProjectFileParserResult(library_mapping, None, None)
+ path = pathlib.Path(row[1].strip()).absolute().resolve()
+ if library == '#include':
+ includes.add(path)
+ else:
+ abort_if_false(is_valid_name(library), f'Invalid library name: {library}')
+ library_mapping[path].append(library)
+ return ProjectFileParserResult(library_mapping, verilog_defines=defines, verilog_includes=includes)
diff --git a/src/SigasiProjectCreator/ProjectOptions.py b/src/SigasiProjectCreator/ProjectOptions.py
index 328f30a..7d832d8 100644
--- a/src/SigasiProjectCreator/ProjectOptions.py
+++ b/src/SigasiProjectCreator/ProjectOptions.py
@@ -30,7 +30,8 @@ class ProjectOptions:
parser.add_argument('--format', action='store', dest='format',
choices=ProjectFileParser.project_file_parsers.keys(), default=None,
help='Force input format (ignore file extension): ' + ', '.join(
- f'{key} ({cls.__doc__})' for key, cls in ProjectFileParser.project_file_parsers.items()))
+ f'{key} ({cls.__doc__})' for key, cls in
+ ProjectFileParser.project_file_parsers.items()))
parser.add_argument('--mapping', action='store', dest='mapping',
choices=['file', 'folder'], default='file',
help='Library mapping style: `folder` = map folders where possible, `file` = map '
diff --git a/src/SigasiProjectCreator/__init__.py b/src/SigasiProjectCreator/__init__.py
index a70ae1b..bc4ddba 100644
--- a/src/SigasiProjectCreator/__init__.py
+++ b/src/SigasiProjectCreator/__init__.py
@@ -1,3 +1,4 @@
+import re
import sys
from os.path import abspath, normcase, splitdrive, join
from pathlib import PurePath
@@ -23,3 +24,7 @@ def abort_if_false(condition, message, code=5):
if not condition:
print(message)
sys.exit(code)
+
+
+def is_valid_name(text):
+ return re.match('(?!.*__)[a-zA-Z][\\w]*[^_]', text)
|
sigasi/SigasiProjectCreator
|
7f9d8522d519f5349d63d5516dd01264ae8d4485
|
diff --git a/tests/CsvParserTest.py b/tests/CsvParserTest.py
new file mode 100644
index 0000000..53f6f38
--- /dev/null
+++ b/tests/CsvParserTest.py
@@ -0,0 +1,57 @@
+import pathlib
+import unittest
+
+from SigasiProjectCreator.CsvParser import CsvParser
+from SigasiProjectCreator.ProjectOptions import ProjectOptions
+
+
+class CsvParserTest(unittest.TestCase):
+ def test_extended_csv(self):
+ input_file = 'tests/test-files/csv/extended.csv'
+ command_line_options = ['the_project', input_file]
+ self.options = ProjectOptions(command_line_options)
+ result = CsvParser().parse_file(input_file, self.options)
+ expected_library_mapping = {
+ pathlib.Path('foo/bar.vhd').absolute().resolve(): ['test1'],
+ pathlib.Path('bahr/define.sv').absolute().resolve(): ['define'],
+ pathlib.Path('clock_generator.vhd').absolute().resolve(): ['test2'],
+ pathlib.Path('dut.vhd').absolute().resolve(): ['test2'],
+ pathlib.Path('testbench.vhd').absolute().resolve(): ['test1'],
+ pathlib.Path('include.vhd').absolute().resolve(): ['include']
+ }
+ expected_includes = {
+ pathlib.Path('includes').absolute().resolve()
+ }
+ expected_defines = ['SIGASI=true']
+ self.assertDictEqual(result.library_mapping, expected_library_mapping, 'Library mapping mismatch')
+ self.assertSetEqual(result.verilog_includes, expected_includes, 'Includes list mismatch')
+ self.assertListEqual(result.verilog_defines, expected_defines, 'Defines list mismatch')
+
+ def test_multimap_csv(self):
+ self.maxDiff = None
+ input_file = 'tests/test-files/csv/multimap.csv'
+ command_line_options = ['the_project', input_file]
+ self.options = ProjectOptions(command_line_options)
+ result = CsvParser().parse_file(input_file, self.options)
+ expected_library_mapping = {
+ pathlib.Path('foo/bar.vhd').absolute().resolve(): ['test1'],
+ pathlib.Path('clock_generator.vhd').absolute().resolve(): ['test2', 'test1', 'test7'],
+ pathlib.Path('dut.vhd').absolute().resolve(): ['test2', 'test3'],
+ pathlib.Path('testbench.vhd').absolute().resolve(): ['test1']
+ }
+ self.assertDictEqual(result.library_mapping, expected_library_mapping, 'Library mapping mismatch')
+ self.assertSetEqual(result.verilog_includes, set(), 'Includes list mismatch')
+ self.assertListEqual(result.verilog_defines, [], 'Defines list mismatch')
+
+ def test_invalid_library_name(self):
+ self.maxDiff = None
+ input_file = 'tests/test-files/csv/invalid_lib.csv'
+ command_line_options = ['the_project', input_file]
+ self.options = ProjectOptions(command_line_options)
+ with self.assertRaises(SystemExit) as context:
+ result = CsvParser().parse_file(input_file, self.options)
+ self.assertEqual('5', str(context.exception)) # exit code 5 from abort_if_false
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/tests/ProjectCreatorTest.py b/tests/ProjectCreatorTest.py
index 0c4e40f..a75e000 100644
--- a/tests/ProjectCreatorTest.py
+++ b/tests/ProjectCreatorTest.py
@@ -435,7 +435,7 @@ class ProjectCreatorTest(unittest.TestCase):
expected = [
['include_folders', 'virtual:/virtual', True, False],
[pathlib.Path('include_folders/verilog'), '/somelib/verilog', True, True],
- [pathlib.Path('Common Libraries/uvm'), '/home/wmeeus/git/SigasiProjectCreator_github/uvm/src', True, True],
+ [pathlib.Path('Common Libraries/uvm'), base_path.joinpath('uvm/src').as_posix(), True, True],
['Common Libraries', 'virtual:/virtual', True, False],
['Common Libraries/IEEE', 'sigasiresource:/vhdl/2008/IEEE', True, False],
['Common Libraries/IEEE Synopsys', 'sigasiresource:/vhdl/2008/IEEE%20Synopsys', True, False],
diff --git a/tests/test-files/csv/extended.csv b/tests/test-files/csv/extended.csv
new file mode 100644
index 0000000..498119d
--- /dev/null
+++ b/tests/test-files/csv/extended.csv
@@ -0,0 +1,8 @@
+test1, foo/bar.vhd
+define, bahr/define.sv
+test2, clock_generator.vhd
+#define, SIGASI=true
+test2, dut.vhd
+#include, includes
+test1, testbench.vhd
+include, include.vhd
diff --git a/tests/test-files/csv/invalid_lib.csv b/tests/test-files/csv/invalid_lib.csv
new file mode 100644
index 0000000..ee1b249
--- /dev/null
+++ b/tests/test-files/csv/invalid_lib.csv
@@ -0,0 +1,8 @@
+test1, foo/bar.vhd
+define, bahr/define.sv
+_test2, clock_generator.vhd
+#define, SIGASI=true
+test2, dut.vhd
+#include, includes
+test1, testbench.vhd
+include, include.vhd
diff --git a/tests/test-files/csv/multimap.csv b/tests/test-files/csv/multimap.csv
new file mode 100644
index 0000000..dd99344
--- /dev/null
+++ b/tests/test-files/csv/multimap.csv
@@ -0,0 +1,7 @@
+test1, foo/bar.vhd
+test2, clock_generator.vhd
+test2, dut.vhd
+test1, testbench.vhd
+test1, clock_generator.vhd
+test3, dut.vhd
+test7, clock_generator.vhd
|
Extend csv import for include folders and defines
The csv import is currently limited to design files only. We want to extend that:
* If the first column of the csv file contains `include`, interpret the 2nd column of the same line(s) as (an) include path(s)
* If the first column of the csv file contains `define`, interpret the 2nd column of the same line(s) as (a) define(s)
|
0.0
|
7f9d8522d519f5349d63d5516dd01264ae8d4485
|
[
"tests/CsvParserTest.py::CsvParserTest::test_extended_csv",
"tests/CsvParserTest.py::CsvParserTest::test_invalid_library_name",
"tests/CsvParserTest.py::CsvParserTest::test_multimap_csv"
] |
[
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_abs_or_rel_path_abs",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_abs_or_rel_path_rel",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_abs_or_rel_path_rel_in",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_check_and_create_linked_folder",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_check_and_create_virtual_folder",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_create_library_mapping_folders",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_create_project_in_place",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_create_project_links_flat",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_create_project_links_folders",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_create_project_links_tree",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_create_project_simulator",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_get_design_folders",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_get_design_root_folder",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_get_design_subtrees",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_get_parser_for_type",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_parse_and_create_project",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_uniquify_project_path_empty_list",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_uniquify_project_path_in_list",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_uniquify_project_path_in_list_multi",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_uniquify_project_path_none",
"tests/ProjectCreatorTest.py::ProjectCreatorTest::test_uniquify_project_path_not_in_list"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-11-10 11:03:59+00:00
|
bsd-3-clause
| 5,491 |
|
signaux-faibles__predictsignauxfaibles-68
|
diff --git a/predictsignauxfaibles/data.py b/predictsignauxfaibles/data.py
index 1fb9e9c..70835a0 100644
--- a/predictsignauxfaibles/data.py
+++ b/predictsignauxfaibles/data.py
@@ -151,6 +151,12 @@ class SFDataset:
for feat in missing:
self.data[feat] = NAN
+ # force SIREN and SIRET to be strings
+ if "siren" in self.data.columns:
+ self.data.siren = self.data.siren.astype(str)
+ if "siret" in self.data.columns:
+ self.data.siret = self.data.siret.astype(str)
+
return self
def raise_if_empty(self):
diff --git a/predictsignauxfaibles/pipelines.py b/predictsignauxfaibles/pipelines.py
index 7f2df8b..3e564d8 100644
--- a/predictsignauxfaibles/pipelines.py
+++ b/predictsignauxfaibles/pipelines.py
@@ -11,6 +11,11 @@ from predictsignauxfaibles.preprocessors import (
acoss_make_avg_delta_dette_par_effectif,
)
+from predictsignauxfaibles.redressements import (
+ Redressement,
+ redressement_urssaf_covid,
+)
+
class MissingDataError(Exception):
"""
@@ -20,29 +25,30 @@ class MissingDataError(Exception):
def run_pipeline(data: pd.DataFrame, pipeline: List[namedtuple]):
"""
- Run a pipeline of Preprocessor objects on a dataframe
+ Run a pipeline of Preprocessor or Redressement objects (aka "steps") on a dataframe
Args:
- pipeline: a list of Preprocessor objects (see predictsignauxfaibles.preprocessors)
+ pipeline: a list of Preprocessor or Redressement objects
+ (see predictsignauxfaibles.preprocessors or predictsignauxfaibles.redressements)
"""
logging.info("Checking that input columns are all there.")
- for preprocessor in pipeline:
- if not set(preprocessor.input).issubset(data.columns):
- missing_cols = set(preprocessor.input) - set(data.columns)
+ for step in pipeline:
+ if not set(step.input).issubset(data.columns):
+ missing_cols = set(step.input) - set(data.columns)
error_message = (
- f"Missing variables {missing_cols} in order to run {preprocessor.name}."
+ f"Missing variables {missing_cols} in order to run {step.name}."
)
raise MissingDataError(error_message)
logging.info("Running pipeline on data.")
data = data.copy()
- for i, preprocessor in enumerate(pipeline):
- logging.info(f"STEP {i+1}: {preprocessor.name}")
- data = preprocessor.function(data)
- if preprocessor.output is None:
+ for i, step in enumerate(pipeline):
+ logging.info(f"STEP {i+1}: {step.name}")
+ data = step.function(data)
+ if step.output is None:
continue
- if not set(preprocessor.output).issubset(data.columns):
- missing_output_cols = set(preprocessor.output) - set(data.columns)
- warning_message = f"STEP {i+1}: function {preprocessor.function.__name__} \
+ if not set(step.output).issubset(data.columns):
+ missing_output_cols = set(step.output) - set(data.columns)
+ warning_message = f"STEP {i+1}: function {step.function.__name__} \
did not produce expected output {missing_output_cols}"
logging.warning(warning_message)
continue
@@ -52,6 +58,8 @@ did not produce expected output {missing_output_cols}"
# Pipelines
+# Preprocessors
+
DEFAULT_PIPELINE = [
Preprocessor(
"Remove Administrations",
@@ -106,5 +114,23 @@ SMALL_PIPELINE = [
),
]
+# Redressements
+
+REDRESSEMENTS_PIPELINE = [
+ Redressement(
+ "Redressement URSSAF evolution dette Juillet 2020",
+ redressement_urssaf_covid,
+ input=[
+ "montant_part_ouvriere_latest",
+ "montant_part_patronale_latest",
+ "montant_part_ouvriere_july2020",
+ "montant_part_patronale_july2020",
+ "cotisation_moy12m_latest",
+ "group_final",
+ ],
+ output=["group_final_regle_urssaf"],
+ ),
+]
+
# This is useful for automatic testing
-ALL_PIPELINES = [DEFAULT_PIPELINE, SMALL_PIPELINE]
+ALL_PIPELINES = [DEFAULT_PIPELINE, SMALL_PIPELINE, REDRESSEMENTS_PIPELINE]
diff --git a/predictsignauxfaibles/redressements.py b/predictsignauxfaibles/redressements.py
new file mode 100644
index 0000000..58dffa5
--- /dev/null
+++ b/predictsignauxfaibles/redressements.py
@@ -0,0 +1,48 @@
+from collections import namedtuple
+
+import pandas as pd
+
+Redressement = namedtuple("Redressement", ["name", "function", "input", "output"])
+
+
+def redressement_urssaf_covid(data: pd.DataFrame):
+ """
+ Règle experte
+ """
+
+ # compute change in social debt as a proportion of average cotisations over the past 12months
+ data["montant_part_ouvriere_latest"].fillna(0, inplace=True)
+ data["montant_part_patronale_latest"].fillna(0, inplace=True)
+ data["montant_part_ouvriere_july2020"].fillna(0, inplace=True)
+ data["montant_part_patronale_july2020"].fillna(0, inplace=True)
+ data["dette_sociale_july2020"] = (
+ data.montant_part_ouvriere_july2020 + data.montant_part_patronale_july2020
+ )
+ data["dette_sociale_latest"] = (
+ data.montant_part_ouvriere_latest + data.montant_part_patronale_latest
+ )
+
+ data["delta_dette"] = (
+ data.dette_sociale_latest - data.dette_sociale_july2020
+ ) / data.cotisation_moy12m_latest
+
+ tol = 0.2 # tolerate a change smaller than 20%
+
+ def rule(dataframe):
+ """
+ Expert rule to apply
+ """
+ value = dataframe["delta_dette"]
+ group = dataframe["group_final"]
+ if value > tol:
+ if group == "vert":
+ return "orange"
+ if group == "orange":
+ return "rouge"
+ if group == "rouge":
+ return "rouge"
+ return group
+
+ data["group_final_regle_urssaf"] = data.apply(rule, axis=1)
+
+ return data
|
signaux-faibles/predictsignauxfaibles
|
43bf1c391a029f1af76e0763e6f1709e5a458484
|
diff --git a/tests/fake_data/dataframes.py b/tests/fake_data/dataframes.py
index a86536b..b88d574 100644
--- a/tests/fake_data/dataframes.py
+++ b/tests/fake_data/dataframes.py
@@ -26,3 +26,14 @@ df_test_code_naf = pd.DataFrame(
)
df_test_full = pd.concat((df_test_code_naf, df_test_acoss, df_test_paydex), axis=1)
+
+df_test_redressement_urssaf = pd.DataFrame(
+ {
+ "montant_part_ouvriere_latest": [50, 60, 100],
+ "montant_part_patronale_latest": [75, 50, 100],
+ "montant_part_ouvriere_july2020": [50, 50, 50],
+ "montant_part_patronale_july2020": [50, 50, 0],
+ "cotisation_moy12m_latest": [100, 100, 75],
+ "group_final": ["vert", "vert", "rouge"],
+ }
+)
diff --git a/tests/unit/pipelines_test.py b/tests/unit/pipelines_test.py
index 2dba9ba..9b62b1f 100644
--- a/tests/unit/pipelines_test.py
+++ b/tests/unit/pipelines_test.py
@@ -10,22 +10,23 @@ from predictsignauxfaibles.pipelines import (
)
from predictsignauxfaibles.preprocessors import Preprocessor
+from predictsignauxfaibles.redressements import Redressement
from tests.fake_data.dataframes import df_test_full
@pytest.mark.parametrize("pipeline", ALL_PIPELINES)
-def test_final_pipeline(pipeline):
- for preprocessor in pipeline:
- assert isinstance(preprocessor, Preprocessor)
- assert hasattr(preprocessor, "name")
- assert hasattr(preprocessor, "function")
- assert hasattr(preprocessor, "input")
- assert hasattr(preprocessor, "output")
- assert isinstance(preprocessor.name, str)
- assert callable(preprocessor.function)
- assert isinstance(preprocessor.input, list)
- assert isinstance(preprocessor.output, list) or preprocessor.output is None
+def test_all_pipeline(pipeline):
+ for step in pipeline:
+ assert isinstance(step, (Preprocessor, Redressement))
+ assert hasattr(step, "name")
+ assert hasattr(step, "function")
+ assert hasattr(step, "input")
+ assert hasattr(step, "output")
+ assert isinstance(step.name, str)
+ assert callable(step.function)
+ assert isinstance(step.input, list)
+ assert isinstance(step.output, list) or step.output is None
def test_default_pipeline_sucess():
diff --git a/tests/unit/redressements_test.py b/tests/unit/redressements_test.py
new file mode 100644
index 0000000..2078717
--- /dev/null
+++ b/tests/unit/redressements_test.py
@@ -0,0 +1,11 @@
+# pylint: disable=missing-function-docstring
+import pandas as pd
+from predictsignauxfaibles.redressements import redressement_urssaf_covid
+
+from tests.fake_data.dataframes import df_test_redressement_urssaf
+
+
+def test_redressement_urssaf_covid():
+ data_in = df_test_redressement_urssaf.copy()
+ data_out = redressement_urssaf_covid(data_in)
+ assert (data_out["group_final_regle_urssaf"] == ["orange", "vert", "rouge"]).all()
|
Make SIREN and SIRET string not int
### Problem
The dataframe retrieved by `SFDataset` contains SIRET and SIREN that are typed as `int64` which means that their leading 0 is ignored. So we have
```python
# this fails
dataset.data.siren == "012345678"
# this works
dataset.data.siren == 12345678
```
which is not right
### Solution
Figure out a way to force the `siret` and `siren` columns to be read as strings.
### ⚠️
I haven't checked yet but there's a chance that this typing issue not due to pandas but to MongoDB.
|
0.0
|
43bf1c391a029f1af76e0763e6f1709e5a458484
|
[
"tests/unit/pipelines_test.py::test_all_pipeline[pipeline0]",
"tests/unit/pipelines_test.py::test_all_pipeline[pipeline1]",
"tests/unit/pipelines_test.py::test_all_pipeline[pipeline2]",
"tests/unit/pipelines_test.py::test_default_pipeline_sucess",
"tests/unit/pipelines_test.py::test_default_pipeline_missing_input",
"tests/unit/redressements_test.py::test_redressement_urssaf_covid"
] |
[] |
{
"failed_lite_validators": [
"has_added_files",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-05-25 09:24:27+00:00
|
mit
| 5,492 |
|
simonsobs__ocs-206
|
diff --git a/ocs/matched_client.py b/ocs/matched_client.py
index b5be3a6..5a32114 100644
--- a/ocs/matched_client.py
+++ b/ocs/matched_client.py
@@ -79,19 +79,22 @@ class MatchedClient:
"""
def __init__(self, instance_id, **kwargs):
- """MatchedClient __init__ function.
-
+ """
Args:
instance_id (str): Instance id for agent to run
args (list or args object, optional):
Takes in the parser arguments for the client.
- If None, reads from command line.
+ If None, pass an empty list.
If list, reads in list elements as arguments.
Defaults to None.
- For additional kwargs see site_config.get_control_client.
+ .. note::
+ For additional ``**kwargs`` see site_config.get_control_client.
"""
+ if kwargs.get('args') is None:
+ kwargs['args'] = []
+
self._client = site_config.get_control_client(instance_id, **kwargs)
self.instance_id = instance_id
|
simonsobs/ocs
|
e1a813e7a32649c6cd85f52c4fc0eac0dff0de86
|
diff --git a/tests/test_matched_client.py b/tests/test_matched_client.py
new file mode 100644
index 0000000..1e8765d
--- /dev/null
+++ b/tests/test_matched_client.py
@@ -0,0 +1,28 @@
+import os
+from unittest.mock import MagicMock, patch
+from ocs.matched_client import MatchedClient
+
+mocked_client = MagicMock()
+mock_from_yaml = MagicMock()
+
+
+@patch('ocs.client_http.ControlClient', mocked_client)
+@patch('ocs.site_config.SiteConfig.from_yaml', mock_from_yaml)
+@patch('sys.argv', ['example_client.py', 'test'])
+def test_extra_argv():
+ """If there are extra arguments in sys.argv and args=[] is not set when
+ instantiating a MatchedClient, then internally
+ site_config.get_control_client() will inspect sys.argv[1:], which causes
+ issues down the line when run through the site_config parser.
+
+ Here we patch in a mocked ControlClient to avoid needing to talk to a
+ crossbar server. We also patch in a mocked from_yaml() method, to avoid
+ needing to read a real site file. Lastly, and most importantly, we patch in
+ sys.argv with an actual additional argument. This will cause an
+ "unrecognized arguments" error when argparse inspects sys.argv within the
+ site_config parser.
+
+ """
+ # Set for get_config to pick up on
+ os.environ["OCS_CONFIG_DIR"] = '/tmp/'
+ MatchedClient("test")
|
MatchedClient(instance_id) causes argparse to run on sys.argv
If you do something simple like
```
c = MatchedClient('acu1')
```
then sys.argv will get run through the site_config parser. This causes trouble when you want to use MatchedClient in anything where sys.argv is non-trivial, such as in jupyter or a script with its own command line args. The work-around is to pass args=[] to this constructor. But it would be better if by default there was no inspection of sys.argv.
The MatchedClient code should be changed as follows: If args=None is passed in to the constructor, that should result in args=[] being passed through to site_config. (If a user really wants to pass sys.argv through, they can do that explicitly in MatchedClient instantiation.)
|
0.0
|
e1a813e7a32649c6cd85f52c4fc0eac0dff0de86
|
[
"tests/test_matched_client.py::test_extra_argv"
] |
[] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2021-07-02 02:34:33+00:00
|
bsd-2-clause
| 5,493 |
|
simonsobs__ocs-269
|
diff --git a/Dockerfile b/Dockerfile
index 49d1f0d..6b7bc59 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -2,7 +2,7 @@
# A container setup with an installation of ocs.
# Use ubuntu base image
-FROM simonsobs/so3g:v0.1.0-117-g75c1d8d
+FROM simonsobs/so3g:v0.1.3-13-g5471f0d
# Set locale
ENV LANG C.UTF-8
diff --git a/ocs/ocs_feed.py b/ocs/ocs_feed.py
index 0e59b49..934e727 100644
--- a/ocs/ocs_feed.py
+++ b/ocs/ocs_feed.py
@@ -248,17 +248,15 @@ class Feed:
supported types.
Args:
- value (list, float, int):
+ value (list, float, int, bool):
'data' dictionary value published (see Feed.publish_message for details).
"""
- valid_types = (float, int, str)
+ valid_types = (float, int, str, bool)
- # separate bool checks since bool is a subclass of int
# multi-sample check
if isinstance(value, list):
- if (any(isinstance(x, bool) for x in value)
- or not all(isinstance(x, valid_types) for x in value)):
+ if not all(isinstance(x, valid_types) for x in value):
type_set = set([type(x) for x in value])
invalid_types = type_set.difference(valid_types)
raise TypeError("message 'data' block contains invalid data" +
@@ -266,7 +264,7 @@ class Feed:
# single sample check
else:
- if isinstance(value, bool) or not isinstance(value, valid_types):
+ if not isinstance(value, valid_types):
invalid_type = type(value)
raise TypeError("message 'data' block contains invalid " +
f"data type: {invalid_type}")
|
simonsobs/ocs
|
bc67d6132e9806c7b482f39466feecce8deae965
|
diff --git a/tests/test_ocs_feed.py b/tests/test_ocs_feed.py
index b6ec529..d5869ca 100644
--- a/tests/test_ocs_feed.py
+++ b/tests/test_ocs_feed.py
@@ -76,8 +76,7 @@ class TestPublishMessage:
}
}
- with pytest.raises(TypeError):
- test_feed.publish_message(test_message)
+ test_feed.publish_message(test_message)
def test_bool_multi_sample_input(self):
mock_agent = MagicMock()
@@ -91,6 +90,21 @@ class TestPublishMessage:
}
}
+ test_feed.publish_message(test_message)
+
+ def test_invalid_single_sample_input(self):
+ mock_agent = MagicMock()
+ test_feed = ocs_feed.Feed(mock_agent, 'test_feed', record=True)
+
+ test_message = {
+ 'block_name': 'test',
+ 'timestamps': time.time(),
+ 'data': {
+ 'key1': 1.,
+ 'key2': None,
+ }
+ }
+
with pytest.raises(TypeError):
test_feed.publish_message(test_message)
|
Add boolean support to OCS feeds
Once Bool support is added to so3g (https://github.com/simonsobs/so3g/issues/116) `Feed.verify_message_data_type` should be updated to support bools.
|
0.0
|
bc67d6132e9806c7b482f39466feecce8deae965
|
[
"tests/test_ocs_feed.py::TestPublishMessage::test_bool_multi_sample_input",
"tests/test_ocs_feed.py::TestPublishMessage::test_bool_single_sample_input"
] |
[
"tests/test_ocs_feed.py::test_block_creation",
"tests/test_ocs_feed.py::test_block_append",
"tests/test_ocs_feed.py::TestPublishMessage::test_valid_multi_sample_input",
"tests/test_ocs_feed.py::TestPublishMessage::test_valid_single_sample_input",
"tests/test_ocs_feed.py::TestPublishMessage::test_data_key_start_underscore4",
"tests/test_ocs_feed.py::TestPublishMessage::test_invalid_data_key_character",
"tests/test_ocs_feed.py::TestPublishMessage::test_data_key_start_underscore1",
"tests/test_ocs_feed.py::TestPublishMessage::test_data_key_start_underscore2",
"tests/test_ocs_feed.py::TestPublishMessage::test_empty_field_name",
"tests/test_ocs_feed.py::TestPublishMessage::test_str_multi_sample_input",
"tests/test_ocs_feed.py::TestPublishMessage::test_invalid_single_sample_input",
"tests/test_ocs_feed.py::TestPublishMessage::test_str_single_sample_input",
"tests/test_ocs_feed.py::TestPublishMessage::test_data_key_start_with_number",
"tests/test_ocs_feed.py::TestPublishMessage::test_data_key_start_underscore3",
"tests/test_ocs_feed.py::TestPublishMessage::test_data_key_too_long"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-05-26 13:36:23+00:00
|
bsd-2-clause
| 5,494 |
|
simonsobs__ocs-297
|
diff --git a/ocs/agents/influxdb_publisher/drivers.py b/ocs/agents/influxdb_publisher/drivers.py
index 018657a..116fdef 100644
--- a/ocs/agents/influxdb_publisher/drivers.py
+++ b/ocs/agents/influxdb_publisher/drivers.py
@@ -125,6 +125,19 @@ class Publisher:
except InfluxDBServerError as err:
LOG.error("InfluxDB Server Error: {e}", e=err)
+ @staticmethod
+ def _format_field_line(field_key, field_value):
+ """Format key-value pair for InfluxDB line protocol."""
+ # Strings must be in quotes for line protocol
+ if isinstance(field_value, str):
+ line = f'{field_key}="{field_value}"'
+ else:
+ line = f"{field_key}={field_value}"
+ # Don't append 'i' to bool, which is a subclass of int
+ if isinstance(field_value, int) and not isinstance(field_value, bool):
+ line += "i"
+ return line
+
@staticmethod
def format_data(data, feed, protocol):
"""Format the data from an OCS feed into a dict for pushing to InfluxDB.
@@ -167,13 +180,7 @@ class Publisher:
if protocol == 'line':
fields_line = []
for mk, mv in fields.items():
- # Strings must be in quotes for line protocol
- if isinstance(mv, str):
- f_line = f'{mk}="{mv}"'
- else:
- f_line = f"{mk}={mv}"
- if isinstance(mv, int):
- f_line += "i"
+ f_line = Publisher._format_field_line(mk, mv)
fields_line.append(f_line)
measurement_line = ','.join(fields_line)
|
simonsobs/ocs
|
3a998daaa394daccedb25bbdef87cbd0c44e5700
|
diff --git a/tests/agents/test_influxdb_publisher_drivers.py b/tests/agents/test_influxdb_publisher_drivers.py
new file mode 100644
index 0000000..4e3bca5
--- /dev/null
+++ b/tests/agents/test_influxdb_publisher_drivers.py
@@ -0,0 +1,13 @@
+from ocs.agents.influxdb_publisher.drivers import Publisher
+
+import pytest
+
+
[email protected]("key,value,result", [('fieldname', False, 'fieldname=False'),
+ ('fieldname', 1, 'fieldname=1i'),
+ ('fieldname', 4.2, 'fieldname=4.2'),
+ ('fieldname', 'string', 'fieldname="string"')])
+def test_publisher_format_field_line(key, value, result):
+ f_line = Publisher._format_field_line(key, value)
+
+ assert f_line == result
|
booleans published to influxdb get malformed by publisher
Seen at Penn recently:
```
2022-07-29T19:23:54+0000 InfluxDB Client Error: 400: {"error":"unable to parse 'observatory.pysmurf-monitor-so6,feed=ufm_mv17_meta AMCcSmurfProcessorFileWriterIsOpen=Falsei 1659122634599413504': invalid boolean"}
2022-07-29T19:23:58+0000 InfluxDB Client Error: 400: {"error":"unable to parse 'observatory.pysmurf-monitor-so6,feed=ufm_mv4_meta AMCcSmurfProcessorFileWriterIsOpen=Falsei 1659122637660398848': invalid boolean"}
2022-07-29T19:23:58+0000 InfluxDB Client Error: 400: {"error":"unable to parse 'observatory.pysmurf-monitor-so6,feed=ufm_mv11_meta AMCcSmurfProcessorFileWriterIsOpen=Falsei 1659122637663661824': invalid boolean"}
```
This is caused by these couple lines: https://github.com/simonsobs/ocs/blob/971bac7f8133744184a46c1312800cbcf44ea11e/ocs/agent/influxdb_publisher.py#L174-L175
Since `bool` is a subclass of `int` this results in `True` for any `bool` in `mv`, which appends an "i" to the bool. This fails to insert into InfluxDB, hence the error. We saw this same thing in #229.
|
0.0
|
3a998daaa394daccedb25bbdef87cbd0c44e5700
|
[
"tests/agents/test_influxdb_publisher_drivers.py::test_publisher_format_field_line[fieldname-False-fieldname=False]",
"tests/agents/test_influxdb_publisher_drivers.py::test_publisher_format_field_line[fieldname-1-fieldname=1i]",
"tests/agents/test_influxdb_publisher_drivers.py::test_publisher_format_field_line[fieldname-4.2-fieldname=4.2]",
"tests/agents/test_influxdb_publisher_drivers.py::test_publisher_format_field_line[fieldname-string-fieldname=\"string\"]"
] |
[] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2022-11-02 22:12:47+00:00
|
bsd-2-clause
| 5,495 |
|
simonsobs__ocs-304
|
diff --git a/docs/developer/session-data.rst b/docs/developer/session-data.rst
index 480a0c6..5aa89d7 100644
--- a/docs/developer/session-data.rst
+++ b/docs/developer/session-data.rst
@@ -147,6 +147,9 @@ This block formats the latest values for each "channel" into a dictionary and
stores it in ``session.data``.
+Structure and Content
+---------------------
+
The structure of the ``data`` entry is not strictly defined, but
please observe the following guidelines:
@@ -170,6 +173,30 @@ please observe the following guidelines:
object to break. Changes that do take place should be announced in the
change logs of new OCS versions.
+
+There are some restrictions on what data can be carried in
+``session.data``:
+
+- The session.data will ultimately be converted and transported using
+ JSON, so some containers will be automatically converted into
+ JSON-compatible forms. Specifically note that:
+
+ - dict keys will be converted to strings.
+ - there is no distinction between lists and tuples.
+ - there is no (standardized) support for non-finite floats such as
+ inf, -inf, or NaN.
+
+- If your session.data contains any NaN, they will be converted to
+ None (which is transported as JSON null).
+- If your session.data contains inf/-inf, or other JSON-encodable
+ entities, OCS will raise an error. To have those transported as
+ None/null, you should convert inf/-inf to NaN before storing the
+ data in session.data.
+- If your session.data includes numpy arrays (or scalars), these will
+ be converted to serializable types automatically using
+ ``numpy.tolist``.
+
+
Client Access
-------------
Once your Agent is storing information in the ``session.data`` object you
diff --git a/ocs/ocs_agent.py b/ocs/ocs_agent.py
index 8230daf..af5134f 100644
--- a/ocs/ocs_agent.py
+++ b/ocs/ocs_agent.py
@@ -17,6 +17,8 @@ from autobahn.wamp.exception import ApplicationError, TransportLost
from autobahn.exception import Disconnected
from .ocs_twisted import in_reactor_context
+import json
+import math
import time
import datetime
import socket
@@ -1055,7 +1057,9 @@ class OpSession:
data : dict
This is an area for the Operation code to store custom
information for Control Clients to consume. See notes
- below.
+ below. This structure will be tested for strict JSON
+ compliance, and certain translations performed (such as
+ converting NaN to None/null).
messages : list
A buffer of messages posted by the Operation. Each element
of the list is a tuple, (timestamp, message) where timestamp
@@ -1073,6 +1077,43 @@ class OpSession:
advice on structuring your Agent session data.
"""
+ def json_safe(data, check_ok=False):
+ """Convert data so it can be serialized and decoded on
+ the other end. This includes:
+
+ - Converting numpy arrays and scalars to generic lists and
+ Python basic types.
+
+ - Converting NaN to None (although crossbar handles
+ NaN/inf, web browsers may fail to deserialize the
+ invalid JSON this requires).
+
+ In the case of inf/-inf, a ValueError is raised.
+
+ """
+ if check_ok:
+ output = json_safe(data)
+ json.dumps(output, allow_nan=False)
+ return output
+ if isinstance(data, dict):
+ return {k: json_safe(v) for k, v in data.items()}
+ if isinstance(data, (list, tuple)):
+ return [json_safe(x) for x in data]
+ if hasattr(data, 'dtype'):
+ # numpy arrays and scalars.
+ return json_safe(data.tolist())
+ if isinstance(data, (str, int, bool)):
+ return data
+ if isinstance(data, float):
+ if math.isnan(data):
+ return None
+ if not math.isfinite(data):
+ raise ValueError('Session.data cannot store inf/-inf; '
+ 'please convert to NaN.')
+ # This could still be something weird but json.dumps will
+ # probably reject it!
+ return data
+
return {'session_id': self.session_id,
'op_name': self.op_name,
'op_code': self.op_code.value,
@@ -1080,7 +1121,7 @@ class OpSession:
'success': self.success,
'start_time': self.start_time,
'end_time': self.end_time,
- 'data': self.data,
+ 'data': json_safe(self.data, True),
'messages': self.messages}
@property
|
simonsobs/ocs
|
616865c03cfc60c526d4868b65e45800b85d033d
|
diff --git a/tests/test_ocs_agent.py b/tests/test_ocs_agent.py
index 547ce15..d300276 100644
--- a/tests/test_ocs_agent.py
+++ b/tests/test_ocs_agent.py
@@ -2,6 +2,7 @@ import ocs
from ocs.ocs_agent import (
OCSAgent, AgentTask, AgentProcess,
ParamError, ParamHandler, param,
+ OpSession
)
from ocs.base import OpCode
@@ -10,6 +11,18 @@ from unittest.mock import MagicMock
import pytest
import pytest_twisted
+import json
+import math
+import numpy as np
+
+
+def create_session(op_name):
+ """Create an OpSession with a mocked app for testing."""
+ mock_app = MagicMock()
+ session = OpSession(1, op_name, app=mock_app)
+
+ return session
+
def tfunc(session, a):
"""Test function to call as a mocked OCS Task. We double it as the start
@@ -438,6 +451,45 @@ def test_status_no_session(mock_agent):
assert res[2] == {}
[email protected]("key,value,expected", [('a', 1, 1),
+ ('b', 'string', 'string'),
+ ('c', [1, 2., 'blech'], [1, 2., 'blech']),
+ ('d', [1., 2., math.nan], [1., 2., None]),
+ ('e', np.int64(10), 10),
+ ('f', np.array([10, 20, 30]), [10, 20, 30]),
+ ('g', np.array([1., 2., math.nan]), [1., 2., None]),
+ ('h', {'x': math.nan}, {'x': None})])
+def test_session_data_good(key, value, expected):
+ """Test that session.data is encoded as expected and can be
+ JSON-serialized.
+
+ """
+ session = create_session('test_encoding')
+ session.data = {key: value}
+
+ encoded = session.encoded()
+ print(encoded['data'])
+
+ data = encoded['data']
+ assert (key in data)
+ assert data[key] == expected
+
+ json.dumps(data, allow_nan=False)
+
+
[email protected]("key,value", [('fail_a', math.inf),
+ ('fail_b', [1., 2., -math.inf]),
+ ('fail_c', {'x': math.inf})])
+def test_session_data_bad(key, value):
+ """Test that invalid session.data raises an error."""
+
+ session = create_session('test_encoding')
+ session.data = {key: value}
+
+ with pytest.raises(ValueError):
+ session.encoded()
+
+
#
# Tests for the @param decorator
#
|
NaNs / infs in session.data cause trouble in ocs-web
NaNs/infs are not compliant JSON, but are passed through from Agents to ocs-web anyway. This causes ocs-web to totally choke on the session.data ... which is difficult to avoid.
I don't think there's a way to catch this or change how JSON is parsed by autobahn.
Two possible solutions:
1. Convert NaNs/infs to None in ocs_agent.OpSession; this will produce compliant JSON.
2. Reject NaNs/infs entirely -- i.e. forbid them forcibly and raise an exception
I think solution (1) is slightly better, but it should be noted that some Python based clients may be affected by this. First, one can not distinguish between NaN, inf, -inf. I think that's ok ... usually we're just trying to flag invalid data, using NaN.
Another consequence of using "None" (which renders as "null" in JSON) is that lists received by Python clients will not as easily be convertible into arrays. E.g. if the agent sends [1.0, 2.0, None], and the client tries to turn that into a numpy array:
```
>>> np.array([1.0, 2.0, None])
array([1.0, 2.0, None], dtype=object)
```
(that's bad -- it's of dtype=object).
But a work-around on the client side is to specify dtype:
```
>>> np.array([1.,2.,None], dtype=float)
array([ 1., 2., nan])
```
I think this is an acceptable price to pay, to have ocs-web work and also allow NaNs.
|
0.0
|
616865c03cfc60c526d4868b65e45800b85d033d
|
[
"tests/test_ocs_agent.py::test_session_data_good[d-value3-expected3]",
"tests/test_ocs_agent.py::test_session_data_good[e-value4-10]",
"tests/test_ocs_agent.py::test_session_data_good[f-value5-expected5]",
"tests/test_ocs_agent.py::test_session_data_good[g-value6-expected6]",
"tests/test_ocs_agent.py::test_session_data_good[h-value7-expected7]",
"tests/test_ocs_agent.py::test_session_data_bad[fail_a-inf]",
"tests/test_ocs_agent.py::test_session_data_bad[fail_b-value1]",
"tests/test_ocs_agent.py::test_session_data_bad[fail_c-value2]"
] |
[
"tests/test_ocs_agent.py::test_register_task",
"tests/test_ocs_agent.py::test_register_task_w_startup",
"tests/test_ocs_agent.py::test_register_task_wo_startup",
"tests/test_ocs_agent.py::test_register_task_w_startup_dict",
"tests/test_ocs_agent.py::test_register_process",
"tests/test_ocs_agent.py::test_register_process_w_startup",
"tests/test_ocs_agent.py::test_register_process_wo_startup",
"tests/test_ocs_agent.py::test_register_process_w_startup_dict",
"tests/test_ocs_agent.py::test_start_task",
"tests/test_ocs_agent.py::test_start_process",
"tests/test_ocs_agent.py::test_start_nonblocking_task",
"tests/test_ocs_agent.py::test_start_task_done_status",
"tests/test_ocs_agent.py::test_start_task_other_status",
"tests/test_ocs_agent.py::test_start_unregistered_task",
"tests/test_ocs_agent.py::test_wait",
"tests/test_ocs_agent.py::test_wait_unregistered_task",
"tests/test_ocs_agent.py::test_wait_idle",
"tests/test_ocs_agent.py::test_wait_expired_timeout",
"tests/test_ocs_agent.py::test_wait_timeout",
"tests/test_ocs_agent.py::test_wait_timeout_w_error",
"tests/test_ocs_agent.py::test_stop_task",
"tests/test_ocs_agent.py::test_stop_unregistered_process",
"tests/test_ocs_agent.py::test_stop_process",
"tests/test_ocs_agent.py::test_stop_process_no_session",
"tests/test_ocs_agent.py::test_abort",
"tests/test_ocs_agent.py::test_status",
"tests/test_ocs_agent.py::test_status_unregistered_task",
"tests/test_ocs_agent.py::test_status_no_session",
"tests/test_ocs_agent.py::test_session_data_good[a-1-1]",
"tests/test_ocs_agent.py::test_session_data_good[b-string-string]",
"tests/test_ocs_agent.py::test_session_data_good[c-value2-expected2]",
"tests/test_ocs_agent.py::test_params_get",
"tests/test_ocs_agent.py::test_params_strays",
"tests/test_ocs_agent.py::test_params_decorator",
"tests/test_ocs_agent.py::test_params_decorated"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-11-11 19:55:03+00:00
|
bsd-2-clause
| 5,496 |
|
simonsobs__ocs-332
|
diff --git a/ocs/ocs_agent.py b/ocs/ocs_agent.py
index fc06a6e..8238a4f 100644
--- a/ocs/ocs_agent.py
+++ b/ocs/ocs_agent.py
@@ -1389,6 +1389,9 @@ class ParamHandler:
# Free cast from int to float.
if type is float and isinstance(value, int):
value = float(value)
+ # Fix type after json conversion
+ if type is tuple and isinstance(value, list) and cast in [tuple, None]:
+ value = tuple(value)
if not isinstance(value, type):
raise ParamError(f"Param '{key}'={value} is not of required type ({type})")
if choices is not None:
|
simonsobs/ocs
|
93cc8b2e4f174112f4db1a942dc9d0e3a1ca002e
|
diff --git a/tests/test_ocs_agent.py b/tests/test_ocs_agent.py
index e6c1a83..be213ce 100644
--- a/tests/test_ocs_agent.py
+++ b/tests/test_ocs_agent.py
@@ -503,12 +503,14 @@ def test_params_get():
'float_param': 1e8,
'numerical_string_param': '145.12',
'none_param': None,
+ 'tuple_param': [20., 120.], # gets cast to list by json conversion
})
# Basic successes
params.get('int_param', type=int)
params.get('string_param', type=str)
params.get('float_param', type=float)
+ params.get('tuple_param', type=tuple)
# Tricky successes
params.get('int_param', type=float)
|
param decorator doen't support type check on tuples
For context, this came up in socs on the ACU Agent.
When using the param decorator, if trying to type check a tuple, i.e.:
```
@ocs_agent.param('azpts', type=tuple)
```
Before the check occurs the input parameter value is converted to and from json, effectively casting it to a list. This results in a failed type check, for example:
```
>>> resp = client.constant_velocity_scan(azpts=(20., 120.), el=35., azvel=2., acc=2., ntimes=8, azonly=False, simulator=True)
>>> print(resp)
OCSReply: ERROR : Param 'azpts'=[20.0, 120.0] is not of required type (<class 'tuple'>)
```
We should check if the type is `tuple` and cast before the check within this if block: https://github.com/simonsobs/ocs/blob/076105e9613ef78745d37df3d9bf8a38ce1e28bd/ocs/ocs_agent.py#L1221
|
0.0
|
93cc8b2e4f174112f4db1a942dc9d0e3a1ca002e
|
[
"tests/test_ocs_agent.py::test_params_get"
] |
[
"tests/test_ocs_agent.py::test_register_task",
"tests/test_ocs_agent.py::test_register_task_w_startup",
"tests/test_ocs_agent.py::test_register_task_wo_startup",
"tests/test_ocs_agent.py::test_register_task_w_startup_dict",
"tests/test_ocs_agent.py::test_register_process",
"tests/test_ocs_agent.py::test_register_process_w_startup",
"tests/test_ocs_agent.py::test_register_process_wo_startup",
"tests/test_ocs_agent.py::test_register_process_w_startup_dict",
"tests/test_ocs_agent.py::test_start_task",
"tests/test_ocs_agent.py::test_start_process",
"tests/test_ocs_agent.py::test_start_nonblocking_task",
"tests/test_ocs_agent.py::test_start_task_done_status",
"tests/test_ocs_agent.py::test_start_task_other_status",
"tests/test_ocs_agent.py::test_start_unregistered_task",
"tests/test_ocs_agent.py::test_wait",
"tests/test_ocs_agent.py::test_wait_unregistered_task",
"tests/test_ocs_agent.py::test_wait_idle",
"tests/test_ocs_agent.py::test_wait_expired_timeout",
"tests/test_ocs_agent.py::test_wait_timeout",
"tests/test_ocs_agent.py::test_wait_timeout_w_error",
"tests/test_ocs_agent.py::test_stop_task",
"tests/test_ocs_agent.py::test_stop_unregistered_process",
"tests/test_ocs_agent.py::test_stop_process",
"tests/test_ocs_agent.py::test_stop_process_no_session",
"tests/test_ocs_agent.py::test_abort",
"tests/test_ocs_agent.py::test_status",
"tests/test_ocs_agent.py::test_status_unregistered_task",
"tests/test_ocs_agent.py::test_status_no_session",
"tests/test_ocs_agent.py::test_session_data_good[a-1-1]",
"tests/test_ocs_agent.py::test_session_data_good[b-string-string]",
"tests/test_ocs_agent.py::test_session_data_good[c-value2-expected2]",
"tests/test_ocs_agent.py::test_session_data_good[d-value3-expected3]",
"tests/test_ocs_agent.py::test_session_data_good[e-value4-10]",
"tests/test_ocs_agent.py::test_session_data_good[f-value5-expected5]",
"tests/test_ocs_agent.py::test_session_data_good[g-value6-expected6]",
"tests/test_ocs_agent.py::test_session_data_good[h-value7-expected7]",
"tests/test_ocs_agent.py::test_session_data_bad[fail_a-inf]",
"tests/test_ocs_agent.py::test_session_data_bad[fail_b-value1]",
"tests/test_ocs_agent.py::test_session_data_bad[fail_c-value2]",
"tests/test_ocs_agent.py::test_params_strays",
"tests/test_ocs_agent.py::test_params_decorator",
"tests/test_ocs_agent.py::test_params_decorated"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2023-05-22 21:00:34+00:00
|
bsd-2-clause
| 5,497 |
|
simonw__datasette-1736
|
diff --git a/datasette/app.py b/datasette/app.py
index a5330458..b7b84371 100644
--- a/datasette/app.py
+++ b/datasette/app.py
@@ -288,9 +288,12 @@ class Datasette:
self._settings = dict(DEFAULT_SETTINGS, **(settings or {}))
self.renderers = {} # File extension -> (renderer, can_render) functions
self.version_note = version_note
- self.executor = futures.ThreadPoolExecutor(
- max_workers=self.setting("num_sql_threads")
- )
+ if self.setting("num_sql_threads") == 0:
+ self.executor = None
+ else:
+ self.executor = futures.ThreadPoolExecutor(
+ max_workers=self.setting("num_sql_threads")
+ )
self.max_returned_rows = self.setting("max_returned_rows")
self.sql_time_limit_ms = self.setting("sql_time_limit_ms")
self.page_size = self.setting("default_page_size")
@@ -862,6 +865,8 @@ class Datasette:
]
def _threads(self):
+ if self.setting("num_sql_threads") == 0:
+ return {"num_threads": 0, "threads": []}
threads = list(threading.enumerate())
d = {
"num_threads": len(threads),
diff --git a/datasette/database.py b/datasette/database.py
index ba594a8c..44d32667 100644
--- a/datasette/database.py
+++ b/datasette/database.py
@@ -45,6 +45,9 @@ class Database:
self._cached_table_counts = None
self._write_thread = None
self._write_queue = None
+ # These are used when in non-threaded mode:
+ self._read_connection = None
+ self._write_connection = None
if not self.is_mutable and not self.is_memory:
p = Path(path)
self.hash = inspect_hash(p)
@@ -134,6 +137,14 @@ class Database:
return results
async def execute_write_fn(self, fn, block=True):
+ if self.ds.executor is None:
+ # non-threaded mode
+ if self._write_connection is None:
+ self._write_connection = self.connect(write=True)
+ self.ds._prepare_connection(self._write_connection, self.name)
+ return fn(self._write_connection)
+
+ # threaded mode
task_id = uuid.uuid5(uuid.NAMESPACE_DNS, "datasette.io")
if self._write_queue is None:
self._write_queue = queue.Queue()
@@ -177,6 +188,14 @@ class Database:
task.reply_queue.sync_q.put(result)
async def execute_fn(self, fn):
+ if self.ds.executor is None:
+ # non-threaded mode
+ if self._read_connection is None:
+ self._read_connection = self.connect()
+ self.ds._prepare_connection(self._read_connection, self.name)
+ return fn(self._read_connection)
+
+ # threaded mode
def in_thread():
conn = getattr(connections, self.name, None)
if not conn:
diff --git a/docs/settings.rst b/docs/settings.rst
index 60c4b36d..8437fb04 100644
--- a/docs/settings.rst
+++ b/docs/settings.rst
@@ -107,6 +107,8 @@ Maximum number of threads in the thread pool Datasette uses to execute SQLite qu
datasette mydatabase.db --setting num_sql_threads 10
+Setting this to 0 turns off threaded SQL queries entirely - useful for environments that do not support threading such as `Pyodide <https://pyodide.org/>`__.
+
.. _setting_allow_facet:
allow_facet
|
simonw/datasette
|
a29c1277896b6a7905ef5441c42a37bc15f67599
|
diff --git a/tests/test_internals_datasette.py b/tests/test_internals_datasette.py
index cc200a2d..1dc14cab 100644
--- a/tests/test_internals_datasette.py
+++ b/tests/test_internals_datasette.py
@@ -1,7 +1,7 @@
"""
Tests for the datasette.app.Datasette class
"""
-from datasette.app import Datasette
+from datasette.app import Datasette, Database
from itsdangerous import BadSignature
from .fixtures import app_client
import pytest
@@ -63,3 +63,15 @@ async def test_datasette_constructor():
"hash": None,
}
]
+
+
[email protected]
+async def test_num_sql_threads_zero():
+ ds = Datasette([], memory=True, settings={"num_sql_threads": 0})
+ db = ds.add_database(Database(ds, memory_name="test_num_sql_threads_zero"))
+ await db.execute_write("create table t(id integer primary key)")
+ await db.execute_write("insert into t (id) values (1)")
+ response = await ds.client.get("/-/threads.json")
+ assert response.json() == {"num_threads": 0, "threads": []}
+ response2 = await ds.client.get("/test_num_sql_threads_zero/t.json?_shape=array")
+ assert response2.json() == [{"id": 1}]
|
Datasette setting to disable threading (for Pyodide)
> I'm going to add a Datasette setting to disable threading entirely, designed for usage in this particular case.
>
> I thought about adding a new setting, then I noticed this:
>
> datasette mydatabase.db --setting num_sql_threads 10
>
> I'm going to let users set that to `0` to disable threaded execution of SQL queries.
_Originally posted by @simonw in https://github.com/simonw/datasette/issues/1733#issuecomment-1115278325_
|
0.0
|
a29c1277896b6a7905ef5441c42a37bc15f67599
|
[
"tests/test_internals_datasette.py::test_num_sql_threads_zero"
] |
[
"tests/test_internals_datasette.py::test_get_database",
"tests/test_internals_datasette.py::test_get_database_no_argument",
"tests/test_internals_datasette.py::test_sign_unsign[None-hello]",
"tests/test_internals_datasette.py::test_sign_unsign[None-123]",
"tests/test_internals_datasette.py::test_sign_unsign[None-value2]",
"tests/test_internals_datasette.py::test_sign_unsign[two-hello]",
"tests/test_internals_datasette.py::test_sign_unsign[two-123]",
"tests/test_internals_datasette.py::test_sign_unsign[two-value2]",
"tests/test_internals_datasette.py::test_datasette_setting[base_url-/]",
"tests/test_internals_datasette.py::test_datasette_setting[max_csv_mb-100]",
"tests/test_internals_datasette.py::test_datasette_setting[allow_csv_stream-True]",
"tests/test_internals_datasette.py::test_datasette_constructor"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-05-02 20:14:38+00:00
|
apache-2.0
| 5,498 |
|
simonw__datasette-1898
|
diff --git a/datasette/templates/_codemirror.html b/datasette/templates/_codemirror.html
index dea4710c..c4629aeb 100644
--- a/datasette/templates/_codemirror.html
+++ b/datasette/templates/_codemirror.html
@@ -4,7 +4,6 @@
.cm-editor {
resize: both;
overflow: hidden;
- min-height: 70px;
width: 80%;
border: 1px solid #ddd;
}
diff --git a/datasette/templates/_codemirror_foot.html b/datasette/templates/_codemirror_foot.html
index b76d06fa..a624c8a4 100644
--- a/datasette/templates/_codemirror_foot.html
+++ b/datasette/templates/_codemirror_foot.html
@@ -1,86 +1,11 @@
<script>
- const schema = {
- "123_starts_with_digits": ["content"],
- "Table With Space In Name": ["content", "pk"],
- attraction_characteristic: ["name", "pk"],
- binary_data: ["data"],
- complex_foreign_keys: ["f1", "f2", "f3", "pk"],
- compound_primary_key: ["content", "pk1", "pk2"],
- compound_three_primary_keys: ["content", "pk1", "pk2", "pk3"],
- custom_foreign_key_label: ["foreign_key_with_custom_label", "pk"],
- facet_cities: ["id", "name"],
- facetable: [
- "_city_id",
- "_neighborhood",
- "complex_array",
- "created",
- "distinct_some_null",
- "n",
- "on_earth",
- "pk",
- "planet_int",
- "state",
- "tags",
- ],
- foreign_key_references: [
- "foreign_key_compound_pk1",
- "foreign_key_compound_pk2",
- "foreign_key_with_blank_label",
- "foreign_key_with_label",
- "foreign_key_with_no_label",
- "pk",
- ],
- infinity: ["value"],
- no_primary_key: ["a", "b", "c", "content"],
- primary_key_multiple_columns: ["content", "content2", "id"],
- primary_key_multiple_columns_explicit_label: ["content", "content2", "id"],
- roadside_attraction_characteristics: ["attraction_id", "characteristic_id"],
- roadside_attractions: [
- "address",
- "latitude",
- "longitude",
- "name",
- "pk",
- "url",
- ],
- searchable: ["name with . and spaces", "pk", "text1", "text2"],
- searchable_fts: [
- "__langid",
- "docid",
- "name with . and spaces",
- "searchable_fts",
- "text1",
- "text2",
- ],
- searchable_fts_docsize: ["docid", "size"],
- searchable_fts_segdir: [
- "end_block",
- "idx",
- "leaves_end_block",
- "level",
- "root",
- "start_block",
- ],
- searchable_fts_segments: ["block", "blockid"],
- searchable_fts_stat: ["id", "value"],
- searchable_tags: ["searchable_id", "tag"],
- select: ["and", "group", "having", "json"],
- simple_primary_key: ["content", "id"],
- sortable: [
- "content",
- "pk1",
- "pk2",
- "sortable",
- "sortable_with_nulls",
- "sortable_with_nulls_2",
- "text",
- ],
- "table/with/slashes.csv": ["content", "pk"],
- tags: ["tag"],
- units: ["distance", "frequency", "pk"],
- };
+ {% if table_columns %}
+ const schema = {{ table_columns|tojson(2) }};
+ {% else %}
+ const schema = {};
+ {% endif %}
- window.onload = () => {
+ window.addEventListener("DOMContentLoaded", () => {
const sqlFormat = document.querySelector("button#sql-format");
const readOnly = document.querySelector("pre#sql-query");
const sqlInput = document.querySelector("textarea#sql-editor");
@@ -113,5 +38,5 @@
});
}
}
- };
+ });
</script>
diff --git a/datasette/views/database.py b/datasette/views/database.py
index 8e08c3b1..a50cf3d3 100644
--- a/datasette/views/database.py
+++ b/datasette/views/database.py
@@ -139,6 +139,9 @@ class DatabaseView(DataView):
attached_databases = [d.name for d in await db.attached_databases()]
+ allow_execute_sql = await self.ds.permission_allowed(
+ request.actor, "execute-sql", database, default=True
+ )
return (
{
"database": database,
@@ -149,9 +152,10 @@ class DatabaseView(DataView):
"hidden_count": len([t for t in tables if t["hidden"]]),
"views": views,
"queries": canned_queries,
- "allow_execute_sql": await self.ds.permission_allowed(
- request.actor, "execute-sql", database, default=True
- ),
+ "allow_execute_sql": allow_execute_sql,
+ "table_columns": await _table_columns(self.ds, database)
+ if allow_execute_sql
+ else {},
},
{
"database_actions": database_actions,
@@ -508,6 +512,9 @@ class QueryView(DataView):
"show_hide_text": show_hide_text,
"show_hide_hidden": markupsafe.Markup(show_hide_hidden),
"hide_sql": hide_sql,
+ "table_columns": await _table_columns(self.ds, database)
+ if allow_execute_sql
+ else {},
}
return (
@@ -554,3 +561,15 @@ class MagicParameters(dict):
return super().__getitem__(key)
else:
return super().__getitem__(key)
+
+
+async def _table_columns(datasette, database_name):
+ internal = datasette.get_database("_internal")
+ result = await internal.execute(
+ "select table_name, name from columns where database_name = ?",
+ [database_name],
+ )
+ table_columns = {}
+ for row in result.rows:
+ table_columns.setdefault(row["table_name"], []).append(row["name"])
+ return table_columns
|
simonw/datasette
|
00e233d7a7f6443cb95fb5227c23580c48551cad
|
diff --git a/tests/test_permissions.py b/tests/test_permissions.py
index 8812d0f7..0364707a 100644
--- a/tests/test_permissions.py
+++ b/tests/test_permissions.py
@@ -1,7 +1,9 @@
from .fixtures import app_client, assert_permissions_checked, make_app_client
from bs4 import BeautifulSoup as Soup
import copy
+import json
import pytest
+import re
import urllib
@@ -237,24 +239,35 @@ def test_view_query(allow, expected_anon, expected_auth):
],
)
def test_execute_sql(metadata):
+ schema_re = re.compile("const schema = ({.*?});", re.DOTALL)
with make_app_client(metadata=metadata) as client:
form_fragment = '<form class="sql" action="/fixtures"'
# Anonymous users - should not display the form:
- assert form_fragment not in client.get("/fixtures").text
+ anon_html = client.get("/fixtures").text
+ assert form_fragment not in anon_html
+ # And const schema should be an empty object:
+ assert "const schema = {};" in anon_html
# This should 403:
- assert 403 == client.get("/fixtures?sql=select+1").status
+ assert client.get("/fixtures?sql=select+1").status == 403
# ?_where= not allowed on tables:
- assert 403 == client.get("/fixtures/facet_cities?_where=id=3").status
+ assert client.get("/fixtures/facet_cities?_where=id=3").status == 403
# But for logged in user all of these should work:
cookies = {"ds_actor": client.actor_cookie({"id": "root"})}
response_text = client.get("/fixtures", cookies=cookies).text
+ # Extract the schema= portion of the JavaScript
+ schema_json = schema_re.search(response_text).group(1)
+ schema = json.loads(schema_json)
+ assert set(schema["attraction_characteristic"]) == {"name", "pk"}
assert form_fragment in response_text
- assert 200 == client.get("/fixtures?sql=select+1", cookies=cookies).status
+ query_response = client.get("/fixtures?sql=select+1", cookies=cookies)
+ assert query_response.status == 200
+ schema2 = json.loads(schema_re.search(query_response.text).group(1))
+ assert set(schema2["attraction_characteristic"]) == {"name", "pk"}
assert (
- 200
- == client.get("/fixtures/facet_cities?_where=id=3", cookies=cookies).status
+ client.get("/fixtures/facet_cities?_where=id=3", cookies=cookies).status
+ == 200
)
|
Initialize CodeMirror during DOMContentLoaded instead of onload
As per https://github.com/simonw/datasette/pull/1893/files#r1023248927 this should prevent a flash between the textarea being replaced by CodeMirror.
|
0.0
|
00e233d7a7f6443cb95fb5227c23580c48551cad
|
[
"tests/test_permissions.py::test_execute_sql[metadata0]",
"tests/test_permissions.py::test_execute_sql[metadata1]"
] |
[
"tests/test_permissions.py::test_view_padlock[/-None-200-200]",
"tests/test_permissions.py::test_view_padlock[/-allow1-403-403]",
"tests/test_permissions.py::test_view_padlock[/-allow2-403-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures-None-200-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures-allow1-403-403]",
"tests/test_permissions.py::test_view_padlock[/fixtures-allow2-403-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures/compound_three_primary_keys-None-200-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures/compound_three_primary_keys-allow1-403-403]",
"tests/test_permissions.py::test_view_padlock[/fixtures/compound_three_primary_keys-allow2-403-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures/compound_three_primary_keys/a,a,a-None-200-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures/compound_three_primary_keys/a,a,a-allow1-403-403]",
"tests/test_permissions.py::test_view_padlock[/fixtures/compound_three_primary_keys/a,a,a-allow2-403-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures/two-None-200-200]",
"tests/test_permissions.py::test_view_padlock[/fixtures/two-allow1-403-403]",
"tests/test_permissions.py::test_view_padlock[/fixtures/two-allow2-403-200]",
"tests/test_permissions.py::test_view_database[None-200-200]",
"tests/test_permissions.py::test_view_database[allow1-403-403]",
"tests/test_permissions.py::test_view_database[allow2-403-200]",
"tests/test_permissions.py::test_database_list_respects_view_database",
"tests/test_permissions.py::test_database_list_respects_view_table",
"tests/test_permissions.py::test_view_table[None-200-200]",
"tests/test_permissions.py::test_view_table[allow1-403-403]",
"tests/test_permissions.py::test_view_table[allow2-403-200]",
"tests/test_permissions.py::test_table_list_respects_view_table",
"tests/test_permissions.py::test_view_query[None-200-200]",
"tests/test_permissions.py::test_view_query[allow1-403-403]",
"tests/test_permissions.py::test_view_query[allow2-403-200]",
"tests/test_permissions.py::test_query_list_respects_view_query",
"tests/test_permissions.py::test_permissions_checked[/-permissions0]",
"tests/test_permissions.py::test_permissions_checked[/fixtures-permissions1]",
"tests/test_permissions.py::test_permissions_checked[/fixtures/facetable/1-permissions2]",
"tests/test_permissions.py::test_permissions_checked[/fixtures/simple_primary_key-permissions3]",
"tests/test_permissions.py::test_permissions_checked[/fixtures?sql=select+1-permissions4]",
"tests/test_permissions.py::test_permissions_checked[/fixtures.db-permissions5]",
"tests/test_permissions.py::test_permissions_checked[/fixtures/neighborhood_search-permissions6]",
"tests/test_permissions.py::test_permissions_debug",
"tests/test_permissions.py::test_allow_debug[{\"id\":\"root\"}-{}-Result:",
"tests/test_permissions.py::test_allow_debug[{\"id\":\"root\"}-{\"id\":",
"tests/test_permissions.py::test_allow_debug[{\"-{\"id\":",
"tests/test_permissions.py::test_allow_debug[{\"id\":\"root\"}-\"*\"}-Allow",
"tests/test_permissions.py::test_allow_unauthenticated[allow0-403]",
"tests/test_permissions.py::test_allow_unauthenticated[allow1-200]",
"tests/test_permissions.py::test_view_instance[/]",
"tests/test_permissions.py::test_view_instance[/fixtures]",
"tests/test_permissions.py::test_view_instance[/fixtures/facetable]",
"tests/test_permissions.py::test_view_instance[/-/metadata]",
"tests/test_permissions.py::test_view_instance[/-/versions]",
"tests/test_permissions.py::test_view_instance[/-/plugins]",
"tests/test_permissions.py::test_view_instance[/-/settings]",
"tests/test_permissions.py::test_view_instance[/-/threads]",
"tests/test_permissions.py::test_view_instance[/-/databases]",
"tests/test_permissions.py::test_view_instance[/-/actor]",
"tests/test_permissions.py::test_view_instance[/-/permissions]",
"tests/test_permissions.py::test_view_instance[/-/messages]",
"tests/test_permissions.py::test_view_instance[/-/patterns]",
"tests/test_permissions.py::test_permissions_cascade[/-permissions0-403]",
"tests/test_permissions.py::test_permissions_cascade[/-permissions1-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data-permissions2-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data-permissions3-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data-permissions4-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data-permissions5-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data-permissions6-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data-permissions7-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data/1-permissions8-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data/1-permissions9-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data/1-permissions10-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data/1-permissions11-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data/1-permissions12-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/binary_data/1-permissions13-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/magic_parameters-permissions14-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/magic_parameters-permissions15-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/magic_parameters-permissions16-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/magic_parameters-permissions17-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/magic_parameters-permissions18-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures/magic_parameters-permissions19-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures-permissions20-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures-permissions21-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures-permissions22-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures.db-permissions23-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures.db-permissions24-403]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures.db-permissions25-200]",
"tests/test_permissions.py::test_permissions_cascade[/fixtures.db-permissions26-200]",
"tests/test_permissions.py::test_padlocks_on_database_page"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-11-17 00:19:21+00:00
|
apache-2.0
| 5,499 |
|
simonw__datasette-mask-columns-4
|
diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml
index ee5ce9d..90b14a4 100644
--- a/.github/workflows/publish.yml
+++ b/.github/workflows/publish.yml
@@ -4,28 +4,26 @@ on:
release:
types: [created]
+permissions:
+ contents: read
+
jobs:
test:
runs-on: ubuntu-latest
strategy:
matrix:
- python-version: [3.6, 3.7, 3.8, 3.9]
+ python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- - uses: actions/checkout@v2
+ - uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
- uses: actions/setup-python@v2
+ uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- - uses: actions/cache@v2
- name: Configure pip caching
- with:
- path: ~/.cache/pip
- key: ${{ runner.os }}-pip-${{ hashFiles('**/setup.py') }}
- restore-keys: |
- ${{ runner.os }}-pip-
+ cache: pip
+ cache-dependency-path: setup.py
- name: Install dependencies
run: |
- pip install -e '.[test]'
+ pip install '.[test]'
- name: Run tests
run: |
pytest
@@ -33,26 +31,21 @@ jobs:
runs-on: ubuntu-latest
needs: [test]
steps:
- - uses: actions/checkout@v2
+ - uses: actions/checkout@v3
- name: Set up Python
- uses: actions/setup-python@v2
- with:
- python-version: '3.9'
- - uses: actions/cache@v2
- name: Configure pip caching
+ uses: actions/setup-python@v4
with:
- path: ~/.cache/pip
- key: ${{ runner.os }}-publish-pip-${{ hashFiles('**/setup.py') }}
- restore-keys: |
- ${{ runner.os }}-publish-pip-
+ python-version: "3.11"
+ cache: pip
+ cache-dependency-path: setup.py
- name: Install dependencies
run: |
- pip install setuptools wheel twine
+ pip install setuptools wheel twine build
- name: Publish
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_TOKEN }}
run: |
- python setup.py sdist bdist_wheel
+ python -m build
twine upload dist/*
diff --git a/datasette_mask_columns/__init__.py b/datasette_mask_columns/__init__.py
index f0af289..dcbd121 100644
--- a/datasette_mask_columns/__init__.py
+++ b/datasette_mask_columns/__init__.py
@@ -1,5 +1,5 @@
from datasette import hookimpl
-import jinja2
+from markupsafe import Markup
import sqlite3
@@ -31,6 +31,6 @@ def render_cell(column, table, database, datasette):
masks = datasette.plugin_config("datasette-mask-columns", database=database) or {}
columns_to_mask = masks.get(table) or set()
if column in columns_to_mask:
- return jinja2.Markup(
+ return Markup(
'<span style="font-size: 0.8em; color: red; opacity: 0.8">REDACTED</span>'
)
|
simonw/datasette-mask-columns
|
50acf9833954f230fd7938bffdbbad0f78c9af27
|
diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml
index cd7e525..e22143a 100644
--- a/.github/workflows/test.yml
+++ b/.github/workflows/test.yml
@@ -1,30 +1,27 @@
name: Test
-on: [push]
+on: [push, pull_request]
+
+permissions:
+ contents: read
jobs:
test:
runs-on: ubuntu-latest
strategy:
matrix:
- python-version: [3.6, 3.7, 3.8, 3.9]
+ python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- - uses: actions/checkout@v2
+ - uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
- uses: actions/setup-python@v2
+ uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- - uses: actions/cache@v2
- name: Configure pip caching
- with:
- path: ~/.cache/pip
- key: ${{ runner.os }}-pip-${{ hashFiles('**/setup.py') }}
- restore-keys: |
- ${{ runner.os }}-pip-
+ cache: pip
+ cache-dependency-path: setup.py
- name: Install dependencies
run: |
pip install -e '.[test]'
- name: Run tests
run: |
pytest
-
|
Err 500 module 'jinja2' has no attribute 'Markup'
At first attempt of masking columns, I get `module 'jinja2' has no attribute 'Markup'`


|
0.0
|
50acf9833954f230fd7938bffdbbad0f78c9af27
|
[
"tests/test_mask_columns.py::test_datasette_mask_columns"
] |
[] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_hyperlinks",
"has_media",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-09-14 20:38:11+00:00
|
apache-2.0
| 5,500 |
|
simonw__sqlite-utils-142
|
diff --git a/docs/python-api.rst b/docs/python-api.rst
index 9697fd3..5860397 100644
--- a/docs/python-api.rst
+++ b/docs/python-api.rst
@@ -410,7 +410,7 @@ Use it like this:
"is_good_dog": True,
}], pk="id", column_order=("id", "twitter", "name"))
-The column types used in the ``CREATE TABLE`` statement are automatically derived from the types of data in that first batch of rows. Any additional or missing columns in subsequent batches will be ignored.
+The column types used in the ``CREATE TABLE`` statement are automatically derived from the types of data in that first batch of rows. Any additional columns in subsequent batches will cause a ``sqlite3.OperationalError`` exception to be raised unless the ``alter=True`` argument is supplied, in which case the new columns will be created.
The function can accept an iterator or generator of rows and will commit them according to the batch size. The default batch size is 100, but you can specify a different size using the ``batch_size`` parameter:
diff --git a/sqlite_utils/db.py b/sqlite_utils/db.py
index a8791c3..75599f6 100644
--- a/sqlite_utils/db.py
+++ b/sqlite_utils/db.py
@@ -1074,6 +1074,14 @@ class Table(Queryable):
all_columns = list(sorted(all_columns))
if hash_id:
all_columns.insert(0, hash_id)
+ else:
+ all_columns += [
+ column
+ for record in chunk
+ for column in record
+ if column not in all_columns
+ ]
+
validate_column_names(all_columns)
first = False
# values is the list of insert data that is passed to the
|
simonw/sqlite-utils
|
ea87c2b943fdd162c42a900ac0aea5ecc2f4b9d9
|
diff --git a/tests/test_create.py b/tests/test_create.py
index a84eb8d..fc8edc0 100644
--- a/tests/test_create.py
+++ b/tests/test_create.py
@@ -707,13 +707,24 @@ def test_insert_thousands_using_generator(fresh_db):
assert 10000 == fresh_db["test"].count
-def test_insert_thousands_ignores_extra_columns_after_first_100(fresh_db):
+def test_insert_thousands_raises_exception_wtih_extra_columns_after_first_100(fresh_db):
+ # https://github.com/simonw/sqlite-utils/issues/139
+ with pytest.raises(Exception, match="table test has no column named extra"):
+ fresh_db["test"].insert_all(
+ [{"i": i, "word": "word_{}".format(i)} for i in range(100)]
+ + [{"i": 101, "extra": "This extra column should cause an exception"}],
+ )
+
+
+def test_insert_thousands_adds_extra_columns_after_first_100_with_alter(fresh_db):
+ # https://github.com/simonw/sqlite-utils/issues/139
fresh_db["test"].insert_all(
[{"i": i, "word": "word_{}".format(i)} for i in range(100)]
- + [{"i": 101, "extra": "This extra column should cause an exception"}]
+ + [{"i": 101, "extra": "Should trigger ALTER"}],
+ alter=True,
)
rows = fresh_db.execute_returning_dicts("select * from test where i = 101")
- assert [{"i": 101, "word": None}] == rows
+ assert [{"i": 101, "word": None, "extra": "Should trigger ALTER"}] == rows
def test_insert_ignore(fresh_db):
|
insert_all(..., alter=True) should work for new columns introduced after the first 100 records
Is there a way to make `.insert_all()` work properly when new columns are introduced outside the first 100 records (with or without the `alter=True` argument)?
I'm using `.insert_all()` to bulk insert ~3-4k records at a time and it is common for records to need to introduce new columns. However, if new columns are introduced after the first 100 records, `sqlite_utils` doesn't even raise the `OperationalError: table ... has no column named ...` exception; it just silently drops the extra data and moves on.
It took me a while to find this little snippet in the [documentation for `.insert_all()`](https://sqlite-utils.readthedocs.io/en/stable/python-api.html#bulk-inserts) (it's not mentioned under [Adding columns automatically on insert/update](https://sqlite-utils.readthedocs.io/en/stable/python-api.html#bulk-inserts)):
> The column types used in the CREATE TABLE statement are automatically derived from the types of data in that first batch of rows. **_Any additional or missing columns in subsequent batches will be ignored._**
I tried changing the `batch_size` argument to the total number of records, but it seems only to effect the number of rows that are committed at a time, and has no influence on this problem.
Is there a way around this that you would suggest? It seems like it should raise an exception at least.
|
0.0
|
ea87c2b943fdd162c42a900ac0aea5ecc2f4b9d9
|
[
"tests/test_create.py::test_insert_thousands_raises_exception_wtih_extra_columns_after_first_100",
"tests/test_create.py::test_insert_thousands_adds_extra_columns_after_first_100_with_alter"
] |
[
"tests/test_create.py::test_create_table",
"tests/test_create.py::test_create_table_compound_primary_key",
"tests/test_create.py::test_create_table_with_bad_defaults",
"tests/test_create.py::test_create_table_with_invalid_column_characters",
"tests/test_create.py::test_create_table_with_defaults",
"tests/test_create.py::test_create_table_with_bad_not_null",
"tests/test_create.py::test_create_table_with_not_null",
"tests/test_create.py::test_create_table_from_example[example0-expected_columns0]",
"tests/test_create.py::test_create_table_from_example[example1-expected_columns1]",
"tests/test_create.py::test_create_table_from_example[example2-expected_columns2]",
"tests/test_create.py::test_create_table_from_example[example3-expected_columns3]",
"tests/test_create.py::test_create_table_from_example[example4-expected_columns4]",
"tests/test_create.py::test_create_table_from_example[example5-expected_columns5]",
"tests/test_create.py::test_create_table_from_example_with_compound_primary_keys",
"tests/test_create.py::test_create_table_with_custom_columns[insert]",
"tests/test_create.py::test_create_table_with_custom_columns[upsert]",
"tests/test_create.py::test_create_table_with_custom_columns[insert_all]",
"tests/test_create.py::test_create_table_with_custom_columns[upsert_all]",
"tests/test_create.py::test_create_table_column_order[True]",
"tests/test_create.py::test_create_table_column_order[False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification0-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification1-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification2-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification3-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification4-NoObviousTable]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification5-AssertionError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification6-AlterError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification7-AssertionError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification0-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification1-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification2-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification3-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification4-NoObviousTable]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification5-AssertionError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification6-AlterError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification7-AssertionError]",
"tests/test_create.py::test_create_error_if_invalid_foreign_keys",
"tests/test_create.py::test_add_column[nickname-str-None-CREATE",
"tests/test_create.py::test_add_column[dob-date-None-CREATE",
"tests/test_create.py::test_add_column[age-int-None-CREATE",
"tests/test_create.py::test_add_column[weight-float-None-CREATE",
"tests/test_create.py::test_add_column[text-TEXT-None-CREATE",
"tests/test_create.py::test_add_column[integer-INTEGER-None-CREATE",
"tests/test_create.py::test_add_column[float-FLOAT-None-CREATE",
"tests/test_create.py::test_add_column[blob-blob-None-CREATE",
"tests/test_create.py::test_add_column[default_str-None-None-CREATE",
"tests/test_create.py::test_add_column[nickname-str--CREATE",
"tests/test_create.py::test_add_column[nickname-str-dawg's",
"tests/test_create.py::test_add_foreign_key",
"tests/test_create.py::test_add_foreign_key_error_if_column_does_not_exist",
"tests/test_create.py::test_add_foreign_key_error_if_other_table_does_not_exist",
"tests/test_create.py::test_add_foreign_key_error_if_already_exists",
"tests/test_create.py::test_add_foreign_keys",
"tests/test_create.py::test_add_column_foreign_key",
"tests/test_create.py::test_add_foreign_key_guess_table",
"tests/test_create.py::test_index_foreign_keys",
"tests/test_create.py::test_insert_row_alter_table[True-extra_data0-expected_new_columns0]",
"tests/test_create.py::test_insert_row_alter_table[True-extra_data1-expected_new_columns1]",
"tests/test_create.py::test_insert_row_alter_table[True-extra_data2-expected_new_columns2]",
"tests/test_create.py::test_insert_row_alter_table[False-extra_data0-expected_new_columns0]",
"tests/test_create.py::test_insert_row_alter_table[False-extra_data1-expected_new_columns1]",
"tests/test_create.py::test_insert_row_alter_table[False-extra_data2-expected_new_columns2]",
"tests/test_create.py::test_insert_row_alter_table_invalid_column_characters",
"tests/test_create.py::test_insert_replace_rows_alter_table[True]",
"tests/test_create.py::test_insert_replace_rows_alter_table[False]",
"tests/test_create.py::test_bulk_insert_more_than_999_values",
"tests/test_create.py::test_error_if_more_than_999_columns[900-False]",
"tests/test_create.py::test_error_if_more_than_999_columns[999-False]",
"tests/test_create.py::test_error_if_more_than_999_columns[1000-True]",
"tests/test_create.py::test_create_index[columns0-None-expected_index0]",
"tests/test_create.py::test_create_index[columns1-None-expected_index1]",
"tests/test_create.py::test_create_index[columns2-age_index-expected_index2]",
"tests/test_create.py::test_create_index_unique",
"tests/test_create.py::test_create_index_if_not_exists",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure0]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure1]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure2]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure3]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure4]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure5]",
"tests/test_create.py::test_insert_uuid",
"tests/test_create.py::test_insert_memoryview",
"tests/test_create.py::test_insert_thousands_using_generator",
"tests/test_create.py::test_insert_ignore",
"tests/test_create.py::test_insert_hash_id",
"tests/test_create.py::test_vacuum",
"tests/test_create.py::test_works_with_pathlib_path",
"tests/test_create.py::test_cannot_provide_both_filename_and_memory",
"tests/test_create.py::test_creates_id_column",
"tests/test_create.py::test_drop",
"tests/test_create.py::test_drop_view",
"tests/test_create.py::test_insert_all_empty_list",
"tests/test_create.py::test_create_with_a_null_column",
"tests/test_create.py::test_create_with_nested_bytes"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2020-08-28 22:22:57+00:00
|
apache-2.0
| 5,501 |
|
simonw__sqlite-utils-51
|
diff --git a/sqlite_utils/db.py b/sqlite_utils/db.py
index ef55976..586014b 100644
--- a/sqlite_utils/db.py
+++ b/sqlite_utils/db.py
@@ -6,6 +6,8 @@ import itertools
import json
import pathlib
+SQLITE_MAX_VARS = 999
+
try:
import numpy as np
except ImportError:
@@ -848,7 +850,17 @@ class Table:
), "Use either ignore=True or upsert=True, not both"
all_columns = None
first = True
- for chunk in chunks(records, batch_size):
+ # We can only handle a max of 999 variables in a SQL insert, so
+ # we need to adjust the batch_size down if we have too many cols
+ records = iter(records)
+ # Peek at first record to count its columns:
+ first_record = next(records)
+ num_columns = len(first_record.keys())
+ assert (
+ num_columns <= SQLITE_MAX_VARS
+ ), "Rows can have a maximum of {} columns".format(SQLITE_MAX_VARS)
+ batch_size = max(1, min(batch_size, SQLITE_MAX_VARS // num_columns))
+ for chunk in chunks(itertools.chain([first_record], records), batch_size):
chunk = list(chunk)
if first:
if not self.exists:
|
simonw/sqlite-utils
|
9b7be79c86b4283f24a64f62257c918f12542997
|
diff --git a/tests/test_create.py b/tests/test_create.py
index 222a967..71b1583 100644
--- a/tests/test_create.py
+++ b/tests/test_create.py
@@ -500,6 +500,42 @@ def test_upsert_rows_alter_table(fresh_db, use_table_factory):
] == list(table.rows)
+def test_bulk_insert_more_than_999_values(fresh_db):
+ "Inserting 100 items with 11 columns should work"
+ fresh_db["big"].insert_all(
+ (
+ {
+ "id": i + 1,
+ "c2": 2,
+ "c3": 3,
+ "c4": 4,
+ "c5": 5,
+ "c6": 6,
+ "c7": 7,
+ "c8": 8,
+ "c8": 9,
+ "c10": 10,
+ "c11": 11,
+ }
+ for i in range(100)
+ ),
+ pk="id",
+ )
+ assert 100 == fresh_db["big"].count
+
+
[email protected](
+ "num_columns,should_error", ((900, False), (999, False), (1000, True))
+)
+def test_error_if_more_than_999_columns(fresh_db, num_columns, should_error):
+ record = dict([("c{}".format(i), i) for i in range(num_columns)])
+ if should_error:
+ with pytest.raises(AssertionError):
+ fresh_db["big"].insert(record)
+ else:
+ fresh_db["big"].insert(record)
+
+
@pytest.mark.parametrize(
"columns,index_name,expected_index",
(
|
"Too many SQL variables" on large inserts
Reported here: https://github.com/dogsheep/healthkit-to-sqlite/issues/9
It looks like there's a default limit of 999 variables - we need to be smart about that, maybe dynamically lower the batch size based on the number of columns.
|
0.0
|
9b7be79c86b4283f24a64f62257c918f12542997
|
[
"tests/test_create.py::test_error_if_more_than_999_columns[1000-True]"
] |
[
"tests/test_create.py::test_create_table",
"tests/test_create.py::test_create_table_compound_primary_key",
"tests/test_create.py::test_create_table_with_bad_defaults",
"tests/test_create.py::test_create_table_with_defaults",
"tests/test_create.py::test_create_table_with_bad_not_null",
"tests/test_create.py::test_create_table_with_not_null",
"tests/test_create.py::test_create_table_from_example[example0-expected_columns0]",
"tests/test_create.py::test_create_table_from_example[example1-expected_columns1]",
"tests/test_create.py::test_create_table_from_example[example2-expected_columns2]",
"tests/test_create.py::test_create_table_from_example_with_compound_primary_keys",
"tests/test_create.py::test_create_table_column_order[True]",
"tests/test_create.py::test_create_table_column_order[False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification0-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification1-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification2-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification3-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification4-NoObviousTable]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification5-AssertionError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification6-AlterError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[True-foreign_key_specification7-AssertionError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification0-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification1-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification2-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification3-False]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification4-NoObviousTable]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification5-AssertionError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification6-AlterError]",
"tests/test_create.py::test_create_table_works_for_m2m_with_only_foreign_keys[False-foreign_key_specification7-AssertionError]",
"tests/test_create.py::test_create_error_if_invalid_foreign_keys",
"tests/test_create.py::test_add_column[nickname-str-None-CREATE",
"tests/test_create.py::test_add_column[dob-date-None-CREATE",
"tests/test_create.py::test_add_column[age-int-None-CREATE",
"tests/test_create.py::test_add_column[weight-float-None-CREATE",
"tests/test_create.py::test_add_column[text-TEXT-None-CREATE",
"tests/test_create.py::test_add_column[integer-INTEGER-None-CREATE",
"tests/test_create.py::test_add_column[float-FLOAT-None-CREATE",
"tests/test_create.py::test_add_column[blob-blob-None-CREATE",
"tests/test_create.py::test_add_column[default_str-None-None-CREATE",
"tests/test_create.py::test_add_column[nickname-str--CREATE",
"tests/test_create.py::test_add_column[nickname-str-dawg's",
"tests/test_create.py::test_add_foreign_key",
"tests/test_create.py::test_add_foreign_key_error_if_column_does_not_exist",
"tests/test_create.py::test_add_foreign_key_error_if_other_table_does_not_exist",
"tests/test_create.py::test_add_foreign_key_error_if_already_exists",
"tests/test_create.py::test_add_foreign_keys",
"tests/test_create.py::test_add_column_foreign_key",
"tests/test_create.py::test_add_foreign_key_guess_table",
"tests/test_create.py::test_index_foreign_keys",
"tests/test_create.py::test_insert_row_alter_table[True-extra_data0-expected_new_columns0]",
"tests/test_create.py::test_insert_row_alter_table[True-extra_data1-expected_new_columns1]",
"tests/test_create.py::test_insert_row_alter_table[True-extra_data2-expected_new_columns2]",
"tests/test_create.py::test_insert_row_alter_table[False-extra_data0-expected_new_columns0]",
"tests/test_create.py::test_insert_row_alter_table[False-extra_data1-expected_new_columns1]",
"tests/test_create.py::test_insert_row_alter_table[False-extra_data2-expected_new_columns2]",
"tests/test_create.py::test_upsert_rows_alter_table[True]",
"tests/test_create.py::test_upsert_rows_alter_table[False]",
"tests/test_create.py::test_bulk_insert_more_than_999_values",
"tests/test_create.py::test_error_if_more_than_999_columns[900-False]",
"tests/test_create.py::test_error_if_more_than_999_columns[999-False]",
"tests/test_create.py::test_create_index[columns0-None-expected_index0]",
"tests/test_create.py::test_create_index[columns1-None-expected_index1]",
"tests/test_create.py::test_create_index[columns2-age_index-expected_index2]",
"tests/test_create.py::test_create_index_unique",
"tests/test_create.py::test_create_index_if_not_exists",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure0]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure1]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure2]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure3]",
"tests/test_create.py::test_insert_dictionaries_and_lists_as_json[data_structure4]",
"tests/test_create.py::test_insert_thousands_using_generator",
"tests/test_create.py::test_insert_thousands_ignores_extra_columns_after_first_100",
"tests/test_create.py::test_insert_ignore",
"tests/test_create.py::test_insert_hash_id",
"tests/test_create.py::test_create_view",
"tests/test_create.py::test_vacuum",
"tests/test_create.py::test_works_with_pathlib_path",
"tests/test_create.py::test_cannot_provide_both_filename_and_memory",
"tests/test_create.py::test_creates_id_column"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_hyperlinks"
],
"has_test_patch": true,
"is_lite": false
}
|
2019-07-28 11:30:30+00:00
|
apache-2.0
| 5,502 |
|
simpeg__simpeg-1320
|
diff --git a/SimPEG/regularization/base.py b/SimPEG/regularization/base.py
index 1c89fb4ec..8e91c704d 100644
--- a/SimPEG/regularization/base.py
+++ b/SimPEG/regularization/base.py
@@ -383,6 +383,13 @@ class BaseRegularization(BaseObjectiveFunction):
self._weights[key] = values
self._W = None
+ @property
+ def weights_keys(self) -> list[str]:
+ """
+ Return the keys for the existing cell weights
+ """
+ return list(self._weights.keys())
+
def remove_weights(self, key):
"""Removes the weights for the key provided.
|
simpeg/simpeg
|
e3cd6ed869d5e49ab817b45f1fec037ac638a68f
|
diff --git a/tests/base/test_regularization.py b/tests/base/test_regularization.py
index ceb910baf..8e9f769b9 100644
--- a/tests/base/test_regularization.py
+++ b/tests/base/test_regularization.py
@@ -6,7 +6,13 @@ import inspect
import discretize
from SimPEG import maps, objective_function, regularization, utils
-from SimPEG.regularization import BaseRegularization, WeightedLeastSquares
+from SimPEG.regularization import (
+ BaseRegularization,
+ WeightedLeastSquares,
+ Smallness,
+ SmoothnessFirstOrder,
+ SmoothnessSecondOrder,
+)
from SimPEG.objective_function import ComboObjectiveFunction
@@ -657,6 +663,67 @@ class TestParent:
regularization.parent = invalid_parent
+class TestWeightsKeys:
+ """
+ Test weights_keys property of regularizations
+ """
+
+ @pytest.fixture
+ def mesh(self):
+ """Sample mesh."""
+ return discretize.TensorMesh([8, 7, 6])
+
+ def test_empty_weights(self, mesh):
+ """
+ Test weights_keys when no weight is defined
+ """
+ reg = BaseRegularization(mesh)
+ assert reg.weights_keys == []
+
+ def test_user_defined_weights_as_dict(self, mesh):
+ """
+ Test weights_keys after user defined weights as dictionary
+ """
+ weights = dict(dummy_weight=np.ones(mesh.n_cells))
+ reg = BaseRegularization(mesh, weights=weights)
+ assert reg.weights_keys == ["dummy_weight"]
+
+ def test_user_defined_weights_as_array(self, mesh):
+ """
+ Test weights_keys after user defined weights as dictionary
+ """
+ weights = np.ones(mesh.n_cells)
+ reg = BaseRegularization(mesh, weights=weights)
+ assert reg.weights_keys == ["user_weights"]
+
+ @pytest.mark.parametrize(
+ "regularization_class", (Smallness, SmoothnessFirstOrder, SmoothnessSecondOrder)
+ )
+ def test_volume_weights(self, mesh, regularization_class):
+ """
+ Test weights_keys has "volume" by default on some regularizations
+ """
+ reg = regularization_class(mesh)
+ assert reg.weights_keys == ["volume"]
+
+ @pytest.mark.parametrize(
+ "regularization_class",
+ (BaseRegularization, Smallness, SmoothnessFirstOrder, SmoothnessSecondOrder),
+ )
+ def test_multiple_weights(self, mesh, regularization_class):
+ """
+ Test weights_keys has "volume" by default on some regularizations
+ """
+ weights = dict(
+ dummy_weight=np.ones(mesh.n_cells), other_weights=np.ones(mesh.n_cells)
+ )
+ reg = regularization_class(mesh, weights=weights)
+ if regularization_class == BaseRegularization:
+ assert reg.weights_keys == ["dummy_weight", "other_weights"]
+ else:
+ assert reg.weights_keys == ["dummy_weight", "other_weights", "volume"]
+
+
class TestDeprecatedArguments:
"""
Test errors after simultaneously passing new and deprecated arguments.
|
ENH: Add method to expose weights keys in regularizations
### Proposed new feature or change:
Would be nice to add a public method to regularization classes that exposes the keys of the `_weights` dictionary, so every array in it can be accessed without the need to know all the keys.
This new method should live in `BaseRegularization` and could look like this:
```python
@property
def weights_keys(self) -> list[str]:
"""Return keys of cell weights."""
return list(self._weights.keys())
```
---
This idea came up after the SimPEG Meeting of 2024-01-03.
|
0.0
|
e3cd6ed869d5e49ab817b45f1fec037ac638a68f
|
[
"tests/base/test_regularization.py::TestWeightsKeys::test_empty_weights",
"tests/base/test_regularization.py::TestWeightsKeys::test_user_defined_weights_as_dict",
"tests/base/test_regularization.py::TestWeightsKeys::test_user_defined_weights_as_array",
"tests/base/test_regularization.py::TestWeightsKeys::test_volume_weights[Smallness]",
"tests/base/test_regularization.py::TestWeightsKeys::test_volume_weights[SmoothnessFirstOrder]",
"tests/base/test_regularization.py::TestWeightsKeys::test_volume_weights[SmoothnessSecondOrder]",
"tests/base/test_regularization.py::TestWeightsKeys::test_multiple_weights[BaseRegularization]",
"tests/base/test_regularization.py::TestWeightsKeys::test_multiple_weights[Smallness]",
"tests/base/test_regularization.py::TestWeightsKeys::test_multiple_weights[SmoothnessFirstOrder]",
"tests/base/test_regularization.py::TestWeightsKeys::test_multiple_weights[SmoothnessSecondOrder]"
] |
[
"tests/base/test_regularization.py::RegularizationTests::test_active_cells_nc_residual",
"tests/base/test_regularization.py::RegularizationTests::test_addition",
"tests/base/test_regularization.py::RegularizationTests::test_base_regularization",
"tests/base/test_regularization.py::RegularizationTests::test_linked_properties",
"tests/base/test_regularization.py::RegularizationTests::test_mappings",
"tests/base/test_regularization.py::RegularizationTests::test_mappings_and_cell_weights",
"tests/base/test_regularization.py::RegularizationTests::test_mref_is_zero",
"tests/base/test_regularization.py::RegularizationTests::test_nC_residual",
"tests/base/test_regularization.py::RegularizationTests::test_property_mirroring",
"tests/base/test_regularization.py::RegularizationTests::test_regularization",
"tests/base/test_regularization.py::RegularizationTests::test_regularizationMesh",
"tests/base/test_regularization.py::RegularizationTests::test_regularization_ActiveCells",
"tests/base/test_regularization.py::RegularizationTests::test_smooth_deriv",
"tests/base/test_regularization.py::RegularizationTests::test_sparse_properties",
"tests/base/test_regularization.py::RegularizationTests::test_update_of_sparse_norms",
"tests/base/test_regularization.py::RegularizationTests::test_vector_amplitude",
"tests/base/test_regularization.py::RegularizationTests::test_weighted_least_squares",
"tests/base/test_regularization.py::test_WeightedLeastSquares",
"tests/base/test_regularization.py::test_cross_ref_reg[2]",
"tests/base/test_regularization.py::test_cross_ref_reg[3]",
"tests/base/test_regularization.py::test_cross_reg_reg_errors",
"tests/base/test_regularization.py::TestParent::test_parent",
"tests/base/test_regularization.py::TestParent::test_invalid_parent",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_active_cells[1D-BaseRegularization]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_active_cells[1D-WeightedLeastSquares]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_active_cells[2D-BaseRegularization]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_active_cells[2D-WeightedLeastSquares]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_active_cells[3D-BaseRegularization]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_active_cells[3D-WeightedLeastSquares]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_weights[1D]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_weights[2D]",
"tests/base/test_regularization.py::TestDeprecatedArguments::test_weights[3D]"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2024-01-05 21:35:20+00:00
|
mit
| 5,503 |
|
simpeg__simpeg-1334
|
diff --git a/SimPEG/utils/mat_utils.py b/SimPEG/utils/mat_utils.py
index 5d128d997..c7b3d07fc 100644
--- a/SimPEG/utils/mat_utils.py
+++ b/SimPEG/utils/mat_utils.py
@@ -396,7 +396,7 @@ def coterminal(theta):
\theta = 2\pi N + \gamma
and *N* is an integer, the function returns the value of :math:`\gamma`.
- The coterminal angle :math:`\gamma` is within the range :math:`[-\pi , \pi]`.
+ The coterminal angle :math:`\gamma` is within the range :math:`[-\pi , \pi)`.
Parameters
----------
@@ -409,12 +409,8 @@ def coterminal(theta):
Coterminal angles
"""
- sub = theta[np.abs(theta) >= np.pi]
- sub = -np.sign(sub) * (2 * np.pi - np.abs(sub))
-
- theta[np.abs(theta) >= np.pi] = sub
-
- return theta
+ coterminal = (theta + np.pi) % (2 * np.pi) - np.pi
+ return coterminal
def define_plane_from_points(xyz1, xyz2, xyz3):
|
simpeg/simpeg
|
aa7c3297edec312e0e74c1c5b75399e7b8f9a3c7
|
diff --git a/tests/base/test_utils.py b/tests/base/test_utils.py
index 541ed1642..5952b755f 100644
--- a/tests/base/test_utils.py
+++ b/tests/base/test_utils.py
@@ -1,4 +1,5 @@
import unittest
+import pytest
import numpy as np
import scipy.sparse as sp
import os
@@ -22,6 +23,7 @@ from SimPEG.utils import (
Counter,
download,
surface2ind_topo,
+ coterminal,
)
import discretize
@@ -342,5 +344,35 @@ class TestDownload(unittest.TestCase):
shutil.rmtree(os.path.expanduser("./test_url"))
+class TestCoterminalAngle:
+ """
+ Tests for the coterminal function
+ """
+
+ @pytest.mark.parametrize(
+ "coterminal_angle",
+ (1 / 4 * np.pi, 3 / 4 * np.pi, -3 / 4 * np.pi, -1 / 4 * np.pi),
+ ids=("pi/4", "3/4 pi", "-3/4 pi", "-pi/4"),
+ )
+ def test_angles_in_quadrants(self, coterminal_angle):
+ """
+ Test coterminal for angles in each quadrant
+ """
+ angles = np.array([2 * n * np.pi + coterminal_angle for n in range(-3, 4)])
+ np.testing.assert_allclose(coterminal(angles), coterminal_angle)
+
+ @pytest.mark.parametrize(
+ "coterminal_angle",
+ (0, np.pi / 2, -np.pi, -np.pi / 2),
+ ids=("0", "pi/2", "-pi", "-pi/2"),
+ )
+ def test_right_angles(self, coterminal_angle):
+ """
+ Test coterminal for right angles
+ """
+ angles = np.array([2 * n * np.pi + coterminal_angle for n in range(-3, 4)])
+ np.testing.assert_allclose(coterminal(angles), coterminal_angle)
+
+
if __name__ == "__main__":
unittest.main()
|
Unintended behaviour of `SimPEG.utils.coterminal`?
## Question
If we pass angles equal to $-\pi$ or $\pi$ we'll get $\pi$ or $-\pi$, respectively. This means that the function will return floats with different signs for this pair of coterminal angles ($-\pi$ and $\pi$ are coterminal angles).
For example:
```python
import numpy as np
from SimPEG.utils import coterminal
angles = np.array([-np.pi, np.pi])
print(coterminal(angles))
```
```
[ 3.14159265 -3.14159265]
```
This may cause issues when trying to regularize such angles: if one cell has a vector with angle $-\pi$, and the next one has an angle of $\pi$, then a smoothness regularization on angles will introduce a penalty (because the difference between these two floats is non-zero), while it shouldn't because there's no change in angles between the two cells.
**Is this the intended behaviour?**
## Idea
Wouldn't be better if the function returns angles in the interval $(-\pi, \pi]$ ?
In that case, passing $-\pi$ and $\pi$ would return the same value for both of them. Therefore it should have the following behaviour for the previous example:
```python
import numpy as np
from SimPEG.utils import coterminal
angles = np.array([-np.pi, np.pi])
print(coterminal(angles))
```
```
[ 3.14159265 3.14159265]
```
## If we decide to go forward with this
If we want to change the behaviour of this function I think we should:
1. Modify the implementation of `SimPEG.utils.coterminal` accordingly.
2. Improve the docstrings to reflect the new change. Probably the $\gamma$ angle could be defined as belonging to $(-\pi, \pi]$.
3. Add test functions that check the function under these circumstances:
- Passing $-\pi$, $\pi$, $3\pi$, $-3\pi$ should return the same angle: $\pi$
- Are angles within the interval not being modified?
- Are angles outisde the interval being correctly brought to that interval?
|
0.0
|
aa7c3297edec312e0e74c1c5b75399e7b8f9a3c7
|
[
"tests/base/test_utils.py::TestCoterminalAngle::test_angles_in_quadrants[pi/4]",
"tests/base/test_utils.py::TestCoterminalAngle::test_angles_in_quadrants[3/4",
"tests/base/test_utils.py::TestCoterminalAngle::test_angles_in_quadrants[-3/4",
"tests/base/test_utils.py::TestCoterminalAngle::test_angles_in_quadrants[-pi/4]",
"tests/base/test_utils.py::TestCoterminalAngle::test_right_angles[0]",
"tests/base/test_utils.py::TestCoterminalAngle::test_right_angles[pi/2]",
"tests/base/test_utils.py::TestCoterminalAngle::test_right_angles[-pi]",
"tests/base/test_utils.py::TestCoterminalAngle::test_right_angles[-pi/2]"
] |
[
"tests/base/test_utils.py::TestCounter::test_simpleFail",
"tests/base/test_utils.py::TestSequenceFunctions::test_TensorType2D",
"tests/base/test_utils.py::TestSequenceFunctions::test_TensorType3D",
"tests/base/test_utils.py::TestSequenceFunctions::test_as_array_n_by_dim",
"tests/base/test_utils.py::TestSequenceFunctions::test_ind2sub",
"tests/base/test_utils.py::TestSequenceFunctions::test_index_cube_2D",
"tests/base/test_utils.py::TestSequenceFunctions::test_index_cube_3D",
"tests/base/test_utils.py::TestSequenceFunctions::test_invXXXBlockDiagonal",
"tests/base/test_utils.py::TestSequenceFunctions::test_inverse_property_tensor2D",
"tests/base/test_utils.py::TestSequenceFunctions::test_inverse_property_tensor3D",
"tests/base/test_utils.py::TestSequenceFunctions::test_mkvc1",
"tests/base/test_utils.py::TestSequenceFunctions::test_mkvc2",
"tests/base/test_utils.py::TestSequenceFunctions::test_mkvc3",
"tests/base/test_utils.py::TestSequenceFunctions::test_ndgrid_2D",
"tests/base/test_utils.py::TestSequenceFunctions::test_ndgrid_3D",
"tests/base/test_utils.py::TestSequenceFunctions::test_sub2ind",
"tests/base/test_utils.py::TestDiagEst::testProbing"
] |
{
"failed_lite_validators": [],
"has_test_patch": true,
"is_lite": true
}
|
2024-01-21 20:12:02+00:00
|
mit
| 5,504 |
|
simphony__simphony-remote-117
|
diff --git a/remoteappmanager/db/csv_db.py b/remoteappmanager/db/csv_db.py
index 99227dc..7c8d6d9 100644
--- a/remoteappmanager/db/csv_db.py
+++ b/remoteappmanager/db/csv_db.py
@@ -44,6 +44,7 @@ Note
"""
import csv
+import hashlib
from remoteappmanager.db.interfaces import (
ABCAccounting, ABCApplication, ABCApplicationPolicy)
@@ -132,9 +133,11 @@ class CSVAccounting(ABCAccounting):
# Save the configuration
# Note that we don't filter existing duplicate entry
+ mapping_id_prehex = '_'.join((application.image, str(count)))
self.all_records.setdefault(username, []).append(
- ('_'.join((application.image, str(count))),
- application, application_policy))
+ (hashlib.md5(mapping_id_prehex.encode('u8')).hexdigest(),
+ application,
+ application_policy))
def get_user_by_name(self, user_name):
""" Return a CSVUser for a given user_name, or return
diff --git a/remoteappmanager/restresources/container.py b/remoteappmanager/restresources/container.py
index 864e1fd..3191c6b 100644
--- a/remoteappmanager/restresources/container.py
+++ b/remoteappmanager/restresources/container.py
@@ -202,7 +202,7 @@ class Container(Resource):
server_url = "http://{}:{}{}/".format(
container.ip,
container.port,
- url_path_join(self.application.command_line_config.base_url,
+ url_path_join(self.application.command_line_config.base_urlpath,
container.urlpath))
yield _wait_for_http_server_2xx(
|
simphony/simphony-remote
|
61ec23ffe44463cbc41f6fa54b4247963093ed79
|
diff --git a/tests/db/abc_test_interfaces.py b/tests/db/abc_test_interfaces.py
index 9aa7dd5..7ac0201 100644
--- a/tests/db/abc_test_interfaces.py
+++ b/tests/db/abc_test_interfaces.py
@@ -1,5 +1,6 @@
from abc import abstractmethod, ABCMeta
import inspect as _inspect
+import string
from remoteappmanager.db.interfaces import ABCApplication, ABCApplicationPolicy
@@ -77,3 +78,22 @@ class ABCTestDatabaseInterface(metaclass=ABCMeta):
if temp:
self.fail('These are not expected: {}'.format(temp))
+
+ def test_get_apps_for_user_mapping_id_rest_compliant(self):
+ ''' Test if the mapping_id to be rest identifier complient '''
+ allowed_chars = set(string.ascii_letters+string.digits)
+ accounting = self.create_accounting()
+
+ for user in self.create_expected_users():
+ # should be ((mapping_id, Application, ApplicationPolicy),
+ # (mapping_id, Application, ApplicationPolicy) ... )
+ actual_id_configs = accounting.get_apps_for_user(user)
+
+ if not actual_id_configs:
+ continue
+
+ for mapping_id, _, _ in actual_id_configs:
+ self.assertFalse(
+ set(mapping_id) - allowed_chars,
+ "mapping id should contain these characters only: {} "
+ "Got : {}".format(allowed_chars, mapping_id))
diff --git a/tests/db/test_interfaces.py b/tests/db/test_interfaces.py
index 6b4b3a8..02ced52 100644
--- a/tests/db/test_interfaces.py
+++ b/tests/db/test_interfaces.py
@@ -27,9 +27,9 @@ class Accounting(ABCAccounting):
return User(name=username)
def get_apps_for_user(self, user):
- return (('mapping_id1',
+ return (('abc1',
Application(image=user.name+'1'), ApplicationPolicy()),
- ('mapping_id2',
+ ('abc2',
Application(image=user.name+'2'), ApplicationPolicy()))
diff --git a/tests/restmodel/test_container.py b/tests/restmodel/test_container.py
index f9862e9..ba87141 100644
--- a/tests/restmodel/test_container.py
+++ b/tests/restmodel/test_container.py
@@ -29,7 +29,7 @@ class TestContainer(AsyncHTTPTestCase):
app.file_config = Mock()
app.file_config.network_timeout = 5
app.command_line_config = Mock()
- app.command_line_config.base_url = "http://127.0.0.1:8000/"
+ app.command_line_config.base_urlpath = "/"
app.reverse_proxy = Mock()
app.reverse_proxy.add_container = mock_coro_factory()
app.reverse_proxy.remove_container = mock_coro_factory()
|
remoteapprest app start error due to unfound `base_url`
```
(simremote)kit@kit-virtual-machine:jupyterhub$ remoteapprest app start 629b1d86d69bfb4b400dfee204f5e3a0
[W 160718 10:37:39 container:154] HOME (None) is not available for kit
[I 160718 10:37:39 container_manager:218] Got container image: simphonyproject/simphonic-mayavi
[I 2016-07-18 10:37:39.576 JupyterHub log:100] 200 GET /hub/api/authorizations/cookie/jupyter-hub-token-kit/[secret] ([email protected]) 8.24ms
[E 160718 10:37:39 container_manager:417] Container 'remoteexec-kit-629b1d86d69bfb4b400dfee204f5e3a0' is gone
[I 160718 10:37:39 container_manager:260] Mounting these volumes:
/appdata/image_name/common -> /appdata
[I 160718 10:37:39 container_manager:293] Created container 'remoteexec-kit-629b1d86d69bfb4b400dfee204f5e3a0' (id: 2dcdd6621f8f736322969b25449d5c75566cf617632cb9481f865aeaf919b863) from image simphonyproject/simphonic-mayavi
[I 160718 10:37:39 container_manager:330] Started container 'remoteexec-kit-629b1d86d69bfb4b400dfee204f5e3a0' (id: 2dcdd6621f8f736322969b25449d5c75566cf617632cb9481f865aeaf919b863). Exported port reachable at 127.0.0.1:32769
[E 160718 10:37:39 rest_handler:71] Internal error during POST operation on containers
Traceback (most recent call last):
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/rest/rest_handler.py", line 60, in post
resource_id = yield res_handler.create(data)
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 1015, in run
value = future.result()
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/concurrent.py", line 237, in result
raise_exc_info(self._exc_info)
File "<string>", line 3, in raise_exc_info
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 1021, in run
yielded = self.gen.throw(*exc_info)
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/restresources/container.py", line 38, in create
yield self._wait_for_container_ready(container)
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 1015, in run
value = future.result()
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/concurrent.py", line 237, in result
raise_exc_info(self._exc_info)
File "<string>", line 3, in raise_exc_info
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 285, in wrapper
yielded = next(result)
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/restresources/container.py", line 205, in _wait_for_container_ready
url_path_join(self.application.command_line_config.base_url,
AttributeError: 'CommandLineConfig' object has no attribute 'base_url'
```
|
0.0
|
61ec23ffe44463cbc41f6fa54b4247963093ed79
|
[
"tests/restmodel/test_container.py::TestContainer::test_create"
] |
[
"tests/db/test_interfaces.py::TestDatabaseInterface::test_get_apps_for_user",
"tests/db/test_interfaces.py::TestDatabaseInterface::test_get_apps_for_user_mapping_id_rest_compliant",
"tests/db/test_interfaces.py::TestDatabaseInterface::test_get_user_by_name",
"tests/restmodel/test_container.py::TestContainer::test_delete",
"tests/restmodel/test_container.py::TestContainer::test_items",
"tests/restmodel/test_container.py::TestContainer::test_retrieve"
] |
{
"failed_lite_validators": [
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-18 09:48:08+00:00
|
bsd-3-clause
| 5,505 |
|
simphony__simphony-remote-120
|
diff --git a/remoteappmanager/application.py b/remoteappmanager/application.py
index 7666a2a..abfcecf 100644
--- a/remoteappmanager/application.py
+++ b/remoteappmanager/application.py
@@ -19,6 +19,7 @@ from remoteappmanager.services.reverse_proxy import ReverseProxy
from remoteappmanager import rest
from remoteappmanager.rest import registry
from remoteappmanager import restresources
+from remoteappmanager.utils import url_path_join
class Application(web.Application, LoggingMixin):
@@ -103,7 +104,6 @@ class Application(web.Application, LoggingMixin):
return ReverseProxy(
endpoint_url=self.command_line_config.proxy_api_url,
auth_token=auth_token,
- base_urlpath=self.command_line_config.base_urlpath
)
@default("hub")
@@ -149,6 +149,16 @@ class Application(web.Application, LoggingMixin):
tornado.ioloop.IOLoop.current().start()
+ def urlpath_for_object(self, object):
+ """
+ Resolves the absolute url path of a given object.
+ The object must have a urlpath property.
+ """
+
+ return url_path_join(
+ self.command_line_config.base_urlpath,
+ object.urlpath)
+
# Private
def _get_handlers(self):
"""Returns the registered handlers"""
diff --git a/remoteappmanager/handlers/home_handler.py b/remoteappmanager/handlers/home_handler.py
index c1648de..8936f28 100644
--- a/remoteappmanager/handlers/home_handler.py
+++ b/remoteappmanager/handlers/home_handler.py
@@ -112,7 +112,11 @@ class HomeHandler(BaseHandler):
# The server is up and running. Now contact the proxy and add
# the container url to it.
- urlpath = yield self.application.reverse_proxy.add_container(container)
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.register(
+ urlpath, container.host_url)
# Redirect the user
self.log.info('Redirecting to {}'.format(urlpath))
@@ -136,7 +140,11 @@ class HomeHandler(BaseHandler):
yield self._wait_for_container_ready(container)
# in case the reverse proxy is not already set up
- urlpath = yield self.application.reverse_proxy.add_container(container)
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.register(
+ urlpath, container.host_url)
self.log.info('Redirecting to {}'.format(urlpath))
self.redirect(urlpath)
@@ -155,13 +163,10 @@ class HomeHandler(BaseHandler):
self.finish("Unable to view the application")
return
- try:
- yield app.reverse_proxy.remove_container(container)
- except HTTPError as http_error:
- # The reverse proxy may be absent to start with
- if http_error.code != 404:
- raise http_error
-
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield app.reverse_proxy.unregister(urlpath)
yield container_manager.stop_and_remove_container(container.docker_id)
# We don't have fancy stuff at the moment to change the button, so
diff --git a/remoteappmanager/restresources/container.py b/remoteappmanager/restresources/container.py
index 3191c6b..cbf224a 100644
--- a/remoteappmanager/restresources/container.py
+++ b/remoteappmanager/restresources/container.py
@@ -36,7 +36,11 @@ class Container(Resource):
policy,
mapping_id)
yield self._wait_for_container_ready(container)
- yield self.application.reverse_proxy.add_container(container)
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.register(urlpath,
+ container.host_url)
return container.url_id
@@ -56,13 +60,15 @@ class Container(Resource):
@gen.coroutine
def delete(self, identifier):
"""Stop the container."""
- app = self.application
container = yield self._container_from_url_id(identifier)
if not container:
raise exceptions.NotFound()
- yield app.reverse_proxy.remove_container(container)
- yield app.container_manager.stop_and_remove_container(
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.unregister(urlpath)
+ yield self.application.container_manager.stop_and_remove_container(
container.docker_id)
@gen.coroutine
diff --git a/remoteappmanager/services/reverse_proxy.py b/remoteappmanager/services/reverse_proxy.py
index 64807c3..4bff151 100644
--- a/remoteappmanager/services/reverse_proxy.py
+++ b/remoteappmanager/services/reverse_proxy.py
@@ -5,7 +5,6 @@ from jupyterhub import orm as jupyterhub_orm
from traitlets import HasTraits, Unicode
from remoteappmanager.logging.logging_mixin import LoggingMixin
-from remoteappmanager.utils import url_path_join
class ReverseProxy(LoggingMixin, HasTraits):
@@ -17,9 +16,6 @@ class ReverseProxy(LoggingMixin, HasTraits):
#: The authorization token to authenticate the request
auth_token = Unicode()
- #: The prefix for the url added to the passed object relative .url()
- base_urlpath = Unicode('/')
-
def __init__(self, *args, **kwargs):
"""Initializes the reverse proxy connection object."""
super().__init__(*args, **kwargs)
@@ -31,73 +27,59 @@ class ReverseProxy(LoggingMixin, HasTraits):
api_server=_server_from_url(self.endpoint_url)
)
- self.log.info("Reverse proxy setup on {} with base url {}".format(
+ self.log.info("Reverse proxy setup on {}".format(
self.endpoint_url,
- self.base_urlpath
))
@gen.coroutine
- def remove_container(self, container):
- """Removes a container from the reverse proxy at the associated url.
+ def register(self, urlpath, target_host_url):
+ """Register a given urlpath to redirect to a different target host.
+ The operation is idempotent.
Parameters
----------
- container : remoteappmanager.docker.container.Container
- A container object.
+ urlpath: str
+ The absolute path of the url (e.g. /my/internal/service/)"
+
+ target_host_url:
+ The host to redirect to, e.g. http://127.0.0.1:31233/service/
"""
- proxy = self._reverse_proxy
+ self.log.info("Registering {} redirection to {}".format(
+ urlpath,
+ target_host_url))
- urlpath = url_path_join(self.base_urlpath, container.urlpath)
- self.log.info("Unregistering url {} to {} on reverse proxy.".format(
+ yield self._reverse_proxy.api_request(
urlpath,
- container.host_url
- ))
+ method='POST',
+ body=dict(
+ target=target_host_url,
+ )
+ )
+
+ @gen.coroutine
+ def unregister(self, urlpath):
+ """Unregisters a previously registered urlpath.
+ If the urlpath is not found in the reverse proxy, it will not raise
+ an error, but it will log the unexpected circumstance.
+
+ Parameters
+ ----------
+ urlpath: str
+ The absolute path of the url (e.g. /my/internal/service/"
+ """
+ self.log.info("Deregistering {} redirection".format(urlpath))
try:
- yield proxy.api_request(urlpath, method='DELETE')
+ yield self._reverse_proxy.api_request(urlpath, method='DELETE')
except httpclient.HTTPError as e:
if e.code == 404:
self.log.warning("Could not find urlpath {} when removing"
" container. In any case, the reverse proxy"
" does not map the url. Continuing".format(
- urlpath))
+ urlpath))
else:
raise e
- @gen.coroutine
- def add_container(self, container):
- """Adds the url associated to a given container on the reverse proxy.
-
- Parameters
- ----------
- container : remoteappmanager.docker.container.Container
- A container object.
-
- Returns
- -------
- urlpath : str
- The absolute url path of the container as registered on the reverse
- proxy.
- """
-
- proxy = self._reverse_proxy
- urlpath = url_path_join(self.base_urlpath, container.urlpath)
-
- self.log.info("Registering url {} to {} on reverse proxy.".format(
- urlpath,
- container.host_url
- ))
-
- yield proxy.api_request(
- urlpath,
- method='POST',
- body=dict(
- target=container.host_url,
- )
- )
-
- return urlpath
-
def _server_from_url(url):
"""Creates a orm.Server from a given url"""
|
simphony/simphony-remote
|
05225db5d853d5b00bc1135763affe0f9935ea99
|
diff --git a/tests/handlers/test_home_handler.py b/tests/handlers/test_home_handler.py
index 95807b8..596b8db 100644
--- a/tests/handlers/test_home_handler.py
+++ b/tests/handlers/test_home_handler.py
@@ -7,10 +7,10 @@ from remoteappmanager.docker.container import Container
from remoteappmanager.docker.container_manager import ContainerManager
from remoteappmanager.docker.image import Image
from remoteappmanager.services.hub import Hub
-from remoteappmanager.services.reverse_proxy import ReverseProxy
from remoteappmanager.application import Application
from tests import utils
+from tests.mock.mock_reverse_proxy import MockReverseProxy
from tests.temp_mixin import TempMixin
@@ -38,9 +38,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
file_config.accounting_kwargs = {'url': "sqlite:///"+sqlite_file_path}
app = Application(command_line_config, file_config)
- app.reverse_proxy = mock.Mock(spec=ReverseProxy)
- app.reverse_proxy.add_container = utils.mock_coro_factory("/")
- app.reverse_proxy.remove_container = utils.mock_coro_factory()
+ app.reverse_proxy = MockReverseProxy()
app.hub = mock.Mock(spec=Hub)
app.hub.verify_token = utils.mock_coro_factory({
'pending': None,
@@ -107,7 +105,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
".HomeHandler"
".redirect") as redirect:
- self.assertFalse(self._app.reverse_proxy.add_container.called)
+ self.assertFalse(self._app.reverse_proxy.register.called)
self.fetch("/user/username/",
method="POST",
headers={
@@ -115,7 +113,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
},
body=body)
- self.assertTrue(self._app.reverse_proxy.add_container.called)
+ self.assertTrue(self._app.reverse_proxy.register.called)
self.assertTrue(redirect.called)
def test_post_failed_auth(self):
@@ -156,7 +154,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
},
body=body)
- self.assertTrue(self._app.reverse_proxy.remove_container.called)
+ self.assertTrue(self._app.reverse_proxy.unregister.called)
self.assertTrue(redirect.called)
def test_post_view(self):
@@ -184,5 +182,5 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
},
body=body)
- self.assertTrue(self._app.reverse_proxy.add_container.called)
+ self.assertTrue(self._app.reverse_proxy.register.called)
self.assertTrue(redirect.called)
diff --git a/tests/mock/__init__.py b/tests/mock/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/tests/mock/mock_reverse_proxy.py b/tests/mock/mock_reverse_proxy.py
new file mode 100644
index 0000000..ee624a6
--- /dev/null
+++ b/tests/mock/mock_reverse_proxy.py
@@ -0,0 +1,15 @@
+from unittest import mock
+
+from remoteappmanager.services.reverse_proxy import ReverseProxy
+from tests import utils
+
+
+def MockReverseProxy():
+ """Constructor. Returns a mock reverse proxy implementation.
+ Named as a class for potential future expansion in mock implementation."""
+
+ mock_revproxy = mock.Mock(spec=ReverseProxy)
+ mock_revproxy.register = utils.mock_coro_factory("/")
+ mock_revproxy.unregister = utils.mock_coro_factory()
+
+ return mock_revproxy
diff --git a/tests/restmodel/test_container.py b/tests/restmodel/test_container.py
index ba87141..7ae9a96 100644
--- a/tests/restmodel/test_container.py
+++ b/tests/restmodel/test_container.py
@@ -2,6 +2,7 @@ from unittest.mock import Mock, patch
from remoteappmanager.restresources import Container
from tests import utils
+from tests.mock.mock_reverse_proxy import MockReverseProxy
from tornado import web, escape
from remoteappmanager import rest
@@ -28,11 +29,10 @@ class TestContainer(AsyncHTTPTestCase):
app = web.Application(handlers=handlers)
app.file_config = Mock()
app.file_config.network_timeout = 5
+ app.urlpath_for_object = Mock(return_value="/urlpath_for_object/")
app.command_line_config = Mock()
app.command_line_config.base_urlpath = "/"
- app.reverse_proxy = Mock()
- app.reverse_proxy.add_container = mock_coro_factory()
- app.reverse_proxy.remove_container = mock_coro_factory()
+ app.reverse_proxy = MockReverseProxy()
container = Mock()
container.urlpath = "containers/12345"
container.url_id = "12345"
diff --git a/tests/services/test_reverse_proxy.py b/tests/services/test_reverse_proxy.py
index 39ff093..71b0298 100644
--- a/tests/services/test_reverse_proxy.py
+++ b/tests/services/test_reverse_proxy.py
@@ -4,8 +4,6 @@ from jupyterhub import orm
from remoteappmanager.services.reverse_proxy import ReverseProxy
from tornado import gen, testing
-from remoteappmanager.docker.container import Container
-
class TestReverseProxy(testing.AsyncTestCase):
@testing.gen_test
@@ -22,11 +20,11 @@ class TestReverseProxy(testing.AsyncTestCase):
reverse_proxy._reverse_proxy = Mock(spec=orm.Proxy)
reverse_proxy._reverse_proxy.api_request = mock_api_request
- container = Container(docker_id="12345", base_urlpath="/foo/")
- yield reverse_proxy.add_container(container)
+ yield reverse_proxy.register("/hello/from/me/",
+ "http://localhost:12312/")
self.assertEqual(coroutine_out["kwargs"]["method"], "POST")
- yield reverse_proxy.remove_container(container)
+ yield reverse_proxy.unregister("/hello/from/me/")
self.assertEqual(coroutine_out["kwargs"]["method"], "DELETE")
|
Simplify the ReverseProxy
A reverse proxy does not really need to have remove and add container methods. All that is necessary is to map urls.
|
0.0
|
05225db5d853d5b00bc1135763affe0f9935ea99
|
[
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_start",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_stop",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_view",
"tests/restmodel/test_container.py::TestContainer::test_create",
"tests/restmodel/test_container.py::TestContainer::test_delete"
] |
[
"tests/handlers/test_home_handler.py::TestHomeHandler::test_failed_auth",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_home",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_failed_auth",
"tests/restmodel/test_container.py::TestContainer::test_items",
"tests/restmodel/test_container.py::TestContainer::test_retrieve"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-18 12:29:36+00:00
|
bsd-3-clause
| 5,506 |
|
simphony__simphony-remote-121
|
diff --git a/remoteappmanager/application.py b/remoteappmanager/application.py
index 7666a2a..abfcecf 100644
--- a/remoteappmanager/application.py
+++ b/remoteappmanager/application.py
@@ -19,6 +19,7 @@ from remoteappmanager.services.reverse_proxy import ReverseProxy
from remoteappmanager import rest
from remoteappmanager.rest import registry
from remoteappmanager import restresources
+from remoteappmanager.utils import url_path_join
class Application(web.Application, LoggingMixin):
@@ -103,7 +104,6 @@ class Application(web.Application, LoggingMixin):
return ReverseProxy(
endpoint_url=self.command_line_config.proxy_api_url,
auth_token=auth_token,
- base_urlpath=self.command_line_config.base_urlpath
)
@default("hub")
@@ -149,6 +149,16 @@ class Application(web.Application, LoggingMixin):
tornado.ioloop.IOLoop.current().start()
+ def urlpath_for_object(self, object):
+ """
+ Resolves the absolute url path of a given object.
+ The object must have a urlpath property.
+ """
+
+ return url_path_join(
+ self.command_line_config.base_urlpath,
+ object.urlpath)
+
# Private
def _get_handlers(self):
"""Returns the registered handlers"""
diff --git a/remoteappmanager/handlers/home_handler.py b/remoteappmanager/handlers/home_handler.py
index c1648de..c21824b 100644
--- a/remoteappmanager/handlers/home_handler.py
+++ b/remoteappmanager/handlers/home_handler.py
@@ -1,6 +1,5 @@
import socket
import os
-import uuid
from datetime import timedelta
import errno
@@ -45,12 +44,11 @@ class HomeHandler(BaseHandler):
try:
yield handler(options)
- except Exception as e:
+ except Exception as exc:
# Create a random reference number for support
- ref = str(uuid.uuid1())
- self.log.exception("Failed with POST action: {0}. {1} "
- "Ref: {2}".format(
- action, str(e), ref))
+ ref = self.log.issue(
+ "Failed with POST action {}".format(action),
+ exc)
images_info = yield self._get_images_info()
@@ -63,7 +61,7 @@ class HomeHandler(BaseHandler):
images_info=images_info,
error_message=message.format(
action=action,
- error_type=type(e).__name__,
+ error_type=type(exc).__name__,
ref=ref))
# Subhandling after post
@@ -112,7 +110,11 @@ class HomeHandler(BaseHandler):
# The server is up and running. Now contact the proxy and add
# the container url to it.
- urlpath = yield self.application.reverse_proxy.add_container(container)
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.register(
+ urlpath, container.host_url)
# Redirect the user
self.log.info('Redirecting to {}'.format(urlpath))
@@ -136,7 +138,11 @@ class HomeHandler(BaseHandler):
yield self._wait_for_container_ready(container)
# in case the reverse proxy is not already set up
- urlpath = yield self.application.reverse_proxy.add_container(container)
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.register(
+ urlpath, container.host_url)
self.log.info('Redirecting to {}'.format(urlpath))
self.redirect(urlpath)
@@ -155,13 +161,10 @@ class HomeHandler(BaseHandler):
self.finish("Unable to view the application")
return
- try:
- yield app.reverse_proxy.remove_container(container)
- except HTTPError as http_error:
- # The reverse proxy may be absent to start with
- if http_error.code != 404:
- raise http_error
-
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield app.reverse_proxy.unregister(urlpath)
yield container_manager.stop_and_remove_container(container.docker_id)
# We don't have fancy stuff at the moment to change the button, so
diff --git a/remoteappmanager/logging/logging_mixin.py b/remoteappmanager/logging/logging_mixin.py
index 6339a43..fddc6f6 100644
--- a/remoteappmanager/logging/logging_mixin.py
+++ b/remoteappmanager/logging/logging_mixin.py
@@ -1,3 +1,6 @@
+import uuid
+import types
+
from traitlets import (
HasTraits,
Instance,
@@ -5,6 +8,25 @@ from traitlets import (
)
+def issue(self, message, exc=None):
+ """Accepts a message that will be logged with an additional reference
+ code for easy log lookup.
+
+ The identifier will be returned for inclusion in user-visible
+ error messages.
+ """
+ ref = str(uuid.uuid1())
+
+ if exc is None:
+ err_message = "{}. Ref: {}".format(message, ref)
+ else:
+ err_message = "{} : {}. Ref: {}".format(
+ message, str(exc), ref)
+
+ self.error(err_message)
+ return ref
+
+
class LoggingMixin(HasTraits):
"""A HasTrait class that provides logging. Used as a mixin.
"""
@@ -13,5 +35,9 @@ class LoggingMixin(HasTraits):
@default('log')
def _log_default(self):
- from traitlets import log
- return log.get_logger()
+ from tornado.log import app_log
+
+ # monkey patch the logger to provide an additional method that handles
+ # issues
+ app_log.issue = types.MethodType(issue, app_log)
+ return app_log
diff --git a/remoteappmanager/restresources/container.py b/remoteappmanager/restresources/container.py
index 3191c6b..cbf224a 100644
--- a/remoteappmanager/restresources/container.py
+++ b/remoteappmanager/restresources/container.py
@@ -36,7 +36,11 @@ class Container(Resource):
policy,
mapping_id)
yield self._wait_for_container_ready(container)
- yield self.application.reverse_proxy.add_container(container)
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.register(urlpath,
+ container.host_url)
return container.url_id
@@ -56,13 +60,15 @@ class Container(Resource):
@gen.coroutine
def delete(self, identifier):
"""Stop the container."""
- app = self.application
container = yield self._container_from_url_id(identifier)
if not container:
raise exceptions.NotFound()
- yield app.reverse_proxy.remove_container(container)
- yield app.container_manager.stop_and_remove_container(
+ urlpath = url_path_join(
+ self.application.command_line_config.base_urlpath,
+ container.urlpath)
+ yield self.application.reverse_proxy.unregister(urlpath)
+ yield self.application.container_manager.stop_and_remove_container(
container.docker_id)
@gen.coroutine
diff --git a/remoteappmanager/services/reverse_proxy.py b/remoteappmanager/services/reverse_proxy.py
index 64807c3..4bff151 100644
--- a/remoteappmanager/services/reverse_proxy.py
+++ b/remoteappmanager/services/reverse_proxy.py
@@ -5,7 +5,6 @@ from jupyterhub import orm as jupyterhub_orm
from traitlets import HasTraits, Unicode
from remoteappmanager.logging.logging_mixin import LoggingMixin
-from remoteappmanager.utils import url_path_join
class ReverseProxy(LoggingMixin, HasTraits):
@@ -17,9 +16,6 @@ class ReverseProxy(LoggingMixin, HasTraits):
#: The authorization token to authenticate the request
auth_token = Unicode()
- #: The prefix for the url added to the passed object relative .url()
- base_urlpath = Unicode('/')
-
def __init__(self, *args, **kwargs):
"""Initializes the reverse proxy connection object."""
super().__init__(*args, **kwargs)
@@ -31,73 +27,59 @@ class ReverseProxy(LoggingMixin, HasTraits):
api_server=_server_from_url(self.endpoint_url)
)
- self.log.info("Reverse proxy setup on {} with base url {}".format(
+ self.log.info("Reverse proxy setup on {}".format(
self.endpoint_url,
- self.base_urlpath
))
@gen.coroutine
- def remove_container(self, container):
- """Removes a container from the reverse proxy at the associated url.
+ def register(self, urlpath, target_host_url):
+ """Register a given urlpath to redirect to a different target host.
+ The operation is idempotent.
Parameters
----------
- container : remoteappmanager.docker.container.Container
- A container object.
+ urlpath: str
+ The absolute path of the url (e.g. /my/internal/service/)"
+
+ target_host_url:
+ The host to redirect to, e.g. http://127.0.0.1:31233/service/
"""
- proxy = self._reverse_proxy
+ self.log.info("Registering {} redirection to {}".format(
+ urlpath,
+ target_host_url))
- urlpath = url_path_join(self.base_urlpath, container.urlpath)
- self.log.info("Unregistering url {} to {} on reverse proxy.".format(
+ yield self._reverse_proxy.api_request(
urlpath,
- container.host_url
- ))
+ method='POST',
+ body=dict(
+ target=target_host_url,
+ )
+ )
+
+ @gen.coroutine
+ def unregister(self, urlpath):
+ """Unregisters a previously registered urlpath.
+ If the urlpath is not found in the reverse proxy, it will not raise
+ an error, but it will log the unexpected circumstance.
+
+ Parameters
+ ----------
+ urlpath: str
+ The absolute path of the url (e.g. /my/internal/service/"
+ """
+ self.log.info("Deregistering {} redirection".format(urlpath))
try:
- yield proxy.api_request(urlpath, method='DELETE')
+ yield self._reverse_proxy.api_request(urlpath, method='DELETE')
except httpclient.HTTPError as e:
if e.code == 404:
self.log.warning("Could not find urlpath {} when removing"
" container. In any case, the reverse proxy"
" does not map the url. Continuing".format(
- urlpath))
+ urlpath))
else:
raise e
- @gen.coroutine
- def add_container(self, container):
- """Adds the url associated to a given container on the reverse proxy.
-
- Parameters
- ----------
- container : remoteappmanager.docker.container.Container
- A container object.
-
- Returns
- -------
- urlpath : str
- The absolute url path of the container as registered on the reverse
- proxy.
- """
-
- proxy = self._reverse_proxy
- urlpath = url_path_join(self.base_urlpath, container.urlpath)
-
- self.log.info("Registering url {} to {} on reverse proxy.".format(
- urlpath,
- container.host_url
- ))
-
- yield proxy.api_request(
- urlpath,
- method='POST',
- body=dict(
- target=container.host_url,
- )
- )
-
- return urlpath
-
def _server_from_url(url):
"""Creates a orm.Server from a given url"""
|
simphony/simphony-remote
|
05225db5d853d5b00bc1135763affe0f9935ea99
|
diff --git a/tests/handlers/test_home_handler.py b/tests/handlers/test_home_handler.py
index 95807b8..596b8db 100644
--- a/tests/handlers/test_home_handler.py
+++ b/tests/handlers/test_home_handler.py
@@ -7,10 +7,10 @@ from remoteappmanager.docker.container import Container
from remoteappmanager.docker.container_manager import ContainerManager
from remoteappmanager.docker.image import Image
from remoteappmanager.services.hub import Hub
-from remoteappmanager.services.reverse_proxy import ReverseProxy
from remoteappmanager.application import Application
from tests import utils
+from tests.mock.mock_reverse_proxy import MockReverseProxy
from tests.temp_mixin import TempMixin
@@ -38,9 +38,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
file_config.accounting_kwargs = {'url': "sqlite:///"+sqlite_file_path}
app = Application(command_line_config, file_config)
- app.reverse_proxy = mock.Mock(spec=ReverseProxy)
- app.reverse_proxy.add_container = utils.mock_coro_factory("/")
- app.reverse_proxy.remove_container = utils.mock_coro_factory()
+ app.reverse_proxy = MockReverseProxy()
app.hub = mock.Mock(spec=Hub)
app.hub.verify_token = utils.mock_coro_factory({
'pending': None,
@@ -107,7 +105,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
".HomeHandler"
".redirect") as redirect:
- self.assertFalse(self._app.reverse_proxy.add_container.called)
+ self.assertFalse(self._app.reverse_proxy.register.called)
self.fetch("/user/username/",
method="POST",
headers={
@@ -115,7 +113,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
},
body=body)
- self.assertTrue(self._app.reverse_proxy.add_container.called)
+ self.assertTrue(self._app.reverse_proxy.register.called)
self.assertTrue(redirect.called)
def test_post_failed_auth(self):
@@ -156,7 +154,7 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
},
body=body)
- self.assertTrue(self._app.reverse_proxy.remove_container.called)
+ self.assertTrue(self._app.reverse_proxy.unregister.called)
self.assertTrue(redirect.called)
def test_post_view(self):
@@ -184,5 +182,5 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
},
body=body)
- self.assertTrue(self._app.reverse_proxy.add_container.called)
+ self.assertTrue(self._app.reverse_proxy.register.called)
self.assertTrue(redirect.called)
diff --git a/tests/logging/__init__.py b/tests/logging/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/tests/logging/test_logging_mixin.py b/tests/logging/test_logging_mixin.py
new file mode 100644
index 0000000..833562e
--- /dev/null
+++ b/tests/logging/test_logging_mixin.py
@@ -0,0 +1,19 @@
+import unittest
+from unittest import mock
+
+from remoteappmanager.logging.logging_mixin import LoggingMixin
+
+
+class Logged(LoggingMixin):
+ pass
+
+
+class TestLoggingMixin(unittest.TestCase):
+ def test_issue(self):
+ l = Logged()
+ with mock.patch("tornado.log.app_log.error") as mock_error:
+ ref = l.log.issue("hello")
+ self.assertIn("hello. Ref: "+str(ref), mock_error.call_args[0][0])
+ ref = l.log.issue("hello", Exception("Boom!"))
+ self.assertIn("hello : Boom!. Ref: "+str(ref),
+ mock_error.call_args[0][0])
diff --git a/tests/mock/__init__.py b/tests/mock/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/tests/mock/mock_reverse_proxy.py b/tests/mock/mock_reverse_proxy.py
new file mode 100644
index 0000000..ee624a6
--- /dev/null
+++ b/tests/mock/mock_reverse_proxy.py
@@ -0,0 +1,15 @@
+from unittest import mock
+
+from remoteappmanager.services.reverse_proxy import ReverseProxy
+from tests import utils
+
+
+def MockReverseProxy():
+ """Constructor. Returns a mock reverse proxy implementation.
+ Named as a class for potential future expansion in mock implementation."""
+
+ mock_revproxy = mock.Mock(spec=ReverseProxy)
+ mock_revproxy.register = utils.mock_coro_factory("/")
+ mock_revproxy.unregister = utils.mock_coro_factory()
+
+ return mock_revproxy
diff --git a/tests/restmodel/test_container.py b/tests/restmodel/test_container.py
index ba87141..7ae9a96 100644
--- a/tests/restmodel/test_container.py
+++ b/tests/restmodel/test_container.py
@@ -2,6 +2,7 @@ from unittest.mock import Mock, patch
from remoteappmanager.restresources import Container
from tests import utils
+from tests.mock.mock_reverse_proxy import MockReverseProxy
from tornado import web, escape
from remoteappmanager import rest
@@ -28,11 +29,10 @@ class TestContainer(AsyncHTTPTestCase):
app = web.Application(handlers=handlers)
app.file_config = Mock()
app.file_config.network_timeout = 5
+ app.urlpath_for_object = Mock(return_value="/urlpath_for_object/")
app.command_line_config = Mock()
app.command_line_config.base_urlpath = "/"
- app.reverse_proxy = Mock()
- app.reverse_proxy.add_container = mock_coro_factory()
- app.reverse_proxy.remove_container = mock_coro_factory()
+ app.reverse_proxy = MockReverseProxy()
container = Mock()
container.urlpath = "containers/12345"
container.url_id = "12345"
diff --git a/tests/services/test_reverse_proxy.py b/tests/services/test_reverse_proxy.py
index 39ff093..71b0298 100644
--- a/tests/services/test_reverse_proxy.py
+++ b/tests/services/test_reverse_proxy.py
@@ -4,8 +4,6 @@ from jupyterhub import orm
from remoteappmanager.services.reverse_proxy import ReverseProxy
from tornado import gen, testing
-from remoteappmanager.docker.container import Container
-
class TestReverseProxy(testing.AsyncTestCase):
@testing.gen_test
@@ -22,11 +20,11 @@ class TestReverseProxy(testing.AsyncTestCase):
reverse_proxy._reverse_proxy = Mock(spec=orm.Proxy)
reverse_proxy._reverse_proxy.api_request = mock_api_request
- container = Container(docker_id="12345", base_urlpath="/foo/")
- yield reverse_proxy.add_container(container)
+ yield reverse_proxy.register("/hello/from/me/",
+ "http://localhost:12312/")
self.assertEqual(coroutine_out["kwargs"]["method"], "POST")
- yield reverse_proxy.remove_container(container)
+ yield reverse_proxy.unregister("/hello/from/me/")
self.assertEqual(coroutine_out["kwargs"]["method"], "DELETE")
|
Formalise error handling with the logger and the refnumber for the issue
Currently when an error takes place in a number of places we generate a `refnumber` that can be displayed in the user when an error takes place. This `refnumber` is at the same time logged next to the related error. This will help to pinpoint the place in the logs where a specific error (reported by a user) took place and simplify debugging.
To achieve this I would suggest one of the following:
- Wrap the python `Logger` logging functions so that they generate a refnumber, pass it to the logger and then return it to the caller.
- Provide a generic `log(self, level, msg, *args, **kwargs)` function in the `BaseHandler` that will generate the refnumber pass it to a python logger and return it.
I think that the second implementation is simpler and easier to test.
|
0.0
|
05225db5d853d5b00bc1135763affe0f9935ea99
|
[
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_start",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_stop",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_view",
"tests/logging/test_logging_mixin.py::TestLoggingMixin::test_issue",
"tests/restmodel/test_container.py::TestContainer::test_create",
"tests/restmodel/test_container.py::TestContainer::test_delete"
] |
[
"tests/handlers/test_home_handler.py::TestHomeHandler::test_failed_auth",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_home",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_failed_auth",
"tests/restmodel/test_container.py::TestContainer::test_items",
"tests/restmodel/test_container.py::TestContainer::test_retrieve"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-18 13:14:05+00:00
|
bsd-3-clause
| 5,507 |
|
simphony__simphony-remote-123
|
diff --git a/remoteappmanager/cli/remoteappdb/__main__.py b/remoteappmanager/cli/remoteappdb/__main__.py
index ab76d4f..e4144ab 100644
--- a/remoteappmanager/cli/remoteappdb/__main__.py
+++ b/remoteappmanager/cli/remoteappdb/__main__.py
@@ -94,6 +94,24 @@ def get_docker_client():
return client
+def is_sqlitedb_url(db_url):
+ """Returns True if the url refers to a sqlite database"""
+ return db_url.startswith("sqlite:///")
+
+
+def sqlitedb_present(db_url):
+ """Checks if the db url is present.
+ Remote urls are always assumed to be present, so this method
+ concerns mostly sqlite databases."""
+
+ if not db_url.startswith("sqlite:///"):
+ raise ValueError("db_url {} does not refer to a "
+ "sqlite database.".format(db_url))
+
+ path = sqlite_url_to_path(db_url)
+ return os.path.exists(path)
+
+
class RemoteAppDBContext(object):
def __init__(self, db_url):
db_url = normalise_to_url(db_url)
@@ -120,11 +138,9 @@ def init(ctx):
db_url = db.url
# Check if the database already exists
- if db_url.startswith("sqlite:///"):
- path = sqlite_url_to_path(db_url)
- if os.path.exists(path):
- raise click.UsageError("Refusing to overwrite database "
- "at {}".format(db_url))
+ if is_sqlitedb_url(db_url) and sqlitedb_present(db_url):
+ raise click.UsageError("Refusing to overwrite database "
+ "at {}".format(db_url))
db.reset()
@@ -133,9 +149,18 @@ def init(ctx):
@cli.group()
-def user():
[email protected]_context
+def user(ctx):
"""Subcommand to manage users."""
- pass
+ db = ctx.obj.db
+ db_url = db.url
+
+ # sqlite driver for sqlalchemy creates an empty file on commit as a side
+ # effect. We don't want this creation to happen, so before attempting
+ # the creation we stop short if we already find out that the file is
+ # missing and cannot possibly be initialized.
+ if is_sqlitedb_url(db_url) and not sqlitedb_present(db_url):
+ raise click.UsageError("Could not find database at {}".format(db_url))
@user.command()
@@ -228,9 +253,14 @@ def list(ctx, no_decoration, show_apps):
@cli.group()
-def app():
[email protected]_context
+def app(ctx):
"""Subcommand to manage applications."""
- pass
+ db = ctx.obj.db
+ db_url = db.url
+
+ if is_sqlitedb_url(db_url) and not sqlitedb_present(db_url):
+ raise click.UsageError("Could not find database at {}".format(db_url))
@app.command() # noqa
diff --git a/remoteappmanager/handlers/home_handler.py b/remoteappmanager/handlers/home_handler.py
index c21824b..7d5ce97 100644
--- a/remoteappmanager/handlers/home_handler.py
+++ b/remoteappmanager/handlers/home_handler.py
@@ -131,8 +131,10 @@ class HomeHandler(BaseHandler):
container_manager = self.application.container_manager
container = yield container_manager.container_from_url_id(url_id)
if not container:
- self.finish("Unable to view the application")
- return
+ self.log.warning("Could not find container for url_id {}".format(
+ url_id
+ ))
+ raise ValueError("Unable to view container for specified url_id")
# make sure the container is actually running and working
yield self._wait_for_container_ready(container)
@@ -158,8 +160,10 @@ class HomeHandler(BaseHandler):
container = yield container_manager.container_from_url_id(url_id)
if not container:
- self.finish("Unable to view the application")
- return
+ self.log.warning("Could not find container for url_id {}".format(
+ url_id
+ ))
+ raise ValueError("Unable to view container for specified url_id")
urlpath = url_path_join(
self.application.command_line_config.base_urlpath,
diff --git a/remoteappmanager/spawner.py b/remoteappmanager/spawner.py
index a226fa9..8637879 100644
--- a/remoteappmanager/spawner.py
+++ b/remoteappmanager/spawner.py
@@ -20,7 +20,7 @@ class Spawner(LocalProcessSpawner):
proxy = Any()
#: The path of the configuration file for the cmd executable
- config_file_path = Unicode()
+ config_file_path = Unicode(config=True)
def __init__(self, **kwargs):
super().__init__(**kwargs)
|
simphony/simphony-remote
|
ae2c07cdf3906952600c57b4439d57d7ff4b2cc1
|
diff --git a/tests/cli/test_remoteappdb.py b/tests/cli/test_remoteappdb.py
index 004a99e..57db987 100644
--- a/tests/cli/test_remoteappdb.py
+++ b/tests/cli/test_remoteappdb.py
@@ -25,9 +25,23 @@ class TestRemoteAppDbCLI(TempMixin, unittest.TestCase):
return result.exit_code, result.output
+ def test_is_sqlitedb_url(self):
+ self.assertTrue(remoteappdb.is_sqlitedb_url("sqlite:///foo.db"))
+ self.assertFalse(remoteappdb.is_sqlitedb_url("whatever:///foo.db"))
+
+ def test_sqlite_present(self):
+ self.assertTrue(remoteappdb.sqlitedb_present(
+ "sqlite:///"+self.db))
+ self.assertFalse(remoteappdb.sqlitedb_present(
+ "sqlite:///"+self.db+"whatever"))
+
def test_init_command(self):
self.assertTrue(os.path.exists(self.db))
+ # This should fail because the database is already present
+ exit_code, output = self._remoteappdb("init")
+ self.assertNotEqual(exit_code, 0)
+
def test_user_create(self):
_, out = self._remoteappdb("user create foo")
self.assertEqual(out, "1\n")
@@ -174,3 +188,13 @@ class TestRemoteAppDbCLI(TempMixin, unittest.TestCase):
_, out = self._remoteappdb("user list --show-apps --no-decoration")
self.assertEqual(len(out.split('\n')), 2)
self.assertNotIn("myapp", out)
+
+ def test_commands_noinit(self):
+ # Remove the conveniently setup database
+ os.remove(self.db)
+
+ exit_code, out = self._remoteappdb("user create foo")
+ self.assertNotEqual(exit_code, 0)
+
+ exit_code, out = self._remoteappdb("app create foo")
+ self.assertNotEqual(exit_code, 0)
diff --git a/tests/handlers/test_home_handler.py b/tests/handlers/test_home_handler.py
index 596b8db..7a49d7f 100644
--- a/tests/handlers/test_home_handler.py
+++ b/tests/handlers/test_home_handler.py
@@ -184,3 +184,34 @@ class TestHomeHandler(TempMixin, utils.AsyncHTTPTestCase):
self.assertTrue(self._app.reverse_proxy.register.called)
self.assertTrue(redirect.called)
+
+ def test_container_manager_does_not_return_container(self):
+ self._app.container_manager.container_from_url_id = \
+ utils.mock_coro_factory(None)
+ res = self.fetch(
+ "/user/username/",
+ method="POST",
+ headers={
+ "Cookie": "jupyter-hub-token-username=foo"
+ },
+ body=urllib.parse.urlencode({
+ 'action': 'view',
+ 'url_id': '12345'
+ })
+ )
+
+ self.assertIn("ValueError", str(res.body))
+
+ res = self.fetch(
+ "/user/username/",
+ method="POST",
+ headers={
+ "Cookie": "jupyter-hub-token-username=foo"
+ },
+ body=urllib.parse.urlencode({
+ 'action': 'stop',
+ 'url_id': '12345'
+ })
+ )
+
+ self.assertIn("ValueError", str(res.body))
|
HomeHandler should not 'finish' in View and Stop but raise
Let view and stop raise and then the HomeHandler.post will handle the logging.
https://github.com/simphony/simphony-remote/blob/98ee374756694ef1855a9d38d78d3561ec6cc54e/remoteappmanager/handlers/home_handler.py#L155
https://github.com/simphony/simphony-remote/blob/98ee374756694ef1855a9d38d78d3561ec6cc54e/remoteappmanager/handlers/home_handler.py#L132
|
0.0
|
ae2c07cdf3906952600c57b4439d57d7ff4b2cc1
|
[
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_commands_noinit",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_is_sqlitedb_url",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_sqlite_present",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_container_manager_does_not_return_container"
] |
[
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_app_create_with_verify",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_app_create_wrong_name_with_verify",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_app_create_wrong_name_without_verify",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_init_command",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_user_create",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_failed_auth",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_home",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_failed_auth",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_start",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_stop",
"tests/handlers/test_home_handler.py::TestHomeHandler::test_post_view"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-18 14:47:10+00:00
|
bsd-3-clause
| 5,508 |
|
simphony__simphony-remote-124
|
diff --git a/remoteappmanager/cli/remoteappdb/__main__.py b/remoteappmanager/cli/remoteappdb/__main__.py
index ab76d4f..e4144ab 100644
--- a/remoteappmanager/cli/remoteappdb/__main__.py
+++ b/remoteappmanager/cli/remoteappdb/__main__.py
@@ -94,6 +94,24 @@ def get_docker_client():
return client
+def is_sqlitedb_url(db_url):
+ """Returns True if the url refers to a sqlite database"""
+ return db_url.startswith("sqlite:///")
+
+
+def sqlitedb_present(db_url):
+ """Checks if the db url is present.
+ Remote urls are always assumed to be present, so this method
+ concerns mostly sqlite databases."""
+
+ if not db_url.startswith("sqlite:///"):
+ raise ValueError("db_url {} does not refer to a "
+ "sqlite database.".format(db_url))
+
+ path = sqlite_url_to_path(db_url)
+ return os.path.exists(path)
+
+
class RemoteAppDBContext(object):
def __init__(self, db_url):
db_url = normalise_to_url(db_url)
@@ -120,11 +138,9 @@ def init(ctx):
db_url = db.url
# Check if the database already exists
- if db_url.startswith("sqlite:///"):
- path = sqlite_url_to_path(db_url)
- if os.path.exists(path):
- raise click.UsageError("Refusing to overwrite database "
- "at {}".format(db_url))
+ if is_sqlitedb_url(db_url) and sqlitedb_present(db_url):
+ raise click.UsageError("Refusing to overwrite database "
+ "at {}".format(db_url))
db.reset()
@@ -133,9 +149,18 @@ def init(ctx):
@cli.group()
-def user():
[email protected]_context
+def user(ctx):
"""Subcommand to manage users."""
- pass
+ db = ctx.obj.db
+ db_url = db.url
+
+ # sqlite driver for sqlalchemy creates an empty file on commit as a side
+ # effect. We don't want this creation to happen, so before attempting
+ # the creation we stop short if we already find out that the file is
+ # missing and cannot possibly be initialized.
+ if is_sqlitedb_url(db_url) and not sqlitedb_present(db_url):
+ raise click.UsageError("Could not find database at {}".format(db_url))
@user.command()
@@ -228,9 +253,14 @@ def list(ctx, no_decoration, show_apps):
@cli.group()
-def app():
[email protected]_context
+def app(ctx):
"""Subcommand to manage applications."""
- pass
+ db = ctx.obj.db
+ db_url = db.url
+
+ if is_sqlitedb_url(db_url) and not sqlitedb_present(db_url):
+ raise click.UsageError("Could not find database at {}".format(db_url))
@app.command() # noqa
diff --git a/remoteappmanager/spawner.py b/remoteappmanager/spawner.py
index a226fa9..8637879 100644
--- a/remoteappmanager/spawner.py
+++ b/remoteappmanager/spawner.py
@@ -20,7 +20,7 @@ class Spawner(LocalProcessSpawner):
proxy = Any()
#: The path of the configuration file for the cmd executable
- config_file_path = Unicode()
+ config_file_path = Unicode(config=True)
def __init__(self, **kwargs):
super().__init__(**kwargs)
|
simphony/simphony-remote
|
ae2c07cdf3906952600c57b4439d57d7ff4b2cc1
|
diff --git a/tests/cli/test_remoteappdb.py b/tests/cli/test_remoteappdb.py
index 004a99e..57db987 100644
--- a/tests/cli/test_remoteappdb.py
+++ b/tests/cli/test_remoteappdb.py
@@ -25,9 +25,23 @@ class TestRemoteAppDbCLI(TempMixin, unittest.TestCase):
return result.exit_code, result.output
+ def test_is_sqlitedb_url(self):
+ self.assertTrue(remoteappdb.is_sqlitedb_url("sqlite:///foo.db"))
+ self.assertFalse(remoteappdb.is_sqlitedb_url("whatever:///foo.db"))
+
+ def test_sqlite_present(self):
+ self.assertTrue(remoteappdb.sqlitedb_present(
+ "sqlite:///"+self.db))
+ self.assertFalse(remoteappdb.sqlitedb_present(
+ "sqlite:///"+self.db+"whatever"))
+
def test_init_command(self):
self.assertTrue(os.path.exists(self.db))
+ # This should fail because the database is already present
+ exit_code, output = self._remoteappdb("init")
+ self.assertNotEqual(exit_code, 0)
+
def test_user_create(self):
_, out = self._remoteappdb("user create foo")
self.assertEqual(out, "1\n")
@@ -174,3 +188,13 @@ class TestRemoteAppDbCLI(TempMixin, unittest.TestCase):
_, out = self._remoteappdb("user list --show-apps --no-decoration")
self.assertEqual(len(out.split('\n')), 2)
self.assertNotIn("myapp", out)
+
+ def test_commands_noinit(self):
+ # Remove the conveniently setup database
+ os.remove(self.db)
+
+ exit_code, out = self._remoteappdb("user create foo")
+ self.assertNotEqual(exit_code, 0)
+
+ exit_code, out = self._remoteappdb("app create foo")
+ self.assertNotEqual(exit_code, 0)
|
System user Spawner's config_file_path is not configurable
Which is not consistent with the VirtualUserSpawner and the documentation.
All it needs is a `config=True` in the traitlet's meta.
|
0.0
|
ae2c07cdf3906952600c57b4439d57d7ff4b2cc1
|
[
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_commands_noinit",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_is_sqlitedb_url",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_sqlite_present"
] |
[
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_app_create_with_verify",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_app_create_wrong_name_with_verify",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_app_create_wrong_name_without_verify",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_init_command",
"tests/cli/test_remoteappdb.py::TestRemoteAppDbCLI::test_user_create"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-19 08:16:24+00:00
|
bsd-3-clause
| 5,509 |
|
simphony__simphony-remote-133
|
diff --git a/remoteappmanager/docker/container.py b/remoteappmanager/docker/container.py
index cb484b0..f92304c 100644
--- a/remoteappmanager/docker/container.py
+++ b/remoteappmanager/docker/container.py
@@ -56,7 +56,7 @@ class Container(HasTraits):
")>")
@classmethod
- def from_docker_containers_dict(cls, docker_dict):
+ def from_docker_dict(cls, docker_dict):
"""Returns a Container object with the info given by a
docker Client.
@@ -74,24 +74,66 @@ class Container(HasTraits):
>>> # containers is a list of dict
>>> containers = docker.Client().containers()
- >>> Container.from_docker_containers_dict(containers[0])
+ >>> Container.from_docker_dict(containers[0])
"""
- ip = cls.ip.default_value
- port = cls.port.default_value
-
- if docker_dict.get('Ports'):
- ip = docker_dict['Ports'][0].get('IP', ip)
- port = docker_dict['Ports'][0].get('PublicPort', port)
-
- labels = docker_dict.get("Labels", {})
- mapping_id = labels.get(SIMPHONY_NS+"mapping_id", "")
- url_id = labels.get(SIMPHONY_NS+"url_id", "")
-
- return cls(docker_id=docker_dict.get('Id', ''),
- name=docker_dict.get('Names', ('',))[0],
- image_name=docker_dict.get('Image', ''),
- image_id=docker_dict.get('ImageID', ''),
- mapping_id=mapping_id,
- ip=ip,
- port=port,
- url_id=url_id)
+
+ is_inspect_container_output = ("Config" in docker_dict)
+
+ kwargs = dict(
+ docker_id=docker_dict.get('Id') or '',
+ ip=cls.ip.default_value,
+ port=cls.port.default_value,
+ )
+
+ if is_inspect_container_output:
+ # It's a client.inspect_container() output
+
+ network_settings = docker_dict.get("NetworkSettings") or {}
+ ports = network_settings.get("Ports") or {}
+ # unfortunately, in the case of a running container, we don't have
+ # a single list. Instead, we have a dict where the keys are
+ # the "port identifier" (e.g. 8888/tcp) and the value is a list
+ # of dictionaries.
+ # We assume that we only have one, as above
+ if len(ports) > 1:
+ raise ValueError("Container Ports had more than one element.")
+
+ if len(ports):
+ port_values = list(ports.values())[0]
+ if len(port_values) > 1:
+ raise ValueError("Container Ports values had "
+ "more than one element.")
+
+ if len(port_values):
+ kwargs["ip"] = port_values[0].get("HostIp") or kwargs["ip"]
+ kwargs["port"] = int(port_values[0].get("HostPort") or
+ kwargs["port"])
+
+ config = docker_dict.get("Config", {})
+ labels = config.get("Labels")
+
+ kwargs["image_name"] = config.get("Image")
+ kwargs["image_id"] = docker_dict["Image"]
+ kwargs["name"] = docker_dict["Name"]
+ else:
+ # It's a client.containers() output, so we have different rules.
+ ports = docker_dict.get('Ports') or []
+ if len(ports) > 1:
+ raise ValueError("Container Ports had more than one element.")
+
+ if len(ports):
+ kwargs["ip"] = ports[0].get('IP') or kwargs["ip"]
+ kwargs["port"] = int(ports[0].get('PublicPort') or
+ kwargs["port"])
+
+ labels = docker_dict.get("Labels") or {}
+
+ kwargs["image_name"] = docker_dict.get('Image') or ''
+ kwargs["image_id"] = docker_dict.get("ImageID") or ''
+ names = docker_dict.get("Names") or ('', )
+ kwargs["name"] = names[0]
+
+ kwargs["mapping_id"] = labels.get(SIMPHONY_NS+"mapping_id") or ""
+ kwargs["url_id"] = labels.get(SIMPHONY_NS+"url_id") or ""
+
+ return cls(**kwargs)
diff --git a/remoteappmanager/docker/container_manager.py b/remoteappmanager/docker/container_manager.py
index 1db82e5..7b85d53 100644
--- a/remoteappmanager/docker/container_manager.py
+++ b/remoteappmanager/docker/container_manager.py
@@ -166,8 +166,8 @@ class ContainerManager(LoggingMixin):
infos = yield self.docker_client.containers(filters=filters)
for info in infos:
try:
- container = Container.from_docker_containers_dict(info)
- except Exception:
+ container = Container.from_docker_dict(info)
+ except ValueError:
self.log.exception("Unable to parse container info.")
continue
diff --git a/remoteappmanager/restresources/container.py b/remoteappmanager/restresources/container.py
index c3cd5e8..64bf36a 100644
--- a/remoteappmanager/restresources/container.py
+++ b/remoteappmanager/restresources/container.py
@@ -118,7 +118,7 @@ class Container(Resource):
if not container_dict:
return None
- return DockerContainer.from_docker_containers_dict(container_dict[0])
+ return DockerContainer.from_docker_dict(container_dict[0])
@gen.coroutine
def _start_container(self, user_name, app, policy, mapping_id):
|
simphony/simphony-remote
|
af0203df6cb3232a28b50fa1023baf73e234aa6d
|
diff --git a/tests/docker/test_container.py b/tests/docker/test_container.py
index f5223dc..249eac9 100644
--- a/tests/docker/test_container.py
+++ b/tests/docker/test_container.py
@@ -1,7 +1,8 @@
from unittest import TestCase
from remoteappmanager.docker.container import Container
-from tests.utils import assert_containers_equal
+from tests.utils import assert_containers_equal, \
+ mock_docker_client_with_running_containers
class TestContainer(TestCase):
@@ -42,7 +43,7 @@ class TestContainer(TestCase):
'Status': 'Up 56 minutes'}
# Container with public port
- actual = Container.from_docker_containers_dict(container_dict)
+ actual = Container.from_docker_dict(container_dict)
expected = Container(
docker_id='248e45e717cd740ae763a1c565',
name='/remoteexec-user-empty-ubuntu_3Alatest',
@@ -75,7 +76,7 @@ class TestContainer(TestCase):
'Status': 'Up 56 minutes'}
# Container without public port
- actual = Container.from_docker_containers_dict(container_dict)
+ actual = Container.from_docker_dict(container_dict)
expected = Container(
docker_id='812c765d0549be0ab831ae8348',
name='/remoteexec-user-empty-ubuntu_3Alatest',
@@ -86,3 +87,57 @@ class TestContainer(TestCase):
url_id="8e2fe66d5de74db9bbab50c0d2f92b33")
assert_containers_equal(self, actual, expected)
+
+ def test_from_docker_dict_inspect_container(self):
+ client = mock_docker_client_with_running_containers()
+ actual = Container.from_docker_dict(
+ client.inspect_container("id"))
+
+ expected = Container(
+ docker_id='35d88fe321c3d575ec3be64f54b8967ef49c0dc92395bf4c1e511ed3e6ae0c79', # noqa
+ name='/remoteexec-username-simphonyproject_2Fsimphonic-mayavi_5F1',
+ image_name='simphonyproject/simphonic-mayavi',
+ image_id='sha256:f43b749341ee37b56e7bd8d99f09629f311aaec35a8045a39185b5659edef169', # noqa
+ ip='0.0.0.0',
+ port=32782,
+ url_id="55555555555555555555555555555555",
+ mapping_id="1c08c87878634e90af43d799e90f61d2")
+
+ assert_containers_equal(self, actual, expected)
+
+ def test_multiple_ports_data(self):
+ client = mock_docker_client_with_running_containers()
+ docker_dict = client.inspect_container("id")
+ docker_dict["NetworkSettings"]["Ports"] = {
+ '8888/tcp': [{'HostIp': '0.0.0.0', 'HostPort': '32782'}],
+ '8889/tcp': [{'HostIp': '0.0.0.0', 'HostPort': '32783'}]
+ }
+ with self.assertRaises(ValueError):
+ Container.from_docker_dict(docker_dict)
+
+ docker_dict["NetworkSettings"]["Ports"] = {
+ '8888/tcp': [
+ {'HostIp': '0.0.0.0', 'HostPort': '32782'},
+ {'HostIp': '0.0.0.0', 'HostPort': '32783'}
+ ]
+ }
+ with self.assertRaises(ValueError):
+ Container.from_docker_dict(docker_dict)
+
+ docker_dict = client.containers()[0]
+ docker_dict["Ports"] = [
+ {
+ 'IP': '0.0.0.0',
+ 'PublicIP': 34567,
+ 'PrivatePort': 22,
+ 'Type': 'tcp'
+ },
+ {
+ 'IP': '0.0.0.0',
+ 'PublicIP': 34562,
+ 'PrivatePort': 21,
+ 'Type': 'tcp'
+ }
+ ]
+ with self.assertRaises(ValueError):
+ Container.from_docker_dict(docker_dict)
diff --git a/tests/utils.py b/tests/utils.py
index 9279636..2556bcd 100644
--- a/tests/utils.py
+++ b/tests/utils.py
@@ -110,6 +110,30 @@ def mock_docker_client_with_running_containers():
'State': 'running',
'Status': 'Up About an hour'},
]
+ client.inspect_container.return_value = {
+ 'Config': {
+ 'Image': 'simphonyproject/simphonic-mayavi',
+ 'Labels': {'eu.simphony-project.docker.description': 'Ubuntu '
+ 'machine '
+ 'with '
+ 'simphony '
+ 'framework '
+ 'preinstalled',
+ 'eu.simphony-project.docker.mapping_id': '1c08c87878634e90af43d799e90f61d2',
+ 'eu.simphony-project.docker.ui_name': 'Simphony '
+ 'Framework '
+ '(w/ mayavi)',
+ 'eu.simphony-project.docker.url_id': '55555555555555555555555555555555',
+ 'eu.simphony-project.docker.user': 'username'},
+ },
+ 'Id': '35d88fe321c3d575ec3be64f54b8967ef49c0dc92395bf4c1e511ed3e6ae0c79',
+ 'Image': 'sha256:f43b749341ee37b56e7bd8d99f09629f311aaec35a8045a39185b5659edef169',
+ 'Name': '/remoteexec-username-simphonyproject_2Fsimphonic-mayavi_5F1',
+ 'NetworkSettings': {
+ 'Ports': {'8888/tcp': [{'HostIp': '0.0.0.0',
+ 'HostPort': '32782'}]},
+ },
+ }
return client
|
Image.from_docker_dict and Container.from_docker_dict take inconsistent inputs
`Container.from_docker_dict` assumes inputs from the result of `docker.client.containers` but not `docker.client.inspect_container`, whilst `Image.from_docker_dict` can take inputs from both.
It would be useful and neater if `Container.from_docker_dict` accepts input from the result `docker.client.inspect_container` as well.
Follows #79
|
0.0
|
af0203df6cb3232a28b50fa1023baf73e234aa6d
|
[
"tests/docker/test_container.py::TestContainer::test_from_docker_dict_inspect_container",
"tests/docker/test_container.py::TestContainer::test_from_docker_dict_with_public_port",
"tests/docker/test_container.py::TestContainer::test_from_docker_dict_without_public_port",
"tests/docker/test_container.py::TestContainer::test_multiple_ports_data"
] |
[
"tests/docker/test_container.py::TestContainer::test_host_url",
"tests/docker/test_container.py::TestContainer::test_url"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-20 15:25:43+00:00
|
bsd-3-clause
| 5,510 |
|
simphony__simphony-remote-134
|
diff --git a/remoteappmanager/docker/container.py b/remoteappmanager/docker/container.py
index cb484b0..f92304c 100644
--- a/remoteappmanager/docker/container.py
+++ b/remoteappmanager/docker/container.py
@@ -56,7 +56,7 @@ class Container(HasTraits):
")>")
@classmethod
- def from_docker_containers_dict(cls, docker_dict):
+ def from_docker_dict(cls, docker_dict):
"""Returns a Container object with the info given by a
docker Client.
@@ -74,24 +74,66 @@ class Container(HasTraits):
>>> # containers is a list of dict
>>> containers = docker.Client().containers()
- >>> Container.from_docker_containers_dict(containers[0])
+ >>> Container.from_docker_dict(containers[0])
"""
- ip = cls.ip.default_value
- port = cls.port.default_value
-
- if docker_dict.get('Ports'):
- ip = docker_dict['Ports'][0].get('IP', ip)
- port = docker_dict['Ports'][0].get('PublicPort', port)
-
- labels = docker_dict.get("Labels", {})
- mapping_id = labels.get(SIMPHONY_NS+"mapping_id", "")
- url_id = labels.get(SIMPHONY_NS+"url_id", "")
-
- return cls(docker_id=docker_dict.get('Id', ''),
- name=docker_dict.get('Names', ('',))[0],
- image_name=docker_dict.get('Image', ''),
- image_id=docker_dict.get('ImageID', ''),
- mapping_id=mapping_id,
- ip=ip,
- port=port,
- url_id=url_id)
+
+ is_inspect_container_output = ("Config" in docker_dict)
+
+ kwargs = dict(
+ docker_id=docker_dict.get('Id') or '',
+ ip=cls.ip.default_value,
+ port=cls.port.default_value,
+ )
+
+ if is_inspect_container_output:
+ # It's a client.inspect_container() output
+
+ network_settings = docker_dict.get("NetworkSettings") or {}
+ ports = network_settings.get("Ports") or {}
+ # unfortunately, in the case of a running container, we don't have
+ # a single list. Instead, we have a dict where the keys are
+ # the "port identifier" (e.g. 8888/tcp) and the value is a list
+ # of dictionaries.
+ # We assume that we only have one, as above
+ if len(ports) > 1:
+ raise ValueError("Container Ports had more than one element.")
+
+ if len(ports):
+ port_values = list(ports.values())[0]
+ if len(port_values) > 1:
+ raise ValueError("Container Ports values had "
+ "more than one element.")
+
+ if len(port_values):
+ kwargs["ip"] = port_values[0].get("HostIp") or kwargs["ip"]
+ kwargs["port"] = int(port_values[0].get("HostPort") or
+ kwargs["port"])
+
+ config = docker_dict.get("Config", {})
+ labels = config.get("Labels")
+
+ kwargs["image_name"] = config.get("Image")
+ kwargs["image_id"] = docker_dict["Image"]
+ kwargs["name"] = docker_dict["Name"]
+ else:
+ # It's a client.containers() output, so we have different rules.
+ ports = docker_dict.get('Ports') or []
+ if len(ports) > 1:
+ raise ValueError("Container Ports had more than one element.")
+
+ if len(ports):
+ kwargs["ip"] = ports[0].get('IP') or kwargs["ip"]
+ kwargs["port"] = int(ports[0].get('PublicPort') or
+ kwargs["port"])
+
+ labels = docker_dict.get("Labels") or {}
+
+ kwargs["image_name"] = docker_dict.get('Image') or ''
+ kwargs["image_id"] = docker_dict.get("ImageID") or ''
+ names = docker_dict.get("Names") or ('', )
+ kwargs["name"] = names[0]
+
+ kwargs["mapping_id"] = labels.get(SIMPHONY_NS+"mapping_id") or ""
+ kwargs["url_id"] = labels.get(SIMPHONY_NS+"url_id") or ""
+
+ return cls(**kwargs)
diff --git a/remoteappmanager/docker/container_manager.py b/remoteappmanager/docker/container_manager.py
index 1db82e5..7b85d53 100644
--- a/remoteappmanager/docker/container_manager.py
+++ b/remoteappmanager/docker/container_manager.py
@@ -166,8 +166,8 @@ class ContainerManager(LoggingMixin):
infos = yield self.docker_client.containers(filters=filters)
for info in infos:
try:
- container = Container.from_docker_containers_dict(info)
- except Exception:
+ container = Container.from_docker_dict(info)
+ except ValueError:
self.log.exception("Unable to parse container info.")
continue
diff --git a/remoteappmanager/file_config.py b/remoteappmanager/file_config.py
index 2f93478..8966ed8 100644
--- a/remoteappmanager/file_config.py
+++ b/remoteappmanager/file_config.py
@@ -3,7 +3,6 @@ import os
import tornado.options
from docker import tls
from traitlets import HasTraits, Int, Unicode, Bool, Dict
-from traitlets.utils.sentinel import Sentinel
from remoteappmanager import paths
from remoteappmanager.traitlets import set_traits_from_dict
@@ -110,12 +109,7 @@ class FileConfig(HasTraits):
for traitlet_name, traitlet in self.traits().items():
# tornado.OptionParser defines an option with a Python type
# and performs type validation.
- # traitlet.default_value may be a Sentinel value (e.g. Tuple,
- # Dict, Instance), in which case we use the repr
- default_value = traitlet.default_value
-
- if type(default_value) is Sentinel:
- default_value = eval(traitlet.default_value_repr())
+ default_value = getattr(self, traitlet_name)
file_line_parser.define(
traitlet_name,
diff --git a/remoteappmanager/restresources/container.py b/remoteappmanager/restresources/container.py
index c3cd5e8..64bf36a 100644
--- a/remoteappmanager/restresources/container.py
+++ b/remoteappmanager/restresources/container.py
@@ -118,7 +118,7 @@ class Container(Resource):
if not container_dict:
return None
- return DockerContainer.from_docker_containers_dict(container_dict[0])
+ return DockerContainer.from_docker_dict(container_dict[0])
@gen.coroutine
def _start_container(self, user_name, app, policy, mapping_id):
|
simphony/simphony-remote
|
af0203df6cb3232a28b50fa1023baf73e234aa6d
|
diff --git a/tests/docker/test_container.py b/tests/docker/test_container.py
index f5223dc..249eac9 100644
--- a/tests/docker/test_container.py
+++ b/tests/docker/test_container.py
@@ -1,7 +1,8 @@
from unittest import TestCase
from remoteappmanager.docker.container import Container
-from tests.utils import assert_containers_equal
+from tests.utils import assert_containers_equal, \
+ mock_docker_client_with_running_containers
class TestContainer(TestCase):
@@ -42,7 +43,7 @@ class TestContainer(TestCase):
'Status': 'Up 56 minutes'}
# Container with public port
- actual = Container.from_docker_containers_dict(container_dict)
+ actual = Container.from_docker_dict(container_dict)
expected = Container(
docker_id='248e45e717cd740ae763a1c565',
name='/remoteexec-user-empty-ubuntu_3Alatest',
@@ -75,7 +76,7 @@ class TestContainer(TestCase):
'Status': 'Up 56 minutes'}
# Container without public port
- actual = Container.from_docker_containers_dict(container_dict)
+ actual = Container.from_docker_dict(container_dict)
expected = Container(
docker_id='812c765d0549be0ab831ae8348',
name='/remoteexec-user-empty-ubuntu_3Alatest',
@@ -86,3 +87,57 @@ class TestContainer(TestCase):
url_id="8e2fe66d5de74db9bbab50c0d2f92b33")
assert_containers_equal(self, actual, expected)
+
+ def test_from_docker_dict_inspect_container(self):
+ client = mock_docker_client_with_running_containers()
+ actual = Container.from_docker_dict(
+ client.inspect_container("id"))
+
+ expected = Container(
+ docker_id='35d88fe321c3d575ec3be64f54b8967ef49c0dc92395bf4c1e511ed3e6ae0c79', # noqa
+ name='/remoteexec-username-simphonyproject_2Fsimphonic-mayavi_5F1',
+ image_name='simphonyproject/simphonic-mayavi',
+ image_id='sha256:f43b749341ee37b56e7bd8d99f09629f311aaec35a8045a39185b5659edef169', # noqa
+ ip='0.0.0.0',
+ port=32782,
+ url_id="55555555555555555555555555555555",
+ mapping_id="1c08c87878634e90af43d799e90f61d2")
+
+ assert_containers_equal(self, actual, expected)
+
+ def test_multiple_ports_data(self):
+ client = mock_docker_client_with_running_containers()
+ docker_dict = client.inspect_container("id")
+ docker_dict["NetworkSettings"]["Ports"] = {
+ '8888/tcp': [{'HostIp': '0.0.0.0', 'HostPort': '32782'}],
+ '8889/tcp': [{'HostIp': '0.0.0.0', 'HostPort': '32783'}]
+ }
+ with self.assertRaises(ValueError):
+ Container.from_docker_dict(docker_dict)
+
+ docker_dict["NetworkSettings"]["Ports"] = {
+ '8888/tcp': [
+ {'HostIp': '0.0.0.0', 'HostPort': '32782'},
+ {'HostIp': '0.0.0.0', 'HostPort': '32783'}
+ ]
+ }
+ with self.assertRaises(ValueError):
+ Container.from_docker_dict(docker_dict)
+
+ docker_dict = client.containers()[0]
+ docker_dict["Ports"] = [
+ {
+ 'IP': '0.0.0.0',
+ 'PublicIP': 34567,
+ 'PrivatePort': 22,
+ 'Type': 'tcp'
+ },
+ {
+ 'IP': '0.0.0.0',
+ 'PublicIP': 34562,
+ 'PrivatePort': 21,
+ 'Type': 'tcp'
+ }
+ ]
+ with self.assertRaises(ValueError):
+ Container.from_docker_dict(docker_dict)
diff --git a/tests/test_file_config.py b/tests/test_file_config.py
index 22ce879..484d1b9 100644
--- a/tests/test_file_config.py
+++ b/tests/test_file_config.py
@@ -151,3 +151,15 @@ class TestFileConfig(TempMixin, unittest.TestCase):
config = FileConfig(tls=True)
self.assertNotEqual(config.tls_key, '')
self.assertNotEqual(config.tls_cert, '')
+
+ def test_file_parsing_not_overriding_bug_131(self):
+ docker_config = textwrap.dedent('''
+ tls = True
+ ''')
+ with open(self.config_file, 'w') as fhandle:
+ print(docker_config, file=fhandle)
+
+ config = FileConfig()
+ config.parse_config(self.config_file)
+ self.assertNotEqual(config.tls_key, '')
+ self.assertNotEqual(config.tls_cert, '')
diff --git a/tests/utils.py b/tests/utils.py
index 9279636..2556bcd 100644
--- a/tests/utils.py
+++ b/tests/utils.py
@@ -110,6 +110,30 @@ def mock_docker_client_with_running_containers():
'State': 'running',
'Status': 'Up About an hour'},
]
+ client.inspect_container.return_value = {
+ 'Config': {
+ 'Image': 'simphonyproject/simphonic-mayavi',
+ 'Labels': {'eu.simphony-project.docker.description': 'Ubuntu '
+ 'machine '
+ 'with '
+ 'simphony '
+ 'framework '
+ 'preinstalled',
+ 'eu.simphony-project.docker.mapping_id': '1c08c87878634e90af43d799e90f61d2',
+ 'eu.simphony-project.docker.ui_name': 'Simphony '
+ 'Framework '
+ '(w/ mayavi)',
+ 'eu.simphony-project.docker.url_id': '55555555555555555555555555555555',
+ 'eu.simphony-project.docker.user': 'username'},
+ },
+ 'Id': '35d88fe321c3d575ec3be64f54b8967ef49c0dc92395bf4c1e511ed3e6ae0c79',
+ 'Image': 'sha256:f43b749341ee37b56e7bd8d99f09629f311aaec35a8045a39185b5659edef169',
+ 'Name': '/remoteexec-username-simphonyproject_2Fsimphonic-mayavi_5F1',
+ 'NetworkSettings': {
+ 'Ports': {'8888/tcp': [{'HostIp': '0.0.0.0',
+ 'HostPort': '32782'}]},
+ },
+ }
return client
|
FileConfig with tls=True or tls_verify=False only, leads to docker TLSParameterError
On Linux, if my file config for the `remoteappmanager_config.py` ONLY contains the following:
```
$ cat remoteappmanager_config.py
tls = True
```
or
```
$ cat remoteappmanager_config.py
tls_verify = True
```
Then starting remoteappmanager gives this error
```
$ remoteappmanager --user=kit --port=45707 --cookie-name=jupyter-hub-token-kit --base-urlpath=/user/kit --hub-host= --hub-prefix=/hub/ --hub-api-url=http://172.16.253.129:8081/hub/api --ip=127.0.0.1 --proxy-api-url=http://127.0.0.1:8001/api/routes/ --config-file=remoteappmanager_config.py
...
[E 160720 14:33:43 web:1548] Uncaught exception GET /user/kit/ (127.0.0.1)
HTTPServerRequest(protocol='http', host='127.0.0.1:8000', method='GET', uri='/user/kit/', version='HTTP/1.1', remote_ip='127.0.0.1', headers={'X-Forwarded-Proto': 'https', 'Accept-Language': 'en-US,en;q=0.5', 'X-Forwarded-For': '127.0.0.1', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'If-None-Match': '"dfba4089bef9b2e40bbd2a75ba5413bb8edbdd83"', 'Host': '127.0.0.1:8000', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:39.0) Gecko/20100101 Firefox/39.0', 'Referer': 'https://127.0.0.1:8000/hub/login', 'Accept-Encoding': 'gzip, deflate', 'Connection': 'close', 'X-Forwarded-Port': '8000', 'Cookie': 'jupyter-hub-token-kit="2|1:0|10:1469021623|21:jupyter-hub-token-kit|44:M2UzMjRlOGNhNDBjNGQ5ZWEwYjg3Njk0N2U0ODY4MmE=|1ec021fdad25b335a6b11b22ff198ce0860a0742a4d95c46a33a6d659d5f4e2d"'})
Traceback (most recent call last):
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/traitlets/traitlets.py", line 501, in get
value = obj._trait_values[self.name]
KeyError: 'container_manager'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/web.py", line 1469, in _execute
result = yield result
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 1015, in run
value = future.result()
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/concurrent.py", line 237, in result
raise_exc_info(self._exc_info)
File "<string>", line 3, in raise_exc_info
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 1021, in run
yielded = self.gen.throw(*exc_info)
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/handlers/home_handler.py", line 21, in get
images_info = yield self._get_images_info()
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 1015, in run
value = future.result()
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/concurrent.py", line 237, in result
raise_exc_info(self._exc_info)
File "<string>", line 3, in raise_exc_info
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/tornado/gen.py", line 285, in wrapper
yielded = next(result)
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/handlers/home_handler.py", line 184, in _get_images_info
container_manager = self.application.container_manager
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/traitlets/traitlets.py", line 529, in __get__
return self.get(obj, cls)
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/traitlets/traitlets.py", line 508, in get
value = self._validate(obj, dynamic_default())
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/application.py", line 81, in _container_manager_default
docker_config=self.file_config.docker_config()
File "/mnt/hgfs/VM_shared/SimPhoNy/simphony-remote/remoteappmanager/file_config.py", line 155, in docker_config
assert_hostname=True,
File "/home/kit/.virtualenv/simremote/lib/python3.4/site-packages/docker/tls.py", line 47, in __init__
'Path to a certificate and key files must be provided'
docker.errors.TLSParameterError: Path to a certificate and key files must be provided through the client_config param. TLS configurations should map the Docker CLI client configurations. See https://docs.docker.com/engine/articles/https/ for API details.
```
|
0.0
|
af0203df6cb3232a28b50fa1023baf73e234aa6d
|
[
"tests/docker/test_container.py::TestContainer::test_from_docker_dict_inspect_container",
"tests/docker/test_container.py::TestContainer::test_from_docker_dict_with_public_port",
"tests/docker/test_container.py::TestContainer::test_from_docker_dict_without_public_port",
"tests/docker/test_container.py::TestContainer::test_multiple_ports_data",
"tests/test_file_config.py::TestFileConfig::test_file_parsing_not_overriding_bug_131"
] |
[
"tests/docker/test_container.py::TestContainer::test_host_url",
"tests/docker/test_container.py::TestContainer::test_url",
"tests/test_file_config.py::TestFileConfig::test_initialization_on_local_docker_machine",
"tests/test_file_config.py::TestFileConfig::test_initialization_on_nonlocal_docker_machine",
"tests/test_file_config.py::TestFileConfig::test_initialization_with_default_accounting",
"tests/test_file_config.py::TestFileConfig::test_initialization_with_good_accounting",
"tests/test_file_config.py::TestFileConfig::test_overriding",
"tests/test_file_config.py::TestFileConfig::test_tls_init",
"tests/test_file_config.py::TestFileConfig::test_tls_no_verify"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_git_commit_hash",
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-20 16:23:49+00:00
|
bsd-3-clause
| 5,511 |
|
simphony__simphony-remote-171
|
diff --git a/jupyterhub/remoteappmanager_config.py b/jupyterhub/remoteappmanager_config.py
index 436d01b..684b1df 100644
--- a/jupyterhub/remoteappmanager_config.py
+++ b/jupyterhub/remoteappmanager_config.py
@@ -15,23 +15,19 @@
# # TLS configuration
# # -----------------
# #
-# # Set this to True only if your docker machine has a certificate signed by
-# # a recognised CA.
-# # If using self-signed certificates, using tls as True will produce an error
-# # of incorrect CA validation. As a consequence, the default tls setting is
-# # False, and tls_verify is according to the current environment (likely True
-# # with default setup on OSX), honoring docker documentation.
-# # See https://docs.docker.com/engine/security/https/ for additional details
+# # Set this to True to enable TLS connection with the docker client
#
# tls = True
#
# # Enables verification of the certificates. By default, this is the
-# # result of the DOCKER_TLS_VERIFY envvar
+# # result of the DOCKER_TLS_VERIFY envvar. Set to False to skip verification/
#
# tls_verify = True
#
# # Full paths of the CA certificate, certificate and key of the docker
-# # machine. Normally these are computed from the DOCKER_CERT_PATH
+# # machine. Normally these are computed from the DOCKER_CERT_PATH.
+# # If you want to use a recognised CA for verification, set the tls_ca to
+# # an empty string
#
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
diff --git a/remoteappmanager/file_config.py b/remoteappmanager/file_config.py
index 9f26882..de1b834 100644
--- a/remoteappmanager/file_config.py
+++ b/remoteappmanager/file_config.py
@@ -15,19 +15,12 @@ class FileConfig(HasTraits):
##########
# Configuration file options. All of these come from the config file.
-
- #: Enable tls, with a twist. If self-signed certificates are used,
- #: setting tls as True will produce an error of incorrect CA validation.
- #: As a consequence, defaults to False. TLS secure connection will still
- #: happen thanks to tls_verify and tls[_cert|_key|_ca] being defined.
- #: See https://docs.docker.com/engine/security/https/
- #: Verification can be enabled simply by issuing tls=True in the
- #: config file
tls = Bool(False,
- help="If True, connect to docker with --tls")
+ help="If True, connect to docker with tls")
- tls_verify = Bool(False,
- help="If True, connect to docker with --tlsverify")
+ tls_verify = Bool(True,
+ help="If True, verify the CA certificate against a "
+ "known or self-signed CA certificate")
tls_ca = Unicode("", help="Path to CA certificate for docker TLS")
@@ -39,7 +32,7 @@ class FileConfig(HasTraits):
accounting_class = Unicode(
default_value="remoteappmanager.db.orm.AppAccounting",
- help="The import path to a subclass of ABCAccounting.")
+ help="The import path to a subclass of ABCAccounting")
accounting_kwargs = Dict(
default_value={'url': 'sqlite:///remoteappmanager.db'},
@@ -48,7 +41,7 @@ class FileConfig(HasTraits):
login_url = Unicode(default_value="/hub",
help=("The url to be redirected to if the user is not "
"authenticated for pages that require "
- "authentication."))
+ "authentication"))
# The network timeout for any async operation we have to perform,
# in seconds. 30 seconds is plenty enough.
@@ -77,10 +70,10 @@ class FileConfig(HasTraits):
self.docker_host = "unix://var/run/docker.sock"
self.tls_verify = (env.get("DOCKER_TLS_VERIFY", "") != "")
+ # We don't have an envvar way of saying TLS = True, so we rely on
+ # TLS_VERIFY set status
+ self.tls = self.tls_verify
- # Note that certificate paths can still be present even if tls_verify
- # is false: that is the case of using certificates signed by an
- # authoritative CA.
cert_path = env.get("DOCKER_CERT_PATH",
os.path.join(os.path.expanduser("~"), ".docker"))
@@ -88,7 +81,7 @@ class FileConfig(HasTraits):
self.tls_key = os.path.join(cert_path, 'key.pem')
self.tls_ca = os.path.join(cert_path, 'ca.pem')
- if self.tls_verify or self.tls:
+ if self.tls:
self.docker_host = self.docker_host.replace('tcp://', 'https://')
# -------------------------------------------------------------------------
@@ -142,17 +135,18 @@ class FileConfig(HasTraits):
# present at the specified paths.
# Note that the tls flag takes precedence against tls verify.
# This is docker behavior.
- if self.tls:
- params["tls"] = tls.TLSConfig(
- client_cert=(self.tls_cert, self.tls_key),
- )
- elif self.tls_verify:
- params["tls"] = tls.TLSConfig(
- client_cert=(self.tls_cert, self.tls_key),
- ca_cert=self.tls_ca,
- verify=True,
- )
-
params["version"] = "auto"
+ if not self.tls:
+ return params
+
+ tls_kwargs = {}
+ tls_kwargs["client_cert"] = (self.tls_cert, self.tls_key)
+ tls_kwargs["verify"] = self.tls_verify
+
+ if self.tls_verify and self.tls_ca:
+ tls_kwargs["ca_cert"] = self.tls_ca
+
+ params["tls"] = tls.TLSConfig(**tls_kwargs)
+
return params
|
simphony/simphony-remote
|
524ed02f5610ede6cb2e60250431c82d49180786
|
diff --git a/tests/test_file_config.py b/tests/test_file_config.py
index 307702a..bc9150c 100644
--- a/tests/test_file_config.py
+++ b/tests/test_file_config.py
@@ -83,7 +83,7 @@ class TestFileConfig(TempMixin, unittest.TestCase):
config.parse_config(self.config_file)
docker_dict = config.docker_config()
self.assertIn("tls", docker_dict)
- self.assertEqual(docker_dict["tls"].verify, None)
+ self.assertEqual(docker_dict["tls"].verify, False)
self.assertEqual(docker_dict["tls"].ca_cert, None)
def test_initialization_with_good_accounting(self):
@@ -106,8 +106,7 @@ class TestFileConfig(TempMixin, unittest.TestCase):
with envvars(envs):
config = FileConfig()
- # False by default, as we don't want CA verification
- self.assertEqual(config.tls, False)
+ self.assertEqual(config.tls, True)
self.assertEqual(config.tls_verify, True)
self.assertEqual(config.tls_ca,
os.path.join(self.tempdir, "ca.pem"))
@@ -141,9 +140,9 @@ class TestFileConfig(TempMixin, unittest.TestCase):
with envvars(envs):
config = FileConfig()
+ config.tls = False
config.tls_verify = False
config.docker_host = "tcp://192.168.99.100:31337"
- # False by default, as we don't want CA verification
docker_config = config.docker_config()
self.assertNotIn("tls", docker_config)
self.assertEqual(docker_config["base_url"],
|
Our FileConfig may not be consistent with the docker config
Referring to http://docker-py.readthedocs.io/en/latest/tls/
If one wants to use TLS but with self-signed certificate, docker `tls` should be set to `True` but `tls_verify` set to `False`. Whilst in our FileConfig, we would set`tls`to `False` and `tls_verify` to `True` (and then we assumed a CA file provide in the cert path so we verify against ourselves.)
|
0.0
|
524ed02f5610ede6cb2e60250431c82d49180786
|
[
"tests/test_file_config.py::TestFileConfig::test_initialization_on_nonlocal_docker_machine",
"tests/test_file_config.py::TestFileConfig::test_tls_no_verify"
] |
[
"tests/test_file_config.py::TestFileConfig::test_overriding",
"tests/test_file_config.py::TestFileConfig::test_initialization_on_local_docker_machine",
"tests/test_file_config.py::TestFileConfig::test_initialization_with_default_accounting",
"tests/test_file_config.py::TestFileConfig::test_tls_init",
"tests/test_file_config.py::TestFileConfig::test_file_parsing_not_overriding_bug_131",
"tests/test_file_config.py::TestFileConfig::test_initialization_with_good_accounting"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-07-26 15:20:39+00:00
|
bsd-3-clause
| 5,512 |
|
simphony__tornado-webapi-17
|
diff --git a/tornadowebapi/__init__.py b/tornadowebapi/__init__.py
index 12f7bda..f080b6e 100644
--- a/tornadowebapi/__init__.py
+++ b/tornadowebapi/__init__.py
@@ -1,10 +1,9 @@
-from .handler import ResourceHandler, CollectionHandler
-from .utils import url_path_join, with_end_slash
+from . import registry
MAJOR = 0
-MINOR = 1
+MINOR = 2
MICRO = 0
-IS_RELEASED = True
+IS_RELEASED = False
__version__ = '%d.%d.%d' % (MAJOR, MINOR, MICRO)
@@ -30,13 +29,4 @@ def api_handlers(base_urlpath, version="v1"):
The current implementation does not support multiple API versions yet.
The version option is only provided for futureproofing.
"""
- return [
- (with_end_slash(
- url_path_join(base_urlpath, "api", version, "(.*)", "(.*)")),
- ResourceHandler
- ),
- (with_end_slash(
- url_path_join(base_urlpath, "api", version, "(.*)")),
- CollectionHandler
- ),
- ]
+ return registry.registry.api_handlers(base_urlpath, version)
diff --git a/tornadowebapi/handler.py b/tornadowebapi/handler.py
index f9c8956..609a1c5 100644
--- a/tornadowebapi/handler.py
+++ b/tornadowebapi/handler.py
@@ -4,11 +4,14 @@ from tornado.log import app_log
from . import exceptions
from .http import httpstatus
from .http.payloaded_http_error import PayloadedHTTPError
-from .registry import registry
from .utils import url_path_join, with_end_slash
class BaseHandler(web.RequestHandler):
+ def initialize(self, registry):
+ """Initialization method for when the class is instantiated."""
+ self._registry = registry
+
@gen.coroutine
def prepare(self):
"""Runs before any specific handler. """
@@ -17,8 +20,8 @@ class BaseHandler(web.RequestHandler):
@property
def registry(self):
- """Returns the global class vs Resource registry"""
- return registry
+ """Returns the class vs Resource registry"""
+ return self._registry
@property
def log(self):
diff --git a/tornadowebapi/registry.py b/tornadowebapi/registry.py
index c5bac97..ee6bfe0 100644
--- a/tornadowebapi/registry.py
+++ b/tornadowebapi/registry.py
@@ -1,3 +1,5 @@
+from .handler import ResourceHandler, CollectionHandler
+from .utils import url_path_join, with_end_slash
from .resource import Resource
from .authenticator import NullAuthenticator
@@ -63,5 +65,36 @@ class Registry:
"""If the registry contains the given item"""
return item in self._registered_types
+ def api_handlers(self, base_urlpath, version="v1"):
+ """Returns the API handlers for the interface.
+ Add these handlers to your application to provide an
+ interface to your Resources.
+
+
+ Parameters
+ ----------
+ base_urlpath: str
+ The base url path to serve
+ version: str
+ A string identifying the version of the API.
+
+ Notes
+ -----
+ The current implementation does not support multiple API versions yet.
+ The version option is only provided for futureproofing.
+ """
+ return [
+ (with_end_slash(
+ url_path_join(base_urlpath, "api", version, "(.*)", "(.*)")),
+ ResourceHandler,
+ dict(registry=self)
+ ),
+ (with_end_slash(
+ url_path_join(base_urlpath, "api", version, "(.*)")),
+ CollectionHandler,
+ dict(registry=self)
+ ),
+ ]
+
#: global registry for registration of the classes.
registry = Registry()
|
simphony/tornado-webapi
|
5dd0c146089cc0a348a9798e2021447aa4ee311e
|
diff --git a/tornadowebapi/tests/test_registry.py b/tornadowebapi/tests/test_registry.py
index 1dc5433..0b793df 100644
--- a/tornadowebapi/tests/test_registry.py
+++ b/tornadowebapi/tests/test_registry.py
@@ -42,3 +42,11 @@ class TestRegistry(unittest.TestCase):
reg = Registry()
self.assertIsNotNone(reg.authenticator)
+
+ def test_api_handlers(self):
+ reg = Registry()
+ api_handlers = reg.api_handlers("/foo")
+ self.assertEqual(len(api_handlers), 2)
+
+ self.assertEqual(api_handlers[0][2]["registry"], reg)
+ self.assertEqual(api_handlers[1][2]["registry"], reg)
diff --git a/tornadowebapi/tests/test_webapi.py b/tornadowebapi/tests/test_webapi.py
index d756ece..3a3c8e5 100644
--- a/tornadowebapi/tests/test_webapi.py
+++ b/tornadowebapi/tests/test_webapi.py
@@ -6,6 +6,7 @@ from unittest import mock
import tornadowebapi
from tornadowebapi import registry, exceptions
from tornadowebapi.http import httpstatus
+from tornadowebapi.registry import Registry
from tornadowebapi.resource import Resource
from tornadowebapi.handler import ResourceHandler, CollectionHandler
from tornadowebapi.tests.utils import AsyncHTTPTestCase
@@ -56,6 +57,16 @@ class Student(Resource):
return list(self.collection.keys())
+class Teacher(Resource):
+ @gen.coroutine
+ def retrieve(self, identifier):
+ return {}
+
+ @gen.coroutine
+ def items(self):
+ return []
+
+
class UnsupportAll(Resource):
pass
@@ -399,3 +410,23 @@ class TestRESTFunctions(unittest.TestCase):
self.assertEqual(handlers[0][1], ResourceHandler)
self.assertEqual(handlers[1][0], "/foo/api/v1/(.*)/")
self.assertEqual(handlers[1][1], CollectionHandler)
+
+
+class TestNonGlobalRegistry(AsyncHTTPTestCase):
+ def setUp(self):
+ super().setUp()
+ Student.collection = OrderedDict()
+ Student.id = 0
+
+ def get_app(self):
+ self.registry = Registry()
+ self.registry.register(Teacher)
+ handlers = self.registry.api_handlers('/')
+ app = web.Application(handlers=handlers)
+ return app
+
+ def test_non_global_registry(self):
+ res = self.fetch("/api/v1/teachers/")
+ self.assertEqual(res.code, httpstatus.OK)
+ self.assertEqual(escape.json_decode(res.body),
+ {"items": []})
|
Support multiple registries
The current global registry is convenient for a single application, but it's a global object. This introduces major problems when testing. We need to be able to handle multiple registers, each one providing its own api.
|
0.0
|
5dd0c146089cc0a348a9798e2021447aa4ee311e
|
[
"tornadowebapi/tests/test_registry.py::TestRegistry::test_api_handlers",
"tornadowebapi/tests/test_webapi.py::TestNonGlobalRegistry::test_non_global_registry"
] |
[
"tornadowebapi/tests/test_registry.py::TestRegistry::test_authenticator",
"tornadowebapi/tests/test_registry.py::TestRegistry::test_instantiation",
"tornadowebapi/tests/test_webapi.py::TestREST::test_broken",
"tornadowebapi/tests/test_webapi.py::TestREST::test_create",
"tornadowebapi/tests/test_webapi.py::TestREST::test_delete",
"tornadowebapi/tests/test_webapi.py::TestREST::test_items",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_non_json",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_on_resource",
"tornadowebapi/tests/test_webapi.py::TestREST::test_retrieve",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unexistent_resource_type",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unprocessable",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupported_methods",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupports_collections",
"tornadowebapi/tests/test_webapi.py::TestREST::test_update",
"tornadowebapi/tests/test_webapi.py::TestRESTFunctions::test_api_handlers"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-09-21 13:35:16+00:00
|
bsd-3-clause
| 5,513 |
|
simphony__tornado-webapi-19
|
diff --git a/tornadowebapi/exceptions.py b/tornadowebapi/exceptions.py
index a5f3dd3..a2999b5 100644
--- a/tornadowebapi/exceptions.py
+++ b/tornadowebapi/exceptions.py
@@ -44,7 +44,7 @@ class NotFound(WebAPIException):
return None
-class BadRequest(WebAPIException):
+class BadRepresentation(WebAPIException):
"""Exception raised when the resource representation is
invalid or does not contain the appropriate keys.
Raise this exception in your handlers when the received
@@ -53,6 +53,10 @@ class BadRequest(WebAPIException):
http_code = httpstatus.BAD_REQUEST
+# Deprecated. Kept for compatibility
+BadRequest = BadRepresentation
+
+
class Unable(WebAPIException):
"""Exception raised when the request cannot be performed
for whatever reason that is not dependent on the client.
diff --git a/tox.ini b/tox.ini
index 1147235..debc066 100644
--- a/tox.ini
+++ b/tox.ini
@@ -1,2 +1,2 @@
[flake8]
-exclude = build/*,venv/*,doc/source/conf.py
+exclude = build/*,venv*/*,doc/source/conf.py
|
simphony/tornado-webapi
|
95ad403cd70109fb94727a119545567593d8203d
|
diff --git a/tornadowebapi/tests/test_webapi.py b/tornadowebapi/tests/test_webapi.py
index 3a3c8e5..e3f3b8b 100644
--- a/tornadowebapi/tests/test_webapi.py
+++ b/tornadowebapi/tests/test_webapi.py
@@ -74,19 +74,19 @@ class UnsupportAll(Resource):
class Unprocessable(Resource):
@gen.coroutine
def create(self, representation):
- raise exceptions.BadRequest("unprocessable", foo="bar")
+ raise exceptions.BadRepresentation("unprocessable", foo="bar")
@gen.coroutine
def update(self, identifier, representation):
- raise exceptions.BadRequest("unprocessable", foo="bar")
+ raise exceptions.BadRepresentation("unprocessable", foo="bar")
@gen.coroutine
def retrieve(self, identifier):
- raise exceptions.BadRequest("unprocessable", foo="bar")
+ raise exceptions.BadRepresentation("unprocessable", foo="bar")
@gen.coroutine
def items(self):
- raise exceptions.BadRequest("unprocessable", foo="bar")
+ raise exceptions.BadRepresentation("unprocessable", foo="bar")
class UnsupportsCollection(Resource):
@@ -328,7 +328,7 @@ class TestREST(AsyncHTTPTestCase):
self.assertEqual(res.code, httpstatus.BAD_REQUEST)
self.assertEqual(res.headers["Content-Type"], 'application/json')
self.assertEqual(escape.json_decode(res.body), {
- "type": "BadRequest",
+ "type": "BadRepresentation",
"message": "unprocessable",
"foo": "bar",
})
@@ -340,7 +340,7 @@ class TestREST(AsyncHTTPTestCase):
self.assertEqual(res.code, httpstatus.BAD_REQUEST)
self.assertEqual(res.headers["Content-Type"], 'application/json')
self.assertEqual(escape.json_decode(res.body), {
- "type": "BadRequest",
+ "type": "BadRepresentation",
"message": "unprocessable",
"foo": "bar",
})
@@ -353,7 +353,7 @@ class TestREST(AsyncHTTPTestCase):
self.assertEqual(res.code, httpstatus.BAD_REQUEST)
self.assertEqual(res.headers["Content-Type"], 'application/json')
self.assertEqual(escape.json_decode(res.body), {
- "type": "BadRequest",
+ "type": "BadRepresentation",
"message": "unprocessable",
"foo": "bar",
})
@@ -365,7 +365,7 @@ class TestREST(AsyncHTTPTestCase):
self.assertEqual(res.code, httpstatus.BAD_REQUEST)
self.assertEqual(res.headers["Content-Type"], 'application/json')
self.assertEqual(escape.json_decode(res.body), {
- "type": "BadRequest",
+ "type": "BadRepresentation",
"message": "unprocessable",
"foo": "bar",
})
@@ -378,7 +378,7 @@ class TestREST(AsyncHTTPTestCase):
self.assertEqual(res.code, httpstatus.BAD_REQUEST)
self.assertEqual(res.headers["Content-Type"], 'application/json')
self.assertEqual(escape.json_decode(res.body), {
- "type": "BadRequest",
+ "type": "BadRepresentation",
"message": "unprocessable",
"foo": "bar",
})
|
Change BadRequest error to BadRepresentation
BadRequest is HTTP. It's technically a bad representation that the CRUD methods handle, and the exception should reflect that.
Migrated from https://github.com/simphony/simphony-remote/issues/181
|
0.0
|
95ad403cd70109fb94727a119545567593d8203d
|
[
"tornadowebapi/tests/test_webapi.py::TestREST::test_unprocessable"
] |
[
"tornadowebapi/tests/test_webapi.py::TestREST::test_broken",
"tornadowebapi/tests/test_webapi.py::TestREST::test_create",
"tornadowebapi/tests/test_webapi.py::TestREST::test_delete",
"tornadowebapi/tests/test_webapi.py::TestREST::test_items",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_non_json",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_on_resource",
"tornadowebapi/tests/test_webapi.py::TestREST::test_retrieve",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unexistent_resource_type",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupported_methods",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupports_collections",
"tornadowebapi/tests/test_webapi.py::TestREST::test_update",
"tornadowebapi/tests/test_webapi.py::TestRESTFunctions::test_api_handlers",
"tornadowebapi/tests/test_webapi.py::TestNonGlobalRegistry::test_non_global_registry"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-10-03 12:47:29+00:00
|
bsd-3-clause
| 5,514 |
|
simphony__tornado-webapi-27
|
diff --git a/tornadowebapi/exceptions.py b/tornadowebapi/exceptions.py
index 60bd639..64a3a2e 100644
--- a/tornadowebapi/exceptions.py
+++ b/tornadowebapi/exceptions.py
@@ -44,6 +44,19 @@ class NotFound(WebAPIException):
return None
+class Exists(WebAPIException):
+ """Represents a case where the resource could not be created
+ because it already exists. This is generally raised in the
+ create() method if the resource has uniqueness constraints on
+ things other than the exposed id."""
+
+ http_code = httpstatus.CONFLICT
+
+ def representation(self):
+ """Exists does not have a representation, just an error status"""
+ return None
+
+
class BadRepresentation(WebAPIException):
"""Exception raised when the resource representation is
invalid or does not contain the appropriate keys.
diff --git a/tornadowebapi/handler.py b/tornadowebapi/handler.py
index 609a1c5..6b78df0 100644
--- a/tornadowebapi/handler.py
+++ b/tornadowebapi/handler.py
@@ -102,7 +102,7 @@ class CollectionHandler(BaseHandler):
self.set_status(httpstatus.OK)
# Need to convert into a dict for security issue tornado/1009
- self.write({"items": list(items)})
+ self.write({"items": [str(item) for item in items]})
self.flush()
@gen.coroutine
@@ -134,7 +134,7 @@ class CollectionHandler(BaseHandler):
raise web.HTTPError(httpstatus.INTERNAL_SERVER_ERROR)
location = with_end_slash(
- url_path_join(self.request.full_url(), resource_id))
+ url_path_join(self.request.full_url(), str(resource_id)))
self.set_status(httpstatus.CREATED)
self.set_header("Location", location)
|
simphony/tornado-webapi
|
a09944d66e3090ad4ab8ce20f8dd1f92a14855b3
|
diff --git a/tornadowebapi/tests/test_webapi.py b/tornadowebapi/tests/test_webapi.py
index e3f3b8b..3c707a1 100644
--- a/tornadowebapi/tests/test_webapi.py
+++ b/tornadowebapi/tests/test_webapi.py
@@ -26,8 +26,8 @@ class Student(Resource):
@gen.coroutine
def create(self, representation):
- id = str(type(self).id)
- self.collection[id] = representation
+ id = type(self).id
+ self.collection[str(id)] = representation
type(self).id += 1
return id
@@ -107,6 +107,12 @@ class Broken(Resource):
items = boom
+class AlreadyPresent(Resource):
+ @gen.coroutine
+ def create(self, *args):
+ raise exceptions.Exists()
+
+
class TestREST(AsyncHTTPTestCase):
def setUp(self):
super().setUp()
@@ -120,6 +126,7 @@ class TestREST(AsyncHTTPTestCase):
registry.registry.register(Unprocessable)
registry.registry.register(UnsupportsCollection)
registry.registry.register(Broken)
+ registry.registry.register(AlreadyPresent)
app = web.Application(handlers=handlers)
app.hub = mock.Mock()
return app
@@ -138,7 +145,7 @@ class TestREST(AsyncHTTPTestCase):
res = self.fetch("/api/v1/students/")
self.assertEqual(res.code, httpstatus.OK)
self.assertEqual(escape.json_decode(res.body),
- {"items": [1, 2, 3]})
+ {"items": ["1", "2", "3"]})
def test_create(self):
res = self.fetch(
@@ -402,6 +409,12 @@ class TestREST(AsyncHTTPTestCase):
method="GET")
self.assertEqual(res.code, httpstatus.METHOD_NOT_ALLOWED)
+ def test_exists(self):
+ collection_url = "/api/v1/alreadypresents/"
+
+ res = self.fetch(collection_url, method="POST", body="{}")
+ self.assertEqual(res.code, httpstatus.CONFLICT)
+
class TestRESTFunctions(unittest.TestCase):
def test_api_handlers(self):
|
Add Exists exception
In case we generate a resource that already exists for whatever reason
|
0.0
|
a09944d66e3090ad4ab8ce20f8dd1f92a14855b3
|
[
"tornadowebapi/tests/test_webapi.py::TestREST::test_create",
"tornadowebapi/tests/test_webapi.py::TestREST::test_delete",
"tornadowebapi/tests/test_webapi.py::TestREST::test_exists",
"tornadowebapi/tests/test_webapi.py::TestREST::test_items",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_on_resource",
"tornadowebapi/tests/test_webapi.py::TestREST::test_retrieve",
"tornadowebapi/tests/test_webapi.py::TestREST::test_update"
] |
[
"tornadowebapi/tests/test_webapi.py::TestREST::test_broken",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_non_json",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unexistent_resource_type",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unprocessable",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupported_methods",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupports_collections",
"tornadowebapi/tests/test_webapi.py::TestRESTFunctions::test_api_handlers",
"tornadowebapi/tests/test_webapi.py::TestNonGlobalRegistry::test_non_global_registry"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-10-21 16:27:15+00:00
|
bsd-3-clause
| 5,515 |
|
simphony__tornado-webapi-28
|
diff --git a/tornadowebapi/handler.py b/tornadowebapi/handler.py
index 609a1c5..6b78df0 100644
--- a/tornadowebapi/handler.py
+++ b/tornadowebapi/handler.py
@@ -102,7 +102,7 @@ class CollectionHandler(BaseHandler):
self.set_status(httpstatus.OK)
# Need to convert into a dict for security issue tornado/1009
- self.write({"items": list(items)})
+ self.write({"items": [str(item) for item in items]})
self.flush()
@gen.coroutine
@@ -134,7 +134,7 @@ class CollectionHandler(BaseHandler):
raise web.HTTPError(httpstatus.INTERNAL_SERVER_ERROR)
location = with_end_slash(
- url_path_join(self.request.full_url(), resource_id))
+ url_path_join(self.request.full_url(), str(resource_id)))
self.set_status(httpstatus.CREATED)
self.set_header("Location", location)
|
simphony/tornado-webapi
|
a09944d66e3090ad4ab8ce20f8dd1f92a14855b3
|
diff --git a/tornadowebapi/tests/test_webapi.py b/tornadowebapi/tests/test_webapi.py
index e3f3b8b..c67406d 100644
--- a/tornadowebapi/tests/test_webapi.py
+++ b/tornadowebapi/tests/test_webapi.py
@@ -26,8 +26,8 @@ class Student(Resource):
@gen.coroutine
def create(self, representation):
- id = str(type(self).id)
- self.collection[id] = representation
+ id = type(self).id
+ self.collection[str(id)] = representation
type(self).id += 1
return id
@@ -138,7 +138,7 @@ class TestREST(AsyncHTTPTestCase):
res = self.fetch("/api/v1/students/")
self.assertEqual(res.code, httpstatus.OK)
self.assertEqual(escape.json_decode(res.body),
- {"items": [1, 2, 3]})
+ {"items": ["1", "2", "3"]})
def test_create(self):
res = self.fetch(
|
Set the POST resource_id to string.
The id should be converted to string before generating the resource URL, this way we can return integers from the REST handler and still work fine.
|
0.0
|
a09944d66e3090ad4ab8ce20f8dd1f92a14855b3
|
[
"tornadowebapi/tests/test_webapi.py::TestREST::test_create",
"tornadowebapi/tests/test_webapi.py::TestREST::test_delete",
"tornadowebapi/tests/test_webapi.py::TestREST::test_items",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_on_resource",
"tornadowebapi/tests/test_webapi.py::TestREST::test_retrieve",
"tornadowebapi/tests/test_webapi.py::TestREST::test_update"
] |
[
"tornadowebapi/tests/test_webapi.py::TestREST::test_broken",
"tornadowebapi/tests/test_webapi.py::TestREST::test_post_non_json",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unexistent_resource_type",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unprocessable",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupported_methods",
"tornadowebapi/tests/test_webapi.py::TestREST::test_unsupports_collections",
"tornadowebapi/tests/test_webapi.py::TestRESTFunctions::test_api_handlers",
"tornadowebapi/tests/test_webapi.py::TestNonGlobalRegistry::test_non_global_registry"
] |
{
"failed_lite_validators": [
"has_short_problem_statement"
],
"has_test_patch": true,
"is_lite": false
}
|
2016-10-21 16:35:47+00:00
|
bsd-3-clause
| 5,516 |
|
simple-salesforce__simple-salesforce-242
|
diff --git a/README.rst b/README.rst
index e5722d6..2388168 100644
--- a/README.rst
+++ b/README.rst
@@ -15,7 +15,7 @@ You can find out more regarding the format of the results in the `Official Sales
.. _Official Salesforce.com REST API Documentation: http://www.salesforce.com/us/developer/docs/api_rest/index.htm
-Example
+Examples
-------
There are two ways to gain access to Salesforce
@@ -51,23 +51,23 @@ To login using IP-whitelist Organization ID method, simply use your Salesforce u
from simple_salesforce import Salesforce
sf = Salesforce(password='password', username='[email protected]', organizationId='OrgId')
-If you'd like to enter a sandbox, simply add ``sandbox=True`` to your ``Salesforce()`` call.
+If you'd like to enter a sandbox, simply add ``domain='test'`` to your ``Salesforce()`` call.
For example:
.. code-block:: python
from simple_salesforce import Salesforce
- sf = Salesforce(username='[email protected]', password='password', security_token='token', sandbox=True)
+ sf = Salesforce(username='[email protected]', password='password', security_token='token', domain='test')
-Note that specifying if you want to use a sandbox is only necessary if you are using the built-in username/password/security token authentication and is used exclusively during the authentication step.
+Note that specifying if you want to use a domain is only necessary if you are using the built-in username/password/security token authentication and is used exclusively during the authentication step.
If you'd like to keep track where your API calls are coming from, simply add ``client_id='My App'`` to your ``Salesforce()`` call.
.. code-block:: python
from simple_salesforce import Salesforce
- sf = Salesforce(username='[email protected]', password='password', security_token='token', sandbox=True, client_id='My App')
+ sf = Salesforce(username='[email protected]', password='password', security_token='token', client_id='My App', domain='test')
If you view the API calls in your Salesforce instance by Client Id it will be prefixed with ``RestForce/``, for example ``RestForce/My App``.
@@ -310,7 +310,7 @@ Additional Features
There are a few helper classes that are used internally and available to you.
-Included in them are ``SalesforceLogin``, which takes in a username, password, security token, optional boolean sandbox indicator and optional version and returns a tuple of ``(session_id, sf_instance)`` where `session_id` is the session ID to use for authentication to Salesforce and ``sf_instance`` is the domain of the instance of Salesforce to use for the session.
+Included in them are ``SalesforceLogin``, which takes in a username, password, security token, optional version and optional domain and returns a tuple of ``(session_id, sf_instance)`` where `session_id` is the session ID to use for authentication to Salesforce and ``sf_instance`` is the domain of the instance of Salesforce to use for the session.
For example, to use SalesforceLogin for a sandbox account you'd use:
@@ -321,9 +321,9 @@ For example, to use SalesforceLogin for a sandbox account you'd use:
username='[email protected]',
password='password',
security_token='token',
- sandbox=True)
+ domain='test')
-Simply leave off the final ``True`` if you do not wish to use a sandbox.
+Simply leave off the final domain if you do not wish to use a sandbox.
Also exposed is the ``SFType`` class, which is used internally by the ``__getattr__()`` method in the ``Salesforce()`` class and represents a specific SObject type. ``SFType`` requires ``object_name`` (i.e. ``Contact``), ``session_id`` (an authentication ID), ``sf_instance`` (hostname of your Salesforce instance), and an optional ``sf_version``
diff --git a/docs/user_guide/additional_features.rst b/docs/user_guide/additional_features.rst
index 15c3716..2b0f6f8 100644
--- a/docs/user_guide/additional_features.rst
+++ b/docs/user_guide/additional_features.rst
@@ -3,7 +3,7 @@ Additional Features
There are a few helper classes that are used internally and available to you.
-Included in them are ``SalesforceLogin``, which takes in a username, password, security token, optional boolean sandbox indicator and optional version and returns a tuple of ``(session_id, sf_instance)`` where `session_id` is the session ID to use for authentication to Salesforce and ``sf_instance`` is the domain of the instance of Salesforce to use for the session.
+Included in them are ``SalesforceLogin``, which takes in a username, password, security token, optional version and optional domain and returns a tuple of ``(session_id, sf_instance)`` where `session_id` is the session ID to use for authentication to Salesforce and ``sf_instance`` is the domain of the instance of Salesforce to use for the session.
For example, to use SalesforceLogin for a sandbox account you'd use:
@@ -14,9 +14,9 @@ For example, to use SalesforceLogin for a sandbox account you'd use:
username='[email protected]',
password='password',
security_token='token',
- sandbox=True)
+ domain='test')
-Simply leave off the final ``True`` if you do not wish to use a sandbox.
+Simply leave off the final domain if you do not wish to use a sandbox.
Also exposed is the ``SFType`` class, which is used internally by the ``__getattr__()`` method in the ``Salesforce()`` class and represents a specific SObject type. ``SFType`` requires ``object_name`` (i.e. ``Contact``), ``session_id`` (an authentication ID), ``sf_instance`` (hostname of your Salesforce instance), and an optional ``sf_version``
diff --git a/docs/user_guide/examples.rst b/docs/user_guide/examples.rst
index 13472bb..b24d6e4 100644
--- a/docs/user_guide/examples.rst
+++ b/docs/user_guide/examples.rst
@@ -34,23 +34,23 @@ To login using IP-whitelist Organization ID method, simply use your Salesforce u
from simple_salesforce import Salesforce
sf = Salesforce(password='password', username='[email protected]', organizationId='OrgId')
-If you'd like to enter a sandbox, simply add ``sandbox=True`` to your ``Salesforce()`` call.
+If you'd like to enter a sandbox, simply add ``domain='test'`` to your ``Salesforce()`` call.
For example:
.. code-block:: python
from simple_salesforce import Salesforce
- sf = Salesforce(username='[email protected]', password='password', security_token='token', sandbox=True)
+ sf = Salesforce(username='[email protected]', password='password', security_token='token', domain='test')
-Note that specifying if you want to use a sandbox is only necessary if you are using the built-in username/password/security token authentication and is used exclusively during the authentication step.
+Note that specifying if you want to use a domain is only necessary if you are using the built-in username/password/security token authentication and is used exclusively during the authentication step.
If you'd like to keep track where your API calls are coming from, simply add ``client_id='My App'`` to your ``Salesforce()`` call.
.. code-block:: python
from simple_salesforce import Salesforce
- sf = Salesforce(username='[email protected]', password='password', security_token='token', sandbox=True, client_id='My App')
+ sf = Salesforce(username='[email protected]', password='password', security_token='token', client_id='My App', domain='test')
If you view the API calls in your Salesforce instance by Client Id it will be prefixed with ``RestForce/``, for example ``RestForce/My App``.
diff --git a/simple_salesforce/api.py b/simple_salesforce/api.py
index 73c1afd..87af64f 100644
--- a/simple_salesforce/api.py
+++ b/simple_salesforce/api.py
@@ -59,8 +59,8 @@ class Salesforce(object):
def __init__(
self, username=None, password=None, security_token=None,
session_id=None, instance=None, instance_url=None,
- organizationId=None, sandbox=False, version=DEFAULT_API_VERSION,
- proxies=None, session=None, client_id=None):
+ organizationId=None, sandbox=None, version=DEFAULT_API_VERSION,
+ proxies=None, session=None, client_id=None, domain=None):
"""Initialize the instance with the given parameters.
Available kwargs
@@ -70,8 +70,11 @@ class Salesforce(object):
* username -- the Salesforce username to use for authentication
* password -- the password for the username
* security_token -- the security token for the username
- * sandbox -- True if you want to login to `test.salesforce.com`, False
- if you want to login to `login.salesforce.com`.
+ * sandbox -- DEPRECATED: Use domain instead.
+ * domain -- The domain to using for connecting to Salesforce. Use
+ common domains, such as 'login' or 'test', or
+ Salesforce My domain. If not used, will default to
+ 'login'.
Direct Session and Instance Access:
@@ -93,11 +96,26 @@ class Salesforce(object):
exposed by simple_salesforce.
"""
+ if (sandbox is not None) and (domain is not None):
+ raise ValueError("Both 'sandbox' and 'domain' arguments were "
+ "supplied. Either may be supplied, but not "
+ "both.")
+
+ if sandbox is not None:
+ warnings.warn("'sandbox' argument is deprecated. Use "
+ "'domain' instead. Overriding 'domain' "
+ "with 'sandbox' value.",
+ DeprecationWarning)
- # Determine if the user passed in the optional version and/or sandbox
- # kwargs
+ domain = 'test' if sandbox else 'login'
+
+ if domain is None:
+ domain = 'login'
+
+ # Determine if the user passed in the optional version and/or
+ # domain kwargs
self.sf_version = version
- self.sandbox = sandbox
+ self.domain = domain
self.session = session or requests.Session()
self.proxies = self.session.proxies
# override custom session proxies dance
@@ -122,10 +140,10 @@ class Salesforce(object):
username=username,
password=password,
security_token=security_token,
- sandbox=self.sandbox,
sf_version=self.sf_version,
proxies=self.proxies,
- client_id=client_id)
+ client_id=client_id,
+ domain=self.domain)
elif all(arg is not None for arg in (
session_id, instance or instance_url)):
@@ -149,20 +167,18 @@ class Salesforce(object):
username=username,
password=password,
organizationId=organizationId,
- sandbox=self.sandbox,
sf_version=self.sf_version,
proxies=self.proxies,
- client_id=client_id)
+ client_id=client_id,
+ domain=self.domain)
else:
raise TypeError(
'You must provide login information or an instance and token'
)
- if self.sandbox:
- self.auth_site = 'https://test.salesforce.com'
- else:
- self.auth_site = 'https://login.salesforce.com'
+ self.auth_site = ('https://{domain}.salesforce.com'
+ .format(domain=self.domain))
self.headers = {
'Content-Type': 'application/json',
@@ -272,7 +288,7 @@ class Salesforce(object):
return self.set_password(user, password)
# Generic Rest Function
- def restful(self, path, params, method='GET'):
+ def restful(self, path, params=None, method='GET', **kwargs):
"""Allows you to make a direct REST call if you know the path
Arguments:
@@ -281,10 +297,12 @@ class Salesforce(object):
Example: sobjects/User/ABC123/password'
* params: dict of parameters to pass to the path
* method: HTTP request method, default GET
+ * other arguments supported by requests.request (e.g. json, timeout)
"""
url = self.base_url + path
- result = self._call_salesforce(method, url, name=path, params=params)
+ result = self._call_salesforce(method, url, name=path, params=params,
+ **kwargs)
json_result = result.json(object_pairs_hook=OrderedDict)
if len(json_result) == 0:
diff --git a/simple_salesforce/login.py b/simple_salesforce/login.py
index 9106330..197f449 100644
--- a/simple_salesforce/login.py
+++ b/simple_salesforce/login.py
@@ -16,13 +16,14 @@ try:
except ImportError:
from cgi import escape
import requests
+import warnings
# pylint: disable=invalid-name,too-many-arguments,too-many-locals
def SalesforceLogin(
username=None, password=None, security_token=None,
- organizationId=None, sandbox=False, sf_version=DEFAULT_API_VERSION,
- proxies=None, session=None, client_id=None):
+ organizationId=None, sandbox=None, sf_version=DEFAULT_API_VERSION,
+ proxies=None, session=None, client_id=None, domain=None):
"""Return a tuple of `(session_id, sf_instance)` where `session_id` is the
session ID to use for authentication to Salesforce and `sf_instance` is
the domain of the instance of Salesforce to use for the session.
@@ -34,8 +35,7 @@ def SalesforceLogin(
* security_token -- the security token for the username
* organizationId -- the ID of your organization
NOTE: security_token an organizationId are mutually exclusive
- * sandbox -- True if you want to login to `test.salesforce.com`, False if
- you want to login to `login.salesforce.com`.
+ * sandbox -- DEPRECATED: Use domain instead.
* sf_version -- the version of the Salesforce API to use, for example
"27.0"
* proxies -- the optional map of scheme to proxy server
@@ -43,10 +43,28 @@ def SalesforceLogin(
enables the use of requets Session features not otherwise
exposed by simple_salesforce.
* client_id -- the ID of this client
+ * domain -- The domain to using for connecting to Salesforce. Use
+ common domains, such as 'login' or 'test', or
+ Salesforce My domain. If not used, will default to
+ 'login'.
"""
+ if (sandbox is not None) and (domain is not None):
+ raise ValueError("Both 'sandbox' and 'domain' arguments were "
+ "supplied. Either may be supplied, but not "
+ "both.")
+
+ if sandbox is not None:
+ warnings.warn("'sandbox' argument is deprecated. Use "
+ "'domain' instead. Overriding 'domain' "
+ "with 'sandbox' value.",
+ DeprecationWarning)
+
+ domain = 'test' if sandbox else 'login'
+
+ if domain is None:
+ domain = 'login'
soap_url = 'https://{domain}.salesforce.com/services/Soap/u/{sf_version}'
- domain = 'test' if sandbox else 'login'
if client_id:
client_id = "{prefix}/{app_name}".format(
@@ -55,7 +73,8 @@ def SalesforceLogin(
else:
client_id = DEFAULT_CLIENT_ID_PREFIX
- soap_url = soap_url.format(domain=domain, sf_version=sf_version)
+ soap_url = soap_url.format(domain=domain,
+ sf_version=sf_version)
# pylint: disable=E0012,deprecated-method
username = escape(username)
|
simple-salesforce/simple-salesforce
|
679900daafee2d2b17b7aee890014e5592bb1960
|
diff --git a/simple_salesforce/tests/test_login.py b/simple_salesforce/tests/test_login.py
index 4ab18cd..904ef18 100644
--- a/simple_salesforce/tests/test_login.py
+++ b/simple_salesforce/tests/test_login.py
@@ -32,6 +32,141 @@ class TestSalesforceLogin(unittest.TestCase):
self.mockrequest = request_patcher.start()
self.addCleanup(request_patcher.stop)
+ @responses.activate
+ def test_default_domain_success(self):
+ """Test default domain logic and login"""
+ responses.add(
+ responses.POST,
+ re.compile(r'^https://login.*$'),
+ body=tests.LOGIN_RESPONSE_SUCCESS,
+ status=http.OK
+ )
+ session_state = {
+ 'used': False,
+ }
+
+ # pylint: disable=missing-docstring,unused-argument
+ def on_response(*args, **kwargs):
+ session_state['used'] = True
+
+ session = requests.Session()
+ session.hooks = {
+ 'response': on_response,
+ }
+ session_id, instance = SalesforceLogin(
+ session=session,
+ username='[email protected]',
+ password='password',
+ security_token='token')
+ self.assertTrue(session_state['used'])
+ self.assertEqual(session_id, tests.SESSION_ID)
+ self.assertEqual(instance, urlparse(tests.SERVER_URL).netloc)
+
+ @responses.activate
+ def test_custom_domain_success(self):
+ """Test custom domain login"""
+ responses.add(
+ responses.POST,
+ re.compile(r'^https://testdomain.my.*$'),
+ body=tests.LOGIN_RESPONSE_SUCCESS,
+ status=http.OK
+ )
+ session_state = {
+ 'used': False,
+ }
+
+ # pylint: disable=missing-docstring,unused-argument
+ def on_response(*args, **kwargs):
+ session_state['used'] = True
+
+ session = requests.Session()
+ session.hooks = {
+ 'response': on_response,
+ }
+ session_id, instance = SalesforceLogin(
+ session=session,
+ username='[email protected]',
+ password='password',
+ security_token='token',
+ domain='testdomain.my')
+ self.assertTrue(session_state['used'])
+ self.assertEqual(session_id, tests.SESSION_ID)
+ self.assertEqual(instance, urlparse(tests.SERVER_URL).netloc)
+
+ @responses.activate
+ def test_deprecated_sandbox_disabled_success(self):
+ """Test sandbox argument set to False"""
+ responses.add(
+ responses.POST,
+ re.compile(r'^https://login.*$'),
+ body=tests.LOGIN_RESPONSE_SUCCESS,
+ status=http.OK
+ )
+ session_state = {
+ 'used': False,
+ }
+
+ # pylint: disable=missing-docstring,unused-argument
+ def on_response(*args, **kwargs):
+ session_state['used'] = True
+
+ session = requests.Session()
+ session.hooks = {
+ 'response': on_response,
+ }
+ session_id, instance = SalesforceLogin(
+ session=session,
+ username='[email protected]',
+ password='password',
+ security_token='token',
+ sandbox=False)
+ self.assertTrue(session_state['used'])
+ self.assertEqual(session_id, tests.SESSION_ID)
+ self.assertEqual(instance, urlparse(tests.SERVER_URL).netloc)
+
+ @responses.activate
+ def test_deprecated_sandbox_enabled_success(self):
+ """Test sandbox argument set to True"""
+ responses.add(
+ responses.POST,
+ re.compile(r'^https://test.*$'),
+ body=tests.LOGIN_RESPONSE_SUCCESS,
+ status=http.OK
+ )
+ session_state = {
+ 'used': False,
+ }
+
+ # pylint: disable=missing-docstring,unused-argument
+ def on_response(*args, **kwargs):
+ session_state['used'] = True
+
+ session = requests.Session()
+ session.hooks = {
+ 'response': on_response,
+ }
+ session_id, instance = SalesforceLogin(
+ session=session,
+ username='[email protected]',
+ password='password',
+ security_token='token',
+ sandbox=True)
+ self.assertTrue(session_state['used'])
+ self.assertEqual(session_id, tests.SESSION_ID)
+ self.assertEqual(instance, urlparse(tests.SERVER_URL).netloc)
+
+ def test_domain_sandbox_mutual_exclusion_failure(self):
+ """Test sandbox and domain mutual exclusion"""
+
+ with self.assertRaises(ValueError):
+ SalesforceLogin(
+ username='[email protected]',
+ password='password',
+ security_token='token',
+ domain='login',
+ sandbox=False
+ )
+
@responses.activate
def test_custom_session_success(self):
"""Test custom session"""
@@ -75,6 +210,6 @@ class TestSalesforceLogin(unittest.TestCase):
username='[email protected]',
password='password',
security_token='token',
- sandbox=True
+ domain='test'
)
self.assertTrue(self.mockrequest.post.called)
|
Salesforce.restful call is broken for POST
Specifying the method for `.restful` was recently added, however, the way the `params` end up getting passed down to the `requests` library needs to change depending on if it's a `GET` or `POST` request.
Currently, if I call `Salesforce.restful(url, {'foo': 1}, method='POST')`, it results in the payload getting passed in as query parameters rather than the body.
|
0.0
|
679900daafee2d2b17b7aee890014e5592bb1960
|
[
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_failure",
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_domain_sandbox_mutual_exclusion_failure",
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_custom_domain_success"
] |
[
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_deprecated_sandbox_enabled_success",
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_deprecated_sandbox_disabled_success",
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_default_domain_success",
"simple_salesforce/tests/test_login.py::TestSalesforceLogin::test_custom_session_success"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-03-26 09:16:33+00:00
|
apache-2.0
| 5,517 |
|
singingwolfboy__flask-dance-107
|
diff --git a/CHANGELOG.rst b/CHANGELOG.rst
index 35a7a20..840bc74 100644
--- a/CHANGELOG.rst
+++ b/CHANGELOG.rst
@@ -3,7 +3,9 @@ Change Log
unreleased
----------
-Nothing yet
+* Accessing the ``access_token`` property on an instance of the
+ ``OAuth2Session`` class will now query the token backend, instead of
+ checking the client on the instance.
0.13.0 (2017-11-12)
-------------------
diff --git a/flask_dance/consumer/requests.py b/flask_dance/consumer/requests.py
index 6c93abe..cd711a8 100644
--- a/flask_dance/consumer/requests.py
+++ b/flask_dance/consumer/requests.py
@@ -102,6 +102,10 @@ class OAuth2Session(BaseOAuth2Session):
return True
return False
+ @property
+ def access_token(self):
+ return self.token and self.token.get("access_token")
+
@property
def authorized(self):
""" This is the property used when you have a statement in your code
|
singingwolfboy/flask-dance
|
588509a9ea35b9121680d7cccdafedc44d81b741
|
diff --git a/tests/consumer/test_requests.py b/tests/consumer/test_requests.py
index 7cf3732..1476e87 100644
--- a/tests/consumer/test_requests.py
+++ b/tests/consumer/test_requests.py
@@ -7,11 +7,6 @@ from pkg_resources import parse_version
import requests_oauthlib
from flask_dance.consumer.requests import OAuth1Session, OAuth2Session
-requires_requests_oauthlib_05 = pytest.mark.skipif(
- parse_version(requests_oauthlib.__version__) < parse_version('0.5'),
- reason="requires requests_oauthlib at version 0.5 or higher",
-)
-
FAKE_OAUTH1_TOKEN = {
"oauth_token": "abcdefg",
@@ -24,14 +19,12 @@ FAKE_OAUTH2_TOKEN = {
}
-@requires_requests_oauthlib_05
def test_oauth1session_authorized():
bp = mock.Mock(token=FAKE_OAUTH1_TOKEN)
sess = OAuth1Session(client_key="ckey", client_secret="csec", blueprint=bp)
assert sess.authorized == True
-@requires_requests_oauthlib_05
def test_oauth1session_not_authorized():
bp = mock.Mock(token=None)
sess = OAuth1Session(client_key="ckey", client_secret="csec", blueprint=bp)
@@ -48,3 +41,27 @@ def test_oauth2session_not_authorized():
bp = mock.Mock(token=None)
sess = OAuth2Session(client_id="cid", blueprint=bp)
assert sess.authorized == False
+
+
+def test_oauth2session_token():
+ bp = mock.Mock(token=FAKE_OAUTH2_TOKEN)
+ sess = OAuth2Session(client_id="cid", blueprint=bp)
+ assert sess.token == FAKE_OAUTH2_TOKEN
+
+
+def test_oauth2session_unset_token():
+ bp = mock.Mock(token=None)
+ sess = OAuth2Session(client_id="cid", blueprint=bp)
+ assert sess.token == None
+
+
+def test_oauth2session_access_token():
+ bp = mock.Mock(token=FAKE_OAUTH2_TOKEN)
+ sess = OAuth2Session(client_id="cid", blueprint=bp)
+ assert sess.access_token == "deadbeef"
+
+
+def test_oauth2session_unset_access_token():
+ bp = mock.Mock(token=None)
+ sess = OAuth2Session(client_id="cid", blueprint=bp)
+ assert sess.access_token == None
|
The github.access_token return None even if the access token is available
A demonstration is in this app:
https://github.com/giocalitri/flask-dance-github/blob/gdm_test/github.py
After getting the token with the first endpoint, try to GET the second and you will have something like:
```
{
"access_token": null,
"token": {
"access_token": "XXXXXXXXXXXXXXXXXXXXXXXXXX",
"scope": [
""
],
"token_type": "bearer"
}
}
```
|
0.0
|
588509a9ea35b9121680d7cccdafedc44d81b741
|
[
"tests/consumer/test_requests.py::test_oauth2session_access_token"
] |
[
"tests/consumer/test_requests.py::test_oauth1session_authorized",
"tests/consumer/test_requests.py::test_oauth1session_not_authorized",
"tests/consumer/test_requests.py::test_oauth2session_token",
"tests/consumer/test_requests.py::test_oauth2session_authorized",
"tests/consumer/test_requests.py::test_oauth2session_unset_token",
"tests/consumer/test_requests.py::test_oauth2session_not_authorized",
"tests/consumer/test_requests.py::test_oauth2session_unset_access_token"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-02-10 11:10:39+00:00
|
mit
| 5,518 |
|
sirMackk__py3tftp-15
|
diff --git a/.github/workflows/actions.yml b/.github/workflows/actions.yml
new file mode 100644
index 0000000..8386936
--- /dev/null
+++ b/.github/workflows/actions.yml
@@ -0,0 +1,21 @@
+name: Run Python tests
+on: [push]
+jobs:
+ verify:
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-latest] # TODO: add 'windows-latest'
+ python-version: ['3.5'] # TODO: add '3.9'
+ steps:
+ - uses: actions/checkout@v2
+ - name: Setup Python
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+
+ # Install packages
+ - run: pip install coverage==4.1 flake8==3.5.0
+
+ # Run tests
+ - run: .github/workflows/test.sh
diff --git a/.travis/run.sh b/.github/workflows/test.sh
similarity index 95%
rename from .travis/run.sh
rename to .github/workflows/test.sh
index f549b1f..7f24792 100755
--- a/.travis/run.sh
+++ b/.github/workflows/test.sh
@@ -22,4 +22,4 @@ timeout=15
timeout -s SIGINT "${timeout}" python -m py3tftp --host 127.0.0.1 &> /dev/null &
sleep 1
-timeout -s SIGINT "${timeout}" python -m unittest discover -s tests/acceptance -p *_test.py
+timeout -s SIGINT "${timeout}" python -m unittest discover -s tests/acceptance -p *_test.py
\ No newline at end of file
diff --git a/.travis.yml b/.travis.yml
deleted file mode 100644
index 5be3b48..0000000
--- a/.travis.yml
+++ /dev/null
@@ -1,10 +0,0 @@
-language: python
-python:
- - "3.5"
-
-install: pip install coverage==4.1 flake8==3.5.0
-
-script: ./.travis/run.sh
-
-notifications:
- email: false
diff --git a/py3tftp/file_io.py b/py3tftp/file_io.py
index ff17b31..edaf72a 100644
--- a/py3tftp/file_io.py
+++ b/py3tftp/file_io.py
@@ -1,5 +1,5 @@
import os
-import os.path as opath
+from pathlib import Path
from .netascii import Netascii
@@ -7,11 +7,21 @@ def sanitize_fname(fname):
"""
Ensures that fname is a path under the current working directory.
"""
- root_dir = os.getcwd()
- return opath.join(
- bytes(root_dir, encoding='ascii'),
- opath.normpath(
- b'/' + fname).lstrip(b'/'))
+ # Remove root (/) and parent (..) directory references.
+ path = os.fsdecode(fname).lstrip('./')
+ abs_path = Path.cwd() / path
+
+ # Verify that the formed path is under the current working directory.
+ try:
+ abs_path.relative_to(Path.cwd())
+ except ValueError:
+ raise FileNotFoundError
+
+ # Verify that we are not accesing a reserved file.
+ if abs_path.is_reserved():
+ raise FileNotFoundError
+
+ return abs_path
class FileReader(object):
@@ -25,9 +35,9 @@ class FileReader(object):
"""
def __init__(self, fname, chunk_size=0, mode=None):
+ self._f = None
self.fname = sanitize_fname(fname)
self.chunk_size = chunk_size
- self._f = None
self._f = self._open_file()
self.finished = False
@@ -35,10 +45,10 @@ class FileReader(object):
self._f = Netascii(self._f)
def _open_file(self):
- return open(self.fname, 'rb')
+ return self.fname.open('rb')
def file_size(self):
- return os.stat(self.fname).st_size
+ return self.fname.stat().st_size
def read_chunk(self, size=None):
size = size or self.chunk_size
@@ -66,16 +76,16 @@ class FileWriter(object):
When it goes out of scope, it ensures the file is closed.
"""
def __init__(self, fname, chunk_size, mode=None):
+ self._f = None
self.fname = sanitize_fname(fname)
self.chunk_size = chunk_size
- self._f = None
self._f = self._open_file()
if mode == b'netascii':
self._f = Netascii(self._f)
def _open_file(self):
- return open(self.fname, 'xb')
+ return self.fname.open('xb')
def _flush(self):
if self._f:
|
sirMackk/py3tftp
|
396a5438a70866ad3b04394429af7876953dc2b0
|
diff --git a/tests/unit/file_util_test.py b/tests/unit/file_util_test.py
index 171e79e..7be4bf1 100644
--- a/tests/unit/file_util_test.py
+++ b/tests/unit/file_util_test.py
@@ -93,11 +93,8 @@ class FileWriterTest(t.TestCase):
class TestSanitizeFname(t.TestCase):
@classmethod
def setUpClass(cls):
- from os import getcwd
- from os.path import join as path_join
- cls.target_dir = bytes(
- path_join(getcwd(), 'tmp/testfile'),
- encoding='ascii')
+ from pathlib import Path
+ cls.target_dir = Path.cwd() / 'tmp/testfile'
def test_under_root_dir(self):
fname = b'/tmp/testfile'
|
local file not found error
I'm running `py3tftp` on Windows 7 64bit and Python 3.7.0
When I run `pytftp` in a folder containing the file `myip.py`, I expect it to be able to serve that file.
However, when I ran a tftp client (on the same machine) and requested this file, I got a `File Not Found` error. Am I doing something wrong? Also, how do I quit without having to kill the process in Task Manager? Ctrl+C etc doesn't work.
Server invocation:
```
Directory of c:\dev
12/16/2018 10:59 AM <DIR> .
12/16/2018 10:59 AM <DIR> ..
12/16/2018 10:43 AM 246 myip.py
12/16/2018 11:01 AM 334 myports.py
12/16/2018 11:01 AM <DIR> nppBackup
07/13/2009 10:20 PM <DIR> PerfLogs
2 File(s) 580 bytes
4 Dir(s) 60,627,619,840 bytes free
c:\dev>py3tftp -p 69 -v
2018-12-16 11:11:21,443 [INFO] Starting TFTP server on 0.0.0.0:69
2018-12-16 11:11:21,443 [DEBUG] Using selector: SelectSelector
2018-12-16 11:11:21,443 [INFO] Listening...
2018-12-16 11:11:25,819 [DEBUG] received: ☺myip.py octet tsize 0
2018-12-16 11:11:25,819 [DEBUG] Request: b'myip.py\x00octet\x00tsize\x000\x00'
2018-12-16 11:11:25,819 [DEBUG] b'tsize'
2018-12-16 11:11:25,819 [DEBUG] packet type: RRQ
2018-12-16 11:11:25,819 [DEBUG] Request: b'myip.py\x00octet\x00tsize\x000\x00'
2018-12-16 11:11:25,819 [DEBUG] b'tsize'
2018-12-16 11:11:25,819 [DEBUG] b'tsize'
2018-12-16 11:11:25,819 [INFO] Initiating RRQProtocol with ('127.0.0.1', 54144)
2018-12-16 11:11:25,819 [DEBUG] Initializing file transfer to ('127.0.0.1', 54144)
2018-12-16 11:11:25,819 [DEBUG] Set protocol attributes as {b'ack_timeout': 0.5, b'timeout': 3.0, b'blksize': 512, b'windowsize': 1, b'tsize': 0}
2018-12-16 11:11:25,819 [ERROR] File "b'myip.py'" does not exist!
2018-12-16 11:11:25,819 [DEBUG] opening pkt: <py3tftp.tftp_packet.TFTPErrPacket object at 0x00000000032E19B0>
2018-12-16 11:11:25,819 [INFO] Closing connection to ('127.0.0.1', 54144) due to error. "b'myip.py'" Not transmitted.
2018-12-16 11:11:25,819 [INFO] Connection to 127.0.0.1:54144 terminated
```
client invocation (using mobaxterm cygwin-like shell):
```
➤ tftp -g -r myip.py 0.0.0.0
tftp: using blksize 512
using server '0.0.0.0:69', remote_file 'myip.py', local_file 'myip.py'
sending 24 bytes
00 01 6d 79 69 70 2e 70 79 00 6f 63 74 65 74 00 74 73 69 7a 65 00 30 00
received 19 bytes: 0005 0001
tftp: server error: (1) File not found
```
|
0.0
|
396a5438a70866ad3b04394429af7876953dc2b0
|
[
"tests/unit/file_util_test.py::TestSanitizeFname::test_dir_traversal",
"tests/unit/file_util_test.py::TestSanitizeFname::test_under_root_dir"
] |
[
"tests/unit/file_util_test.py::FileReaderTest::test_fd_closed_after_reading",
"tests/unit/file_util_test.py::FileReaderTest::test_raises_doesnt_exist_exc",
"tests/unit/file_util_test.py::FileReaderTest::test_reads_file",
"tests/unit/file_util_test.py::FileReaderTest::test_reads_n_bytes",
"tests/unit/file_util_test.py::FileReaderTest::test_still_has_data_to_read",
"tests/unit/file_util_test.py::FileWriterTest::test_doesnt_overwrite_file_raises_exc",
"tests/unit/file_util_test.py::FileWriterTest::test_fd_closed_after_everything_written_out",
"tests/unit/file_util_test.py::FileWriterTest::test_write_chunk_returns_no_bytes_written",
"tests/unit/file_util_test.py::FileWriterTest::test_writes_full_file_to_disk"
] |
{
"failed_lite_validators": [
"has_added_files",
"has_removed_files",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2021-02-25 07:46:20+00:00
|
mit
| 5,519 |
|
ska-sa__aiokatcp-8
|
diff --git a/aiokatcp/core.py b/aiokatcp/core.py
index fe49fe8..d040270 100644
--- a/aiokatcp/core.py
+++ b/aiokatcp/core.py
@@ -30,6 +30,7 @@ import re
import io
import logging
import ipaddress
+import numbers
from typing import (
Match, Any, Callable, Union, Type, Iterable, Tuple,
Generic, TypeVar, Optional, cast)
@@ -178,17 +179,18 @@ class LogLevel(enum.IntEnum):
class TypeInfo(Generic[_T_contra]):
"""Type database entry. Refer to :func:`register_type` for details."""
- def __init__(self, name: str,
+ def __init__(self, type_: Type[_T_contra], name: str,
encode: Callable[[_T_contra], bytes],
decode: Callable[[Type[_T_contra], bytes], _T_contra],
default: Callable[[Type[_T_contra]], _T_contra]) -> None:
+ self.type_ = type_
self.name = name
self.encode = encode
self.decode = decode
self.default = default
-_types = {} # type: Dict[type, TypeInfo]
+_types = [] # type: List[TypeInfo]
def register_type(type_: Type[_T], name: str,
@@ -214,27 +216,28 @@ def register_type(type_: Type[_T], name: str,
Function to generate a default value of this type (used by the sensor
framework). It is given the actual derived class as the first argument.
"""
- if type_ in _types:
- raise ValueError('type {!r} is already registered')
if default is None:
default = _default_generic
- _types[type_] = TypeInfo(name, encode, decode, default)
+ for info in _types:
+ if info.type_ == type_:
+ raise ValueError('{} is already registered'.format(type_))
+ _types.append(TypeInfo(type_, name, encode, decode, default))
def get_type(type_: Type[_T]) -> TypeInfo[_T]:
"""Retrieve the type information previously registered with :func:`register_type`.
- It returns the type info corresponding to `type_` or the most specific subclass
- (according to method resolution order) for which there is a registration.
+ It returns the last type info registered that is a superclass of `type_` (according
+ to ``issubclass``.
Raises
------
TypeError
- if neither `type_` nor any of its bases is registered
+ if none of the registrations match `type_`
"""
- for t in type_.__mro__:
- if t in _types:
- return _types[t]
+ for info in reversed(_types):
+ if issubclass(type_, info.type_):
+ return info
raise TypeError('{} is not registered'.format(type_))
@@ -278,12 +281,14 @@ def _default_enum(cls: Type[_E]) -> _E:
return next(iter(cast(Iterable, cls)))
-register_type(int, 'integer',
- lambda value: str(value).encode('ascii'),
- lambda cls, raw: cls(raw.decode('ascii')))
-register_type(float, 'float',
- lambda value: repr(value).encode('ascii'),
- lambda cls, raw: cls(raw.decode('ascii')))
+# mypy doesn't allow an abstract class to be passed to Type[], hence the
+# suppressions.
+register_type(numbers.Real, 'float', # type: ignore
+ lambda value: repr(float(value)).encode('ascii'),
+ lambda cls, raw: cls(float(raw.decode('ascii')))) # type: ignore
+register_type(numbers.Integral, 'integer', # type: ignore
+ lambda value: str(int(value)).encode('ascii'),
+ lambda cls, raw: cls(int(raw.decode('ascii')))) # type: ignore
register_type(bool, 'boolean',
lambda value: b'1' if value else b'0', _decode_bool)
register_type(bytes, 'string',
@@ -300,7 +305,6 @@ register_type(Timestamp, 'timestamp',
lambda value: repr(value).encode('ascii'),
lambda cls, raw: cls(raw.decode('ascii')))
register_type(enum.Enum, 'discrete', _encode_enum, _decode_enum, _default_enum)
-register_type(enum.IntEnum, 'discrete', _encode_enum, _decode_enum, _default_enum)
def encode(value: Any) -> bytes:
|
ska-sa/aiokatcp
|
f5210d50ba01ff27f307f143ccbecaa2f53fa1cd
|
diff --git a/aiokatcp/test/test_core.py b/aiokatcp/test/test_core.py
index 5d6458d..b9c6004 100644
--- a/aiokatcp/test/test_core.py
+++ b/aiokatcp/test/test_core.py
@@ -28,6 +28,7 @@
import enum
import json
import ipaddress
+from fractions import Fraction
import unittest
import unittest.mock
from typing import Union
@@ -43,6 +44,11 @@ class MyEnum(enum.Enum):
TWO_FACE = 3
+class MyIntEnum(enum.IntEnum):
+ A = 1
+ B = 2
+
+
class OverrideEnum(enum.Enum):
BATMAN = b'cheese'
JOKER = b'carrot'
@@ -119,11 +125,13 @@ class TestEncodeDecode(unittest.TestCase):
(bool, False, b'0'),
(float, -123.5, b'-123.5'),
(float, 1e+20, b'1e+20'),
+ (Fraction, Fraction(5, 4), b'1.25'),
(Timestamp, Timestamp(123.5), b'123.5'),
(TimestampOrNow, Timestamp(123.5), b'123.5'),
(TimestampOrNow, Now.NOW, b'now'),
(Address, Address(ipaddress.ip_address('127.0.0.1')), b'127.0.0.1'),
(MyEnum, MyEnum.TWO_FACE, b'two-face'),
+ (MyIntEnum, MyIntEnum.A, b'a'),
(OverrideEnum, OverrideEnum.JOKER, b'carrot')
]
@@ -132,10 +140,12 @@ class TestEncodeDecode(unittest.TestCase):
(bool, b'2'),
(int, b'123.0'),
(float, b''),
+ (Fraction, b'5/4'),
(Address, b'[127.0.0.1]'),
(MyEnum, b'two_face'),
(MyEnum, b'TWO-FACE'),
(MyEnum, b'bad-value'),
+ (MyIntEnum, b'z'),
(OverrideEnum, b'joker'),
(TimestampOrNow, b'later'),
(Union[int, float], b'123')
@@ -158,7 +168,7 @@ class TestEncodeDecode(unittest.TestCase):
msg='{} should not be valid for {}'.format(value, type_)):
decode(type_, value)
- @unittest.mock.patch.dict('aiokatcp.core._types') # type: ignore
+ @unittest.mock.patch('aiokatcp.core._types', []) # type: ignore
def test_register_type(self) -> None:
register_type(
dict, 'string',
|
Improve support for integer-like types
The type registration system currently only uses `__mro__`, which means it doesn't work with ABCs like `numbers.Integral`. In Python 3, types like `numpy.int64` don't inherit from `int`, so they currently crash if set as sensor values or otherwise used in katcp messages.
One approach is to change the type registration system to work with `isinstance` and to register ABCs instead of concrete classes. That needs some investigation because mypy doesn't work well with the `numbers` ABCs.
An alternative is to modify the sensor class to cast value updates to the sensor's registered type. That would fix the problem of setting a sensor to a numpy integer (but with the side effect that reading back the value gives you a different type of object from what you set), but wouldn't help for other messages.
|
0.0
|
f5210d50ba01ff27f307f143ccbecaa2f53fa1cd
|
[
"aiokatcp/test/test_core.py::TestEncodeDecode::test_encode",
"aiokatcp/test/test_core.py::TestEncodeDecode::test_register_type"
] |
[
"aiokatcp/test/test_core.py::TestAddress::test_bytes",
"aiokatcp/test/test_core.py::TestAddress::test_eq",
"aiokatcp/test/test_core.py::TestAddress::test_getters",
"aiokatcp/test/test_core.py::TestAddress::test_hash",
"aiokatcp/test/test_core.py::TestAddress::test_not_eq",
"aiokatcp/test/test_core.py::TestAddress::test_parse",
"aiokatcp/test/test_core.py::TestAddress::test_repr",
"aiokatcp/test/test_core.py::TestAddress::test_str",
"aiokatcp/test/test_core.py::TestEncodeDecode::test_default",
"aiokatcp/test/test_core.py::TestEncodeDecode::test_unknown_class",
"aiokatcp/test/test_core.py::TestMessage::test_bytes",
"aiokatcp/test/test_core.py::TestMessage::test_bytes_mid",
"aiokatcp/test/test_core.py::TestMessage::test_compare",
"aiokatcp/test/test_core.py::TestMessage::test_inform",
"aiokatcp/test/test_core.py::TestMessage::test_inform_reply",
"aiokatcp/test/test_core.py::TestMessage::test_init_bad_mid",
"aiokatcp/test/test_core.py::TestMessage::test_init_bad_name",
"aiokatcp/test/test_core.py::TestMessage::test_init_basic",
"aiokatcp/test/test_core.py::TestMessage::test_init_mid",
"aiokatcp/test/test_core.py::TestMessage::test_parse",
"aiokatcp/test/test_core.py::TestMessage::test_parse_bad_escape",
"aiokatcp/test/test_core.py::TestMessage::test_parse_bad_mid",
"aiokatcp/test/test_core.py::TestMessage::test_parse_bad_name",
"aiokatcp/test/test_core.py::TestMessage::test_parse_bad_type",
"aiokatcp/test/test_core.py::TestMessage::test_parse_cr",
"aiokatcp/test/test_core.py::TestMessage::test_parse_empty",
"aiokatcp/test/test_core.py::TestMessage::test_parse_leading_whitespace",
"aiokatcp/test/test_core.py::TestMessage::test_parse_mid",
"aiokatcp/test/test_core.py::TestMessage::test_parse_no_newline",
"aiokatcp/test/test_core.py::TestMessage::test_parse_out_of_range_mid",
"aiokatcp/test/test_core.py::TestMessage::test_parse_trailing_whitespace",
"aiokatcp/test/test_core.py::TestMessage::test_parse_unescaped",
"aiokatcp/test/test_core.py::TestMessage::test_reply",
"aiokatcp/test/test_core.py::TestMessage::test_reply_ok",
"aiokatcp/test/test_core.py::TestMessage::test_reply_to_request",
"aiokatcp/test/test_core.py::TestMessage::test_repr",
"aiokatcp/test/test_core.py::TestMessage::test_request"
] |
{
"failed_lite_validators": [
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-07-10 12:56:21+00:00
|
bsd-3-clause
| 5,520 |
|
ska-sa__fakenewsredis-3
|
diff --git a/fakenewsredis.py b/fakenewsredis.py
index 6e8fdcc..79930f1 100644
--- a/fakenewsredis.py
+++ b/fakenewsredis.py
@@ -142,6 +142,18 @@ class _StrKeyDict(MutableMapping):
value = self._dict[to_bytes(key)][0]
self._dict[to_bytes(key)] = (value, timestamp)
+ def setx(self, key, value, src=None):
+ """Set a value, keeping the existing expiry time if any. If
+ `src` is specified, it is used as the source of the expiry
+ """
+ if src is None:
+ src = key
+ try:
+ _, expiration = self._dict[to_bytes(src)]
+ except KeyError:
+ expiration = None
+ self._dict[to_bytes(key)] = (value, expiration)
+
def persist(self, key):
try:
value, _ = self._dict[to_bytes(key)]
@@ -294,11 +306,12 @@ class FakeStrictRedis(object):
def decr(self, name, amount=1):
try:
- self._db[name] = to_bytes(int(self._get_string(name, b'0')) - amount)
+ value = int(self._get_string(name, b'0')) - amount
+ self._db.setx(name, to_bytes(value))
except (TypeError, ValueError):
raise redis.ResponseError("value is not an integer or out of "
"range.")
- return int(self._db[name])
+ return value
def exists(self, name):
return name in self._db
@@ -381,11 +394,12 @@ class FakeStrictRedis(object):
if not isinstance(amount, int):
raise redis.ResponseError("value is not an integer or out "
"of range.")
- self._db[name] = to_bytes(int(self._get_string(name, b'0')) + amount)
+ value = int(self._get_string(name, b'0')) + amount
+ self._db.setx(name, to_bytes(value))
except (TypeError, ValueError):
raise redis.ResponseError("value is not an integer or out of "
"range.")
- return int(self._db[name])
+ return value
def incrby(self, name, amount=1):
"""
@@ -395,10 +409,11 @@ class FakeStrictRedis(object):
def incrbyfloat(self, name, amount=1.0):
try:
- self._db[name] = to_bytes(float(self._get_string(name, b'0')) + amount)
+ value = float(self._get_string(name, b'0')) + amount
+ self._db.setx(name, to_bytes(value))
except (TypeError, ValueError):
raise redis.ResponseError("value is not a valid float.")
- return float(self._db[name])
+ return value
def keys(self, pattern=None):
return [key for key in self._db
@@ -457,7 +472,7 @@ class FakeStrictRedis(object):
value = self._db[src]
except KeyError:
raise redis.ResponseError("No such key: %s" % src)
- self._db[dst] = value
+ self._db.setx(dst, value, src=src)
del self._db[src]
return True
@@ -512,7 +527,7 @@ class FakeStrictRedis(object):
new_byte = byte_to_int(val[byte]) ^ (1 << actual_bitoffset)
reconstructed = bytearray(val)
reconstructed[byte] = new_byte
- self._db[name] = bytes(reconstructed)
+ self._db.setx(name, bytes(reconstructed))
def setex(self, name, time, value):
if isinstance(time, timedelta):
@@ -541,7 +556,7 @@ class FakeStrictRedis(object):
if len(val) < offset:
val += b'\x00' * (offset - len(val))
val = val[0:offset] + to_bytes(value) + val[offset+len(value):]
- self.set(name, val)
+ self._db.setx(name, val)
return len(val)
def strlen(self, name):
@@ -800,7 +815,7 @@ class FakeStrictRedis(object):
end = None
else:
end += 1
- self._db[name] = val[start:end]
+ self._db.setx(name, val[start:end])
return True
def lindex(self, name, index):
@@ -843,7 +858,7 @@ class FakeStrictRedis(object):
if el is not None:
el = to_bytes(el)
dst_list.insert(0, el)
- self._db[dst] = dst_list
+ self._db.setx(dst, dst_list)
return el
def blpop(self, keys, timeout=0):
|
ska-sa/fakenewsredis
|
771b41c2fb00ae84508e5a5df8f8b578b6650ac1
|
diff --git a/test_fakenewsredis.py b/test_fakenewsredis.py
index d60751f..064d24f 100644
--- a/test_fakenewsredis.py
+++ b/test_fakenewsredis.py
@@ -201,6 +201,11 @@ class TestFakeStrictRedis(unittest.TestCase):
with self.assertRaises(redis.ResponseError):
self.redis.setbit('foo', 0, 1)
+ def test_setbit_expiry(self):
+ self.redis.set('foo', b'0x00', ex=10)
+ self.redis.setbit('foo', 1, 1)
+ self.assertGreater(self.redis.ttl('foo'), 0)
+
def test_bitcount(self):
self.redis.delete('foo')
self.assertEqual(self.redis.bitcount('foo'), 0)
@@ -296,6 +301,11 @@ class TestFakeStrictRedis(unittest.TestCase):
self.assertEqual(self.redis.incr('foo', 5), 20)
self.assertEqual(self.redis.get('foo'), b'20')
+ def test_incr_expiry(self):
+ self.redis.set('foo', 15, ex=10)
+ self.redis.incr('foo', 5)
+ self.assertGreater(self.redis.ttl('foo'), 0)
+
def test_incr_bad_type(self):
self.redis.set('foo', 'bar')
with self.assertRaises(redis.ResponseError):
@@ -326,6 +336,11 @@ class TestFakeStrictRedis(unittest.TestCase):
self.assertEqual(self.redis.incrbyfloat('foo', 1.0), 1.0)
self.assertEqual(self.redis.incrbyfloat('foo', 1.0), 2.0)
+ def test_incrbyfloat_expiry(self):
+ self.redis.set('foo', 1.5, ex=10)
+ self.redis.incrbyfloat('foo', 2.5)
+ self.assertGreater(self.redis.ttl('foo'), 0)
+
def test_incrbyfloat_bad_type(self):
self.redis.set('foo', 'bar')
with self.assertRaisesRegexp(redis.ResponseError, 'not a valid float'):
@@ -348,6 +363,11 @@ class TestFakeStrictRedis(unittest.TestCase):
self.redis.decr('foo')
self.assertEqual(self.redis.get('foo'), b'-1')
+ def test_decr_expiry(self):
+ self.redis.set('foo', 10, ex=10)
+ self.redis.decr('foo', 5)
+ self.assertGreater(self.redis.ttl('foo'), 0)
+
def test_decr_badtype(self):
self.redis.set('foo', 'bar')
with self.assertRaises(redis.ResponseError):
@@ -389,6 +409,12 @@ class TestFakeStrictRedis(unittest.TestCase):
self.assertEqual(self.redis.get('foo'), b'unique value')
self.assertEqual(self.redis.get('bar'), b'unique value2')
+ def test_rename_expiry(self):
+ self.redis.set('foo', 'value1', ex=10)
+ self.redis.set('bar', 'value2')
+ self.redis.rename('foo', 'bar')
+ self.assertGreater(self.redis.ttl('bar'), 0)
+
def test_mget(self):
self.redis.set('foo', 'one')
self.redis.set('bar', 'two')
@@ -743,6 +769,12 @@ class TestFakeStrictRedis(unittest.TestCase):
def test_ltrim_with_non_existent_key(self):
self.assertTrue(self.redis.ltrim('foo', 0, -1))
+ def test_ltrim_expiry(self):
+ self.redis.rpush('foo', 'one', 'two', 'three')
+ self.redis.expire('foo', 10)
+ self.redis.ltrim('foo', 1, 2)
+ self.assertGreater(self.redis.ttl('foo'), 0)
+
def test_ltrim_wrong_type(self):
self.redis.set('foo', 'bar')
with self.assertRaises(redis.ResponseError):
@@ -834,6 +866,13 @@ class TestFakeStrictRedis(unittest.TestCase):
self.assertEqual(self.redis.rpoplpush('foo', 'bar'), b'one')
self.assertEqual(self.redis.rpop('bar'), b'one')
+ def test_rpoplpush_expiry(self):
+ self.redis.rpush('foo', 'one')
+ self.redis.rpush('bar', 'two')
+ self.redis.expire('bar', 10)
+ self.redis.rpoplpush('foo', 'bar')
+ self.assertGreater(self.redis.ttl('bar'), 0)
+
def test_rpoplpush_wrong_type(self):
self.redis.set('foo', 'bar')
self.redis.rpush('list', 'element')
@@ -1273,6 +1312,11 @@ class TestFakeStrictRedis(unittest.TestCase):
self.assertEqual(self.redis.setrange('bar', 2, 'test'), 6)
self.assertEqual(self.redis.get('bar'), b'\x00\x00test')
+ def test_setrange_expiry(self):
+ self.redis.set('foo', 'test', ex=10)
+ self.redis.setrange('foo', 1, 'aste')
+ self.assertGreater(self.redis.ttl('foo'), 0)
+
def test_sinter(self):
self.redis.sadd('foo', 'member1')
self.redis.sadd('foo', 'member2')
|
Mutating operations incorrectly clear expiry
A number of operations modify an existing value, then assign back to `self._db`, which has the side-effect of clearing the expiry time. According to the redis documentation, only operations that completely replace a key (rather than modifying it) clear the expiry. I haven't written any tests yet, but looking at the code, it is probably at least
- decr, incr, incrby, incrbyfloat
- setbit
- ltrim
- rpoplpush
Some other operations where I'm not sure what redis will do
- getset
- rename, renamenx
|
0.0
|
771b41c2fb00ae84508e5a5df8f8b578b6650ac1
|
[
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setbit_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setrange_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setbit_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setrange_expiry"
] |
[
"test_fakenewsredis.py::TestFakeStrictRedis::test_append",
"test_fakenewsredis.py::TestFakeStrictRedis::test_append_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_append_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_basic_sort",
"test_fakenewsredis.py::TestFakeStrictRedis::test_bitcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_bitcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blocking_operations_when_empty",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_allow_single_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_single_list",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpop_single_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpoplpush_multi_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_contains",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr_badtype",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr_newkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete_expire",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete_multiple",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_echo",
"test_fakenewsredis.py::TestFakeStrictRedis::test_empty_sort",
"test_fakenewsredis.py::TestFakeStrictRedis::test_exists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_flushdb",
"test_fakenewsredis.py::TestFakeStrictRedis::test_foo",
"test_fakenewsredis.py::TestFakeStrictRedis::test_get_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_get_invalid_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_get_with_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getbit",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getset_exists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getset_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hdel",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hdel_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hexists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hexists_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall_empty_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall_with_tuples",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_on_non_float_value_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_with_non_float_amount_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hkeys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hkeys_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hlen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmget_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmset_convert_values",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmset_does_not_mutate_input_params",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmsetset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmsetset_empty_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hscan",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hset_then_hget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hset_update",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hsetnx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hvals",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hvals_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_by",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_followed_by_mget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_followed_by_mget_returns_strings",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_with_float",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_with_noexist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_key_patterns",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lindex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lindex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_after",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_before",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_no_pivot",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_llen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_llen_no_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_llen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpop",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpop_empty_list",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_key_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_then_lrange_all",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_then_lrange_portion",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_with_nonstr_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpushx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_positive_count",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lset_index_out_of_range",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim_with_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mget_mixed_types",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mget_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_move_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mset_accepts_kwargs",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mset_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_msetnx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_multidb",
"test_fakenewsredis.py::TestFakeStrictRedis::test_multiple_bits_set",
"test_fakenewsredis.py::TestFakeStrictRedis::test_multiple_successful_watch_calls",
"test_fakenewsredis.py::TestFakeStrictRedis::test_persist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pfadd",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pfcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pfmerge",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ping",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_ignore_errors",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_non_transactional",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_proxies_to_redis_object",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_raises_when_watched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_succeeds_despite_unwatched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_succeeds_when_watching_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_transaction_shortcut",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_transaction_value_from_callable",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_binary_message",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_ignore_sub_messages_listen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_listen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_psubscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_punsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_subscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_unsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename_does_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_renamenx_doesnt_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpop",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_to_nonexistent_destination",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_then_lrange_with_nested_list1",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_then_lrange_with_nested_list2",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_then_lrange_with_nested_list3",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpushx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sadd",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sadd_as_str_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_non_ascii_chars_as_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_non_ascii_chars_as_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_unicode_type_as_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_unicode_type_as_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_all_in_single_call",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_iter_multiple_pages",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_iter_multiple_pages_with_match",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_iter_single_page",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_multiple_pages_with_count_arg",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_single",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scard",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff_empty",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff_one_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiffstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_None_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_ex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_existing_key_persists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_float_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_px",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_px_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_then_get",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_using_timedelta_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setbits_and_getkeys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_using_float",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setitem_getitem",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setnx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setrange",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinter",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinter_bytes_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinter_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinterstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sismember",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sismember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smembers",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smembers_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smove",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smove_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_alpha",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_descending",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_offset_norange",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_offset_range",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_offset_range_and_desc",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_with_large_range",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_by_and_get_option",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_hash",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_set",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_store_option",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_spop",
"test_fakenewsredis.py::TestFakeStrictRedis::test_spop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srandmember",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srandmember_number",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srandmember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srem",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sscan",
"test_fakenewsredis.py::TestFakeStrictRedis::test_strlen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_strlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_substr",
"test_fakenewsredis.py::TestFakeStrictRedis::test_substr_noexist_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_substr_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sunion",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sunion_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sunionstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_unset_bits",
"test_fakenewsredis.py::TestFakeStrictRedis::test_watch_state_is_cleared_across_multiple_watches",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_errors",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_multiple",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_uses_str",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcard",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcard_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcount_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zincrby",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_max",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_onekey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zlexcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zlexcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_descending",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_descending_with_scores",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_same_score",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_with_positive_indices",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_slice",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_withscores",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebysore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrank",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem_numeric_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex_badkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank_negative_indices",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank_out_of_bounds",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrange",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrange_sorted_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrank",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zscore_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_max",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_min",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_sum",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_weights",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_wrong_type",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_expire_immediately_with_millisecond_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_not_handle_floating_point_values",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_lock",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_postitive_count",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_return_falsey_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_return_truthy_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_psetex_expire_value",
"test_fakenewsredis.py::TestFakeRedis::test_psetex_expire_value_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_pttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_pttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_set_ex_should_expire_value",
"test_fakenewsredis.py::TestFakeRedis::test_set_nx_doesnt_set_value_twice",
"test_fakenewsredis.py::TestFakeRedis::test_set_px_should_expire_value",
"test_fakenewsredis.py::TestFakeRedis::test_set_xx_set_value_when_exists",
"test_fakenewsredis.py::TestFakeRedis::test_setex",
"test_fakenewsredis.py::TestFakeRedis::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_ttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_ttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_ttls_should_always_be_long",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_deprecated",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_missing_required_params",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_with_multiple_keypairs",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_with_name_is_non_string",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_with_single_keypair",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_append",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_append_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_append_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_basic_sort",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_bitcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_bitcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blocking_operations_when_empty",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_allow_single_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_single_list",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpop_single_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpoplpush_multi_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_contains",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr_badtype",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr_newkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete_expire",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete_multiple",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_echo",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_empty_sort",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_exists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_flushdb",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_foo",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_get_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_get_invalid_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_get_with_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getbit",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getset_exists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getset_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hdel",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hdel_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hexists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hexists_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall_empty_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall_with_tuples",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_on_non_float_value_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_with_non_float_amount_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hkeys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hkeys_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hlen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmget_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmset_convert_values",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmset_does_not_mutate_input_params",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmsetset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmsetset_empty_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hscan",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hset_then_hget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hset_update",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hsetnx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hvals",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hvals_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_by",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_followed_by_mget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_followed_by_mget_returns_strings",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_with_float",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_with_noexist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_key_patterns",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lindex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lindex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_after",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_before",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_no_pivot",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_llen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_llen_no_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_llen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpop",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpop_empty_list",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_key_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_then_lrange_all",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_then_lrange_portion",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_with_nonstr_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpushx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_positive_count",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lset_index_out_of_range",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim_with_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mget_mixed_types",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mget_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_move_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mset_accepts_kwargs",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mset_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_msetnx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_multidb",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_multiple_bits_set",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_multiple_successful_watch_calls",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_persist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pfadd",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pfcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pfmerge",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ping",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_ignore_errors",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_non_transactional",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_proxies_to_redis_object",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_raises_when_watched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_succeeds_despite_unwatched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_succeeds_when_watching_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_transaction_shortcut",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_transaction_value_from_callable",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_binary_message",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_ignore_sub_messages_listen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_listen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_psubscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_punsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_subscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_unsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename_does_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_renamenx_doesnt_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpop",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_to_nonexistent_destination",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_then_lrange_with_nested_list1",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_then_lrange_with_nested_list2",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_then_lrange_with_nested_list3",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpushx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sadd",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sadd_as_str_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_non_ascii_chars_as_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_non_ascii_chars_as_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_unicode_type_as_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_unicode_type_as_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_all_in_single_call",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_iter_multiple_pages",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_iter_multiple_pages_with_match",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_iter_single_page",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_multiple_pages_with_count_arg",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_single",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scard",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff_empty",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff_one_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiffstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_None_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_ex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_existing_key_persists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_float_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_px",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_px_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_then_get",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_using_timedelta_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setbits_and_getkeys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_using_float",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setitem_getitem",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setnx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setrange",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinter",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinter_bytes_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinter_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinterstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sismember",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sismember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smembers",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smembers_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smove",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smove_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_alpha",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_descending",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_offset_norange",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_offset_range",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_offset_range_and_desc",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_with_large_range",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_by_and_get_option",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_hash",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_set",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_store_option",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_spop",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_spop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srandmember",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srandmember_number",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srandmember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srem",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sscan",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_strlen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_strlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_substr",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_substr_noexist_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_substr_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sunion",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sunion_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sunionstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_unset_bits",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_watch_state_is_cleared_across_multiple_watches",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_errors",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_multiple",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_uses_str",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcard",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcard_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcount_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zincrby",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_max",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_onekey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zlexcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zlexcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_descending",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_descending_with_scores",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_same_score",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_with_positive_indices",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_slice",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_withscores",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebysore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrank",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem_numeric_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex_badkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank_negative_indices",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank_out_of_bounds",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrange",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrange_sorted_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrank",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zscore_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_max",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_min",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_sum",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_weights",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_wrong_type",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_expire_immediately_with_millisecond_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_not_handle_floating_point_values",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lock",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_postitive_count",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_return_falsey_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_return_truthy_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_psetex_expire_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_psetex_expire_value_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_ex_should_expire_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_nx_doesnt_set_value_twice",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_px_should_expire_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_xx_set_value_when_exists",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_setex",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_ttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_ttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_ttls_should_always_be_long",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_deprecated",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_missing_required_params",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_with_multiple_keypairs",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_with_name_is_non_string",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_with_single_keypair",
"test_fakenewsredis.py::TestInitArgs::test_can_accept_any_kwargs",
"test_fakenewsredis.py::TestInitArgs::test_can_pass_through_extra_args",
"test_fakenewsredis.py::TestInitArgs::test_from_url",
"test_fakenewsredis.py::TestInitArgs::test_from_url_db_value_error",
"test_fakenewsredis.py::TestInitArgs::test_from_url_with_db_arg",
"test_fakenewsredis.py::TestImportation::test_searches_for_c_stdlib_and_raises_if_missing"
] |
{
"failed_lite_validators": [
"has_many_hunks",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2017-11-12 19:19:04+00:00
|
bsd-3-clause
| 5,521 |
|
ska-sa__fakenewsredis-8
|
diff --git a/fakenewsredis.py b/fakenewsredis.py
index ce1e1ed..a104150 100644
--- a/fakenewsredis.py
+++ b/fakenewsredis.py
@@ -510,26 +510,25 @@ class FakeStrictRedis(object):
def set(self, name, value, ex=None, px=None, nx=False, xx=False):
if (not nx and not xx) or (nx and self._db.get(name, None) is None) \
or (xx and not self._db.get(name, None) is None):
- self._db[name] = to_bytes(value)
if ex is not None:
if isinstance(ex, timedelta):
ex = ex.seconds + ex.days * 24 * 3600
- if ex < 0:
+ if ex <= 0:
raise ResponseError('invalid expire time in SETEX')
- if ex > 0:
- self._db.expire(name, datetime.now() +
- timedelta(seconds=ex))
+ self._db[name] = to_bytes(value)
+ self._db.expire(name, datetime.now() +
+ timedelta(seconds=ex))
elif px is not None:
if isinstance(px, timedelta):
ms = int(px.microseconds / 1000)
px = (px.seconds + px.days * 24 * 3600) * 1000 + ms
- if px < 0:
+ if px <= 0:
raise ResponseError('invalid expire time in SETEX')
- if px > 0:
- self._db.expire(name, datetime.now() +
- timedelta(milliseconds=px))
+ self._db[name] = to_bytes(value)
+ self._db.expire(name, datetime.now() +
+ timedelta(milliseconds=px))
else:
- self._db.persist(name)
+ self._db[name] = to_bytes(value)
return True
else:
return None
diff --git a/requirements.txt b/requirements.txt
index df48512..12cc5c9 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,4 +1,4 @@
# Flake8 3.0.0 does not support Python 2.6.
flake8<3.0.0
nose==1.3.4
-redis==2.10.5
+redis==2.10.6
|
ska-sa/fakenewsredis
|
0472a6e928d9502f7549b6c829dd86570ec00c0e
|
diff --git a/test_fakenewsredis.py b/test_fakenewsredis.py
index 183591e..403d885 100644
--- a/test_fakenewsredis.py
+++ b/test_fakenewsredis.py
@@ -501,26 +501,44 @@ class TestFakeStrictRedis(unittest.TestCase):
def test_set_raises_wrong_ex(self):
with self.assertRaises(ResponseError):
self.redis.set('foo', 'bar', ex=-100)
+ with self.assertRaises(ResponseError):
+ self.redis.set('foo', 'bar', ex=0)
+ self.assertFalse(self.redis.exists('foo'))
def test_set_using_timedelta_raises_wrong_ex(self):
with self.assertRaises(ResponseError):
self.redis.set('foo', 'bar', ex=timedelta(seconds=-100))
+ with self.assertRaises(ResponseError):
+ self.redis.set('foo', 'bar', ex=timedelta(seconds=0))
+ self.assertFalse(self.redis.exists('foo'))
def test_set_raises_wrong_px(self):
with self.assertRaises(ResponseError):
self.redis.set('foo', 'bar', px=-100)
+ with self.assertRaises(ResponseError):
+ self.redis.set('foo', 'bar', px=0)
+ self.assertFalse(self.redis.exists('foo'))
def test_set_using_timedelta_raises_wrong_px(self):
with self.assertRaises(ResponseError):
self.redis.set('foo', 'bar', px=timedelta(milliseconds=-100))
+ with self.assertRaises(ResponseError):
+ self.redis.set('foo', 'bar', px=timedelta(milliseconds=0))
+ self.assertFalse(self.redis.exists('foo'))
def test_setex_raises_wrong_ex(self):
with self.assertRaises(ResponseError):
self.redis.setex('foo', -100, 'bar')
+ with self.assertRaises(ResponseError):
+ self.redis.setex('foo', 0, 'bar')
+ self.assertFalse(self.redis.exists('foo'))
def test_setex_using_timedelta_raises_wrong_ex(self):
with self.assertRaises(ResponseError):
self.redis.setex('foo', timedelta(seconds=-100), 'bar')
+ with self.assertRaises(ResponseError):
+ self.redis.setex('foo', timedelta(seconds=-100), 'bar')
+ self.assertFalse(self.redis.exists('foo'))
def test_setnx(self):
self.assertEqual(self.redis.setnx('foo', 'bar'), True)
@@ -3142,7 +3160,7 @@ class TestFakeRedis(unittest.TestCase):
@attr('slow')
def test_set_ex_should_expire_value(self):
- self.redis.set('foo', 'bar', ex=0)
+ self.redis.set('foo', 'bar')
self.assertEqual(self.redis.get('foo'), b'bar')
self.redis.set('foo', 'bar', ex=1)
sleep(2)
|
Update to match redis-py 2.10.6
There are a few unit tests that fail when run against the latest redis-py (2.10.6):
```
======================================================================
ERROR: test_set_ex_should_expire_value (test_fakenewsredis.TestRealRedis)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/home/bmerry/work/sdp/git/fakenewsredis/test_fakenewsredis.py", line 3145, in test_set_ex_should_expire_value
self.redis.set('foo', 'bar', ex=0)
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/client.py", line 1171, in set
return self.execute_command('SET', *pieces)
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/client.py", line 668, in execute_command
return self.parse_response(connection, command_name, **options)
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/client.py", line 680, in parse_response
response = connection.read_response()
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/connection.py", line 629, in read_response
raise response
ResponseError: invalid expire time in set
======================================================================
ERROR: test_set_ex_should_expire_value (test_fakenewsredis.TestRealRedisDecodeResponses)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/home/bmerry/work/sdp/git/fakenewsredis/test_fakenewsredis.py", line 3145, in test_set_ex_should_expire_value
self.redis.set('foo', 'bar', ex=0)
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/client.py", line 1171, in set
return self.execute_command('SET', *pieces)
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/client.py", line 668, in execute_command
return self.parse_response(connection, command_name, **options)
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/client.py", line 680, in parse_response
response = connection.read_response()
File "/home/bmerry/work/sdp/env/local/lib/python2.7/site-packages/redis/connection.py", line 629, in read_response
raise response
ResponseError: invalid expire time in set
```
This is due to a change in how a zero expiry time is interpreted.
|
0.0
|
0472a6e928d9502f7549b6c829dd86570ec00c0e
|
[
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_using_timedelta_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_using_timedelta_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_using_timedelta_raises_wrong_px",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_raises_wrong_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_using_timedelta_raises_wrong_ex"
] |
[
"test_fakenewsredis.py::TestFakeStrictRedis::test_append",
"test_fakenewsredis.py::TestFakeStrictRedis::test_append_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_append_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_basic_sort",
"test_fakenewsredis.py::TestFakeStrictRedis::test_bitcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_bitcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blocking_operations_when_empty",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_allow_single_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_single_list",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_blpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpop_single_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpoplpush_multi_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_brpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_contains",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr_badtype",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_decr_newkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete_expire",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete_multiple",
"test_fakenewsredis.py::TestFakeStrictRedis::test_delete_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_echo",
"test_fakenewsredis.py::TestFakeStrictRedis::test_empty_hash",
"test_fakenewsredis.py::TestFakeStrictRedis::test_empty_list",
"test_fakenewsredis.py::TestFakeStrictRedis::test_empty_set",
"test_fakenewsredis.py::TestFakeStrictRedis::test_empty_sort",
"test_fakenewsredis.py::TestFakeStrictRedis::test_empty_zset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_exists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_flushdb",
"test_fakenewsredis.py::TestFakeStrictRedis::test_foo",
"test_fakenewsredis.py::TestFakeStrictRedis::test_get_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_get_invalid_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_get_with_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getbit",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getset_exists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getset_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_getset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hdel",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hdel_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hexists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hexists_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall_empty_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall_with_tuples",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hgetall_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_on_non_float_value_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_with_non_float_amount_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hincrbyfloat_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hkeys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hkeys_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hlen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmget_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmset_convert_values",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmset_does_not_mutate_input_params",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmsetset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hmsetset_empty_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hscan",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hset_then_hget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hset_update",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hsetnx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hvals",
"test_fakenewsredis.py::TestFakeStrictRedis::test_hvals_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_by",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_followed_by_mget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_followed_by_mget_returns_strings",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_with_float",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incr_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedis::test_incrbyfloat_with_noexist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_key_patterns",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lindex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lindex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_after",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_before",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_no_pivot",
"test_fakenewsredis.py::TestFakeStrictRedis::test_linsert_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_llen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_llen_no_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_llen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpop",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpop_empty_list",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_key_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_then_lrange_all",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_then_lrange_portion",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_with_nonstr_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpushx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_positive_count",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lset_index_out_of_range",
"test_fakenewsredis.py::TestFakeStrictRedis::test_lset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim_with_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ltrim_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mget",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mget_mixed_types",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mget_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_move_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mset",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mset_accepts_kwargs",
"test_fakenewsredis.py::TestFakeStrictRedis::test_mset_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_msetnx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_multidb",
"test_fakenewsredis.py::TestFakeStrictRedis::test_multiple_bits_set",
"test_fakenewsredis.py::TestFakeStrictRedis::test_multiple_successful_watch_calls",
"test_fakenewsredis.py::TestFakeStrictRedis::test_persist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pfadd",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pfcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pfmerge",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ping",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_ignore_errors",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_non_transactional",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_proxies_to_redis_object",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_raises_when_watched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_succeeds_despite_unwatched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_succeeds_when_watching_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_transaction_shortcut",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pipeline_transaction_value_from_callable",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_binary_message",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_ignore_sub_messages_listen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_listen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_psubscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_punsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_subscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_pubsub_unsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename_does_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rename_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_renamenx_doesnt_exist",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpop",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_one_to_self",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_to_nonexistent_destination",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_then_lrange_with_nested_list1",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_then_lrange_with_nested_list2",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_then_lrange_with_nested_list3",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpushx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_rpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sadd",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sadd_as_str_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_non_ascii_chars_as_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_non_ascii_chars_as_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_unicode_type_as_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_saving_unicode_type_as_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_all_in_single_call",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_iter_multiple_pages",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_iter_multiple_pages_with_match",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_iter_single_page",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_multiple_pages_with_count_arg",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scan_single",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scard",
"test_fakenewsredis.py::TestFakeStrictRedis::test_scard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff_empty",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff_one_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiff_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sdiffstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_None_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_ex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_ex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_existing_key_persists",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_float_value",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_px",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_px_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedis::test_set_then_get",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setbit_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setbits_and_getkeys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_using_float",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setitem_getitem",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setnx",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setrange",
"test_fakenewsredis.py::TestFakeStrictRedis::test_setrange_expiry",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinter",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinter_bytes_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinter_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sinterstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sismember",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sismember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smembers",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smembers_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smove",
"test_fakenewsredis.py::TestFakeStrictRedis::test_smove_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_alpha",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_descending",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_offset_norange",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_offset_range",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_offset_range_and_desc",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_range_with_large_range",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_by_and_get_option",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_hash",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_set",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_with_store_option",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sort_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_spop",
"test_fakenewsredis.py::TestFakeStrictRedis::test_spop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srandmember",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srandmember_number",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srandmember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srem",
"test_fakenewsredis.py::TestFakeStrictRedis::test_srem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sscan",
"test_fakenewsredis.py::TestFakeStrictRedis::test_strlen",
"test_fakenewsredis.py::TestFakeStrictRedis::test_strlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_substr",
"test_fakenewsredis.py::TestFakeStrictRedis::test_substr_noexist_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_substr_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sunion",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sunion_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_sunionstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_ttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_unset_bits",
"test_fakenewsredis.py::TestFakeStrictRedis::test_watch_state_is_cleared_across_multiple_watches",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_errors",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_multiple",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_uses_str",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcard",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcard_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcount_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zincrby",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_max",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_onekey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zinterstore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zlexcount",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zlexcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_descending",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_descending_with_scores",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_same_score",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_with_positive_indices",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_slice",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_withscores",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrangebysore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrank",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem_numeric_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex_badkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank_negative_indices",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank_out_of_bounds",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zremrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrange",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrange_sorted_keys",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrank",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zrevrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zscore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zscore_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_max",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_min",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_sum",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_weights",
"test_fakenewsredis.py::TestFakeStrictRedis::test_zunionstore_wrong_type",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_expire_immediately_with_millisecond_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_not_handle_floating_point_values",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_expire_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_expireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_lock",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_postitive_count",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeRedis::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_return_falsey_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpire_should_return_truthy_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedis::test_pexpireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedis::test_psetex_expire_value",
"test_fakenewsredis.py::TestFakeRedis::test_psetex_expire_value_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_pttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_pttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_set_ex_should_expire_value",
"test_fakenewsredis.py::TestFakeRedis::test_set_nx_doesnt_set_value_twice",
"test_fakenewsredis.py::TestFakeRedis::test_set_px_should_expire_value",
"test_fakenewsredis.py::TestFakeRedis::test_set_xx_set_value_when_exists",
"test_fakenewsredis.py::TestFakeRedis::test_setex",
"test_fakenewsredis.py::TestFakeRedis::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeRedis::test_ttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_ttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedis::test_ttls_should_always_be_long",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_deprecated",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_missing_required_params",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_with_multiple_keypairs",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_with_name_is_non_string",
"test_fakenewsredis.py::TestFakeRedis::test_zadd_with_single_keypair",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_append",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_append_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_append_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_basic_sort",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_bitcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_bitcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blocking_operations_when_empty",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_allow_single_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_single_list",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_blpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpop_single_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpop_test_multiple_lists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpoplpush_multi_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_brpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_contains",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr_badtype",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_decr_newkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete_expire",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete_multiple",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_delete_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_echo",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_empty_hash",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_empty_list",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_empty_set",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_empty_sort",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_empty_zset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_exists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_flushdb",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_foo",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_get_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_get_invalid_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_get_with_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getbit",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getset_exists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getset_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_getset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hdel",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hdel_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hexists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hexists_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall_empty_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall_with_tuples",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hgetall_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_on_non_float_value_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_with_no_starting_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_with_non_float_amount_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_with_range_param",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hincrbyfloat_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hkeys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hkeys_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hlen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmget_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmset_convert_values",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmset_does_not_mutate_input_params",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmsetset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hmsetset_empty_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hscan",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hset_then_hget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hset_update",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hsetnx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hvals",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_hvals_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_by",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_followed_by_mget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_followed_by_mget_returns_strings",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_with_float",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incr_with_no_preexisting_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_bad_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_precision",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_incrbyfloat_with_noexist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_key_patterns",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lindex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lindex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_after",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_before",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_no_pivot",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_linsert_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_llen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_llen_no_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_llen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpop",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpop_empty_list",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_key_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_then_lrange_all",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_then_lrange_portion",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_with_nonstr_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpushx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_positive_count",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lset_index_out_of_range",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_lset_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim_with_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ltrim_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mget",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mget_mixed_types",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mget_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_move_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mset",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mset_accepts_kwargs",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_mset_with_no_keys_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_msetnx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_multidb",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_multiple_bits_set",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_multiple_successful_watch_calls",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_persist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pfadd",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pfcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pfmerge",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ping",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_ignore_errors",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_non_transactional",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_proxies_to_redis_object",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_raises_when_watched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_succeeds_despite_unwatched_key_changed",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_succeeds_when_watching_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_transaction_shortcut",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pipeline_transaction_value_from_callable",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_binary_message",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_ignore_sub_messages_listen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_listen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_psubscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_punsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_subscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_pubsub_unsubscribe",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename_does_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rename_nonexistent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_renamenx_doesnt_exist",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpop",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_one_to_self",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_to_nonexistent_destination",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpoplpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_then_lrange_with_nested_list1",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_then_lrange_with_nested_list2",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_then_lrange_with_nested_list3",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpush_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpushx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_rpushx_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sadd",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sadd_as_str_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_non_ascii_chars_as_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_non_ascii_chars_as_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_unicode_type_as_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_saving_unicode_type_as_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_all_in_single_call",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_iter_multiple_pages",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_iter_multiple_pages_with_match",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_iter_single_page",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_multiple_pages_with_count_arg",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scan_single",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scard",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_scard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff_empty",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff_one_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiff_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sdiffstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_None_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_ex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_ex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_existing_key_persists",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_float_value",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_non_str_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_px",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_px_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_set_then_get",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setbit_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setbit_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setbits_and_getkeys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_using_float",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setitem_getitem",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setnx",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setrange",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_setrange_expiry",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinter",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinter_bytes_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinter_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sinterstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sismember",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sismember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smembers",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smembers_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smove",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_smove_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_alpha",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_descending",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_offset_norange",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_offset_range",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_offset_range_and_desc",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_range_with_large_range",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_by_and_get_option",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_hash",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_set",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_with_store_option",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sort_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_spop",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_spop_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srandmember",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srandmember_number",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srandmember_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srem",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_srem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sscan",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_strlen",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_strlen_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_substr",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_substr_noexist_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_substr_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sunion",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sunion_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_sunionstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ttl_should_return_minus_one_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_ttl_should_return_minus_two_for_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_unset_bits",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_watch_state_is_cleared_across_multiple_watches",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_errors",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_multiple",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_uses_str",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zadd_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcard",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcard_non_existent_key",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcard_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcount_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zincrby",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zincrby_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_max",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_onekey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zinterstore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zlexcount",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zlexcount_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_descending",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_descending_with_scores",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_same_score",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_with_positive_indices",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_slice",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_withscores",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrangebysore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrank",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem_numeric_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrem_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex_badkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank_negative_indices",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank_out_of_bounds",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zremrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrange",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrange_sorted_keys",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrange_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex_with_limit",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebylex_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore_exclusive",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore_raises_error",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrangebyscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrank",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrank_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zrevrank_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zscore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zscore_non_existent_member",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zscore_wrong_type",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_badkey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_max",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_min",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_mixed_set_types",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_nokey",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_sum",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_weights",
"test_fakenewsredis.py::TestFakeStrictRedisDecodeResponses::test_zunionstore_wrong_type",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_expire_immediately_with_millisecond_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_not_handle_floating_point_values",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expire_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_expireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lock",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_default_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_does_not_exist",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_negative_count",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_postitive_count",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_return_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_lrem_zero_count",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_expire_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_expire_key_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_return_falsey_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpire_should_return_truthy_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_expire_key_by_datetime",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_expire_key_by_timestamp",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_return_false_for_missing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pexpireat_should_return_true_for_existing_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_psetex_expire_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_psetex_expire_value_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_pttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_ex_should_expire_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_nx_doesnt_set_value_twice",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_px_should_expire_value",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_set_xx_set_value_when_exists",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_setex",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_setex_using_timedelta",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_ttl_should_return_none_for_non_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_ttl_should_return_value_for_expiring_key",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_ttls_should_always_be_long",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_deprecated",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_missing_required_params",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_with_multiple_keypairs",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_with_name_is_non_string",
"test_fakenewsredis.py::TestFakeRedisDecodeResponses::test_zadd_with_single_keypair",
"test_fakenewsredis.py::TestInitArgs::test_can_accept_any_kwargs",
"test_fakenewsredis.py::TestInitArgs::test_can_pass_through_extra_args",
"test_fakenewsredis.py::TestInitArgs::test_from_url",
"test_fakenewsredis.py::TestInitArgs::test_from_url_db_value_error",
"test_fakenewsredis.py::TestInitArgs::test_from_url_with_db_arg",
"test_fakenewsredis.py::TestImportation::test_searches_for_c_stdlib_and_raises_if_missing"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_pytest_match_arg"
],
"has_test_patch": true,
"is_lite": false
}
|
2018-01-24 14:07:05+00:00
|
bsd-3-clause
| 5,522 |
|
sklarsa__django-sendgrid-v5-121
|
diff --git a/dev-requirements.txt b/dev-requirements.txt
index 3c341bc..56e4923 100644
--- a/dev-requirements.txt
+++ b/dev-requirements.txt
@@ -10,5 +10,4 @@ pytest==6.2.5
pytest-cov==3.0.0
tox==3.8.5
twine==3.3.0
-typed-ast==1.5.1
wheel
diff --git a/sendgrid_backend/mail.py b/sendgrid_backend/mail.py
index dd63787..6e6afb7 100644
--- a/sendgrid_backend/mail.py
+++ b/sendgrid_backend/mail.py
@@ -471,6 +471,13 @@ class SendgridBackend(BaseEmailBackend):
)
)
+ if hasattr(msg, "reply_to_list") and SENDGRID_6:
+ from sendgrid.helpers.mail import ReplyTo
+
+ mail.reply_to_list = [
+ ReplyTo(*self._parse_email_address(e)) for e in msg.reply_to_list
+ ]
+
if hasattr(msg, "categories"):
for cat in msg.categories:
mail.add_category(Category(cat))
|
sklarsa/django-sendgrid-v5
|
1ced2eb8bb8c7a6eb2299f31ccea5eb817e142b2
|
diff --git a/test/test_mail.py b/test/test_mail.py
index 55ede5e..bb7862a 100644
--- a/test/test_mail.py
+++ b/test/test_mail.py
@@ -727,3 +727,28 @@ class TestMailGeneration(SimpleTestCase):
assert not tracking_settings["click_tracking"]["enable"]
assert "ganalytics" in tracking_settings
assert tracking_settings["ganalytics"]["utm_source"] == "my-source"
+
+ def test_reply_to_list(self):
+ msg = EmailMessage(
+ subject="Hello, World!",
+ body="Hello, World!",
+ from_email="Sam Smith <[email protected]>",
+ to=["John Doe <[email protected]>", "[email protected]"],
+ cc=["Stephanie Smith <[email protected]>"],
+ bcc=["Sarah Smith <[email protected]>"],
+ )
+
+ msg.reply_to_list = ["John Doe <[email protected]>", "[email protected]"]
+
+ mail = self.backend._build_sg_mail(msg)
+
+ reply_to_list = mail.get("reply_to_list")
+ if SENDGRID_5:
+ assert not reply_to_list
+ else:
+ assert reply_to_list
+ assert len(reply_to_list) == 2
+ assert reply_to_list[0].get("email") == "[email protected]"
+ assert reply_to_list[0].get("name") == "John Doe"
+ assert reply_to_list[1].get("email") == "[email protected]"
+ assert not reply_to_list[1].get("name")
|
Add the ability to reply_to_list for Sendgrid
Since [this](https://github.com/sendgrid/sendgrid-oai/blob/main/CHANGELOG.md#2021-09-22-version-180) version, SendGrid has incorporated the ability to reply to a list of emails. It would be beneficial to integrate this capability into this library without any workarounds.
|
0.0
|
1ced2eb8bb8c7a6eb2299f31ccea5eb817e142b2
|
[
"test/test_mail.py::TestMailGeneration::test_reply_to_list"
] |
[
"test/test_mail.py::TestMailGeneration::test_EmailMessage",
"test/test_mail.py::TestMailGeneration::test_EmailMessage_attributes",
"test/test_mail.py::TestMailGeneration::test_EmailMessage_custom_args",
"test/test_mail.py::TestMailGeneration::test_EmailMultiAlternatives",
"test/test_mail.py::TestMailGeneration::test_EmailMultiAlternatives__unicode_attachment",
"test/test_mail.py::TestMailGeneration::test_asm",
"test/test_mail.py::TestMailGeneration::test_build_personalization_errors",
"test/test_mail.py::TestMailGeneration::test_dict_to_personalization",
"test/test_mail.py::TestMailGeneration::test_mail_config",
"test/test_mail.py::TestMailGeneration::test_mime",
"test/test_mail.py::TestMailGeneration::test_personalizations_resolution",
"test/test_mail.py::TestMailGeneration::test_reply_to",
"test/test_mail.py::TestMailGeneration::test_templating_sendgrid",
"test/test_mail.py::TestMailGeneration::test_templating_sendgrid_v5",
"test/test_mail.py::TestMailGeneration::test_tracking_config"
] |
{
"failed_lite_validators": [
"has_short_problem_statement",
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-11-08 14:14:08+00:00
|
mit
| 5,523 |
|
sktime__sktime-3561
|
diff --git a/sktime/annotation/hmm_learn/base.py b/sktime/annotation/hmm_learn/base.py
index e688bdd16..c4b6fb0da 100644
--- a/sktime/annotation/hmm_learn/base.py
+++ b/sktime/annotation/hmm_learn/base.py
@@ -22,7 +22,7 @@ __all__ = ["BaseHMMLearn"]
class BaseHMMLearn(BaseSeriesAnnotator):
"""Base class for all HMM wrappers, handles required overlap between packages."""
- __tags = {
+ _tags = {
"univariate-only": True,
"fit_is_empty": True,
"python_dependencies": "hmmlearn",
diff --git a/sktime/regression/deep_learning/cnn.py b/sktime/regression/deep_learning/cnn.py
index 37d7020af..d7773ef7c 100644
--- a/sktime/regression/deep_learning/cnn.py
+++ b/sktime/regression/deep_learning/cnn.py
@@ -1,9 +1,11 @@
# -*- coding: utf-8 -*-
"""Time Convolutional Neural Network (CNN) for regression."""
-__author__ = ["AurumnPegasus"]
+__author__ = ["AurumnPegasus", "achieveordie"]
__all__ = ["CNNRegressor"]
+from sklearn.utils import check_random_state
+
from sktime.networks.cnn import CNNNetwork
from sktime.regression.deep_learning.base import BaseDeepRegressor
from sktime.utils.validation._dependencies import _check_dl_dependencies
@@ -34,7 +36,12 @@ class CNNRegressor(BaseDeepRegressor):
whether to output extra information
loss : string, default="mean_squared_error"
fit parameter for the keras model
- optimizer : keras.optimizer, default=keras.optimizers.Adam(),
+ activation : keras.activations or string, default `linear`
+ function to use in the output layer.
+ optimizer : keras.optimizers or string, default `None`.
+ when `None`, internally uses `keras.optimizers.Adam(0.01)`
+ use_bias : bool, default=True
+ whether to use bias in the output layer.
metrics : list of strings, default=["accuracy"],
Notes
@@ -58,7 +65,10 @@ class CNNRegressor(BaseDeepRegressor):
verbose=False,
loss="mean_squared_error",
metrics=None,
- random_seed=0,
+ random_state=0,
+ activation="linear",
+ use_bias=True,
+ optimizer=None,
):
_check_dl_dependencies(severity="error")
super(CNNRegressor, self).__init__(
@@ -73,7 +83,11 @@ class CNNRegressor(BaseDeepRegressor):
self.verbose = verbose
self.loss = loss
self.metrics = metrics
- self.random_seed = random_seed
+ self.random_state = random_state
+ self.activation = activation
+ self.use_bias = use_bias
+ self.optimizer = optimizer
+ self.history = None
self._network = CNNNetwork()
def build_model(self, input_shape, **kwargs):
@@ -96,7 +110,7 @@ class CNNRegressor(BaseDeepRegressor):
import tensorflow as tf
from tensorflow import keras
- tf.random.set_seed(self.random_seed)
+ tf.random.set_seed(self.random_state)
if self.metrics is None:
metrics = ["accuracy"]
@@ -105,13 +119,23 @@ class CNNRegressor(BaseDeepRegressor):
input_layer, output_layer = self._network.build_network(input_shape, **kwargs)
- output_layer = keras.layers.Dense(units=1, activation="sigmoid")(output_layer)
+ output_layer = keras.layers.Dense(
+ units=1,
+ activation=self.activation,
+ use_bias=self.use_bias,
+ )(output_layer)
+
+ self.optimizer_ = (
+ keras.optimizers.Adam(learning_rate=0.01)
+ if self.optimizer is None
+ else self.optimizer
+ )
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.compile(
loss=self.loss,
- optimizer=keras.optimizers.Adam(),
+ optimizer=self.optimizer_,
metrics=metrics,
)
return model
@@ -136,6 +160,7 @@ class CNNRegressor(BaseDeepRegressor):
# Transpose to conform to Keras input style.
X = X.transpose(0, 2, 1)
+ check_random_state(self.random_state)
self.input_shape = X.shape[1:]
self.model_ = self.build_model(self.input_shape)
if self.verbose:
diff --git a/sktime/transformations/hierarchical/aggregate.py b/sktime/transformations/hierarchical/aggregate.py
index 9e32e6482..79fb305e2 100644
--- a/sktime/transformations/hierarchical/aggregate.py
+++ b/sktime/transformations/hierarchical/aggregate.py
@@ -147,7 +147,7 @@ class Aggregator(BaseTransformer):
df_out.reset_index(level=-1).loc[new_index].set_index(nm, append=True)
).rename_axis(X.index.names, axis=0)
- df_out.sort_index(inplace=True)
+ df_out = df_out.sort_index()
return df_out
diff --git a/sktime/utils/sampling.py b/sktime/utils/sampling.py
index de6f7dcab..bfe8581cf 100644
--- a/sktime/utils/sampling.py
+++ b/sktime/utils/sampling.py
@@ -26,7 +26,7 @@ def stratified_resample(X_train, y_train, X_test, y_test, random_state):
X_test : pd.DataFrame
test data attributes in sktime pandas format.
y_test : np.array
- test data class labes as np array.
+ test data class labels as np array.
random_state : int
seed to enable reproducable resamples
Returns
@@ -71,12 +71,9 @@ def stratified_resample(X_train, y_train, X_test, y_test, random_state):
X_test = pd.concat([X_test, test_instances])
y_train = np.concatenate([y_train, train_labels], axis=None)
y_test = np.concatenate([y_test, test_labels], axis=None)
- # get the counts of the new train and test resample
- unique_train_new, counts_train_new = np.unique(y_train, return_counts=True)
- unique_test_new, counts_test_new = np.unique(y_test, return_counts=True)
- # make sure they match the original distribution of data
- assert list(counts_train_new) == list(counts_train)
- assert list(counts_test_new) == list(counts_test)
+ # reset indexes to conform to sktime format.
+ X_train = X_train.reset_index(drop=True)
+ X_test = X_test.reset_index(drop=True)
return X_train, y_train, X_test, y_test
|
sktime/sktime
|
13239f38ec9ac8157f70aa2c70487c7978e38ac9
|
diff --git a/sktime/benchmarking/tests/test_experiments.py b/sktime/benchmarking/tests/test_experiments.py
index 968078fac..e065cdd0a 100644
--- a/sktime/benchmarking/tests/test_experiments.py
+++ b/sktime/benchmarking/tests/test_experiments.py
@@ -65,25 +65,3 @@ def test_run_classification_experiment(tmp_path):
# remove files
test_path.unlink()
train_path.unlink()
-
-
-# def test_load_and_run_clustering_experiment():
-# """Test loading, running and saving.
-#
-# Currently it just checks that the files have been created, then deletes them.
-# Later it can be enhanced to check the results can be loaded.
-# """
-# load_and_run_clustering_experiment(
-# overwrite=True,
-# problem_path="../../datasets/data/",
-# results_path="../Temp/",
-# cls_name="kmeans",
-# dataset="UnitTest",
-# resample_id=0,
-# train_file=True,
-# )
-# assert os.path.isfile("../Temp/kmeans/Predictions/UnitTest/testResample0.csv")
-# assert os.path.isfile("../Temp/kmeans/Predictions/UnitTest/trainResample0.csv")
-# os.remove("../Temp/kmeans/Predictions/UnitTest/testResample0.csv")
-# os.remove("../Temp/kmeans/Predictions/UnitTest/trainResample0.csv")
-#
diff --git a/sktime/utils/tests/test_sampling.py b/sktime/utils/tests/test_sampling.py
index 3d17cca37..85fca8bfb 100644
--- a/sktime/utils/tests/test_sampling.py
+++ b/sktime/utils/tests/test_sampling.py
@@ -1,10 +1,13 @@
# -*- coding: utf-8 -*-
"""Testing sampling utilities."""
+import numpy as np
import pytest
+from sktime.datasets import load_unit_test
+from sktime.datatypes import check_is_scitype
from sktime.utils._testing.deep_equals import deep_equals
-from sktime.utils.sampling import random_partition
+from sktime.utils.sampling import random_partition, stratified_resample
NK_FIXTURES = [(10, 3), (15, 5), (19, 6), (3, 1), (1, 2)]
SEED_FIXTURES = [42, 0, 100, -5]
@@ -42,3 +45,23 @@ def test_seed(n, k, seed):
part2 = random_partition(n, k, seed)
assert deep_equals(part, part2)
+
+
+def test_stratified_resample():
+ """Test resampling returns valid data structure and maintains class distribution."""
+ trainX, trainy = load_unit_test(split="TRAIN")
+ testX, testy = load_unit_test(split="TEST")
+ new_trainX, new_trainy, new_testX, new_testy = stratified_resample(
+ trainX, trainy, testX, testy, 0
+ )
+
+ valid_train = check_is_scitype(new_trainX, scitype="Panel")
+ valid_test = check_is_scitype(new_testX, scitype="Panel")
+ assert valid_test and valid_train
+ # count class occurrences
+ unique_train, counts_train = np.unique(trainy, return_counts=True)
+ unique_test, counts_test = np.unique(testy, return_counts=True)
+ unique_train_new, counts_train_new = np.unique(new_trainy, return_counts=True)
+ unique_test_new, counts_test_new = np.unique(new_testy, return_counts=True)
+ assert list(counts_train_new) == list(counts_train)
+ assert list(counts_test_new) == list(counts_test)
|
[BUG] `CNNRegressor` missing essential initializing parameters
**Describe the bug**
<!--
A clear and concise description of what the bug is.
-->
`CNNRegressor` misses parameters like `optimizer` in its constructor. There might be more things which don't coincide with `CNNClassifier` which should be added but since I'm not sure what all things might be missing, I'm opening this issue to bring it to notice.
|
0.0
|
13239f38ec9ac8157f70aa2c70487c7978e38ac9
|
[
"sktime/utils/tests/test_sampling.py::test_stratified_resample"
] |
[
"sktime/utils/tests/test_sampling.py::test_partition[15-5]",
"sktime/utils/tests/test_sampling.py::test_seed[19-6-100]",
"sktime/utils/tests/test_sampling.py::test_seed[3-1-100]",
"sktime/utils/tests/test_sampling.py::test_seed[3-1-0]",
"sktime/utils/tests/test_sampling.py::test_seed[3-1-42]",
"sktime/utils/tests/test_sampling.py::test_partition[3-1]",
"sktime/utils/tests/test_sampling.py::test_seed[1-2-0]",
"sktime/utils/tests/test_sampling.py::test_seed[19-6--5]",
"sktime/utils/tests/test_sampling.py::test_seed[10-3-42]",
"sktime/utils/tests/test_sampling.py::test_seed[10-3-0]",
"sktime/utils/tests/test_sampling.py::test_seed[19-6-0]",
"sktime/utils/tests/test_sampling.py::test_seed[15-5-42]",
"sktime/utils/tests/test_sampling.py::test_partition[19-6]",
"sktime/utils/tests/test_sampling.py::test_seed[3-1--5]",
"sktime/utils/tests/test_sampling.py::test_seed[19-6-42]",
"sktime/utils/tests/test_sampling.py::test_seed[15-5--5]",
"sktime/utils/tests/test_sampling.py::test_seed[10-3--5]",
"sktime/utils/tests/test_sampling.py::test_seed[10-3-100]",
"sktime/utils/tests/test_sampling.py::test_seed[1-2-42]",
"sktime/utils/tests/test_sampling.py::test_partition[10-3]",
"sktime/utils/tests/test_sampling.py::test_partition[1-2]",
"sktime/utils/tests/test_sampling.py::test_seed[1-2--5]",
"sktime/utils/tests/test_sampling.py::test_seed[15-5-0]",
"sktime/utils/tests/test_sampling.py::test_seed[1-2-100]",
"sktime/utils/tests/test_sampling.py::test_seed[15-5-100]",
"sktime/benchmarking/tests/test_experiments.py::test_run_classification_experiment",
"sktime/benchmarking/tests/test_experiments.py::test_run_clustering_experiment"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-10-10 05:54:30+00:00
|
bsd-3-clause
| 5,524 |
|
sktime__sktime-3927
|
diff --git a/docs/source/get_started.rst b/docs/source/get_started.rst
index ce8ab2dd6..0e6ffc82d 100644
--- a/docs/source/get_started.rst
+++ b/docs/source/get_started.rst
@@ -124,7 +124,7 @@ Time Series Clustering
>>> from sklearn.model_selection import train_test_split
>>> from sktime.clustering.k_means import TimeSeriesKMeans
- >>> from sktime.clustering.evaluation._plot_clustering import plot_cluster_algorithm
+ >>> from sktime.clustering.utils.plotting._plot_partitions import plot_cluster_algorithm
>>> from sktime.datasets import load_arrow_head
>>> X, y = load_arrow_head()
diff --git a/sktime/classification/distance_based/_time_series_neighbors.py b/sktime/classification/distance_based/_time_series_neighbors.py
index 04eabd93f..cf5d91cd7 100644
--- a/sktime/classification/distance_based/_time_series_neighbors.py
+++ b/sktime/classification/distance_based/_time_series_neighbors.py
@@ -263,6 +263,9 @@ class KNeighborsTimeSeriesClassifier(BaseClassifier):
"""
self.check_is_fitted()
+ # boilerplate input checks for predict-like methods
+ X = self._check_convert_X_for_predict(X)
+
# self._X should be the stored _X
dist_mat = self._distance(X, self._X)
diff --git a/sktime/regression/distance_based/_time_series_neighbors.py b/sktime/regression/distance_based/_time_series_neighbors.py
index 9e286cb2d..7d8e41290 100644
--- a/sktime/regression/distance_based/_time_series_neighbors.py
+++ b/sktime/regression/distance_based/_time_series_neighbors.py
@@ -210,6 +210,11 @@ class KNeighborsTimeSeriesRegressor(BaseRegressor):
ind : array
Indices of the nearest points in the population matrix.
"""
+ self.check_is_fitted()
+
+ # boilerplate input checks for predict-like methods
+ X = self._check_convert_X_for_predict(X)
+
# self._X should be the stored _X
dist_mat = self._distance(X, self._X)
diff --git a/sktime/transformations/series/detrend/_detrend.py b/sktime/transformations/series/detrend/_detrend.py
index b1a32cae9..4a5e84eca 100644
--- a/sktime/transformations/series/detrend/_detrend.py
+++ b/sktime/transformations/series/detrend/_detrend.py
@@ -4,7 +4,7 @@
"""Implements transformations to detrend a time series."""
__all__ = ["Detrender"]
-__author__ = ["mloning", "SveaMeyer13"]
+__author__ = ["mloning", "SveaMeyer13", "KishManani"]
import pandas as pd
@@ -38,6 +38,11 @@ class Detrender(BaseTransformer):
The forecasting model to remove the trend with
(e.g. PolynomialTrendForecaster).
If forecaster is None, PolynomialTrendForecaster(degree=1) is used.
+ model : {"additive", "multiplicative"}, default="additive"
+ If `model="additive"` the `forecaster` is fit to the original time
+ series and the `transform` method subtracts the trend from the time series.
+ If `model="multiplicative"` the `forecaster` is fit to the original time
+ series and the `transform` method divides the trend from the time series.
Attributes
----------
@@ -74,8 +79,9 @@ class Detrender(BaseTransformer):
"transform-returns-same-time-index": True,
}
- def __init__(self, forecaster=None):
+ def __init__(self, forecaster=None, model="additive"):
self.forecaster = forecaster
+ self.model = model
self.forecaster_ = None
super(Detrender, self).__init__()
@@ -118,6 +124,10 @@ class Detrender(BaseTransformer):
else:
raise TypeError("X must be pd.Series or pd.DataFrame")
+ allowed_models = ("additive", "multiplicative")
+ if self.model not in allowed_models:
+ raise ValueError("`model` must be 'additive' or 'multiplicative'")
+
return self
def _transform(self, X, y=None):
@@ -143,8 +153,10 @@ class Detrender(BaseTransformer):
if isinstance(X, pd.Series):
# note: the y in the transformer is exogeneous in the forecaster, i.e., X
X_pred = self.forecaster_.predict(fh=fh, X=y)
- Xt = X - X_pred
- return Xt
+ if self.model == "additive":
+ return X - X_pred
+ elif self.model == "multiplicative":
+ return X / X_pred
# multivariate: X is pd.DataFrame
elif isinstance(X, pd.DataFrame):
Xt = X.copy()
@@ -159,7 +171,10 @@ class Detrender(BaseTransformer):
)
for colname in Xt.columns:
X_pred = self.forecaster_[colname].predict(fh=fh, X=y)
- Xt[colname] = Xt[colname] - X_pred
+ if self.model == "additive":
+ Xt[colname] = Xt[colname] - X_pred
+ elif self.model == "multiplicative":
+ Xt[colname] = Xt[colname] / X_pred
return Xt
else:
raise TypeError("X must be pd.Series or pd.DataFrame")
@@ -185,7 +200,10 @@ class Detrender(BaseTransformer):
if isinstance(X, pd.Series):
# note: the y in the transformer is exogeneous in the forecaster, i.e., X
X_pred = self.forecaster_.predict(fh=fh, X=y)
- return X + X_pred
+ if self.model == "additive":
+ return X + X_pred
+ elif self.model == "multiplicative":
+ return X * X_pred
# multivariate: X is pd.DataFrame
if isinstance(X, pd.DataFrame):
X = X.copy()
@@ -200,7 +218,11 @@ class Detrender(BaseTransformer):
)
for colname in X.columns:
X_pred = self.forecaster_[colname].predict(fh=fh, X=y)
- X[colname] = X[colname] + X_pred
+ if self.model == "additive":
+ X[colname] = X[colname] + X_pred
+ elif self.model == "multiplicative":
+ X[colname] = X[colname] * X_pred
+
return X
def _update(self, X, y=None, update_params=True):
|
sktime/sktime
|
c10cedbf3135d0fa791bb146adf8172dd676f0d4
|
diff --git a/sktime/classification/distance_based/tests/test_time_series_neighbors.py b/sktime/classification/distance_based/tests/test_time_series_neighbors.py
index 60bf880ea..de7afd851 100644
--- a/sktime/classification/distance_based/tests/test_time_series_neighbors.py
+++ b/sktime/classification/distance_based/tests/test_time_series_neighbors.py
@@ -1,6 +1,7 @@
# -*- coding: utf-8 -*-
-"""Test function of elastic distance nearest neighbour classifiers."""
+"""Tests for KNeighborsTimeSeriesClassifier."""
import numpy as np
+import pandas as pd
import pytest
from sktime.alignment.dtw_python import AlignerDTW
@@ -109,3 +110,26 @@ def test_knn_with_aggrdistance():
clf = KNeighborsTimeSeriesClassifier(distance=aggr_dist)
clf.fit(X, y)
+
+
+def test_knn_kneighbors():
+ """Tests kneighbors method and absence of bug #3798."""
+ from sktime.utils._testing.hierarchical import _make_hierarchical
+
+ Xtrain = _make_hierarchical(hierarchy_levels=(3,), n_columns=3)
+ Xtest = _make_hierarchical(hierarchy_levels=(5,), n_columns=3)
+
+ ytrain = pd.Series(["label_1", "label_2", "label_3"])
+
+ kntsc = KNeighborsTimeSeriesClassifier(n_neighbors=1)
+ kntsc.fit(Xtrain, ytrain)
+
+ ret = kntsc.kneighbors(Xtest)
+ assert isinstance(ret, tuple)
+ assert len(ret) == 2
+
+ dist, ind = ret
+ assert isinstance(dist, np.ndarray)
+ assert dist.shape == (5, 1)
+ assert isinstance(ind, np.ndarray)
+ assert ind.shape == (5, 1)
diff --git a/sktime/regression/distance_based/tests/__init__.py b/sktime/regression/distance_based/tests/__init__.py
new file mode 100644
index 000000000..18fca48ad
--- /dev/null
+++ b/sktime/regression/distance_based/tests/__init__.py
@@ -0,0 +1,2 @@
+# -*- coding: utf-8 -*-
+"""Distance based test code."""
diff --git a/sktime/regression/distance_based/tests/test_time_series_neighbors.py b/sktime/regression/distance_based/tests/test_time_series_neighbors.py
new file mode 100644
index 000000000..6be87cc9c
--- /dev/null
+++ b/sktime/regression/distance_based/tests/test_time_series_neighbors.py
@@ -0,0 +1,31 @@
+# -*- coding: utf-8 -*-
+"""Tests for KNeighborsTimeSeriesRegressor."""
+import numpy as np
+import pandas as pd
+
+from sktime.regression.distance_based._time_series_neighbors import (
+ KNeighborsTimeSeriesRegressor,
+)
+
+
+def test_knn_kneighbors():
+ """Tests kneighbors method and absence of bug #3798."""
+ from sktime.utils._testing.hierarchical import _make_hierarchical
+
+ Xtrain = _make_hierarchical(hierarchy_levels=(3,), n_columns=3)
+ Xtest = _make_hierarchical(hierarchy_levels=(5,), n_columns=3)
+
+ ytrain = pd.Series([1, 1.5, 2])
+
+ kntsc = KNeighborsTimeSeriesRegressor(n_neighbors=1)
+ kntsc.fit(Xtrain, ytrain)
+
+ ret = kntsc.kneighbors(Xtest)
+ assert isinstance(ret, tuple)
+ assert len(ret) == 2
+
+ dist, ind = ret
+ assert isinstance(dist, np.ndarray)
+ assert dist.shape == (5, 1)
+ assert isinstance(ind, np.ndarray)
+ assert ind.shape == (5, 1)
diff --git a/sktime/transformations/series/detrend/tests/test_detrend.py b/sktime/transformations/series/detrend/tests/test_detrend.py
index 4641a3427..50ff9e676 100644
--- a/sktime/transformations/series/detrend/tests/test_detrend.py
+++ b/sktime/transformations/series/detrend/tests/test_detrend.py
@@ -1,17 +1,29 @@
# -*- coding: utf-8 -*-
"""Test detrenders."""
+import numpy as np
+import pandas as pd
+import pytest
-__author__ = ["mloning"]
+from sktime.datasets import load_airline
+from sktime.forecasting.tests.test_trend import get_expected_polynomial_coefs
+from sktime.forecasting.trend import PolynomialTrendForecaster
+from sktime.transformations.series.detrend import Detrender
+
+__author__ = ["mloning", "KishManani"]
__all__ = []
-def test_polynomial_detrending():
- import numpy as np
- import pandas as pd
[email protected]()
+def y_series():
+ return load_airline()
+
- from sktime.forecasting.tests.test_trend import get_expected_polynomial_coefs
- from sktime.forecasting.trend import PolynomialTrendForecaster
- from sktime.transformations.series.detrend import Detrender
[email protected]()
+def y_dataframe():
+ return load_airline().to_frame()
+
+
+def test_polynomial_detrending():
y = pd.Series(np.arange(20) * 0.5) + np.random.normal(0, 1, size=20)
forecaster = PolynomialTrendForecaster(degree=1, with_intercept=True)
@@ -34,3 +46,79 @@ def test_polynomial_detrending():
actual = transformer.transform(y)
expected = y - expected_trend
np.testing.assert_array_almost_equal(actual, expected)
+
+
+def test_multiplicative_detrending_series(y_series):
+ """Tests we get the expected result when setting `model=multiplicative`."""
+ # Load test dataset
+ y = y_series
+
+ # Get the trend
+ forecaster = PolynomialTrendForecaster(degree=1, with_intercept=True)
+ trend = forecaster.fit_predict(y, fh=y.index)
+
+ # De-trend the time series
+ detrender = Detrender(forecaster, model="multiplicative")
+ y_transformed = detrender.fit_transform(y)
+
+ # Compute the expected de-trended time series
+ expected = y / trend
+
+ pd.testing.assert_series_equal(y_transformed, expected)
+
+
+def test_multiplicative_detrending_dataframe(y_dataframe):
+ """Tests we get the expected result when setting `model=multiplicative`."""
+ # Load test dataset
+ y = y_dataframe
+
+ # Get the trend
+ forecaster = PolynomialTrendForecaster(degree=1, with_intercept=True)
+ trend = forecaster.fit_predict(y, fh=y.index)
+
+ # De-trend the time series
+ detrender = Detrender(forecaster, model="multiplicative")
+ y_transformed = detrender.fit_transform(y)
+
+ # Compute the expected de-trended time series
+ expected = y / trend
+
+ pd.testing.assert_frame_equal(y_transformed, expected)
+
+
+def test_additive_detrending_series(y_series):
+ """Tests we get the expected result when setting `model=additive`."""
+ # Load test dataset
+ y = y_series
+
+ # Get the trend
+ forecaster = PolynomialTrendForecaster(degree=1, with_intercept=True)
+ trend = forecaster.fit_predict(y, fh=y.index)
+
+ # De-trend the time series
+ detrender = Detrender(forecaster, model="additive")
+ y_transformed = detrender.fit_transform(y)
+
+ # Compute the expected de-trended time series
+ expected = y - trend
+
+ pd.testing.assert_series_equal(y_transformed, expected)
+
+
+def test_additive_detrending_dataframe(y_dataframe):
+ """Tests we get the expected result when setting `model=additive`."""
+ # Load test dataset
+ y = y_dataframe
+
+ # Get the trend
+ forecaster = PolynomialTrendForecaster(degree=1, with_intercept=True)
+ trend = forecaster.fit_predict(y, fh=y.index)
+
+ # De-trend the time series
+ detrender = Detrender(forecaster, model="additive")
+ y_transformed = detrender.fit_transform(y)
+
+ # Compute the expected de-trended time series
+ expected = y - trend
+
+ pd.testing.assert_frame_equal(y_transformed, expected)
|
[BUG] 'kneighbors' method of KNeighborsTimeSeriesClassifier results in TypingError
**Describe the bug**
After a KNeighborsTimeSeriesClassifier has been successfully fit and successfully used to classify toy data, an attempt to use the 'kneighbors' method fails due to a TypingError. The method should return the indices of and distances to the neighbors of each point.
**To Reproduce**
```python
from sktime.classification.distance_based import KNeighborsTimeSeriesClassifier
from sktime.datatypes import convert_to
Xtrain = convert_to(pd.DataFrame(data = {
'sensor_a': [pd.Series([1,1,1]), pd.Series([2,2,2]), pd.Series([3,3,3])],
'sensor_b': [pd.Series([4,4,4]), pd.Series([5,5,5]), pd.Series([6,6,6])],
'sensor_c': [pd.Series([7,7,7]), pd.Series([8,8,8]), pd.Series([9,9,9])],
}), 'pd-multiindex')
ytrain = pd.Series(['label_1','label_2','label_3'])
kntsc = KNeighborsTimeSeriesClassifier(n_neighbors = 1)
kntsc.fit(Xtrain, ytrain)
Xtest = convert_to(pd.DataFrame({
'sensor_a': [pd.Series([2.1,2,2]), pd.Series([1.1,1,1]), pd.Series([3.1,3,3])],
'sensor_b': [pd.Series([5.1,5,5]), pd.Series([4.1,4,4]), pd.Series([6.1,6,6])],
'sensor_c': [pd.Series([8.1,8,8]), pd.Series([7.1,7,7]), pd.Series([9.1,9,9])]
}), 'pd-multiindex')
display(kntsc.predict(Xtest))
print(kntsc.kneighbors(Xtest))
```
**Expected behavior**
The final line should print the indices of and distances to the neighbors of each point.
**Additional context**
The 'fit' and 'predict' function correctly. The 'kneighbors' method returns the equivalent of an intermediate step of the 'predict' method.
The code provided has data in the 'pd-multiindex' mtype. The original code was written for data in 'nested_univ' mtype, and removing the 'convert_to' will demonstrate that the 'kneighbors' method doesn't work for 'nested_univ' mtype either.
I had used the 'kneighbors' method of sklearn.neighbors.KNeighborsClassifier in the code that I have been refactoring to use with sktime. The panel data format in my previous code was my own inefficient design and the code I wrote to handle it with sklearn pipelines is too lengthy and convoluted to provide here. However, sktime's KNeighborsTimeSeriesClassifier is described in the DocString as "An adapted version of the scikit-learn KNeighborsClassifier for time series data," so it should function the same way.
This is the call stack trace: (also, each time the Jupyter notebook cell is executed, the last two lines are repeated an additional time)
```python
---------------------------------------------------------------------------
TypingError Traceback (most recent call last)
Cell In [43], line 31
23 Xtest = convert_to(pd.DataFrame({
24 'sensor_a': [pd.Series([2.1,2,2]), pd.Series([1.1,1,1]), pd.Series([3.1,3,3])],
25 'sensor_b': [pd.Series([5.1,5,5]), pd.Series([4.1,4,4]), pd.Series([6.1,6,6])],
26 'sensor_c': [pd.Series([8.1,8,8]), pd.Series([7.1,7,7]), pd.Series([9.1,9,9])]
27 }), 'pd-multiindex')
29 display(kntsc.predict(Xtest))
---> 31 kntsc.kneighbors(Xtest)
File ~\Anaconda3\envs\capstone_20221111\lib\site-packages\sktime\classification\distance_based\_time_series_neighbors.py:267, in KNeighborsTimeSeriesClassifier.kneighbors(self, X, n_neighbors, return_distance)
264 self.check_is_fitted()
266 # self._X should be the stored _X
--> 267 dist_mat = self._distance(X, self._X)
269 result = self.knn_estimator_.kneighbors(
270 dist_mat, n_neighbors=n_neighbors, return_distance=return_distance
271 )
273 # result is either dist, or (dist, ind) pair, depending on return_distance
File ~\Anaconda3\envs\capstone_20221111\lib\site-packages\sktime\classification\distance_based\_time_series_neighbors.py:199, in KNeighborsTimeSeriesClassifier._distance(self, X, X2)
196 distance_params = {}
198 if isinstance(distance, str):
--> 199 return pairwise_distance(X, X2, distance, **distance_params)
200 else:
201 if X2 is not None:
File ~\Anaconda3\envs\capstone_20221111\lib\site-packages\sktime\distances\_distance.py:2050, in pairwise_distance(x, y, metric, **kwargs)
1960 def pairwise_distance(
1961 x: np.ndarray,
1962 y: np.ndarray = None,
(...)
1971 **kwargs: Any,
1972 ) -> np.ndarray:
1973 """Compute the pairwise distance matrix between two time series.
1974
1975 First the distance metric is 'resolved'. This means the metric that is passed
(...)
2048 [ 58., 256.]])
2049 """
-> 2050 _x = _make_3d_series(x)
2051 if y is None:
2052 y = x
File ~\Anaconda3\envs\capstone_20221111\lib\site-packages\numba\core\dispatcher.py:468, in _DispatcherBase._compile_for_args(self, *args, **kws)
464 msg = (f"{str(e).rstrip()} \n\nThis error may have been caused "
465 f"by the following argument(s):\n{args_str}\n")
466 e.patch_message(msg)
--> 468 error_rewrite(e, 'typing')
469 except errors.UnsupportedError as e:
470 # Something unsupported is present in the user code, add help info
471 error_rewrite(e, 'unsupported_error')
File ~\Anaconda3\envs\capstone_20221111\lib\site-packages\numba\core\dispatcher.py:409, in _DispatcherBase._compile_for_args.<locals>.error_rewrite(e, issue_type)
407 raise e
408 else:
--> 409 raise e.with_traceback(None)
TypingError: Failed in nopython mode pipeline (step: nopython frontend)
non-precise type pyobject
During: typing of argument at C:\Users\wechs\Anaconda3\envs\capstone_20221111\lib\site-packages\sktime\distances\_numba_utils.py (34)
File "..\..\..\..\Anaconda3\envs\capstone_20221111\lib\site-packages\sktime\distances\_numba_utils.py", line 34:
def _make_3d_series(x: np.ndarray) -> np.ndarray:
<source elided>
"""
num_dims = x.ndim
^
This error may have been caused by the following argument(s):
- argument 0: Cannot determine Numba type of <class 'pandas.core.frame.DataFrame'>
```
**Versions**
System:
python: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:51:29) [MSC v.1929 64 bit (AMD64)]
executable: C:\Users\wechs\Anaconda3\envs\capstone_20221111\python.exe
machine: Windows-10-10.0.19044-SP0
Python dependencies:
pip: 22.3.1
setuptools: 65.5.1
sklearn: 1.1.3
sktime: 0.14.0
statsmodels: 0.13.5
numpy: 1.23.3
scipy: 1.9.3
pandas: 1.4.4
matplotlib: 3.5.3
joblib: 1.2.0
numba: 0.56.3
pmdarima: 2.0.1
tsfresh: 0.19.0
<!-- Thanks for contributing! -->
|
0.0
|
c10cedbf3135d0fa791bb146adf8172dd676f0d4
|
[
"sktime/transformations/series/detrend/tests/test_detrend.py::test_multiplicative_detrending_series",
"sktime/transformations/series/detrend/tests/test_detrend.py::test_additive_detrending_series",
"sktime/transformations/series/detrend/tests/test_detrend.py::test_additive_detrending_dataframe",
"sktime/transformations/series/detrend/tests/test_detrend.py::test_multiplicative_detrending_dataframe",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_kneighbors",
"sktime/regression/distance_based/tests/test_time_series_neighbors.py::test_knn_kneighbors"
] |
[
"sktime/transformations/series/detrend/tests/test_detrend.py::test_polynomial_detrending",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_with_aggrdistance",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[euclidean]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[lcss]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[euclidean]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[wdtw]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[erp]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[edr]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[wdtw]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[msm]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[dtw]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[edr]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[erp]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[msm]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_on_unit_test[dtw]",
"sktime/classification/distance_based/tests/test_time_series_neighbors.py::test_knn_bounding_matrix[lcss]"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2022-12-12 00:31:53+00:00
|
bsd-3-clause
| 5,525 |
|
sktime__sktime-4681
|
diff --git a/docs/source/conf.py b/docs/source/conf.py
index be43df43a..21b7f73e4 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -49,6 +49,7 @@ extensions = [
"myst_parser",
"sphinx_design",
"sphinx_issues",
+ "versionwarning.extension",
]
# Recommended by sphinx_design when using the MyST Parser
@@ -435,3 +436,15 @@ intersphinx_mapping = {
# -- Options for _todo extension ----------------------------------------------
todo_include_todos = False
+
+# sphinx-version-warning config
+versionwarning_messages = {
+ "latest": (
+ "This document is for the development version. "
+ 'For the stable version documentation, see <a href="/en/stable/">here</a>.'
+ )
+}
+
+# Show warning at top of page
+versionwarning_body_selector = "div.document"
+versionwarning_banner_title = ""
diff --git a/pyproject.toml b/pyproject.toml
index 9f31dc096..93acba733 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -128,6 +128,7 @@ docs = [
"sphinx_issues==1.2.0",
"sphinx-gallery==0.6.0",
"sphinx-design==0.3.0",
+ "sphinx-version-warning",
"sphinx==4.1.1",
"tabulate",
]
diff --git a/sktime/forecasting/base/_base.py b/sktime/forecasting/base/_base.py
index e09e0ff28..c25c19d28 100644
--- a/sktime/forecasting/base/_base.py
+++ b/sktime/forecasting/base/_base.py
@@ -1129,10 +1129,7 @@ class BaseForecaster(BaseEstimator):
y_pred = self.predict(fh=fh, X=X)
if not type(y_pred) == type(y):
- raise TypeError(
- "y must have same type, dims, index as expected predict return. "
- f"expected type {type(y_pred)}, but found {type(y)}"
- )
+ y = convert_to(y, self._y_mtype_last_seen)
y_res = y - y_pred
|
sktime/sktime
|
73657f3ec16de96b5319049ef33d3ba5a99d02a2
|
diff --git a/sktime/forecasting/base/tests/test_base_bugs.py b/sktime/forecasting/base/tests/test_base_bugs.py
index 6a92d3037..17d69c598 100644
--- a/sktime/forecasting/base/tests/test_base_bugs.py
+++ b/sktime/forecasting/base/tests/test_base_bugs.py
@@ -9,9 +9,11 @@ from sktime.forecasting.model_selection import (
ExpandingWindowSplitter,
ForecastingGridSearchCV,
)
+from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.reconcile import ReconcilerForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.transformations.hierarchical.aggregate import Aggregator
+from sktime.transformations.series.difference import Differencer
from sktime.utils._testing.hierarchical import _make_hierarchical
from sktime.utils.validation._dependencies import _check_estimator_deps
@@ -58,3 +60,17 @@ def test_heterogeneous_get_fitted_params():
reconciler.fit(y_agg)
reconciler.get_fitted_params() # triggers an error pre-fix
+
+
+def test_predict_residuals_conversion():
+ """Regression test for bugfix #4766, related to predict_residuals internal type."""
+ from sktime.datasets import load_longley
+ from sktime.forecasting.model_selection import temporal_train_test_split
+
+ y, X = load_longley()
+ y_train, y_test, X_train, X_test = temporal_train_test_split(y, X)
+ pipe = Differencer() * NaiveForecaster()
+ pipe.fit(y=y_train, X=X_train, fh=[1, 2, 3, 4])
+ result = pipe.predict_residuals()
+
+ assert type(result) == type(y_train)
|
[DOC] change default documentation version from `latest` (`main` branch) to `stable` (latest tag) in read-the-docs configuration
Currently the [documentation website](https://www.sktime.net) defaults to `latest`, i.e. the `main` branch. So, it is possible that it shows some estimators or arguments which are not yet released and won't be available for the general users who download from `PyPI` or `conda-forge`.
Read-the docs allow to change the default version, and it can be considered to switch to `stable` to refer to [latest semantic version](https://docs.readthedocs.io/en/stable/versions.html). This is likely to be what's used by most of the direct users of `sktime` (i.e. not through another framework whose dependency is `sktime`).
To make the change, the read-the-docs owner can log in, go to `Admin`, go to `Advanced Settings`, change `Default version` and save the changes. It's likely to trigger a new build and then will be in effect once it's complete.
|
0.0
|
73657f3ec16de96b5319049ef33d3ba5a99d02a2
|
[
"sktime/forecasting/base/tests/test_base_bugs.py::test_predict_residuals_conversion"
] |
[] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-06-07 14:13:06+00:00
|
bsd-3-clause
| 5,526 |
|
sktime__sktime-4719
|
diff --git a/sktime/forecasting/compose/_pipeline.py b/sktime/forecasting/compose/_pipeline.py
index 98a23c0d1..9d3aec071 100644
--- a/sktime/forecasting/compose/_pipeline.py
+++ b/sktime/forecasting/compose/_pipeline.py
@@ -1229,6 +1229,7 @@ class ForecastX(BaseForecaster):
_tags = {
"X_inner_mtype": SUPPORTED_MTYPES,
"y_inner_mtype": SUPPORTED_MTYPES,
+ "scitype:y": "both",
"X-y-must-have-same-index": False,
"fit_is_empty": False,
"ignores-exogeneous-X": False,
|
sktime/sktime
|
77f305ae691974f2bdf8bfffb836ed74fa211c48
|
diff --git a/sktime/forecasting/compose/tests/test_pipeline.py b/sktime/forecasting/compose/tests/test_pipeline.py
index a9a11bb25..b818c76e6 100644
--- a/sktime/forecasting/compose/tests/test_pipeline.py
+++ b/sktime/forecasting/compose/tests/test_pipeline.py
@@ -480,3 +480,45 @@ def test_forecastx_logic():
# compare that test and comparison case results are equal
assert np.allclose(y_pred, y_pred_manual)
+
+
+def test_forecastx_attrib_broadcast():
+ """Test ForecastX broadcasting and forecaster attributes."""
+ from sktime.forecasting.compose import ForecastX
+ from sktime.forecasting.naive import NaiveForecaster
+
+ df = pd.DataFrame(
+ {
+ "a": ["series_1", "series_1", "series_1"],
+ "b": pd.to_datetime(["2024-01-01", "2024-01-02", "2024-01-03"]),
+ "c": [1, 2, 3],
+ "d": [4, 5, 6],
+ "e": [7, 8, 9],
+ }
+ )
+ df = df.set_index(["a", "b"])
+
+ model = ForecastX(NaiveForecaster(), NaiveForecaster())
+
+ model_1 = model.clone()
+ model_1.fit(df[["c"]], X=df[["d", "e"]], fh=[1, 2, 3])
+
+ assert hasattr(model_1, "forecaster_X_")
+ assert isinstance(model_1.forecaster_X_, NaiveForecaster)
+ assert model_1.forecaster_X_.is_fitted
+
+ assert hasattr(model_1, "forecaster_y_")
+ assert isinstance(model_1.forecaster_y_, NaiveForecaster)
+ assert model_1.forecaster_y_.is_fitted
+
+ model_2 = model.clone()
+ model_2.fit(df[["c", "d"]], X=df[["e"]], fh=[1, 2, 3])
+ assert hasattr(model_2, "forecaster_X_")
+
+ assert hasattr(model_2, "forecaster_X_")
+ assert isinstance(model_2.forecaster_X_, NaiveForecaster)
+ assert model_2.forecaster_X_.is_fitted
+
+ assert hasattr(model_2, "forecaster_y_")
+ assert isinstance(model_2.forecaster_y_, NaiveForecaster)
+ assert model_2.forecaster_y_.is_fitted
|
[BUG] missing `forecaster_X_` attribute in `ForecastX` estimator in case of multivariate target
Based on [documenation](https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.forecasting.compose.ForecastX.html), `forecaster_X_` should be available whenever `behaviour="update"`, which is the default behaviour. It seems that is only true when `y` is univariate.
## Reproduible Example
```python3
import pandas
from sktime.forecasting.compose import ForecastX
from sktime.forecasting.naive import NaiveForecaster
df = pandas.DataFrame(
{
"a": ["series_1", "series_1", "series_1"],
"b": pandas.to_datetime(["2024-01-01", "2024-01-02", "2024-01-03"]),
"c": [1, 2, 3],
"d": [4, 5, 6],
"e": [7, 8, 9],
}
)
df = df.set_index(["a", "b"])
model = ForecastX(NaiveForecaster(), NaiveForecaster())
model_1 = model.clone()
model_1.fit(df[["c"]], X=df[["d", "e"]], fh=[1, 2, 3])
assert hasattr(model_1, "forecaster_X_")
model_2 = model.clone()
model_2.fit(df[["c", "d"]], X=df[["e"]], fh=[1, 2, 3])
assert not hasattr(model_2, "forecaster_X_")
```
The difference in `model_1` and `model_2` is only that the former is trained with univariate `y`, and the latter is trained with multivariate. Based on the two `assert` behaviours, the `forecaster_X_` attribute is present for `model_1`, but missing for `model_2`.
## Versions
python 3.9.16, sktime 0.19.1, macOS/Ubuntu
## Context
I was trying to get the `X` predictions which are used to eventually predict for `y`. Since there seemed to be no other public method, I was using this attribute to predict with same `fh` passed for `y` predictions. This was working for univariate target, but multivariate started to fail because of the above issue.
|
0.0
|
77f305ae691974f2bdf8bfffb836ed74fa211c48
|
[
"sktime/forecasting/compose/tests/test_pipeline.py::test_forecastx_attrib_broadcast"
] |
[
"sktime/forecasting/compose/tests/test_pipeline.py::test_tag_handles_missing_data",
"sktime/forecasting/compose/tests/test_pipeline.py::test_pipeline_with_detrender",
"sktime/forecasting/compose/tests/test_pipeline.py::test_pipeline",
"sktime/forecasting/compose/tests/test_pipeline.py::test_forecasting_pipeline_dunder_endog",
"sktime/forecasting/compose/tests/test_pipeline.py::test_skip_inverse_transform",
"sktime/forecasting/compose/tests/test_pipeline.py::test_pipeline_with_dimension_changing_transformer"
] |
{
"failed_lite_validators": [
"has_hyperlinks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-06-19 09:24:53+00:00
|
bsd-3-clause
| 5,527 |
|
sktime__sktime-4948
|
diff --git a/.all-contributorsrc b/.all-contributorsrc
index dc55cf738..9e60b703e 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -2228,6 +2228,15 @@
"bug"
]
},
+ {
+ "login": "Gigi1111",
+ "name": "Chung-Fan Tsai",
+ "avatar_url": "https://avatars.githubusercontent.com/Gigi1111",
+ "profile": "https://github.com/Gigi1111",
+ "contributions": [
+ "test"
+ ]
+ },
{
"login": "eyjo",
"name": "Eyjólfur Sigurðsson",
@@ -2243,6 +2252,27 @@
"name": "Julia Kraus",
"avatar_url": "https://avatars.githubusercontent.com/julia-kraus",
"profile": "https://github.com/julia-kraus",
+ "contributions": [
+ "doc",
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "davidgilbertson",
+ "name": "David Gilbertson",
+ "avatar_url": "https://avatars.githubusercontent.com/u/4443482?v=4",
+ "profile": "https://github.com/davidgilbertson",
+ "contributions": [
+ "code",
+ "bug"
+ ]
+ },
+ {
+ "login": "MBristle",
+ "name": "Mirko Bristle",
+ "avatar_url": "https://avatars.githubusercontent.com/MBristle",
+ "profile": "https://github.com/MBristle",
"contributions": [
"doc"
]
diff --git a/docs/source/api_reference/forecasting.rst b/docs/source/api_reference/forecasting.rst
index 4e4dfbce6..d7e9148f0 100644
--- a/docs/source/api_reference/forecasting.rst
+++ b/docs/source/api_reference/forecasting.rst
@@ -428,6 +428,7 @@ Time series splitters can be used in both evaluation and tuning.
SingleWindowSplitter
SlidingWindowSplitter
ExpandingWindowSplitter
+ ExpandingGreedySplitter
.. autosummary::
:toctree: auto_generated/
diff --git a/sktime/forecasting/base/_base.py b/sktime/forecasting/base/_base.py
index acd588550..0cb618146 100644
--- a/sktime/forecasting/base/_base.py
+++ b/sktime/forecasting/base/_base.py
@@ -1232,7 +1232,7 @@ class BaseForecaster(BaseEstimator):
return y_res
def score(self, y, X=None, fh=None):
- """Scores forecast against ground truth, using MAPE.
+ """Scores forecast against ground truth, using MAPE (non-symmetric).
Parameters
----------
@@ -1252,7 +1252,7 @@ class BaseForecaster(BaseEstimator):
Returns
-------
score : float
- sMAPE loss of self.predict(fh, X) with respect to y_test.
+ MAPE loss of self.predict(fh, X) with respect to y_test.
See Also
--------
@@ -1260,12 +1260,12 @@ class BaseForecaster(BaseEstimator):
"""
# no input checks needed here, they will be performed
# in predict and loss function
- # symmetric=True is default for mean_absolute_percentage_error
from sktime.performance_metrics.forecasting import (
mean_absolute_percentage_error,
)
- return mean_absolute_percentage_error(y, self.predict(fh, X))
+ # specify non-symmetric explicitly as it changed in the past
+ return mean_absolute_percentage_error(y, self.predict(fh, X), symmetric=False)
def get_fitted_params(self, deep=True):
"""Get fitted parameters.
diff --git a/sktime/forecasting/croston.py b/sktime/forecasting/croston.py
index 9bf9aaf11..9c2186c78 100644
--- a/sktime/forecasting/croston.py
+++ b/sktime/forecasting/croston.py
@@ -167,7 +167,10 @@ class Croston(BaseForecaster):
-------
params : dict or list of dict
"""
- params1 = {}
- params2 = {"smoothing": 0.42}
+ params = [
+ {},
+ {"smoothing": 0},
+ {"smoothing": 0.42},
+ ]
- return [params1, params2]
+ return params
diff --git a/sktime/forecasting/exp_smoothing.py b/sktime/forecasting/exp_smoothing.py
index a9f4c09d2..62ee6b991 100644
--- a/sktime/forecasting/exp_smoothing.py
+++ b/sktime/forecasting/exp_smoothing.py
@@ -215,18 +215,32 @@ class ExponentialSmoothing(_StatsModelsAdapter):
`MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
`create_test_instance` uses the first (or only) dictionary in `params
"""
- params1 = {}
- params2 = {
- "trend": "mul",
- "damped_trend": True,
- "seasonal": "mul",
- "sp": 2,
- "use_boxcox": False,
- "initialization_method": "heuristic",
- "smoothing_level": 0.1,
- "smoothing_trend": 0.1,
- "damping_trend": 0.42,
- "method": "least_squares",
- }
-
- return [params1, params2]
+ params = [
+ {},
+ {
+ "trend": "mul",
+ "damped_trend": True,
+ "seasonal": "mul",
+ "sp": 2,
+ "use_boxcox": False,
+ "initialization_method": "heuristic",
+ "smoothing_level": 0.1,
+ "smoothing_trend": 0.1,
+ "damping_trend": 0.42,
+ "method": "least_squares",
+ },
+ {
+ "trend": "add",
+ "damped_trend": False,
+ "seasonal": "add",
+ "sp": 2,
+ "use_boxcox": True,
+ "initialization_method": "estimated",
+ "smoothing_level": 0.3,
+ "smoothing_trend": 0.5,
+ "damping_trend": 0.28,
+ "method": "SLSQP",
+ },
+ ]
+
+ return params
diff --git a/sktime/forecasting/model_selection/__init__.py b/sktime/forecasting/model_selection/__init__.py
index 825bba210..c55f73960 100644
--- a/sktime/forecasting/model_selection/__init__.py
+++ b/sktime/forecasting/model_selection/__init__.py
@@ -9,6 +9,7 @@ __all__ = [
"SingleWindowSplitter",
"SlidingWindowSplitter",
"temporal_train_test_split",
+ "ExpandingGreedySplitter",
"ExpandingWindowSplitter",
"TestPlusTrainSplitter",
"ForecastingGridSearchCV",
@@ -18,6 +19,7 @@ __all__ = [
from sktime.forecasting.model_selection._split import (
CutoffSplitter,
+ ExpandingGreedySplitter,
ExpandingWindowSplitter,
SameLocSplitter,
SingleWindowSplitter,
diff --git a/sktime/forecasting/model_selection/_split.py b/sktime/forecasting/model_selection/_split.py
index 5a058f5e1..5fb23b18e 100644
--- a/sktime/forecasting/model_selection/_split.py
+++ b/sktime/forecasting/model_selection/_split.py
@@ -3,6 +3,7 @@
"""Implement dataset splitting for model evaluation and selection."""
__all__ = [
+ "ExpandingGreedySplitter",
"ExpandingWindowSplitter",
"SlidingWindowSplitter",
"CutoffSplitter",
@@ -11,7 +12,14 @@ __all__ = [
"temporal_train_test_split",
"TestPlusTrainSplitter",
]
-__author__ = ["mloning", "kkoralturk", "khrapovs", "chillerobscuro", "fkiraly"]
+__author__ = [
+ "mloning",
+ "kkoralturk",
+ "khrapovs",
+ "chillerobscuro",
+ "fkiraly",
+ "davidgilbertson",
+]
from typing import Iterator, Optional, Tuple, Union
@@ -1185,6 +1193,93 @@ class ExpandingWindowSplitter(BaseWindowSplitter):
return self._split_windows_generic(expanding=True, **kwargs)
+class ExpandingGreedySplitter(BaseSplitter):
+ """Splitter that uses all available data.
+
+ Takes an integer `test_size` that defines the number of steps included in the
+ test set of each fold. The train set of each fold will contain all data before
+ the test set. If the data contains multiple instances, `test_size` is
+ _per instance_.
+
+ If no `step_length` is defined, the test sets (one for each fold) will be
+ adjacent, taken from the end of the dataset.
+
+ For example, with `test_size=7` and `folds=5`, the test sets in total will cover
+ the last 35 steps of the data with no overlap.
+
+ Parameters
+ ----------
+ test_size : int
+ The number of steps included in the test set of each fold.
+ folds : int, default = 5
+ The number of folds.
+ step_length : int, optional
+ The number of steps advanced for each fold. Defaults to `test_size`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from sktime.forecasting.model_selection import ExpandingGreedySplitter
+
+ >>> ts = np.arange(10)
+ >>> splitter = ExpandingGreedySplitter(test_size=3, folds=2)
+ >>> list(splitter.split(ts)) # doctest: +SKIP
+ [
+ (array([0, 1, 2, 3]), array([4, 5, 6])),
+ (array([0, 1, 2, 3, 4, 5, 6]), array([7, 8, 9]))
+ ]
+ """
+
+ _tags = {"split_hierarchical": True}
+
+ def __init__(self, test_size: int, folds: int = 5, step_length: int = None):
+ super().__init__()
+ self.test_size = test_size
+ self.folds = folds
+ self.step_length = step_length
+ self.fh = np.arange(test_size) + 1
+
+ def _split(self, y: pd.Index) -> SPLIT_GENERATOR_TYPE:
+ if isinstance(y, pd.MultiIndex):
+ groups = pd.Series(index=y).groupby(y.names[:-1])
+ reverse_idx = groups.transform("size") - groups.cumcount() - 1
+ else:
+ reverse_idx = np.arange(len(y))[::-1]
+
+ step_length = self.step_length or self.test_size
+
+ for i in reversed(range(self.folds)):
+ tst_end = i * step_length
+ trn_end = tst_end + self.test_size
+ trn_indices = np.flatnonzero(reverse_idx >= trn_end)
+ tst_indices = np.flatnonzero(
+ (reverse_idx < trn_end) & (reverse_idx >= tst_end)
+ )
+ yield trn_indices, tst_indices
+
+ @classmethod
+ def get_test_params(cls, parameter_set="default"):
+ """Return testing parameter settings for the splitter.
+
+ Parameters
+ ----------
+ parameter_set : str, default="default"
+ Name of the set of test parameters to return, for use in tests. If no
+ special parameters are defined for a value, will return `"default"` set.
+
+ Returns
+ -------
+ params : dict or list of dict, default = {}
+ Parameters to create testing instances of the class
+ Each dict are parameters to construct an "interesting" test instance, i.e.,
+ `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
+ `create_test_instance` uses the first (or only) dictionary in `params`
+ """
+ params1 = {"test_size": 1}
+ params2 = {"test_size": 3, "folds": 2, "step_length": 2}
+ return [params1, params2]
+
+
class SingleWindowSplitter(BaseSplitter):
r"""Single window splitter.
|
sktime/sktime
|
f4815d7fcd15e4d8936dce770066062e36ed82a8
|
diff --git a/sktime/forecasting/model_selection/tests/test_split.py b/sktime/forecasting/model_selection/tests/test_split.py
index 3c9ecba60..887551003 100644
--- a/sktime/forecasting/model_selection/tests/test_split.py
+++ b/sktime/forecasting/model_selection/tests/test_split.py
@@ -11,6 +11,7 @@ from sktime.datatypes._utilities import get_cutoff
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.model_selection import (
CutoffSplitter,
+ ExpandingGreedySplitter,
ExpandingWindowSplitter,
SameLocSplitter,
SingleWindowSplitter,
@@ -325,6 +326,92 @@ def test_sliding_window_splitter_start_with_empty_window(
)
+def test_expanding_greedy_splitter_lengths():
+ """Test that ExpandingGreedySplitter returns the correct lengths."""
+ y = np.arange(10)
+ cv = ExpandingGreedySplitter(test_size=2, folds=3)
+
+ lengths = [(len(trn), len(tst)) for trn, tst in cv.split_series(y)]
+ assert lengths == [(4, 2), (6, 2), (8, 2)]
+
+
+def test_expanding_greedy_splitter_dates():
+ """Test that ExpandingGreedySplitter splits on dates correctly."""
+ ts = _make_series(index_type="period")
+ first_date = ts.index[0]
+ last_date = ts.index[-1]
+ cv = ExpandingGreedySplitter(test_size=2, folds=3)
+
+ train_starts = []
+ train_ends = []
+ test_starts = []
+ test_ends = []
+
+ for trn, tst in cv.split_series(ts):
+ train_starts.append(trn.index[0])
+ train_ends.append(trn.index[-1])
+ test_starts.append(tst.index[0])
+ test_ends.append(tst.index[-1])
+
+ assert train_starts == [first_date, first_date, first_date]
+ assert train_ends == [last_date - 6, last_date - 4, last_date - 2]
+ assert test_starts == [last_date - 5, last_date - 3, last_date - 1]
+ assert test_ends == [last_date - 4, last_date - 2, last_date]
+
+
+def test_expanding_greedy_splitter_hierarchy():
+ """Test that ExpandingGreedySplitter handles uneven hierarchical data."""
+ y_panel = _make_hierarchical(
+ hierarchy_levels=(2, 4),
+ max_timepoints=20,
+ min_timepoints=10,
+ same_cutoff=False,
+ )
+
+ cv = ExpandingGreedySplitter(test_size=2, folds=3)
+
+ # Since same_cutoff=False above, we will have a potentially different end date for
+ # each instance in the hierarchy. Below we test that the final fold ends at the
+ # correct end date for each instance
+ last_test_fold = list(cv.split_series(y_panel))[-1][1]
+
+ last_test_dates_actual = (
+ last_test_fold.reset_index(-1)
+ .groupby(last_test_fold.index.names[:-1])
+ .tail(1)["time"]
+ )
+ last_test_dates_expected = (
+ y_panel.reset_index(-1).groupby(y_panel.index.names[:-1]).tail(1)["time"]
+ )
+
+ assert last_test_dates_actual.eq(last_test_dates_expected).all()
+
+
+def test_expanding_greedy_splitter_consecutive():
+ """Test that ExpandingGreedySplitter results in consecutive test periods."""
+ y_panel = _make_hierarchical(
+ hierarchy_levels=(2, 4),
+ max_timepoints=20,
+ min_timepoints=10,
+ same_cutoff=False,
+ )
+
+ cv = ExpandingGreedySplitter(test_size=2, folds=3)
+
+ test_dfs = [tst for _, tst in cv.split_series(y_panel)]
+
+ combined_test_df = pd.concat(test_dfs).sort_index()
+
+ # We check the .diff(). Equal diffs = uniformly spaced timestamps
+ has_consecutive_index = (
+ combined_test_df.reset_index(-1)
+ .groupby(combined_test_df.index.names[:-1])["time"]
+ .agg(lambda s: len(s.diff().value_counts()) == 1)
+ )
+
+ assert has_consecutive_index.all()
+
+
@pytest.mark.parametrize("y", TEST_YS)
@pytest.mark.parametrize("fh", [*TEST_FHS, *TEST_FHS_TIMEDELTA])
@pytest.mark.parametrize("step_length", TEST_STEP_LENGTHS)
|
[DOC] BaseForecaster score function uses MAPE instead of sMAPE as metric
#### Describe the issue linked to the documentation
The [score function](https://github.com/sktime/sktime/blob/ed4efe9e47fa998ad6b21d63b0ac58f932ab1b3f/sktime/forecasting/base/_base.py#L1234C1-L1234C1) of the BaseForecaster suggests the metric that is used for evaluation is sMAPE:
```
Returns
-------
score : float
sMAPE loss of self.predict(fh, X) with respect to y_test.
```
The code calls the [mean_absolute_percentage_error function](https://github.com/sktime/sktime/blob/ed4efe9e47fa998ad6b21d63b0ac58f932ab1b3f/sktime/performance_metrics/forecasting/_functions.py#L1448) without any further parameters.
```
from sktime.performance_metrics.forecasting import (
mean_absolute_percentage_error,
)
return mean_absolute_percentage_error(y, self.predict(fh, X))
```
But the default values of the [mean_absolute_percentage_error function ](https://github.com/sktime/sktime/blob/ed4efe9e47fa998ad6b21d63b0ac58f932ab1b3f/sktime/performance_metrics/forecasting/_functions.py#L1448) are:
```
def mean_absolute_percentage_error(
y_true,
y_pred,
horizon_weight=None,
multioutput="uniform_average",
symmetric=False,
**kwargs,
):
```
and the doc states:
```
...
symmetric : bool, default=False
Calculates symmetric version of metric if True.
...
```
Thus I conclude that instead of the sMAPE, MAPE is returned.
#### Suggest a potential alternative/fix
Either adjust the documentation such that it states that the MAPE metric is used or adjust the implementation by adding the symmetric parameter. I did not investigate if there are other places with the documentation error. ;) Many thanks!!
|
0.0
|
f4815d7fcd15e4d8936dce770066062e36ed82a8
|
[
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-datetime-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-datetime-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_greater_than_window_length[ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-period-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-period-period-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-datetime-datetime-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-int-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_initial_window_smaller_than_window_raise_error",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-range-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_consecutive",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-datetime-timedelta-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-int-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_initial_window_start_with_empty_window_raises_error",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-range-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[-3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_hierarchy",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-datetime-timedelta-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_dates",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_lengths",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-int-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-period-period-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_greater_than_window_length[SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_series_hier",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_same_loc_splitter_hierarchical",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_same_loc_splitter",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_loc",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-int-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-range-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-period-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_smaller_than_window_length[ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-datetime-datetime-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-range-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_smaller_than_window_length[SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_series",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh10-y0]"
] |
[] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-07-24 14:58:45+00:00
|
bsd-3-clause
| 5,528 |
|
sktime__sktime-4998
|
diff --git a/sktime/clustering/k_means.py b/sktime/clustering/k_means.py
index a763875f4..1423a5d7f 100644
--- a/sktime/clustering/k_means.py
+++ b/sktime/clustering/k_means.py
@@ -19,9 +19,15 @@ class TimeSeriesKMeans(TimeSeriesLloyds):
n_clusters: int, defaults = 8
The number of clusters to form as well as the number of
centroids to generate.
- init_algorithm: str, defaults = 'random'
- Method for initializing cluster centers. Any of the following are valid:
- ['kmeans++', 'random', 'forgy']
+ init_algorithm: str, np.ndarray (3d array of shape (n_clusters, n_dimensions,
+ series_length)), defaults = 'random'
+ Method for initializing cluster centers or an array of initial cluster centers.
+ If string, any of the following strings are valid:
+ ['kmeans++', 'random', 'forgy'].
+ If 3D np.ndarray, initializes cluster centers with the provided array. The array
+ must have shape (n_clusters, n_dimensions, series_length) and the number of
+ clusters in the array must be the same as what is provided to the n_clusters
+ argument.
metric: str or Callable, defaults = 'dtw'
Distance metric to compute similarity between time series. Any of the following
are valid: ['dtw', 'euclidean', 'erp', 'edr', 'lcss', 'squared', 'ddtw', 'wdtw',
@@ -204,10 +210,20 @@ class TimeSeriesKMeans(TimeSeriesLloyds):
`MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
`create_test_instance` uses the first (or only) dictionary in `params`
"""
- return {
+ params1 = {
"n_clusters": 2,
"metric": "euclidean",
+ "init_algorithm": "random",
"n_init": 1,
"max_iter": 10,
"random_state": 0,
}
+ params2 = {
+ "n_clusters": 3,
+ "metric": "dtw",
+ "init_algorithm": np.random.normal(size=(3, 4, 10)),
+ "n_init": 1,
+ "max_iter": 15,
+ "random_state": 1,
+ }
+ return [params1, params2]
diff --git a/sktime/clustering/k_medoids.py b/sktime/clustering/k_medoids.py
index c7b1e8c52..2eb531062 100755
--- a/sktime/clustering/k_medoids.py
+++ b/sktime/clustering/k_medoids.py
@@ -19,9 +19,15 @@ class TimeSeriesKMedoids(TimeSeriesLloyds):
n_clusters: int, defaults = 8
The number of clusters to form as well as the number of
centroids to generate.
- init_algorithm: str, defaults = 'forgy'
- Method for initializing cluster centers. Any of the following are valid:
- ['kmeans++', 'random', 'forgy']
+ init_algorithm: str, np.ndarray (3d array of shape (n_clusters, n_dimensions,
+ series_length)), defaults = 'forgy'
+ Method for initializing cluster centers or an array of initial cluster centers.
+ If string, any of the following strings are valid:
+ ['kmeans++', 'random', 'forgy'].
+ If 3D np.ndarray, initializes cluster centers with the provided array. The array
+ must have shape (n_clusters, n_dimensions, series_length) and the number of
+ clusters in the array must be the same as what is provided to the n_clusters
+ argument.
metric: str or Callable, defaults = 'dtw'
Distance metric to compute similarity between time series. Any of the following
are valid: ['dtw', 'euclidean', 'erp', 'edr', 'lcss', 'squared', 'ddtw', 'wdtw',
diff --git a/sktime/clustering/partitioning/_lloyds.py b/sktime/clustering/partitioning/_lloyds.py
index 82f24bd4f..5d7a755c9 100755
--- a/sktime/clustering/partitioning/_lloyds.py
+++ b/sktime/clustering/partitioning/_lloyds.py
@@ -162,9 +162,10 @@ class TimeSeriesLloyds(BaseClusterer, ABC):
n_clusters: int, defaults = 8
The number of clusters to form as well as the number of
centroids to generate.
- init_algorithm: str, defaults = 'forgy'
- Method for initializing cluster centers. Any of the following are valid:
- ['kmeans++', 'random', 'forgy']
+ init_algorithm: str, np.ndarray (3d array of shape (n_clusters, n_dimensions,
+ series_length)), defaults = 'forgy'
+ Method for initializing cluster centers or an array of initial cluster centers.
+ Any of the following strings are valid: ['kmeans++', 'random', 'forgy']
metric: str or Callable, defaults = 'dtw'
Distance metric to compute similarity between time series. Any of the following
are valid: ['dtw', 'euclidean', 'erp', 'edr', 'lcss', 'squared', 'ddtw', 'wdtw',
@@ -240,6 +241,7 @@ class TimeSeriesLloyds(BaseClusterer, ABC):
self._random_state = None
self._init_algorithm = None
+ self._initial_cluster_centers = None
self._distance_params = distance_params
if distance_params is None:
@@ -264,14 +266,33 @@ class TimeSeriesLloyds(BaseClusterer, ABC):
self._random_state = check_random_state(self.random_state)
if isinstance(self.init_algorithm, str):
- self._init_algorithm = self._init_algorithms.get(self.init_algorithm)
- else:
+ if self.init_algorithm not in self._init_algorithms.keys():
+ raise KeyError(
+ f"The string provided for init_algorithm: {self.init_algorithm} is "
+ f"invalid. The following are a list of valid init algorithms "
+ f"strings: {list(self._init_algorithms.keys())}"
+ )
+ self._init_algorithm = self._init_algorithms[self.init_algorithm]
+ elif isinstance(self.init_algorithm, np.ndarray):
+ if self.init_algorithm.ndim != 3:
+ raise ValueError(
+ "The array provided to init_algorithm is invalid. It must be 3D."
+ )
+ if self.init_algorithm.shape[0] != self.n_clusters:
+ raise ValueError(
+ f"The number of centers in init_algorithm and n_clusters must be "
+ f"the same. The number of centres in init_algorithm is "
+ f"{self.init_algorithm.shape[0]} but n_clusters is "
+ f"{self.n_clusters}"
+ )
self._init_algorithm = self.init_algorithm
-
- if not isinstance(self._init_algorithm, Callable):
+ elif isinstance(self._init_algorithm, Callable):
+ self._init_algorithm = self.init_algorithm
+ else:
raise ValueError(
- f"The value provided for init_algorim: {self.init_algorithm} is "
- f"invalid. The following are a list of valid init algorithms strings: "
+ f"The value provided for init_algorithm: {self.init_algorithm} is "
+ f"invalid. It must be either a string, callable or 3D numpy array."
+ f" The following are a list of valid init algorithms strings: "
f"{list(self._init_algorithms.keys())}"
)
@@ -377,12 +398,15 @@ class TimeSeriesLloyds(BaseClusterer, ABC):
Sum of squared distances of samples to their closest cluster center,
weighted by the sample weights if provided.
"""
- cluster_centres = self._init_algorithm(
- X,
- self.n_clusters,
- self._random_state,
- distance_metric=self._distance_metric,
- )
+ if isinstance(self._init_algorithm, np.ndarray):
+ cluster_centres = self._init_algorithm
+ else:
+ cluster_centres = self._init_algorithm(
+ X,
+ self.n_clusters,
+ self._random_state,
+ distance_metric=self._distance_metric,
+ )
old_inertia = np.inf
old_labels = None
for i in range(self.max_iter):
diff --git a/sktime/transformations/series/difference.py b/sktime/transformations/series/difference.py
index a9f205107..47ba58295 100644
--- a/sktime/transformations/series/difference.py
+++ b/sktime/transformations/series/difference.py
@@ -142,10 +142,24 @@ def _inverse_diff(X, lags, X_diff_seq=None):
# invert last lag index
if X_diff_seq is not None:
+ # Get the train time series before the last difference
X_diff_orig = X_diff_seq[len(lags)]
+ # Shift the differenced time series index by the last lag
+ # to match the original time series index
X_ix_shift = _shift(X.index, -lag_last)
+ # Get the original time series values for the intersecting
+ # indices between the shifted index and the original index
X_update = X_diff_orig.loc[X_ix_shift.intersection(X_diff_orig.index)]
-
+ # Set the values of the differenced time series to nan for all indices
+ # that are in the indices of the original and the by the sum of all lags
+ # shifted original time series that are available in the differenced time
+ # series (intersection). These are the indices for which no valid differenced
+ # values exist.
+ X.loc[
+ X_diff_orig.index.difference(
+ _shift(X_diff_orig.index, sum(lags) + lag_last)
+ ).intersection(X.index)
+ ] = np.nan
X = X.combine_first(X_update)
X_diff_last = X.copy()
|
sktime/sktime
|
9f0345bd404aaf332f865d16281730228f27307b
|
diff --git a/sktime/transformations/series/tests/test_differencer.py b/sktime/transformations/series/tests/test_differencer.py
index fc2ee7a89..800f023c7 100644
--- a/sktime/transformations/series/tests/test_differencer.py
+++ b/sktime/transformations/series/tests/test_differencer.py
@@ -168,6 +168,17 @@ def test_differencer_cutoff():
gscv.fit(train_model, X=X_train)
[email protected]("lags", lags_to_test)
[email protected]("index_type", ["int", "datetime"])
+def test_inverse_train_data_fill_zero(lags, index_type):
+ y = y_airline
+ if index_type == "int":
+ y = y.reset_index(drop=True)
+ diff = Differencer(lags).fit(y)
+ result = diff.inverse_transform(diff.transform(y))
+ _assert_array_almost_equal(result, y)
+
+
def test_differencer_inverse_does_not_memorize():
"""Tests that differencer inverse always computes inverse via cumsum.
|
[BUG] Wrong result for `predict_residuals` of`TransformedTargetForecaster` on training data
**Describe the bug**
If `predict_residuals` is called of a `TransformedTargetForecaster` on the training data, the results seems to be wrong. My guess it that internally, the `self._y` of the `TransformedTargetForecaster` is used to calculate the residuals instead of the transformed target data.
**To Reproduce**
<!--
Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve
If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com
-->
```python
from datasets import load_longley
from forecasting.model_selection import temporal_train_test_split
from forecasting.sarimax import SARIMAX
from transformations.series.difference import Differencer
method = "predict_residuals"
y, X = load_longley()
y_train, y_test, X_train, X_test = temporal_train_test_split(y, X)
pipe = Differencer() * SARIMAX()
pipe.fit(y=y_train.to_frame(), X=X_train, fh=[1, 2, 3, 4])
result = pipe.predict_residuals()
result_test = pipe.predict_residuals(y=y_test, X=X_test)
```
In this example, result_test looks like residuals. However, result is far higher and not the residuals.
**Expected behavior**
<!--
A clear and concise description of what you expected to happen.
-->
Also on the training data the residuals should be calculated of the TransformedTargetForecaster applied on the training data.
<!-- Thanks for contributing! -->
|
0.0
|
9f0345bd404aaf332f865d16281730228f27307b
|
[
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-lags6]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-12]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-lags4]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-lags5]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-lags6]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-lags5]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-lags7]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-3]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-3]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-lags3]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-1]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-lags4]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-1]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[int-lags7]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-lags3]",
"sktime/transformations/series/tests/test_differencer.py::test_inverse_train_data_fill_zero[datetime-12]"
] |
[
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-1-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_produces_expected_results[keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-3-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags7-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags3-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-12-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-12-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags6-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_produces_expected_results[drop_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_produces_expected_results[fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-1-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-3-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags3-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags5-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags7-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags6-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags4-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-1-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-1-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags4-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-1-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-12-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-12-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-12-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-12-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags7-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-12-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-3-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags4-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-12-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags4-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags5-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags7-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags4-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags6-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags3-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags5-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags6-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-12-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags7-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags4-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-1-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags4-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-1-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags5-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags7-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags5-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-12-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags3-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags7-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags3-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-1-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-3-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags4-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-12-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-12-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags4-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-1-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-12-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags5-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-1-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-1-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags6-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags5-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags5-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags6-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags4-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags4-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags6-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags7-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags7-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags5-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-12-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags3-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags4-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags5-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags5-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-3-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-3-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags6-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-3-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags6-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags6-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags6-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags7-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-1-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags5-y0-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags7-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags3-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-3-y0-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags3-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags5-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags4-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags7-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-12-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-1-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags4-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags6-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags6-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags5-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags5-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-1-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags7-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-3-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags5-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags3-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[int-lags6-y1-fill_zero]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags6-y0]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-12-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-1-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-1-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[int-lags7-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags4-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_remove_missing_false[datetime-lags7-y1-keep_na]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_same_series[datetime-lags4-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[datetime-lags6-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_prediction[int-lags7-y1]",
"sktime/transformations/series/tests/test_differencer.py::test_differencer_inverse_does_not_memorize"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-08-01 08:55:26+00:00
|
bsd-3-clause
| 5,529 |
|
sktime__sktime-5012
|
diff --git a/.all-contributorsrc b/.all-contributorsrc
index 3441d6560..ed91edebc 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -1740,6 +1740,7 @@
"name": "Benedikt Heidrich",
"profile": "https://github.com/benheid",
"contributions": [
+ "bug",
"code"
]
},
diff --git a/CONTRIBUTORS.md b/CONTRIBUTORS.md
index ad94a9858..238a9a1e6 100644
--- a/CONTRIBUTORS.md
+++ b/CONTRIBUTORS.md
@@ -50,7 +50,7 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
<tr>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/BandaSaiTejaReddy"><img src="https://avatars0.githubusercontent.com/u/31387911?v=4?s=100" width="100px;" alt="BANDASAITEJAREDDY"/><br /><sub><b>BANDASAITEJAREDDY</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=BandaSaiTejaReddy" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=BandaSaiTejaReddy" title="Documentation">📖</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/badrmarani"><img src="https://avatars.githubusercontent.com/badrmarani?s=100" width="100px;" alt="Badr-Eddine Marani"/><br /><sub><b>Badr-Eddine Marani</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=badrmarani" title="Code">💻</a></td>
- <td align="center" valign="top" width="11.11%"><a href="https://github.com/benheid"><img src="?s=100" width="100px;" alt="Benedikt Heidrich"/><br /><sub><b>Benedikt Heidrich</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=benheid" title="Code">💻</a></td>
+ <td align="center" valign="top" width="11.11%"><a href="https://github.com/benheid"><img src="?s=100" width="100px;" alt="Benedikt Heidrich"/><br /><sub><b>Benedikt Heidrich</b></sub></a><br /><a href="https://github.com/sktime/sktime/issues?q=author%3Abenheid" title="Bug reports">🐛</a> <a href="https://github.com/sktime/sktime/commits?author=benheid" title="Code">💻</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/benjaminbluhm"><img src="?s=100" width="100px;" alt="Benjamin Bluhm"/><br /><sub><b>Benjamin Bluhm</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=benjaminbluhm" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=benjaminbluhm" title="Documentation">📖</a> <a href="#example-benjaminbluhm" title="Examples">💡</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://haskarb.github.io/"><img src="https://avatars.githubusercontent.com/u/20501023?v=4?s=100" width="100px;" alt="Bhaskar Dhariyal"/><br /><sub><b>Bhaskar Dhariyal</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=haskarb" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=haskarb" title="Tests">⚠️</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/BINAYKUMAR943"><img src="https://avatars.githubusercontent.com/u/38756834?v=4?s=100" width="100px;" alt="Binay Kumar"/><br /><sub><b>Binay Kumar</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=BINAYKUMAR943" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=BINAYKUMAR943" title="Documentation">📖</a> <a href="https://github.com/sktime/sktime/commits?author=BINAYKUMAR943" title="Tests">⚠️</a></td>
diff --git a/sktime/forecasting/model_selection/_split.py b/sktime/forecasting/model_selection/_split.py
index 9fca2a4da..81f7c2907 100644
--- a/sktime/forecasting/model_selection/_split.py
+++ b/sktime/forecasting/model_selection/_split.py
@@ -1089,12 +1089,38 @@ class BaseWindowSplitter(BaseSplitter):
n_splits : int
The number of splits.
"""
+ from sktime.datatypes import check_is_scitype, convert
+
if y is None:
raise ValueError(
f"{self.__class__.__name__} requires `y` to compute the "
f"number of splits."
)
- return len(self.get_cutoffs(y))
+
+ multi_scitypes = ["Hierarchical", "Panel"]
+ is_non_single, _, metadata = check_is_scitype(y, multi_scitypes, [])
+
+ # n_splits based on the first instance of the lowest level series cutoffs
+ if is_non_single:
+ from_mtype = metadata.get("mtype")
+ scitype = metadata.get("scitype")
+ if scitype == "Panel":
+ to_mtype = "pd-multiindex"
+ else:
+ to_mtype = "pd_multiindex_hier"
+
+ y = convert(y, from_type=from_mtype, to_type=to_mtype, as_scitype=scitype)
+
+ index = self._coerce_to_index(y)
+ for _, values in y.groupby(index.droplevel(-1)):
+ # convert to a single ts
+ instance_series = values.reset_index().iloc[:, -2:]
+ instance_series.set_index(instance_series.columns[0], inplace=True)
+ n_splits = len(self.get_cutoffs(instance_series))
+ break
+ else:
+ n_splits = len(self.get_cutoffs(y))
+ return n_splits
def get_cutoffs(self, y: Optional[ACCEPTED_Y_TYPES] = None) -> np.ndarray:
"""Return the cutoff points in .iloc[] context.
diff --git a/sktime/transformations/series/subset.py b/sktime/transformations/series/subset.py
index a578e966d..d82b6a0ee 100644
--- a/sktime/transformations/series/subset.py
+++ b/sktime/transformations/series/subset.py
@@ -160,6 +160,7 @@ class ColumnSelect(BaseTransformer):
"fit_is_empty": True,
"univariate-only": False,
"capability:inverse_transform": False,
+ "skip-inverse-transform": True,
}
def __init__(self, columns=None, integer_treatment="col", index_treatment="remove"):
|
sktime/sktime
|
ff6f059c5d78af345c061209147fd42c1c7d6cdf
|
diff --git a/sktime/forecasting/model_selection/tests/test_split.py b/sktime/forecasting/model_selection/tests/test_split.py
index 82f1e03c4..12e9955fc 100644
--- a/sktime/forecasting/model_selection/tests/test_split.py
+++ b/sktime/forecasting/model_selection/tests/test_split.py
@@ -32,6 +32,7 @@ from sktime.forecasting.tests._config import (
)
from sktime.utils._testing.forecasting import _make_fh
from sktime.utils._testing.hierarchical import _make_hierarchical
+from sktime.utils._testing.panel import _make_panel
from sktime.utils._testing.series import _make_series
from sktime.utils.datetime import _coerce_duration_to_int
from sktime.utils.validation import (
@@ -43,6 +44,10 @@ from sktime.utils.validation import (
from sktime.utils.validation.forecasting import check_fh
N_TIMEPOINTS = 30
+TEST_Y_PANEL_HIERARCHICAL = [
+ _make_hierarchical((2, 2), N_TIMEPOINTS, N_TIMEPOINTS),
+ _make_panel(n_instances=2, n_timepoints=N_TIMEPOINTS),
+]
def _get_windows(cv, y):
@@ -722,3 +727,32 @@ def test_hierachical_singlewindowsplitter():
splitter = SingleWindowSplitter(fh=[1, 2], window_length=10)
splits = list(splitter.split(y))
assert len(splits) == 1, "Should only be one split"
+
+
[email protected]("CV", [SlidingWindowSplitter, ExpandingWindowSplitter])
[email protected]("fh", [*TEST_FHS, *TEST_FHS_TIMEDELTA])
[email protected]("window_length", TEST_WINDOW_LENGTHS)
[email protected]("step_length", TEST_STEP_LENGTHS)
+def test_windowbase_splitter_get_n_split_hierarchical(
+ CV, fh, window_length, step_length
+):
+ """Test that WindowBaseSplitter.get_n_splits works for hierarchical data."""
+ # see bugs 4971
+ y = TEST_Y_PANEL_HIERARCHICAL[0] # hierachical data
+ if _inputs_are_supported([fh, window_length, step_length]):
+ cv = CV(fh, window_length, step_length)
+ assert cv.get_n_splits(y) == len(
+ list(cv.split(y))
+ ), "get_n_splits does not equal the number of splits in the output."
+
+
[email protected]("y", TEST_Y_PANEL_HIERARCHICAL)
[email protected]("CV", [SlidingWindowSplitter, ExpandingWindowSplitter])
+def test_windowbase_splitter_get_n_split_unequal_series(y, CV):
+ y_unequal = y.copy() # avoid changing original dataset
+ y_unequal.iloc[:3, :] = None # make the first series shorter than the rest
+ y_unequal.dropna(inplace=True)
+ cv = CV([1], 24, 1)
+ assert cv.get_n_splits(y_unequal) == len(
+ list(cv.split(y_unequal))
+ ), "get_n_splits does not equal the number of splits in the output."
diff --git a/sktime/transformations/series/tests/test_subset.py b/sktime/transformations/series/tests/test_subset.py
index 2137b95e5..f400a5794 100644
--- a/sktime/transformations/series/tests/test_subset.py
+++ b/sktime/transformations/series/tests/test_subset.py
@@ -7,6 +7,7 @@ import pandas as pd
import pytest
from sktime.datasets import load_airline, load_longley
+from sktime.forecasting.naive import NaiveForecaster
from sktime.transformations.series.subset import ColumnSelect, IndexSubset
@@ -49,3 +50,10 @@ def test_columnselect_int():
X_subset = transformer.fit_transform(X=X)
assert X_subset.columns.equals(X.columns[[0, 2, 4]])
+
+
+def test_columnselect_as_first_step_in_transformedtargetforecaster():
+ y = load_longley()[1][["GNP", "UNEMP"]]
+ fc = ColumnSelect(["GNP"]) * NaiveForecaster()
+ fc.fit(y)
+ fc.predict(fh=[1])
|
[BUG] get_n_splits of window splitter does not reflect the number of splits for hierarchical data
**Describe the bug**
<!--
A clear and concise description of what the bug is.
-->
`get_n_splits` method returns the wrong number of splits when hierarchical data is passed into window based splitter.
**To Reproduce**
```python
from sktime.utils._testing.hierarchical import _make_hierarchical
from sktime.forecasting.model_selection import ExpandingWindowSplitter, SlidingWindowSplitter
y_hierarchical = _make_hierarchical(hierarchy_levels=(2, 3), min_timepoints=12, max_timepoints=12, random_state=0)
fh = [1]
step_length = 1
window_length = 10
# each unique series (lowest hierachical level) should have two splits
cv = ExpandingWindowSplitter(initial_window=window_length, fh=fh, step_length=step_length)
sliding = SlidingWindowSplitter(fh=fh, window_length=window_length, step_length=step_length, start_with_window=True)
n_splits_cv = cv.get_n_splits(y_hierarchical)
n_splits_sliding = sliding.get_n_splits(y_hierarchical)
print(f"Expanding Window splits : {n_splits_cv}")
print(f"Sliding Window Number of splits : {n_splits_sliding}")
```
Output
```
Expanding Window Number of splits : 62
Sliding Window Number of splits : 62
```
**Expected behavior**
<!--
A clear and concise description of what you expected to happen.
-->
Shouldnt the number of split is based on either of these two?:
1. Return number of splits based on datatype train/test splits which is two in this case
```python
print(f"Expanding Window splits: {len(list(cv.split(y_hierarchical)))}")
print(f"Sliding Window splits: {len(list(sliding.split(y_hierarchical)))}")
```
2. Return number of splits based on splits of the lowest hierachical level series. In this case it will be 6 * 2 = 12
**Versions**
<details>
System:
python: 3.9.17 (main, Jul 5 2023, 20:47:11) [MSC v.1916 64 bit (AMD64)]
machine: Windows-10-10.0.19045-SP0
Python dependencies:
pip: 23.2.1
sktime: 0.21.0
sklearn: 1.3.0
skbase: 0.4.6
numpy: 1.24.3
scipy: 1.11.1
pandas: 2.0.3
matplotlib: 3.7.2
joblib: 1.3.1
statsmodels: 0.14.0
numba: 0.57.1
pmdarima: 2.0.3
tsfresh: 0.20.1
tensorflow: 2.13.0
tensorflow_probability: None
</details>
|
0.0
|
ff6f059c5d78af345c061209147fd42c1c7d6cdf
|
[
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_unequal_series[ExpandingWindowSplitter-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_unequal_series[SlidingWindowSplitter-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_unequal_series[SlidingWindowSplitter-y1]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_unequal_series[ExpandingWindowSplitter-y1]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh5-ExpandingWindowSplitter]",
"sktime/transformations/series/tests/test_subset.py::test_columnselect_as_first_step_in_transformedtargetforecaster"
] |
[
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_series_hier",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_hierachical_singlewindowsplitter",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_lengths",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_same_loc_splitter_hierarchical",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-period-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_series",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_initial_window_start_with_empty_window_raises_error",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-datetime-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-datetime-datetime-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_smaller_than_window_length[ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-range-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-datetime-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-range-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-int-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-datetime-timedelta-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-period-period-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-period-period-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_initial_window_smaller_than_window_raise_error",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-int-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-datetime-datetime-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_greater_than_window_length[SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_loc",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length2-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_greater_than_window_length[ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_same_loc_splitter",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-datetime-timedelta-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-period-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4--3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length3-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-0-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_window_splitter_in_sample_fh_smaller_than_window_length[SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh9-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length4-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length4--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh9-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length4-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[1-int-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-range-int-False]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh5-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-range-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_consecutive",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-1-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length5-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh10-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh6-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-1-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length3-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh8-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_split_by_fh[values1-int-int-True]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh6-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length2-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length4-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-window_length2-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length3--3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh11-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh9-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-0-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh10-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh6-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length3-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh3-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length2-fh1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh5-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_dates",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh10-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-1-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh6-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3-0-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length4-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_greedy_splitter_hierarchy",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length3--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-window_length5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-5-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-1-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-1-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh11-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh9-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length3-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length4-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length5-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh5-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length3-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-window_length3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length3-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh1-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-window_length5--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length2-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[5-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-0-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-5-fh7-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh7-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-initial_window3-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh3-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-5-window_length3-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[1-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-5-fh8-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh8-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length5-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length3--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter[window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length4-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length4-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-1-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length2-window_length3-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-1-window_length4-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-0-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh8-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length4-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-1-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length3-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length3-1-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length4-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length2-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-initial_window5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length3-fh1-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh7-cutoffs2-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[1-initial_window3-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5--3-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-window_length3-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length2-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-1-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length4-window_length3-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_initial_window_zero[step_length4-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length3-1-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length5-1-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-1-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length5-fh10-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-1-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length5-5-0-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-5-fh7-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length2-initial_window2-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length5-fh6-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-1--3-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-1--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh1-cutoffs3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-window_length5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-1-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-5-1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length3-window_length3-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length2-1-fh11-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length4-fh10-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2--3-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[1-fh5-cutoffs4-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-1-5-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length4-window_length3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh8-SlidingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[5-window_length2-fh5-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-5-window_length4-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length4-window_length4-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[5-5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[5-initial_window3-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-1-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-1-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[1-5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length5-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length4-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length2-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length2-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-window_length5--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-5-1-fh3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length2-5-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-1-fh5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length3-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[1-window_length4-fh9-ExpandingWindowSplitter]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window4--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[5-fh5-cutoffs5-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length2-initial_window2--3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length5-0-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[5-initial_window5-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-1-window_length5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length2-1-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter_start_with_empty_window[step_length4-initial_window5-fh1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-step_length4-window_length2-fh7-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length4-window_length3-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length3-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_single_window_splitter_default_window_length[-3-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-5-fh10-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_cutoff_window_splitter[window_length2-fh11-cutoffs1-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length3-5-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_expanding_window_splitter[step_length3-initial_window2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length3-window_length4-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length5-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-5-window_length3-fh1-y0]",
"sktime/transformations/series/tests/test_subset.py::test_columnselect_int",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window2-step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[10-step_length2-window_length2-fh9-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length2-window_length2-fh6-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[7-1-window_length2-1-y0]",
"sktime/transformations/series/tests/test_subset.py::test_indexsubset_indextreatment[remove]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter[step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window3-step_length5-window_length2-fh8-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_windowbase_splitter_get_n_split_hierarchical[step_length3-5-fh6-ExpandingWindowSplitter]",
"sktime/transformations/series/tests/test_subset.py::test_columnselect_indextreatment[keep]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window4-step_length5-window_length3-fh11-y0]",
"sktime/transformations/series/tests/test_subset.py::test_indexsubset_indextreatment[keep]",
"sktime/transformations/series/tests/test_subset.py::test_columnselect_indextreatment[remove]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_start_with_empty_window[step_length5-window_length5-fh11-y0]",
"sktime/forecasting/model_selection/tests/test_split.py::test_sliding_window_splitter_with_initial_window[initial_window5-step_length4-window_length5-fh8-y0]"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-08-03 00:45:56+00:00
|
bsd-3-clause
| 5,530 |
|
sktime__sktime-5169
|
diff --git a/examples/02a_classification_multivariate_cnn.ipynb b/examples/02a_classification_multivariate_cnn.ipynb
index c2a097c52..f4b464240 100644
--- a/examples/02a_classification_multivariate_cnn.ipynb
+++ b/examples/02a_classification_multivariate_cnn.ipynb
@@ -71,7 +71,7 @@
"metadata": {},
"outputs": [],
"source": [
- "network = CNNClassifier(n_epochs=200, verbose=True)\n",
+ "network = CNNClassifier(n_epochs=50, verbose=True)\n",
"network.fit(X_train, y_train)\n",
"network.score(X_test, y_test)"
]
@@ -97,7 +97,7 @@
"outputs": [],
"source": [
"param_grid = {\"kernel_size\": [7, 9], \"avg_pool_size\": [3, 5]}\n",
- "grid = GridSearchCV(network, param_grid=param_grid, cv=5)\n",
+ "grid = GridSearchCV(network, param_grid=param_grid, cv=3)\n",
"grid.fit(X_train, y_train)\n",
"\n",
"print(\"Best cross-validation accuracy: {:.2f}\".format(grid.best_score_))\n",
@@ -133,5 +133,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
-
}
diff --git a/examples/02b_classification_multivariate_lstmfcn.ipynb b/examples/02b_classification_multivariate_lstmfcn.ipynb
index b11ec338b..c7486fc88 100644
--- a/examples/02b_classification_multivariate_lstmfcn.ipynb
+++ b/examples/02b_classification_multivariate_lstmfcn.ipynb
@@ -75,7 +75,7 @@
"metadata": {},
"outputs": [],
"source": [
- "network = LSTMFCNClassifier(n_epochs=200, verbose=0)\n",
+ "network = LSTMFCNClassifier(n_epochs=65, verbose=0)\n",
"network.fit(X_train, y_train)\n",
"network.score(X_test, y_test)"
]
diff --git a/examples/02c_classification_multivariate_inceptiontime.ipynb b/examples/02c_classification_multivariate_inceptiontime.ipynb
index 5bf5c433c..6094630fd 100644
--- a/examples/02c_classification_multivariate_inceptiontime.ipynb
+++ b/examples/02c_classification_multivariate_inceptiontime.ipynb
@@ -87,7 +87,7 @@
},
"outputs": [],
"source": [
- "network = InceptionTimeClassifier(n_epochs=200, verbose=False)\n",
+ "network = InceptionTimeClassifier(n_epochs=75, verbose=False)\n",
"network.fit(X_train, y_train)\n",
"network.score(X_test, y_test)"
]
@@ -126,9 +126,9 @@
"metadata": {
"file_extension": ".py",
"kernelspec": {
- "name": "python3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
- "display_name": "Python 3 (ipykernel)"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -150,5 +150,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
-
}
diff --git a/examples/dictionary_based_classification.ipynb b/examples/dictionary_based_classification.ipynb
index f65398b23..bb756d52b 100644
--- a/examples/dictionary_based_classification.ipynb
+++ b/examples/dictionary_based_classification.ipynb
@@ -346,7 +346,7 @@
"source": [
"# Recommended non-contract TDE parameters\n",
"tde_u = TemporalDictionaryEnsemble(\n",
- " n_parameter_samples=250,\n",
+ " n_parameter_samples=50,\n",
" max_ensemble_size=50,\n",
" randomly_selected_params=50,\n",
" random_state=47,\n",
@@ -395,7 +395,7 @@
"source": [
"# Recommended non-contract TDE parameters\n",
"tde_mv = TemporalDictionaryEnsemble(\n",
- " n_parameter_samples=250,\n",
+ " n_parameter_samples=50,\n",
" max_ensemble_size=50,\n",
" randomly_selected_params=50,\n",
" random_state=47,\n",
diff --git a/sktime/forecasting/model_selection/_tune.py b/sktime/forecasting/model_selection/_tune.py
index 704121477..e7de352f8 100644
--- a/sktime/forecasting/model_selection/_tune.py
+++ b/sktime/forecasting/model_selection/_tune.py
@@ -2,7 +2,7 @@
# copyright: sktime developers, BSD-3-Clause License (see LICENSE file)
"""Implements grid search functionality to tune forecasters."""
-__author__ = ["mloning"]
+__author__ = ["mloning", "fkiraly", "aiwalter"]
__all__ = [
"ForecastingGridSearchCV",
"ForecastingRandomizedSearchCV",
@@ -11,6 +11,7 @@ __all__ = [
from collections.abc import Sequence
from typing import Dict, List, Optional, Union
+from warnings import warn
import numpy as np
import pandas as pd
@@ -36,6 +37,8 @@ class BaseGridSearch(_DelegatedForecaster):
"capability:pred_int:insample": True,
}
+ # todo 0.24.0: replace all tune_by_variable defaults in this file with False
+ # remove deprecation message in BaseGridSearch.__init__
def __init__(
self,
forecaster,
@@ -50,6 +53,8 @@ class BaseGridSearch(_DelegatedForecaster):
return_n_best_forecasters=1,
update_behaviour="full_refit",
error_score=np.nan,
+ tune_by_instance=False,
+ tune_by_variable=None,
):
self.forecaster = forecaster
self.cv = cv
@@ -63,13 +68,30 @@ class BaseGridSearch(_DelegatedForecaster):
self.return_n_best_forecasters = return_n_best_forecasters
self.update_behaviour = update_behaviour
self.error_score = error_score
+ self.tune_by_instance = tune_by_instance
+ self.tune_by_variable = tune_by_variable
+
super().__init__()
+
+ # todo 0.24.0: remove this
+ if tune_by_variable is None:
+ warn(
+ f"in {self.__class__.__name__}, the default for tune_by_variable "
+ "will change from True to False in 0.24.0. "
+ "This will tune one parameter setting for all variables, while "
+ "currently it tunes one parameter per variable. "
+ "In order to maintain the current behaviour, ensure to set "
+ "the parameter tune_by_variable to True explicitly before upgrading "
+ "to version 0.24.0.",
+ DeprecationWarning,
+ )
+ tune_by_variable = True
+
tags_to_clone = [
"requires-fh-in-fit",
"capability:pred_int",
"capability:pred_int:insample",
"capability:insample",
- "scitype:y",
"ignores-exogeneous-X",
"handles-missing-data",
"y_inner_mtype",
@@ -81,6 +103,11 @@ class BaseGridSearch(_DelegatedForecaster):
self._extend_to_all_scitypes("y_inner_mtype")
self._extend_to_all_scitypes("X_inner_mtype")
+ # this ensures univariate broadcasting over variables
+ # if tune_by_variable is True
+ if tune_by_variable:
+ self.set_tags(**{"scitype:y": "univariate"})
+
# attribute for _DelegatedForecaster, which then delegates
# all non-overridden methods are same as of getattr(self, _delegate_name)
# see further details in _DelegatedForecaster docstring
@@ -91,6 +118,11 @@ class BaseGridSearch(_DelegatedForecaster):
Mutates self tag with name `tagname`.
If no mtypes are present of a time series scitype, adds a pandas based one.
+ If only univariate pandas scitype is present for Series ("pd.Series"),
+ also adds the multivariate one ("pd.DataFrame").
+
+ If tune_by_instance is True, only Series mtypes are added,
+ and potentially present Panel or Hierarchical mtypes are removed.
Parameters
----------
@@ -104,12 +136,22 @@ class BaseGridSearch(_DelegatedForecaster):
if not isinstance(tagval, list):
tagval = [tagval]
scitypes = mtype_to_scitype(tagval, return_unique=True)
+ # if no Series mtypes are present, add pd.DataFrame
if "Series" not in scitypes:
tagval = tagval + ["pd.DataFrame"]
+ # ensure we have a Series mtype capable of multivariate
+ elif "pd.Series" in tagval and "pd.DataFrame" not in tagval:
+ tagval = ["pd.DataFrame"] + tagval
+ # if no Panel mtypes are present, add pd.DataFrame based one
if "Panel" not in scitypes:
tagval = tagval + ["pd-multiindex"]
+ # if no Hierarchical mtypes are present, add pd.DataFrame based one
if "Hierarchical" not in scitypes:
tagval = tagval + ["pd_multiindex_hier"]
+
+ if self.tune_by_instance:
+ tagval = [x for x in tagval if mtype_to_scitype(x) == "Series"]
+
self.set_tags(**{tagname: tagval})
def _get_fitted_params(self):
@@ -418,6 +460,22 @@ class ForecastingGridSearchCV(BaseGridSearch):
Value to assign to the score if an exception occurs in estimator fitting. If set
to "raise", the exception is raised. If a numeric value is given,
FitFailedWarning is raised.
+ tune_by_instance : bool, optional (default=False)
+ Whether to tune parameter by each time series instance separately,
+ in case of Panel or Hierarchical data passed to the tuning estimator.
+ Only applies if time series passed are Panel or Hierarchical.
+ If True, clones of the forecaster will be fit to each instance separately,
+ and are available in fields of the forecasters_ attribute.
+ Has the same effect as applying ForecastByLevel wrapper to self.
+ If False, the same best parameter is selected for all instances.
+ tune_by_variable : bool, optional (default=True)
+ Whether to tune parameter by each time series variable separately,
+ in case of multivariate data passed to the tuning estimator.
+ Only applies if time series passed are strictly multivariate.
+ If True, clones of the forecaster will be fit to each variable separately,
+ and are available in fields of the forecasters_ attribute.
+ Has the same effect as applying ColumnEnsembleForecaster wrapper to self.
+ If False, the same best parameter is selected for all variables.
Attributes
----------
@@ -441,6 +499,12 @@ class ForecastingGridSearchCV(BaseGridSearch):
n_best_scores_: list of float
The scores of n_best_forecasters_ sorted from best to worst
score of forecasters
+ forecasters_ : pd.DataFramee
+ DataFrame with all fitted forecasters and their parameters.
+ Only present if tune_by_instance=True or tune_by_variable=True,
+ and at least one of the two is applicable.
+ In this case, the other attributes are not present in self,
+ only in the fields of forecasters_.
Examples
--------
@@ -520,6 +584,8 @@ class ForecastingGridSearchCV(BaseGridSearch):
backend="loky",
update_behaviour="full_refit",
error_score=np.nan,
+ tune_by_instance=False,
+ tune_by_variable=None,
):
super().__init__(
forecaster=forecaster,
@@ -534,6 +600,8 @@ class ForecastingGridSearchCV(BaseGridSearch):
backend=backend,
update_behaviour=update_behaviour,
error_score=error_score,
+ tune_by_instance=tune_by_instance,
+ tune_by_variable=tune_by_variable,
)
self.param_grid = param_grid
@@ -701,6 +769,22 @@ class ForecastingRandomizedSearchCV(BaseGridSearch):
Value to assign to the score if an exception occurs in estimator fitting. If set
to "raise", the exception is raised. If a numeric value is given,
FitFailedWarning is raised.
+ tune_by_instance : bool, optional (default=False)
+ Whether to tune parameter by each time series instance separately,
+ in case of Panel or Hierarchical data passed to the tuning estimator.
+ Only applies if time series passed are Panel or Hierarchical.
+ If True, clones of the forecaster will be fit to each instance separately,
+ and are available in fields of the forecasters_ attribute.
+ Has the same effect as applying ForecastByLevel wrapper to self.
+ If False, the same best parameter is selected for all instances.
+ tune_by_variable : bool, optional (default=True)
+ Whether to tune parameter by each time series variable separately,
+ in case of multivariate data passed to the tuning estimator.
+ Only applies if time series passed are strictly multivariate.
+ If True, clones of the forecaster will be fit to each variable separately,
+ and are available in fields of the forecasters_ attribute.
+ Has the same effect as applying ColumnEnsembleForecaster wrapper to self.
+ If False, the same best parameter is selected for all variables.
Attributes
----------
@@ -718,6 +802,12 @@ class ForecastingRandomizedSearchCV(BaseGridSearch):
n_best_scores_: list of float
The scores of n_best_forecasters_ sorted from best to worst
score of forecasters
+ forecasters_ : pd.DataFramee
+ DataFrame with all fitted forecasters and their parameters.
+ Only present if tune_by_instance=True or tune_by_variable=True,
+ and at least one of the two is applicable.
+ In this case, the other attributes are not present in self,
+ only in the fields of forecasters_.
"""
def __init__(
@@ -737,6 +827,8 @@ class ForecastingRandomizedSearchCV(BaseGridSearch):
backend="loky",
update_behaviour="full_refit",
error_score=np.nan,
+ tune_by_instance=False,
+ tune_by_variable=None,
):
super().__init__(
forecaster=forecaster,
@@ -751,6 +843,8 @@ class ForecastingRandomizedSearchCV(BaseGridSearch):
backend=backend,
update_behaviour=update_behaviour,
error_score=error_score,
+ tune_by_instance=tune_by_instance,
+ tune_by_variable=tune_by_variable,
)
self.param_distributions = param_distributions
self.n_iter = n_iter
@@ -906,6 +1000,22 @@ class ForecastingSkoptSearchCV(BaseGridSearch):
backend : str, optional (default="loky")
Specify the parallelisation backend implementation in joblib, where
"loky" is used by default.
+ tune_by_instance : bool, optional (default=False)
+ Whether to tune parameter by each time series instance separately,
+ in case of Panel or Hierarchical data passed to the tuning estimator.
+ Only applies if time series passed are Panel or Hierarchical.
+ If True, clones of the forecaster will be fit to each instance separately,
+ and are available in fields of the forecasters_ attribute.
+ Has the same effect as applying ForecastByLevel wrapper to self.
+ If False, the same best parameter is selected for all instances.
+ tune_by_variable : bool, optional (default=True)
+ Whether to tune parameter by each time series variable separately,
+ in case of multivariate data passed to the tuning estimator.
+ Only applies if time series passed are strictly multivariate.
+ If True, clones of the forecaster will be fit to each variable separately,
+ and are available in fields of the forecasters_ attribute.
+ Has the same effect as applying ColumnEnsembleForecaster wrapper to self.
+ If False, the same best parameter is selected for all variables.
Attributes
----------
@@ -923,6 +1033,12 @@ class ForecastingSkoptSearchCV(BaseGridSearch):
n_best_scores_: list of float
The scores of n_best_forecasters_ sorted from best to worst
score of forecasters
+ forecasters_ : pd.DataFramee
+ DataFrame with all fitted forecasters and their parameters.
+ Only present if tune_by_instance=True or tune_by_variable=True,
+ and at least one of the two is applicable.
+ In this case, the other attributes are not present in self,
+ only in the fields of forecasters_.
Examples
--------
@@ -982,6 +1098,8 @@ class ForecastingSkoptSearchCV(BaseGridSearch):
backend: str = "loky",
update_behaviour: str = "full_refit",
error_score=np.nan,
+ tune_by_instance=False,
+ tune_by_variable=None,
):
self.param_distributions = param_distributions
self.n_iter = n_iter
@@ -1001,6 +1119,8 @@ class ForecastingSkoptSearchCV(BaseGridSearch):
backend=backend,
update_behaviour=update_behaviour,
error_score=error_score,
+ tune_by_instance=tune_by_instance,
+ tune_by_variable=tune_by_variable,
)
def _fit(self, y, X=None, fh=None):
|
sktime/sktime
|
809ce86ee613d6a602585a6bcd3502cbbdc7c942
|
diff --git a/sktime/forecasting/model_selection/tests/test_tune.py b/sktime/forecasting/model_selection/tests/test_tune.py
index 12afc70a7..f374e51a6 100644
--- a/sktime/forecasting/model_selection/tests/test_tune.py
+++ b/sktime/forecasting/model_selection/tests/test_tune.py
@@ -1,9 +1,8 @@
#!/usr/bin/env python3 -u
# copyright: sktime developers, BSD-3-Clause License (see LICENSE file)
-"""Test grid search CV."""
+"""Test forecasting tuners."""
__author__ = ["mloning", "fkiraly"]
-__all__ = ["test_gscv", "test_rscv"]
import numpy as np
import pytest
@@ -81,12 +80,13 @@ def _check_cv(forecaster, tuner, cv, param_grid, y, X, scoring):
assert param_grid[best_idx].items() <= fitted_params.items()
-def _create_hierarchical_data():
+def _create_hierarchical_data(n_columns=1):
y = _make_hierarchical(
random_state=TEST_RANDOM_SEEDS[0],
hierarchy_levels=(2, 2),
min_timepoints=15,
max_timepoints=15,
+ n_columns=n_columns,
)
X = _make_hierarchical(
random_state=TEST_RANDOM_SEEDS[1],
@@ -97,7 +97,10 @@ def _create_hierarchical_data():
return y, X
-NAIVE = NaiveForecaster(strategy="mean")
+# estimator fixtures used for tuning
+# set_tags in NaiveForecaster ensures that it is univariate and broadcasts
+# this is currently the case, but a future improved NaiveForecaster may reduce coverage
+NAIVE = NaiveForecaster(strategy="mean").set_tags(**{"scitype:y": "univariate"})
NAIVE_GRID = {"window_length": TEST_WINDOW_LENGTHS_INT}
PIPE = TransformedTargetForecaster(
[
@@ -126,15 +129,24 @@ ERROR_SCORES = [np.nan, "raise", 1000]
@pytest.mark.parametrize("scoring", TEST_METRICS)
@pytest.mark.parametrize("cv", CVs)
@pytest.mark.parametrize("error_score", ERROR_SCORES)
-def test_gscv(forecaster, param_grid, cv, scoring, error_score):
[email protected]("multivariate", [True, False])
+def test_gscv(forecaster, param_grid, cv, scoring, error_score, multivariate):
"""Test ForecastingGridSearchCV."""
- y, X = load_longley()
+ if multivariate:
+ X, y = load_longley()
+ else:
+ y, X = load_longley()
+
gscv = ForecastingGridSearchCV(
forecaster,
param_grid=param_grid,
cv=cv,
scoring=scoring,
error_score=error_score,
+ # todo 0.24.0: remove this
+ # and/or add a test for tune_by_variable=True
+ # in this case, the forecaster is expeceted to vectorize over columns
+ tune_by_variable=False,
)
gscv.fit(y, X)
@@ -177,6 +189,7 @@ def test_rscv(forecaster, param_grid, cv, scoring, error_score, n_iter, random_s
ParameterSampler(param_grid, n_iter, random_state=random_state)
)
_check_cv(forecaster, rscv, cv, param_distributions, y, X, scoring)
+ _check_fitted_params_keys(rscv.get_fitted_params())
@pytest.mark.skipif(
@@ -189,20 +202,26 @@ def test_rscv(forecaster, param_grid, cv, scoring, error_score, n_iter, random_s
@pytest.mark.parametrize("scoring", TEST_METRICS)
@pytest.mark.parametrize("cv", CVs)
@pytest.mark.parametrize("error_score", ERROR_SCORES)
-def test_gscv_hierarchical(forecaster, param_grid, cv, scoring, error_score):
[email protected]("n_cols", [1, 2])
+def test_gscv_hierarchical(forecaster, param_grid, cv, scoring, error_score, n_cols):
"""Test ForecastingGridSearchCV."""
- y, X = _create_hierarchical_data()
+ y, X = _create_hierarchical_data(n_columns=n_cols)
gscv = ForecastingGridSearchCV(
forecaster,
param_grid=param_grid,
cv=cv,
scoring=scoring,
error_score=error_score,
+ # todo 0.24.0: remove this
+ # and/or add a test for tune_by_variable=True
+ # in this case, the forecaster is expeceted to vectorize over columns
+ tune_by_variable=False,
)
gscv.fit(y, X)
param_grid = ParameterGrid(param_grid)
_check_cv(forecaster, gscv, cv, param_grid, y, X, scoring)
+ _check_fitted_params_keys(gscv.get_fitted_params())
@pytest.mark.skipif(
diff --git a/sktime/proba/tests/test_all_distrs.py b/sktime/proba/tests/test_all_distrs.py
index 5e8594495..5808d9d2c 100644
--- a/sktime/proba/tests/test_all_distrs.py
+++ b/sktime/proba/tests/test_all_distrs.py
@@ -72,7 +72,7 @@ class TestAllDistributions(DistributionFixtureGenerator, QuickTester):
assert (res_panel.index == dummy_panel.index).all()
assert (res_panel.columns == dummy_panel.columns).all()
- @pytest.mark.parametrize("method", METHODS_SCALAR)
+ @pytest.mark.parametrize("method", METHODS_SCALAR, ids=METHODS_SCALAR)
def test_methods_scalar(self, estimator_instance, method):
"""Test expected return of scalar methods."""
if not _has_capability(estimator_instance, method):
@@ -83,7 +83,7 @@ class TestAllDistributions(DistributionFixtureGenerator, QuickTester):
_check_output_format(res, d, method)
- @pytest.mark.parametrize("method", METHODS_X)
+ @pytest.mark.parametrize("method", METHODS_X, ids=METHODS_X)
def test_methods_x(self, estimator_instance, method):
"""Test expected return of methods that take sample-like argument."""
if not _has_capability(estimator_instance, method):
@@ -95,7 +95,7 @@ class TestAllDistributions(DistributionFixtureGenerator, QuickTester):
_check_output_format(res, d, method)
- @pytest.mark.parametrize("method", METHODS_P)
+ @pytest.mark.parametrize("method", METHODS_P, ids=METHODS_P)
def test_methods_p(self, estimator_instance, method):
"""Test expected return of methods that take percentage-like argument."""
if not _has_capability(estimator_instance, method):
diff --git a/sktime/registry/tests/test_tags.py b/sktime/registry/tests/test_tags.py
new file mode 100644
index 000000000..e3e738163
--- /dev/null
+++ b/sktime/registry/tests/test_tags.py
@@ -0,0 +1,24 @@
+"""Tests for tag register an tag functionality."""
+
+from sktime.registry._tags import ESTIMATOR_TAG_REGISTER
+
+
+def test_tag_register_type():
+ """Test the specification of the tag register. See _tags for specs."""
+ assert isinstance(ESTIMATOR_TAG_REGISTER, list)
+ assert all(isinstance(tag, tuple) for tag in ESTIMATOR_TAG_REGISTER)
+
+ for tag in ESTIMATOR_TAG_REGISTER:
+ assert len(tag) == 4
+ assert isinstance(tag[0], str)
+ assert isinstance(tag[1], (str, list))
+ if isinstance(tag[1], list):
+ assert all(isinstance(x, str) for x in tag[1])
+ assert isinstance(tag[2], (str, tuple))
+ if isinstance(tag[2], tuple):
+ assert len(tag[2]) == 2
+ assert isinstance(tag[2][0], str)
+ assert isinstance(tag[2][1], (list, str))
+ if isinstance(tag[2][1], list):
+ assert all(isinstance(x, str) for x in tag[2][1])
+ assert isinstance(tag[3], str)
|
[ENH] speed up notebooks and notebook tests
It seems the notebooks in `examples` take 50min to run, all taken together.
I remember times where this was closer to 20min - we should investigate where runtime is spent in the notebooks, and optimally replace by faster examples that illustrate the same point(s).
Good first issue - simply go through the notebooks, run them and check which cells take longest.
There are also a number of more "obscure" notebooks, we may consider removing them, or shortening them, or making the data sets smaller.
|
0.0
|
809ce86ee613d6a602585a6bcd3502cbbdc7c942
|
[
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv0-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv0-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-raise-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-nan-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv2-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[False-1000-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv1-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv2-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv1-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv1-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-raise-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-1000-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[1-nan-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv0-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-1000-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv1-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-nan-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv[True-raise-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-nan-cv2-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv2-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-1000-cv0-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_gscv_hierarchical[2-raise-cv1-scoring0-forecaster1-param_grid1]"
] |
[
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-1-cdf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_scalar[Normal-0-mean]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_scalar[Normal-0-energy]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_p[Normal-0-ppf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_scalar[Normal-1-var]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-1-energy]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_quantile[Normal-0-0.7]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-0-cdf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-0-pdf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-0-energy]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_quantile[Normal-1-q1]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_scalar[Normal-1-mean]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_p[Normal-1-ppf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_scalar[Normal-0-var]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_scalar[Normal-1-energy]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_sample[Normal-0]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_sample[Normal-1]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-0-log_pdf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-1-log_pdf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_quantile[Normal-1-0.7]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_methods_x[Normal-1-pdf]",
"sktime/proba/tests/test_all_distrs.py::TestAllDistributions::test_quantile[Normal-0-q1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-nan-scoring1-forecaster1-param_grid1]",
"sktime/registry/tests/test_tags.py::test_tag_register_type",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv0-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv0-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-nan-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-nan-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-raise-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv1-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-raise-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-1000-scoring0-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-1000-scoring1-forecaster0-param_grid0]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv1-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-1-cv2-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv0-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv0-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-raise-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv1-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv1-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-1-cv2-1000-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[1-4-cv2-nan-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-1000-scoring1-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-nan-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-raise-scoring0-forecaster1-param_grid1]",
"sktime/forecasting/model_selection/tests/test_tune.py::test_rscv[42-4-cv2-1000-scoring0-forecaster1-param_grid1]"
] |
{
"failed_lite_validators": [
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-08-27 17:17:04+00:00
|
bsd-3-clause
| 5,531 |
|
sktime__sktime-5208
|
diff --git a/.all-contributorsrc b/.all-contributorsrc
index 3441d6560..ed91edebc 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -1740,6 +1740,7 @@
"name": "Benedikt Heidrich",
"profile": "https://github.com/benheid",
"contributions": [
+ "bug",
"code"
]
},
diff --git a/CONTRIBUTORS.md b/CONTRIBUTORS.md
index ad94a9858..238a9a1e6 100644
--- a/CONTRIBUTORS.md
+++ b/CONTRIBUTORS.md
@@ -50,7 +50,7 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
<tr>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/BandaSaiTejaReddy"><img src="https://avatars0.githubusercontent.com/u/31387911?v=4?s=100" width="100px;" alt="BANDASAITEJAREDDY"/><br /><sub><b>BANDASAITEJAREDDY</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=BandaSaiTejaReddy" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=BandaSaiTejaReddy" title="Documentation">📖</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/badrmarani"><img src="https://avatars.githubusercontent.com/badrmarani?s=100" width="100px;" alt="Badr-Eddine Marani"/><br /><sub><b>Badr-Eddine Marani</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=badrmarani" title="Code">💻</a></td>
- <td align="center" valign="top" width="11.11%"><a href="https://github.com/benheid"><img src="?s=100" width="100px;" alt="Benedikt Heidrich"/><br /><sub><b>Benedikt Heidrich</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=benheid" title="Code">💻</a></td>
+ <td align="center" valign="top" width="11.11%"><a href="https://github.com/benheid"><img src="?s=100" width="100px;" alt="Benedikt Heidrich"/><br /><sub><b>Benedikt Heidrich</b></sub></a><br /><a href="https://github.com/sktime/sktime/issues?q=author%3Abenheid" title="Bug reports">🐛</a> <a href="https://github.com/sktime/sktime/commits?author=benheid" title="Code">💻</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/benjaminbluhm"><img src="?s=100" width="100px;" alt="Benjamin Bluhm"/><br /><sub><b>Benjamin Bluhm</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=benjaminbluhm" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=benjaminbluhm" title="Documentation">📖</a> <a href="#example-benjaminbluhm" title="Examples">💡</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://haskarb.github.io/"><img src="https://avatars.githubusercontent.com/u/20501023?v=4?s=100" width="100px;" alt="Bhaskar Dhariyal"/><br /><sub><b>Bhaskar Dhariyal</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=haskarb" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=haskarb" title="Tests">⚠️</a></td>
<td align="center" valign="top" width="11.11%"><a href="https://github.com/BINAYKUMAR943"><img src="https://avatars.githubusercontent.com/u/38756834?v=4?s=100" width="100px;" alt="Binay Kumar"/><br /><sub><b>Binay Kumar</b></sub></a><br /><a href="https://github.com/sktime/sktime/commits?author=BINAYKUMAR943" title="Code">💻</a> <a href="https://github.com/sktime/sktime/commits?author=BINAYKUMAR943" title="Documentation">📖</a> <a href="https://github.com/sktime/sktime/commits?author=BINAYKUMAR943" title="Tests">⚠️</a></td>
diff --git a/sktime/transformations/series/subset.py b/sktime/transformations/series/subset.py
index a578e966d..d82b6a0ee 100644
--- a/sktime/transformations/series/subset.py
+++ b/sktime/transformations/series/subset.py
@@ -160,6 +160,7 @@ class ColumnSelect(BaseTransformer):
"fit_is_empty": True,
"univariate-only": False,
"capability:inverse_transform": False,
+ "skip-inverse-transform": True,
}
def __init__(self, columns=None, integer_treatment="col", index_treatment="remove"):
|
sktime/sktime
|
ff6f059c5d78af345c061209147fd42c1c7d6cdf
|
diff --git a/sktime/transformations/series/tests/test_subset.py b/sktime/transformations/series/tests/test_subset.py
index 2137b95e5..f400a5794 100644
--- a/sktime/transformations/series/tests/test_subset.py
+++ b/sktime/transformations/series/tests/test_subset.py
@@ -7,6 +7,7 @@ import pandas as pd
import pytest
from sktime.datasets import load_airline, load_longley
+from sktime.forecasting.naive import NaiveForecaster
from sktime.transformations.series.subset import ColumnSelect, IndexSubset
@@ -49,3 +50,10 @@ def test_columnselect_int():
X_subset = transformer.fit_transform(X=X)
assert X_subset.columns.equals(X.columns[[0, 2, 4]])
+
+
+def test_columnselect_as_first_step_in_transformedtargetforecaster():
+ y = load_longley()[1][["GNP", "UNEMP"]]
+ fc = ColumnSelect(["GNP"]) * NaiveForecaster()
+ fc.fit(y)
+ fc.predict(fh=[1])
|
[BUG] ColumnSelect missing tag`"skip-inverse-transform"`
**Describe the bug**
<!--
A clear and concise description of what the bug is.
-->
The ColumnSelect is missing the tag `"skip-inverse-transform"`. Thus, a TransformedTargetForecaster subsetting the `y` input will fail when calling predict.
**To Reproduce**
<!--
Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve
If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com
-->
```python
from sktime.forecasting.naive import NaiveForecaster
from sktime.transformations.series.subset import ColumnSelect
from sktime.datasets import load_longley
y = load_longley()[1][["GNP", "UNEMP"]]
fc = ColumnSelect(["GNP"]) * NaiveForecaster()
fc.fit(y)
fc.predict(fh=[1])
```
**Expected behavior**
<!--
A clear and concise description of what you expected to happen.
-->
I would expect that the forecast is performed only on the selected time series without raising an error.
**Additional context**
<!--
Add any other context about the problem here.
-->
This would be fixed by just adding the tag `skip-inverse-transform` to ColumnSelect.
|
0.0
|
ff6f059c5d78af345c061209147fd42c1c7d6cdf
|
[
"sktime/transformations/series/tests/test_subset.py::test_columnselect_as_first_step_in_transformedtargetforecaster"
] |
[
"sktime/transformations/series/tests/test_subset.py::test_columnselect_indextreatment[keep]",
"sktime/transformations/series/tests/test_subset.py::test_columnselect_int",
"sktime/transformations/series/tests/test_subset.py::test_columnselect_indextreatment[remove]",
"sktime/transformations/series/tests/test_subset.py::test_indexsubset_indextreatment[remove]",
"sktime/transformations/series/tests/test_subset.py::test_indexsubset_indextreatment[keep]"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-09-10 09:26:29+00:00
|
bsd-3-clause
| 5,532 |
|
sktime__sktime-5615
|
diff --git a/.all-contributorsrc b/.all-contributorsrc
index 2663647c5..68675014c 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -2462,6 +2462,15 @@
"code"
]
},
+ {
+ "login": "rahulporuri",
+ "name": "Poruri Sai Rahul",
+ "avatar_url": "https://avatars.githubusercontent.com/u/1926457?v=4",
+ "profile": "https://github.com/rahulporuri",
+ "contributions": [
+ "doc"
+ ]
+ },
{
"login": "fspinna",
"name": "Francesco Spinnato",
diff --git a/sktime/classification/kernel_based/_rocket_classifier.py b/sktime/classification/kernel_based/_rocket_classifier.py
index fb5a265de..c62173a41 100644
--- a/sktime/classification/kernel_based/_rocket_classifier.py
+++ b/sktime/classification/kernel_based/_rocket_classifier.py
@@ -30,15 +30,17 @@ class RocketClassifier(_DelegatedClassifier):
Shorthand for the pipeline
`rocket * StandardScaler(with_mean=False) * RidgeClassifierCV(alphas)`
where `alphas = np.logspace(-3, 3, 10)`, and
- where `rocket` depends on params `rocket_transform`, `use_multivariate` as follows:
-
- | rocket_transform | `use_multivariate` | rocket (class) |
- |------------------|--------------------|-------------------------|
- | "rocket" | any | Rocket |
- | "minirocket" | "yes | MiniRocketMultivariate |
- | "minirocket" | "no" | MiniRocket |
- | "multirocket" | "yes" | MultiRocketMultivariate |
- | "multirocket" | "no" | MultiRocket |
+ where `rocket` depends on params `rocket_transform`, `use_multivariate` as follows
+
+ ================ ================== =======================
+ rocket_transform `use_multivariate` rocket (class)
+ ================ ================== =======================
+ "rocket" any Rocket
+ "minirocket" "yes" MiniRocketMultivariate
+ "minirocket" "no" MiniRocket
+ "multirocket" "yes" MultiRocketMultivariate
+ "multirocket" "no" MultiRocket
+ ================ ================== =======================
classes are sktime classes, other parameters are passed on to the rocket class.
diff --git a/sktime/forecasting/arch/_uarch.py b/sktime/forecasting/arch/_uarch.py
index c63790215..62098f253 100644
--- a/sktime/forecasting/arch/_uarch.py
+++ b/sktime/forecasting/arch/_uarch.py
@@ -251,6 +251,7 @@ class ARCH(BaseForecaster):
if fh:
self._horizon = fh
+ y_name = y.name
self._forecaster = _ARCH(
y=y,
x=X,
@@ -277,6 +278,7 @@ class ARCH(BaseForecaster):
options=self.options,
backcast=self.backcast,
)
+ y.name = y_name
return self
def _get_arch_result_object(self, fh=None, X=None):
@@ -344,7 +346,7 @@ class ARCH(BaseForecaster):
y_pred = pd.Series(
ArchResultObject.mean.values[-1],
index=full_range,
- name=str(self._y.name),
+ name=self._y.name,
)
y_pred = y_pred.loc[abs_idx.to_pandas()]
y_pred.index = self._horizon.to_absolute_index(self.cutoff)
@@ -398,11 +400,15 @@ class ARCH(BaseForecaster):
upper_int = mean_forecast + (z_critical * std_err)
lower_df = pd.DataFrame(
lower_int,
- columns=[y_col_name + " " + str(alpha) + " " + "lower"],
+ columns=[
+ y_col_name if y_col_name else "0" + " " + str(alpha) + " " + "lower"
+ ],
)
upper_df = pd.DataFrame(
upper_int,
- columns=[y_col_name + " " + str(alpha) + " " + "upper"],
+ columns=[
+ y_col_name if y_col_name else "0" + " " + str(alpha) + " " + "upper"
+ ],
)
df_list.append(pd.concat((lower_df, upper_df), axis=1))
concat_df = pd.concat(df_list, axis=1)
@@ -410,7 +416,7 @@ class ARCH(BaseForecaster):
OrderedDict.fromkeys(
[
col_df
- for col in y_col_name
+ for col in (y_col_name if y_col_name else "0")
for col_df in concat_df.columns
if col in col_df
]
@@ -425,7 +431,7 @@ class ARCH(BaseForecaster):
final_columns = list(
itertools.product(
*[
- [y_col_name],
+ [y_col_name if y_col_name else 0],
coverage,
df.columns.get_level_values(2).unique(),
]
diff --git a/sktime/forecasting/base/adapters/_fbprophet.py b/sktime/forecasting/base/adapters/_fbprophet.py
index 79ac65bf0..acc32d7f6 100644
--- a/sktime/forecasting/base/adapters/_fbprophet.py
+++ b/sktime/forecasting/base/adapters/_fbprophet.py
@@ -116,7 +116,10 @@ class _ProphetAdapter(BaseForecaster):
df["cap"] = self.growth_cap
df["floor"] = self.growth_floor
- fit_kwargs = self.fit_kwargs or {}
+ if hasattr(self, "fit_kwargs") and isinstance(self.fit_kwargs, dict):
+ fit_kwargs = self.fit_kwargs
+ else:
+ fit_kwargs = {}
if self.verbose:
self._forecaster.fit(df=df, **fit_kwargs)
else:
diff --git a/sktime/forecasting/compose/_hierarchy_ensemble.py b/sktime/forecasting/compose/_hierarchy_ensemble.py
index 1eca3af03..12cb104ca 100644
--- a/sktime/forecasting/compose/_hierarchy_ensemble.py
+++ b/sktime/forecasting/compose/_hierarchy_ensemble.py
@@ -285,7 +285,8 @@ class HierarchyEnsembleForecaster(_HeterogenousEnsembleForecaster):
if counter == 0:
nodes = mi
else:
- nodes.append(mi)
+ # For nlevels = 2, 'nodes' is pd.Index object (L286)
+ nodes = nodes.append(mi)
else:
node_l = []
for i in range(len(node)):
@@ -495,6 +496,7 @@ class HierarchyEnsembleForecaster(_HeterogenousEnsembleForecaster):
raise ValueError("Nodes cannot be empty.")
if z.index.nlevels == 2:
nodes_ix = pd.Index(nodes)
+ nodes_t += nodes
else:
nodes_l = []
for i in range(len(nodes)):
|
sktime/sktime
|
74c55ced89bdc62738dce717cf1e634e28da0e45
|
diff --git a/sktime/forecasting/compose/tests/test_hierarchy_ensemble.py b/sktime/forecasting/compose/tests/test_hierarchy_ensemble.py
index b3a655fb4..e56194314 100644
--- a/sktime/forecasting/compose/tests/test_hierarchy_ensemble.py
+++ b/sktime/forecasting/compose/tests/test_hierarchy_ensemble.py
@@ -7,10 +7,11 @@ __author__ = ["VyomkeshVyas"]
import numpy as np
import pytest
+from sktime.base._meta import flatten
from sktime.datatypes._utilities import get_window
from sktime.forecasting.compose import HierarchyEnsembleForecaster
from sktime.forecasting.naive import NaiveForecaster
-from sktime.forecasting.trend import PolynomialTrendForecaster
+from sktime.forecasting.trend import PolynomialTrendForecaster, TrendForecaster
from sktime.transformations.hierarchical.aggregate import Aggregator
from sktime.utils._testing.hierarchical import _bottom_hier_datagen, _make_hierarchical
from sktime.utils.validation._dependencies import _check_soft_dependencies
@@ -145,3 +146,57 @@ def test_hierarchy_ensemble_exog(forecasters):
estimator_instance.fit(y=y_train, X=X_train, fh=[1, 2, 3])
estimator_instance.predict(X=X_test)
estimator_instance.update(y=y_test, X=X_test)
+
+
[email protected](
+ "forecasters",
+ [
+ [
+ ("trend", TrendForecaster(), ["l1_node01"]),
+ ("polytrend", PolynomialTrendForecaster(), ["l1_node02", "l1_node03"]),
+ ("naive", NaiveForecaster(), ["__total"]),
+ ],
+ [
+ (
+ "trend",
+ TrendForecaster(),
+ [("__total"), ("l1_node01"), ("l1_node02"), ("l1_node03")],
+ ),
+ ],
+ ],
+)
[email protected]("default", [NaiveForecaster(), None])
+def test_level_one_data(forecasters, default):
+ "Check for data with one level of hierarchy (excluding timepoints level)."
+ agg = Aggregator()
+
+ y = _bottom_hier_datagen(
+ no_bottom_nodes=3,
+ no_levels=1,
+ random_seed=123,
+ )
+
+ forecaster = HierarchyEnsembleForecaster(forecasters, by="node", default=default)
+
+ forecaster.fit(y, fh=[1, 2, 3])
+ actual_pred = forecaster.predict()
+
+ y = agg.fit_transform(y)
+
+ for i in range(len(forecasters)):
+ test_frcstr = forecasters[i][1].clone()
+ df = y[y.index.droplevel(-1).isin(forecaster.fitted_list[i][1])]
+ test_frcstr.fit(df, fh=[1, 2, 3])
+ test_pred = test_frcstr.predict()
+ msg = "Node predictions do not match"
+ assert np.all(actual_pred.loc[test_pred.index] == test_pred), msg
+
+ _, _, nodes = zip(*forecasters)
+ nodes = set(flatten(nodes))
+ if default is not None and len(nodes) != len(y.index.droplevel(-1).unique()):
+ def_frcstr = default
+ df = y[y.index.droplevel(-1).isin(forecaster.fitted_list[-1][1])]
+ def_frcstr.fit(df, fh=[1, 2, 3])
+ def_pred = def_frcstr.predict()
+ msg = "Node default predictions do not match"
+ assert np.all(actual_pred.loc[def_pred.index] == def_pred), msg
diff --git a/sktime/forecasting/tests/test_all_forecasters.py b/sktime/forecasting/tests/test_all_forecasters.py
index 3bff7ad35..07929a18e 100644
--- a/sktime/forecasting/tests/test_all_forecasters.py
+++ b/sktime/forecasting/tests/test_all_forecasters.py
@@ -383,7 +383,7 @@ class TestAllForecasters(ForecasterFixtureGenerator, QuickTester):
found = pred_ints.columns.to_flat_index()
msg = (
- "columns of returned prediction interval DataFrame do not"
+ "columns of returned prediction interval DataFrame do not "
f"match up with expected columns. Expected: {expected},"
f"found: {found}"
)
|
[BUG] `HierarchyEnsembleForecaster` returns unexpected predictions if data has only one hierarchy level and forecasters specified by node
**Describe the bug**
The `HierarchyEnsembleForecaster` returns unexpected predictions if the hierarchy has only one level and different forecasters are specified per node (`by=node`).
**To Reproduce**
The code snippet below is similar to the examples in the [documentation](https://www.sktime.net/en/latest/api_reference/auto_generated/sktime.forecasting.compose.HierarchyEnsembleForecaster.html) but with only one level instead of two and only 3 bottom nodes instead of 7.
```python
from sktime.forecasting.compose import HierarchyEnsembleForecaster
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster, TrendForecaster
from sktime.utils._testing.hierarchical import _bottom_hier_datagen
y = _bottom_hier_datagen(
no_bottom_nodes=3,
no_levels=1,
random_seed=123
)
y.groupby(["l1_agg"]).sum().index
# Example of by = 'node'
forecasters = [
('trend', TrendForecaster(), [("__total")]),
('poly', PolynomialTrendForecaster(degree=2), [('l1_node01')]),
]
forecaster = HierarchyEnsembleForecaster(
forecasters=forecasters,
by='node', default=NaiveForecaster()
)
forecaster.fit(y, fh=[1, 2, 3])
y_pred = forecaster.predict()
y_pred
```
*Output:*
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th></th>
<th>passengers</th>
</tr>
<tr>
<th>l1_agg</th>
<th>timepoints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="3" valign="top">__total</th>
<th>1961-01</th>
<td>9024.895980</td>
</tr>
<tr>
<th>1961-02</th>
<td>9075.494395</td>
</tr>
<tr>
<th>1961-03</th>
<td>9126.092810</td>
</tr>
<tr>
<th rowspan="6" valign="top">l1_node01</th>
<th>1961-01</th>
<td>497.671704</td>
</tr>
<tr>
<th>1961-01</th>
<td>432.000000</td>
</tr>
<tr>
<th>1961-02</th>
<td>501.352085</td>
</tr>
<tr>
<th>1961-02</th>
<td>432.000000</td>
</tr>
<tr>
<th>1961-03</th>
<td>505.046482</td>
</tr>
<tr>
<th>1961-03</th>
<td>432.000000</td>
</tr>
<tr>
<th rowspan="3" valign="top">l1_node02</th>
<th>1961-01</th>
<td>5893.819230</td>
</tr>
<tr>
<th>1961-02</th>
<td>5893.819230</td>
</tr>
<tr>
<th>1961-03</th>
<td>5893.819230</td>
</tr>
<tr>
<th rowspan="3" valign="top">l1_node03</th>
<th>1961-01</th>
<td>1919.395692</td>
</tr>
<tr>
<th>1961-02</th>
<td>1919.395692</td>
</tr>
<tr>
<th>1961-03</th>
<td>1919.395692</td>
</tr>
</tbody>
</table>
</div>
**Expected behavior**
*Output:*
<div>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th></th>
<th>passengers</th>
</tr>
<tr>
<th>l1_agg</th>
<th>timepoints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="3" valign="top">__total</th>
<th>1961-01</th>
<td>9024.895980</td>
</tr>
<tr>
<th>1961-02</th>
<td>9075.494395</td>
</tr>
<tr>
<th>1961-03</th>
<td>9126.092810</td>
</tr>
<tr>
<th rowspan="3" valign="top">l1_node01</th>
<th>1961-01</th>
<td>497.671704</td>
</tr>
<tr>
<th>1961-02</th>
<td>501.352085</td>
</tr>
<tr>
<th>1961-03</th>
<td>505.046482</td>
</tr>
<tr>
<th rowspan="3" valign="top">l1_node02</th>
<th>1961-01</th>
<td>5893.819230</td>
</tr>
<tr>
<th>1961-02</th>
<td>5893.819230</td>
</tr>
<tr>
<th>1961-03</th>
<td>5893.819230</td>
</tr>
<tr>
<th rowspan="3" valign="top">l1_node03</th>
<th>1961-01</th>
<td>1919.395692</td>
</tr>
<tr>
<th>1961-02</th>
<td>1919.395692</td>
</tr>
<tr>
<th>1961-03</th>
<td>1919.395692</td>
</tr>
</tbody>
</table>
</div>
**Additional context**
The predictions for the node `l1_node01` are duplicated. The first occurrences are the predictions from `PolynomialTrendForecaster`. The second occurrences are predictions of the `NaiveForecaster` which is configured as default. If using two hierarchy levels as in the documentation the predictions are as expected (i.e., no duplicates from the default predictor).
I tried to stay close to the example in the doc. However, maybe I am just using the `HierarchyEnsembleForecaster` class wrong.
**Versions**
System:
python: 3.11.5 | packaged by conda-forge | (main, Aug 27 2023, 03:35:23) [Clang 15.0.7 ]
executable: ../anaconda3/envs/sktime311/bin/python
machine: macOS-14.0-x86_64-i386-64bit
Python dependencies:
pip: 23.2.1
sktime: 0.24.0
sklearn: 1.3.0
skbase: 0.5.1
numpy: 1.25.2
scipy: 1.11.2
pandas: 2.0.3
matplotlib: 3.7.2
joblib: 1.3.2
numba: None
statsmodels: 0.14.0
pmdarima: 2.0.3
statsforecast: None
tsfresh: None
tslearn: None
torch: None
tensorflow: None
tensorflow_probability: None
|
0.0
|
74c55ced89bdc62738dce717cf1e634e28da0e45
|
[
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_level_one_data[None-forecasters1]",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_level_one_data[None-forecasters0]",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_level_one_data[default0-forecasters0]"
] |
[
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ThetaModularForecaster-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastX-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[PluginParamsForecaster-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastX-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateRefitsEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ColumnEnsembleForecaster-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[RecursiveTimeSeriesRegressionForecaster-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[HierarchyEnsembleForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ConformalIntervals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[CurveFitForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastingPipeline-2-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ColumnEnsembleForecaster-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[UpdateRefitsEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTabularRegressionForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[HierarchyEnsembleForecaster-2-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ThetaModularForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[FhPlexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTabularRegressionForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastingPipeline-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[SquaringResiduals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ConformalIntervals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[HierarchyEnsembleForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastingPipeline-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ForecastX-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastingPipeline-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[HierarchyEnsembleForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[Croston-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[Croston-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[Croston-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateRefitsEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[HierarchyEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[PluginParamsForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[SquaringResiduals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastingPipeline-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[UpdateRefitsEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[Croston-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ThetaModularForecaster-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ForecastingPipeline-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ConformalIntervals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ConformalIntervals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[MultiplexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[CurveFitForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[TransformedTargetForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[MultiplexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[Croston-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[Croston-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[Croston-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[SquaringResiduals-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateRefitsEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTabularRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ColumnEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[Croston-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[MultiplexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[CurveFitForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastingPipeline-2-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateRefitsEvery-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[RecursiveTimeSeriesRegressionForecaster-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[FhPlexForecaster-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastingPipeline-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[TransformedTargetForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[FhPlexForecaster-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[RecursiveTabularRegressionForecaster-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-2-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastingPipeline-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[FhPlexForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[HierarchyEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ConformalIntervals-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[MultiplexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ForecastX-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-2-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateEvery-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-2-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[FhPlexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastX-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[CurveFitForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[TransformedTargetForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[Croston-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[SquaringResiduals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[Croston-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[MultiplexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[FhPlexForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ConformalIntervals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[FhPlexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[RecursiveTabularRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastX-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateRefitsEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[MultiplexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[HierarchyEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[HierarchyEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[PluginParamsForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ColumnEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[SquaringResiduals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[FhPlexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[RecursiveTimeSeriesRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-2-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[HierarchyEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ThetaModularForecaster-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ConformalIntervals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[Croston-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastX-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ColumnEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ColumnEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ConformalIntervals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[FhPlexForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[HierarchyEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTabularRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastingPipeline-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[FhPlexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[FhPlexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateRefitsEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastX-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateRefitsEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastingPipeline-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-2-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[PluginParamsForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ColumnEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[Croston-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ThetaModularForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[Croston-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[Croston-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[SquaringResiduals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ThetaModularForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastingPipeline-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[HierarchyEnsembleForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastX-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[TransformedTargetForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[HierarchyEnsembleForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[RecursiveTabularRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastX-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[HierarchyEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[MultiplexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[SquaringResiduals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastingPipeline-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[RecursiveTimeSeriesRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[SquaringResiduals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[CurveFitForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastX-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[HierarchyEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[CurveFitForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-2-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[PluginParamsForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ConformalIntervals-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[SquaringResiduals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ConformalIntervals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-2-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[RecursiveTabularRegressionForecaster-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateRefitsEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[HierarchyEnsembleForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateEvery-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ColumnEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[PluginParamsForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[TransformedTargetForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[CurveFitForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastX-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ColumnEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[Croston-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[TransformedTargetForecaster-2-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[TransformedTargetForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[HierarchyEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[RecursiveTabularRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[CurveFitForecaster-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[PluginParamsForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[RecursiveTabularRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[FhPlexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[HierarchyEnsembleForecaster-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[MultiplexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ForecastingPipeline-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[RecursiveTabularRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateEvery-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[FhPlexForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[TransformedTargetForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[PluginParamsForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[TransformedTargetForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[FhPlexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ColumnEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[RecursiveTabularRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[CurveFitForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ColumnEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastX-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[Croston-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[Croston-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[MultiplexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ConformalIntervals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[CurveFitForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-2-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[HierarchyEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-2-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[Croston-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ColumnEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ColumnEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[PluginParamsForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ThetaModularForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ConformalIntervals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ColumnEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[RecursiveTabularRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-2-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ForecastX-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastingPipeline-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastingPipeline-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[CurveFitForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[TransformedTargetForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[Croston-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[HierarchyEnsembleForecaster-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ForecastingPipeline-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ThetaModularForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-2-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[HierarchyEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[SquaringResiduals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[UpdateEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-2-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[MultiplexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[FhPlexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[FhPlexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTabularRegressionForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-2-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[MultiplexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastingPipeline-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTimeSeriesRegressionForecaster-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-2-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ConformalIntervals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[SquaringResiduals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ColumnEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[TransformedTargetForecaster-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastingPipeline-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastingPipeline-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[FhPlexForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[HierarchyEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[Croston-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-2-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[PluginParamsForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateRefitsEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-2-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ThetaModularForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-2-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ColumnEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[CurveFitForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[FhPlexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastingPipeline-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[Croston-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=[-2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[SquaringResiduals-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[RecursiveTabularRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[HierarchyEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[MultiplexForecaster-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastX-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastingPipeline-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ConformalIntervals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[CurveFitForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ColumnEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ThetaModularForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[FhPlexForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[UpdateEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[RecursiveTabularRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastingPipeline-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ThetaModularForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateEvery-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ColumnEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[FhPlexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ConformalIntervals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=[-3",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[Croston-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[HierarchyEnsembleForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[FhPlexForecaster-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateRefitsEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ColumnEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ThetaModularForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[SquaringResiduals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[MultiplexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ColumnEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ConformalIntervals-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[TransformedTargetForecaster-2-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[Croston-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[Croston-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[MultiplexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[TransformedTargetForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[FhPlexForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[SquaringResiduals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[MultiplexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[CurveFitForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[PluginParamsForecaster-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[Croston-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-2-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[MultiplexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[PluginParamsForecaster-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[TransformedTargetForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[RecursiveTimeSeriesRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[Croston-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[SquaringResiduals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[Croston-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[FhPlexForecaster-2-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[HierarchyEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[Croston-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-2-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[TransformedTargetForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[FhPlexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ColumnEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[HierarchyEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ForecastX-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ForecastX-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[CurveFitForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ThetaModularForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[HierarchyEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastingPipeline-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[MultiplexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ThetaModularForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTimeSeriesRegressionForecaster-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[TransformedTargetForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[SquaringResiduals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-2-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateEvery-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[MultiplexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateRefitsEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[PluginParamsForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[PluginParamsForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[Croston-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[CurveFitForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[RecursiveTabularRegressionForecaster-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[TransformedTargetForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[FhPlexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateRefitsEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[TransformedTargetForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateEvery-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateRefitsEvery-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[CurveFitForecaster-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-2-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[TransformedTargetForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[UpdateEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTabularRegressionForecaster-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[Croston-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[CurveFitForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ColumnEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[HierarchyEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[SquaringResiduals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ThetaModularForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[FhPlexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[FhPlexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[SquaringResiduals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[FhPlexForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[TransformedTargetForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ThetaModularForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastX-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-2-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[HierarchyEnsembleForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[FhPlexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-2-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[Croston-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateRefitsEvery-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[TransformedTargetForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastingPipeline-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-2-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastX-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[FhPlexForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[RecursiveTimeSeriesRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[UpdateEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[HierarchyEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[CurveFitForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[Croston-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ConformalIntervals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[RecursiveTabularRegressionForecaster-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[FhPlexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[PluginParamsForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[HierarchyEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[PluginParamsForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateRefitsEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[CurveFitForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[MultiplexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[SquaringResiduals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[MultiplexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[FhPlexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[FhPlexForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[TransformedTargetForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[UpdateRefitsEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[CurveFitForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[HierarchyEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[TransformedTargetForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastX-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[Croston-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[RecursiveTimeSeriesRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[HierarchyEnsembleForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ThetaModularForecaster-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ConformalIntervals-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[PluginParamsForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[MultiplexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[FhPlexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ColumnEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[SquaringResiduals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[TransformedTargetForecaster-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ColumnEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-2-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[Croston-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTabularRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[Croston-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ConformalIntervals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[PluginParamsForecaster-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[HierarchyEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[UpdateEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[RecursiveTabularRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[RecursiveTimeSeriesRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateRefitsEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastX-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-2-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[Croston-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-2-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[RecursiveTimeSeriesRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateRefitsEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[Croston-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[SquaringResiduals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ForecastingPipeline-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateRefitsEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastX-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[RecursiveTabularRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[UpdateRefitsEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[MultiplexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[MultiplexForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[Croston-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ConformalIntervals-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ThetaModularForecaster-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateRefitsEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[PluginParamsForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-2-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[PluginParamsForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[Croston-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[Croston-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ColumnEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[FhPlexForecaster-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[TransformedTargetForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[Croston-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[HierarchyEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[HierarchyEnsembleForecaster-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastX-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastX-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ColumnEnsembleForecaster-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[UpdateRefitsEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ColumnEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[HierarchyEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[HierarchyEnsembleForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[Croston-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[FhPlexForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-1-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[TransformedTargetForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ConformalIntervals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[FhPlexForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ThetaModularForecaster-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-2-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[RecursiveTimeSeriesRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[MultiplexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[Croston-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[TransformedTargetForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastX-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[CurveFitForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[SquaringResiduals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[Croston-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[TransformedTargetForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[HierarchyEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ColumnEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-2-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastingPipeline-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ColumnEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateRefitsEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ThetaModularForecaster-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[PluginParamsForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ConformalIntervals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[TransformedTargetForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[Croston-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[CurveFitForecaster-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[HierarchyEnsembleForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[CurveFitForecaster-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[Croston-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[TransformedTargetForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ConformalIntervals-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[HierarchyEnsembleForecaster-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[HierarchyEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastingPipeline-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[PluginParamsForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[FhPlexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastingPipeline-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[HierarchyEnsembleForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[UpdateEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[FhPlexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ThetaModularForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[Croston-2-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[MultiplexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[HierarchyEnsembleForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[Croston-2-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[FhPlexForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[RecursiveTabularRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[FhPlexForecaster-2-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[CurveFitForecaster-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastingPipeline-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ColumnEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ForecastingPipeline-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[RecursiveTabularRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ThetaModularForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[HierarchyEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[TransformedTargetForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[FhPlexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ForecastingPipeline-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastingPipeline-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ConformalIntervals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[TransformedTargetForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[MultiplexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-2-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[HierarchyEnsembleForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastingPipeline-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-2-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[SquaringResiduals-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[TransformedTargetForecaster-2-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[Croston-2-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[PluginParamsForecaster-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[FhPlexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ConformalIntervals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[Croston-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[CurveFitForecaster-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastingPipeline-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[RecursiveTabularRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ConformalIntervals-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ThetaModularForecaster-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ConformalIntervals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ForecastingPipeline-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[Croston-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastingPipeline-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[FhPlexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-2-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[RecursiveTimeSeriesRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTabularRegressionForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[HierarchyEnsembleForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[RecursiveTabularRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ColumnEnsembleForecaster-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[SquaringResiduals-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[RecursiveTimeSeriesRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-2-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[Croston-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ForecastingPipeline-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[TransformedTargetForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[TransformedTargetForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[TransformedTargetForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ConformalIntervals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[UpdateEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[FhPlexForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ThetaModularForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[Croston-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ThetaModularForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastingPipeline-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateRefitsEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[RecursiveTimeSeriesRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ConformalIntervals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-2-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[HierarchyEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastingPipeline-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[MultiplexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateRefitsEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ColumnEnsembleForecaster-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[HierarchyEnsembleForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ColumnEnsembleForecaster-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTimeSeriesRegressionForecaster-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[SquaringResiduals-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[MultiplexForecaster-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ConformalIntervals-1-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ForecastingPipeline-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[TransformedTargetForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[PluginParamsForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[CurveFitForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[SquaringResiduals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateRefitsEvery-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ForecastX-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateEvery-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[FhPlexForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[TransformedTargetForecaster-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTabularRegressionForecaster-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[CurveFitForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-2-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastingPipeline-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[RecursiveTimeSeriesRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[TransformedTargetForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[Croston-2-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[TransformedTargetForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[HierarchyEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ThetaModularForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastingPipeline-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ThetaModularForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[PluginParamsForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[SquaringResiduals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[SquaringResiduals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ConformalIntervals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[TransformedTargetForecaster-0-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[UpdateRefitsEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ColumnEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[UpdateEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-2-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[CurveFitForecaster-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[FhPlexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastX-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-1-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastingPipeline-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ThetaModularForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastX-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[CurveFitForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[PluginParamsForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateRefitsEvery-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ThetaModularForecaster-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ColumnEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[HierarchyEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[Croston-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[ForecastX-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ConformalIntervals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ForecastingPipeline-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[TransformedTargetForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastX-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[RecursiveTimeSeriesRegressionForecaster-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[TransformedTargetForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[PluginParamsForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ConformalIntervals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[FhPlexForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ThetaModularForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[MultiplexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[FhPlexForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ThetaModularForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastX-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[HierarchyEnsembleForecaster-2-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[HierarchyEnsembleForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[TransformedTargetForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTimeSeriesRegressionForecaster-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[PluginParamsForecaster-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ColumnEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[SquaringResiduals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[TransformedTargetForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[RecursiveTimeSeriesRegressionForecaster-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[CurveFitForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ForecastingPipeline-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[ForecastingPipeline-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[RecursiveTabularRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ConformalIntervals-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastX-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[MultiplexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[CurveFitForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-0-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[CurveFitForecaster-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-2-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[FhPlexForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[FhPlexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastingPipeline-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[TransformedTargetForecaster-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[MultiplexForecaster-0-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[CurveFitForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-1-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[TransformedTargetForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTabularRegressionForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[CurveFitForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-1-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTabularRegressionForecaster-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[CurveFitForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[HierarchyEnsembleForecaster-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[UpdateEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[PluginParamsForecaster-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ThetaModularForecaster-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[MultiplexForecaster-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ConformalIntervals-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[HierarchyEnsembleForecaster-2-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[ForecastingPipeline-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-2-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[UpdateEvery-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[FhPlexForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[CurveFitForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastX-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ForecastingPipeline-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastX-1-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-2-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ForecastingPipeline-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[MultiplexForecaster-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-0-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ColumnEnsembleForecaster-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[FhPlexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[PluginParamsForecaster-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[CurveFitForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[PluginParamsForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ThetaModularForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[RecursiveTabularRegressionForecaster-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[Croston-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateRefitsEvery-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[HierarchyEnsembleForecaster-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[RecursiveTimeSeriesRegressionForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateRefitsEvery-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[CurveFitForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[FhPlexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[SquaringResiduals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTabularRegressionForecaster-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-1-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ForecastingPipeline-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ThetaModularForecaster-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[TransformedTargetForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-1-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[MultiplexForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-2-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ThetaModularForecaster-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[RecursiveTimeSeriesRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[UpdateRefitsEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[PluginParamsForecaster-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[CurveFitForecaster-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-2-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastX-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[Croston-2-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-0-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[PluginParamsForecaster-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateRefitsEvery-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[TransformedTargetForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[PluginParamsForecaster-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[SquaringResiduals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ForecastX-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[Croston-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[CurveFitForecaster-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTabularRegressionForecaster-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-1-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[UpdateRefitsEvery-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[RecursiveTimeSeriesRegressionForecaster]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ColumnEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-1-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[MultiplexForecaster-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[CurveFitForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-1-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[TransformedTargetForecaster-1-y0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastingPipeline-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastX-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-2-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[SquaringResiduals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[SquaringResiduals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[RecursiveTimeSeriesRegressionForecaster-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastingPipeline-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[PluginParamsForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastX-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTabularRegressionForecaster-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ColumnEnsembleForecaster-0-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[FhPlexForecaster-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[TransformedTargetForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_raises_not_fitted_error[UpdateRefitsEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[HierarchyEnsembleForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-1-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[TransformedTargetForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[ForecastX-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-2-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ColumnEnsembleForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[TransformedTargetForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[HierarchyEnsembleForecaster-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[MultiplexForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[UpdateEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[UpdateEvery-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[FhPlexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-2-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[ForecastingPipeline-2-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[FhPlexForecaster-0-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-1-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[FhPlexForecaster-2-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[CurveFitForecaster-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ColumnEnsembleForecaster-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[ForecastingPipeline-2]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:2cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[UpdateRefitsEvery-0-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-2-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ForecastX-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-2-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-2-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-0-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastX-0-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastingPipeline-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_and_cutoff[MultiplexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastX-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateRefitsEvery-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[SquaringResiduals-0-y:1cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-0-y:1cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:1cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateRefitsEvery-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-1-y:1cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[HierarchyEnsembleForecaster-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[RecursiveTimeSeriesRegressionForecaster-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[UpdateEvery-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[RecursiveTimeSeriesRegressionForecaster-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[TransformedTargetForecaster-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ForecastingPipeline-1-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[MultiplexForecaster-1-y:1cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[ForecastingPipeline-2-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[MultiplexForecaster-0-ForecasterFitPredictPanelSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_multivariate_raises_error[UpdateRefitsEvery-0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[FhPlexForecaster-0-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[RecursiveTimeSeriesRegressionForecaster-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ColumnEnsembleForecaster-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ForecastingPipeline-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[Croston-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:2cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ThetaModularForecaster-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[TransformedTargetForecaster-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[CurveFitForecaster-0-y:1cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[UpdateRefitsEvery-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[MultiplexForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[Croston-2-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[SquaringResiduals-1-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:1cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-0-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[HierarchyEnsembleForecaster-2-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[MultiplexForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[TransformedTargetForecaster-1-y:2cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[TransformedTargetForecaster-2-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[TransformedTargetForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-0-y:1cols-fh=-3-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=5-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[CurveFitForecaster-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[TransformedTargetForecaster-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[MultiplexForecaster-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-0-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[RecursiveTabularRegressionForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-0-y:1cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:1cols-fh=-3-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[CurveFitForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[UpdateEvery-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-2-y:2cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[RecursiveTabularRegressionForecaster-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[ConformalIntervals-1-y:2cols-X0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_not_passed_error_handling[ConformalIntervals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:2cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-1-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[HierarchyEnsembleForecaster-2-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ConformalIntervals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_X_invalid_type_raises_error[CurveFitForecaster-0-y:2cols-X1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTabularRegressionForecaster-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-1-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ColumnEnsembleForecaster-1-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[PluginParamsForecaster-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:1cols-fh=0-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[TransformedTargetForecaster-0-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[Croston-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ColumnEnsembleForecaster-0-y:1cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastX-1-y:2cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-2-y:1cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[Croston-1-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[UpdateEvery-1-y:1cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateRefitsEvery-0-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[MultiplexForecaster-0-y:2cols-fh=-3-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[PluginParamsForecaster-y:2cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[RecursiveTimeSeriesRegressionForecaster-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[TransformedTargetForecaster-0-y:1cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[SquaringResiduals-0-ForecasterFitPredictUnivariateWithX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-1-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ForecastX-1-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:1cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-0-y:2cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_level_one_data[default0-forecasters1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateRefitsEvery-0-y:2cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[TransformedTargetForecaster-2-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ForecastingPipeline-1-y:1cols-fh=1-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_different_fh_in_fit_and_predict_error_handling[SquaringResiduals-0-y:1cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:2cols-fh=1-alpha=0.05-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:1cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-0-y:2cols-fh=1-alpha=0.1-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-0-y:1cols-fh=1-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-0-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[FhPlexForecaster-1-y:1cols-update_params=True-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-1-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[Croston-2-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_series_name_preserved[SquaringResiduals-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-0-y:1cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[PluginParamsForecaster-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:2cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[HierarchyEnsembleForecaster-0-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-2-y:2cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[ConformalIntervals-0-y:1cols-fh=1-alpha=0.05-range]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastX-0-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ConformalIntervals-1-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-2-y:1cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-1-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[ConformalIntervals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[CurveFitForecaster-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=5-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[SquaringResiduals-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ConformalIntervals-1-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[UpdateEvery-0-y:1cols-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[Croston-0-y:1cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[ConformalIntervals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastingPipeline-2-y:1cols-update_params=False-step=5-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[CurveFitForecaster-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_hierarchical_with_exogeneous[ConformalIntervals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-datetime-timedelta-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:1cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[PluginParamsForecaster-y:1cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-0-y:2cols-fh=0-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-2-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_hierarchy_ensemble_exog[forecasters1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[FhPlexForecaster-1-ForecasterFitPredictHierarchicalSimple]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ThetaModularForecaster-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ThetaModularForecaster-y:2cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[ConformalIntervals-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:1cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateEvery-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-2-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[Croston-1-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=0-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-1-y:1cols-update_params=False-step=5-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-1-y:2cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[RecursiveTabularRegressionForecaster-y:1cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-1-y:1cols-fh=0-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[UpdateRefitsEvery-0-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-range-int-False]",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_hierarchy_ensemble_node_predict[forecasters0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ConformalIntervals-0-y:2cols-fh=-3-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-0-y:2cols-update_params=False-step=1-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-0-y:2cols-fh=-3-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=1-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[TransformedTargetForecaster-2-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateEvery-1-y:2cols-fh=1-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-2-y:1cols-fh=1-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[ConformalIntervals-1-y:1cols-fh=1-alpha=0.1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[ForecastingPipeline-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-1-y:1cols-fh=-3-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:1cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[ForecastX-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[Croston-1-y:2cols-update_params=True-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ForecastingPipeline-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-1-y:2cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[UpdateRefitsEvery-0-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:1cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[SquaringResiduals-1-y:2cols-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ForecastX-1-y:2cols-update_params=True-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_fh_attribute[UpdateRefitsEvery-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateEvery-0-y:2cols-fh=0-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[HierarchyEnsembleForecaster-0-y:1cols-update_params=False-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[CurveFitForecaster-0-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ColumnEnsembleForecaster-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[SquaringResiduals-0-y:2cols-update_params=True-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-1-y:2cols-update_params=False-step=1-5-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[SquaringResiduals-0-y:2cols-update_params=False-fh=[2",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_hierarchy_ensemble_exog[forecasters0]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-period-period-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:1cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[SquaringResiduals-1-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[SquaringResiduals-0-y:1cols-period-int-True]",
"sktime/forecasting/compose/tests/test_hierarchy_ensemble.py::test_hierarchy_ensemble_node_predict[forecasters1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_get_fitted_params[Croston-0-ForecasterFitPredictMultivariateNoX]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[FhPlexForecaster-0-y:1cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[SquaringResiduals-0-y:2cols-fh=1-alpha=[0.25,",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[Croston-2-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_score[TransformedTargetForecaster-0-y:2cols-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[Croston-1-y:2cols-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:2cols-fh=1-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[FhPlexForecaster-1-y:1cols-update_params=False-step=1-1-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[ConformalIntervals-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:1cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[UpdateRefitsEvery-1-y:2cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test__y_when_refitting[SquaringResiduals-0-y:2cols]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[MultiplexForecaster-0-y:2cols-update_params=False-step=1-1-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_quantiles[UpdateEvery-1-y:1cols-fh=1-alpha=0.05]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_predicted_index[ConformalIntervals-0-y:1cols-update_params=True-5-fh=1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ColumnEnsembleForecaster-0-y:1cols-fh=-3-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_interval[MultiplexForecaster-1-y:2cols-fh=1-alpha=0.1-None]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-2-y:1cols-fh=-3-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[ForecastingPipeline-1-y:2cols-fh=0-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[ThetaModularForecaster-y:1cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_with_X[MultiplexForecaster-0-y:2cols-fh=1-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-0-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_pred_int_tag[Croston-1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-datetime-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[HierarchyEnsembleForecaster-1-y:2cols-fh=1-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_y_invalid_type_raises_error[SquaringResiduals-1-y1]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-int-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[MultiplexForecaster-1-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[FhPlexForecaster-1-y:2cols-fh=1-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-int-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-1-y:2cols-range-int-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_update_predict_single[UpdateEvery-0-y:1cols-update_params=True-fh=[2",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-0-y:2cols-datetime-datetime-False]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index[TransformedTargetForecaster-0-y:1cols-fh=0-range-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_time_index_in_sample_full[FhPlexForecaster-2-y:2cols-period-int-True]",
"sktime/forecasting/tests/test_all_forecasters.py::TestAllForecasters::test_predict_proba[ConformalIntervals-1-y:1cols-fh=1]"
] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_many_modified_files",
"has_many_hunks"
],
"has_test_patch": true,
"is_lite": false
}
|
2023-12-12 13:05:07+00:00
|
bsd-3-clause
| 5,533 |
|
slarse__labelbot-21
|
diff --git a/labelbot/auth.py b/labelbot/auth.py
new file mode 100644
index 0000000..8ad32b3
--- /dev/null
+++ b/labelbot/auth.py
@@ -0,0 +1,52 @@
+"""Handles authentication tokens with the GitHub API.
+
+.. module:: auth
+ :synopsis: Functions for generating tokens used for authentication with GitHub.
+.. moduleauthor:: Lars Hummelgren <[email protected]> & Joakim Croona <[email protected]>
+
+"""
+
+import datetime
+import http.client
+import json
+import jwcrypto
+import python_jwt
+import requests
+
+USER_AGENT = "label-bot"
+
+
+def generate_jwt_token(private_pem: str, app_id: int) -> str:
+ """Generates a JWT token valid for 10 minutes using the private key.
+
+ Args:
+ private_pem: the private key that is used to generate a JWT
+ app_id the Application id
+ Returns:
+ The JWT that was generated using the private key and the app id
+ """
+ private_key = jwcrypto.jwk.JWK.from_pem(private_pem.encode(encoding="utf8"))
+ payload = {"iss": app_id}
+ duration = datetime.timedelta(minutes=10)
+ return python_jwt.generate_jwt(payload, private_key, "RS256", duration)
+
+
+def generate_installation_access_token(jwt_token: str, installation_id):
+ """Generates an installation access token using a JWT token and an installation id.
+
+ An installation access token is valid for 1 hour.
+
+ Args:
+ jwt_token: a valid JWT token
+ installation_id: the installation id of the app.
+ Returns:
+ An installation access token from the GitHub API
+ """
+ headers = {
+ "Authorization": f"Bearer {jwt_token}",
+ "Accept": "application/vnd.github.machine-man-preview+json",
+ "User-Agent": USER_AGENT,
+ }
+ url = f"https://api.github.com/app/installations/{installation_id}/access_tokens"
+ r = requests.post(url, headers=headers)
+ return r.json()["token"]
|
slarse/labelbot
|
98a4801c2fd4da4370762c83a9e63b1f21292c20
|
diff --git a/tests/test_auth.py b/tests/test_auth.py
new file mode 100644
index 0000000..528d56d
--- /dev/null
+++ b/tests/test_auth.py
@@ -0,0 +1,35 @@
+from labelbot import auth
+
+rsa_key = """-----BEGIN RSA PRIVATE KEY-----
+MIIEpQIBAAKCAQEAxgHlyqhl8bMNT8opV631hJy1aJ7guF7iDfBMa+V3kKzo5OUu
+h5VGQ5xWQPZDf27brxgL0ywvfYzw+YaP6TaMcmUR8nzE+gr9B+GOc92GtVrZd4dd
+o2CL/wLpANUwMZ2sCWWHg3sf5S5KRbg0WUPLk8dqnwINJKUnd1uZW4M76FMJxg92
+iQIMgdngEoos+bGE0X8mkClics0hMxZcUUsATV9YnrOztnx356/4yaZaRySp7gqd
+bzuDHgi4kJi228eqWH12O6Q2tooOb1WZHUdOjlcYyjulipNiA9G0SnanN9YxmNGc
++0iLRQvlvuHPxA490d/WR+iMXAGHmUN40PYucwIDAQABAoIBAQC6ze2CPU84MOld
+HmfUnXzk6IdJNaLirjlsVwlyPaGIr2hlEkbMiSsp/CNv1CWn4umFDhWR27zOIRry
+/l1k8x6bifjdoZKgJ5/CQK0JaLR/Aj/qQZ441YweQRubuoVmOc+ladDoXU+hAwP1
+NKzGjmxQdjGD5AaMTPen5pYPPQdWzN5AvTH/Q3FIFsGAJ/JZIj3CjxJ5zyDdlYvJ
+PKW/3E5DYSCVyjopjZhiNDHIa8Ur8e/b0S7EmxtRZc3IdV1nLAgRCkOkOZo9i0D8
+RN+Ro5Aiw/DUcYl4VzVxdikAASu9+Fey9NFDceeClKnIe/L5FXHjXR8VXuaw60AY
+htI6g7LpAoGBAPSsiu1Fqtp+s07nHeeChTqPgpSSx7ihhEgZ/TqCElEl4xG4mkMg
+vaSX9nS5Mm/cUF3mD40KwS+eaBxIVtk7uyQ80lBEc/lC/7txGKVCFWB+x7ChxPxI
+HLA0pBg/O5g9HLtFXGDJn4WwbFU/j1luPuwNOFD/yqTNpQUiubuq9is9AoGBAM8s
+V637me/rkyPDP0/up93Ox3szguIv03CaKqvL03ZJU/DZIMwtQgpvIKrBFhlQMG1Q
+KkmgeCgpmLjgCIElXqLldur2TSag6Mtw2suomjELLNUpgnDs1hdq1xBcZCDyyGCj
+F+AUjEun2+9TVLeGxvjtY1rB2a2Kc/k3XQXi8htvAoGBALYWdqnQUC+dXUpaO+og
+O5ByXwa9Gb+xDGYwWUGirYkQviVhEgTlJ92HblY9wWh4OKM45NfdahpLNEXgHCo9
+BrAYR5iO6RRXJUTVDTdnr8sJbwlnytbJv/fupTSaUnqg+HHyU6aARqTSwDzNOZyf
+rFo2GHRHeQMfPDFPP5SHzf4tAoGBAKsizRcKhMH8zqI3MkCcO4ztuDkcdxzTNw2I
+PIGHsRnAPxfwtLgVFr25yLllIRUt+aMDGruRVFCQ8/icEEpmjUNw3AgCB/9F4qfT
+hNnBYAXtXk6DqJ4R9lSHzDpWp9vT0hSKBTn0n2QLuJF9O7kTG6AbsPwSr/c8LMsM
+ocowC6D/AoGAOEy3olvgdY9lWr6zHdK745qnFK2hHuAT4LEw+37/1WucNIXxItM8
+RdDCSLSlSxkpOjWFJPhdW19i/9O4QNNwAF5wCtlIFeN+HF24LwDF7I/Xj26pIKBj
+8lEnfws5Dn7I9sG0wBn+5px52jgOqiKzjy3jcIENBRO6i1OZ8c07NmM=
+-----END RSA PRIVATE KEY-----"""
+
+
+def test_auth_jwt_token():
+ """Tests that jwt_token is truthy"""
+ result = auth.generate_jwt_token(rsa_key, 12334)
+ assert result
|
Access token for privileged operations with the GitHub API
As we want to set labels on issues (a privileged operation) via the API, we need to generate an access token. [The process is described here](https://developer.github.com/apps/building-github-apps/authenticating-with-github-apps/#generating-a-private-key). There's a Python package [python_jwt](https://pypi.org/project/python_jwt/) that can do the hard parts for us. I've got an example of how to do this in an old project (although I wasn't the one who implemented it, so I'm not privvy to the details).
Once an access token has been generated, it's valid for 1 hour. If we want to optimize for performance, we could store the token for 1 hour in DynamoDB using the [TTL functionality](https://aws.amazon.com/about-aws/whats-new/2017/02/amazon-dynamodb-now-supports-automatic-item-expiration-with-time-to-live-ttl/). Won't be necessary for a prototype, but could be cool if we've got time left to do it.
|
0.0
|
98a4801c2fd4da4370762c83a9e63b1f21292c20
|
[
"tests/test_auth.py::test_auth_jwt_token"
] |
[] |
{
"failed_lite_validators": [
"has_hyperlinks",
"has_added_files"
],
"has_test_patch": true,
"is_lite": false
}
|
2019-04-11 12:02:27+00:00
|
mit
| 5,534 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.