question_id
stringlengths 7
12
| nl
stringlengths 4
200
| cmd
stringlengths 2
232
| oracle_man
list | canonical_cmd
stringlengths 2
228
| cmd_name
stringclasses 1
value |
---|---|---|---|---|---|
20025882-78
|
append string 'str' at the beginning of each value in column 'col' of dataframe `df`
|
df['col'] = 'str' + df['col'].astype(str)
|
[
"pandas.reference.api.pandas.dataframe.astype"
] |
VAR_STR['VAR_STR'] = 'VAR_STR' + VAR_STR['VAR_STR'].astype(VAR_STR)
|
conala
|
11924135-42
|
BeautifulSoup find a tag whose id ends with string 'para'
|
soup.findAll(id=re.compile('para$'))
|
[
"python.library.re#re.compile",
"python.library.re#re.findall"
] |
soup.findAll(id=re.compile('para$'))
|
conala
|
11924135-85
|
select `div` tags whose `id`s begin with `value_xxx_c_1_f_8_a_`
|
soup.select('div[id^="value_xxx_c_1_f_8_a_"]')
|
[
"python.library.select#select.select"
] |
soup.select('div[id^="value_xxx_c_1_f_8_a_"]')
|
conala
|
4338032-43
|
match string 'this is my string' with regex '\\b(this|string)\\b'
then replace it with regex '<markup>\\1</markup>'
|
re.sub('\\b(this|string)\\b', '<markup>\\1</markup>', 'this is my string')
|
[
"python.library.re#re.sub"
] |
re.sub('VAR_STR', 'VAR_STR', 'VAR_STR')
|
conala
|
3160752-54
|
replace backslashes in string `result` with empty string ''
|
result = result.replace('\\', '')
|
[
"python.library.stdtypes#str.replace"
] |
VAR_STR = VAR_STR.replace('\\', 'VAR_STR')
|
conala
|
3160752-60
|
remove backslashes from string `result`
|
result.replace('\\', '')
|
[
"python.library.stdtypes#str.replace"
] |
VAR_STR.replace('\\', '')
|
conala
|
27457970-81
|
separate each character in string `s` by '-'
|
re.sub('(.)(?=.)', '\\1-', s)
|
[
"python.library.re#re.sub"
] |
re.sub('(.)(?=.)', '\\1-', VAR_STR)
|
conala
|
27457970-4
|
concatenate '-' in between characters of string `str`
|
re.sub('(?<=.)(?=.)', '-', str)
|
[
"python.library.re#re.sub"
] |
re.sub('(?<=.)(?=.)', 'VAR_STR', VAR_STR)
|
conala
|
11144513-58
|
cartesian product of `x` and `y` array points into single array of 2d points
|
numpy.dstack(numpy.meshgrid(x, y)).reshape(-1, 2)
|
[
"numpy.reference.generated.numpy.meshgrid",
"numpy.reference.generated.numpy.dstack",
"numpy.reference.generated.numpy.reshape"
] |
numpy.dstack(numpy.meshgrid(VAR_STR, VAR_STR)).reshape(-1, 2)
|
conala
|
436599-41
|
truncate string `s` up to character ':'
|
s.split(':', 1)[1]
|
[
"python.library.stdtypes#str.split"
] |
VAR_STR.split('VAR_STR', 1)[1]
|
conala
|
9754729-26
|
remove index 2 element from a list `my_list`
|
my_list.pop(2)
|
[
"python.library.stdtypes#frozenset.pop"
] |
VAR_STR.pop(2)
|
conala
|
18272066-92
|
Encode each value to 'UTF8' in the list `EmployeeList`
|
[x.encode('UTF8') for x in EmployeeList]
|
[
"python.library.stdtypes#str.encode"
] |
[x.encode('VAR_STR') for x in VAR_STR]
|
conala
|
12218112-25
|
get the sum of each second value from a list of tuple `structure`
|
sum(x[1] for x in structure)
|
[
"python.library.functions#sum"
] |
sum(x[1] for x in VAR_STR)
|
conala
|
40851413-100
|
send data 'HTTP/1.0 200 OK\r\n\r\n' to socket `connection`
|
connection.send('HTTP/1.0 200 established\r\n\r\n')
|
[
"python.library.multiprocessing#multiprocessing.connection.Connection.send"
] |
VAR_STR.send('HTTP/1.0 200 established\r\n\r\n')
|
conala
|
40851413-34
|
send data 'HTTP/1.0 200 OK\r\n\r\n' to socket `connection`
|
connection.send('HTTP/1.0 200 OK\r\n\r\n')
|
[
"python.library.multiprocessing#multiprocessing.connection.Connection.send"
] |
VAR_STR.send('VAR_STR')
|
conala
|
13324554-1
|
create a slice object using string `string_slice`
|
slice(*[(int(i.strip()) if i else None) for i in string_slice.split(':')])
|
[
"python.library.functions#slice",
"python.library.functions#int",
"python.library.stdtypes#str.strip",
"python.library.stdtypes#str.split"
] |
slice(*[(int(i.strip()) if i else None) for i in VAR_STR.split(':')])
|
conala
|
20400135-83
|
append a pandas series `b` to the series `a` and get a continuous index
|
a.append(b).reset_index(drop=True)
|
[
"pandas.reference.api.pandas.series.reset_index",
"numpy.reference.generated.numpy.append"
] |
VAR_STR.append(VAR_STR).reset_index(drop=True)
|
conala
|
20400135-52
|
simple way to append a pandas series `a` and `b` with same index
|
pd.concat([a, b], ignore_index=True)
|
[
"pandas.reference.api.pandas.concat"
] |
pd.concat([VAR_STR, VAR_STR], ignore_index=True)
|
conala
|
7286879-67
|
split unicode string "раз два три" into words
|
'\u0440\u0430\u0437 \u0434\u0432\u0430 \u0442\u0440\u0438'.split()
|
[
"python.library.stdtypes#str.split"
] |
"""раз два три""".split()
|
conala
|
14793098-82
|
change flask security register url to `/create_account`
|
app.config['SECURITY_REGISTER_URL'] = '/create_account'
|
[] |
app.config['SECURITY_REGISTER_URL'] = 'VAR_STR'
|
conala
|
200738-3
|
encode string `data` as `hex`
|
data.encode('hex')
|
[
"python.library.stdtypes#str.encode"
] |
VAR_STR.encode('VAR_STR')
|
conala
|
21414159-59
|
open the login site 'http://somesite.com/adminpanel/index.php' in the browser
|
webbrowser.open('http://somesite.com/adminpanel/index.php')
|
[
"python.library.webbrowser#webbrowser.open"
] |
webbrowser.open('VAR_STR')
|
conala
|
5507948-0
|
insert row into mysql database with column 'column1' set to the value `value`
|
cursor.execute('INSERT INTO table (`column1`) VALUES (%s)', (value,))
|
[
"python.library.sqlite3#sqlite3.Cursor.execute"
] |
cursor.execute('INSERT INTO table (`column1`) VALUES (%s)', (VAR_STR,))
|
conala
|
740287-34
|
check if any item from list `b` is in list `a`
|
print(any(x in a for x in b))
|
[
"python.library.functions#any"
] |
print(any(x in VAR_STR for x in VAR_STR))
|
conala
|
3809265-55
|
scalar multiply matrix `a` by `b`
|
(a.T * b).T
|
[] |
(VAR_STR.T * VAR_STR).T
|
conala
|
1885181-93
|
un-escape a backslash-escaped string in `Hello,\\nworld!`
|
print('"Hello,\\nworld!"'.decode('string_escape'))
|
[
"python.library.stdtypes#bytearray.decode"
] |
print('"Hello,\\nworld!"'.decode('string_escape'))
|
conala
|
3348825-1
|
round 1123.456789 to be an integer
|
print(round(1123.456789, -1))
|
[
"python.library.functions#round"
] |
print(round(1123.456789, -1))
|
conala
|
36957908-74
|
substitute two or more whitespace characters with character '|' in string `line`
|
re.sub('\\s{2,}', '|', line.strip())
|
[
"python.library.re#re.sub",
"python.library.stdtypes#str.strip"
] |
re.sub('\\s{2,}', 'VAR_STR', VAR_STR.strip())
|
conala
|
1222677-77
|
create a list containing elements from list `list` that are predicate to function `f`
|
[f(x) for x in list]
|
[] |
[VAR_STR(x) for x in VAR_STR]
|
conala
|
21519203-57
|
Make a scatter plot using unpacked values of list `li`
|
plt.scatter(*zip(*li))
|
[
"python.library.functions#zip",
"pandas.reference.api.pandas.dataframe.plot.scatter"
] |
plt.scatter(*zip(*VAR_STR))
|
conala
|
16128833-30
|
inherit from class `Executive`
|
super(Executive, self).__init__(*args)
|
[
"python.library.functions#super",
"python.library.logging#logging.Handler.__init__"
] |
super(VAR_STR, self).__init__(*args)
|
conala
|
17856928-74
|
terminate process `p`
|
p.terminate()
|
[
"python.library.multiprocessing#multiprocessing.Process.terminate"
] |
VAR_STR.terminate()
|
conala
|
31743603-4
|
make a list of integers from 0 to `5` where each second element is a duplicate of the previous element
|
print([u for v in [[i, i] for i in range(5)] for u in v])
|
[
"python.library.functions#range"
] |
print([u for v in [[i, i] for i in range(5)] for u in v])
|
conala
|
31743603-29
|
create a list of integers with duplicate values `[0, 0, 1, 1, 2, 2, 3, 3, 4, 4]`
|
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
|
[] |
[VAR_STR]
|
conala
|
31743603-80
|
create a list of integers from 1 to 5 with each value duplicated
|
[(i // 2) for i in range(10)]
|
[
"python.library.functions#range"
] |
[(i // 2) for i in range(10)]
|
conala
|
14694482-12
|
convert a beautiful soup html `soup` to text
|
print(soup.get_text())
|
[
"matplotlib.table_api#matplotlib.table.Cell.get_text"
] |
print(VAR_STR.get_text())
|
conala
|
40311987-33
|
calculate the mean of columns with same name in dataframe `df`
|
df.groupby(by=df.columns, axis=1).mean()
|
[
"pandas.reference.api.pandas.dataframe.groupby",
"pandas.reference.api.pandas.dataframe.mean"
] |
VAR_STR.groupby(by=VAR_STR.columns, axis=1).mean()
|
conala
|
1780174-1
|
create a list where each element is a dictionary with keys 'key1' and 'key2' and values corresponding to each value in the lists referenced by keys 'key1' and 'key2' in dictionary `d`
|
[{'key1': a, 'key2': b} for a, b in zip(d['key1'], d['key2'])]
|
[
"python.library.functions#zip"
] |
[{'VAR_STR': a, 'VAR_STR': b} for a, b in zip(VAR_STR['VAR_STR'], VAR_STR['VAR_STR'])]
|
conala
|
1780174-26
|
Split dictionary of lists into list of dictionaries
|
map(dict, zip(*[[(k, v) for v in value] for k, value in list(d.items())]))
|
[
"python.library.functions#zip",
"python.library.functions#map",
"python.library.functions#list",
"python.library.stdtypes#dict.items"
] |
map(dict, zip(*[[(k, v) for v in value] for k, value in list(d.items())]))
|
conala
|
988228-81
|
build a dict of key:value pairs from a string representation of a dict, `{'muffin' : 'lolz', 'foo' : 'kitty'}`
|
ast.literal_eval("{'muffin' : 'lolz', 'foo' : 'kitty'}")
|
[
"python.library.ast#ast.literal_eval"
] |
ast.literal_eval('VAR_STR')
|
conala
|
7271385-77
|
combine two lists `[1, 2, 3, 4]` and `['a', 'b', 'c', 'd']` into a dictionary
|
dict(zip([1, 2, 3, 4], ['a', 'b', 'c', 'd']))
|
[
"python.library.functions#zip",
"python.library.stdtypes#dict"
] |
dict(zip([VAR_STR], [VAR_STR]))
|
conala
|
7271385-51
|
combine two lists `[1, 2, 3, 4]` and `['a', 'b', 'c', 'd']` into a dictionary
|
dict(zip([1, 2, 3, 4], ['a', 'b', 'c', 'd']))
|
[
"python.library.functions#zip",
"python.library.stdtypes#dict"
] |
dict(zip([VAR_STR], [VAR_STR]))
|
conala
|
12604909-49
|
pandas: change all the values of a column 'Date' into "int(str(x)[-4:])"
|
df['Date'] = df['Date'].apply(lambda x: int(str(x)[-4:]))
|
[
"python.library.functions#int",
"python.library.stdtypes#str"
] |
df['VAR_STR'] = df['VAR_STR'].apply(lambda x: int(str(x)[-4:]))
|
conala
|
13490292-70
|
format number 1000000000.0 using latex notation
|
print('\\num{{{0:.2g}}}'.format(1000000000.0))
|
[
"python.library.functions#format"
] |
print('\\num{{{0:.2g}}}'.format(1000000000.0))
|
conala
|
8344905-24
|
randomly switch letters' cases in string `s`
|
"""""".join(x.upper() if random.randint(0, 1) else x for x in s)
|
[
"python.library.random#random.randint",
"python.library.stdtypes#str.upper",
"python.library.stdtypes#str.join"
] |
"""""".join(x.upper() if random.randint(0, 1) else x for x in VAR_STR)
|
conala
|
12843099-82
|
convert the argument `date` with string formatting in logging
|
logging.info('date=%s', date)
|
[
"python.library.logging#logging.info"
] |
logging.info('date=%s', VAR_STR)
|
conala
|
12843099-18
|
Log message of level 'info' with value of `date` in the message
|
logging.info('date={}'.format(date))
|
[
"python.library.logging#logging.info",
"python.library.functions#format"
] |
logging.VAR_STR('date={}'.format(VAR_STR))
|
conala
|
30328646-93
|
Do group by on `cluster` column in `df` and get its mean
|
df.groupby(['cluster']).mean()
|
[
"pandas.reference.api.pandas.dataframe.groupby",
"pandas.reference.api.pandas.dataframe.mean"
] |
VAR_STR.groupby(['VAR_STR']).mean()
|
conala
|
1082413-12
|
sort list `strings` in alphabetical order based on the letter after percent character `%` in each element
|
strings.sort(key=lambda str: re.sub('.*%(.).*', '\\1', str))
|
[
"python.library.re#re.sub",
"python.library.stdtypes#list.sort"
] |
VAR_STR.sort(key=lambda str: re.sub('.*%(.).*', '\\1', str))
|
conala
|
1082413-43
|
sort a list of strings `strings` based on regex match
|
strings.sort(key=lambda str: re.sub('.*%', '', str))
|
[
"python.library.re#re.sub",
"python.library.stdtypes#list.sort"
] |
VAR_STR.sort(key=lambda str: re.sub('.*%', '', str))
|
conala
|
9206964-68
|
split string "This is a string" into words that do not contain whitespaces
|
"""This is a string""".split()
|
[
"python.library.stdtypes#str.split"
] |
"""VAR_STR""".split()
|
conala
|
9206964-10
|
split string "This is a string" into words that does not contain whitespaces
|
"""This is a string""".split()
|
[
"python.library.stdtypes#str.split"
] |
"""VAR_STR""".split()
|
conala
|
40076861-4
|
merge a pandas data frame `distancesDF` and column `dates` in pandas data frame `datesDF` into single
|
pd.concat([distancesDF, datesDF.dates], axis=1)
|
[
"pandas.reference.api.pandas.concat"
] |
pd.concat([VAR_STR, VAR_STR.VAR_STR], axis=1)
|
conala
|
12309976-25
|
convert a list `my_list` into string with values separated by spaces
|
""" """.join(my_list)
|
[
"python.library.stdtypes#str.join"
] |
""" """.join(VAR_STR)
|
conala
|
14169122-51
|
generate a list of all unique pairs of integers in `range(9)`
|
list(permutations(list(range(9)), 2))
|
[
"python.library.functions#list",
"python.library.functions#range"
] |
list(permutations(list(range(9)), 2))
|
conala
|
5801945-50
|
Split a string `text` with comma, question mark or exclamation by non-consuming regex using look-behind
|
re.split('(?<=[\\.\\?!]) ', text)
|
[
"python.library.re#re.split"
] |
re.split('(?<=[\\.\\?!]) ', VAR_STR)
|
conala
|
26081300-96
|
Subtract the mean of each row in dataframe `df` from the corresponding row's elements
|
df.sub(df.mean(axis=1), axis=0)
|
[
"pandas.reference.api.pandas.dataframe.sub",
"pandas.reference.api.pandas.dataframe.mean"
] |
VAR_STR.sub(VAR_STR.mean(axis=1), axis=0)
|
conala
|
3548673-96
|
replace extension '.txt' in basename '/home/user/somefile.txt' with extension '.jpg'
|
print(os.path.splitext('/home/user/somefile.txt')[0] + '.jpg')
|
[
"python.library.os.path#os.path.splitext"
] |
print(os.path.splitext('VAR_STR')[0] + 'VAR_STR')
|
conala
|
27589325-84
|
find and replace 2nd occurrence of word 'cat' by 'Bull' in a sentence 's'
|
re.sub('^((?:(?!cat).)*cat(?:(?!cat).)*)cat', '\\1Bull', s)
|
[
"python.library.re#re.sub"
] |
re.sub('^((?:(?!cat).)*cat(?:(?!cat).)*)cat', '\\1Bull', VAR_STR)
|
conala
|
27589325-75
|
find and replace 2nd occurrence of word 'cat' by 'Bull' in a sentence 's'
|
re.sub('^((.*?cat.*?){1})cat', '\\1Bull', s)
|
[
"python.library.re#re.sub"
] |
re.sub('^((.*?cat.*?){1})cat', '\\1Bull', VAR_STR)
|
conala
|
379906-43
|
parse string `a` to float
|
float(a)
|
[
"python.library.functions#float"
] |
float(VAR_STR)
|
conala
|
379906-7
|
Parse String `s` to Float or Int
|
try:
return int(s)
except ValueError:
return float(s)
|
[
"python.library.functions#float",
"python.library.functions#int"
] |
try:
return int(VAR_STR)
except ValueError:
return float(VAR_STR)
|
conala
|
180606-7
|
convert a list `L` of ascii values to a string
|
"""""".join(chr(i) for i in L)
|
[
"python.library.functions#chr",
"python.library.stdtypes#str.join"
] |
"""""".join(chr(i) for i in VAR_STR)
|
conala
|
9758959-69
|
sort list `['10', '3', '2']` in ascending order based on the integer value of its elements
|
sorted(['10', '3', '2'], key=int)
|
[
"python.library.functions#sorted"
] |
sorted([VAR_STR], key=int)
|
conala
|
41894454-52
|
custom sort an alphanumeric list `l`
|
sorted(l, key=lambda x: x.replace('0', 'Z'))
|
[
"python.library.functions#sorted",
"python.library.stdtypes#str.replace"
] |
sorted(VAR_STR, key=lambda x: x.replace('0', 'Z'))
|
conala
|
13656519-84
|
strip a string `line` of all carriage returns and newlines
|
line.strip()
|
[
"python.library.stdtypes#str.strip"
] |
VAR_STR.strip()
|
conala
|
11837979-28
|
remove white space padding around a saved image `test.png` in matplotlib
|
plt.savefig('test.png', bbox_inches='tight')
|
[
"matplotlib.figure_api#matplotlib.figure.Figure.savefig"
] |
plt.savefig('VAR_STR', bbox_inches='tight')
|
conala
|
7372592-56
|
execute a jar file 'Blender.jar' using subprocess
|
subprocess.call(['java', '-jar', 'Blender.jar'])
|
[
"python.library.subprocess#subprocess.call"
] |
subprocess.call(['java', '-jar', 'VAR_STR'])
|
conala
|
23887592-74
|
Find next sibling element in Python Selenium?
|
driver.find_element_by_xpath("//p[@id, 'one']/following-sibling::p")
|
[] |
driver.find_element_by_xpath("//p[@id, 'one']/following-sibling::p")
|
conala
|
867866-86
|
convert Unicode codepoint to utf8 hex
|
chr(int('fd9b', 16)).encode('utf-8')
|
[
"python.library.functions#chr",
"python.library.functions#int",
"python.library.stdtypes#str.encode"
] |
chr(int('fd9b', 16)).encode('utf-8')
|
conala
|
13480031-57
|
zip keys with individual values in lists `k` and `v`
|
[dict(zip(k, x)) for x in v]
|
[
"python.library.functions#zip",
"python.library.stdtypes#dict"
] |
[dict(zip(VAR_STR, x)) for x in VAR_STR]
|
conala
|
32743479-65
|
read pandas data frame csv `comma.csv` with extra commas in column specifying string delimiter `'`
|
df = pd.read_csv('comma.csv', quotechar="'")
|
[
"pandas.reference.api.pandas.read_csv"
] |
df = pd.read_csv('VAR_STR', quotechar='VAR_STR')
|
conala
|
18292500-92
|
Log message 'test' on the root logger.
|
logging.info('test')
|
[
"python.library.logging#logging.info"
] |
logging.info('VAR_STR')
|
conala
|
5201191-46
|
sort list of lists `L` by the second item in each list
|
L.sort(key=operator.itemgetter(1))
|
[
"python.library.operator#operator.itemgetter",
"python.library.stdtypes#list.sort"
] |
VAR_STR.sort(key=operator.itemgetter(1))
|
conala
|
35711059-64
|
extract dictionary values by key 'Feature3' from data frame `df`
|
feature3 = [d.get('Feature3') for d in df.dic]
|
[
"pandas.reference.api.pandas.dataframe.get"
] |
feature3 = [d.get('VAR_STR') for d in VAR_STR.dic]
|
conala
|
2668909-73
|
find the real user home directory using python
|
os.path.expanduser('~user')
|
[
"python.library.os.path#os.path.expanduser"
] |
os.path.expanduser('~user')
|
conala
|
6243460-84
|
lambda function that adds two operands
|
lambda x, y: x + y
|
[] |
lambda x, y: x + y
|
conala
|
14661701-41
|
drop rows whose index value in list `[1, 3]` in dataframe `df`
|
df.drop(df.index[[1, 3]], inplace=True)
|
[
"pandas.reference.api.pandas.dataframe.drop"
] |
VAR_STR.drop(VAR_STR.index[[VAR_STR]], inplace=True)
|
conala
|
3308102-72
|
extract the 2nd elements from a list of tuples
|
[x[1] for x in elements]
|
[] |
[x[1] for x in elements]
|
conala
|
5775719-36
|
find the first letter of each element in string `input`
|
output = ''.join(item[0].upper() for item in input.split())
|
[
"python.library.stdtypes#str.upper",
"python.library.stdtypes#str.join",
"python.library.re#re.split"
] |
output = ''.join(item[0].upper() for item in VAR_STR.split())
|
conala
|
12527959-62
|
replace percent-encoded code in request `f` to their single-character equivalent
|
f = urllib.request.urlopen(url, urllib.parse.unquote(urllib.parse.urlencode(params)))
|
[
"python.library.urllib.parse#urllib.parse.unquote",
"python.library.urllib.parse#urllib.parse.urlencode",
"python.library.urllib.request#urllib.request.urlopen"
] |
VAR_STR = urllib.request.urlopen(url, urllib.parse.unquote(urllib.parse.
urlencode(params)))
|
conala
|
19205916-14
|
call base class's __init__ method from the child class `ChildClass`
|
super(ChildClass, self).__init__(*args, **kwargs)
|
[
"python.library.functions#super",
"python.library.logging#logging.Handler.__init__"
] |
super(VAR_STR, self).__init__(*args, **kwargs)
|
conala
|
8199398-65
|
extract only alphabetic characters from a string `your string`
|
""" """.join(re.split('[^a-zA-Z]*', 'your string'))
|
[
"python.library.re#re.split",
"python.library.stdtypes#str.join"
] |
""" """.join(re.split('[^a-zA-Z]*', 'VAR_STR'))
|
conala
|
8199398-34
|
Extract only characters from a string as a list
|
re.split('[^a-zA-Z]*', 'your string')
|
[
"python.library.re#re.split"
] |
re.split('[^a-zA-Z]*', 'your string')
|
conala
|
1386811-62
|
Convert binary string to list of integers using Python
|
[int(s[i:i + 3], 2) for i in range(0, len(s), 3)]
|
[
"python.library.functions#len",
"python.library.functions#range",
"python.library.functions#int"
] |
[int(s[i:i + 3], 2) for i in range(0, len(s), 3)]
|
conala
|
34543513-59
|
find maximum with lookahead = 4 in a list `arr`
|
[max(abs(x) for x in arr[i:i + 4]) for i in range(0, len(arr), 4)]
|
[
"python.library.functions#len",
"python.library.functions#range",
"python.library.functions#abs",
"python.library.functions#max"
] |
[max(abs(x) for x in VAR_STR[i:i + 4]) for i in range(0, len(VAR_STR), 4)]
|
conala
|
3151146-41
|
replace single quote character in string "didn't" with empty string ''
|
"""didn't""".replace("'", '')
|
[
"python.library.stdtypes#str.replace"
] |
"""VAR_STR""".replace("'", 'VAR_STR')
|
conala
|
12829889-23
|
Find a max value of the key `count` in a nested dictionary `d`
|
max(d, key=lambda x: d[x]['count'])
|
[
"python.library.functions#max"
] |
max(VAR_STR, key=lambda x: VAR_STR[x]['VAR_STR'])
|
conala
|
329886-13
|
Get a list of tuples with multiple iterators using list comprehension
|
[(i, j) for i in range(1, 3) for j in range(1, 5)]
|
[
"python.library.functions#range"
] |
[(i, j) for i in range(1, 3) for j in range(1, 5)]
|
conala
|
2497027-35
|
read a binary file 'test/test.pdf'
|
f = open('test/test.pdf', 'rb')
|
[
"python.library.urllib.request#open"
] |
f = open('VAR_STR', 'rb')
|
conala
|
30945784-37
|
remove all characters from string `stri` upto character 'I'
|
re.sub('.*I', 'I', stri)
|
[
"python.library.re#re.sub"
] |
re.sub('.*I', 'VAR_STR', VAR_STR)
|
conala
|
8243188-64
|
append string `foo` to list `list`
|
list.append('foo')
|
[
"numpy.reference.generated.numpy.append"
] |
VAR_STR.append('VAR_STR')
|
conala
|
8243188-74
|
insert string `foo` at position `0` of list `list`
|
list.insert(0, 'foo')
|
[
"numpy.reference.generated.numpy.insert"
] |
VAR_STR.insert(0, 'VAR_STR')
|
conala
|
12579061-75
|
get the text of multiple elements found by xpath "//*[@type='submit']/@value"
|
browser.find_elements_by_xpath("//*[@type='submit']/@value").text
|
[] |
browser.find_elements_by_xpath('VAR_STR').text
|
conala
|
12579061-34
|
find all the values in attribute `value` for the tags whose `type` attribute is `submit` in selenium
|
browser.find_elements_by_xpath("//*[@type='submit']").get_attribute('value')
|
[
"python.library.test#test.support.get_attribute"
] |
browser.find_elements_by_xpath("//*[@type='submit']").get_attribute('VAR_STR')
|
conala
|
3945856-34
|
converting string '(1,2,3,4)' to a tuple
|
ast.literal_eval('(1,2,3,4)')
|
[
"python.library.ast#ast.literal_eval"
] |
ast.literal_eval('VAR_STR')
|
conala
|
17098654-11
|
store data frame `df` to file `file_name` using pandas, python
|
df.to_pickle(file_name)
|
[
"pandas.reference.api.pandas.dataframe.to_pickle"
] |
VAR_STR.to_pickle(VAR_STR)
|
conala
|
25148611-71
|
extract all the values of a specific key named 'values' from a list of dictionaries
|
results = [item['value'] for item in test_data]
|
[] |
results = [item['value'] for item in test_data]
|
conala
|
2721782-74
|
convert a date string `s` to a datetime object
|
datetime.datetime.strptime(s, '%Y-%m-%dT%H:%M:%SZ')
|
[
"python.library.datetime#datetime.datetime.strptime"
] |
datetime.datetime.strptime(VAR_STR, '%Y-%m-%dT%H:%M:%SZ')
|
conala
|
40852575-70
|
Get only first element in each of the innermost of the multidimensional list `listD`
|
[[[x[0]] for x in listD[i]] for i in range(len(listD))]
|
[
"python.library.functions#len",
"python.library.functions#range"
] |
[[[x[0]] for x in VAR_STR[i]] for i in range(len(VAR_STR))]
|
conala
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.