Datasets:
Tasks:
Token Classification
Sub-tasks:
part-of-speech
Languages:
Portuguese
Size:
10K<n<100K
License:
File size: 6,331 Bytes
c20d8a1 3e14604 c20d8a1 52b95b1 c20d8a1 52b95b1 c20d8a1 52b95b1 c20d8a1 52b95b1 c20d8a1 52b95b1 63e0c9d 52b95b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mac-Morpho dataset"""
import re
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@article{fonseca2015evaluating,
title={Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese},
author={Fonseca, Erick R and Rosa, Joao Luis G and Aluisio, Sandra Maria},
journal={Journal of the Brazilian Computer Society},
volume={21},
number={1},
pages={2},
year={2015},
publisher={Springer}
}
"""
_DESCRIPTION = """
Mac-Morpho is a corpus of Brazilian Portuguese texts annotated with part-of-speech tags.
Its first version was released in 2003 [1], and since then, two revisions have been made in order
to improve the quality of the resource [2, 3].
The corpus is available for download split into train, development and test sections.
These are 76%, 4% and 20% of the corpus total, respectively (the reason for the unusual numbers
is that the corpus was first split into 80%/20% train/test, and then 5% of the train section was
set aside for development). This split was used in [3], and new POS tagging research with Mac-Morpho
is encouraged to follow it in order to make consistent comparisons possible.
[1] Aluísio, S., Pelizzoni, J., Marchi, A.R., de Oliveira, L., Manenti, R., Marquiafável, V. 2003.
An account of the challenge of tagging a reference corpus for brazilian portuguese.
In: Proceedings of the 6th International Conference on Computational Processing of the Portuguese Language. PROPOR 2003
[2] Fonseca, E.R., Rosa, J.L.G. 2013. Mac-morpho revisited: Towards robust part-of-speech.
In: Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology – STIL
[3] Fonseca, E.R., Aluísio, Sandra Maria, Rosa, J.L.G. 2015.
Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese.
Journal of the Brazilian Computer Society.
"""
_HOMEPAGE = "http://www.nilc.icmc.usp.br/macmorpho/"
_LICENSE = "Creative Commons Attribution 4.0 International License"
_URL = "http://www.nilc.icmc.usp.br/macmorpho/macmorpho-v3.tgz"
class MacMorpho(datasets.GeneratorBasedBuilder):
"""Mac-Morpho dataset."""
VERSION = datasets.Version("3.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"PREP+PROADJ",
"IN",
"PREP+PRO-KS",
"NPROP",
"PREP+PROSUB",
"KC",
"PROPESS",
"NUM",
"PROADJ",
"PREP+ART",
"KS",
"PRO-KS",
"ADJ",
"ADV-KS",
"N",
"PREP",
"PROSUB",
"PREP+PROPESS",
"PDEN",
"V",
"PREP+ADV",
"PCP",
"CUR",
"ADV",
"PU",
"ART",
]
)
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
archive = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": "macmorpho-train.txt",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": "macmorpho-test.txt",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": "macmorpho-dev.txt",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, filepath, files):
"""Yields examples."""
for path, f in files:
if path == filepath:
id_ = 0
for line in f:
line = line.decode("utf-8").rstrip()
chunks = re.split(r"\s+", line)
tokens = []
pos_tags = []
for chunk in chunks:
token, tag = chunk.rsplit("_", 1)
tokens.append(token)
pos_tags.append(tag)
yield id_, {
"id": str(id_),
"tokens": tokens,
"pos_tags": pos_tags,
}
id_ += 1
break
|