File size: 6,331 Bytes
c20d8a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e14604
 
 
c20d8a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b95b1
c20d8a1
 
 
 
52b95b1
 
c20d8a1
 
 
 
52b95b1
 
 
 
c20d8a1
 
 
 
52b95b1
 
c20d8a1
 
 
 
52b95b1
63e0c9d
52b95b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mac-Morpho dataset"""

import re

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
@article{fonseca2015evaluating,
  title={Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese},
  author={Fonseca, Erick R and Rosa, Joao Luis G and Aluisio, Sandra Maria},
  journal={Journal of the Brazilian Computer Society},
  volume={21},
  number={1},
  pages={2},
  year={2015},
  publisher={Springer}
}
"""

_DESCRIPTION = """
Mac-Morpho is a corpus of Brazilian Portuguese texts annotated with part-of-speech tags.
Its first version was released in 2003 [1], and since then, two revisions have been made in order
to improve the quality of the resource [2, 3].
The corpus is available for download split into train, development and test sections.
These are 76%, 4% and 20% of the corpus total, respectively (the reason for the unusual numbers
is that the corpus was first split into 80%/20% train/test, and then 5% of the train section was
set aside for development). This split was used in [3], and new POS tagging research with Mac-Morpho
is encouraged to follow it in order to make consistent comparisons possible.


[1] Aluísio, S., Pelizzoni, J., Marchi, A.R., de Oliveira, L., Manenti, R., Marquiafável, V. 2003.
An account of the challenge of tagging a reference corpus for brazilian portuguese.
In: Proceedings of the 6th International Conference on Computational Processing of the Portuguese Language. PROPOR 2003

[2] Fonseca, E.R., Rosa, J.L.G. 2013. Mac-morpho revisited: Towards robust part-of-speech.
In: Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology – STIL

[3] Fonseca, E.R., Aluísio, Sandra Maria, Rosa, J.L.G. 2015.
Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese.
Journal of the Brazilian Computer Society.
"""

_HOMEPAGE = "http://www.nilc.icmc.usp.br/macmorpho/"

_LICENSE = "Creative Commons Attribution 4.0 International License"

_URL = "http://www.nilc.icmc.usp.br/macmorpho/macmorpho-v3.tgz"


class MacMorpho(datasets.GeneratorBasedBuilder):
    """Mac-Morpho dataset."""

    VERSION = datasets.Version("3.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "PREP+PROADJ",
                                "IN",
                                "PREP+PRO-KS",
                                "NPROP",
                                "PREP+PROSUB",
                                "KC",
                                "PROPESS",
                                "NUM",
                                "PROADJ",
                                "PREP+ART",
                                "KS",
                                "PRO-KS",
                                "ADJ",
                                "ADV-KS",
                                "N",
                                "PREP",
                                "PROSUB",
                                "PREP+PROPESS",
                                "PDEN",
                                "V",
                                "PREP+ADV",
                                "PCP",
                                "CUR",
                                "ADV",
                                "PU",
                                "ART",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        archive = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": "macmorpho-train.txt",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": "macmorpho-test.txt",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": "macmorpho-dev.txt",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, filepath, files):
        """Yields examples."""
        for path, f in files:
            if path == filepath:
                id_ = 0

                for line in f:

                    line = line.decode("utf-8").rstrip()
                    chunks = re.split(r"\s+", line)

                    tokens = []
                    pos_tags = []
                    for chunk in chunks:
                        token, tag = chunk.rsplit("_", 1)
                        tokens.append(token)
                        pos_tags.append(tag)

                    yield id_, {
                        "id": str(id_),
                        "tokens": tokens,
                        "pos_tags": pos_tags,
                    }
                    id_ += 1
                break