RodrigoLimaRFL commited on
Commit
2dd6126
·
verified ·
1 Parent(s): 49fb33a

Update NURC-SP_ENTOA_TTS.py

Browse files
Files changed (1) hide show
  1. NURC-SP_ENTOA_TTS.py +110 -55
NURC-SP_ENTOA_TTS.py CHANGED
@@ -4,75 +4,110 @@ from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGen
4
  from pathlib import Path
5
  import os
6
 
7
- _PROMPTS_URLS = {
8
  "dev": "prosodic/validation.csv",
9
  "train": "prosodic/train.csv",
10
  }
11
 
12
- _PROMPTS_FILTERED_URLS = {
13
- "dev": "prosodic/validation.csv",
14
- "train": "prosodic/train.csv",
15
  }
16
 
17
- _ARCHIVES = {
18
  "dev": "prosodic/audios.tar.gz",
19
  "train": "prosodic/audios.tar.gz",
20
  }
21
 
 
 
 
 
 
22
  _PATH_TO_CLIPS = {
23
  "dev": "",
24
  "train": "",
25
  }
26
 
27
  class NurcSPConfig(BuilderConfig):
28
- def __init__(self, prompts_type="original", **kwargs):
29
  super().__init__(**kwargs)
30
  self.prompts_type = prompts_type
31
 
32
  class NurcSPDataset(GeneratorBasedBuilder):
33
  BUILDER_CONFIGS = [
34
- NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
35
- NurcSPConfig(name="filtered", description="Filtered audio prompts", prompts_type="filtered"),
36
  ]
37
 
38
  def _info(self):
39
- return DatasetInfo(
40
- features=datasets.Features(
41
- {
42
- "path": datasets.Value("string"),
43
- "name": datasets.Value("string"),
44
- "speaker": datasets.Value("string"),
45
- "start_time": datasets.Value("string"),
46
- "end_time": datasets.Value("string"),
47
- "normalized_text": datasets.Value("string"),
48
- "text": datasets.Value("string"),
49
- "duration": datasets.Value("string"),
50
- "type": datasets.Value("string"),
51
- "year": datasets.Value("string"),
52
- "gender": datasets.Value("string"),
53
- "age_range": datasets.Value("string"),
54
- "total_duration": datasets.Value("string"),
55
- "quality": datasets.Value("string"),
56
- "theme": datasets.Value("string"),
57
- "audio": datasets.Audio(sampling_rate=16_000),
58
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  )
60
- )
61
 
62
  def _split_generators(self, dl_manager):
63
  print("\n=== Configuration ===")
64
  print(f"Using prompts_type: {self.config.prompts_type}")
65
 
66
- prompts_urls = _PROMPTS_URLS
67
- if self.config.prompts_type == "filtered":
68
- prompts_urls = _PROMPTS_FILTERED_URLS
 
 
 
 
 
 
69
 
70
  print(f"Downloading prompts from: {prompts_urls}")
71
  prompts_path = dl_manager.download(prompts_urls)
72
  print(f"Downloaded prompts to: {prompts_path}")
73
 
74
- print(f"Downloading archives from: {_ARCHIVES}")
75
- archive = dl_manager.download(_ARCHIVES)
76
  print(f"Downloaded archives to: {archive}")
77
 
78
  return [
@@ -110,27 +145,47 @@ class NurcSPDataset(GeneratorBasedBuilder):
110
  print("\n=== Reading CSV ===")
111
  with open(prompts_path, "r") as f:
112
  csv_reader = csv.DictReader(f)
113
- for row in csv_reader:
114
- file_path = Path(row['path']).as_posix()
115
- examples[file_path] = {
116
- "path": row['path'],
117
- "name": row['name'],
118
- "speaker": row['speaker'],
119
- "start_time": row['start_time'],
120
- "end_time": row['end_time'],
121
- "normalized_text": row['normalized_text'],
122
- "text": row['text'],
123
- "duration": row['duration'],
124
- "type": row['type'],
125
- "year": row['year'],
126
- "gender": row['gender'],
127
- "age_range": row['age_range'],
128
- "total_duration": row['total_duration'],
129
- "quality": row['quality'],
130
- "theme": row['theme'],
131
- }
132
- csv_paths.append(file_path)
133
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  print(f"\nFound {len(csv_paths)} entries in CSV")
135
  print("\nFirst 3 CSV paths:")
136
  for path in csv_paths[:3]:
 
4
  from pathlib import Path
5
  import os
6
 
7
+ _PROMPTS_PROSODIC_URLS = {
8
  "dev": "prosodic/validation.csv",
9
  "train": "prosodic/train.csv",
10
  }
11
 
12
+ _PROMPTS_AUTOMATIC_URLS = {
13
+ "dev": "automatic/validation.csv",
14
+ "train": "automatic/train.csv",
15
  }
16
 
17
+ _ARCHIVES_PROSODIC = {
18
  "dev": "prosodic/audios.tar.gz",
19
  "train": "prosodic/audios.tar.gz",
20
  }
21
 
22
+ _ARCHIVES_AUTOMATIC = {
23
+ "dev": "automatic/audios.tar.gz",
24
+ "train": "automatic/audios.tar.gz",
25
+ }
26
+
27
  _PATH_TO_CLIPS = {
28
  "dev": "",
29
  "train": "",
30
  }
31
 
32
  class NurcSPConfig(BuilderConfig):
33
+ def __init__(self, prompts_type, **kwargs):
34
  super().__init__(**kwargs)
35
  self.prompts_type = prompts_type
36
 
37
  class NurcSPDataset(GeneratorBasedBuilder):
38
  BUILDER_CONFIGS = [
39
+ NurcSPConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
40
+ NurcSPConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
41
  ]
42
 
43
  def _info(self):
44
+ if self.config.name == "prosodic":
45
+ return DatasetInfo(
46
+ features=datasets.Features(
47
+ {
48
+ "path": datasets.Value("string"),
49
+ "name": datasets.Value("string"),
50
+ "speaker": datasets.Value("string"),
51
+ "start_time": datasets.Value("string"),
52
+ "end_time": datasets.Value("string"),
53
+ "normalized_text": datasets.Value("string"),
54
+ "text": datasets.Value("string"),
55
+ "duration": datasets.Value("string"),
56
+ "type": datasets.Value("string"),
57
+ "year": datasets.Value("string"),
58
+ "gender": datasets.Value("string"),
59
+ "age_range": datasets.Value("string"),
60
+ "total_duration": datasets.Value("string"),
61
+ "quality": datasets.Value("string"),
62
+ "theme": datasets.Value("string"),
63
+ "audio": datasets.Audio(sampling_rate=16_000),
64
+ }
65
+ )
66
+ )
67
+ elif self.config.name == "automatic":
68
+ return DatasetInfo(
69
+ features=datasets.Features(
70
+ {
71
+ "audio_name": datasets.Value("string"),
72
+ "file_path": datasets.Value("string"),
73
+ "text": datasets.Value("string"),
74
+ "start_time": datasets.Value("string"),
75
+ "end_time": datasets.Value("string"),
76
+ "duration": datasets.Value("string"),
77
+ "quality": datasets.Value("string"),
78
+ "speech_genre": datasets.Value("string"),
79
+ "speech_style": datasets.Value("string"),
80
+ "variety": datasets.Value("string"),
81
+ "accent": datasets.Value("string"),
82
+ "sex": datasets.Value("string"),
83
+ "age_range": datasets.Value("string"),
84
+ "num_speakers": datasets.Value("string"),
85
+ "speaker_id": datasets.Value("string"),
86
+ "audio": datasets.Audio(sampling_rate=16_000),
87
+ }
88
+ )
89
  )
 
90
 
91
  def _split_generators(self, dl_manager):
92
  print("\n=== Configuration ===")
93
  print(f"Using prompts_type: {self.config.prompts_type}")
94
 
95
+ if self.config.prompts_type == "prosodic":
96
+ prompts_urls = _PROMPTS_PROSODIC_URLS
97
+ archive_link = _ARCHIVES_PROSODIC
98
+ elif self.config.prompts_type == "automatic":
99
+ prompts_urls = _PROMPTS_AUTOMATIC_URLS
100
+ archive_link = _ARCHIVES_AUTOMATIC
101
+ else:
102
+ print("Invalid config")
103
+ return
104
 
105
  print(f"Downloading prompts from: {prompts_urls}")
106
  prompts_path = dl_manager.download(prompts_urls)
107
  print(f"Downloaded prompts to: {prompts_path}")
108
 
109
+ print(f"Downloading archives from: {archive_link}")
110
+ archive = dl_manager.download(archive_link)
111
  print(f"Downloaded archives to: {archive}")
112
 
113
  return [
 
145
  print("\n=== Reading CSV ===")
146
  with open(prompts_path, "r") as f:
147
  csv_reader = csv.DictReader(f)
148
+ if self.config.prompts_type == "prosodic":
149
+ for row in csv_reader:
150
+ file_path = Path(row['path']).as_posix()
151
+ examples[file_path] = {
152
+ "path": row['path'],
153
+ "name": row['name'],
154
+ "speaker": row['speaker'],
155
+ "start_time": row['start_time'],
156
+ "end_time": row['end_time'],
157
+ "normalized_text": row['normalized_text'],
158
+ "text": row['text'],
159
+ "duration": row['duration'],
160
+ "type": row['type'],
161
+ "year": row['year'],
162
+ "gender": row['gender'],
163
+ "age_range": row['age_range'],
164
+ "total_duration": row['total_duration'],
165
+ "quality": row['quality'],
166
+ "theme": row['theme'],
167
+ }
168
+ csv_paths.append(file_path)
169
+ elif self.config.prompts_type == "automatic":
170
+ for row in csv_reader:
171
+ examples[row['file_path']] = {
172
+ "audio_name": row['audio_name'],
173
+ "file_path": row['file_path'],
174
+ "text": row['text'],
175
+ "start_time": row['start_time'],
176
+ "end_time": row['end_time'],
177
+ "duration": row['duration'],
178
+ "quality": row['quality'],
179
+ "speech_genre": row['speech_genre'],
180
+ "speech_style": row['speech_style'],
181
+ "variety": row['variety'],
182
+ "accent": row['accent'],
183
+ "sex": row['sex'],
184
+ "age_range": row['age_range'],
185
+ "num_speakers": row['num_speakers'],
186
+ "speaker_id": row['speaker_id'],
187
+ }
188
+
189
  print(f"\nFound {len(csv_paths)} entries in CSV")
190
  print("\nFirst 3 CSV paths:")
191
  for path in csv_paths[:3]: