File size: 5,025 Bytes
96fd80c
 
 
 
09857e0
 
 
 
 
96fd80c
 
09857e0
 
69bf1ce
96fd80c
 
 
09857e0
 
96fd80c
 
 
09857e0
 
96fd80c
 
09857e0
 
 
96fd80c
 
 
09857e0
 
96fd80c
09857e0
 
96fd80c
 
 
09857e0
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09857e0
96fd80c
 
09857e0
96fd80c
09857e0
 
 
 
 
bbea063
96fd80c
 
 
 
09857e0
 
 
 
96fd80c
 
 
 
 
09857e0
 
 
96fd80c
 
 
 
 
 
 
 
09857e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd80c
09857e0
96fd80c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split



_PROMPTS_URLS = {
    "dev": "automatic/validation.csv",
    "train": "automatic/train.csv",
}

_PROMPTS_FILTERED_URLS = {
    "dev": "automatic/validation.csv",
    "train": "automatic/train.csv",
}

_ARCHIVES = {
    "dev": "automatic.tar.gz",
    "train": "automatic.tar.gz",
}

_PATH_TO_CLIPS = {
    "dev": "validation",
    "train": "train",
}


class NurcSPConfig(BuilderConfig):
    def __init__(self, prompts_type="original", **kwargs):
        super().__init__(**kwargs)
        self.prompts_type = prompts_type


class NurcSPDataset(GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
        NurcSPConfig(name="filtered", description="Filtered audio prompts", prompts_type="filtered"),
    ]

    def _info(self):
        return DatasetInfo(
            features=datasets.Features(
                {
                    "audio_name": datasets.Value("string"),
                    "file_path": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "speech_genre": datasets.Value("string"),
                    "speech_style": datasets.Value("string"),
                    "variety": datasets.Value("string"),
                    "accent": datasets.Value("string"),
                    "sex": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "num_speakers": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        )

    def _split_generators(self, dl_manager):
        prompts_urls = _PROMPTS_URLS  # Default to original prompts URLs

        if self.config.prompts_type == "filtered":
            prompts_urls = _PROMPTS_FILTERED_URLS

        prompts_path = dl_manager.download(prompts_urls)
        archive = dl_manager.download(_ARCHIVES)

        return [
            SplitGenerator(
                name=Split.VALIDATION,
                gen_kwargs={
                    "prompts_path": prompts_path["dev"],
                    "path_to_clips": _PATH_TO_CLIPS["dev"],
                    "audio_files": dl_manager.iter_archive(archive["dev"]),
                }
            ),
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={
                    "prompts_path": prompts_path["train"],
                    "path_to_clips": _PATH_TO_CLIPS["train"],
                    "audio_files": dl_manager.iter_archive(archive["train"]),
                }
            ),
        ]

    def _generate_examples(self, prompts_path, path_to_clips, audio_files):
        examples = {}
        with open(prompts_path, "r") as f:
            csv_reader = csv.DictReader(f)
            for row in csv_reader:
                audio_name = row['audio_name']
                file_path = row['file_path']
                text = row['text']
                start_time = row['start_time']
                end_time = row['end_time']
                duration = row['duration']
                quality = row['quality']
                speech_genre = row['speech_genre']
                speech_style = row['speech_style']
                variety = row['variety']
                accent = row['accent']
                sex = row['sex']
                age_range = row['age_range']
                num_speakers = row['num_speakers']
                speaker_id = row['speaker_id']
                examples[file_path] = {
                    "audio_name": audio_name,
                    "file_path": file_path,
                    "text": text,
                    "start_time": start_time,
                    "end_time": end_time,
                    "duration": duration,
                    "quality": quality,
                    "speech_genre": speech_genre,
                    "speech_style": speech_style,
                    "variety": variety,
                    "accent": accent,
                    "sex": sex,
                    "age_range": age_range,
                    "num_speakers": num_speakers,
                    "speaker_id": speaker_id,
                }
        inside_clips_dir = False
        id_ = 0
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[path], "audio": audio}
                    id_ += 1
            elif inside_clips_dir:
                break