content
stringlengths
5
1.05M
from sklearn import decomposition from numpy import vstack from .base import VHRMethod class PCA(VHRMethod): methodName = 'PCA' def __init__(self, **kwargs): super(PCA, self).__init__(**kwargs) def apply(self, X): # TODO: preproc #X = self.__preprocess(X.T) bvp = decomposition.PCA(n_components=3).fit_transform(X.T).T return bvp def __preprocess(self, X): R = X[:,0].copy() G = X[:,1].copy() B = X[:,2].copy() # -- BP pre-filtering of RGB channels minHz = BVPsignal.minHz maxHz = BVPsignal.maxHz fs = self.video.frameRate # -- filter filteredR = BPfilter(R, minHz, maxHz, fs) filteredG = BPfilter(G, minHz, maxHz, fs) filteredB = BPfilter(B, minHz, maxHz, fs) X = vstack([filteredR, filteredG, filteredB]) return X
msg1 = 'Digite um número inteiro: ' n = int(input(msg1)) dobro = 2*n triplo = 3*n raiz = n**(1/2) msg2 = 'O dobro de {} vale {}. \n'.format(n, dobro) msg3 = 'O triplo de {} vale {}. \n'.format(n, triplo) msg4 = 'A raiz quadrada de {} é igual a {:.2f}.'.format(n, raiz) msg5 = msg2 + msg3 + msg4 print(msg5)
import setuptools with open('README.md', 'r') as f: readme = f.read() setuptools.setup( name='pdflu', version='0.1.0', description='Command line tool to find BibTeX for academic papers using ' 'Crossref and arXiv.', long_description=readme, author='Steven Dahdah', url='https://github.com/sdahdah/pdflu', packages=setuptools.find_packages(), entry_points={ 'console_scripts': ['pdflu=pdflu.pdflu:main'], }, install_requires=['habanero', 'pdfminer.six', 'termcolor', 'arxiv'], )
import logging _logger = logging.getLogger() _logger.setLevel(logging.INFO)
''' Created on May 2014 @author: klc Base class for importing anaysis result files ''' from __future__ import division import os import logging import re import copy from datetime import datetime from prettytable import PrettyTable from uuid import uuid4 import elasticsearchloader.file_utils as fx from elasticsearchloader.es_utils import ElasticSearchTools from elasticsearchloader.es_settings import HEADER_FIELDS, REFERENCE_INDEX from elasticsearchloader.es_settings import YAML_INDEX from elasticsearch.exceptions import NotFoundError class AnalysisLoader(object): ''' Abstract class, needs to be subclassed for each specific data type. ''' LOAD_FACTOR = 4000 es_tools = {} record_attributes = [] __load_id__ = '' __paired_record_attributes__ = None # # ABSTRACT METHODS TO IMPLEMENT # def parse_line(self, line): ''' ABSTRACT METHOD parses 1 data line. returns dictionary of parsed information ''' raise NotImplementedError( "Please implement this method when inheriting from this class") def parse_header(self, infile_handle, custom_header=None): ''' parses entire header. returns dictionary of parsed header information ''' header_values = {} if isinstance(custom_header, dict): header_values = copy.deepcopy(custom_header) header_fields = copy.deepcopy(HEADER_FIELDS['common']) # add subclass specific header fields, if any if type(self).__name__ in HEADER_FIELDS.keys(): header_fields = dict( header_fields.items() + HEADER_FIELDS[type(self).__name__].items() ) for line in infile_handle: line = line.strip() # Stop parsing when the first non-blank, non-comment line is reached if line and not line.startswith("#"): break # Skip blank lines and comment lines that don't start with two '#'s if not line or not re.match(r'^#{2}\w[^#]', line): continue [key, value] = (re.sub(r'^#+', '', line)).split('=', 1) if key in header_fields.keys(): field = header_fields[key]['field'] header_values[field] = value if header_fields[key]['transform'] == 'lower': header_values[field] = value.lower() elif header_fields[key]['transform'] == 'time': try: header_values[field] = datetime.strptime( value, '%Y-%m-%dT%H:%M:%S' ) except ValueError: # Check whether the date is in the format returned # by 'date' command, i.e. 'Fri Nov 21 11:35:33 2014' try: header_values[field] = datetime.strptime( value, '%a %b %d %I:%M:%S %Y' ) except ValueError: header_values[field] = datetime.strptime( value, '%a %b %d %H:%M:%S %Y' ) elif header_fields[key]['transform'] == 'number': header_values[field] = self.convert_to_number(value) elif header_fields[key]['transform'] == 'remove': del header_values[field] else: header_values[key] = value query_values = {} for field in ['sample_id', 'normal_sample_id', 'library_id', 'normal_library_id', 'run_id']: if field in header_values.keys(): query_values[field] = header_values[field] yaml_data = {} project_data = {} if 'run_id' in query_values.keys(): yaml_records = self.get_reference_data(YAML_INDEX, query_values) if not yaml_records: logging.error("Sample not found in Yaml index.") else: yaml_data = self.get_yaml_record( yaml_records, infile_handle.name ) del query_values['run_id'] project_records = self.get_reference_data( REFERENCE_INDEX, query_values ) if not project_records: logging.error("Sample not found in Sample index.") else: project_data = project_records[0]['_source'] if "tumor_type" in project_data.keys(): project_data["tumor_type"] = project_data["tumor_type"].lower() header_values = dict( header_values.items() + project_data.items() + yaml_data.items() ) header_values['file_fullname'] = os.path.abspath(infile_handle.name) return header_values def validate_input_file(self, filename): ''' checks the given filename and makes sure its acceptable to load returns true if we should parse the file. False if we should not. ''' raise NotImplementedError( "Please implement this method when inheriting from this class") def validate_file_content(self, file_path): ''' checks whether the input file contains the expected number of columns by examining the first 50 non-comment lines ''' if not self.record_attributes: return True num_fields = len(self.record_attributes) lines_read = 0 file_is_valid = True file_handle = open(file_path, 'r') for line in file_handle: if line.startswith('#'): continue lines_read += 1 if len(line.strip().split('\t')) != num_fields: file_is_valid = False logging.error( "%s doesn't match the expected input file format.", os.path.basename(file_path)) break if lines_read >= 50: break file_handle.close() return file_is_valid def __init__(self, es_doc_type=None, es_index=None, es_host=None, es_port=None, timeout=None, use_ssl=False, http_auth=None): ''' sets up Elastic search connection parameters ''' self.__load_id__ = str(uuid4()) self.es_tools = ElasticSearchTools(es_doc_type, es_index) self.es_tools.init_host( host=es_host, port=es_port, timeout=timeout, use_ssl=use_ssl, http_auth=http_auth) def convert_to_number(self, number): ''' converts strings representing numeric values into the corresponding data types ''' try: value = int(number) return value except ValueError: try: value = float(number) return value except ValueError as ve2: logging.debug(" %s is not a number. error is: %s", number, ve2) return None def parse( self, analysis_file=None, custom_header=None, analysis_data=None): ''' parses a analysis file. requires correct header and filename standard ''' # initiate variables analysis_values = {} header_values = {} buffered_values = [] index_cmd = self.get_index_cmd() stats = {'skipped': 0, 'lines_read': 0, 'non_standard_chroms': 0} self.disable_index_refresh() if not isinstance(custom_header, dict): custom_header = {} try: file_handle = open(analysis_file, 'r') header_values = self.parse_header(file_handle, custom_header) # Add any user provided data to the header if isinstance(custom_header, dict): header_values = dict( header_values.items() + custom_header.items() ) # Reposition the handle at the beginning of the file file_handle.seek(0) # read the records into the intermediate analysis_files for line in file_handle: stats["lines_read"] += 1 # Skip lines that begin with a # (ie don't parse comments) if stats["lines_read"] == 1 or line.startswith( '#') or line.startswith(' '): stats["skipped"] += 1 continue parsed_line = self.parse_line(line) # line could be empty or line could be an uncommented column # header (like titan) if not parsed_line: stats["skipped"] += 1 continue if not isinstance(parsed_line, list): parsed_line = [parsed_line] if len(parsed_line) == 2: record_copy = copy.deepcopy(parsed_line[0]) parsed_line[0]['paired_record'] = self.__get_paired_record( parsed_line[1]) parsed_line[1]["paired_record"] = self.__get_paired_record( record_copy) for idx, parsed_line_record in enumerate(parsed_line): if 'chrom_number' in parsed_line_record.keys(): chrom_number = str(parsed_line_record['chrom_number']) if re.match(r'^\d{1,2}$', chrom_number): chrom_number = chrom_number.zfill(2) else: chrom_number = chrom_number.upper() if chrom_number not in ['X', 'Y']: stats["non_standard_chroms"] += 1 stats["skipped"] += 1 # Remove from the buffer any records that are # produced by the line being skipped and that # might have been queueued for indexing if idx: buffered_values = buffered_values[:-idx*2] break parsed_line_record['chrom_number'] = chrom_number analysis_values = dict( header_values.items() + parsed_line_record.items()) analysis_values["source_id"] = self.__load_id__ buffered_values.append(index_cmd) buffered_values.append(analysis_values) if len(buffered_values) >= self.LOAD_FACTOR: self.es_tools.submit_bulk_to_es(buffered_values) buffered_values = [] # any leftovers.... if len(buffered_values) > 0: self.es_tools.submit_bulk_to_es(buffered_values) file_handle.close() except IOError as error: logging.warn('IO Error: %s', error) logging.warn( "NOTE: Load failed. Check logs to verify" + " what was actually loaded. ") file_handle.close() finally: self.enable_index_refresh() stats['inserted'] = self.es_tools.get_id() stats['error'] = '' return stats def disable_index_refresh(self): ''' Temporarily disables index refreshing during bulk indexing ''' return self.es_tools.put_settings({"refresh_interval": "-1"}) def enable_index_refresh(self): ''' Re-enables index refresh ''' if self.es_tools.put_settings({"refresh_interval": "1s"}): return self.es_tools.forcemerge() return False def count_input_lines(self, input_file): ''' Counts the number of non-comment lines in an input file ''' num_lines = os.popen( 'grep -v "^#" ' + input_file + ' | grep -v "^$" | wc -l').read().split('\n')[0] if re.match(r'^\s*\d+$', num_lines): return int(num_lines) return 0 def validate_import(self, input_file=None, input_data=None, stats=None): ''' verifies that the expected number of records has been created ''' validated = False import_stats = {} self.es_tools.refresh_index() if not input_file: grouping_clause = {'source_id': self.__load_id__} num_input_lines = len(input_data) else: import_stats['file_fullname'] = os.path.abspath(input_file) grouping_clause = {'file_fullname': import_stats["file_fullname"]} num_input_lines = self.count_input_lines(input_file) results = self.es_tools.search({'match': grouping_clause}) import_stats['index'] = self.es_tools.get_index() import_stats['doc_type'] = self.es_tools.get_doc_type() import_stats['timestamp'] = datetime.now() import_stats['record_count'] = num_input_lines # in case import stats have been provided, adjust the count # by taking out of consideration any skipped non-standard chromosomes if stats: import_stats['record_count'] -= stats["non_standard_chroms"] import_stats['imported_record_count'] = results['hits']['total'] import_stats['log'] = '' if self.validate_record_number( import_stats['record_count'], import_stats['imported_record_count']): import_stats['log'] = 'All records have been imported.' validated = True else: import_stats['log'] = 'Some records from' +\ ' this input file have not been imported.' # Verify that all imported records do have a sample_id or # normal_sample_id field filter_query = { 'filtered': { 'query': { 'match': grouping_clause }, 'filter': { 'bool': { 'must_not': [ { 'exists': { 'field': 'sample_id' } }, { 'exists': { 'field': 'normal_sample_id' } } ] } } } } results = self.es_tools.search(filter_query) if results['hits']['total'] != 0: import_stats['log'] += ' ' + str(results['hits']['total']) + \ ' records do not have sample_id/normal_sample_id attribute.' validated = False # Verify that there are no records with sample_id or normal_sample_id # with value an empty string filter_query = { 'filtered': { 'query': { 'match': grouping_clause }, 'filter': { 'bool': { 'should': [ { 'terms': { 'sample_id': [''] } }, { 'terms': { 'normal_sample_id': [''] } } ] } } } } results = self.es_tools.search(filter_query) if results['hits']['total'] != 0: import_stats['log'] += ' ' + str(results['hits']['total']) + \ ' records have an empty string as a ' +\ 'sample_id/normal_sample_id attribute value.' validated = False # Verify that all imported records have the following fields - # chrom number, start, end, tumor_type, expt_type, project for field in ['chrom_number', 'start', 'end', 'caller', 'tumor_type', 'expt_type', 'project']: filter_query = { 'filtered': { 'query': { 'match': grouping_clause }, 'filter': { 'bool': { 'must': [ { 'exists': { 'field': field } } ] } } } } results = self.es_tools.search(filter_query) total_hits = results['hits']['total'] if total_hits != import_stats['imported_record_count']: error_count = import_stats['imported_record_count'] - \ results['hits']['total'] import_stats['log'] += ' ' + str(error_count) + \ ' records are missing field \'' + field + '\'.' validated = False import_stats['validated'] = validated self.record_import_stats(import_stats) stats = PrettyTable(['Field', 'Value']) stats.padding_width = 1 stats.max_width['Value'] = 100 for key in import_stats.keys(): stats.add_row([key, import_stats[key]]) stats.align = 'l' logging.info( "File import results:\n%s", stats ) return validated def record_import_stats(self, data): ''' records the per-file import statistics into a separate Elastic search index ''' stats_index = 'import_stats_index' if not self.es_tools.exists(stats_index): from elasticsearch.exceptions import RequestError try: self.es_tools.es.indices.create(stats_index) except RequestError: logging.info("% exists.", stats_index) res = self.es_tools.es.index('import_stats_index', 'log_type', data) return res def validate_record_number(self, record_count, imported_count): ''' Some loaders produce several records for each input line, such ones should override the function below ''' return record_count == imported_count def get_default_mappings(self): ''' returns the default mapping configuration to be used when creating a new Elastic search index ''' document_type = self.es_tools.get_doc_type() mappings = { 'mappings': { document_type: { "_size": {"enabled": True}, "dynamic_templates": [ { "string_values": { "match": "*", "match_mapping_type": "string", "mapping": { "type": "string", "index": "not_analyzed" } } } ] } } } return mappings def create_index(self, mappings=None): ''' a wrapper method which invokes the corresponding es_utils method. If the index exists and the document type doesn't, creates the document type only ''' if not mappings: mappings = self.get_default_mappings() return self.es_tools.create_index(mappings) def get_reference_data(self, index, sample_data): ''' searches the provided index for sample related data ''' query = [] for field in sample_data.keys(): query.append({'terms': {field: [sample_data[field]]}}) query = {'bool': {'must': query}} try: res = self.es_tools.global_search(index, query) except NotFoundError: logging.error("Index %s doesn't exist.", index) return [] return res["hits"]["hits"] def get_yaml_record(self, results, input_file): ''' In case of multiple results, determines and returns the correct one, more specific implementations will be added in child classes ''' return results[0]['_source'] def get_index_cmd(self): return { "index": { "_index": self.es_tools.get_index(), "_type": self.es_tools.get_doc_type() } } def __get_paired_record(self, record): if isinstance(self.__paired_record_attributes__, list): paired_record = {} for key in self.__paired_record_attributes__: paired_record[key] = copy.deepcopy(record[key]) return paired_record return copy.deepcopy(record) def get_source_id(self): ''' Returns the load ID associated with the object ''' return self.__load_id__
import struct from typing import Any, Dict import os import sys from spacy.tokens import Doc, Token as SpacyToken from spacy.tokens.graph import Graph from .graph_token import Token, add_basic_edges, TokenId JsonObject = Dict[str, Any] # this is here because it needs to happen only once (per import) Doc.set_extension("parent_graphs_per_sent", default=[]) Doc.set_extension("added_nodes", default=[]) def get_pybart(doc): ret = [] for i, (graph, sent) in enumerate(zip(doc._.parent_graphs_per_sent, doc.sents)): offset = sent[0].i ret.append([]) for edge in graph.edges: ret[i].append({ "head": doc[edge.head.i + offset] if edge.head.i < len(sent) else doc._.added_nodes[i][edge.head.i], "tail": doc[edge.tail.i + offset] if edge.tail.i < len(sent) else doc._.added_nodes[i][edge.tail.i], "label": edge.label_ }) return ret Doc.set_extension("get_pybart", method=get_pybart) def enhance_spike_doc(doc: Doc, spike_doc: JsonObject) -> JsonObject: converted_graphs = doc._.parent_graphs_per_sent for idx, sent in enumerate(spike_doc["sentences"]): sent["graphs"]["universal-enhanced"] = {"edges": [], "roots": []} for edge in converted_graphs[idx].edges: if edge.label_.lower().startswith("root"): sent["graphs"]["universal-enhanced"]["roots"].append(edge.tail.i) # assume we have only one token per graph node else: sent["graphs"]["universal-enhanced"]["edges"].append( {"source": edge.head.i, "destination": edge.tail.i, "relation": edge.label_}) # sort the roots and edges for consistency purposes sent["graphs"]["universal-enhanced"]["roots"] = sorted(sent["graphs"]["universal-enhanced"]["roots"]) sent["graphs"]["universal-enhanced"]["edges"] = sorted(sent["graphs"]["universal-enhanced"]["edges"], key=lambda x: (x['source'], x['destination'], x['relation'])) return spike_doc Doc.set_extension("enhance_spike_doc", method=enhance_spike_doc) def parse_spacy_sent(sent): sentence = [] offset = min(tok.i for tok in sent) for i, tok in enumerate(sent): # add current token to current sentence sentence.append(Token( TokenId(tok.i + 1 - offset), tok.text, tok.lemma_, tok.pos_, tok.tag_, "_", TokenId((tok.head.i + 1 - offset) if tok.head.i != tok.i else 0), tok.dep_.lower(), "_", "_")) # add root sentence.append(Token(TokenId(0), None, None, None, None, None, None, None, None, None)) # after parsing entire sentence, add basic deprel edges, # and add sentence to output list add_basic_edges(sentence) return sentence def enhance_to_spacy_doc(orig_doc, converted_sentences, remove_enhanced_extra_info, remove_bart_extra_info): for sent_idx, (orig_span, converted_sentence) in enumerate(zip(orig_doc.sents, converted_sentences)): added_counter = 0 node_indices_map = dict() nodes = [] edges = [] labels = [] orig_doc._.added_nodes.append(dict()) converted_sentence = [tok for tok in converted_sentence if tok.get_conllu_field("id") != '0'] for idx, tok in enumerate(converted_sentence): new_id = tok.get_conllu_field("id") node_indices_map[new_id.token_str] = idx _ = nodes.append((idx,)) if new_id.minor != 0: orig_doc._.added_nodes[sent_idx][idx] = tok.get_conllu_field("form") + (f"_{added_counter}" if tok.get_conllu_field("form") == "STATE" else f"[COPY_NODE_{added_counter}]") added_counter += 1 for tok in converted_sentence: new_id = tok.get_conllu_field("id").token_str for head, rels in tok.get_new_relations(): for rel in rels: head_id = head.get_conllu_field("id").token_str edges.append(( node_indices_map[head_id if head_id != '0' else new_id], node_indices_map[new_id] )) _ = orig_doc.vocab[rel.to_str(remove_enhanced_extra_info, remove_bart_extra_info)] # this will push the label into the vocab if it's not there labels.append(rel.to_str(remove_enhanced_extra_info, remove_bart_extra_info)) # Disable printing possibility: so graph creation wont print many lines sys.stdout = open(os.devnull, 'w') orig_doc._.parent_graphs_per_sent.append(Graph(orig_doc, name="pybart", nodes=nodes, edges=edges, labels=labels)) # Restore printing possibility sys.stdout = sys.__stdout__
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os HERE = os.path.dirname(os.path.abspath(__file__))
from random import sample, shuffle import requests from credential import UNSPLASH, PIXABAY import argparse from PIL import Image from io import BytesIO import os from datetime import datetime ROOT = os.path.abspath(os.path.dirname(__file__)) class PictureSource: UNSPLASH = 1 PIXABAY = 2 class Picture(object): def __init__(self): pass class Unsplash(Picture): def __init__(self): self.access_key = UNSPLASH['API_KEY'] self.access_secret = UNSPLASH['API_SECRET'] self.base_url = "https://api.unsplash.com" self.exclude_authors = ["mischievous_penguins"] def get(self, path, params=None): headers = { "Authorization": f"Client-ID {self.access_key}", "Accept-Version": "v1", } params = {} if params is None else params endpoint = f"{self.base_url}{path}" resp = requests.get(endpoint, params=params, headers=headers) return resp.json() def get_pictures(self, query, count, page=1): # https://unsplash.com/documentation#search-photos path = "/search/photos" params = { "page": page, "per_page": count, "query": query, "orientation": "landscape", } pictures = self.get(path, params).get("results", []) pictures = [ { "display_url": p["urls"]["small"], # use the regular because the raw download is too large "download_url": p["urls"]["regular"], "thumbnail_url": p["urls"]["thumb"], } for p in pictures ] return pictures class Pixabay(Picture): def __init__(self): self.key = PIXABAY['API_KEY'] self.base_url = "https://pixabay.com/api/" def get(self, params=None): params = {} if params is None else params params.update({"key": self.key}) endpoint = self.base_url resp = requests.get(endpoint, params=params) # breakpoint() return resp.json() def get_pictures(self, query, count, page=1): # https://pixabay.com/api/docs/#api_rate_limit params = { "q": query, # Accepted values: "all", "horizontal", "vertical" Default: "all" "orientation": "horizontal", "page": page, "per_page": count, } data = self.get(params) pictures = data.get("hits", []) pictures = [ { "display_url": p["webformatURL"], # previewURL "download_url": p["largeImageURL"], "thumbnail_url": p["previewURL"], } for p in pictures ] return pictures def get_pictures(query, source=PictureSource.UNSPLASH, page=1): if source == PictureSource.UNSPLASH: photos_src = Unsplash() else: photos_src = Pixabay() query = "+".join([q.strip() for q in query.split(",")]) pics = photos_src.get_pictures(query, 10, page) shuffle(pics) return pics def download_and_process(url, keyword, overwrite=False): """download the image and resize and save to the correct directory """ width = 1024 # the width of the image image = requests.get(url).content im = Image.open(BytesIO(image)) orig_width, orig_height = im.size height = width * (orig_height / orig_width) new_size = (width, int(height)) im.thumbnail(new_size) orig_filename = keyword.replace(' ', '-') filename = orig_filename suffix = 1 while True: path = os.path.join(ROOT, "images", filename + '.png') if not os.path.exists(path) or overwrite: break filename = orig_filename + '-' + str(suffix) suffix += 1 im.save(path) print(f"the image has been saved to {path}") if __name__ == "__main__": parser = argparse.ArgumentParser(description='Search and download picture') parser.add_argument('--keyword', dest='keyword', type=str, help='search term') parser.add_argument('--overwrite', dest='overwrite', action="store_true", default=False, help='whether to overwrite the image if exists') args = parser.parse_args() keyword = args.keyword overwrite = args.overwrite if keyword is None: print("keyword is required") parser.print_help() else: print(f'trying to search and download for keyword: {keyword}') pictures = get_pictures(keyword, source=PictureSource.PIXABAY) pic = pictures[0] url = pic['download_url'] download_and_process(url, keyword, overwrite)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ In this module you find the base workflow for a impurity DOS calculation and some helper methods to do so with AiiDA """ from __future__ import print_function, absolute_import from aiida.orm import Code, load_node, CalcJobNode, Float, Int, Str from aiida.plugins import DataFactory from aiida.engine import if_, ToContext, WorkChain, calcfunction from aiida.common import LinkType from aiida.common.folders import SandboxFolder from aiida_kkr.workflows.gf_writeout import kkr_flex_wc from aiida_kkr.workflows.kkr_imp_sub import kkr_imp_sub_wc from aiida_kkr.workflows.dos import kkr_dos_wc from aiida_kkr.calculations import KkrimpCalculation import tarfile import os __copyright__ = (u"Copyright (c), 2019, Forschungszentrum Jülich GmbH, " "IAS-1/PGI-1, Germany. All rights reserved.") __license__ = "MIT license, see LICENSE.txt file" __version__ = "0.5.7" __contributors__ = (u"Fabian Bertoldo", u"Philipp Ruessmann") #TODO: improve workflow output node structure #TODO: generalise search for imp_info and conv_host from startpot Dict = DataFactory('dict') RemoteData = DataFactory('remote') SinglefileData = DataFactory('singlefile') XyData = DataFactory('array.xy') class kkr_imp_dos_wc(WorkChain): """ Workchain of a DOS calculation for an impurity system starting from a converged impurity calculation or workflow :param options: (Dict), computer options :param wf_parameters: (Dict), specifications for the DOS :param kkr: (Code), mandatory: KKR code for gf_writeout step :param kkrimp: (Code), mandatory: KKRimp code for DOS calculation :param imp_host_pot: (SinglefileData), mandatory: impurity startpotential :return workflow_info: (Dict), Information on workflow results :return last_calc_output_parameters: (Dict), output parameters of the last called calculation :return last_calc_info: (Dict), information of the last called calculation """ _workflowversion = __version__ _wf_label = 'kkr_imp_dos_wc' _wf_description = 'Workflow for a KKR impurity DOS calculation' _options_default = {'queue_name' : '', # Queue name to submit jobs too 'resources': {"num_machines": 1}, # resources to allocate for the job 'max_wallclock_seconds' : 60*60, # walltime after which the job gets killed (gets parsed to KKR)} 'custom_scheduler_commands' : '', # some additional scheduler commands 'use_mpi' : True} # execute KKR with mpi or without _wf_default = {'ef_shift': 0. , # set custom absolute E_F (in eV) 'clean_impcalc_retrieved': True, # remove output of KKRimp calculation after successful parsing of DOS files } # add defaults of dos_params since they are passed onto that workflow for key, value in kkr_dos_wc.get_wf_defaults(silent=True).items(): if key == 'dos_params': _wf_default[key] = value @classmethod def get_wf_defaults(self): """ Print and return _wf_defaults dictionary. Can be used to easily create set of wf_parameters. returns _wf_defaults """ print('Version of workflow: {}'.format(self._workflowversion)) return self._wf_default @classmethod def define(cls, spec): """ Defines the outline of the workflow """ # Take input of the workflow or use defaults defined above super(kkr_imp_dos_wc, cls).define(spec) spec.input("kkr", valid_type=Code, required=False, help="KKRhost code, needed if gf_dos_remote is not given.") spec.input("kkrimp", valid_type=Code, required=True, help="KKRimp code, always needed.") spec.input("options", valid_type=Dict, required=False, default=Dict(dict=cls._options_default), help="Computer options (resources, quene name, etc.).") spec.input("wf_parameters", valid_type=Dict, required=False, default=Dict(dict=cls._wf_default), help="DOS workflow parameters (energy range, etc.).") spec.input("host_remote", valid_type=RemoteData, required=False, help="RemoteData node of the (converged) host calculation.") spec.input("gf_dos_remote", valid_type=RemoteData, required=False, help="RemoteData node of precomputed host GF for DOS energy contour.") spec.input("kkrimp_remote", valid_type=RemoteData, required=False, help="RemoteData node of previous (converged) KKRimp calculation.") spec.input("imp_pot_sfd", valid_type=SinglefileData, required=False, help="impurity potential single file data. Needs also impurity_info node.") spec.input("impurity_info", valid_type=Dict, required=False, help="impurity info node that specifies the relation between imp_pot_sfd to the host system. Mandatory if imp_pot_sfd is given.") spec.input("params_kkr_overwrite", valid_type=Dict, required=False, help="Set some input parameters of the KKR calculation.") # specify the outputs spec.output('workflow_info', valid_type=Dict) spec.output('last_calc_output_parameters', valid_type=Dict) spec.output('last_calc_info', valid_type=Dict) spec.output('dos_data', valid_type=XyData) spec.output('dos_data_interpol', valid_type=XyData) spec.output('gf_dos_remote', valid_type=XyData, required=False, help="RemoteData node of the computed host GF.") # Here the structure of the workflow is defined spec.outline( cls.start, # start and initialise workflow if_(cls.validate_input)( # validate the given input cls.run_gfstep, # run GF step with DOS energy contour cls.run_imp_dos), # run DOS for the impurity problem cls.return_results # terminate workflow and return results ) # Define possible exit codes for the workflow spec.exit_code(220, "ERROR_UNKNOWN_PROBLEM", message="Unknown problem detected.") spec.exit_code(221, "ERROR_NO_PARENT_FOUND", message="Unable to find the parent remote_data node that led to " "the input impurity calculation. You need to specify " "`host_remote` and `impurity_info` nodes.") spec.exit_code(222, "ERROR_GF_WRITEOUT_UNSUCCESFUL", message="The gf_writeout workflow was not succesful, cannot continue.") spec.exit_code(223, "ERROR_IMP_POT_AND_REMOTE", message="The input nodes `imp_pot_sfd` and `kkrimp_remote` are given but are mutually exclusive") spec.exit_code(224, "ERROR_KKR_CODE_MISSING", message="KKRhost code node (`inputs.kkr`) is missing if gf_dos_remote is not given.") spec.exit_code(225, "ERROR_HOST_REMOTE_MISSING", message="`host_remote` node is missing if gf_dos_remote is not given.") spec.exit_code(226, "ERROR_IMP_SUB_WORKFLOW_FAILURE", message="KKRimp sub-workflow failed.") def start(self): """ Initialise context and some parameters """ self.report('INFO: started KKR impurity DOS workflow version {}' ''.format(self._workflowversion)) # input both wf and options parameters if 'wf_parameters' in self.inputs: wf_dict = self.inputs.wf_parameters.get_dict() if wf_dict == {}: wf_dict = self._wf_default self.report('INFO: using default wf parameters') if 'options' in self.inputs: options_dict = self.inputs.options.get_dict() if options_dict == {}: options_dict = self._options_default self.report('INFO: using default options parameters') # set values, or defaults self.ctx.use_mpi = options_dict.get('use_mpi', self._options_default['use_mpi']) self.ctx.resources = options_dict.get('resources', self._options_default['resources']) self.ctx.max_wallclock_seconds = options_dict.get('max_wallclock_seconds', self._options_default['max_wallclock_seconds']) self.ctx.queue = options_dict.get('queue_name', self._options_default['queue_name']) self.ctx.custom_scheduler_commands = options_dict.get('custom_scheduler_commands', self._options_default['custom_scheduler_commands']) self.ctx.options_params_dict = Dict(dict={'use_mpi': self.ctx.use_mpi, 'resources': self.ctx.resources, 'max_wallclock_seconds': self.ctx.max_wallclock_seconds, 'queue_name': self.ctx.queue, 'custom_scheduler_commands': self.ctx.custom_scheduler_commands}) # set workflow parameters for the KKR imputrity calculations self.ctx.ef_shift = wf_dict.get('ef_shift', self._wf_default['ef_shift']) self.ctx.dos_params_dict = wf_dict.get('dos_params', self._wf_default['dos_params']) self.ctx.cleanup_impcalc_output = wf_dict.get('clean_impcalc_retrieved', self._wf_default['clean_impcalc_retrieved']) # set workflow parameters for the KKR impurity calculation self.ctx.nsteps = 1 # always only one step for DOS calculation self.ctx.kkr_runmax = 1 # no restarts for DOS calculation # set workflow label and description self.ctx.description_wf = self.inputs.get('description', self._wf_description) self.ctx.label_wf = self.inputs.get('label', self._wf_label) # whether or not to compute the GF writeout step self.ctx.skip_gfstep = False self.report('INFO: use the following parameter:\n' 'use_mpi: {}\n' 'Resources: {}\n' 'Walltime (s): {}\n' 'queue name: {}\n' 'scheduler command: {}\n' 'description: {}\n' 'label: {}\n'.format(self.ctx.use_mpi, self.ctx.resources, self.ctx.max_wallclock_seconds, self.ctx.queue, self.ctx.custom_scheduler_commands, self.ctx.description_wf, self.ctx.label_wf)) # return para/vars self.ctx.successful = True self.ctx.errors = [] self.ctx.formula = '' def validate_input(self): """ Validate input and catch possible errors """ inputs = self.inputs inputs_ok = True if 'imp_pot_sfd' in inputs: # check if input potential has incoming return link if len(inputs.imp_pot_sfd.get_incoming(link_type=LinkType.RETURN).all()) < 1: self.report("input potential not from kkrimp workflow: take remote_data folder of host system from input") if 'impurity_info' in inputs and 'host_remote' in inputs: self.ctx.imp_info = inputs.impurity_info self.ctx.conv_host_remote = inputs.host_remote else: self.report('WARNING: startpot has no parent and can not find ' 'a converged host RemoteData node') if 'impurity_info' not in inputs: self.report("`impurity_info` optional input node not given but needed in this case.") if 'host_remote' not in inputs: self.report("`host_remote` optional input node not given but needed in this case.") inputs_ok = False self.ctx.errors.append(1) else: # if return ink is found get input nodes automatically self.report('INFO: get converged host RemoteData node and ' 'impurity_info node from database') self.ctx.kkr_imp_wf = inputs.imp_pot_sfd.get_incoming().first().node self.report('INFO: found underlying kkr impurity workflow ' '(pk: {})'.format(self.ctx.kkr_imp_wf.pk)) self.ctx.imp_info = self.ctx.kkr_imp_wf.inputs.impurity_info self.report('INFO: found impurity_info node (pk: {})'.format( self.ctx.imp_info.pk)) if 'remote_data' in self.ctx.kkr_imp_wf.inputs: remote_data_gf_writeout = self.ctx.kkr_imp_wf.inputs.remote_data gf_writeout_calc = remote_data_gf_writeout.get_incoming(node_class=CalcJobNode).first().node self.ctx.conv_host_remote = gf_writeout_calc.inputs.parent_folder self.report('INFO: imported converged_host_remote (pk: {}) and ' 'impurity_info from database'.format(self.ctx.conv_host_remote.pk)) else: self.ctx.conv_host_remote = self.ctx.kkr_imp_wf.inputs.gf_remote.inputs.remote_folder.inputs.parent_calc_folder.inputs.remote_folder.outputs.remote_folder self.report('INFO: imported converged_host_remote (pk: {}) and ' 'impurity_info from database'.format(self.ctx.conv_host_remote.pk)) if 'gf_dos_remote' in self.inputs: self.ctx.skip_gfstep = True else: if 'kkr' not in self.inputs: self.report("[ERROR] `kkr` input node needed if `gf_dos_remote` is not given") inputs_ok = False self.ctx.errors.append(3) # raises ERROR_KKR_CODE_MISSING if 'host_remote' not in self.inputs: self.report("[ERROR] `host_remote` input node needed if `gf_dos_remote` is not given") inputs_ok = False self.ctx.errors.append(4) # raises ERROR_HOST_REMOTE_MISSING else: self.ctx.conv_host_remote = self.inputs.host_remote if 'imp_pot_sfd' in self.inputs and 'kkrimp_remote' in self.inputs: self.report("[ERROR] both `imp_pot_sfd` and `kkrimp_remote` node in inputs") inputs_ok = False self.ctx.errors.append(2) # raises ERROR_IMP_POT_AND_REMOTE elif 'imp_pot_sfd' in self.inputs: self.report("[INFO] use `imp_pot_sfd` input node") elif 'kkrimp_remote' in self.inputs: self.report("[INFO] use `kkrimp_remote` input node") # extract imp_info node from parent KKRimp calculation parent_impcalc = self.inputs.kkrimp_remote.get_incoming(node_class=CalcJobNode).first().node self.ctx.imp_info = parent_impcalc.inputs.impurity_info else: self.report("neither `imp_pot_sfd` nor `kkrimp_remote` node in inputs") inputs_ok = False self.ctx.errors.append(1) # raises ERROR_NO_PARENT_FOUND self.report('INFO: validated input successfully: {}'.format(inputs_ok)) return inputs_ok def run_gfstep(self): """ Start GF writeout step with DOS energy contour """ if not self.ctx.skip_gfstep: options = self.ctx.options_params_dict kkrcode = self.inputs.kkr converged_host_remote = self.ctx.conv_host_remote imp_info = self.ctx.imp_info wf_params_gf = Dict(dict={'ef_shift':self.ctx.ef_shift, 'dos_run':True, 'dos_params':self.ctx.dos_params_dict}) label_gf = 'GF writeout for imp DOS' description_gf = 'GF writeout step with energy contour for impurity DOS' builder = kkr_flex_wc.get_builder() builder.metadata.label = label_gf builder.metadata.description = description_gf builder.kkr = kkrcode builder.options = options builder.wf_parameters = wf_params_gf builder.remote_data = converged_host_remote builder.impurity_info = imp_info if "params_kkr_overwrite" in self.inputs: builder.params_kkr_overwrite = self.inputs.params_kkr_overwrite future = self.submit(builder) self.report('INFO: running GF writeout (pid: {})'.format(future.pk)) return ToContext(gf_writeout=future) def run_imp_dos(self): """ Use previous GF step to calculate DOS for the impurity problem """ if not self.ctx.skip_gfstep: # use computed gf_writeout if not self.ctx.gf_writeout.is_finished_ok: return self.exit_codes.ERROR_GF_WRITEOUT_UNSUCCESFUL gf_writeout_wf = self.ctx.gf_writeout gf_writeout_calc = load_node(self.ctx.gf_writeout.outputs.workflow_info.get_dict().get('pk_flexcalc')) gf_writeout_remote = gf_writeout_wf.outputs.GF_host_remote self.ctx.pk_flexcalc = self.ctx.gf_writeout.outputs.workflow_info.get_dict().get('pk_flexcalc') else: # use gf_writeout from input gf_writeout_remote = self.inputs.gf_dos_remote gf_writeout_calc = gf_writeout_remote.get_incoming(node_class=CalcJobNode).first().node self.ctx.pk_flexcalc = gf_writeout_calc.pk options = self.ctx.options_params_dict kkrimpcode = self.inputs.kkrimp if 'imp_pot_sfd' in self.inputs: # take impurit potential SingleFileData node impurity_pot_or_remote = self.inputs.imp_pot_sfd elif 'kkrimp_remote' in self.inputs: # or from RemoteData node of previous KKRimp calc impurity_pot_or_remote = self.inputs.kkrimp_remote imps = self.ctx.imp_info nspin = gf_writeout_calc.outputs.output_parameters.get_dict().get('nspin') self.ctx.nspin = nspin self.report('nspin: {}'.format(nspin)) self.ctx.kkrimp_params_dict = Dict(dict={'nspin': nspin, 'nsteps': self.ctx.nsteps, 'kkr_runmax': self.ctx.kkr_runmax, 'dos_run': True}) kkrimp_params = self.ctx.kkrimp_params_dict label_imp = 'KKRimp DOS (GF: {}, imp_pot: {}, Zimp: {}, ilayer_cent: {})'.format( gf_writeout_calc.pk, impurity_pot_or_remote.pk, imps.get_dict().get('Zimp'), imps.get_dict().get('ilayer_center')) description_imp = 'KKRimp DOS run (GF: {}, imp_pot: {}, Zimp: {}, ilayer_cent: {}, R_cut: {})'.format( gf_writeout_calc.pk, impurity_pot_or_remote.pk, imps.get_dict().get('Zimp'), imps.get_dict().get('ilayer_center'), imps.get_dict().get('Rcut')) builder = kkr_imp_sub_wc.get_builder() builder.metadata.label = label_imp builder.metadata.description = description_imp builder.kkrimp = kkrimpcode builder.options = options builder.wf_parameters = kkrimp_params builder.remote_data = gf_writeout_remote if 'imp_pot_sfd' in self.inputs: builder.host_imp_startpot = impurity_pot_or_remote else: builder.kkrimp_remote = impurity_pot_or_remote builder.impurity_info=imps future = self.submit(builder) self.report('INFO: running DOS step for impurity system (pid: {})'.format(future.pk)) return ToContext(kkrimp_dos=future) def return_results(self): """ Return the results and create all of the output nodes """ if self.ctx.errors!=[]: if 1 in self.ctx.errors: return self.exit_codes.ERROR_NO_PARENT_FOUND elif 2 in self.ctx.errors: return self.exit_codes.ERROR_IMP_POT_AND_REMOTE elif 3 in self.ctx.errors: return self.exit_codes.ERROR_KKR_CODE_MISSING elif 4 in self.ctx.errors: return self.exit_codes.ERROR_HOST_REMOTE_MISSING else: return self.exit_codes.ERROR_UNKNOWN_PROBLEM self.report('INFO: creating output nodes for the KKR imp DOS workflow ...') if not self.ctx.kkrimp_dos.is_finished_ok: self.report('ERROR: sub workflow for impurity calculation failed') return self.exit_codes.ERROR_IMP_SUB_WORKFLOW_FAILURE else: last_calc_pk = self.ctx.kkrimp_dos.outputs.workflow_info.get_dict().get('last_calc_nodeinfo')['pk'] last_calc = load_node(last_calc_pk) last_calc_output_params = last_calc.outputs.output_parameters last_calc_info = self.ctx.kkrimp_dos.outputs.workflow_info outputnode_dict = {} outputnode_dict['impurity_info'] = self.ctx.imp_info.get_dict() outputnode_dict['workflow_name'] = self.__class__.__name__ outputnode_dict['workflow_version'] = self._workflowversion if not self.ctx.skip_gfstep: outputnode_dict['used_subworkflows'] = {'gf_writeout': self.ctx.gf_writeout.pk} else: outputnode_dict['used_subworkflows'] = {} outputnode_dict['used_subworkflows']['impurity_dos'] = self.ctx.kkrimp_dos.pk outputnode_t = Dict(dict=outputnode_dict) outputnode_t.label = 'kkr_imp_dos_wc_inform' outputnode_t.description = 'Contains information for workflow' outputnode_t.store() # interpol dos file and store to XyData nodes dos_extracted, dosXyDatas = self.extract_dos_data(last_calc) self.report('INFO: extracted DOS data? {}'.format(dos_extracted)) if dos_extracted: self.out('dos_data', dosXyDatas['dos_data']) self.out('dos_data_interpol', dosXyDatas['dos_data_interpol']) # maybe cleanup retrieved folder of DOS calculation if self.ctx.cleanup_impcalc_output: self.report('INFO: cleanup after storing of DOS data') pk_impcalc = self.ctx.kkrimp_dos.outputs.workflow_info['pks_all_calcs'][0] cleanup_kkrimp_retrieved(pk_impcalc) self.report('INFO: workflow_info node: {}'.format(outputnode_t.uuid)) self.out('workflow_info', outputnode_t) self.out('last_calc_output_parameters', last_calc_output_params) self.out('last_calc_info', last_calc_info) self.report('INFO: created output nodes for KKR imp DOS workflow.') self.report('\n' '|------------------------------------------------------------------------------------------------------------------|\n' '|-------------------------------------| Done with the KKR imp DOS workflow! |--------------------------------------|\n' '|------------------------------------------------------------------------------------------------------------------|') def extract_dos_data(self, last_calc): """ Extract DOS data from retrieved folder of KKRimp calculation. If output is compressed in tarfile take care of extracting this before parsing `out_ldos*` files. The extraction of the DOS data is done in `self.extract_dos_data_from_folder()` calls. returns: :boolean dos_extracted: logical signalling if extraction of DOS files was successful :dictionary dosXyDatas: dictionary containing dos data and interpolated dos data """ # here we look for the dos files or the tarball containing the dos files: dos_retrieved = last_calc.outputs.retrieved if KkrimpCalculation._FILENAME_TAR in dos_retrieved.list_object_names(): # deal with packed output files (overwrites dos_retrieved with sandbox into which files are extracted # this way the unpacked files are deleted after parsing and only the tarball is kept in the retrieved directory # for this we create a Sandbox folder with SandboxFolder() as tempfolder: # get abs paths of tempfolder and tarfile (needed by extract method of tarfile) # get abs path of tempfolder with tempfolder.open('.dummy','w') as tmpfile: tempfolder_path = os.path.dirname(tmpfile.name) # get path of tarfile with dos_retrieved.open(KkrimpCalculation._FILENAME_TAR) as tf: tfpath = tf.name # extract file from tarfile of retrieved to tempfolder with tarfile.open(tfpath) as tf: tar_filenames = [ifile.name for ifile in tf.getmembers()] for filename in tar_filenames: if 'dos' in filename: # should extract all out_ldos*, out_lmdos* files tf.extract(filename, tempfolder_path) # extract to tempfolder # now files are in tempfolder from where we can extract the dos data dos_extracted, dosXyDatas = self.extract_dos_data_from_folder(tempfolder, last_calc) else: # extract directly from retrieved (no tarball there) dos_extracted, dosXyDatas = self.extract_dos_data_from_folder(dos_retrieved, last_calc) return dos_extracted, dosXyDatas def extract_dos_data_from_folder(self, folder, last_calc): """ Get DOS data and parse files. """ # initialize in case dos data is not extracted dosXyDatas = None # get list of files in directory (needed since SandboxFolder does not have `list_object_names` method) # also extract absolute path of folder (needed by parse_impdosfiles since calcfunction does not work with SandboxFolder as input) if isinstance(folder, SandboxFolder): folder_abspath = folder.abspath filelist = os.listdir(folder_abspath) else: filelist = folder.list_object_names() with folder.open(filelist[0]) as tmpfile: folder_abspath = tmpfile.name.replace(filelist[0], '') # check if out_ldos* files are there and parse dos files if 'out_ldos.interpol.atom=01_spin1.dat' in filelist: # extract EF and number of atoms from kkrflex_writeout calculation kkrflex_writeout = load_node(self.ctx.pk_flexcalc) parent_calc_kkr_converged = kkrflex_writeout.inputs.parent_folder.get_incoming(node_class=CalcJobNode).first().node ef = parent_calc_kkr_converged.outputs.output_parameters.get_dict().get('fermi_energy') last_calc_output_params = last_calc.outputs.output_parameters natom = last_calc_output_params.get_dict().get('number_of_atoms_in_unit_cell') # parse dosfiles using nspin, EF and Natom inputs dosXyDatas = parse_impdosfiles(Str(folder_abspath), Int(natom), Int(self.ctx.nspin), Float(ef)) dos_extracted = True else: dos_extracted = False dosXyDatas = None return dos_extracted, dosXyDatas @calcfunction def parse_impdosfiles(dos_abspath, natom, nspin, ef): """ Read `out_ldos*` files and create XyData node with l-resolved DOS (+node for interpolated DOS if files are found) Inputs: :param dos_abspath: absolute path to folder where `out_ldos*` files reside (AiiDA Str object) :param natom: number of atoms (AiiDA Int object) :param nspin: number of spin channels (AiiDA Int object) :param ef: Fermi energy in Ry units (AiiDA Float object) Returns: output dictionary containing output = {'dos_data': dosnode, 'dos_data_interpol': dosnode2} where `dosnode` and `dosnode2` are AiiDA XyData objects """ from masci_tools.io.common_functions import get_Ry2eV, get_ef_from_potfile from numpy import loadtxt, array # add '/' if missing from path abspath = dos_abspath.value if abspath[-1] != '/': abspath += '/' # read dos files dos, dos_int = [], [] for iatom in range(1, natom.value+1): for ispin in range(1, nspin.value+1): with open(abspath+'out_ldos.atom=%0.2i_spin%i.dat'%(iatom, ispin)) as dosfile: tmp = loadtxt(dosfile) dos.append(tmp) with open(abspath+'out_ldos.interpol.atom=%0.2i_spin%i.dat'%(iatom, ispin)) as dosfile: tmp = loadtxt(dosfile) dos_int.append(tmp) dos, dos_int = array(dos), array(dos_int) # convert to eV units eVscale = get_Ry2eV() dos[:,:,0] = (dos[:,:,0]-ef.value)*eVscale dos[:,:,1:] = dos[:,:,1:]/eVscale dos_int[:,:,0] = (dos_int[:,:,0]-ef.value)*eVscale dos_int[:,:,1:] = dos_int[:,:,1:]/eVscale # create output nodes dosnode = XyData() dosnode.label = 'dos_data' dosnode.description = 'Array data containing uniterpolated DOS (i.e. dos at finite imaginary part of energy). 3D array with (atoms, energy point, l-channel) dimensions.' dosnode.set_x(dos[:,:,0], 'E-EF', 'eV') name = ['tot', 's', 'p', 'd', 'f', 'g'] name = name[:len(dos[0,0,1:])-1]+['ns'] ylists = [[],[],[]] for l in range(len(name)): ylists[0].append(dos[:,:,1+l]) ylists[1].append('dos '+name[l]) ylists[2].append('states/eV') dosnode.set_y(ylists[0], ylists[1], ylists[2]) # node for interpolated DOS dosnode2 = XyData() dosnode2.label = 'dos_interpol_data' dosnode2.description = 'Array data containing iterpolated DOS (i.e. dos at finite imaginary part of energy). 3D array with (atoms, energy point, l-channel) dimensions.' dosnode2.set_x(dos_int[:,:,0], 'E-EF', 'eV') ylists = [[],[],[]] for l in range(len(name)): ylists[0].append(dos_int[:,:,1+l]) ylists[1].append('interpolated dos '+name[l]) ylists[2].append('states/eV') dosnode2.set_y(ylists[0], ylists[1], ylists[2]) output = {'dos_data': dosnode, 'dos_data_interpol': dosnode2} return output def cleanup_kkrimp_retrieved(pk_impcalc): """ remove output_all.tar.gz from retrieved of impurity calculation identified by pk_impcalc """ from aiida.orm import load_node from aiida_kkr.calculations import KkrimpCalculation # extract retrieved folder doscalc = load_node(pk_impcalc) ret = doscalc.outputs.retrieved # name of tarfile tfname = KkrimpCalculation._FILENAME_TAR # remove tarfile from retreived dir if tfname in ret.list_object_names(): ret.delete_object(tfname, force=True)
from typing import List import numpy as np from numpy import zeros from pyNastran.utils.numpy_utils import integer_types from pyNastran.op2.tables.oes_stressStrain.real.oes_objects import ( StressObject, StrainObject, OES_Object) from pyNastran.f06.f06_formatting import write_float_13e BASIC_TABLES = { 'OESATO1', 'OESCRM1', 'OESPSD1', 'OESRMS1', 'OESNO1', 'OESATO2', 'OESCRM2', 'OESPSD2', 'OESRMS2', 'OESNO2', 'OSTRATO1', 'OSTRCRM1', 'OSTRPSD1', 'OSTRRMS1', 'OSTRNO1', 'OSTRATO2', 'OSTRCRM2', 'OSTRPSD2', 'OSTRRMS2', 'OSTRNO2', } VM_TABLES = {'OESXRMS1', 'OESXNO1'} class RandomPlateArray(OES_Object): def __init__(self, data_code, is_sort1, isubcase, dt): OES_Object.__init__(self, data_code, isubcase, apply_data_code=False) ## why??? self.element_node = None self.fiber_curvature = None #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 #self.itime = 0 self.nelements = 0 # result specific #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') @property def is_real(self) -> bool: return False @property def is_complex(self) -> bool: return True @property def nnodes_per_element(self) -> int: return get_nnodes(self) def _reset_indices(self): self.itotal = 0 self.ielement = 0 def build(self): """sizes the vectorized attributes of the ComplexPlateArray""" if not hasattr(self, 'subtitle'): self.subtitle = self.data_code['subtitle'] nnodes = self.nnodes_per_element #self.names = [] self.nelements //= nnodes #print('element_type=%r ntimes=%s nelements=%s ntotal=%s subtitle=%s' % ( #self.element_type, self.ntimes, self.nelements, self.ntotal, self.subtitle)) #self.nelements //= self.ntimes #self.ntotal = self.nelements # * 2 #if self.element_name == 'CTRIA3': #print('element_type=%r ntimes=%s nelements=%s ntotal=%s subtitle=%s' % ( #self.element_type, self.ntimes, self.nelements, self.ntotal, self.subtitle)) #print(self) if self.is_sort1: # old #ntimes = self.ntimes #nelements = self.nelements ntimes = len(self._ntotals) ntotal = self._ntotals[0] nelements = ntotal // 2 #ntotal = self.ntotal nx = ntimes ny = nelements * 2 nlayers = nelements * 2 * nnodes #ntotal = nelements * 2 #if self.element_name in ['CTRIA3', 'CQUAD8']: #print(f"SORT1 ntimes={ntimes} nelements={nelements} ntotal={ntotal}") elif self.is_sort2: # ntotal=164 # len(_ntotals) = 4580 -> nelements=4580 # nfreqs=82 # flip this to sort1? #ntimes = self.ntotal #nnodes = self.ntimes #ntotal = nnodes #nelements = self.ntimes #ntimes = self.nelements # // nelements #ntotal = self.ntotal nelements = len(self._ntotals) ntotal = self._ntotals[0] ntimes = ntotal // 2 // nnodes #print(self._ntotals) ntotal = self._ntotals[0] #nelements = len(self._ntotals) #ntimes = ntotal // 2 #ntimes, nelements = nelements_real, ntimes_real #ntotal = self.ntotal nlayers = nelements * 2 * nnodes ny = nlayers # nelements * 2 * nnodes nx = ntimes #if self.element_name in ['CTRIA3', 'CQUAD8']: #if self.element_name in ['CQUAD4']: #print(f"SORT2 ntimes={ntimes} nelements={nelements} ntotal={ntotal} nnodes={nnodes} nlayers={nlayers}") else: # pragma: no cover raise RuntimeError('expected sort1/sort2\n%s' % self.code_information()) #self.ntotal self.itime = 0 self.ielement = 0 self.itotal = 0 self.is_built = True #print('ntotal=%s ntimes=%s nelements=%s' % (self.ntotal, self.ntimes, self.nelements)) #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) self.build_data(ntimes, nelements, nlayers, nnodes, ntotal, nx, ny, self._times_dtype) def build_data(self, ntimes, nelements, nlayers, nnodes, ntotal, nx, ny, dtype): """actually performs the build step""" self.ntimes = ntimes self.nelements = nelements #ntotal = nelements * 2 self.ntotal = ntotal #_times = zeros(ntimes, dtype=dtype) #element = zeros(nelements, dtype='int32') self._times = zeros(ntimes, dtype) #self.ntotal = self.nelements * nnodes self.element_node = zeros((nlayers, 2), 'int32') # the number is messed up because of the offset for the element's properties #if not self.nelements * 2 == self.ntotal: #msg = 'ntimes=%s nelements=%s nlayers=%s ntotal=%s' % ( #self.ntimes, self.nelements, self.nelements * 2, self.ntotal) #raise RuntimeError(msg) self.fiber_curvature = zeros(nlayers, 'float32') # [oxx, oyy, txy] nresults = 3 if self.has_von_mises: # ovm nresults += 1 #print(f'ntimes={self.ntimes} nelements={self.nelements} ntotal={self.ntotal}') self.data = zeros((nx, ny, nresults), 'float32') def build_dataframe(self): """creates a pandas dataframe""" import pandas as pd headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() #print(f'column_names = {column_names} column_values={column_values}') #print(self.element_node) self.data_frame = pd.Panel(self.data, items=column_values, major_axis=self.element_node, minor_axis=headers).to_frame() self.data_frame.columns.names = column_names self.data_frame.index.names = ['ElementID', 'Item'] return names = ['ElementID', 'NodeID'] ipos = np.where(self.element_node[:, 0] > 0) element_node = [ self.element_node[ipos, 0], self.element_node[ipos, 1], ] data_frame = self._build_pandas_transient_element_node( column_values, column_names, headers, element_node, self.data[:, ipos, :], from_tuples=False, from_array=True, names=names, ) #print(data_frame) #self.dataframe = data_frame def __eq__(self, table): # pragma: no cover assert self.is_sort1 == table.is_sort1 self._eq_header(table) assert self.element_node[:, 0].min() > 0, self.element_node assert table.element_node[:, 0].min() > 0, table.element_node if not np.array_equal(self.element_node, table.element_node): assert self.element_node.shape == table.element_node.shape, 'shape=%s element_node.shape=%s' % ( self.element_node.shape, table.element_node.shape) msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\nEid, Nid\n' % str(self.code_information()) for eid1, eid2 in zip(self.element, table.element): msg += '(%s, %s), (%s, %s)\n' % (eid1, eid2) print(msg) raise ValueError(msg) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1: for itime in range(ntimes): for ieid, (eid, nid) in enumerate(self.element_node): t1 = self.data[itime, ieid, :] t2 = table.data[itime, ieid, :] (oxx1, oyy1, txy1) = t1 (oxx2, oyy2, txy2) = t2 #d = t1 - t2 if not np.allclose( [oxx1, oyy1, txy1], # atol=0.0001 [oxx2, oyy2, txy2], atol=0.075): ni = len(str(eid)) + len(str(eid)) #if not np.array_equal(t1, t2): msg += ('%s (%s, %s, %s)\n' '%s (%s, %s, %s)\n' % ( eid, oxx1, oyy1, txy1, ' ' * ni, oxx2, oyy2, txy2, )) msg += ('%s (%s, %s, %s)\n' % ( ' ' * ni, oxx1 - oxx2, oyy1 - oyy2, txy1 - txy2, )) i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2) if i > 0: print(msg) raise ValueError(msg) return True def finalize(self): """Calls any OP2 objects that need to do any post matrix calcs""" if self.is_sort1: return #print('finalize random plate') self.set_as_sort1() #print(self.get_stats()) #print(self._times, self._times.dtype) #print(self.element_node) #aaa def add_sort1(self, dt, eid, nid, fd1, oxx1, oyy1, txy1, fd2, oxx2, oyy2, txy2): assert self.is_sort1, self.sort_method #assert self.element_node.max() == 0, self.element_node #if self.element_name in ['CTRIA3', 'CQUAD8']: #print(f'SORT1 {self.element_name}: itime={self.itime} ielement={self.ielement} itotal={self.itotal} dt={dt} eid={eid} nid={nid} fd={fd1} oxx={oxx1}') #print(f'SORT1 {self.element_name}: itime={self.itime} ielement={self.ielement} itotal={self.itotal+1} dt={dt} eid={eid} nid={nid} fd={fd2} oxx={oxx2}') #print('%s: itime=%s itotal=%s dt=%s eid=%s fd=%s oxx=%s' % (self.element_name, self.itime, self.itotal, dt, eid, fd, oxx)) self._times[self.itime] = dt #print(self.element_types2, element_type, self.element_types2.dtype) assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self.data[self.itime, self.itotal, :] = [oxx1, oyy1, txy1] self.element_node[self.itotal, :] = [eid, nid] # 0 is center self.fiber_curvature[self.itotal] = fd1 #self.ielement += 1 self.itotal += 1 self.data[self.itime, self.itotal, :] = [oxx2, oyy2, txy2] self.element_node[self.itotal, :] = [eid, nid] # 0 is center self.fiber_curvature[self.itotal] = fd2 self.itotal += 1 def add_sort2(self, dt, eid, nid, fd1, oxx1, oyy1, txy1, fd2, oxx2, oyy2, txy2): #if self.element_name == 'CTRIA3': #assert self.element_node.max() == 0, self.element_node #print(self.element_node, nid) nnodes = self.nnodes_per_element itime = self.ielement // nnodes inid = self.ielement % nnodes itotal = self.itotal #if itime >= self.data.shape[0]:# or itotal >= self.element_node.shape[0]: #print(f'*SORT2 {self.element_name}: itime={itime} ielement={self.itime} inid={inid} itotal={itotal} dt={dt} eid={eid} nid={nid} fd={fd1:.2f} oxx={oxx1:.2f}') #print(f'*SORT2 {self.element_name}: itime={itime} ielement={self.itime} inid={inid} itotal={itotal+1} dt={dt} eid={eid} nid={nid} fd={fd2:.2f} oxx={oxx2:.2f}') #print(self.data.shape) #print(self.element_node.shape) #else: ielement = self.itime #ibase = 2 * ielement # ctria3/cquad4-33 ibase = 2 * (ielement * nnodes + inid) ie_upper = ibase ie_lower = ibase + 1 #if self.element_name == 'CTRIAR': # and self.table_name == 'OESATO2': debug = False #if self.element_name == 'CTRIA3' and self.table_name in ['OSTRRMS1', 'OSTRRMS2']: #debug = True #print(f'SORT2 {self.table_name} {self.element_name}: itime={itime} ie_upper={ie_upper} ielement={self.itime} inid={inid} nid={nid} itotal={itotal} dt={dt} eid={eid} nid={nid} fd={fd1:.2f} oxx={oxx1:.2f}') #print(f'SORT2 {self.table_name} {self.element_name}: itime={itime} ie_lower={ie_lower} ielement={self.itime} inid={inid} nid={nid} itotal={itotal+1} dt={dt} eid={eid} nid={nid} fd={fd2:.2f} oxx={oxx2:.2f}') self._times[itime] = dt #print(self.element_types2, element_type, self.element_types2.dtype) #itime = self.ielement #itime = self.itime #ielement = self.itime assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) if itime == 0: self.element_node[ie_upper, :] = [eid, nid] # 0 is center self.element_node[ie_lower, :] = [eid, nid] # 0 is center self.fiber_curvature[ie_upper] = fd1 self.fiber_curvature[ie_lower] = fd2 #if self.element_name == 'CQUAD4': #print(self.element_node) self.data[itime, ie_upper, :] = [oxx1, oyy1, txy1] self.data[itime, ie_lower, :] = [oxx2, oyy2, txy2] self.itotal += 2 self.ielement += 1 if debug: print(self.element_node) #--------------------------------------------------------------------------- def add_ovm_sort1(self, dt, eid, nid, fd1, oxx1, oyy1, txy1, ovm1, fd2, oxx2, oyy2, txy2, ovm2): """unvectorized method for adding SORT1 transient data""" assert self.is_sort1, self.sort_method self._times[self.itime] = dt #print(self.element_types2, element_type, self.element_types2.dtype) #if self.element_name == 'CTRIA3': #print('%s itotal=%s dt=%s eid=%s nid=%-5s oxx=%s' % (self.element_name, self.itotal, dt, eid, nid, oxx1)) assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self.data[self.itime, self.itotal, :] = [oxx1, oyy1, txy1, ovm1] self.element_node[self.itotal, :] = [eid, nid] # 0 is center self.fiber_curvature[self.itotal] = fd1 #self.ielement += 1 self.itotal += 1 self.data[self.itime, self.itotal, :] = [oxx2, oyy2, txy2, ovm2] self.element_node[self.itotal, :] = [eid, nid] # 0 is center self.fiber_curvature[self.itotal] = fd2 self.itotal += 1 #print(self.element_node) def add_ovm_sort2(self, dt, eid, nid, fd1, oxx1, oyy1, txy1, ovm1, fd2, oxx2, oyy2, txy2, ovm2): """unvectorized method for adding SORT2 transient data""" #self.add_sort2(dt, eid, nid, fd1, oxx1, oyy1, txy1, fd2, oxx2, oyy2, txy2) self.add_ovm_sort1(dt, eid, nid, fd1, oxx1, oyy1, txy1, ovm1, fd2, oxx2, oyy2, txy2, ovm2) #--------------------------------------------------------------------------- def get_stats(self, short=False) -> List[str]: if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes nnodes = self.element_node.shape[0] #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(f' type={self.class_name} ntimes={ntimes} nelements={nelements:d} nnodes={nnodes:d} table_name={self.table_name}\n') else: msg.append(f' type={self.class_name} nelements={nelements:d} nnodes={nnodes:d} {self.table_name}\n') msg.append(' eType, cid\n') msg.append(' data: [ntimes, nnodes, 3] where 3=[%s]\n' % str(', '.join(self._get_headers()))) msg.append(' element_node.shape = %s\n' % str(self.element_node.shape).replace('L', '')) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) msg.append(' %s\n' % self.element_name) msg += self.get_data_code() return msg def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_temp, unused_nnodes, unused_is_bilinear = _get_plate_msg(self, is_mag_phase, is_sort1) ntimes = self.data.shape[0] for itime in range(ntimes): dt = self._times[itime] dt_line = ' %14s = %12.5E\n' % (self.data_code['name'], dt) header[1] = dt_line msg = header + msg_temp f06_file.write('\n'.join(msg)) if self.element_type == 144: # CQUAD4 bilinear self._write_f06_quad4_bilinear_transient(f06_file, itime) elif self.element_type == 33: # CQUAD4 linear self._write_f06_tri3_transient(f06_file, itime) elif self.element_type == 74: # CTRIA3 self._write_f06_tri3_transient(f06_file, itime) elif self.element_type == 64: #CQUAD8 self._write_f06_quad4_bilinear_transient(f06_file, itime) elif self.element_type == 82: # CQUADR self._write_f06_quad4_bilinear_transient(f06_file, itime) elif self.element_type == 70: # CTRIAR self._write_f06_quad4_bilinear_transient(f06_file, itime) elif self.element_type == 75: # CTRIA6 self._write_f06_quad4_bilinear_transient(f06_file, itime) else: raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 def _write_f06_tri3_transient(self, f06_file, itime): """ CQUAD4 linear CTRIA3 """ fds = self.fiber_curvature oxx = self.data[itime, :, 0] oyy = self.data[itime, :, 1] txy = self.data[itime, :, 2] eids = self.element_node[:, 0] #nids = self.element_node[:, 1] ilayer0 = True for eid, fd, oxx, oyy, txy in zip(eids, fds, oxx, oyy, txy): sfd = write_float_13e(fd) soxx = write_float_13e(oxx) soyy = write_float_13e(oyy) stxy = write_float_13e(txy) if ilayer0: # TODO: assuming 2 layers? f06_file.write('0 %-13s %6s %-13s %-13s %s\n' % ( eid, sfd, soxx, soyy, stxy)) else: f06_file.write(' %-13s %6s %-13s %-13s %s\n' % ( '', sfd, soxx, soyy, stxy)) ilayer0 = not ilayer0 def _write_f06_quad4_bilinear_transient(self, f06_file, itime): """ CQUAD4 bilinear CQUAD8 CTRIAR CTRIA6 """ fds = self.fiber_curvature oxx = self.data[itime, :, 0] oyy = self.data[itime, :, 1] txy = self.data[itime, :, 2] eids = self.element_node[:, 0] nids = self.element_node[:, 1] ilayer0 = True for eid, nid, fd, doxx, doyy, dtxy in zip(eids, nids, fds, oxx, oyy, txy): sfd = write_float_13e(fd) soxx = write_float_13e(doxx) soyy = write_float_13e(doyy) stxy = write_float_13e(dtxy) if ilayer0: # TODO: assuming 2 layers? f06_file.write('0 %-13s %6s %-13s %-13s %s\n' % ( eid, sfd, soxx, soyy, stxy)) else: f06_file.write(' %-13s %6s %-13s %-13s %s\n' % ( '', sfd, soxx, soyy, stxy)) ilayer0 = not ilayer0 @property def has_von_mises(self): """what is the form of the table (NX includes Von Mises)""" if self.table_name in BASIC_TABLES: # no von mises has_von_mises = False elif self.table_name in VM_TABLES: has_von_mises = True else: msg = 'self.table_name=%s self.table_name_str=%s' % (self.table_name, self.table_name_str) raise NotImplementedError(msg) return has_von_mises def _get_plate_msg(self, is_mag_phase=True, is_sort1=True): #if self.is_von_mises: #von_mises = 'VON MISES' #else: #von_mises = 'MAX SHEAR' if self.is_stress: if self.is_fiber_distance: grid_msg_temp = [' ELEMENT FIBER - STRESSES IN ELEMENT COORDINATE SYSTEM -\n', ' ID GRID-ID DISTANCE NORMAL-X NORMAL-Y SHEAR-XY\n'] fiber_msg_temp = [' ELEMENT FIBRE - STRESSES IN ELEMENT COORDINATE SYSTEM -\n', ' ID. DISTANCE NORMAL-X NORMAL-Y SHEAR-XY\n'] else: grid_msg_temp = [' ELEMENT FIBRE - STRESSES IN ELEMENT COORDINATE SYSTEM -\n', ' ID GRID-ID CURVATURE NORMAL-X NORMAL-Y SHEAR-XY\n'] fiber_msg_temp = [' ELEMENT FIBRE - STRESSES IN ELEMENT COORDINATE SYSTEM -\n', ' ID. CURVATURE NORMAL-X NORMAL-Y SHEAR-XY\n'] else: if self.is_fiber_distance: grid_msg_temp = [' ELEMENT FIBER - STRAINS IN ELEMENT COORDINATE SYSTEM -\n', ' ID GRID-ID DISTANCE NORMAL-X NORMAL-Y SHEAR-XY\n'] fiber_msg_temp = [' ELEMENT FIBRE - STRAINS IN ELEMENT COORDINATE SYSTEM -\n', ' ID. DISTANCE NORMAL-X NORMAL-Y SHEAR-XY\n'] else: grid_msg_temp = [' ELEMENT FIBRE - STRAINS IN ELEMENT COORDINATE SYSTEM -\n', ' ID GRID-ID CURVATURE NORMAL-X NORMAL-Y SHEAR-XY\n'] fiber_msg_temp = [' ELEMENT FIBRE - STRAINS IN ELEMENT COORDINATE SYSTEM -\n', ' ID. CURVATURE NORMAL-X NORMAL-Y SHEAR-XY\n'] if is_mag_phase: mag_real = [' (MAGNITUDE/PHASE)\n \n'] else: mag_real = [' (REAL/IMAGINARY)\n', ' \n'] ## TODO: validation on header formatting... if self.is_stress: cquad4_bilinear = [' C O M P L E X S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 ) OPTION = BILIN \n \n'] cquad4_linear = [' C O M P L E X S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n'] # good cquad8 = [' C O M P L E X S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 8 )\n'] cquadr = [' C O M P L E X S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D R )\n'] ctria3 = [' C O M P L E X S T R E S S E S I N T R I A N G U L A R E L E M E N T S ( T R I A 3 )\n'] # good ctria6 = [' C O M P L E X S T R E S S E S I N T R I A N G U L A R E L E M E N T S ( T R I A 6 )\n'] ctriar = [' C O M P L E X S T R E S S E S I N T R I A N G U L A R E L E M E N T S ( T R I A R )\n'] else: cquad4_bilinear = [' C O M P L E X S T R A I N S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 ) OPTION = BILIN \n \n'] cquad4_linear = [' C O M P L E X S T R A I N S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n'] cquad8 = [' C O M P L E X S T R A I N S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 8 )\n'] cquadr = [' C O M P L E X S T R A I N S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D R )\n'] ctria3 = [' C O M P L E X S T R A I N S I N T R I A N G U L A R E L E M E N T S ( T R I A 3 )\n'] ctria6 = [' C O M P L E X S T R A I N S I N T R I A N G U L A R E L E M E N T S ( T R I A 6 )\n'] ctriar = [' C O M P L E X S T R A I N S I N T R I A N G U L A R E L E M E N T S ( T R I A R )\n'] msg = [] is_bilinear = False if self.element_type == 144: # CQUAD4 is_bilinear = True msg += cquad4_linear + mag_real + grid_msg_temp elif self.element_type == 33: # CQUAD4 is_bilinear = False msg += cquad4_bilinear + mag_real + fiber_msg_temp elif self.element_type == 64: #CQUAD8 msg += cquad8 + mag_real + grid_msg_temp is_bilinear = True elif self.element_type == 82: # CQUADR msg += cquadr + mag_real + grid_msg_temp is_bilinear = True elif self.element_type == 74: # CTRIA3 msg += ctria3 + mag_real + fiber_msg_temp elif self.element_type == 75: # CTRIA6 msg += ctria6 + mag_real + grid_msg_temp is_bilinear = True elif self.element_type == 70: # CTRIAR msg += ctriar + mag_real + grid_msg_temp is_bilinear = True else: raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) nnodes = get_nnodes(self) msg = [ ' S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n' ' ( POWER SPECTRAL DENSITY FUNCTION )\n' ' \n' ' FIBER - STRESSES IN ELEMENT COORDINATE SYSTEM -\n' ' FREQUENCY DISTANCE NORMAL-X NORMAL-Y SHEAR-XY\n' #'0 2.000000E+01 -5.000000E-02 1.925767E-05 1.404795E-04 1.097896E-03' #' 5.000000E-02 1.925766E-05 1.404794E-04 1.097896E-03' ] return msg, nnodes, is_bilinear def get_nnodes(self): if self.element_type in [64, 82, 144]: # ???, CQUADR, CQUAD4 bilinear nnodes = 4 + 1 # centroid elif self.element_type in [70, 75]: #???, CTRIA6 nnodes = 3 + 1 # centroid elif self.element_type in [144, 74, 33]: # CTRIA3, CQUAD4 linear nnodes = 1 else: raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) return nnodes class RandomPlateStressArray(RandomPlateArray, StressObject): def __init__(self, data_code, is_sort1, isubcase, dt): RandomPlateArray.__init__(self, data_code, is_sort1, isubcase, dt) StressObject.__init__(self, data_code, isubcase) str(self.has_von_mises) def _get_headers(self): headers = ['oxx', 'oyy', 'txy'] if self.has_von_mises: headers.append('ovm') return headers def get_headers(self) -> List[str]: return self._get_headers() class RandomPlateStrainArray(RandomPlateArray, StrainObject): def __init__(self, data_code, is_sort1, isubcase, dt): RandomPlateArray.__init__(self, data_code, is_sort1, isubcase, dt) StrainObject.__init__(self, data_code, isubcase) str(self.has_von_mises) assert self.is_strain, self.stress_bits def _get_headers(self): headers = ['exx', 'eyy', 'exy'] if self.has_von_mises: headers.append('evm') return headers def get_headers(self) -> List[str]: return self._get_headers()
import sys, atexit, cv2, time, glob, os, math from functools import partial from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5 import * from PyQt5 import uic running = True import camera1, camera2, camera3, camera4 frame1 = None frame2 = None frame3 = None frame4 = None ret = None rgbImage = None outputFrame1 = None outputFrame2 = None outputFrame3 = None outputFrame4 = None class QLabelClickable(QLabel): clicked = pyqtSignal(str) def __init__(self, parent=None): super(QLabelClickable, self).__init__(parent) def mousePressEvent(self, event): self.ultimo = "Clic" def mouseReleaseEvent(self, event): if self.ultimo == "Clic": QTimer.singleShot(QApplication.instance().doubleClickInterval(), self.performSingleClickAction) else: self.clicked.emit(self.ultimo) def mouseDoubleClickEvent(self, event): self.ultimo = "Doble Clic" def performSingleClickAction(self): if self.ultimo == "Clic": self.clicked.emit(self.ultimo) def enterEvent(self, event): self.setStyleSheet( "color: black; background-color: black; border-radius: 3px; border-style: none; border: 1px solid lime;") def leaveEvent(self, event): self.setStyleSheet( "color: black; background-color: black; border-radius: 3px; border-style: none; border: 1px solid black;") class Overlay(QWidget): def __init__(self, parent=None): QWidget.__init__(self, parent) palette = QPalette(self.palette()) palette.setColor(palette.Background, Qt.transparent) self.setPalette(palette) self.setFixedSize(1024, 600) def paintEvent(self, event): painter = QPainter() painter.begin(self) painter.setRenderHint(QPainter.Antialiasing) painter.fillRect(event.rect(), QBrush(QColor(255, 255, 255, 187))) amount_of_circles = 12 for i in range(amount_of_circles): painter.setPen(QPen(Qt.NoPen)) if (self.counter) % amount_of_circles == i: painter.setBrush(QBrush(QColor(56, 165, 59))) elif (self.counter) % amount_of_circles == i + 4: painter.setBrush(QBrush(QColor(56, 165, 59))) elif (self.counter) % amount_of_circles == i + 8: painter.setBrush(QBrush(QColor(56, 165, 59))) elif (self.counter) % amount_of_circles == i - 4: painter.setBrush(QBrush(QColor(56, 165, 59))) elif (self.counter) % amount_of_circles == i - 8: painter.setBrush(QBrush(QColor(56, 165, 59))) else: painter.setBrush(QBrush(QColor(205 - (i * 10), 56, 59))) # else: painter.setBrush(QBrush(QColor(127, 127, 127))) painter.drawEllipse( self.width() / 2 + 50 * math.cos(2 * math.pi * i / amount_of_circles) - 20, self.height() / 2.2 + 50 * math.sin(2 * math.pi * i / amount_of_circles) - 20, 20, 20) painter.setPen(QPen(QColor(127, 127, 127), 1)) painter.setFont(QFont(None, 22, 1, False)) if (self.counter) % amount_of_circles == i: w = "Starting." elif (self.counter) % amount_of_circles == i + (amount_of_circles / 2 - 1): w = "Starting.." elif (self.counter) % amount_of_circles == i + (amount_of_circles - 3): w = "Starting..." else: w = 'Starting' painter.drawText(int(self.width() / 2 - 55), int(self.height() / 1.5), 160, 50, Qt.AlignLeft | Qt.AlignLeft, w) painter.end() def showEvent(self, event): self.timer = self.startTimer(100) self.counter = 0 def timerEvent(self, event): self.counter += 1 self.update() if self.counter == 20: self.killTimer(self.timer) self.close() class mainwindowUI(QMainWindow): def __init__(self): super(mainwindowUI, self).__init__() self.show() self.setFixedSize(1024, 600) self.overlay = Overlay(self) self.overlay.show() self.timer = self.startTimer(50) self.counter = 0 self.isCamViewFullScreen = False self.center() def center(self): frameGm = self.frameGeometry() screen = QApplication.desktop().screenNumber(QApplication.desktop().cursor().pos()) centerPoint = QApplication.desktop().screenGeometry(screen).center() frameGm.moveCenter(centerPoint) self.move(frameGm.topLeft()) def timerEvent(self, event): self.counter += 1 self.update() if self.counter == 60: self.overlay.hide() self.load_UI() self.start_cameras() def start_cameras(self): for i in range(len(self.lblCameras)): # if self.testDevice(i): if i == 0: th1 = Thread1(self.lblCameras[i], i) th1.changePixmap.connect(self.setImageCam) th1.start() elif i == 1: th2 = Thread2(self.lblCameras[i], i) th2.changePixmap.connect(self.setImageCam) th2.start() elif i == 2: th3 = Thread3(self.lblCameras[i], i) th3.changePixmap.connect(self.setImageCam) th3.start() elif i == 3: th4 = Thread4(self.lblCameras[i], i) th4.changePixmap.connect(self.setImageCam) th4.start() def load_UI(self): uic.loadUi('main.ui', self) '---------------------TOOL BAR---------------------' self.btnBackToMenu = self.findChild(QPushButton, 'btnBackToMenu') self.btnBackToMenu.clicked.connect(self.backToMenu) self.btnBackToCameras.clicked.connect(self.backToCameras) self.btnBackToCameras = self.findChild(QPushButton, 'btnBackToCameras') self.btnBackToMenu.setHidden(True) self.btnBackToCameras.setHidden(True) '---------------------CAMERAS---------------------' self.frameCamera = self.findChild(QFrame, 'frameCameras') self.cameraGrid = self.findChild(QGridLayout, 'cameraGrid') self.lblCam1 = QLabelClickable(self) self.lblCam2 = QLabelClickable(self) self.lblCam3 = QLabelClickable(self) self.lblCam4 = QLabelClickable(self) self.lblCameras = [self.lblCam1, self.lblCam2, self.lblCam3, self.lblCam4] for index, cam in enumerate(self.lblCameras): cam.setStyleSheet( "color: black; background-color: black; border-radius: 3px; border-style: none; border: 1px solid black;") cam.setAlignment(Qt.AlignCenter) cam.clicked.connect(partial(self.lblCamClicked, cam, index, True)) colSize = 2 # for i, camera in enumerate(glob.glob("/dev/video?") + 1): self.cameraGrid.addWidget(self.lblCameras[i], int(i / colSize), int(i % colSize)) ''' _______________ | 0,0 | 0,1 | | 1 | 3 | |______|______| | 1,0 | 1,1 | | 2 | 4 | |______|______| ''' self.cameraGrid.addWidget(self.lblCam1, 0, 0) self.cameraGrid.addWidget(self.lblCam2, 1, 0) self.cameraGrid.addWidget(self.lblCam3, 0, 1) self.cameraGrid.addWidget(self.lblCam4, 1, 1) '---------------------MAIN MENU---------------------' self.frameMainMenu = self.findChild(QFrame, 'frameMainMenu') self.btnCameras = self.findChild(QPushButton, 'btnCameras') self.btnCameras.clicked.connect(self.btnCamerasClicked) '---------------------MUSIC---------------------' self.frameMusic = self.findChild(QFrame, 'frameMusic') self.treeViewMusic = self.findChild(QTreeView, 'treeViewMusic') self.btnMusic = self.findChild(QPushButton, 'btnMusic') self.btnMusic.clicked.connect(self.btnMusicClicked) path = MUSIC_FOLDER self.dirModel = QFileSystemModel() self.dirModel.setRootPath(QDir.rootPath()) self.dirModel.setFilter(QDir.NoDotAndDotDot | QDir.AllEntries | QDir.Dirs | QDir.Files) self.fileModel = QFileSystemModel() self.fileModel.setFilter(QDir.NoDotAndDotDot | QDir.AllEntries | QDir.Dirs | QDir.Files) self.treeview = QTreeView() self.treeViewMusic.setModel(self.dirModel) self.treeViewMusic.setRootIndex(self.dirModel.index(path)) self.listview = QListView() self.listview.setModel(self.fileModel) self.listview.setRootIndex(self.fileModel.index(path)) self.treeViewMusic.clicked.connect(self.treeViewClicked) '---------------------DEFAULT SETTING---------------------' self.frameCamera.setHidden(True) self.frameMusic.setHidden(True) self.frameMainMenu.setHidden(False) def backToCameras(self): for i in range(len(self.lblCameras)): self.lblCameras[i].setHidden(False) self.btnCamerasClicked() self.isCamViewFullScreen = False def lblCamClicked(self, lbl, index, viewFullScreen): # print(index) if viewFullScreen: self.isCamViewFullScreen = True lbl.clicked.connect(partial(self.lblCamClicked, lbl, index, False)) self.btnBackToMenu.setHidden(True) self.btnBackToCameras.setHidden(False) for i in range(len(self.lblCameras)): self.lblCameras[i].setHidden(True) lbl.setHidden(False) else: self.isCamViewFullScreen = False self.backToCameras() lbl.clicked.connect(partial(self.lblCamClicked, lbl, index, True)) def btnCamerasClicked(self): self.frameCamera.setHidden(False) self.frameMainMenu.setHidden(True) self.frameMusic.setHidden(True) self.btnBackToMenu.setHidden(False) self.btnBackToCameras.setHidden(True) def btnMusicClicked(self): self.frameCamera.setHidden(True) self.frameMainMenu.setHidden(True) self.frameMusic.setHidden(False) self.btnBackToMenu.setHidden(False) self.btnBackToCameras.setHidden(True) def treeViewClicked(self, index): path = self.dirModel.fileInfo(index).absoluteFilePath() print(path) self.listview.setRootIndex(self.fileModel.setRootPath(path)) def backToMenu(self): self.frameCamera.setHidden(True) self.frameMainMenu.setHidden(False) self.frameMusic.setHidden(True) self.btnBackToMenu.setHidden(True) self.btnBackToCameras.setHidden(True) # @pyqtSlot(QObject, QImage, int) def setImageCam(self, label, image, index, name=None): if name == '404.png': self.cameraGrid.removeWidget(self.lblCameras[index]) self.lblCameras[index].deleteLater() self.lblCameras[index] = None self.lblCameras.pop(index) return if self.isCamViewFullScreen: image = image.scaled(640, 480, Qt.KeepAspectRatio, Qt.FastTransformation) else: image = image.scaled(320, 240, Qt.KeepAspectRatio, Qt.FastTransformation) label.setFixedSize(image.width(), image.height()) label.setPixmap(QPixmap.fromImage(image)) class Thread1(QThread): changePixmap = pyqtSignal(object, QImage, int, str) def __init__(self, lblCam, port): QThread.__init__(self) self.lblCam = lblCam self.port = port camera1.start_cam() @pyqtSlot() def run(self): while running: if running: frame1 = camera1.camRun() try: rgbImage = cv2.cvtColor(frame1, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) self.changePixmap.emit(self.lblCam, convertToQtFormat, self.port, '') except: self.lblCam.setFixedSize(1, 1) image = QImage('404.png') self.changePixmap.emit(self.lblCam, image, self.port, '404.png') break class Thread2(QThread): changePixmap = pyqtSignal(object, QImage, int, str) def __init__(self, lblCam, port): QThread.__init__(self) self.lblCam = lblCam self.port = port camera2.start_cam() @pyqtSlot() def run(self): while running: if running: frame2 = camera2.camRun() try: rgbImage = cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) self.changePixmap.emit(self.lblCam, convertToQtFormat, self.port, '') except: self.lblCam.setFixedSize(1, 1) image = QImage('404.png') self.changePixmap.emit(self.lblCam, image, self.port, '404.png') break class Thread3(QThread): changePixmap = pyqtSignal(object, QImage, int, str) def __init__(self, lblCam, port): QThread.__init__(self) self.lblCam = lblCam self.port = port camera3.start_cam() @pyqtSlot() def run(self): while running: if running: frame3 = camera3.camRun() try: rgbImage = cv2.cvtColor(frame3, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) self.changePixmap.emit(self.lblCam, convertToQtFormat, self.port, '') except: self.lblCam.setFixedSize(1, 1) image = QImage('404.png') self.changePixmap.emit(self.lblCam, image, self.port, '404.png') break class Thread4(QThread): changePixmap = pyqtSignal(object, QImage, int, str) def __init__(self, lblCam, port): QThread.__init__(self) self.lblCam = lblCam self.port = port camera4.start_cam() @pyqtSlot() def run(self): while running: if running: frame4 = camera4.camRun() try: rgbImage = cv2.cvtColor(frame4, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) self.changePixmap.emit(self.lblCam, convertToQtFormat, self.port, '') except: self.lblCam.setFixedSize(1, 1) image = QImage('404.png') self.changePixmap.emit(self.lblCam, image, self.port, '404.png') break # def load_config_file(*args): # global config_json # for i, j in enumerate(args): # j.clear() # with open(config_file) as file: # config_json = json.load(file) # for d in config_json[0]['Default']: args[0].append(d) # for da in config_json[0]['Dark']: args[1].append(da) # for l in config_json[0]['Light']: args[2].append(l) # for c in config_json[0]['CSS']: args[3].append(c) # for g in config_json[0]['Last Genre']: args[4].append(g) # for al in config_json[0]['Last Algorithm']: args[5].append(al) # for th in config_json[0]['Last Theme']: args[6].append(th) # for dexp in config_json[0]['Default Export Path']: args[7].append(dexp) # for ts in config_json[0]['Toggle Sound On']: args[8].append(ts) def exit_handler(): sys.exit() MUSIC_FOLDER = os.path.dirname(os.path.realpath(__file__)) + '/Music/' if not os.path.exists(MUSIC_FOLDER): os.mkdir(MUSIC_FOLDER) if __name__ == '__main__': # load_config_file(DefaultMode, DarkMode, LightMode, CSSOn, # lastSelectedGenre, lastSelectedAlgorithm, # lastSelectedTheme, defaultExportPath, toggleSoundOn) atexit.register(exit_handler) app = QApplication(sys.argv) window = mainwindowUI() app.exec_()
import os import pytest from conans import load from conans.model.ref import ConanFileReference, PackageReference from conans.test.assets.genconanfile import GenConanfile from conans.test.utils.tools import TestClient, NO_SETTINGS_PACKAGE_ID @pytest.fixture def conanfile(): conan_file = str(GenConanfile().with_import("from conans import tools").with_import("import os"). with_require("base/1.0")) # FIXME: The configure is not valid to change the layout, we need the settings and options # ready conan_file += """ no_copy_sources = True def configure(self): self.layout.source.folder = "my_sources" self.layout.build.folder = "my_build" def source(self): self.output.warn("Source folder: {}".format(self.source_folder)) tools.save("source.h", "foo") def build(self): self.output.warn("Build folder: {}".format(self.build_folder)) tools.save("build.lib", "bar") def package(self): self.output.warn("Package folder: {}".format(self.package_folder)) tools.save(os.path.join(self.package_folder, "LICENSE"), "bar") self.copy("*.h", dst="include") self.copy("*.lib", dst="lib") def package_info(self): # This will be easier when the layout declares also the includedirs etc self.cpp_info.includedirs = ["include"] self.cpp_info.libdirs = ["lib"] """ return conan_file def test_cache_in_layout(conanfile): """The layout in the cache is used too, always relative to the "base" folders that the cache requires. But by the default, the "package" is not followed """ client = TestClient() client.save({"conanfile.py": GenConanfile()}) client.run("create . base/1.0@") client.save({"conanfile.py": conanfile}) ref = ConanFileReference.loads("lib/1.0@") pref = PackageReference(ref, "58083437fe22ef1faaa0ab4bb21d0a95bf28ae3d") sf = client.cache.package_layout(ref).source() bf = client.cache.package_layout(ref).build(pref) pf = client.cache.package_layout(ref).package(pref) source_folder = os.path.join(sf, "my_sources") build_folder = os.path.join(bf, "my_build") client.run("create . lib/1.0@") # Check folders match with the declared by the layout assert "Source folder: {}".format(source_folder) in client.out assert "Build folder: {}".format(build_folder) in client.out # Check the source folder assert os.path.exists(os.path.join(source_folder, "source.h")) # Check the build folder assert os.path.exists(os.path.join(build_folder, "build.lib")) # Check the conaninfo assert os.path.exists(os.path.join(pf, "conaninfo.txt")) # Search the package in the cache client.run("search lib/1.0@") assert "Package_ID: 58083437fe22ef1faaa0ab4bb21d0a95bf28ae3d" in client.out # Install the package and check the build info client.run("install lib/1.0@ -g txt") binfopath = os.path.join(client.current_folder, "conanbuildinfo.txt") content = load(binfopath).replace("\r\n", "\n") assert "[includedirs]\n{}".format(os.path.join(pf, "include") .replace("\\", "/")) in content assert "[libdirs]\n{}".format(os.path.join(pf, "lib") .replace("\\", "/")) in content def test_same_conanfile_local(conanfile): client = TestClient() client.save({"conanfile.py": GenConanfile()}) client.run("create . base/1.0@") client.save({"conanfile.py": conanfile}) source_folder = os.path.join(client.current_folder, "my_sources") build_folder = os.path.join(client.current_folder, "my_build") client.run("install . lib/1.0@ -if=install") client.run("source . -if=install") assert "Source folder: {}".format(source_folder) in client.out assert os.path.exists(os.path.join(source_folder, "source.h")) client.run("build . -if=install") assert "Build folder: {}".format(build_folder) in client.out assert os.path.exists(os.path.join(build_folder, "build.lib")) client.run("package . -if=install") # By default, the "package" folder is still used (not breaking) pf = os.path.join(client.current_folder, "package") assert "Package folder: {}".format(pf) in client.out assert os.path.exists(os.path.join(pf, "LICENSE"))
import subprocess import sys import tempfile from os import path import yaml from jock.constant import GIT, COMMAND_PATH, IMPORTS, ADDRESS, REPOSITORIES, GROUPS, DATA try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper def load_config(): try: with open(path.expanduser('~/.jockrc'), 'r') as file: config = yaml.load(file, Loader=Loader) validate_config(config) return config except IOError: exit_with_message(1, 'Could not read configuration at ~/.jockrc') def validate_config(config): if config is None: exit_with_message(1, 'Config is empty') assert_config_has_key(config, REPOSITORIES) def assert_config_has_key(config, key): key_merged = merge_config_and_import_key(config, key) if len(key_merged.keys()) == 0: exit_with_message(1, 'No ' + key + ' found in config') def merge_config_and_import_key(config, key): merged = dict({}) if key in config: merged = {**merged, **config[key]} if IMPORTS in config: imports = config[IMPORTS] for import_name in imports: imp = imports[import_name] if DATA in imp and key in imp[DATA]: merged = {**merged, **imp[DATA][key]} return merged def get_tmp_path(): return path.join(tempfile.gettempdir(), 'jock-imports') def fetch_remote_rc(import_name, address): temp_dir = get_tmp_path() temp_path = path.join(temp_dir, import_name) subprocess_steps( success_message='Imported "' + import_name + '"', error='Import "' + import_name + '" could not be retrieved from "' + address + '"', steps=[ (GIT, 'clone', '--no-checkout', address, temp_path), (GIT, COMMAND_PATH, temp_path, 'reset'), (GIT, COMMAND_PATH, temp_path, 'checkout', '.jockrc') ]) def merge_config_and_imported(config, import_name, imported): if DATA not in config[IMPORTS][import_name]: config[IMPORTS][import_name][DATA] = dict({}) config[IMPORTS][import_name][DATA][REPOSITORIES] = imported[REPOSITORIES] config[IMPORTS][import_name][DATA][GROUPS] = imported[GROUPS] return config def fetch_and_merge_remote(config, imports, import_name, temp_dir): fetch_remote_rc(import_name, imports[import_name][ADDRESS]) with open(path.join(temp_dir, import_name, '.jockrc'), 'r') as imported_file: imported = yaml.load(imported_file, Loader=Loader) config = merge_config_and_imported(config, import_name, imported) with open(path.expanduser('~/.jockrc'), 'w') as config_file: yaml.dump(config, config_file, sort_keys=False) def fetch_and_merge_remotes(config, imports, temp_dir): for import_name in imports: fetch_and_merge_remote(config, imports, import_name, temp_dir) def import_config(): config = load_config() imports = config[IMPORTS] temp_dir = get_tmp_path() subprocess.run(('rm', '-rf', temp_dir)) fetch_and_merge_remotes(config, imports, temp_dir) subprocess.run(('rm', '-rf', temp_dir)) def get_selected_repositories(selected_repositories, selected_groups): if len(selected_repositories) + len(selected_groups) == 0: exit_with_message(1, 'No repositories/groups provided') config = load_config() repositories = merge_config_and_import_key(config, REPOSITORIES) groups = merge_config_and_import_key(config, GROUPS) selected = dict({}) for repo_name in selected_repositories: if repo_name in repositories: selected[repo_name] = repositories[repo_name] else: exit_with_message(1, 'Repository "' + repo_name + '" not found in config') if config.get(GROUPS) is not None: for group_name in selected_groups: if group_name not in groups: exit_with_message(1, 'Group "' + group_name + '" not found in config') elif REPOSITORIES not in groups[group_name]: exit_with_message(1, 'Group "' + group_name + '" has no repository field') else: for repo_name in groups[group_name][REPOSITORIES]: selected[repo_name] = repositories[repo_name] if len(selected) == 0: exit_with_message(1, 'No repositories selected') return selected def exit_with_message(exit_code, message): print(message) sys.exit(exit_code) def quiet_subprocess(args): return subprocess.run(args, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT).returncode def subprocess_steps(steps, error=None, success_message=None): for args in steps: exit_code = quiet_subprocess(args) if exit_code > 0: if error is not None: exit_with_message(1, error) return if success_message is not None: print(success_message)
class CycleSetupCommon: """ realization needs self.h_int, self.gloc, self.g0, self.se, self.mu, self.global_moves, self.quantum_numbers """ def initialize_cycle(self): return {'h_int': self.h_int,'g_local': self.gloc, 'weiss_field': self.g0, 'self_energy': self.se, 'mu': self.mu, 'global_moves': self.global_moves, 'quantum_numbers': self.quantum_numbers} def set_data(self, storage, load_mu = True): """ loads the data of g_imp_iw, g_weiss_iw, se_imp_iw, mu from storage into the corresponding objects The data is copied, storage returns objects that are all BlockGf's and can not init a selfconsistency cycle """ g = storage.load('g_imp_iw') self.gloc << g try: # TODO backward compatibility self.g0 << storage.load('g_weiss_iw') except KeyError: pass self.se << storage.load('se_imp_iw') if load_mu: self.mu = storage.load('mu')
import re import sanic def pytest_collection_modifyitems(session, config, items): base_port = sanic.testing.PORT worker_id = getattr(config, 'slaveinput', {}).get('slaveid', 'master') m = re.search(r'[0-9]+', worker_id) if m: num_id = int(m.group(0)) + 1 else: num_id = 0 new_port = base_port + num_id def new_test_client(app, port=new_port): return sanic.testing.SanicTestClient(app, port) sanic.Sanic.test_port = new_port sanic.Sanic.test_client = property(new_test_client) app = sanic.Sanic() assert app.test_client.port == new_port
from __future__ import print_function import datetime import glob import json import multiprocessing import os import pickle import sys import warnings from collections import Counter, defaultdict from string import digits import re import plotly.plotly as py from plotly.graph_objs import * from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import networkx as nx import matplotlib.pyplot as plt import numpy as np import pandas as pd from dateutil import parser from gensim.models import KeyedVectors from joblib import Parallel, delayed from nltk.corpus import stopwords from nltk.corpus import wordnet as wn from nltk.stem import WordNetLemmatizer from nltk.tokenize import RegexpTokenizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_selection import SelectKBest, chi2 from sklearn.model_selection import train_test_split from sklearn import metrics sys.path.insert(0, os.path.dirname(__file__) + '../2_helpers') sys.path.insert(0, os.path.dirname(__file__) + '../5_fact_checking_models') from decoder import decoder from metrics import ndcg_score warnings.filterwarnings("ignore", category=DeprecationWarning) DIR = os.path.dirname(__file__) + '../../3_Data/' WNL = WordNetLemmatizer() NLTK_STOPWORDS = set(stopwords.words('english')) num_cores = multiprocessing.cpu_count() num_jobs = round(num_cores * 3 / 4) fact_to_words = {} # word_vectors = KeyedVectors.load_word2vec_format('model_data/word2vec_twitter_model/word2vec_twitter_model.bin', binary=True, unicode_errors='ignore') def datetime_converter(o): if isinstance(o, datetime.datetime): return o.__str__() def tokenize_text(text, only_retweets=False): tokenizer = RegexpTokenizer(r'\w+') if only_retweets: text = text # if 'RT' not in text: return None mentions = [] while True: if '@' not in text: break mention = text[text.find('@'):] if ' ' in mention: mention = mention[:mention.find(' ')] mentions.append(mention) text = text.replace(mention, '') retweeted_to = [rt.replace('@', '').replace(':', '').lower() for rt in mentions if '@' in rt] return retweeted_to return [WNL.lemmatize(i.lower()) for i in tokenizer.tokenize(text) if i.lower() not in NLTK_STOPWORDS] def get_data(): fact_file = glob.glob(DIR + 'facts.json')[0] transactions_file = glob.glob(DIR + 'factTransaction.json')[0] facts = json.load(open(fact_file), object_hook=decoder) transactions = json.load(open(transactions_file), object_hook=decoder) return facts, transactions def get_users(): user_files = glob.glob(DIR + 'user_tweets/' + 'user_*.json') print('{} users'.format(len(user_files))) if len(user_files) < 10: print('WRONG DIR?') users = [] for user_file in user_files: user = json.loads(open(user_file).readline(), object_hook=decoder) if int(user.was_correct) != -1: users.append(user) print('Kept {} users'.format(len(users))) return users def get_relevant_tweets(user): relevant_tweets = [] user_fact_words = fact_to_words[user.fact] for tweet in user.tweets: distance_to_topic = [] tokens = tokenize_text(tweet['text'], only_retweets=False) for token in tokens: if token not in word_vectors.vocab: continue increment = np.average(word_vectors.distances(token, other_words=user_fact_words)) distance_to_topic.append(increment) if np.average(np.asarray(distance_to_topic)) < 0.8: relevant_tweets.append(tweet) return relevant_tweets def build_fact_topics(): print("Build fact topics") fact_file = glob.glob(DIR + 'facts_annotated.json')[0] facts_df = pd.read_json(fact_file) remove_digits = str.maketrans('', '', digits) facts_df['text_parsed'] = facts_df['text'].map(lambda t: tokenize_text(t.translate(remove_digits))) facts_df['entities_parsed'] = facts_df['entities'].map(lambda ents: [item for sublist in [e['surfaceForm'].lower().split() for e in ents if e['similarityScore'] >= 0.6] for item in sublist]) facts_df['topic'] = facts_df['topic'].map(lambda t: [t]) facts_df['fact_terms'] = facts_df['text_parsed'] + facts_df['entities_parsed'] + facts_df['topic'] return facts_df def get_user_edges(users): user_to_links = [] y = [] i = 0 for user in users: user_links = [] # relevant_tweets = get_relevant_tweets(user) for tweet in user.tweets: mentions = tokenize_text(tweet['text'], only_retweets=True) for rt in mentions: user_links.append(rt) if len(user_links) <= 1: continue user_to_links.append([user.user_id, user_links]) y.append([user.user_id, user.was_correct + 0.01]) i += 1 return user_to_links, np.asarray(y) def build_graph(user_to_links, user_to_weight): G = nx.DiGraph() all_nodes = [u[0] for u in user_to_links] + list( set([e for sublist in [u[1] for u in user_to_links] for e in sublist])) print(len(all_nodes)) G.add_nodes_from(all_nodes) G.add_edges_from([(userlinks[0], v) for userlinks in user_to_links for v in userlinks[1]]) # G.add_weighted_edges_from([(userlinks[0],v,user_to_weight[i]) for i, userlinks in enumerate(user_to_links) for v in userlinks[1]]) obsolete_nodes = [k for k, v in dict(nx.degree(G)).items() if v <= 1] G.remove_nodes_from(obsolete_nodes) return G def get_ranks(user_to_links, G, pageRank, alpha=0.85): user_to_pr = [] for user, links in user_to_links: pr_sum = sum([pageRank[l] / G.degree(l) for l in links if l in pageRank]) pr_user = (1 - alpha) / alpha + alpha * pr_sum user_to_pr.append(pr_user) return user_to_pr def graph_plot(G): print(len(G.nodes())) obsolete_nodes = [k for k, v in dict(nx.degree(G)).items() if v <= 10] G.remove_nodes_from(obsolete_nodes) print(len(G.nodes())) pos = nx.kamada_kawai_layout(G) N = len(G.nodes()) Xv = [pos[k][0] for k in range(N)] Yv = [pos[k][1] for k in range(N)] Xed = [] Yed = [] for edge in G.edges(): Xed += [pos[edge[0]][0], pos[edge[1]][0], None] Yed += [pos[edge[0]][1], pos[edge[1]][1], None] trace3 = Scatter(x=Xed, y=Yed, mode='lines', line=Line(color='rgb(210,210,210)', width=1), hoverinfo='none') trace4 = Scatter(x=Xv, y=Yv, mode='markers', name='net', marker=Marker(symbol='dot', size=5, color='#6959CD', line=Line(color='rgb(50,50,50)', width=0.5)), text=labels, hoverinfo='text') annot = "This networkx.Graph has the Fruchterman-Reingold layout<br>Code:" + \ "<a href='http://nbviewer.ipython.org/gist/empet/07ea33b2e4e0b84193bd'> [2]</a>" data1 = Data([trace3, trace4]) fig1 = Figure(data=data1, layout=layout) fig1['layout']['annotations'][0]['text'] = annot plot(py.iplot(fig1, filename='Coautorship-network-nx')) def rank_users(users): global fact_to_words print("Creating nodes") user_to_links, user_to_weight = get_user_edges(users) X_train, X_test, y_train, y_test = train_test_split(user_to_links, user_to_weight) print("Building graph..") G = build_graph(user_to_links, user_to_weight) graph_plot(G) pr = nx.pagerank(G) pr_cred_users = {u: v for u, v in list(pr.items()) if u in user_to_links} # print(sorted([(v,y[1]) for u,v in pr_cred_users.items() for y in user_to_weight if u == y[0]], reverse=True, key=lambda x: x[0])) pred = get_ranks(X_test, G, pr) print(sorted(np.asarray([e for e in zip(pred, [y[1] for y in y_test])]), reverse=True, key=lambda x: x[0])) ndgc = ndcg_score([y[1] for y in y_test], pred) print("NDCG: {}".format(ndgc)) users = get_users() rank_users(users)
# -*- coding: utf-8 -*- from qcloudsdkcore.request import Request class GetContactListRequest(Request): def __init__(self): super(GetContactListRequest, self).__init__( 'monitor', 'qcloudcliV1', 'GetContactList', 'monitor.api.qcloud.com') def get_page(self): return self.get_params().get('page') def set_page(self, page): self.add_param('page', page) def get_pageSize(self): return self.get_params().get('pageSize') def set_pageSize(self, pageSize): self.add_param('pageSize', pageSize)
import os import sys # import re # Environment variables to configure the AWS CLI os.environ["AWS_ACCESS_KEY_ID"] = os.environ['INPUT_ACCESS_KEY'] os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ['INPUT_SECRET_ACCESS_KEY'] os.environ["AWS_DEFAULT_REGION"] = os.environ['INPUT_REGION'] # Source and destination locations source = os.environ['INPUT_SOURCE'] destination_bucket = os.environ['INPUT_DESTINATION_BUCKET'] destination_prefix = os.environ['INPUT_DESTINATION_PREFIX'] # Flags # Will keep adding more ... exclude = os.environ['INPUT_EXCLUDE'] delete = os.environ['INPUT_DELETE'] quiet = os.environ['INPUT_QUIET'] args = ['aws s3 sync'] # Checks # Check if the source directory is provided and is in the current workspace if source and source != ".": if source not in os.listdir(os.environ['GITHUB_WORKSPACE']): print(f'Source "{source}" does not exist in the workspace. Please check and try again ...') print("Below are the available files/directories in the current workspace:") print(os.listdir(os.environ['GITHUB_WORKSPACE'])) sys.exit(1) else: args.append(source) else: args.append(".") # Check if a destination prefix was provided: if destination_prefix: destination = f's3://{destination_bucket}/{destination_prefix}/' else: destination = f's3://{destination_bucket}/' args.append(destination) # Check if 'exclude' flag is used: if exclude: args.append(f'--exclude "{exclude}"') # Check if 'delete' flag is used: if delete.lower() == "true": args.append("--delete") # Check if 'quiet' flag is used: if quiet.lower() == "true": args.append("--quiet") cmd = ' '.join(args) print("Running the AWS Sync command with the following arguments...") print(cmd) try: os.system(cmd) except: print("Error executing the sync command !!!") sys.exit(1)
import types from sqlalchemy import Column, String, BigInteger, Integer, DateTime, ForeignKey, Sequence import datetime from sqlalchemy.orm import relationship, backref from models.BaseModel import BaseModel #from models.EventsRelated.EventGroupModel import EventGroupModel #from models.EventsRelated.EventUserModel import EventUserModel #from models.EventsRelated.EventRoomModel import EventRoomModel class EventModel(BaseModel): __tablename__ = 'events' id = Column(BigInteger, Sequence('all_id_seq'), primary_key=True) start = Column(DateTime) end = Column(DateTime) label = Column(String) externalId = Column(String, index=True) lastchange = Column(DateTime, default=datetime.datetime.now) #userlinks = relationship('EventUserModel') #groupslinks = relationship('EventGroupModel') #roomlinks = relationship('EventRoomModel') #users = relationship('UserModel', secondary=EventUserModel)#, back_populates='events') #relationship(lazy='dynamic') #users = relationship('UserModel', # primaryjoin="EventModel.id==EventUserModel.event_id", # secondaryjoin="and_(EventUserModel.event_id==EventModel.id, EventUserModel.id==EventUserModel.id)") #users = relationship('EventUserModel') #primaryjoin="events.id==events_users.event_id") #secondaryjoin="and_(events_users.event_id==events.id, events_users.user_id==users.id)") #rooms = relationship('RoomModel', secondary=EventGroupModel)#, back_populates='events') #relationship(lazy='dynamic') #groups = relationship('GroupModel', secondary=EventGroupModel, back_populates='events') #relationship(lazy='dynamic') #groups = relationship('GroupModel', secondary=EventGroupModel)#, back_populates='events') #relationship(lazy='dynamic')
import os from functools import lru_cache class DayTen(): def __init__(self): self.lines = [] self.read_list() def read_list(self): self.operations = [] with open('./_data/data_10.txt') as f: contents = f.read().split(os.linesep) self.lines = [int(line) for line in contents] def part_one(self): self.lines.sort() data = self.lines differences_3 = 0 differences_1 = 0 for p, n in zip(data[:-1], data[1:]): if n - p == 3: differences_3 += 1 elif n - p == 1: differences_1 += 1 return (differences_1 + 1) * (differences_3 + 1) @lru_cache def calculate_combinations(self, position, target): if position == target: return 1 count = 0 for i in range(1, 4): if position + i not in self.lines: continue count += self.calculate_combinations(position + i, target) return count def part_two(self): max_number = max(self.lines) return self.calculate_combinations(0, max_number) day_ten = DayTen() print("What is the first number that does not have this property?") print(day_ten.part_one()) print("=========================================") print("What is the total number of distinct ways you \ can arrange the adapters to connect the charging \ outlet to your device?") print(day_ten.part_two())
# This is a handy reverses the endianess of a given binary string in HEX input = "020000000001017c037e163f8dfee4632a8cf6c87187d3cb61224e6dae8f4b0ed0fae3a38008570000000017160014c5729e3aaacb6a160fa79949a8d7f1e5cd1fbc51feffffff0288102c040000000017a914ed649576ad657747835d116611981c90113c074387005a62020000000017a914e62a29e7d756eb30c453ae022f315619fe8ddfbb8702483045022100b40db3a574a7254d60f8e64335d9bab60ff986ad7fe1c0ad06dcfc4ba896e16002201bbf15e25b0334817baa34fd02ebe90c94af2d65226c9302a60a96e8357c0da50121034f889691dacb4b7152f42f566095a8c2cec6482d2fc0a16f87f59691e7e37824df000000" def test(): assert reverse("") == "" assert reverse("F") == "F" assert reverse("FF") == "FF" assert reverse("00FF") == "FF00" assert reverse("AA00FF") == "FF00AA" assert reverse("AB01EF") == "EF01AB" assert reverse("b50cc069d6a3e33e3ff84a5c41d9d3febe7c770fdcc96b2c3ff60abe184f1963") == "63194f18be0af63f2c6bc9dc0f777cbefed3d9415c4af83f3ee3a3d669c00cb5" def reverse(input): res = "".join(reversed([input[i:i+2] for i in range(0, len(input), 2)])) return res if __name__ == "__main__": test() print(reverse(input))
""" Design a data structure that follows the constraints of a Least Recently Used (LRU) cache. Implement the LRUCache class: - LRUCache(int capacity) Initialize the LRU cache with positive size capacity. - get(int key) Return the value of the key if the key exists, otherwise return -1. - put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key. The functions get and put must each run in O(1) average time complexity. Example 1: Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4] Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4 """ """ We can most easily implement this with Python's OrderedDict which has two methods very useful for this kind of need: move_to_end, and popitem. All operations are O(1) due to acting on the underlying dict object. """ from collections import OrderedDict class LRUCache: def __init__(self, capacity): self.capacity = capacity self.data = OrderedDict() def get(self, key): if key in self.data: self.data.move_to_end(key) return self.data[key] return -1 def put(self, key, value): self.data[key] = value self.data.move_to_end(key) if len(self.data) > self.capacity: self.data.popitem(False)
from asynctest import TestCase as AsyncTestCase from asynctest import mock as async_mock from aries_cloudagent.storage.error import StorageNotFoundError from .. import routes as test_module class TestBasicMessageRoutes(AsyncTestCase): async def test_connections_send_message(self): mock_request = async_mock.MagicMock() mock_request.json = async_mock.CoroutineMock() mock_request.app = { "outbound_message_router": async_mock.CoroutineMock(), "request_context": "context", } with async_mock.patch.object( test_module, "ConnectionRecord", autospec=True ) as mock_connection_record, async_mock.patch.object( test_module, "BasicMessage", autospec=True ) as mock_basic_message, async_mock.patch.object( test_module.web, "json_response" ) as mock_response: mock_connection_record.retrieve_by_id = async_mock.CoroutineMock() res = await test_module.connections_send_message(mock_request) mock_response.assert_called_once_with({}) mock_basic_message.assert_called_once() async def test_connections_send_message_no_conn_record(self): mock_request = async_mock.MagicMock() mock_request.json = async_mock.CoroutineMock() mock_request.app = { "outbound_message_router": async_mock.CoroutineMock(), "request_context": "context", } with async_mock.patch.object( test_module, "ConnectionRecord", autospec=True ) as mock_connection_record, async_mock.patch.object( test_module, "BasicMessage", autospec=True ) as mock_basic_message: # Emulate storage not found (bad connection id) mock_connection_record.retrieve_by_id = async_mock.CoroutineMock( side_effect=StorageNotFoundError ) with self.assertRaises(test_module.web.HTTPNotFound): await test_module.connections_send_message(mock_request) async def test_connections_send_message_not_ready(self): mock_request = async_mock.MagicMock() mock_request.json = async_mock.CoroutineMock() mock_request.app = { "outbound_message_router": async_mock.CoroutineMock(), "request_context": "context", } with async_mock.patch.object( test_module, "ConnectionRecord", autospec=True ) as mock_connection_record, async_mock.patch.object( test_module, "BasicMessage", autospec=True ) as mock_basic_message: # Emulate connection not ready mock_connection_record.retrieve_by_id = async_mock.CoroutineMock() mock_connection_record.retrieve_by_id.return_value.is_ready = False await test_module.connections_send_message(mock_request) mock_basic_message.assert_not_called()
'''Simple test file to test whether loading caffefeatures works properly. Selecting percentiles, selecting rows and giving error messages. @author: Diede Kemper''' from IO import Input features = Input.load_validationset_caffefeatures() print features.shape print 'should be: 8061x3983' features = Input.load_traindata_caffefeatures(userows=range(3000,5500)) print features.shape print 'should be: 2500x3983' features = Input.load_validationset_caffefeatures(featureSelectionMethod='chi2', Percentile=100) print features.shape print 'should be: 8061x3983' features = Input.load_validationset_caffefeatures(featureSelectionMethod='hoi', Percentile=90) print features.shape print 'should print error message' features = Input.load_validationset_caffefeatures(featureSelectionMethod='chi2', Percentile=210) print features.shape print 'should print error message' features = Input.load_traindata_caffefeatures(featureSelectionMethod='chi2', Percentile=5) print features.shape print 'should be: 22424x200' features = Input.load_testdata_caffefeatures(featureSelectionMethod='chi2', Percentile=2, userows=range(20200,30200)) print features.shape print 'should be: 10000x80'
# Training loop: # 1 Sets up the environment and data # 2 Builds the generator (g) and discriminator (d) networks # 3 Manages the training process # 4 Runs periodic evaluations on specified metrics # 5 Produces sample images over the course of training # It supports training over an image directory dataset, prepared by prepare_data.py # Labels can optionally be provided although not essential # If provided, image will be generated conditioned on a chosen label import os import time import copy import json import pickle import psutil import PIL.Image import numpy as np import torch import glob import dnnlib from torch_utils import misc as torch_misc from torch_utils import training_stats from torch_utils.ops import conv2d_gradfix from training import visualize from training import misc import loader from metrics import metric_main from metrics import metric_utils # Data processing # ---------------------------------------------------------------------------- # Load dataset def load_dataset(dataset_args, batch_size, rank, num_gpus, log): misc.log("Loading training set...", "white", log) dataset = dnnlib.util.construct_class_by_name(**dataset_args) # subclass of training.datasetDataset dataset_sampler = torch_misc.InfiniteSampler(dataset = dataset, rank = rank, num_replicas = num_gpus) dataset_iter = iter(torch.utils.data.DataLoader(dataset = dataset, sampler = dataset_sampler, batch_size = batch_size//num_gpus, **dataset_args.loader_args)) misc.log(f"Num images: {misc.bcolored(len(dataset), 'blue')}", log = log) misc.log(f"Image shape: {misc.bcolored(dataset.image_shape, 'blue')}", log = log) misc.log(f"Label shape: {misc.bcolored(dataset.label_shape, 'blue')}", log = log) return dataset, dataset_iter # Fetch real images and their corresponding labels, and sample latents/labels def fetch_data(dataset, dataset_iter, input_shape, drange_net, device, batches_num, batch_size, batch_gpu): with torch.autograd.profiler.record_function("data_fetch"): real_img, real_c = next(dataset_iter) real_img = real_img.to(device).to(torch.float32) real_img = misc.adjust_range(real_img, [0, 255], drange_net).split(batch_gpu) real_c = real_c.to(device).split(batch_gpu) gen_zs = torch.randn([batches_num * batch_size, *input_shape[1:]], device = device) gen_zs = [gen_zs.split(batch_gpu) for gen_z in gen_zs.split(batch_size)] gen_cs = [dataset.get_label(np.random.randint(len(dataset))) for _ in range(batches_num * batch_size)] gen_cs = torch.from_numpy(np.stack(gen_cs)).pin_memory().to(device) gen_cs = [gen_c.split(batch_gpu) for gen_c in gen_cs.split(batch_size)] return real_img, real_c, gen_zs, gen_cs # Networks (construction/distribution, loading/saving, and printing) # ---------------------------------------------------------------------------- # Construct networks def construct_nets(cG, cD, dataset, device, log): misc.log("Constructing networks...", "white", log) common_kwargs = dict(c_dim = dataset.label_dim, img_resolution = dataset.resolution, img_channels = dataset.num_channels) G = dnnlib.util.construct_class_by_name(**cG, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nnnet D = dnnlib.util.construct_class_by_name(**cD, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nnnet Gs = copy.deepcopy(G).eval() return G, D, Gs # Distribute models onto the GPUs def distribute_nets(G, D, Gs, device, num_gpus, log): misc.log(f"Distributing across {num_gpus} GPUs...", "white", log) networks = {} for name, net in [("G", G), ("D", D), (None, Gs)]: # ("G_mapping", G.mapping), ("G_synthesis", G.synthesis) if (num_gpus > 1) and (net is not None) and len(list(net.parameters())) != 0: net.requires_grad_(True) net = torch.nn.parallel.DistributedDataParallel(net, device_ids = [device], broadcast_buffers = False, find_unused_parameters = True) net.requires_grad_(False) if name is not None: networks[name] = net return networks # Resume from existing pickle def load_nets(load_pkl, nets, device, log): if (load_pkl is not None) and log: misc.log(f"Resuming from {load_pkl}", "white", log) resume_data = loader.load_network(load_pkl) if nets is not None: G, D, Gs = nets for name, net in [("G", G), ("D", D), ("Gs", Gs)]: torch_misc.copy_params_and_buffers(resume_data[name], net, require_all = False) else: for net in ["G", "D", "Gs"]: resume_data[net] = copy.deepcopy(resume_data[net]).eval().requires_grad_(False).to(device) nets = (resume_data["G"], resume_data["D"], resume_data["Gs"]) return nets def save_nets(G, D, Gs, cur_nimg, dataset_args, run_dir, distributed, last_snapshots, log): snapshot_data = dict(dataset_args = dict(dataset_args)) for name, net in [("G", G), ("D", D), ("Gs", Gs)]: if net is not None: if distributed: torch_misc.assert_ddp_consistency(net, ignore_regex = r".*\.w_avg") net = copy.deepcopy(net).eval().requires_grad_(False).cpu() snapshot_data[name] = net del net snapshot_pkl = os.path.join(run_dir, f"network-snapshot-{cur_nimg//1000:06d}.pkl") if log: with open(snapshot_pkl, "wb") as f: pickle.dump(snapshot_data, f) if last_snapshots > 0: misc.rm(sorted(glob.glob(os.path.join(run_dir, "network*.pkl")))[:-last_snapshots]) return snapshot_data, snapshot_pkl # Print network summary tables def print_nets(G, D, batch_gpu, device, log): if not log: return z = torch.empty([batch_gpu, *G.input_shape[1:]], device = device) c = torch.empty([batch_gpu, *G.cond_shape[1:]], device = device) img = torch_misc.print_module_summary(G, [z, c])[0] torch_misc.print_module_summary(D, [img, c]) # Training and optimization # ---------------------------------------------------------------------------- # Initialize cuda according to command line arguments def init_cuda(rank, cudnn_benchmark, allow_tf32): device = torch.device("cuda", rank) torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions conv2d_gradfix.enabled = True # Improves training speed return device # Setup training stages (alternating optimization of G and D, and for ) def setup_training_stages(loss_args, G, cG, D, cD, ddp_nets, device, log): misc.log("Setting up training stages...", "white", log) loss = dnnlib.util.construct_class_by_name(device = device, **ddp_nets, **loss_args) # subclass of training.loss.Loss stages = [] for name, net, config in [("G", G, cG), ("D", D, cD)]: if config.reg_interval is None: opt = dnnlib.util.construct_class_by_name(params = net.parameters(), **config.opt_args) # subclass of torch.optimOptimizer stages.append(dnnlib.EasyDict(name = f"{name}_both", net = net, opt = opt, interval = 1)) # Lazy regularization else: mb_ratio = config.reg_interval / (config.reg_interval + 1) opt_args = dnnlib.EasyDict(config.opt_args) opt_args.lr = opt_args.lr * mb_ratio opt_args.betas = [beta ** mb_ratio for beta in opt_args.betas] opt = dnnlib.util.construct_class_by_name(net.parameters(), **opt_args) # subclass of torch.optimOptimizer stages.append(dnnlib.EasyDict(name = f"{name}_main", net = net, opt = opt, interval = 1)) stages.append(dnnlib.EasyDict(name = f"{name}_reg", net = net, opt = opt, interval = config.reg_interval)) for stage in stages: stage.start_event = None stage.end_event = None if log: stage.start_event = torch.cuda.Event(enable_timing = True) stage.end_event = torch.cuda.Event(enable_timing = True) return loss, stages # Compute gradients and update the network weights for the current training stage def run_training_stage(loss, stage, device, real_img, real_c, gen_z, gen_c, batch_size, batch_gpu, num_gpus): # Initialize gradient accumulation if stage.start_event is not None: stage.start_event.record(torch.cuda.current_stream(device)) stage.opt.zero_grad(set_to_none = True) stage.net.requires_grad_(True) # Accumulate gradients over multiple rounds for round_idx, (x, cx, z, cz) in enumerate(zip(real_img, real_c, gen_z, gen_c)): sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1) loss.accumulate_gradients(stage = stage.name, real_img = x, real_c = cx, gen_z = z, gen_c = cz, sync = sync, gain = stage.interval) # Update weights stage.net.requires_grad_(False) with torch.autograd.profiler.record_function(stage.name + "_opt"): for param in stage.net.parameters(): if param.grad is not None: torch_misc.nan_to_num(param.grad, nan = 0, posinf = 1e5, neginf=-1e5, out = param.grad) stage.opt.step() if stage.end_event is not None: stage.end_event.record(torch.cuda.current_stream(device)) # Update Gs -- the exponential moving average weights copy of G def update_ema_network(G, Gs, batch_size, cur_nimg, ema_kimg, ema_rampup): with torch.autograd.profiler.record_function("Gs"): ema_nimg = ema_kimg * 1000 if ema_rampup is not None: ema_nimg = min(ema_nimg, cur_nimg * ema_rampup) ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8)) for p_ema, p in zip(Gs.parameters(), G.parameters()): p_ema.copy_(p.lerp(p_ema, ema_beta)) for b_ema, b in zip(Gs.buffers(), G.buffers()): b_ema.copy_(b) # Evaluate a model over a list of metrics and report the results def evaluate(Gs, snapshot_pkl, metrics, eval_images_num, dataset_args, num_gpus, rank, device, log, logger = None, run_dir = None, print_progress = True): for metric in metrics: result_dict = metric_main.compute_metric(metric = metric, max_items = eval_images_num, G = Gs, dataset_args = dataset_args, num_gpus = num_gpus, rank = rank, device = device, progress = metric_utils.ProgressMonitor(verbose = log)) if log: metric_main.report_metric(result_dict, run_dir = run_dir, snapshot_pkl = snapshot_pkl) if logger is not None: logger.metrics.update(result_dict.results) # Snapshots and logging # ---------------------------------------------------------------------------- # Initialize image grid, of both real and generated sampled def init_img_grid(dataset, input_shape, device, run_dir, log): if not log: return None, None, None grid_size, images, labels = misc.setup_snapshot_img_grid(dataset) misc.save_img_grid(images, os.path.join(run_dir, "reals.png"), drange = [0, 255], grid_size = grid_size) grid_z = torch.randn([labels.shape[0], *input_shape[1:]], device = device) grid_c = torch.from_numpy(labels).to(device) return grid_size, grid_z, grid_c # Save a snapshot of the sampled grid for the given latents/labels def snapshot_img_grid(Gs, drange_net, grid_z, grid_c, grid_size, batch_gpu, truncation_psi, suffix = "init"): images = torch.cat([Gs(z, c, truncation_psi, noise_mode = "const").cpu() for z, c in zip(grid_z.split(batch_gpu), grid_c.split(batch_gpu))]).numpy() misc.save_img_grid(images, os.path.join(run_dir, f"fakes_{suffix}.png"), drange = drange_net, grid_size = grid_size) # Initialize logs (tracking metrics, json log file, tfevent files, etc.) def init_logger(run_dir, log): logger = dnnlib.EasyDict({ "collector": training_stats.Collector(regex = ".*"), "metrics": {}, "json": None, "tfevents": None }) if log: logger.json = open(os.path.join(run_dir, "stats.jsonl"), "wt") try: import torch.utils.tensorboard as tensorboard logger.tfevents = tensorboard.SummaryWriter(run_dir) except ImportError as err: print("Skipping tfevents export:", err) return logger # Collect statistics from each training stage across the processes/GPUs def collect_stats(logger, stages): for stage in stages: value = [] if (stage.start_event is not None) and (stage.end_event is not None): stage.end_event.synchronize() value = stage.start_event.elapsed_time(stage.end_event) training_stats.report0("Timing/" + stage.name, value) logger.collector.update() stats = logger.collector.as_dict() return stats # Update the logs (json and tfevents files) with the new info in stats def update_logger(logger, stats, cur_nimg, start_time): timestamp = time.time() if logger.json is not None: fields = dict(stats, timestamp = timestamp) logger.json.write(json.dumps(fields) + "\n") logger.json.flush() if logger.tfevents is not None: global_step = int(cur_nimg / 1e3) walltime = timestamp - start_time for name, value in stats.items(): logger.tfevents.add_scalar(name, value.mean, global_step = global_step, walltime = walltime) for name, value in logger.metrics.items(): logger.tfevents.add_scalar(f"Metrics/{name}", value, global_step = global_step, walltime = walltime) logger.tfevents.flush() # Training Loop # ---------------------------------------------------------------------------- # 1. Sets up the environment and data # 2. Builds the generator (g) and discriminator (d) networks # 3. Manages the training process # 4. Runs periodic evaluations on specified metrics # 5. Produces sample images over the course of training def training_loop( # General configuration train = False, # Training mode eval = False, # Evaluation mode vis = False, # Visualization mode run_dir = ".", # Output directory num_gpus = 1, # Number of GPUs participating in the training rank = 0, # Rank of the current process in [0, num_gpus] cG = {}, # Options for generator network cD = {}, # Options for discriminator network # Data dataset_args = {}, # Options for training set drange_net = [-1,1], # Dynamic range used when feeding image data to the networks # Optimization loss_args = {}, # Options for loss function total_kimg = 25000, # Total length of the training, measured in thousands of real images batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus batch_gpu = 4, # Number of samples processed at a time by one GPU ema_kimg = 10.0, # Half-life of the exponential moving average (EMA) of generator weights ema_rampup = None, # EMA ramp-up coefficient cudnn_benchmark = True, # Enable torch.backends.cudnnbenchmark? allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnnallow_tf32? # Logging resume_pkl = None, # Network pickle to resume training from resume_kimg = 0.0, # Assumed training progress at the beginning # Affects reporting and training schedule kimg_per_tick = 8, # Progress snapshot interval img_snapshot_ticks = 3, # How often to save image snapshots? None = disable network_snapshot_ticks = 3, # How often to save network snapshots? None = disable last_snapshots = 10, # Maximal number of prior snapshots to save printname = "", # Experiment name for logging # Evaluation vis_args = {}, # Options for vis.vis metrics = [], # Metrics to evaluate during training eval_images_num = 50000, # Sample size for the metrics truncation_psi = 0.7 # Style strength multiplier for the truncation trick (used for visualizations only) ): # Initialize start_time = time.time() device = init_cuda(rank, cudnn_benchmark, allow_tf32) log = (rank == 0) dataset, dataset_iter = load_dataset(dataset_args, batch_size, rank, num_gpus, log) # Load training set nets = construct_nets(cG, cD, dataset, device, log) if train else None # Construct networks G, D, Gs = load_nets(resume_pkl, nets, device, log) # Resume from existing pickle print_nets(G, D, batch_gpu, device, log) # Print network summary tables if eval: misc.log("Run evaluation...", log = log) evaluate(Gs, resume_pkl, metrics, eval_images_num, dataset_args, num_gpus, rank, device, log) if vis and log: misc.log("Produce visualizations...") visualize.vis(Gs, dataset, device, batch_gpu, drange_net = drange_net, ratio = dataset.ratio, truncation_psi = truncation_psi, **vis_args) if not train: exit() nets = distribute_nets(G, D, Gs, device, num_gpus, log) # Distribute networks across GPUs loss, stages = setup_training_stages(loss_args, G, cG, D, cD, nets, device, log) # Setup training stages (losses and optimizers) grid_size, grid_z, grid_c = init_img_grid(dataset, G.input_shape, device, run_dir, log) # Initialize an image grid logger = init_logger(run_dir, log) # Initialize logs # Train misc.log(f"Training for {total_kimg} kimg...", "white", log) cur_nimg, cur_tick, batch_idx = int(resume_kimg * 1000), 0, 0 tick_start_nimg, tick_start_time = cur_nimg, time.time() stats = None while True: # Fetch training data real_img, real_c, gen_zs, gen_cs = fetch_data(dataset, dataset_iter, G.input_shape, drange_net, device, len(stages), batch_size, batch_gpu) # Execute training stages for stage, gen_z, gen_c in zip(stages, gen_zs, gen_cs): if batch_idx % stage.interval != 0: continue run_training_stage(loss, stage, device, real_img, real_c, gen_z, gen_c, batch_size, batch_gpu, num_gpus) # Update Gs update_ema_network(G, Gs, batch_size, cur_nimg, ema_kimg, ema_rampup) # Update state cur_nimg += batch_size batch_idx += 1 # Perform maintenance tasks once per tick done = (cur_nimg >= total_kimg * 1000) if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000): continue # Print status line and accumulate the info in logger.collector tick_end_time = time.time() if stats is not None: default = dnnlib.EasyDict({'mean': -1}) fields = [] fields.append("tick " + misc.bold(f"{training_stats.report0('Progress/tick', cur_tick):<5d}")) fields.append("kimg " + misc.bcolored(f"{training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}", "red")) fields.append("") fields.append("loss/reg: G (" + misc.bcolored(f"{stats.get('Loss/G/loss', default).mean:>6.3f}", "blue")) fields.append(misc.bold(f"{stats.get('Loss/G/reg', default).mean:>6.3f}") + ")") fields.append("D "+ misc.bcolored(f"({stats.get('Loss/D/loss', default).mean:>6.3f}", "blue")) fields.append(misc.bold(f"{stats.get('Loss/D/reg', default).mean:>6.3f}") + ")") fields.append("") fields.append("time " + misc.bold(f"{dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}")) fields.append(f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}") fields.append(f"mem: GPU {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}") fields.append(f"CPU {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}") fields.append(misc.bold(printname)) torch.cuda.reset_peak_memory_stats() training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60)) training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60)) misc.log(" ".join(fields), log = log) # Save image snapshot if log and (img_snapshot_ticks is not None) and (done or cur_tick % img_snapshot_ticks == 0): visualize.vis(Gs, dataset, device, batch_gpu, training = True, step = cur_nimg // 1000, grid_size = grid_size, latents = grid_z, labels = grid_c, drange_net = drange_net, ratio = dataset.ratio, **vis_args) # Save network snapshot if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0): snapshot_data, snapshot_pkl = save_nets(G, D, Gs, cur_nimg, dataset_args, run_dir, num_gpus > 1, last_snapshots, log) # Evaluate metrics evaluate(snapshot_data["Gs"], snapshot_pkl, metrics, eval_images_num, dataset_args, num_gpus, rank, device, log, logger, run_dir) del snapshot_data # Collect stats and update logs stats = collect_stats(logger, stages) update_logger(logger, stats, cur_nimg, start_time) cur_tick += 1 tick_start_nimg, tick_start_time = cur_nimg, time.time() maintenance_time = tick_start_time - tick_end_time if done: break # Done misc.log("Done!", "blue")
__author__ = 'ftp-user'
# local import ivy # global from typing import Callable, Type, List, Iterable, Optional from types import ModuleType def _wrap_function(function_name: str) -> Callable: """Wraps the function called `function_name`. Parameters ---------- function_name the name of the function e.g. "abs", "mean" etc. Returns ------- new_function the wrapped function. Examples -------- >>> ivy.set_backend("torch") >>> from ivy.array.wrapping import _wrap_function >>> absolute = _wrap_function("abs") >>> x = ivy.array([-1]) >>> print(absolute(x)) ivy.array([1]) """ def new_function(self, *args, **kwargs): """Add the data of the current array from which the instance function is invoked as the first arg parameter or kwarg parameter. Return the new function with the name function_name and the new args variable or kwargs as the new inputs. """ function = ivy.__dict__[function_name] # gives us the position and name of the array argument data_idx = function.array_spec[0] if len(args) > data_idx[0][0]: args = ivy.copy_nest(args, to_mutable=True) data_idx = [data_idx[0][0]] + [ 0 if idx is int else idx for idx in data_idx[1:] ] ivy.insert_into_nest_at_index(args, data_idx, self._data) else: kwargs = ivy.copy_nest(kwargs, to_mutable=True) data_idx = [data_idx[0][1]] + [ 0 if idx is int else idx for idx in data_idx[1:] ] ivy.insert_into_nest_at_index(kwargs, data_idx, self._data) return function(*args, **kwargs) return new_function def add_ivy_array_instance_methods( cls: Type[ivy.Array], modules: List[ModuleType], to_ignore: Optional[Iterable] = () ): """Loop over all ivy modules such as activations, general, etc. and add the module functions to ivy arrays as instance methods using _wrap_function. Parameters ---------- cls the class we want to add the instance methods to. modules the modules to loop over: activations, general etc. to_ignore any items we don't want to add an instance method for. Examples -------- As shown, `add_ivy_array_instance_methods` adds all the appropriate functions from the activations module as instance methods to our toy `ArrayExample` class: >>> from ivy.functional.ivy import activations >>> class ArrayExample: \ pass >>> ivy.add_ivy_array_instance_methods(ArrayExample, [activations]) >>> print(hasattr(ArrayExample, "relu"), hasattr(ArrayExample, "softmax")) True True """ for module in modules: for key, value in module.__dict__.items(): # we skip the cases where the function is protected, the instance # method has already been added manually and a few other cases if ( key.startswith("_") or key[0].isupper() or not callable(value) or key in cls.__dict__ or hasattr(cls, key) or key in to_ignore or key not in ivy.__dict__ ): continue try: setattr(cls, key, _wrap_function(key)) except AttributeError: pass
"""Interactions with Labber's HDF5 data files.""" from .labber_io import LabberData
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import mock from libs.math import statistics from waterfall.test.wf_testcase import WaterfallTestCase class StatisticsTest(WaterfallTestCase): def testGetZFromAlpha(self): self.assertAlmostEqual(1.2815515655446004, statistics._GetZFromAlpha(0.1)) self.assertAlmostEqual(1.2815515655446004, statistics._GetZFromAlpha(.12)) def testWilsonScoreConfidenceInterval(self): interval = statistics.WilsonScoreConfidenceInterval(1.0, 100, 0.001) self.assertAlmostEqual(0.9128290627200445, interval.lower) self.assertAlmostEqual(1.0, interval.upper)
from sqlalchemy import create_engine, Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, backref, sessionmaker from teams_and_flags import team_data import os basedir = os.path.abspath(os.path.dirname(__file__)) Base = declarative_base() engine = create_engine('sqlite:///db/mian.db') class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) username = Column(String) password = Column(String) flag = Column(String) def __init__(self, id, username, password, flag): self.id = id self.username = username self.password = password self.flag = flag class Task(Base): __tablename__ = "tasks" id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id')) answer = Column(String) stage = Column(Integer) def __init__(self, user_id): self.user_id = user_id self.stage = 1 def init_db(): Session = sessionmaker(bind=engine) s = Session() Base.metadata.create_all(engine) for id, (username, password, flag) in enumerate(team_data): user = User(id, username, password, flag) s.add(user) task = Task(id) s.add(task) s.commit() s.close() def check_user(username, password): Session = sessionmaker(bind=engine) s = Session() return s.query(User).filter_by(username=username, password=password).first() def get_user(id): Session = sessionmaker(bind=engine) s = Session() return s.query(User).filter_by(id=id).first() def get_task(user_id): Session = sessionmaker(bind=engine) s = Session() return s.query(Task).filter_by(user_id=user_id).first() def update_answer(user_id, answer): Session = sessionmaker(bind=engine) s = Session() task = s.query(Task).filter_by(user_id=user_id).first() task.answer = answer s.commit() s.close() def update_stage(user_id, stage): Session = sessionmaker(bind=engine) s = Session() task = s.query(Task).filter_by(user_id=user_id).first() task.stage = stage s.commit() s.close()
from serial import Serial import os # I like never use right pinky (10) for alpha characters # and I never use right thumb (6) alphabet_to_finger = { 'a': 5, 'b': 2, 'c': 3, 'd': 3, 'e': 3, 'f': 2, 'g': 2, 'h': 7, 'i': 8, 'j': 7, 'k': 8, 'l': 9, 'm': 7, 'n': 7, 'o': 9, 'p': 9, 'q': 5, 'r': 2, 's': 4, 't': 2, 'u': 7, 'v': 2, 'w': 4, 'x': 4, 'y': 7, 'z': 5 } words = [ 'hello', 'world' # actually wordlist is filled from /usr/share/dict/words ] keystroke_command = 'osascript -e \'tell application "System Events" to keystroke "%s"\'' def send_keystroke(c): os.system(keystroke_command % c) def send_keys(word): for c in word: send_keystroke(c) send_keystroke(' ') print(word) def pick_word(options): # TODO: use a word frequency dictionary # this is the most hacky part of the code. if 'device' in options: return 'device' if 'design' in options: return 'design' if 'world' in options: return 'world' return options[0] def build_mappings(words): fingers_to_words = {} for word in words: word = word.lower() if not word.isalpha(): # skip weird word continue finger_key = '' for c in word: finger_key += str(alphabet_to_finger[c]) if finger_key in fingers_to_words: fingers_to_words[finger_key].append(word) else: fingers_to_words[finger_key] = [word] return fingers_to_words def build_wordlist(): words = [] with open('/usr/share/dict/words') as wordf: for line in wordf: words.append(line.strip()) return words def main(): usbser = Serial('/dev/cu.usbmodem1422') fingers_to_words = build_mappings(build_wordlist()) print('Ready to parse your input.') keysBuffer = [] while True: line = usbser.readline().strip() if line[-1] == 'u': print(line[0]) # depressed if line[0] == '1' or line[0] == '6': # word boundary (space) options = fingers_to_words[''.join(keysBuffer)] if len(options) > 1: print('more than one option, picking...') send_keys(pick_word(options)) else: send_keys(pick_word(options)) keysBuffer = [] else: keysBuffer.append(line[0]) if __name__ == '__main__': main()
#!python from set import Set import unittest class SetTest(unittest.TestCase): def test_init_empty(self): s = Set() assert s.size() == 0 def test_init_with_elements(self): s = Set(['one', 'two', 'three']) assert s.size() == 3 assert s.contains('one') is True assert s.contains('two') is True assert s.contains('three') is True def test_size(self): s = Set() assert s.size() == 0 s.add('one') assert s.size() == 1 s.add('two') assert s.size() == 2 s.remove('two') assert s.size() == 1 def test_contains(self): s = Set(['waffle', 'potato', 'three']) assert s.contains('three') is True assert s.contains('potato') is True assert s.contains('waffle') is True s.add('chicken') assert s.contains('chicken') is True s.add('chicken') assert s.contains('chicken') is True s.remove('waffle') assert s.contains('waffle') is False assert s.contains('four') is False def test_add(self): s = Set() assert s.size() == 0 s.add('hello') assert s.contains('hello') is True assert s.size() == 1 def test_remove(self): s = Set(['one', 'two', 'three']) assert s.size() == 3 s.remove('one') assert s.contains('one') is False assert s.size() == 2 s.remove('two') assert s.contains('two') is False assert s.size() == 1 s.remove('three') assert s.contains('three') is False assert s.size() == 0 with self.assertRaises(KeyError): s.remove('four') def test_union(self): s1 = Set(['one', 'two', 'three']) s2 = Set(['three', 'four', 'five']) s1_union = s1.union(s2) assert s1_union.size() == 5 assert s1_union.contains('one') is True assert s1_union.contains('two') is True assert s1_union.contains('three') is True assert s1_union.contains('four') is True assert s1_union.contains('five') is True s2_union = s2.union(s1) assert s2_union.size() == 5 assert s2_union.contains('one') is True assert s2_union.contains('two') is True assert s2_union.contains('three') is True assert s2_union.contains('four') is True assert s2_union.contains('five') is True def test_intersection(self): s1 = Set(['one', 'two', 'three', 'four']) s2 = Set(['three', 'four', 'five']) s1_intersection = s1.intersection(s2) assert s1_intersection.size() == 2 assert s1_intersection.contains('one') is False assert s1_intersection.contains('three') is True assert s1_intersection.contains('four') is True s2_intersection = s2.intersection(s1) assert s2_intersection.size() == 2 assert s2_intersection.contains('one') is False assert s2_intersection.contains('three') is True assert s2_intersection.contains('four') is True def test_difference(self): s1 = Set(['one', 'two', 'three']) s2 = Set(['three', 'four', 'five']) s1_difference = s1.difference(s2) assert s1_difference.size() == 2 assert s1_difference.contains('one') is True assert s1_difference.contains('two') is True assert s1_difference.contains('three') is False assert s1_difference.contains('four') is False s2_difference = s2.difference(s1) assert s2_difference.size() == 2 assert s2_difference.contains('one') is False assert s2_difference.contains('two') is False assert s2_difference.contains('three') is False assert s2_difference.contains('four') is True assert s2_difference.contains('five') is True def test_is_subset(self): s1 = Set(['one', 'two', 'three', 'four']) s2 = Set(['two', 'four']) assert s1.is_subset(s2) is True assert s2.is_subset(s1) is False if __name__ == '__main__': unittest.main()
""" data.py PURPOSE: This file defines the data for training from genius as well as code for collecting the initial data """
import ssl import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3 import PoolManager class MyAdapter(HTTPAdapter): def init_poolmanager(self, connections, maxsize, block=False): self.poolmanager = PoolManager(num_pools=connections, maxsize=maxsize, ssl_version=ssl.PROTOCOL_SSLv3) def session(): s = requests.Session() s.mount('https://', MyAdapter()) # 所有的 https 连接都用 ssl.PROTOCOL_SSLV3 去连接 return s
#!/usr/bin/python3 from app import db, Students, Classes, Enrolments db.create_all()
# Copyright 2013 Openstack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import cProfile as profiler import gc import sys import time try: import pstats except Exception: # Don't want to force pstats into the venv if it's not always used pass from neutron.api.v2 import attributes from neutron.openstack.common import log as logging LOG = logging.getLogger(__name__) def filter_body(context, body, admin_only=None, always_filter=None): if not context.is_admin and admin_only: for attr in admin_only: pop_param(body, attr) if always_filter: for attr in always_filter: pop_param(body, attr) def attr_specified(param): return param is not attributes.ATTR_NOT_SPECIFIED def timed(fn): def _wrapped(*args, **kwargs): began = time.time() res = fn(*args, **kwargs) elapsed = time.time() - began LOG.info("Time for %s = %s" % (fn, elapsed)) return res return _wrapped def profile(output): def _inner(fn): def _wrapped(*args, **kw): result = _profile(output, fn, *args, **kw) # uncomment this to see who's calling what # stats.print_callers() return result return _wrapped return _inner def live_profile(fn): def _wrapped(*args, **kw): elapsed, stat_loader, result = _live_profile(fn, *args, **kw) stats = stat_loader() stats.sort_stats('cumulative') stats.print_stats() # uncomment this to see who's calling what # stats.print_callers() return result return _wrapped def _profile(filename, fn, *args, **kw): gc.collect() profiler.runctx('result = fn(*args, **kw)', globals(), locals(), filename=filename) return locals()['result'] def _live_profile(fn, *args, **kw): load_stats = lambda: pstats.Stats() gc.collect() began = time.time() profiler.runctx('result = fn(*args, **kw)', globals(), locals()) ended = time.time() return ended - began, load_stats, locals()['result'] def pop_param(attrs, param, default=None): val = attrs.pop(param, default) if attr_specified(val): return val return default class Command(object): def __init__(self, func): self.func = func self.result = None self.called = False def __call__(self, *args, **kwargs): self.called = True self.result = self.func(*args, **kwargs) return self.result class CommandManager(object): def __init__(self): self.do_commands = [] self.undo_commands = [] @contextlib.contextmanager def execute(self, exc=None): try: yield self except Exception: exc_info = sys.exc_info() LOG.exception("Exception in transaction", exc_info=exc_info) self.rollback() raise exc_info[1] def do(self, func): cmd = Command(func) self.do_commands.append(cmd) return cmd def undo(self, func): cmd = Command(func) self.undo_commands.append(cmd) return cmd def rollback(self): do_commands = reversed(self.do_commands) for cmd in reversed(self.undo_commands): do = do_commands.next() if not do.called: continue try: cmd(do.result) except Exception: LOG.exception("Rollback failed and wasn't caught!")
import unittest import __init__ as lib import jinja2 from ansible.parsing.dataloader import DataLoader class TaskBashTestCase(unittest.TestCase): file = 'cmf/all/scripts/tasks/bash.yml' tests = [ # Covers: # - run: "/path/to/script.sh" { 'result': { 'name': 'Running a Bash command', 'shell': '/path/to/script.sh', }, 'args': { 'run': '/path/to/script.sh', }, }, # Covers: # - name: "Doing something" # run: "echo 12" { 'result': { 'name': 'Doing something', 'shell': 'echo 12', }, 'args': { 'name': 'Doing something', 'run': 'echo 12', }, }, ] def test(self): loader = DataLoader() tasks = loader.load_from_file(lib.cikit.dirs['self'] + '/' + self.file) self.assertEqual(len(tasks), 1) self.assertTrue('shell' in tasks[0]) self.assertTrue('name' in tasks[0]) self.assertTrue('when' in tasks[0]) self.assertTrue('args' in tasks[0]) for test in self.tests: for item in ['name', 'shell']: self.assertEqual( jinja2.Template(tasks[0][item]).render({'item': test['args']}), test['result'][item] ) if __name__ == '__main__': unittest.main()
import numpy as np import matplotlib.pyplot as plt import torch from torchvision import datasets, transforms, models from torch import nn, optim, tensor import torch.nn.functional as F from collections import OrderedDict from PIL import Image from torch.autograd import Variable import helperr import json import os import copy import time import argparse ap = argparse.ArgumentParser(description='Train.py') ap.add_argument('data_dir', action="store", default="./flowers/") ap.add_argument('--gpu', dest="gpu", action="store", default="gpu") ap.add_argument('--save_dir', dest="save_dir", action="store", default="./checkpoint.pth") ap.add_argument('--learning_rate', dest="learning_rate", action="store", default=0.001) ap.add_argument('--dropout', dest = "dropout", action = "store", default = 0.5) ap.add_argument('--epochs', dest="epochs", action="store", type=int, default=3) ap.add_argument('--model', dest="model", action="store", default="densenet121", type = str) ap.add_argument('--hidden_layer1', type=int, dest="hidden_layer1", action="store", default=4096) pa = ap.parse_args() root = pa.data_dir path = pa.save_dir lr = pa.learning_rate model = pa.model dropout = pa.dropout hidden_layer1 = pa.hidden_layer1 device = pa.gpu epochs = pa.epochs def main(): trainloader, validloader, testloader = helperr.load_data(root) model, optimizer, criterion = helperr.build_model(hidden_layer1, class_to_idx) helperr.train(model, epochs, lr, criterion, optimizer, trainloader, validloader) helperr.save_checkpoint(model,path,structure,hidden_layers,dropout,lr) print("Done Training!") if __name__== "__main__": main()
#Leia 10 números inteiros e armazene em um vetor. Em seguida #escreva os elementos que são primos e suas respectivas #posições no vetor. import random vetorA=[] primo={} for c in range(0,10): n1=random.randint(1,50) vetorA.append(n1) p=0 for u in range(1,n1+1): if(n1%u==0): p+=1 if(p<=2): primo[n1]=c print(vetorA) print(primo)
"""Functions related to taxa formatting and hierarchy.""" def set_taxon(taxon, subtax, db): """Return a database specific key-val pair for taxon.""" import requests # Parse incomming taxon name string for errors and reassemble taxon_list = taxon.split(',') taxon_list = [x.strip() for x in taxon_list] taxon_list = [x.capitalize() for x in taxon_list] clean_list = list() for item in taxon_list: if len(item.split()) > 3 or len(item.split()) == 0: msg = 'Unsupported taxon name length: {0:s}'.format(item) raise ValueError(400, msg) if '^' in item: parts = [x.strip() for x in item.split('^')] if len(parts) != 2: msg = 'Incorrect usage of "not" caret: {0:s}'.format(item) raise ValueError(400, msg) # NEW RESOURCE: Add to list below if DB supports not (^) notation if db in ['pbdb']: parts = [x.capitalize() for x in parts] clean_list.append('^'.join(parts)) else: # DB does not support caret so remove the "not" portion clean_list.append(parts[0]) else: clean_list.append(item) taxon = ','.join(clean_list) # Format for specific database API parameter payloads if db == 'neotoma': if subtax: return {'taxonname': taxon, 'lower': 'true'} else: return {'taxonname': taxon} elif db == 'pbdb': if subtax: return {'base_name': taxon} else: return {'taxon_name': taxon} elif db == 'sead': # Currently SEAD does not support general taxa serching. # An external service must be used to resolve the taxon rank of # the first name in a list of taxa prior to parameterizing the query single_taxon = taxon.split(',')[0] if len(single_taxon.split()) == 2: # Consider this to be a 'Genus Species' name query = 'ilike.*{0:s}'.format(single_taxon) return {'taxon': query} else: url = 'https://paleobiodb.org/data1.2/taxa/single.json' payload = {'taxon_name': single_taxon} rank = requests.get(url, payload).json()['records'][0]['rnk'] if rank == 9: # Rank of Family query = 'ilike.{0:s}'.format(single_taxon) return {'family_name': query} elif rank == 5: # Rank of Genus query = 'ilike.{0:s}'.format(single_taxon) return {'genus_name': query} # NEW RESOURCE: Add another databse specific taxon name mapping here else: return {} def get_subtaxa(taxon, inc_syn=True): """ Query PBDB for all lower order relatives of a specified taxa. :arg taxon: Taxonmic name to query :type taxon: str :arg inc_syn: Include recognized synonyms in the return :type inc_syn: bool """ import requests from ..elc import config subtaxa = set() url = ''.join([config.get('resource_api', 'pbdb'), 'taxa/list.json']) payload = {'rel': 'all_children', 'name': taxon} try: r = requests.get(url=url, params=payload, timeout=config.get('default', 'timeout')) r.raise_for_status() except requests.exceptions.HTTPError as e: msg = r.json().get('warnings') raise ValueError(r.status_code, msg) data = r.json() for rec in data['records']: if rec.get('tdf') and not inc_syn: subtaxa.add(rec.get('acn')) else: subtaxa.add(rec.get('nam')) return list(subtaxa) def get_parents(taxon): """ Query PBDB for parent taxonomic groups. :arg taxon: Taxonomic name to query :type taxon: str """ import requests from collections import OrderedDict from ..elc import config parents = dict() base_url = config.get('resource_api', 'pbdb') + 'taxa/list.json' tax_sys = ['kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'] payload = dict() payload.update(vocab='pbdb', rel='all_parents', order='hierarchy', name=taxon) resp = requests.get(base_url, params=payload, timeout=None) if resp.status_code == 200: resp_json = resp.json() if 'warnings' in resp_json: raise ValueError(400, 'Bad Request', str(resp_json['warnings'][0])) else: for rec in resp_json['records']: for rank in tax_sys: if rec.get('taxon_rank') == rank: parents.update({rank: rec.get('taxon_name')}) return OrderedDict(parents) else: raise ValueError(resp.status_code, resp.reason, 'Server error or bad URL')
""" Django settings for website project. Generated by 'django-admin startproject' using Django 2.2.20. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env( # set casting, default value DEBUG=(bool, False) ) # reading website/settings/.env file environ.Env.read_env() # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ SECRET_KEY = env("SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env("DEBUG") ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", ] EXTERNAL_APPS = [ "admin_honeypot", "axes", ] LOCAL_APPS = [ "website.common.apps.CommonConfig", ] INSTALLED_APPS += EXTERNAL_APPS + LOCAL_APPS MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "csp.middleware.CSPMiddleware", "axes.middleware.AxesMiddleware", ] ROOT_URLCONF = "website.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "website.common.context_processors.global_settings", ], }, }, ] WSGI_APPLICATION = "website.wsgi.application" # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { "default": env.db(), } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATIC_URL = "/static/" SITE_TITLE = "django-base" DJANGO_ADMIN_PATH = env("DJANGO_ADMIN_PATH") AUTHENTICATION_BACKENDS = [ "axes.backends.AxesBackend", "django.contrib.auth.backends.ModelBackend", ] # default-src 'none'; img-src 'self'; script-src 'self'; style-src 'self' CSP_SCRIPT_SRC = ("'self'", "code.jquery.com", "cdn.jsdelivr.net") CSP_IMG_SRC = ("'self'", "data:") CSP_STYLE_SRC = ("'self'", "cdn.jsdelivr.net")
#!/usr/bin/env python from datetime import datetime, timedelta from app import db from flask import current_app from app.models import User, Challenge, Task, challengers from config import Config def tearDown(db): db.session.remove() db.drop_all() db.session.commit()
"""Create multiple metrics """ from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys sys.path.insert( 0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'data_utils'))) import numpy as np from sklearn.metrics import confusion_matrix from scipy import signal import os import pickle import argparse import matplotlib.pyplot as plt import itertools from lea_metrics import accuracy, edit_score, overlap_f1, mid_mAP def conf_mat(y_pred, y_true, normalize=False): """Find confusion matrix for frame-wise accuracy Args: y_pred: list of prediction vectors y_true: list of groundtruth vectors Returns: frame-wise confusion matrix """ y_pred_all = np.concatenate(y_pred) y_true_all = np.concatenate(y_true) cm = confusion_matrix(y_true_all, y_pred_all) if normalize: cmsum = cm.sum(axis=1)[:, np.newaxis] + 1e-10 cm = cm.astype('float') / cmsum return cm def auto_make(y_score_in, y_true_in, downsampling=1, median_size=5): """Automatically make result dictionary Args: y_score_in: input score data, list of list of list following the order of: videos, samples, classes y_score_in: input groundtruth, list of list following the order of: videos, samples downsampling: downsampling rate, default=1 means no downsampling median_size: size of median filter. This is just for reference Returns: results_dict: dictionary of results """ print('Computing metrics...') n_vids = len(y_true_in) n_classes = len(y_score_in[0][0]) bg_class = 0 # downsample if needed y_score = [] y_true = [] y_pred = [] y_pred_median = [] for i in range(n_vids): a_score = np.copy(y_score_in[i])[::downsampling, :] y_score.append(np.array(a_score)) y_pred.append(np.argmax(a_score, axis=1)) y_true.append(np.copy(y_true_in[i])[::downsampling]) # post-processing y_pred_median = [] for i in range(n_vids): filtered = signal.medfilt(np.copy(y_pred[i]), median_size) y_pred_median.append(filtered.astype(np.int)) # compute all metrics------------------------------------------------------ results_dict = {} results_dict['y_score_in'] = y_score_in results_dict['y_true_in'] = y_true_in results_dict['downsampling'] = downsampling results_dict['y_pred'] = y_pred # results_dict['y_pred_median'] = y_pred_median results_dict['median_size'] = median_size results_dict['conf_mat'] = conf_mat(y_pred, y_true) acc = accuracy(y_pred, y_true) edit = edit_score(y_pred, y_true, True, bg_class) f1 = overlap_f1(y_pred, y_true, n_classes, bg_class) precisions, mAP = mid_mAP(y_pred, y_true, y_score, bg_class) results_dict['frame_accuracy'] = acc results_dict['edit'] = edit results_dict['f1'] = f1 results_dict['precisions'] = precisions results_dict['mAP'] = mAP # print results------------------------------------------------------------ print('>' * 80) print('Frame-wise accuracy: {:.02f}'.format(acc)) print('Edit: {:.02f}'.format(edit)) print('Overlap F1: {:.02f}'.format(f1)) # print('Midpoint-hit criterion metrics') # print(' precisions: ', results_dict['precisions']) print('mAP: {:.02f}'.format(mAP)) print('<' * 80) return results_dict def _viz_pred(y_pred, y_true): """Visualize prediction results Args: y_pred: list of prediction vectors y_true: list of groundtruth vectors """ y_pred = np.array(y_pred) y_true = np.array(y_true) if y_pred.ndim == 1: y_pred = np.expand_dims(y_pred, 0) if y_true.ndim == 1: y_true = np.expand_dims(y_true, 0) plt.figure() # detection results plt.subplot(211) plt.imshow(y_pred, aspect='auto', interpolation='nearest') plt.yticks([]) plt.ylabel('detection') plt.tight_layout() plt.colorbar() # groundtruth plt.subplot(212) plt.imshow(y_true, aspect='auto', interpolation='nearest') plt.yticks([]) plt.ylabel('groundtruth') plt.tight_layout() plt.colorbar() pass def _viz_confmat(cm, label_dict, normalize=True): """Visualize confusion matrix Args: cm: confusion matrix label_dict: list of labels (with background). If None, will use numbers """ if normalize: cmsum = cm.sum(axis=1)[:, np.newaxis] + 1e-10 cm = cm.astype('float') / cmsum plt.figure() plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.colorbar() if label_dict is not None: tick_marks = np.arange(len(label_dict)) plt.xticks(tick_marks, label_dict, rotation=45) plt.yticks(tick_marks, label_dict) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') pass def reload_and_visualize(results_dict, label_dict, video_index, new_downsampling, new_median_size, visualize): """Load and visualize saved results with new_downsampling and new_median_size if needed Args: results_dict: dictionary of results label_dict: list of all labels (with background) video_index: index of video to visualize detection results new_downsampling: new downsampling rate new_median_size: new median size visualize: visualize the results """ # downsampling again if necessary results_dict = auto_make(results_dict['y_score_in'], results_dict['y_true_in'], new_downsampling, new_median_size) if visualize: # visualize one prediction results _viz_pred(results_dict['y_pred'][video_index], results_dict['y_true_in'][video_index]) # visualize confusion matrix _viz_confmat(results_dict['conf_mat'], label_dict) plt.show() pass if __name__ == '__main__': """Interface to call from command line """ # parse arguments parser = argparse.ArgumentParser() parser.add_argument('-r', '--results_dict', type=str, help='path to results_dict') parser.add_argument('-l', '--label_dict', type=str, help='path to label_dict. If ignored, it will use ' 'numbers instead') parser.add_argument('-i', '--video_index', type=int, default=0, help='index of video to visualize detection') parser.add_argument('-d', '--new_downsampling', type=int, default=1, help='new downsampling. If ignored, there will be no ' 'downsampling') parser.add_argument('-m', '--new_median_size', type=int, default=5, help='new size for median filter (only for reference ' 'purpose)') parser.add_argument('-v', '--visualize', type=int, default=0, help='1 if visualize, 0 otherwise') args = parser.parse_args() assert os.path.exists(args.results_dict) # load data results_dict = pickle.load(open(args.results_dict, 'rb')) if args.label_dict is not None and os.path.exists(args.label_dict): label_dict = open(args.label_dict).read().splitlines() label_dict = ['background'] + label_dict else: label_dict = None # reload and visualize reload_and_visualize(results_dict, label_dict, args.video_index, args.new_downsampling, args.new_median_size, args.visualize)
""" Web named colors generated from generate_colors.py You can install the Color Highlight vscode extension to see colors in editor. """ from vmath import Vector3 # ---------- CamelCase ---------- # Pink colors Pink = Vector3(1.0000, 0.7529, 0.7961) #ffc0cb LightPink = Vector3(1.0000, 0.7137, 0.7569) #ffb6c1 HotPink = Vector3(1.0000, 0.4118, 0.7059) #ff69b4 DeepPink = Vector3(1.0000, 0.0784, 0.5765) #ff1493 PaleVioletRed = Vector3(0.8588, 0.4392, 0.5765) #db7093 MediumVioletRed = Vector3(0.7804, 0.0824, 0.5216) #c71585 # Red colors LightSalmon = Vector3(1.0000, 0.6275, 0.4784) #ffa07a Salmon = Vector3(0.9804, 0.5020, 0.4471) #fa8072 DarkSalmon = Vector3(0.9137, 0.5882, 0.4784) #e9967a LightCoral = Vector3(0.9412, 0.5020, 0.5020) #f08080 IndianRed = Vector3(0.8039, 0.3608, 0.3608) #cd5c5c Crimson = Vector3(0.8627, 0.0784, 0.2353) #dc143c Firebrick = Vector3(0.6980, 0.1333, 0.1333) #b22222 DarkRed = Vector3(0.5451, 0.0000, 0.0000) #8b0000 Red = Vector3(1.0000, 0.0000, 0.0000) #ff0000 # Orange colors OrangeRed = Vector3(1.0000, 0.2706, 0.0000) #ff4500 Tomato = Vector3(1.0000, 0.3882, 0.2784) #ff6347 Coral = Vector3(1.0000, 0.4980, 0.3137) #ff7f50 DarkOrange = Vector3(1.0000, 0.5490, 0.0000) #ff8c00 Orange = Vector3(1.0000, 0.6471, 0.0000) #ffa500 # Yellow colors Yellow = Vector3(1.0000, 1.0000, 0.0000) #ffff00 LightYellow = Vector3(1.0000, 1.0000, 0.8784) #ffffe0 LemonChiffon = Vector3(1.0000, 0.9804, 0.8039) #fffacd LightGoldenrodYellow = Vector3(0.9804, 0.9804, 0.8235) #fafad2 PapayaWhip = Vector3(1.0000, 0.9373, 0.8353) #ffefd5 Moccasin = Vector3(1.0000, 0.8941, 0.7098) #ffe4b5 PeachPuff = Vector3(1.0000, 0.8549, 0.7255) #ffdab9 PaleGoldenrod = Vector3(0.9333, 0.9098, 0.6667) #eee8aa Khaki = Vector3(0.9412, 0.9020, 0.5490) #f0e68c DarkKhaki = Vector3(0.7412, 0.7176, 0.4196) #bdb76b Gold = Vector3(1.0000, 0.8431, 0.0000) #ffd700 # Brown colors Cornsilk = Vector3(1.0000, 0.9725, 0.8627) #fff8dc BlanchedAlmond = Vector3(1.0000, 0.9216, 0.8039) #ffebcd Bisque = Vector3(1.0000, 0.8941, 0.7686) #ffe4c4 NavajoWhite = Vector3(1.0000, 0.8706, 0.6784) #ffdead Wheat = Vector3(0.9608, 0.8706, 0.7020) #f5deb3 Burlywood = Vector3(0.8706, 0.7216, 0.5294) #deb887 Tan = Vector3(0.8235, 0.7059, 0.5490) #d2b48c RosyBrown = Vector3(0.7373, 0.5608, 0.5608) #bc8f8f SandyBrown = Vector3(0.9569, 0.6431, 0.3765) #f4a460 Goldenrod = Vector3(0.8549, 0.6471, 0.1255) #daa520 DarkGoldenrod = Vector3(0.7216, 0.5255, 0.0431) #b8860b Peru = Vector3(0.8039, 0.5216, 0.2471) #cd853f Chocolate = Vector3(0.8235, 0.4118, 0.1176) #d2691e SaddleBrown = Vector3(0.5451, 0.2706, 0.0745) #8b4513 Sienna = Vector3(0.6275, 0.3216, 0.1765) #a0522d Brown = Vector3(0.6471, 0.1647, 0.1647) #a52a2a Maroon = Vector3(0.5020, 0.0000, 0.0000) #800000 # Green colors DarkOliveGreen = Vector3(0.3333, 0.4196, 0.1843) #556b2f Olive = Vector3(0.5020, 0.5020, 0.0000) #808000 OliveDrab = Vector3(0.4196, 0.5569, 0.1373) #6b8e23 YellowGreen = Vector3(0.6039, 0.8039, 0.1961) #9acd32 LimeGreen = Vector3(0.1961, 0.8039, 0.1961) #32cd32 Lime = Vector3(0.0000, 1.0000, 0.0000) #00ff00 LawnGreen = Vector3(0.4863, 0.9882, 0.0000) #7cfc00 Chartreuse = Vector3(0.4980, 1.0000, 0.0000) #7fff00 GreenYellow = Vector3(0.6784, 1.0000, 0.1843) #adff2f SpringGreen = Vector3(0.0000, 1.0000, 0.4980) #00ff7f MediumSpringGreen = Vector3(0.0000, 0.9804, 0.6039) #00fa9a LightGreen = Vector3(0.5647, 0.9333, 0.5647) #90ee90 PaleGreen = Vector3(0.5961, 0.9843, 0.5961) #98fb98 DarkSeaGreen = Vector3(0.5608, 0.7373, 0.5608) #8fbc8f MediumAquamarine = Vector3(0.4000, 0.8039, 0.6667) #66cdaa MediumSeaGreen = Vector3(0.2353, 0.7020, 0.4431) #3cb371 SeaGreen = Vector3(0.1804, 0.5451, 0.3412) #2e8b57 ForestGreen = Vector3(0.1333, 0.5451, 0.1333) #228b22 Green = Vector3(0.0000, 0.5020, 0.0000) #008000 DarkGreen = Vector3(0.0000, 0.3922, 0.0000) #006400 # Cyan colors Aqua = Vector3(0.0000, 1.0000, 1.0000) #00ffff Cyan = Vector3(0.0000, 1.0000, 1.0000) #00ffff LightCyan = Vector3(0.8784, 1.0000, 1.0000) #e0ffff PaleTurquoise = Vector3(0.6863, 0.9333, 0.9333) #afeeee Aquamarine = Vector3(0.4980, 1.0000, 0.8314) #7fffd4 Turquoise = Vector3(0.2510, 0.8784, 0.8157) #40e0d0 MediumTurquoise = Vector3(0.2824, 0.8196, 0.8000) #48d1cc DarkTurquoise = Vector3(0.0000, 0.8078, 0.8196) #00ced1 LightSeaGreen = Vector3(0.1255, 0.6980, 0.6667) #20b2aa CadetBlue = Vector3(0.3725, 0.6196, 0.6275) #5f9ea0 DarkCyan = Vector3(0.0000, 0.5451, 0.5451) #008b8b Teal = Vector3(0.0000, 0.5020, 0.5020) #008080 # Blue colors LightSteelBlue = Vector3(0.6902, 0.7686, 0.8706) #b0c4de PowderBlue = Vector3(0.6902, 0.8784, 0.9020) #b0e0e6 LightBlue = Vector3(0.6784, 0.8471, 0.9020) #add8e6 SkyBlue = Vector3(0.5294, 0.8078, 0.9216) #87ceeb LightSkyBlue = Vector3(0.5294, 0.8078, 0.9804) #87cefa DeepSkyBlue = Vector3(0.0000, 0.7490, 1.0000) #00bfff DodgerBlue = Vector3(0.1176, 0.5647, 1.0000) #1e90ff CornflowerBlue = Vector3(0.3922, 0.5843, 0.9294) #6495ed SteelBlue = Vector3(0.2745, 0.5098, 0.7059) #4682b4 RoyalBlue = Vector3(0.2549, 0.4118, 0.8824) #4169e1 Blue = Vector3(0.0000, 0.0000, 1.0000) #0000ff MediumBlue = Vector3(0.0000, 0.0000, 0.8039) #0000cd DarkBlue = Vector3(0.0000, 0.0000, 0.5451) #00008b Navy = Vector3(0.0000, 0.0000, 0.5020) #000080 MidnightBlue = Vector3(0.0980, 0.0980, 0.4392) #191970 # Violet colors Lavender = Vector3(0.9020, 0.9020, 0.9804) #e6e6fa Thistle = Vector3(0.8471, 0.7490, 0.8471) #d8bfd8 Plum = Vector3(0.8667, 0.6275, 0.8667) #dda0dd Violet = Vector3(0.9333, 0.5098, 0.9333) #ee82ee Orchid = Vector3(0.8549, 0.4392, 0.8392) #da70d6 Fuchsia = Vector3(1.0000, 0.0000, 1.0000) #ff00ff Magenta = Vector3(1.0000, 0.0000, 1.0000) #ff00ff MediumOrchid = Vector3(0.7294, 0.3333, 0.8275) #ba55d3 MediumPurple = Vector3(0.5765, 0.4392, 0.8588) #9370db BlueViolet = Vector3(0.5412, 0.1686, 0.8863) #8a2be2 DarkViolet = Vector3(0.5804, 0.0000, 0.8275) #9400d3 DarkOrchid = Vector3(0.6000, 0.1961, 0.8000) #9932cc DarkMagenta = Vector3(0.5451, 0.0000, 0.5451) #8b008b Purple = Vector3(0.5020, 0.0000, 0.5020) #800080 Indigo = Vector3(0.2941, 0.0000, 0.5098) #4b0082 DarkSlateBlue = Vector3(0.2824, 0.2392, 0.5451) #483d8b SlateBlue = Vector3(0.4157, 0.3529, 0.8039) #6a5acd MediumSlateBlue = Vector3(0.4824, 0.4078, 0.9333) #7b68ee RebeccaPurple = Vector3(0.4000, 0.2000, 0.6000) #663399 # White colors White = Vector3(1.0000, 1.0000, 1.0000) #ffffff Snow = Vector3(1.0000, 0.9804, 0.9804) #fffafa Honeydew = Vector3(0.9412, 1.0000, 0.9412) #f0fff0 MintCream = Vector3(0.9608, 1.0000, 0.9804) #f5fffa Azure = Vector3(0.9412, 1.0000, 1.0000) #f0ffff AliceBlue = Vector3(0.9412, 0.9725, 1.0000) #f0f8ff GhostWhite = Vector3(0.9725, 0.9725, 1.0000) #f8f8ff WhiteSmoke = Vector3(0.9608, 0.9608, 0.9608) #f5f5f5 Seashell = Vector3(1.0000, 0.9608, 0.9333) #fff5ee Beige = Vector3(0.9608, 0.9608, 0.8627) #f5f5dc OldLace = Vector3(0.9922, 0.9608, 0.9020) #fdf5e6 FloralWhite = Vector3(1.0000, 0.9804, 0.9412) #fffaf0 Ivory = Vector3(1.0000, 1.0000, 0.9412) #fffff0 AntiqueWhite = Vector3(0.9804, 0.9216, 0.8431) #faebd7 Linen = Vector3(0.9804, 0.9412, 0.9020) #faf0e6 LavenderBlush = Vector3(1.0000, 0.9412, 0.9608) #fff0f5 MistyRose = Vector3(1.0000, 0.8941, 0.8824) #ffe4e1 # Gray colors Gainsboro = Vector3(0.8627, 0.8627, 0.8627) #dcdcdc LightGray = Vector3(0.8275, 0.8275, 0.8275) #d3d3d3 LightGrey = Vector3(0.8275, 0.8275, 0.8275) #d3d3d3 Silver = Vector3(0.7529, 0.7529, 0.7529) #c0c0c0 DarkGray = Vector3(0.6627, 0.6627, 0.6627) #a9a9a9 DarkGrey = Vector3(0.6627, 0.6627, 0.6627) #a9a9a9 Gray = Vector3(0.5020, 0.5020, 0.5020) #808080 Grey = Vector3(0.5020, 0.5020, 0.5020) #808080 DimGray = Vector3(0.4118, 0.4118, 0.4118) #696969 DimGrey = Vector3(0.4118, 0.4118, 0.4118) #696969 LightSlateGray = Vector3(0.4667, 0.5333, 0.6000) #778899 LightSlateGrey = Vector3(0.4667, 0.5333, 0.6000) #778899 SlateGray = Vector3(0.4392, 0.5020, 0.5647) #708090 SlateGrey = Vector3(0.4392, 0.5020, 0.5647) #708090 DarkSlateGray = Vector3(0.1843, 0.3098, 0.3098) #2f4f4f DarkSlateGrey = Vector3(0.1843, 0.3098, 0.3098) #2f4f4f Black = Vector3(0.0000, 0.0000, 0.0000) #000000 # ---------- lowercase ---------- # Pink colors pink = Vector3(1.0000, 0.7529, 0.7961) #ffc0cb lightpink = Vector3(1.0000, 0.7137, 0.7569) #ffb6c1 hotpink = Vector3(1.0000, 0.4118, 0.7059) #ff69b4 deeppink = Vector3(1.0000, 0.0784, 0.5765) #ff1493 palevioletred = Vector3(0.8588, 0.4392, 0.5765) #db7093 mediumvioletred = Vector3(0.7804, 0.0824, 0.5216) #c71585 # Red colors lightsalmon = Vector3(1.0000, 0.6275, 0.4784) #ffa07a salmon = Vector3(0.9804, 0.5020, 0.4471) #fa8072 darksalmon = Vector3(0.9137, 0.5882, 0.4784) #e9967a lightcoral = Vector3(0.9412, 0.5020, 0.5020) #f08080 indianred = Vector3(0.8039, 0.3608, 0.3608) #cd5c5c crimson = Vector3(0.8627, 0.0784, 0.2353) #dc143c firebrick = Vector3(0.6980, 0.1333, 0.1333) #b22222 darkred = Vector3(0.5451, 0.0000, 0.0000) #8b0000 red = Vector3(1.0000, 0.0000, 0.0000) #ff0000 # Orange colors orangered = Vector3(1.0000, 0.2706, 0.0000) #ff4500 tomato = Vector3(1.0000, 0.3882, 0.2784) #ff6347 coral = Vector3(1.0000, 0.4980, 0.3137) #ff7f50 darkorange = Vector3(1.0000, 0.5490, 0.0000) #ff8c00 orange = Vector3(1.0000, 0.6471, 0.0000) #ffa500 # Yellow colors yellow = Vector3(1.0000, 1.0000, 0.0000) #ffff00 lightyellow = Vector3(1.0000, 1.0000, 0.8784) #ffffe0 lemonchiffon = Vector3(1.0000, 0.9804, 0.8039) #fffacd lightgoldenrodyellow = Vector3(0.9804, 0.9804, 0.8235) #fafad2 papayawhip = Vector3(1.0000, 0.9373, 0.8353) #ffefd5 moccasin = Vector3(1.0000, 0.8941, 0.7098) #ffe4b5 peachpuff = Vector3(1.0000, 0.8549, 0.7255) #ffdab9 palegoldenrod = Vector3(0.9333, 0.9098, 0.6667) #eee8aa khaki = Vector3(0.9412, 0.9020, 0.5490) #f0e68c darkkhaki = Vector3(0.7412, 0.7176, 0.4196) #bdb76b gold = Vector3(1.0000, 0.8431, 0.0000) #ffd700 # Brown colors cornsilk = Vector3(1.0000, 0.9725, 0.8627) #fff8dc blanchedalmond = Vector3(1.0000, 0.9216, 0.8039) #ffebcd bisque = Vector3(1.0000, 0.8941, 0.7686) #ffe4c4 navajowhite = Vector3(1.0000, 0.8706, 0.6784) #ffdead wheat = Vector3(0.9608, 0.8706, 0.7020) #f5deb3 burlywood = Vector3(0.8706, 0.7216, 0.5294) #deb887 tan = Vector3(0.8235, 0.7059, 0.5490) #d2b48c rosybrown = Vector3(0.7373, 0.5608, 0.5608) #bc8f8f sandybrown = Vector3(0.9569, 0.6431, 0.3765) #f4a460 goldenrod = Vector3(0.8549, 0.6471, 0.1255) #daa520 darkgoldenrod = Vector3(0.7216, 0.5255, 0.0431) #b8860b peru = Vector3(0.8039, 0.5216, 0.2471) #cd853f chocolate = Vector3(0.8235, 0.4118, 0.1176) #d2691e saddlebrown = Vector3(0.5451, 0.2706, 0.0745) #8b4513 sienna = Vector3(0.6275, 0.3216, 0.1765) #a0522d brown = Vector3(0.6471, 0.1647, 0.1647) #a52a2a maroon = Vector3(0.5020, 0.0000, 0.0000) #800000 # Green colors darkolivegreen = Vector3(0.3333, 0.4196, 0.1843) #556b2f olive = Vector3(0.5020, 0.5020, 0.0000) #808000 olivedrab = Vector3(0.4196, 0.5569, 0.1373) #6b8e23 yellowgreen = Vector3(0.6039, 0.8039, 0.1961) #9acd32 limegreen = Vector3(0.1961, 0.8039, 0.1961) #32cd32 lime = Vector3(0.0000, 1.0000, 0.0000) #00ff00 lawngreen = Vector3(0.4863, 0.9882, 0.0000) #7cfc00 chartreuse = Vector3(0.4980, 1.0000, 0.0000) #7fff00 greenyellow = Vector3(0.6784, 1.0000, 0.1843) #adff2f springgreen = Vector3(0.0000, 1.0000, 0.4980) #00ff7f mediumspringgreen = Vector3(0.0000, 0.9804, 0.6039) #00fa9a lightgreen = Vector3(0.5647, 0.9333, 0.5647) #90ee90 palegreen = Vector3(0.5961, 0.9843, 0.5961) #98fb98 darkseagreen = Vector3(0.5608, 0.7373, 0.5608) #8fbc8f mediumaquamarine = Vector3(0.4000, 0.8039, 0.6667) #66cdaa mediumseagreen = Vector3(0.2353, 0.7020, 0.4431) #3cb371 seagreen = Vector3(0.1804, 0.5451, 0.3412) #2e8b57 forestgreen = Vector3(0.1333, 0.5451, 0.1333) #228b22 green = Vector3(0.0000, 0.5020, 0.0000) #008000 darkgreen = Vector3(0.0000, 0.3922, 0.0000) #006400 # Cyan colors aqua = Vector3(0.0000, 1.0000, 1.0000) #00ffff cyan = Vector3(0.0000, 1.0000, 1.0000) #00ffff lightcyan = Vector3(0.8784, 1.0000, 1.0000) #e0ffff paleturquoise = Vector3(0.6863, 0.9333, 0.9333) #afeeee aquamarine = Vector3(0.4980, 1.0000, 0.8314) #7fffd4 turquoise = Vector3(0.2510, 0.8784, 0.8157) #40e0d0 mediumturquoise = Vector3(0.2824, 0.8196, 0.8000) #48d1cc darkturquoise = Vector3(0.0000, 0.8078, 0.8196) #00ced1 lightseagreen = Vector3(0.1255, 0.6980, 0.6667) #20b2aa cadetblue = Vector3(0.3725, 0.6196, 0.6275) #5f9ea0 darkcyan = Vector3(0.0000, 0.5451, 0.5451) #008b8b teal = Vector3(0.0000, 0.5020, 0.5020) #008080 # Blue colors lightsteelblue = Vector3(0.6902, 0.7686, 0.8706) #b0c4de powderblue = Vector3(0.6902, 0.8784, 0.9020) #b0e0e6 lightblue = Vector3(0.6784, 0.8471, 0.9020) #add8e6 skyblue = Vector3(0.5294, 0.8078, 0.9216) #87ceeb lightskyblue = Vector3(0.5294, 0.8078, 0.9804) #87cefa deepskyblue = Vector3(0.0000, 0.7490, 1.0000) #00bfff dodgerblue = Vector3(0.1176, 0.5647, 1.0000) #1e90ff cornflowerblue = Vector3(0.3922, 0.5843, 0.9294) #6495ed steelblue = Vector3(0.2745, 0.5098, 0.7059) #4682b4 royalblue = Vector3(0.2549, 0.4118, 0.8824) #4169e1 blue = Vector3(0.0000, 0.0000, 1.0000) #0000ff mediumblue = Vector3(0.0000, 0.0000, 0.8039) #0000cd darkblue = Vector3(0.0000, 0.0000, 0.5451) #00008b navy = Vector3(0.0000, 0.0000, 0.5020) #000080 midnightblue = Vector3(0.0980, 0.0980, 0.4392) #191970 # Violet colors lavender = Vector3(0.9020, 0.9020, 0.9804) #e6e6fa thistle = Vector3(0.8471, 0.7490, 0.8471) #d8bfd8 plum = Vector3(0.8667, 0.6275, 0.8667) #dda0dd violet = Vector3(0.9333, 0.5098, 0.9333) #ee82ee orchid = Vector3(0.8549, 0.4392, 0.8392) #da70d6 fuchsia = Vector3(1.0000, 0.0000, 1.0000) #ff00ff magenta = Vector3(1.0000, 0.0000, 1.0000) #ff00ff mediumorchid = Vector3(0.7294, 0.3333, 0.8275) #ba55d3 mediumpurple = Vector3(0.5765, 0.4392, 0.8588) #9370db blueviolet = Vector3(0.5412, 0.1686, 0.8863) #8a2be2 darkviolet = Vector3(0.5804, 0.0000, 0.8275) #9400d3 darkorchid = Vector3(0.6000, 0.1961, 0.8000) #9932cc darkmagenta = Vector3(0.5451, 0.0000, 0.5451) #8b008b purple = Vector3(0.5020, 0.0000, 0.5020) #800080 indigo = Vector3(0.2941, 0.0000, 0.5098) #4b0082 darkslateblue = Vector3(0.2824, 0.2392, 0.5451) #483d8b slateblue = Vector3(0.4157, 0.3529, 0.8039) #6a5acd mediumslateblue = Vector3(0.4824, 0.4078, 0.9333) #7b68ee rebeccapurple = Vector3(0.4000, 0.2000, 0.6000) #663399 # White colors white = Vector3(1.0000, 1.0000, 1.0000) #ffffff snow = Vector3(1.0000, 0.9804, 0.9804) #fffafa honeydew = Vector3(0.9412, 1.0000, 0.9412) #f0fff0 mintcream = Vector3(0.9608, 1.0000, 0.9804) #f5fffa azure = Vector3(0.9412, 1.0000, 1.0000) #f0ffff aliceblue = Vector3(0.9412, 0.9725, 1.0000) #f0f8ff ghostwhite = Vector3(0.9725, 0.9725, 1.0000) #f8f8ff whitesmoke = Vector3(0.9608, 0.9608, 0.9608) #f5f5f5 seashell = Vector3(1.0000, 0.9608, 0.9333) #fff5ee beige = Vector3(0.9608, 0.9608, 0.8627) #f5f5dc oldlace = Vector3(0.9922, 0.9608, 0.9020) #fdf5e6 floralwhite = Vector3(1.0000, 0.9804, 0.9412) #fffaf0 ivory = Vector3(1.0000, 1.0000, 0.9412) #fffff0 antiquewhite = Vector3(0.9804, 0.9216, 0.8431) #faebd7 linen = Vector3(0.9804, 0.9412, 0.9020) #faf0e6 lavenderblush = Vector3(1.0000, 0.9412, 0.9608) #fff0f5 mistyrose = Vector3(1.0000, 0.8941, 0.8824) #ffe4e1 # Gray colors gainsboro = Vector3(0.8627, 0.8627, 0.8627) #dcdcdc lightgray = Vector3(0.8275, 0.8275, 0.8275) #d3d3d3 lightgrey = Vector3(0.8275, 0.8275, 0.8275) #d3d3d3 silver = Vector3(0.7529, 0.7529, 0.7529) #c0c0c0 darkgray = Vector3(0.6627, 0.6627, 0.6627) #a9a9a9 darkgrey = Vector3(0.6627, 0.6627, 0.6627) #a9a9a9 gray = Vector3(0.5020, 0.5020, 0.5020) #808080 grey = Vector3(0.5020, 0.5020, 0.5020) #808080 dimgray = Vector3(0.4118, 0.4118, 0.4118) #696969 dimgrey = Vector3(0.4118, 0.4118, 0.4118) #696969 lightslategray = Vector3(0.4667, 0.5333, 0.6000) #778899 lightslategrey = Vector3(0.4667, 0.5333, 0.6000) #778899 slategray = Vector3(0.4392, 0.5020, 0.5647) #708090 slategrey = Vector3(0.4392, 0.5020, 0.5647) #708090 darkslategray = Vector3(0.1843, 0.3098, 0.3098) #2f4f4f darkslategrey = Vector3(0.1843, 0.3098, 0.3098) #2f4f4f black = Vector3(0.0000, 0.0000, 0.0000) #000000
# mass conservation approach for uniterminal graphs # Subclass of BistabilityFinder and BistabilityAnalysis import os import numpy import sympy import sympy.utilities.lambdify import scipy.optimize import sys import time import numpy.linalg import itertools import warnings import math from .bistability_finder import BistabilityFinder from .bistability_analysis import BistabilityAnalysis class MassConservationApproach(BistabilityFinder, BistabilityAnalysis): """ Class for constructing variables and methods needed for the mass conservation approach. """ def __init__(self, cgraph, get_physiological_range): """ Initialization of the MassConservationApproach class. See also --------- crnt4sbml.CRNT.get_mass_conservation_approach() """ self.__cgraph = cgraph self.get_physiological_range = get_physiological_range if not all([i <= 1 for i in self.__cgraph.get_number_of_terminal_strong_lc_per_lc()]): print("The network is not uniterminal!") sys.exit() if not self.__cgraph.get_dim_equilibrium_manifold() > 0: print("# of species - rank(S) is not greater than zero!") print("The mass conservation approach cannot be ran!") sys.exit() # declare key fields self.__deficiency_pars = None self.__concentration_pars = None self.__reaction_pars = None self.__W = None # matrix self.__W_nullspace = None self.__H = None # vector self.__G = None # matrix self.__symbolic_objective_fun = None self.__concentration_vals = None self.__decision_vector_x = None self.__concentration_funs = None self.__objective_fun_params = None self.__lambda_objective_fun = None self.__important_info = "" self.__numpy_dtype = None self.__independent_odes = None self.__independent_species = None self.__comm = None self.__my_rank = None self.__num_cores = None self.__method = "MassConservationApproach" # vars used frequently self.__N = len(self.__cgraph.get_species()) self.__R = len(self.__cgraph.get_reactions()) self.__species = self.__cgraph.get_species() self.__reactions = self.__cgraph.get_reactions() self.__delta = self.__cgraph.get_deficiency() self.__M = len(self.__cgraph.get_complexes()) self.__ell = len(self.__cgraph.get_linkage_classes()) self.__lambda = self.__cgraph.get_dim_equilibrium_manifold() self.__classification = self.__cgraph.get_network_dimensionality_classification() # compute necessary vectors and matrices self.__create_deficiency_pars() self.__create_concentration_pars() self.__create_reaction_pars() self.__create_w_matrix() self.__create_w_nullspace() self.__create_h_vector() self.__create_g_matrix() self.__create_symbolic_objective_fun() self.__create_decision_vector_x() self.__create_concentration_bounds_species() self.__create_concentration_lambda_fun() self.__create_objective_fun__lambda_fun() self.__create_g_matrix_lambda_fun() self.__create_dch_matrix_lambda_fun() def __create_deficiency_pars(self): # creating a vector of the deficiency parameters # \alpha_1, ..., \alpha_\delta self.__deficiency_pars = [sympy.symbols('a' + str(i + 1), real=True) for i in range(self.__delta)] def __create_concentration_pars(self): # putting the species in a list for more readable code self.__concentration_pars = [sympy.Symbol(self.__species[i], positive=True) for i in range(self.__N)] def __create_reaction_pars(self): self.__reaction_pars = [sympy.Symbol(self.__reactions[i], positive=True) for i in range(self.__R)] def __create_w_matrix(self): # concatenating Y and Lambda_T columnwise # to create [Y,Lambda_T]^T self.__W = self.__cgraph.get_y().col_join(self.__cgraph.get_lambda().T) def __create_w_nullspace(self): # Finding the null space of [Y,Lambda_T]^T, # i.e. \omega_i i=1,...,\delta self.__W_nullspace = self.__W.nullspace() def __create_h_vector(self): print("Creating Equilibrium Manifold ...") start = time.process_time() # creates the H vector in equation (10) by finding the linearly # independent rows of (9) # symbolic for of psi vector psi_symbol_vec = sympy.zeros(self.__M, 1) for i in range(self.__M): psi_symbol_vec[i] = sympy.Symbol('psi' + str(i)) # creating the right-hand side defined by # \sum_{i=1}^\delta \alpha_i \omega_i rhs = sympy.zeros(self.__M, 1) temp = sympy.zeros(self.__M, 1) for i in range(self.__delta): for j in range(self.__M): temp[j] = self.__deficiency_pars[i] * self.__W_nullspace[i][j] rhs += temp # creating H(c,\alpha,k) with rows that might # be linearly dependent temp_vec = self.__cgraph.get_a() * self.__cgraph.get_psi() - rhs temp_vec2 = self.__cgraph.get_a() * psi_symbol_vec - rhs # creating a matrix of coefficients for the variables # psi_1, ..., psi_M, alpha_1, ... alpha_delta variables = [sympy.Symbol('psi' + str(i)) for i in range(self.__M)] + self.__deficiency_pars a, _ = sympy.linear_eq_to_matrix(temp_vec2, variables) temp_mat_2 = sympy.zeros(self.__M, self.__M + self.__delta) # preallocating the H vector self.__H = sympy.zeros(self.__M - self.__ell, 1) leng = self.__M - self.__ell - self.__delta comb = list(itertools.combinations(self.__concentration_pars, leng)) # building the different possible independent variable sets indp_vars = [] for i in comb: indp_vars.append(list(i) + self.__deficiency_pars) self.__indices_explored = [] self.__counts_n_indices = [] # continue loop until acceptable concentration solutions are found flag = True indicies_to_skip = [] while flag: reordered_indices, chosen_index = self.__create_fixed_free_pars_and_reordered_ind(temp_vec, indicies_to_skip, indp_vars) for i in range(self.__M): temp_mat_2[i, :] = a[reordered_indices[i], :] # gives vals which is the rows of temp_mat that are # independent from the others this allows us # to create H(c, \alpha, k) _, temp_vals = temp_mat_2.T.rref() vals = [reordered_indices[i] for i in temp_vals] # Filling the H vector with linearly independent rows for i in range(len(vals)): self.__H[i] = temp_vec[vals[i]] flag = self.__create_concentration_values() if flag: indicies_to_skip.append(chosen_index) nn = len(self.__concentration_pars) rr = self.__M - self.__ell - self.__delta if len(indicies_to_skip) == math.factorial(nn) / (math.factorial(rr) * math.factorial(nn - rr)): flag = False raise Exception( "An analytic solution for the concentrations could not be found. The mass conservation approach connot be used.") end = time.process_time() print("Elapsed time for creating Equilibrium Manifold: " + str(end - start)) def __create_fixed_free_pars_and_reordered_ind(self, temp_vec, indicies_to_skip, indp_vars): # determining the different combinations of concentrations # present in the independent variables once the deficiency # parameters are chosen to be independent leng = self.__M - self.__ell - self.__delta # finding the number of linear equations produced by a # given independent variable set for jj in range(len(indp_vars)): if jj not in indicies_to_skip and jj not in self.__indices_explored: num_lin_entries = [self.__is_linear(temp_vec[j], indp_vars[jj][0:leng]) for j in range(temp_vec.shape[0])].count(True) self.__counts_n_indices.append([num_lin_entries, jj]) self.__indices_explored.append(jj) # if all of the equations are linear stop, # prevents long run times if num_lin_entries == self.__M: break # picking the independent variable set that has the most # amount of linear equations max_element = self.__max_element(indicies_to_skip) chosen_index = max_element[1] self.__fixed_pars = indp_vars[chosen_index] self.__free_pars = [i for i in self.__deficiency_pars + self.__concentration_pars if i not in self.__fixed_pars] # rearranging A s.t. the linear equations are in the top # rows, this is for convenience and easier solutions for # the independent variables out = [self.__is_linear(temp_vec[j], indp_vars[chosen_index]) for j in range(temp_vec.shape[0])] reordered_indices = [i for i, x in enumerate(out) if x] + [i for i, x in enumerate(out) if not x] return reordered_indices, max_element[1] def __max_element(self, indicies_to_skip): temp = self.__counts_n_indices[:] for i in self.__counts_n_indices: if i[1] in indicies_to_skip: temp.remove(i) return max(temp, key=lambda item: item[0]) # routine that determines if a sympy expression is jointly # linear with respect to a given set of variables. This # test is conducted by seeing if the second order derivatives # are zero. def __is_linear(self, expr, variables): for x in variables: for y in variables: try: if not sympy.Eq(sympy.diff(expr, x, y), 0): return False except TypeError: return False return True def __create_g_matrix(self): # creating the matrix DCH which is the jacobian of # the vector H with respect to the concentration vector self.__DCH = self.__H.jacobian(sympy.Matrix(self.__concentration_pars)) # creation of the matrix dah which is the jacobian of # the vector H with respect to the deficiency param vector dah = self.__H.jacobian(sympy.Matrix(self.__deficiency_pars)) # creation of the matrix daw which is the jacobian of # the vector W with respect to the deficiency param vector # However, as given in page 11, D_\alpha W = 0, thus # just a zero matrix of size \lambda by \delta daw = sympy.zeros(self.__lambda, self.__delta) # creating the upper half of the matrix G i.e. [DCH dah] g_upper = self.__DCH.row_join(dah) # creating the lower half of the matrix G i.e. [DCW daw] # Note that D_c W = B^T g_lower = self.__cgraph.get_b().row_join(daw) # putting the upper and lower half of the matrix together # this forms the full G(c, \alpha, k) matrix self.__G = g_upper.col_join(g_lower) def __create_symbolic_objective_fun(self): # computing the simplified version of the objective # function defined as: det(G(c, \alpha, k))^2 self.__symbolic_objective_fun = (self.__G.det(method='lu')) ** 2 def __create_concentration_values(self): # Putting the concentrations in terms of the kinetic # constants and deficiency parameters using the H # vector of the equilibrium manifold try: temp_solution_tuple = sympy.solve(self.__H, self.__fixed_pars, dict=True) except Exception as e: temp_solution_tuple = [] if not temp_solution_tuple: flag = True else: if isinstance(temp_solution_tuple, dict): self.__concentration_vals = [] for i in self.__concentration_pars: if i in temp_solution_tuple: self.__concentration_vals.append(temp_solution_tuple[i]) else: self.__concentration_vals.append(i) # multiple solutions found else: solution_list = [] for i in temp_solution_tuple: temp = [] for j in self.__concentration_pars: if j in i: temp.append(i[j]) else: temp.append(j) solution_list.append(temp) self.__concentration_vals = self.__pick_solution_set( solution_list) ########### TODO: do same for if statement make flag True if negative for i in self.__concentration_vals: deficiency_pars_found = [i.count(j) > 0 for j in self.__deficiency_pars + self.__fixed_pars] if True in deficiency_pars_found: flag = True break else: flag = False return flag # chose solution set that is most likely to produce # positive concentrations def __pick_solution_set(self, solution_list): positivity = [] for i in solution_list: temp = [] for j in i: temp.append(j.is_positive) positivity.append(temp) verdict = [] for i in positivity: if False not in i: if all(i): # positive concentrations achieved verdict.append("P") elif True in i: # positive concentrations and Nones verdict.append("PU") else: # All entries are None verdict.append("U") else: # negative concentration given verdict.append("N") if "P" in verdict: indx = verdict.index("P") choice = solution_list[indx] elif "PU" in verdict: indx = verdict.index("PU") choice = solution_list[indx] elif "U" in verdict: indx = verdict.index("U") choice = solution_list[indx] else: print("Solution chosen produces all negative concentrations!") sys.exit() return choice def __create_decision_vector_x(self): # if it is a proper/over-dimensioned network let # xvec = (k_1 , ... k_R, alpha_1, ... alpha_lambda) # else let # xvec = (k_1 , ... k_R, alpha_1, ... alpha_delta, # c_1, ..., c_(lambda - delta)) self.__decision_vector_x = self.__reaction_pars + self.__free_pars self.__d_len = len(self.__decision_vector_x) def __create_concentration_bounds_species(self): self.__concentration_bounds_species = [i for i in self.__concentration_pars if i not in self.__decision_vector_x] def __create_concentration_lambda_fun(self): self.__concentration_funs = [] for i in range(self.__N): self.__concentration_funs += [sympy.utilities.lambdify(self.__decision_vector_x, self.__concentration_vals[i])] def __create_objective_fun__lambda_fun(self): self.__objective_fun_params = self.__reaction_pars + self.__concentration_pars self.__lambda_objective_fun = sympy.utilities.lambdify(self.__objective_fun_params, self.__symbolic_objective_fun) def __create_g_matrix_lambda_fun(self): self.__lambda_G_matrix = sympy.utilities.lambdify(self.__objective_fun_params, self.__G) def __create_dch_matrix_lambda_fun(self): self.__lambda_DCH_matrix = sympy.utilities.lambdify(self.__objective_fun_params, self.__DCH) # getters def get_w_matrix(self): """ Returns SymPy matrix :math:`[Y, \Lambda^T]^T`, which we call the W matrix. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> import sympy >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> sympy.pprint(approach.get_w_matrix()) ⎡1 0 0 0 0 1 1 0 0⎤ ⎢ ⎥ ⎢1 0 1 0 0 0 0 0 0⎥ ⎢ ⎥ ⎢0 1 0 0 0 0 0 0 0⎥ ⎢ ⎥ ⎢0 0 1 1 0 0 1 0 2⎥ ⎢ ⎥ ⎢0 0 0 1 0 1 0 0 0⎥ ⎢ ⎥ ⎢0 0 0 0 1 0 0 0 0⎥ ⎢ ⎥ ⎢0 0 0 0 0 0 0 1 0⎥ ⎢ ⎥ ⎢1 1 1 0 0 0 0 0 0⎥ ⎢ ⎥ ⎢0 0 0 1 1 1 0 0 0⎥ ⎢ ⎥ ⎣0 0 0 0 0 0 1 1 1⎦ """ return self.__W def get_w_nullspace(self): """ Returns a list of SymPy column vectors representing :math:`Null([Y, \Lambda^T]^T)`. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> import sympy >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> sympy.pprint(approach.get_w_nullspace()) ⎡⎡-1⎤ ⎡1 ⎤⎤ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢0 ⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢1 ⎥ ⎢-1⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢-1⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢0 ⎥, ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢1 ⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢0 ⎥ ⎢-1⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢0 ⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎣⎣0 ⎦ ⎣1 ⎦⎦ """ return self.__W_nullspace def get_h_vector(self): """ Returns a SymPy matrix representing the equilibrium manifold. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> import sympy >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> sympy.pprint(approach.get_h_vector()) ⎡a₁ - a₂ - re₁⋅s₁⋅s₂ + re1r⋅s₃⎤ ⎢ ⎥ ⎢re₁⋅s₁⋅s₂ + s₃⋅(-re1r - re₂) ⎥ ⎢ ⎥ ⎢ a₁ - re₃⋅s₆⋅s₇ + re3r⋅s₁₆ ⎥ ⎢ ⎥ ⎢re₃⋅s₆⋅s₇ + s₁₆⋅(-re3r - re₄)⎥ ⎢ ⎥ ⎢ a₂ - re₅⋅s₁⋅s₆ + re5r⋅s₁₅ ⎥ ⎢ ⎥ ⎣re₅⋅s₁⋅s₆ + s₁₅⋅(-re5r - re₆)⎦ """ return self.__H def get_g_matrix(self): """ Returns a SymPy matrix representing the G matrix of the defined optimization problem. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> import sympy >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> sympy.pprint(approach.get_g_matrix()) ⎡-re₁⋅s₂ -re₁⋅s₁ re1r 0 0 0 0 1 -1⎤ ⎢ ⎥ ⎢re₁⋅s₂ re₁⋅s₁ -re1r - re₂ 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 -re₃⋅s₇ -re₃⋅s₆ re3r 0 1 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 re₃⋅s₇ re₃⋅s₆ -re3r - re₄ 0 0 0 ⎥ ⎢ ⎥ ⎢-re₅⋅s₆ 0 0 -re₅⋅s₁ 0 0 re5r 0 1 ⎥ ⎢ ⎥ ⎢re₅⋅s₆ 0 0 re₅⋅s₁ 0 0 -re5r - re₆ 0 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 0 1.0 1.0 0 0 0 ⎥ ⎢ ⎥ ⎢ 0 1.0 1.0 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎣ 1.0 0 1.0 1.0 0 1.0 2.0 0 0 ⎦ """ return self.__G def get_dch_matrix(self): """ Returns a SymPy matrix representing the Jacobian of the equilibrium manifold with respect to the species. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> import sympy >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> sympy.pprint(approach.get_dch_matrix()) ⎡-re₁⋅s₂ -re₁⋅s₁ re1r 0 0 0 0 ⎤ ⎢ ⎥ ⎢re₁⋅s₂ re₁⋅s₁ -re1r - re₂ 0 0 0 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 -re₃⋅s₇ -re₃⋅s₆ re3r 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 re₃⋅s₇ re₃⋅s₆ -re3r - re₄ 0 ⎥ ⎢ ⎥ ⎢-re₅⋅s₆ 0 0 -re₅⋅s₁ 0 0 re5r ⎥ ⎢ ⎥ ⎣re₅⋅s₆ 0 0 re₅⋅s₁ 0 0 -re5r - re₆⎦ """ return self.__DCH def get_lambda_g_matrix(self): """ Returns a lambda function representation of the G matrix. Here the arguments of the lambda function are given by the values provided by :func:`crnt4sbml.MassConservationApproach.get_objective_fun_params`. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_lambda_g_matrix()) <function _lambdifygenerated at 0x13248ac80> """ return self.__lambda_G_matrix def get_lambda_dch_matrix(self): """ Returns a lambda function representation of the Jacobian of the equilibrium manifold matrix. Here the arguments of the lambda function are given by the values provided by :func:`crnt4sbml.MassConservationApproach.get_objective_fun_params`. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_lambda_dch_matrix()) <function _lambdifygenerated at 0x131a06ea0> """ return self.__lambda_DCH_matrix def get_symbolic_objective_fun(self): """ Returns SymPy expression for the objective function of the optimization problem. This is the determinant of the G matrix squared. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_symbolic_objective_fun()) 1.0*re1**2*re2**2*re3**2*re4**2*re5**2*re6**2*s1**2*s6**2*s7**2*((1.0*s2/s7 - 1.0*s2*(-re3r - re4)/ (re3*s6*s7))/re4 + (1.0 + 1.0*re1r/(re1*s1))/re2 + 1.0/(re1*s1))**2*(-((1.0*s6*(-1.0*s1/s6 + 1.0)/s7 + 1.0 - (-re3r - re4)*(-1.0*s1/s6 + 1.0)/(re3*s7))/re4 + 1.0/re2)*(-1.0*re5r*s2/(re5*re6*s1*s6) - 1.0*s2*(1 + re5*s6/(re1*s2))/(re5*s1*s6) - (1.0 + 1.0*re1r/(re1*s1))/re2)/((1.0*s2/s7 - 1.0*s2* (-re3r - re4)/(re3*s6*s7))/re4 + (1.0 + 1.0*re1r/(re1*s1))/re2 + 1.0/(re1*s1)) + (2.0 + 1.0*re5r/(re5*s6))/ re6 + 1.0*(1 + re5*s6/(re1*s2))/(re5*s6) - 1.0/re2 - 1.0/(re1*s2))**2 """ return self.__symbolic_objective_fun def get_lambda_objective_fun(self): """ Returns a lambda function representation of the objective function of the optimization problem. Here the arguments of the lambda function are given by the values provided by :func:`crnt4sbml.MassConservationApproach.get_objective_fun_params`. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_lambda_objective_fun()) <function _lambdifygenerated at 0x12f6f7ea0> """ return self.__lambda_objective_fun def get_concentration_vals(self): """ Returns a list of SymPy expressions representing the species in terms of those variables present in the decision vector. The order is that established in :func:`crnt4sbml.Cgraph.get_species`. Note that if only a single species is provided as an element in the list, this means the species is a free variable. See also --------- crnt4sbml.MassConservationApproach.get_concentration_solutions :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_concentration_vals()) [s15*(re5r + re6)/(re5*s6), s2, re1*s15*s2*(re5r + re6)/(re5*s6*(re1r + re2)), s6, -s15*(re5*re5r*s6*(re1r + re2)*(re3r + re4) - (re5r + re6)*(-re1*re1r*re3r*s2 - re1*re1r*re4*s2 + re1*re3r*s2*(re1r + re2) + re1*re4*s2*(re1r + re2) + re5*s6*(re1r + re2)*(re3r + re4)))/(re3*re4*re5*s6**2* (re1r + re2)), s15*(re1*re2*re5r*s2 + re1*re2*re6*s2 + re1r*re5*re6*s6 + re2*re5*re6*s6)/(re4*re5*s6*(re1r + re2)), s15] """ return self.__concentration_vals def get_decision_vector(self): """ Returns a list of SymPy variables that represent the decision vector of the optimization problem. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_decision_vector()) [re1, re1r, re2, re3, re3r, re4, re5, re5r, re6, s2, s6, s15] """ return self.__decision_vector_x def get_concentration_bounds_species(self): """ Returns a list of SymPy variables that represents the order of species for the concentration bounds provided to :func:`crnt4sbml.MassConservationApproach.run_optimization`. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_concentration_bounds_species()) [s1, s3, s7, s16] """ return self.__concentration_bounds_species def get_concentration_funs(self): """ Returns a list of lambda functions representing each of the species. Here the species are those expressions provided by :func:`crnt4sbml.MassConservationApproach.get_concentration_vals` where the arguments of each lambda function is provided by :func:`crnt4sbml.MassConservationApproach.get_decision_vector`. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_concentration_funs()) [<function _lambdifygenerated at 0x135f8b4d0>, <function _lambdifygenerated at 0x135f72050>, <function _lambdifygenerated at 0x135f728c0>, <function _lambdifygenerated at 0x135f725f0>, <function _lambdifygenerated at 0x135f5f830>, <function _lambdifygenerated at 0x135fa0170>, <function _lambdifygenerated at 0x135fa04d0>] """ return self.__concentration_funs def get_objective_fun_params(self): """ Returns a list of SymPy variables that represent those variables that may be contained in the G matrix, Jacobian of the equilibrium manifold with respect to the species, or objective function. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_objective_fun_params()) [re1, re1r, re2, re3, re3r, re4, re5, re5r, re6, s1, s2, s3, s6, s7, s16, s15] """ return self.__objective_fun_params def get_conservation_laws(self): """ Returns a string representation of the conservation laws. Here the values on the left hand side of each equation are the constants of the conservation laws. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_conservation_laws()) C1 = 1.0*s16 + 1.0*s7 C2 = 1.0*s2 + 1.0*s3 C3 = 1.0*s1 + 2.0*s15 + 1.0*s16 + 1.0*s3 + 1.0*s6 """ rhs = self.__cgraph.get_b() * sympy.Matrix([self.__concentration_pars]).T laws = "" for i in range(rhs.shape[0]): laws += 'C' + str(i + 1) + ' = ' + str(rhs[i]) + '\n' return laws def get_concentration_solutions(self): """ Returns a more readable string representation of the species defined in terms of the decision vector. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> print(approach.get_concentration_solutions()) s1 = s15*(re5r + re6)/(re5*s6) s2 = s2 s3 = re1*s15*s2*(re5r + re6)/(re5*s6*(re1r + re2)) s6 = s6 s7 = -s15*(re5*re5r*s6*(re1r + re2)*(re3r + re4) - (re5r + re6)*(-re1*re1r*re3r*s2 - re1*re1r*re4*s2 + re1*re3r*s2*(re1r + re2) + re1*re4*s2*(re1r + re2) + re5*s6*(re1r + re2)*(re3r + re4)))/(re3*re4*re5*s6**2*(re1r + re2)) s16 = s15*(re1*re2*re5r*s2 + re1*re2*re6*s2 + re1r*re5*re6*s6 + re2*re5*re6*s6)/(re4*re5*s6*(re1r + re2)) s15 = s15 """ sols = "" for i in range(self.__N): sols += self.__species[i] + ' = ' + str(self.__concentration_vals[i]) + '\n' return sols def get_independent_odes(self): """ Returns a SymPy Matrix where the rows represent the independent ODEs used in the numerical continuation routine. Here the entries of the list correspond to the time derivatives of the corresponding species provided by :func:`crnt4sbml.MassConservationApproach.get_independent_species`. Note that the independent ODEs created are based on the species chosen for the numerical continuation. Thus, the continuation routine needs to be ran first. If this function is called before the numerical continuation routine then None will be returned. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/sbml_file.xml") >>> approach = network.get_mass_conservation_approach() >>> multistable_param_ind = approach.run_greedy_continuity_analysis(species="species", parameters=params_for_global_min, auto_parameters={'PrincipalContinuationParameter': "PCP"}) >>> odes = approach.get_independent_odes() """ return self.__independent_odes def get_independent_species(self): """ Returns a list of SymPy representations of the independent species used in the numerical continuation routine. Note that the independent species created are based on the species chosen for the numerical continuation. Thus, the continuation routine needs to be ran first. If this function is called before the numerical continuation routine then None will be returned. Example -------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/sbml_file.xml") >>> approach = network.get_mass_conservation_approach() >>> multistable_param_ind = approach.run_greedy_continuity_analysis(species="species", parameters=params_for_global_min, auto_parameters={'PrincipalContinuationParameter': "PCP"}) >>> species = approach.get_independent_species() """ return self.__independent_species def get_optimization_bounds(self): """ Builds all of the necessary physiological bounds for the optimization routine. :download:`Fig1Ci.xml <../../sbml_files/Fig1Ci.xml>` for the provided example. Returns -------- bounds: list of tuples List of tuples defining the upper and lower bounds for the decision vector variables based on physiological ranges. concentration_bounds: list of tuples List of tuples defining the upper and lower bounds for those concentrations not in the decision vector based on physiological ranges. Examples --------- >>> import crnt4sbml >>> network = crnt4sbml.CRNT("path/to/Fig1Ci.xml") >>> approach = network.get_mass_conservation_approach() Creating Equilibrium Manifold ... Elapsed time for creating Equilibrium Manifold: 2.060944 >>> bounds, concentration_bounds = approach.get_optimization_bounds() >>> print(bounds) [(1e-08, 0.0001), (1e-05, 0.001), (0.001, 1.0), (1e-08, 0.0001), (1e-05, 0.001), (0.001, 1.0), (1e-08, 0.0001), (1e-05, 0.001), (0.001, 1.0), (0.5, 500000.0), (0.5, 500000.0), (0.5, 500000.0)] >>> print(concentration_bounds) [(0.5, 500000.0), (0.5, 500000.0), (0.5, 500000.0), (0.5, 500000.0)] """ graph_edges = self.__cgraph.get_g_edges() dec_vec_var_def = [] for i in self.get_decision_vector(): if i in self.__concentration_pars: dec_vec_var_def.append("concentration") elif i in self.__reaction_pars: ind = self.__reaction_pars.index(i) reaction = graph_edges[ind] reaction_type = self.__cgraph.get_graph().edges[reaction]['type'] dec_vec_var_def.append(reaction_type) if reaction_type is None: output_statement = "The reaction type of reaction " + self.__cgraph.get_graph().edges[reaction][ 'label'] \ + " could not be identified as it does not fit any biological criteria " + \ "established. \n" + "You must enter bounds manually for this reaction! \n" print(output_statement) concentration_bounds = [self.get_physiological_range("concentration")] * len( self.get_concentration_bounds_species()) bounds = [self.get_physiological_range(i) for i in dec_vec_var_def] return bounds, concentration_bounds def run_optimization(self, bounds=None, iterations=10, sys_min_val=numpy.finfo(float).eps, seed=0, print_flag=False, numpy_dtype=numpy.float64, concentration_bounds=None, confidence_level_flag=False, change_in_rel_error=1e-1, parallel_flag=False): """ Function for running the optimization problem for the mass conservation approach. Parameters ----------- bounds: list of tuples A list defining the lower and upper bounds for each variable in the decision vector. Here the reactions are allowed to be set to a single value. iterations: int The number of iterations to run the feasible point method. sys_min_val: float The value that should be considered zero for the optimization problem. seed: int Seed for the random number generator. None should be used if a random generation is desired. print_flag: bool Should be set to True if the user wants the objective function values found in the optimization problem and False otherwise. numpy_dtype: The numpy data type used within the optimization routine. All variables in the optimization routine will be converted to this data type. concentration_bounds: list of tuples A list defining the lower and upper bounds for those species' concentrations not in the decision vector. The user is not allowed to set the species' concentration to a single value. See also: :func:`crnt4sbml.MassConservationApproach.get_concentration_bounds_species`. confidence_level_flag: bool If True a confidence level for the objective function will be given. change_in_rel_error: float The maximum relative error that should be allowed to consider :math:`f_k` in the neighborhood of :math:`\widetilde{f}`. parallel_flag: bool If set to True a parallel version of the optimization routine is ran. If False, a serial version of the optimization routine is ran. See :ref:`parallel-gen-app-label`. Returns -------- params_for_global_min: list of numpy arrays A list of numpy arrays that correspond to the decision vectors of the problem. obj_fun_val_for_params: list of floats A list of objective function values produced by the corresponding decision vectors in params_for_global_min. Examples --------- See :ref:`quickstart-deficiency-label` and :ref:`my-deficiency-label`. """ self.__initialize_optimization_variables(bounds, iterations, sys_min_val, seed, print_flag, numpy_dtype, concentration_bounds, confidence_level_flag, change_in_rel_error, parallel_flag) params_for_global_min, obj_fun_val_for_params, self.__important_info = self._BistabilityFinder__parent_run_optimization() self.__my_rank = self._BistabilityFinder__my_rank self.__comm = self._BistabilityFinder__comm return params_for_global_min, obj_fun_val_for_params def __initialize_optimization_variables(self, bounds, iterations, sys_min_val, seed, print_flag, numpy_dtype, concentration_bounds, confidence_level_flag, change_in_rel_error, parallel_flag): self.__bounds = bounds self.__iterations = iterations self.__seed = seed self.__print_flag = print_flag self.__concentration_bounds = concentration_bounds self.__confidence_level_flag = confidence_level_flag self.__change_in_rel_error = change_in_rel_error self.__parallel_flag = parallel_flag self.__numpy_dtype = numpy_dtype self.__sys_min_val = self.__numpy_dtype(sys_min_val) self.__x_full = None self.__non_equality_bounds_indices = None self.__MassConservationApproach__true_bounds = None self.__true_bounds = None self.__temp_c = numpy.zeros(self.__N, dtype=self.__numpy_dtype) # testing to see if there are any equalities in bounds self.__equality_bounds_indices = [] for i in range(len(self.__bounds)): if not isinstance(self.__bounds[i], tuple): self.__equality_bounds_indices.append(i) # recasting user provided input to numpy_dtype for i in range(len(self.__bounds)): self.__bounds[i] = self.__numpy_dtype(self.__bounds[i]) for i in range(len(self.__concentration_bounds)): self.__concentration_bounds[i] = self.__numpy_dtype(self.__concentration_bounds[i]) if len(self.__concentration_bounds) != len(self.__concentration_bounds_species): print("Concentration bounds is the incorrect length!") sys.exit() self.__full_concentration_bounds = [] for i in range(self.__N): if self.__concentration_pars[i] in self.__decision_vector_x: indx = self.__decision_vector_x.index(self.__concentration_pars[i]) self.__full_concentration_bounds.append(self.__bounds[indx]) else: indx = self.__concentration_bounds_species.index(self.__concentration_pars[i]) self.__full_concentration_bounds.append(self.__concentration_bounds[indx]) def __run_global_optimization_routine(self, initial_x): result = scipy.optimize.basinhopping(self.__objective_function_to_optimize, initial_x, minimizer_kwargs={'method': 'Nelder-Mead', 'tol': 1e-16}, niter=2, seed=self.__seed) return result def __run_local_optimization_routine(self, initial_x): result = scipy.optimize.minimize(self.__objective_function_to_optimize, initial_x, method='Nelder-Mead', tol=1e-16) return result def __run_local_optimization_routine_penalty_1(self, initial_x): result = scipy.optimize.minimize(self.__penalty_objective_func, initial_x, method='SLSQP', tol=1e-16, bounds=self.__true_bounds) return result def __run_local_optimization_routine_penalty_2(self, initial_x): result = scipy.optimize.minimize(self.__penalty_objective_func, initial_x, method='Nelder-Mead', tol=1e-16) return result def __create_final_points(self, x_that_give_global_min): output = self.__final_constraint_check(x_that_give_global_min) if output[0]: return numpy.array(list(output[1][:])) def run_continuity_analysis(self, species=None, parameters=None, dir_path="./num_cont_graphs", print_lbls_flag=False, auto_parameters=None, plot_labels=None): """ Function for running the numerical continuation and bistability analysis portions of the mass conservation approach. Parameters ------------ species: string A string stating the species that is the y-axis of the bifurcation diagram. parameters: list of numpy arrays A list of numpy arrays corresponding to the decision vectors that produce a small objective function value. dir_path: string A string stating the path where the bifurcation diagrams should be saved. print_lbls_flag: bool If True the routine will print the special points found by AUTO 2000 and False will not print any special points. auto_parameters: dict Dictionary defining the parameters for the AUTO 2000 run. Please note that one should **not** set 'SBML' or 'ScanDirection' in these parameters as these are automatically assigned. It is absolutely necessary to set PrincipalContinuationParameter in this dictionary. For more information on these parameters refer to :download:`AUTO parameters <../auto2000_input.pdf>`. 'NMX' will default to 10000 and 'ITMX' to 100. plot_labels: list of strings A list of strings defining the labels for the x-axis, y-axis, and title. Where the first element is the label for x-axis, second is the y-axis label, and the last element is the title label. If you would like to use the default settings for some of the labels, simply provide None for that element. Returns --------- multistable_param_ind: list of integers A list of those indices in 'parameters' that produce multistable plots. plot_specifications: list of lists A list whose elements correspond to the plot specifications of each element in multistable_param_ind. Each element is a list where the first element specifies the range used for the x-axis, the second element is the range for the y-axis, and the last element provides the x-y values and special point label for each special point in the plot. Example --------- See :ref:`quickstart-deficiency-label` and :ref:`my-deficiency-label`. """ if self.__comm is not None: if self.__my_rank == 0: self.__initialize_continuity_analysis(species, parameters, dir_path, print_lbls_flag, auto_parameters, plot_labels) multistable_param_ind, important_info, plot_specifications = self._BistabilityAnalysis__parent_run_continuity_analysis() else: important_info = '' multistable_param_ind = [] plot_specifications = [] self.__comm.Barrier() else: self.__initialize_continuity_analysis(species, parameters, dir_path, print_lbls_flag, auto_parameters, plot_labels) multistable_param_ind, important_info, plot_specifications = self._BistabilityAnalysis__parent_run_continuity_analysis() self.__important_info += important_info return multistable_param_ind, plot_specifications def run_greedy_continuity_analysis(self, species=None, parameters=None, dir_path="./num_cont_graphs", print_lbls_flag=False, auto_parameters=None, plot_labels=None): """ Function for running the greedy numerical continuation and bistability analysis portions of the mass conservation approach. This routine uses the initial value of the principal continuation parameter to construct AUTO parameters and then tests varying fixed step sizes for the continuation problem. Note that this routine may produce jagged or missing sections in the plots provided. To produce better plots one should use the information provided by this routine to run :func:`crnt4sbml.MassConservationApproach.run_continuity_analysis`. Parameters ------------ species: string A string stating the species that is the y-axis of the bifurcation diagram. parameters: list of numpy arrays A list of numpy arrays corresponding to the decision vectors that produce a small objective function value. dir_path: string A string stating the path where the bifurcation diagrams should be saved. print_lbls_flag: bool If True the routine will print the special points found by AUTO 2000 and False will not print any special points. auto_parameters: dict Dictionary defining the parameters for the AUTO 2000 run. Please note that only the PrincipalContinuationParameter in this dictionary should be defined, no other AUTO parameters should be set. For more information on these parameters refer to :download:`AUTO parameters <../auto2000_input.pdf>`. plot_labels: list of strings A list of strings defining the labels for the x-axis, y-axis, and title. Where the first element is the label for x-axis, second is the y-axis label, and the last element is the title label. If you would like to use the default settings for some of the labels, simply provide None for that element. Returns --------- multistable_param_ind: list of integers A list of those indices in 'parameters' that produce multistable plots. plot_specifications: list of lists A list whose elements correspond to the plot specifications of each element in multistable_param_ind. Each element is a list where the first element specifies the range used for the x-axis, the second element is the range for the y-axis, and the last element provides the x-y values and special point label for each special point in the plot. Example --------- See :ref:`my-deficiency-label`. """ if self.__comm is not None: if self.__my_rank == 0: self.__initialize_continuity_analysis(species, parameters, dir_path, print_lbls_flag, auto_parameters, plot_labels) multistable_param_ind, important_info, plot_specifications = self._BistabilityAnalysis__parent_run_greedy_continuity_analysis() else: important_info = '' multistable_param_ind = [] plot_specifications = [] self.__comm.Barrier() else: self.__initialize_continuity_analysis(species, parameters, dir_path, print_lbls_flag, auto_parameters, plot_labels) multistable_param_ind, important_info, plot_specifications = self._BistabilityAnalysis__parent_run_greedy_continuity_analysis() self.__important_info += important_info return multistable_param_ind, plot_specifications def __initialize_continuity_analysis(self, species, parameters, dir_path, print_lbls_flag, auto_parameters, plot_labels): self.__parameters = parameters self.__dir_path = dir_path self.__print_lbls_flag = print_lbls_flag self.__auto_parameters = auto_parameters self.__plot_labels = plot_labels if self.__comm is not None: print("") print("A parallel version of numerical continuation is not available.") print("Numerical continuation will be ran using only one core.") print("For your convenience, the provided parameters have been saved in the current directory under the name params.npy.") numpy.save('./params.npy', parameters) # setting default values for AUTO if 'NMX' not in self.__auto_parameters.keys(): self.__auto_parameters['NMX'] = 10000 if 'ITMX' not in self.__auto_parameters.keys(): self.__auto_parameters['ITMX'] = 100 # making the directory if it doesn't exist if not os.path.isdir(self.__dir_path): os.mkdir(self.__dir_path) self.__species_num = self.__species.index(species) + 1 self.__species_y = str(self.__concentration_pars[self.__species_num - 1]) def run_direct_simulation(self, response=None, signal=None, params_for_global_min=None, dir_path="./dir_sim_graphs", change_in_relative_error=1e-6, parallel_flag=False, print_flag=False, left_multiplier=0.5, right_multiplier=0.5): """ Function for running direct simulation to conduct bistability analysis of the mass conservation approach. Note: This routine is more expensive than the numerical continuation routines, but can provide solutions when the Jacobian of the ODE system is always singular. A parallel version of this routine is available. The routine automatically produces plots of the direct simulation runs and puts them in the user specified dir_path. Parameters ------------ response: string A string stating the response species of the bifurcation analysis. signal: string A string stating the signal of the bifurcation analysis. Can be any of the of the conservation laws. params_for_global_min: list of numpy arrays A list of numpy arrays corresponding to the input vectors that produce a small objective function value. dir_path: string A string stating the path where the bifurcation diagrams should be saved. change_in_relative_error: float A float value that determines how small the relative error should be in order for the solution of the ODE system to be considered at a steady state. Note: a smaller value will run faster, but may produce an ODE system that is not at a steady state. parallel_flag: bool If set to True a parallel version of direct simulation is ran. If False, a serial version of the routine is ran. See :ref:`parallel-gen-app-label` for further information. print_flag: bool If set to True information about the direct simulation routine will be printed. If False, no output will be provided. left_multiplier: float A float value that determines the percentage of the signal that will be searched to the left of the signal value. For example, the lowerbound for the signal range will be signal_value - signal_value*left_multiplier. right_multiplier: float A float value that determines the percentage of the signal that will be searched to the right of the signal value. For example, the upperbound for the signal range will be signal_value + signal_value*right_multiplier. Returns --------- list_of_ggplots: list of ggplots produced by plotnine Example --------- See :ref:`my-deficiency-label`. """ self.__initialize_direct_simulation(response, signal, params_for_global_min, dir_path, change_in_relative_error, parallel_flag, print_flag, left_multiplier, right_multiplier) self._BistabilityAnalysis__parent_run_direct_simulation() self.__my_rank = self._BistabilityAnalysis__my_rank self.__comm = self._BistabilityAnalysis__comm def __initialize_direct_simulation(self, response, signal, params_for_global_min, dir_path, change_in_relative_error, parallel_flag, print_flag, left_multiplier, right_multiplier): self.__parameters = params_for_global_min self.__dir_path = dir_path self.__change_in_relative_error = change_in_relative_error self.__parallel_flag = parallel_flag self.__dir_sim_print_flag = print_flag self.__left_multiplier = left_multiplier self.__right_multiplier = right_multiplier self.__response = response self.__signal = signal self.__sympy_species = self.__concentration_pars self.__sympy_reactions = self.__reaction_pars self.__cons_laws_sympy = self.__cgraph.get_b() * sympy.Matrix([self.__concentration_pars]).T self.__cons_laws_sympy_lamb = [sympy.utilities.lambdify(self.__concentration_pars, self.__cons_laws_sympy[i]) for i in range(len(self.__cons_laws_sympy))] conservation_constants = ['C' + str(i + 1) for i in range(len(self.__cons_laws_sympy))] self.__signal_index = conservation_constants.index(self.__signal) lambda_inputs = self.__sympy_reactions + self.__sympy_species self.__ode_lambda_functions = [sympy.utilities.lambdify(lambda_inputs, self.__cgraph.get_ode_system()[i]) for i in range(len(self.__cgraph.get_ode_system()))] self.__jac_lambda_function = sympy.utilities.lambdify(lambda_inputs, self.__cgraph.get_ode_system().jacobian(self.__sympy_species)) def __initialize_ant_string(self, species_num, pcp_x): y = self.__cgraph.get_y() a = self.__cgraph.get_a() bt = self.__cgraph.get_b() psi = self.__cgraph.get_psi() # forming ya matrix ya = y * a # finding how many rows are indep in ya _, vals = ya.T.rref() num_indp_eqns = len(vals) num_dep_eqns = ya.shape[0] - num_indp_eqns # getting dimensions of bt bt_rows = bt.shape[0] bt_cols = bt.shape[1] bt_nonzero_ind = [] for i in range(bt_rows): bt_nonzero_ind.append([j for j in range(bt_cols) if bt[i, j] != 0 and j != species_num - 1]) chosen_indp_indices, chosen_dep_indices = self.__get_indp_dep_species_indices(bt_nonzero_ind, num_dep_eqns, num_indp_eqns, ya) replacements, ind_spec_conc_temp, indp_odes_temp = self.__construct_important_variables(chosen_indp_indices, chosen_dep_indices, ya, psi, bt) ode_str = self.__create_ode_str(replacements, ind_spec_conc_temp, indp_odes_temp, species_num) return ode_str, pcp_x def __get_indp_dep_species_indices(self, bt_nonzero_ind, num_dep_eqns, num_indp_eqns, ya): # getting all combinations of the list indices possible_dep_species = list(itertools.product(*bt_nonzero_ind)) removed_entries = [] # remove tuples that have duplicate entries for i in range(len(possible_dep_species)): if len(set(possible_dep_species[i])) != num_dep_eqns: removed_entries.append(i) for index in sorted(removed_entries, reverse=True): del possible_dep_species[index] # get corresponding possible dependent species possible_indp_species = [] species_ind = [i for i in range(len(self.__concentration_pars))] for i in possible_dep_species: possible_indp_species.append([j for j in species_ind if j not in i]) # using YA to pick one of the possible indices chosen_indp_indices = [] chosen_dep_indices = [] for i in range(len(possible_indp_species)): _, vals = ya[possible_indp_species[i], :].T.rref() if len(vals) == num_indp_eqns: chosen_indp_indices = possible_indp_species[i] chosen_dep_indices = possible_dep_species[i] break return chosen_indp_indices, chosen_dep_indices def __construct_important_variables(self, chosen_indp_indices, chosen_dep_indices, ya, psi, bt): # getting independent concentrations ind_spec_conc_temp = [self.__concentration_pars[i] for i in chosen_indp_indices] # getting dependent concentrations dep_spec_conc = [self.__concentration_pars[i] for i in chosen_dep_indices] # constructing the independent ODEs indp_odes_temp = ya[chosen_indp_indices, :] * psi # creating conservation laws string self.__cons_laws_sympy = bt * sympy.Matrix([self.__concentration_pars]).T # Lambda function of conservation laws self.__cons_laws_lamb = [sympy.utilities.lambdify(self.__concentration_pars, self.__cons_laws_sympy[i]) for i in range(len(self.__cons_laws_sympy))] cons_laws_sympy_eq = [sympy.Eq(sympy.Symbol('C' + str(i + 1), real=True), self.__cons_laws_sympy[i]) for i in range(len(self.__cons_laws_sympy))] dep_conc_in_laws = self.__dependent_species_concentrations(self.__cons_laws_sympy, dep_spec_conc) replacements = self.__find_dep_concentration_replacements(dep_conc_in_laws, self.__cons_laws_sympy, dep_spec_conc, cons_laws_sympy_eq) return replacements, ind_spec_conc_temp, indp_odes_temp def __create_ode_str(self, replacements, ind_spec_conc_temp, indp_odes_temp, species_num): # rearrange ind_spec_conc and indp_odes to make species of # interest be the first ODE indx_species_num = ind_spec_conc_temp.index(self.__concentration_pars[species_num - 1]) self.__ind_spec_conc = [ind_spec_conc_temp[indx_species_num]] for i in ind_spec_conc_temp: if i != self.__concentration_pars[species_num - 1]: self.__ind_spec_conc.append(i) indp_odes = sympy.zeros(indp_odes_temp.shape[0], indp_odes_temp.shape[1]) indp_odes[0] = indp_odes_temp[indx_species_num] count = 1 for i in range(indp_odes_temp.shape[0]): if i != indx_species_num: indp_odes[count] = indp_odes_temp[i] count += 1 # bulding ODE string in Antimony format ode_str = self.__building_ode_str(replacements, self.__ind_spec_conc, indp_odes) return ode_str def __finalize_ant_string(self, x, ode_str): concentration_vals = [self.__concentration_funs[j](*tuple(x)) for j in range(self.__N)] kinetic_vals = [x[i] for i in range(self.__R)] antstr = self.__initialize_variables_in_antimony_string(self.__cons_laws_sympy, ode_str, self.__cons_laws_lamb, concentration_vals, kinetic_vals, self.__reaction_pars) if self.__print_lbls_flag: print(antstr) return antstr def __final_constraint_check(self, x_initial): self.__non_equality_bounds_indices = [i for i in range(len(self.__bounds)) if i not in self.__equality_bounds_indices] self.__x_full = numpy.zeros(len(self.__bounds), dtype=self.__numpy_dtype) for j in self.__equality_bounds_indices: self.__x_full[j] = self.__bounds[j] count = 0 for j in self.__non_equality_bounds_indices: self.__x_full[j] = x_initial[count] count += 1 # concentration > 0 check con = numpy.asarray([self.__concentration_funs[j](*tuple(self.__x_full)) for j in range(self.__N)], dtype=self.__numpy_dtype) con_temp = [] for i in range(self.__N): con_temp.append(con[i] >= self.__full_concentration_bounds[i][0] and con[i] <= self.__full_concentration_bounds[i][1]) concs_chk = numpy.all(con_temp) # boundary check test = [] for j in self.__non_equality_bounds_indices: test.append(self.__x_full[j] >= self.__bounds[j][0] and self.__x_full[j] <= self.__bounds[j][1]) boundry_chk = numpy.all(test) # rank(G) = N + delta - 1 check # xx = numpy.concatenate((x[0:self.__R],con),axis=None) # must convert xx to numpy.float64 because higher # is not supported in linalg # xx = numpy.float64(xx) # rank_G = numpy.linalg.matrix_rank(self.__lambda_G_matrix(*tuple(xx))) # rank_G_chk = rank_G == (self.__N + self.__delta - 1) # rank(DCH) = min(N,M-ell) check # rank_DCH = numpy.linalg.matrix_rank(self.__lambda_DCH_matrix(*tuple(xx))) # rank_DCH_chk = rank_DCH == min(self.__N,self.__M - self.__ell) if concs_chk and boundry_chk: # and rank_G_chk and rank_DCH_chk: return [True, self.__x_full] else: return [False, []] def __concentration_violation_fun(self, g, len_g): temp = numpy.zeros(len_g, dtype=self.__numpy_dtype) for i in range(len_g): temp[i] = numpy.maximum(self.__numpy_dtype(0.0), -g[i]) ** 2 return temp def __x_violation_fun(self, x, b, len_x): temp = numpy.zeros(len_x, dtype=self.__numpy_dtype) for i in range(len_x): temp[i] = numpy.maximum(self.__numpy_dtype(0.0), self.__numpy_dtype(b) - x[i]) ** 2 return temp def __penalty_objective_func(self, x_initial): for j in self.__equality_bounds_indices: self.__x_full[j] = self.__bounds[j] count = 0 for j in self.__non_equality_bounds_indices: self.__x_full[j] = x_initial[count] count += 1 # evaluating the concentrations first for i in range(self.__N): temp_val = self.__concentration_funs[i](*tuple(self.__x_full)) if numpy.iscomplex(temp_val): self.__temp_c = numpy.array([numpy.Inf for i in range(self.__N)], dtype=self.__numpy_dtype) break else: with warnings.catch_warnings(): warnings.simplefilter("ignore", numpy.ComplexWarning) self.__temp_c[i] = temp_val if numpy.all(numpy.isfinite(self.__temp_c)): # obtaining the sum of the violation functions squared sumval = self.__numpy_dtype(0.0) for j in range(self.__N): sumval += numpy.maximum(self.__numpy_dtype(0.0), self.__full_concentration_bounds[j][0] - self.__temp_c[j])**2 sumval += numpy.maximum(self.__numpy_dtype(0.0), self.__temp_c[j] - self.__full_concentration_bounds[j][1])**2 sum0 = self.__numpy_dtype(0.0) for j in self.__non_equality_bounds_indices: sum0 += numpy.maximum(self.__numpy_dtype(0.0), self.__bounds[j][0] - self.__x_full[j]) ** 2 sum0 += numpy.maximum(self.__numpy_dtype(0.0), self.__x_full[j] - self.__bounds[j][1]) ** 2 sumval += sum0 # obtaining the violation function values for # k's and concentrations in x # xx = numpy.concatenate((x[0:self.__R],x[self.__R + self.__alpha_end_ind:self.__d_len]),axis=None) # temp = self.__x_violation_fun(xx,self.__numpy_dtype(0.0),self.__R + (self.__d_len - (self.__R + # self.__alpha_end_ind))) # sumval += numpy.sum(temp) return sumval else: return numpy.PINF def __feasible_point_check(self, x, result_fun): result_x = numpy.zeros(len(self.__bounds), dtype=self.__numpy_dtype) for j in self.__equality_bounds_indices: result_x[j] = self.__bounds[j] count = 0 for j in self.__non_equality_bounds_indices: result_x[j] = x[count] count += 1 # double checking the concentrations con = numpy.asarray([self.__concentration_funs[i](*tuple(result_x)) for i in range(self.__N)], dtype=self.__numpy_dtype) con_temp = [] for i in range(self.__N): con_temp.append(con[i] >= self.__full_concentration_bounds[i][0] and con[i] <= self.__full_concentration_bounds[i][1]) concs_chk = numpy.all(con_temp) finite_chk = numpy.isfinite(con) if concs_chk and numpy.all(finite_chk): # putting the feasible points in x_candidates if abs(result_fun) <= self.__sys_min_val and numpy.all(con > self.__numpy_dtype(0)): return True else: return False else: return False def __objective_function_to_optimize(self, x_initial): for j in self.__equality_bounds_indices: self.__x_full[j] = self.__bounds[j] count = 0 for j in self.__non_equality_bounds_indices: self.__x_full[j] = x_initial[count] count += 1 test = [] for j in self.__non_equality_bounds_indices: test.append(self.__x_full[j] >= self.__bounds[j][0] and self.__x_full[j] <= self.__bounds[j][1]) boundry_chk = numpy.all(test) if boundry_chk: # calculating the concentration values for i in range(self.__N): temp_val = self.__concentration_funs[i](*tuple(self.__x_full)) if numpy.iscomplex(temp_val): self.__temp_c = numpy.array([numpy.Inf for i in range(self.__N)], dtype=self.__numpy_dtype) break else: with warnings.catch_warnings(): warnings.simplefilter("ignore", numpy.ComplexWarning) self.__temp_c[i] = temp_val finite_chk = numpy.isfinite(self.__temp_c) con_temp = [] for i in range(self.__N): con_temp.append(self.__temp_c[i] >= self.__full_concentration_bounds[i][0] and self.__temp_c[i] <= self.__full_concentration_bounds[i][1]) concs_chk = numpy.all(con_temp) # making sure our concentrations are finite if concs_chk and numpy.all(finite_chk): temp = numpy.zeros(self.__N, dtype=self.__numpy_dtype) for i in range(self.__N): temp[i] = numpy.maximum(self.__numpy_dtype(0.0), - self.__temp_c[i]) sumval = numpy.sum(temp) xx = numpy.concatenate((self.__x_full[0:self.__R], self.__temp_c), axis=None) return self.__lambda_objective_fun(*tuple(xx)) + sumval else: return numpy.PINF else: return numpy.PINF def __dependent_species_concentrations(self, cons_laws_sympy, dep_spec_conc): # finding those dep_spec_conc that occur in each conservation law dep_conc_in_laws = [] for i in range(len(cons_laws_sympy)): temp = [] for j in range(len(dep_spec_conc)): if cons_laws_sympy[i].count(dep_spec_conc[j]) > 0: temp.append(dep_spec_conc[j]) dep_conc_in_laws.append(temp) return dep_conc_in_laws def __is_list_empty(self, inlist): if isinstance(inlist, list): # Is a list return all(map(self.__is_list_empty, inlist)) return False # Not a list def __find_dep_concentration_replacements(self, dep_conc_in_laws, cons_laws_sympy, dep_spec_conc, cons_laws_sympy_eq): replacements = [] flag = True while flag: for i in range(len(cons_laws_sympy_eq)): if len(dep_conc_in_laws[i]) == 1: temp = sympy.solve(cons_laws_sympy_eq[i], dep_conc_in_laws[i]) cons_laws_sympy = [cons_laws_sympy[j].subs(dep_conc_in_laws[i][0], temp[0]) for j in range(len(cons_laws_sympy))] cons_laws_sympy_eq = [sympy.Eq(sympy.Symbol('C' + str(i + 1), real=True), cons_laws_sympy[i]) for i in range(len(cons_laws_sympy))] replacements.append([dep_conc_in_laws[i][0], '(' + str(temp[0]) + ')']) dep_conc_in_laws = self.__dependent_species_concentrations(cons_laws_sympy, dep_spec_conc) if self.__is_list_empty(dep_conc_in_laws): flag = False return replacements def __building_ode_str(self, replacements, ind_spec_conc, indp_odes): indp_odes_str = [] # making the replacements in the indep. ODEs for i in range(len(indp_odes)): for j in range(len(replacements)): indp_odes[i] = indp_odes[i].subs(replacements[j][0], replacements[j][1]) indp_odes_str.append(str(indp_odes[i])) self.__independent_odes = indp_odes self.__independent_species = ind_spec_conc # replacing all powers with ^ instead of ** for i in range(len(indp_odes_str)): indp_odes_str[i] = indp_odes_str[i].replace('**', '^') # building the string of ODEs in Antimony syntax ode_str = '' for i in range(len(ind_spec_conc)): ode_str += 'J' + str(i) + ': -> ' + str(ind_spec_conc[i]) + '; ' + indp_odes_str[i] + ';' return ode_str def __building_ant_str(self, ode_str, kinetic_con, lhs_cons_laws, var_vals): vars_to_initialize = kinetic_con + lhs_cons_laws + [str(self.__concentration_pars[i]) for i in range(self.__N)] ant_str = ode_str for i in range(len(vars_to_initialize)): ant_str += str(vars_to_initialize[i]) + ' = ' + str(var_vals[i]) + ';' return ant_str def __initialize_variables_in_antimony_string(self, cons_laws_sympy, ode_str, cons_laws_lamb, concentration_vals, kinetic_vals, kinetic_con): # string representation of variables on lhs of mass cons laws lhs_cons_laws = ['C' + str(i + 1) for i in range(len(cons_laws_sympy))] conservation_law_vals = [cons_laws_lamb[i](*tuple(concentration_vals)) for i in range(len(cons_laws_lamb))] var_vals = kinetic_vals + conservation_law_vals + concentration_vals # The full Antimony string of system of ODEs ant_str = self.__building_ant_str(ode_str, kinetic_con, lhs_cons_laws, var_vals) return ant_str def generate_report(self): """ Prints out helpful details constructed by :func:`crnt4sbml.MassConservationApproach.run_optimization` and :func:`crnt4sbml.MassConservationApproach.run_continuity_analysis`. Example -------- See :ref:`quickstart-deficiency-label` and :ref:`my-deficiency-label`. """ if self.__comm is None: print(self.__important_info) else: all_important_info = self.__comm.gather(self.__important_info, root=0) self.__comm.Barrier() if self.__my_rank == 0: for i in range(1, len(all_important_info)): if all_important_info[i] != "": print(all_important_info[i]) print(self.__important_info) def get_comm(self): """ Returns a mpi4py communicator if it has been initialized and None otherwise. """ return self.__comm def get_my_rank(self): """ Returns the rank assigned by mpi4py if it is initialized, otherwise None will be returned. """ return self.__my_rank
# Number of Distinct Islands # Count the number of distinct islands. An island is considered to be the same as another # if and only if one island can be translated (and not rotated or reflected) to equal the other. # Example: # 11011 # 10000 # 00001 # 11011 # => 3 # Approach: # combine direction and recursion to form a string that present the path class Solution(object): def numDistinctIslands(self, grid): """ :type grid: List[List[int]] :rtype: int """ if not any(grid): return 0 m, n = len(grid), len(grid[0]) islands = set() directions = { 'u': (-1, 0), 'l': (0, -1), 'd': (1, 0), 'r': (0, 1) } for i in range(m): for j in range(n): if grid[i][j] == 1: path = [] self.dfs(i, j, grid, path, directions) islands.add(''.join(path)) return len(islands) def dfs(self, x, y, grid, path, directions): m, n = len(grid), len(grid[0]) grid[x][y] = 0 for d in directions: dx, dy = directions[d] i, j = x + dx, y + dy if 0 <= i < m and 0 <= j < n and grid[i][j]: path.append(d) self.dfs(i, j, grid, path, directions) path.append('b') # end of current recursion
from typing import List class Solution: def findMaxLength(self, nums: List[int]) -> int: sum_ = 0 max_len = 0 sum_to_index = {0: -1} for i in range(len(nums)): sum_ += 1 if nums[i] else -1 if sum_to_index.get(sum_) is not None: max_len = max(max_len, i - sum_to_index.get(sum_)) else: sum_to_index[sum_] = i return max_len s = Solution() nums = [0, 0, 1] print(s.findMaxLength(nums))
from __future__ import print_function, division def pprint_nodes(subtrees): """ Prettyprints systems of nodes. Examples ======== >>> from sympy.printing.tree import pprint_nodes >>> print(pprint_nodes(["a", "b1\\nb2", "c"])) +-a +-b1 | b2 +-c """ def indent(s, type=1): x = s.split("\n") r = "+-%s\n" % x[0] for a in x[1:]: if a == "": continue if type == 1: r += "| %s\n" % a else: r += " %s\n" % a return r if len(subtrees) == 0: return "" f = "" for a in subtrees[:-1]: f += indent(a) f += indent(subtrees[-1], 2) return f def print_node(node): """ Returns an information about the "node". This includes class name, string representation and assumptions. """ s = "%s: %s\n" % (node.__class__.__name__, str(node)) if len(node._assumptions) > 0: for a in node._assumptions: s += "%s: %s\n" % (a, node._assumptions[a]) return s def tree(node): """ Returns a tree representation of "node" as a string. It uses print_node() together with pprint_nodes() on node.args recursively. See also: print_tree() """ subtrees = [] for arg in node.args: subtrees.append(tree(arg)) s = print_node(node) + pprint_nodes(subtrees) return s def print_tree(node): """ Prints a tree representation of "node". Examples ======== >>> from sympy.printing import print_tree >>> from sympy.abc import x >>> print_tree(x**2) # doctest: +SKIP Pow: x**2 +-Symbol: x | comparable: False +-Integer: 2 real: True nonzero: True comparable: True commutative: True infinitesimal: False unbounded: False noninteger: False zero: False complex: True bounded: True rational: True integer: True imaginary: False finite: True irrational: False <BLANKLINE> See also: tree() """ print(tree(node))
# Copyright (c) 2017 Christoph Landgraf. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from .base import \ with_session, with_optional_session, \ BreakpointBuffer, py_display_all_breakpoints, py_display_session_breakpoints, \ SessionBuffer from .threads import \ ThreadBuffer, CodeBuffer, FrameBuffer, EvalBuffer
# Copyright 2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from wa import Workload, Parameter, TargetError, WorkloadError, Executable, Alias from wa.utils.exec_control import once BLOCK_SIZES = [16, 64, 256, 1024, 8192, 16384] ECD = ['secp160r1', 'nistp192', 'nistp224', 'nistp256', 'nistp384', 'nistp521', 'nistk163', 'nistk233', 'nistk283', 'nistk409', 'nistk571', 'nistb163', 'nistb233', 'nistb283', 'nistb409', 'nistb571', 'curve25519'] CIPHER_PKI = ['rsa', 'dsa', 'ecdh', 'ecdsa'] EVP_NEW = ['aes-128-cbc', 'aes-192-cbc', 'aes-256-cbc', 'aes-128-gcm', 'aes-192-gcm', 'aes-256-gcm', 'sha1', 'sha256', 'sha384', 'sha512'] class Openssl(Workload): name = 'openssl' description = ''' Benchmark Openssl algorithms using Openssl's speed command. The command tests how long it takes to perfrom typical SSL operations using a range of supported algorithms and ciphers. By defalt, this workload will use openssl installed on the target, however it is possible to provide an alternative binary as a workload resource. ''' parameters = [ Parameter('algorithm', default='aes-256-cbc', allowed_values=EVP_NEW + CIPHER_PKI, description=''' Algorithm to benchmark. '''), Parameter('threads', kind=int, default=1, description=''' The number of threads to use '''), Parameter('use_system_binary', kind=bool, default=True, description=''' If ``True``, the system Openssl binary will be used. Otherwise, use the binary provided in the workload resources. '''), ] aliases = [Alias('ossl-' + algo, algorithm=algo) for algo in EVP_NEW + CIPHER_PKI] @once def initialize(self, context): if self.use_system_binary: try: cmd = '{0} md5sum < $({0} which openssl)' output = self.target.execute(cmd.format(self.target.busybox)) md5hash = output.split()[0] version = self.target.execute('openssl version').strip() context.update_metadata('hashes', 'openssl', md5hash) context.update_metadata('versions', 'openssl', version) except TargetError: msg = 'Openssl does not appear to be installed on target.' raise WorkloadError(msg) Openssl.target_exe = 'openssl' else: resource = Executable(self, self.target.abi, 'openssl') host_exe = context.get_resource(resource) Openssl.target_exe = self.target.install(host_exe) def setup(self, context): self.output = None if self.algorithm in EVP_NEW: cmd_template = '{} speed -mr -multi {} -evp {}' else: cmd_template = '{} speed -mr -multi {} {}' self.command = cmd_template.format(self.target_exe, self.threads, self.algorithm) def run(self, context): self.output = self.target.execute(self.command) def extract_results(self, context): if not self.output: return outfile = os.path.join(context.output_directory, 'openssl.output') with open(outfile, 'w') as wfh: wfh.write(self.output) context.add_artifact('openssl-output', outfile, 'raw', 'openssl\'s stdout') def update_output(self, context): if not self.output: return for line in self.output.split('\n'): line = line.strip() if not line.startswith('+F'): continue parts = line.split(':') if parts[0] == '+F': # evp ciphers for bs, value in zip(BLOCK_SIZES, list(map(float, parts[3:]))): value = value / 2**20 # to MB context.add_metric('score', value, 'MB/s', classifiers={'block_size': bs}) elif parts[0] in ['+F2', '+F3']: # rsa, dsa key_len = int(parts[2]) sign = float(parts[3]) verify = float(parts[4]) context.add_metric('sign', sign, 'seconds', classifiers={'key_length': key_len}) context.add_metric('verify', verify, 'seconds', classifiers={'key_length': key_len}) elif parts[0] == '+F4': # ecdsa ec_idx = int(parts[1]) key_len = int(parts[2]) sign = float(parts[3]) verify = float(parts[4]) context.add_metric('sign', sign, 'seconds', classifiers={'key_length': key_len, 'curve': ECD[ec_idx]}) context.add_metric('verify', verify, 'seconds', classifiers={'key_length': key_len, 'curve': ECD[ec_idx]}) elif parts[0] == '+F5': # ecdh ec_idx = int(parts[1]) key_len = int(parts[2]) op_time = float(parts[3]) ops_per_sec = float(parts[4]) context.add_metric('op', op_time, 'seconds', classifiers={'key_length': key_len, 'curve': ECD[ec_idx]}) context.add_metric('ops_per_sec', ops_per_sec, 'Hz', classifiers={'key_length': key_len, 'curve': ECD[ec_idx]}) else: self.logger.warning('Unexpected result: "{}"'.format(line)) @once def finalize(self, context): if not self.use_system_binary: self.target.uninstall('openssl')
import requests import json # disable warnings from SSL/TLS certificates requests.packages.urllib3.disable_warnings() # All of our REST calls will use the url for the APIC EM Controller as the base URL # So lets define a variable for the controller IP or DNS so we don't have to keep typing it controller_url = "https://sandboxapicdc.cisco.com" ################## Get Hosts ########################################################## # This function allows you to view a list of all the hosts in the network. login_url = controller_url + '/api/aaaLogin.json' payload = { "aaaUser":{ "attributes":{ "name":"admin", "pwd":"ciscopsdt" } } } # To create a policy, we need to use the POST method. # When using POST, you need to specify the Content-Type header as application/json headers = {'content-type': 'application/json'} # Use requests.post to do a POST to the policy API # Specify request body json data and headers policy_create_response = requests.post(login_url, data=json.dumps(payload), headers=headers, verify=False) print ("\nResult of Create" + policy_create_response.text + '\n') response = policy_create_response.json() print(json.dumps(response, indent=4, separators=(',',': '))) sessionToken = response["imdata"][0]["aaaLogin"]["attributes"]["token"] tenant_url = controller_url + "/api/node/class/fvTenant.json" sessionToken = 'APIC-cookie={}'.format(sessionToken) #headers = {'content-type': 'application/json', 'Authorization': 'APIC-Cookie %s' % sessionToken} #headers = {'content-type': 'application/json', 'access_Token' : sessionToken} #headers = {'content-type': 'application/json', 'x-api-key' : sessionToken} headers = {'content-type': 'application/json', 'Cookie' : sessionToken} params = {'subscription' : 'yes'} #get_req_response = requests.get(tenant_url, verify= False, headers=headers, params=params) get_req_response = requests.get(tenant_url, verify= False, headers=headers) response = get_req_response.json() print(json.dumps(response, indent=4, separators=(',',': ')))
"""Handler file for all routes pertaining to about_us_page_settings""" from database.models import AboutUsPageSettings from api.handlers.page_settings import PageSettingsHandler class AboutUsPageSettingsHandler(PageSettingsHandler): def __init__(self): super().__init__('about_us', AboutUsPageSettings)
# Copyright (c) 2012-2013, Razvan Pascanu # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy class MemTask(object): def __init__(self, rng, floatX, n_values = 5, n_pos = 10, generate_all = False): self.rng = rng self.floatX = floatX self.dim = n_values**n_pos self.n_values = n_values self.n_pos = n_pos self.generate_all = generate_all if generate_all: self.data = numpy.zeros((n_pos, self.dim, n_values+2)) for val in xrange(self.dim): tmp_val = val for k in xrange(n_pos): self.data[k, val, tmp_val % n_values] = 1. tmp_val = tmp_val // n_values self.nin = self.n_values + 2 self.nout = n_values + 1 self.classifType = 'softmax' self.report = 'all' def generate(self, batchsize, length): if self.generate_all: batchsize = self.dim input_data = numpy.zeros((length + 2*self.n_pos, batchsize, self.n_values + 2), dtype=self.floatX) targ_data = numpy.zeros((length + 2*self.n_pos, batchsize, self.n_values+1), dtype=self.floatX) targ_data[:-self.n_pos,:, -1] = 1 input_data[self.n_pos:,:, -2] = 1 input_data[length + self.n_pos, :, -2] = 0 input_data[length + self.n_pos, :, -1] = 1 if not self.generate_all: self.data = numpy.zeros((self.n_pos, batchsize, self.n_values+2)) for val in xrange(batchsize): tmp_val = self.rng.randint(self.dim) for k in xrange(self.n_pos): self.data[k, val, tmp_val % self.n_values] = 1. tmp_val = tmp_val // self.n_values input_data[:self.n_pos, :, :] = self.data targ_data[-self.n_pos:, :, :] = self.data[:,:,:-1] return input_data, targ_data.reshape(((length + 2*self.n_pos)*batchsize, -1)) if __name__ == '__main__': print 'Testing memorization task generator ..' task = MemTask(numpy.random.RandomState(123), 'float32') seq, targ = task.generate(3, 25) assert seq.dtype == 'float32' assert targ.dtype == 'float32' print 'Seq_0' print seq[:,0,:].argmax(axis=1) print 'Targ0' print targ.reshape((25+2*10, 3, -1))[:,0,:].argmax(1) print print 'Seq_1' print seq[:,1,:].argmax(axis=1) print 'Targ1' print targ.reshape((25+2*10, 3, -1))[:,1,:].argmax(1) print print 'Seq_2' print seq[:,2,:].argmax(axis=1) print 'Targ2' print targ.reshape((25+2*10, 3, -1))[:,2,:].argmax(1)
from tensorflow.keras.layers import Layer class Self_Attention(Layer): """ self attention layer """ def __init__(self): self.output_shape def build(self, input_shape): super().build(input_shape) def call(self, x): # x: [batch_size, sequence_length, embedding_size] pass def compute_output_shape(self): return self.output_shape
from . api import ScheduleConnection, ScheduleManipulation, ProviderConnection, \ ProviderReport, LocationConnection, ScheduleWithData, ProviderLocations
# Copyright (C) 2013 Joseph W. Kaus and Matthew C. Zwier and Lillian T. Chong # # This file is part of WESTPA. # # WESTPA is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # WESTPA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with WESTPA. If not, see <http://www.gnu.org/licenses/>. from __future__ import division, print_function import argparse import logging log = logging.getLogger('w_truncate') import westpa warning_string = '''\ NOTE: w_truncate only deletes iteration groups from the HDF5 data store. It is recommended that any iteration data saved to the file system (e.g. in the traj_segs directory) is deleted or moved for the corresponding iterations. ''' parser = argparse.ArgumentParser('w_truncate', description='''\ Remove all iterations after a certain point in a WESTPA simulation. ''', epilog=warning_string) westpa.rc.add_args(parser) parser.add_argument('-n', '--iter', dest='n_iter', type=int, help='Truncate this iteration and those following.') args = parser.parse_args() westpa.rc.process_args(args, config_required=False) dm = westpa.rc.get_data_manager() dm.open_backing() max_iter = dm.current_iteration n_iter = args.n_iter if args.n_iter > 0 else dm.current_iteration for i in xrange(n_iter, dm.current_iteration+1): dm.del_iter_group(i) dm.del_iter_summary(n_iter) dm.current_iteration = n_iter - 1 print('simulation data truncated after iteration {}'.format(dm.current_iteration)) print('\n' + warning_string) dm.flush_backing() dm.close_backing()
from flask_wtf import FlaskForm from wtforms.validators import Required from wtforms import StringField,TextAreaField,SubmitField, SelectField, RadioField class UpdateProfile(FlaskForm): bio = TextAreaField('Tell us about you.',validators = [Required()]) submit = SubmitField('SUBMIT') class BlogForm(FlaskForm): content = TextAreaField('YOUR BLOG') submit = SubmitField('Create Blog') class CommentsForm(FlaskForm): comment = TextAreaField('Comment on this blog:', validators=[Required()]) submit = SubmitField('SUBMIT') class SubscribeForm(FlaskForm): email = StringField("Enter email", validators = [Required()]) submit = SubmitField("Subscribe")
#!/usr/bin/env python # # import sys, re, json; from pprint import pprint; the_raw_input = sys.argv[1].strip(); the_raw_key = sys.argv[2].strip(); the_json = json.loads(the_raw_input); def to_int(raw): if re.match('^[0-9]{1,3}$', raw): return int(raw) else: raise Exception("Invalid value for int: " + repr(raw)) def get(val, raw_key): the_type = type(val).__name__; if the_type == "list": return get_index(val, raw_key); elif the_type == "dict": return get_key(val, raw_key); else: raise Exception("Invalid value: " + repr(val) + " (key: " + repr(raw_key) + ")") def get_index(val, raw_key): return val[to_int(raw_key)]; def get_key(d, raw_key): keys = to_keys(raw_key) if len(keys) == 1: return d[keys[0]] else: return get_index(d[keys[0]], keys[1]) def to_keys(raw_key): m = re.search('^(?P<k>[^\[]+)(\[(?P<i>[0-9]+)\])?$', raw_key) if m.group("i"): return [m.group("k"), m.group("i")] else: return [m.group("k")] current = the_json for m in re.finditer('[^\.]+', the_raw_key): current = get(current, m.group(0)); pprint(current)
import math import random import numpy as np import torch from torch.utils.data import Dataset, DataLoader from lib.utils import * class ReplayBuffer(Dataset): def __init__(self, env, maximum, preprocess_dict, gamma = 0.99): #only note the game environment #not the enviroment object self.env = env self.maximum = maximum self.preprocess_dict = preprocess_dict self.length = 0 self.gamma = gamma self.eps = 10e-7 #one elemnet in datalist is a training pair with three elements: observation, reward, action #the pair relationship -> model(observation) ==> action ==> reward self.data = [] self.rewards = [] self.__insert_lock = [] def reset_maximum(self, new): self.maximum = new return None def new_episode(self): if len(self.rewards) > self.maximum: self.data = self.data[1: ] self.rewards = self.rewards[1: ] self.__insert_lock = self.__insert_lock[1: ] self.data.append([]) self.rewards.append([]) self.__insert_lock.append(False) return None def insert(self, observation, action): if self.__insert_lock[-1] != True: #not lock can append self.data[-1].append([observation.squeeze(), action]) else: raise RuntimeError('Please use new_episode() before insert new episode information.') return None def insert_reward(self, reward, times, done): if self.__insert_lock[-1] != True: for i in range(times): if self.preprocess_dict['time_decay']: decay_reward = reward * math.pow((self.gamma), (times - 1 - i)) self.rewards[-1].append(decay_reward) else: self.rewards[-1].append(reward) else: raise RuntimeError('Please use new_episode() before insert new episode information.') if done: self.__insert_lock[-1] = True return None def trainable(self): #check the buffer is ready for training return True if len(self.rewards) >= self.maximum else False def make(self, episode_size): self.observation = None self.action = None self.reward = None for i in range(episode_size): select = random.randint(0, self.maximum - 1) dataset = EpisodeSet(self.data[select], self.rewards[select]) dataloader = DataLoader(dataset, batch_size = len(self.data[select]), shuffle = False) for iter, (obs, act, rew) in enumerate(dataloader): if self.observation is None: self.observation = obs.squeeze() else: self.observation = torch.cat((self.observation, obs.squeeze()), dim = 0) if self.action is None: self.action = act.squeeze() else: self.action = torch.cat((self.action, act.squeeze()), dim = 0) if self.reward is None: self.reward = rew else: self.reward = torch.cat((self.reward, rew), dim = 0) if self.preprocess_dict['normalized']: mean = torch.mean(self.reward, dim = 0) std = torch.std(self.reward, dim = 0) self.reward = (self.reward - mean) / (std + self.eps) self.length = self.reward.size(0) return None def __getitem__(self, index): return self.observation[index].detach(), self.action[index].detach(), self.reward[index].detach() def __len__(self): return self.length class EpisodeSet(Dataset): def __init__(self, data, rewards): self.data = data self.rewards = rewards def __getitem__(self, index): #return observation, action reward = torch.tensor(self.rewards[index]).float() return self.data[index][0].float(), self.data[index][1].float(), reward def __len__(self): return len(self.data)
#!/usr/bin/python # Program for simulating full model with coupling import sys import numpy as np nogui = '-nogui' in sys.argv if not nogui: import matplotlib.pyplot as plt from decimal import * sys.path += '.' from x_inf_decimal import * from input_vars_decimal import * # Global variables from input data file. # Simulation Parameters deltat = Decimal('0.01e-3') duration = Decimal('0.03') #********************* Duration Duration *************** numpoints = int(round(duration/deltat)) numtests = 11 xaxis = [round(x * Decimal('1e3'), 2) for x in np.arange(deltat, duration+deltat, deltat)] # Input parameters onset = int(round(Decimal('0.002')/deltat)) offset = int(round(Decimal('0.022')/deltat)) # Variable Declaration V = list() I_j = list() I_mem = list() Ca = list() n = list() p = list() q = list() e = list() f = list() h = list() for i in range(0,numtests): V.append(list()) I_mem.append(list()) Ca.append(list()) n.append(Decimal('0')) p.append(Decimal('0')) q.append(Decimal('0')) e.append(Decimal('0')) f.append(Decimal('0')) h.append(Decimal('0')) I_j.append(Decimal('0')) for j in range(0,numpoints): V[i].append(Decimal('0')) I_mem[i].append(Decimal('0')) Ca[i].append(Decimal('0')) I_j.append(Decimal('0')) # Input initialization for i in range(0,numtests): for j in range(0,numpoints): V[i][j] = Decimal('-70e-3') Vstim = Decimal('40e-3') for i in range(0,numtests): for j in range(onset-1,offset): V[i][j] = Vstim Vstim = Vstim - Decimal('10e-3') # Variable initialization for j in range(0,numtests): Ca[j][0] = Decimal('0') n[j] = x_inf(V[j][0], Vhalf_n, k_n) p[j] = x_inf(V[j][0], Vhalf_p, k_p) q[j] = x_inf(V[j][0], Vhalf_q, k_q) e[j] = x_inf(V[j][0], Vhalf_e, k_e) f[j] = x_inf(V[j][0], Vhalf_f, k_f) # Start of simulation for j in range(0,numtests): for i in range(1,numpoints): dn = (x_inf(V[j][i-1], Vhalf_n, k_n) - n[j])/T_n n[j] = n[j] + dn*deltat dp = (x_inf(V[j][i-1], Vhalf_p, k_p) - p[j])/T_p p[j] = p[j] + dp*deltat dq = (x_inf(V[j][i-1], Vhalf_q, k_q) - q[j])/T_q q[j] = q[j] + dq*deltat de = (x_inf(V[j][i-1], Vhalf_e, k_e) - e[j])/T_e e[j] = e[j] + de*deltat df = (x_inf(V[j][i-1], Vhalf_f, k_f) - f[j])/T_f f[j] = f[j] + df*deltat h[j] = x_inf(Ca[j][i-1], Cahalf_h, k_h) # H_rec[i] = h[j] IKS = gKS * n[j] * (V[j][i-1] - VKS) IKF = gKF * p[j]**4 * q[j] * (V[j][i-1] - VKF) ICa = gCa * e[j]**2 * f[j] * (1 + (h[j] - 1) * alphaCa) * (V[j][i-1] - VCa) IL = gL * (V[j][i-1] - VL) dCa = -(Ca[j][i-1]/T_Ca + thiCa*ICa) Ca[j][i] = Ca[j][i-1] + dCa*deltat I_mem[j][i] = (IKS + IKF + ICa) if not nogui: plt.plot(xaxis, [x * Decimal('1e9') for x in I_mem[j]]) print('Finished simulation of %s seconds'%duration) if not nogui: plt.ylabel('Imem (nA)') plt.xlabel('Time (ms)') plt.show()
# ===================================================================================== # # Test suite for enumerate.py # Author : Edward Lee, [email protected] # # MIT License # # Copyright (c) 2019 Edward D. Lee, Bryan C. Daniels # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ===================================================================================== # import numpy as np import mpmath as mp from .utils import pair_corr, bin_states from .enumerate import fast_logsumexp, mp_fast_logsumexp np.random.seed(0) def test_basic(): hJ = np.random.normal(size=6,scale=.2) # make sure probability distribution is normalized, p and correlations agree for both symmetrized and # unsymmetrized bases # n=3 from .ising_eqn import ising_eqn_3_sym as ising p = ising.p(hJ) assert np.isclose(p.sum(), 1) assert ((ising.calc_observables(hJ)<=1)&(ising.calc_observables(hJ)>=-1)).all() assert np.isclose(ising.calc_observables(hJ), pair_corr(bin_states(3,True), weights=ising.p(hJ), concat=True)).all() from .ising_eqn import ising_eqn_3 as ising p = ising.p(hJ) assert np.isclose(p.sum(), 1) assert ((ising.calc_observables(hJ)<=1)&(ising.calc_observables(hJ)>=0)).all() assert np.isclose(ising.calc_observables(hJ), pair_corr(bin_states(3), weights=ising.p(hJ), concat=True)).all() # n=4 hJ = np.random.normal(size=10, scale=.2) from .ising_eqn import ising_eqn_4_sym as ising p = ising.p(hJ) assert np.isclose(p.sum(), 1) assert ((ising.calc_observables(hJ)<=1)&(ising.calc_observables(hJ)>=-1)).all() assert np.isclose(ising.calc_observables(hJ), pair_corr(bin_states(4,True), weights=ising.p(hJ), concat=True)).all() from .ising_eqn import ising_eqn_4 as ising p = ising.p(hJ) assert np.isclose(p.sum(), 1) assert ((ising.calc_observables(hJ)<=1)&(ising.calc_observables(hJ)>=0)).all() assert np.isclose(ising.calc_observables(hJ), pair_corr(bin_states(4), weights=ising.p(hJ), concat=True)).all() # n=4, high precision hJ = np.array(list(map(mp.mpf, np.random.normal(size=10, scale=.2)))) from .ising_eqn import ising_eqn_4_sym_hp as ising p = ising.p(hJ) assert np.isclose(float(p.sum()), 1) assert ((ising.calc_observables(hJ)<=1)&(ising.calc_observables(hJ)>=-1)).all() assert np.isclose(ising.calc_observables(hJ).astype(float), pair_corr(bin_states(4,sym=True), weights=ising.p(hJ).astype(float), concat=True)).all() def test_fast_logsumexp(): from scipy.special import logsumexp X = np.random.normal(size=10, scale=10, loc=1000) coeffs = np.random.choice([-1,1], size=X.size) npval = logsumexp(X, b=coeffs, return_sign=True) assert np.array_equal(fast_logsumexp(X, coeffs), npval) X = np.array(list(map(mp.mpf, X))) assert abs(float(mp_fast_logsumexp(X, coeffs)[0])-npval[0])<1e-16
# ----------------------------------------------------------------------------- # MIT License # # Copyright (c) 2020 Jason McKinney # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # -------------------------------------------------------------------------------- # vecElo.py # # Created: 2019-02-22 # -------------------------------------------------------------------------------- # The author can be contacted via email at jason_at_jmmckinney_dot_net # or on the VEX Forum as jmmckinney. # -------------------------------------------------------------------------------- import requests import pandas as pd import numpy as np import pickle import os.path import math import numbers import signal from threading import Event k_factor = 64 nToEstablish = 16 pd.options.mode.chained_assignment = None exit_event = Event() class Metadata: def __init__(self, scored_matches=0): self.scored_matches = scored_matches def get_teams_total(program='VRC'): return requests.get( 'https://api.vexdb.io/v1/get_teams', params={ 'nodata': 'true', 'program': program } ).json()['size'] def get_all_teams(program='VRC'): teams_total = get_teams_total(program) res = requests.get( 'https://api.vexdb.io/v1/get_teams', params={ 'program': program } ).json() result_teams = res['result'] while len(result_teams) < teams_total: res = requests.get( 'https://api.vexdb.io/v1/get_teams', params={ 'program': program, 'limit_start': len(result_teams) } ).json() result_teams.extend(res['result']) return pd.DataFrame(result_teams).set_index('number') def get_matches_total(season='current'): return requests.get( 'https://api.vexdb.io/v1/get_matches', params={'nodata': 'true', 'season': season} ).json()['size'] def get_matches_scored(season='current'): return requests.get( 'https://api.vexdb.io/v1/get_matches', params={'nodata': 'true', 'season': season, 'scored': '1'} ).json()['size'] def get_all_matches(season='current'): matches_total = get_matches_total(season) res = requests.get( 'https://api.vexdb.io/v1/get_matches', params={ 'season': season } ).json() matches = res['result'] while len(matches) < matches_total: res = requests.get( 'https://api.vexdb.io/v1/get_matches', params={ 'limit_start': len(matches), 'season': season } ).json() matches.extend(res['result']) raw_dataframe = pd.DataFrame(matches) raw_dataframe = raw_dataframe[raw_dataframe.blue2 != ''] raw_dataframe = raw_dataframe[raw_dataframe.scored == 1] skus = raw_dataframe['sku'].drop_duplicates()[::-1] dataframe = pd.DataFrame(columns=[ 'blue1', 'blue2', 'blue3', 'bluescore', 'bluesit', 'division', 'field', 'instance', 'matchnum', 'red1', 'red2', 'red3', 'redscore', 'redsit', 'round', 'scheduled', 'scored', 'sku' ]) for sku in skus.values: dataframe = dataframe.append(raw_dataframe[raw_dataframe['sku'] == sku], sort=False) return dataframe def elo_rankings_from_matches(team_list, matches, rankings=None): def add_team(the_list, team): try: team_from_list = team_list.loc[team] country = team_from_list['country'] region = team_from_list['region'] grade = team_from_list['grade'] except KeyError: region = '' grade = '' country = '' mean_elo = the_list[the_list[:, 5] == False][:, 2].mean() return np.insert(the_list, 0, [team, 0, mean_elo, 0, 0, True, 0.0, region, country, grade], axis=0) def award_match(match, ranks): # 0, 1, 2, 3, 4, 5 # blue1, blue2, bluescore, red1, red2, redscore if match[0] not in ranks[:, 0]: ranks = add_team(ranks, match[0]) if match[1] not in ranks[:, 0]: ranks = add_team(ranks, match[1]) if match[3] not in ranks[:, 0]: ranks = add_team(ranks, match[3]) if match[4] not in ranks[:, 0]: ranks = add_team(ranks, match[4]) blue1 = np.where(ranks[:, 0] == match[0])[0][0] blue2 = np.where(ranks[:, 0] == match[1])[0][0] red1 = np.where(ranks[:, 0] == match[3])[0][0] red2 = np.where(ranks[:, 0] == match[4])[0][0] blue_r1 = ranks[blue1, 2] blue_r2 = ranks[blue2, 2] red_r1 = ranks[red1, 2] red_r2 = ranks[red2, 2] blue_rating = (blue_r1 + blue_r2) / 2.0 red_rating = (red_r1 + red_r2) / 2.0 expected_blue = 1.0 / (1.0 + pow(10.0, ((red_rating - blue_rating) / 400.0))) expected_red = 1.0 - expected_blue if match[2] > match[5]: actual_blue = 1.0 ranks[blue1, 4] += 1 ranks[blue2, 4] += 1 elif match[2] < match[5]: actual_blue = 0.0 ranks[red1, 4] += 1 ranks[red2, 4] += 1 else: actual_blue = 0.5 actual_red = 1.0 - actual_blue delta_blue = k_factor * (actual_blue - expected_blue) delta_red = k_factor * (actual_red - expected_red) blue1_contrib = blue_r1 / (blue_rating * 2) blue2_contrib = 1.0 - blue1_contrib red1_contrib = red_r1 / (red_rating * 2) red2_contrib = 1.0 - red1_contrib if ranks[blue1, 5]: modifier = 0 if actual_blue == 1.0: modifier = 400 - int(ranks[red1, 5]) * 100 - int(ranks[red2, 5]) * 100 elif actual_blue == 0.0: modifier = -400 + int(ranks[red1, 5]) * 100 + int(ranks[red2, 5]) * 100 ranks[blue1, 6] += red_rating + modifier else: ranks[blue1, 2] = max(100.0, ranks[blue1, 2] + delta_blue * blue1_contrib) if ranks[blue2, 5]: modifier = 0 if actual_blue == 1.0: modifier = 400 - int(ranks[red1, 5]) * 100 - int(ranks[red2, 5]) * 100 elif actual_blue == 0.0: modifier = -400 + int(ranks[red1, 5]) * 100 + int(ranks[red2, 5]) * 100 ranks[blue2, 6] += red_rating + modifier else: ranks[blue2, 2] = max(100.0, ranks[blue2, 2] + delta_blue * blue2_contrib) if ranks[red1, 5]: modifier = 0 if actual_red == 1.0: modifier = 400 - int(ranks[blue1, 5]) * 100 - int(ranks[blue2, 5]) * 100 elif actual_red == 0.0: modifier = -400 + int(ranks[blue2, 5]) * 100 + int(ranks[blue2, 5]) * 100 ranks[red1, 6] += blue_rating + modifier else: ranks[red1, 2] = max(100.0, ranks[red1, 2] + delta_red * red1_contrib) if ranks[red2, 5]: modifier = 0 if actual_red == 1.0: modifier = 400 - int(ranks[blue1, 5]) * 100 - int(ranks[blue2, 5]) * 100 elif actual_red == 0.0: modifier = -400 + int(ranks[blue2, 5]) * 100 + int(ranks[blue2, 5]) * 100 ranks[red2, 6] += blue_rating + modifier else: ranks[red2, 2] = max(100.0, ranks[red2, 2] + delta_red * red2_contrib) ranks[blue1, 3] += 1 ranks[blue2, 3] += 1 ranks[red1, 3] += 1 ranks[red2, 3] += 1 if ranks[blue1, 5]: ranks[blue1, 2] = max(100.0, ranks[blue1, 6] / ranks[blue1, 3]) if ranks[blue1, 3] >= nToEstablish: ranks[blue1, 5] = False if ranks[blue2, 5]: ranks[blue2, 2] = max(100.0, ranks[blue2, 6] / ranks[blue2, 3]) if ranks[blue2, 3] >= nToEstablish: ranks[blue2, 5] = False if ranks[red1, 5]: ranks[red1, 2] = max(100.0, ranks[red1, 6] / ranks[red1, 3]) if ranks[red1, 3] >= nToEstablish: ranks[red1, 5] = False if ranks[red2, 5]: ranks[red2, 2] = max(100.0, ranks[red2, 6] / ranks[red2, 3]) if ranks[red2, 3] >= nToEstablish: ranks[red2, 5] = False return ranks if rankings is None: rankings = pd.DataFrame( data={ 'global rank': [0], 'team': ['0000'], 'elo': [800.0], 'played': [1], 'won': [1], 'provisional': [False], 'provision': [800.0], 'region': [''], 'country': [''], 'grade': [''] }, columns=[ 'global rank', 'team', 'elo', 'played', 'won', 'provisional', 'provision', 'region', 'country', 'grade' ] ).set_index('team') np_rankings = rankings.reset_index().to_numpy() else: np_rankings = rankings.reset_index().to_numpy() np_rankings[:, 0:10] = np_rankings[:, [1, 0, 2, 3, 4, 8, 9, 5, 6, 7]] matches = matches.filter( items=[ 'blue1', 'blue2', 'bluescore', 'red1', 'red2', 'redscore' ] ) for row in matches.values: np_rankings = award_match(row, np_rankings) rankings = pd.DataFrame( np_rankings, columns=[ 'team', 'global rank', 'elo', 'played', 'won', 'provisional', 'provision', 'region', 'country', 'grade' ] ).set_index('team') if '0000' in rankings.index: rankings.drop('0000', inplace=True) rankings = rankings.reset_index().set_index('global rank') rankings.sort_values(by=['elo'], ascending=False, inplace=True) rankings.index = range(1, len(rankings) + 1) rankings = rankings.reindex( columns=['team', 'elo', 'played', 'won', 'region', 'country', 'grade', 'provisional', 'provision'] ) return rankings def update_rankings(selected_season='current'): os.makedirs("data/" + selected_season, exist_ok=True) if os.path.exists("data/" + selected_season + "/metadata.pickle"): with open("data/" + selected_season + "/metadata.pickle", "rb") as file: metadata = pickle.load(file) if metadata.scored_matches == get_matches_scored(selected_season): return None print("new data uploaded, updating ratings...") if os.path.exists("data/" + selected_season + "/teams.pickle"): num_teams = get_teams_total() with open("data/" + selected_season + "/teams.pickle", "rb") as file: teams = pickle.load(file) if teams.shape[0] < num_teams: teams = get_all_teams() with open("data/" + selected_season + "/teams.pickle", "wb") as file: pickle.dump(teams, file) else: teams = get_all_teams() with open("data/" + selected_season + "/teams.pickle", "wb") as file: pickle.dump(teams, file) if os.path.exists("data/" + selected_season + "/match_list.pickle"): match_list = get_all_matches(selected_season) metadata = Metadata(get_matches_scored(selected_season)) with open("data/" + selected_season + "/metadata.pickle", "wb") as file: pickle.dump(metadata, file) with open("data/" + selected_season + "/match_list.pickle", "rb") as file: match_list_old = pickle.load(file) with open("data/" + selected_season + "/match_list.pickle", "wb") as file: pickle.dump(match_list, file) match_list = match_list_old.merge(match_list, indicator=True, how='outer') match_list = match_list[match_list['_merge'] == 'right_only'] else: match_list = get_all_matches(selected_season) metadata = Metadata(get_matches_scored(selected_season)) with open("data/" + selected_season + "/metadata.pickle", "wb") as file: pickle.dump(metadata, file) with open("data/" + selected_season + "/match_list.pickle", "wb") as file: pickle.dump(match_list, file) if os.path.exists("data/" + selected_season + "/elo_db.pickle"): with open("data/" + selected_season + "/elo_db.pickle", "rb") as file: elo_db = pickle.load(file) elo_db = elo_rankings_from_matches(teams, match_list, elo_db) else: elo_db = elo_rankings_from_matches(teams, match_list) with open("data/" + selected_season + "/elo_db.pickle", "wb") as file: pickle.dump(elo_db, file) elo_db.to_csv("data/" + selected_season + "/elo_db.csv") return elo_db def set_exit_signal(signo, _frame): global exit_event exit_event.set() if __name__ == '__main__': signal.signal(signal.SIGINT, set_exit_signal) while not exit_event.is_set(): rankings = update_rankings('current') exit_event.wait(150.0)
import matplotlib.pyplot as plt import pandas import matplotlib.pyplot as plt import sys import avg plt.close('all') if len(sys.argv) == 2 : data = pandas.read_csv(sys.argv[1]) #lecture des données else : data = pandas.read_csv('results_gAlea_10_150.csv') data = data.sort_values(by ='nbSommetsGraphe') #tri des données data = data.drop(['nomFichier', 'numInstance', 'score', 'tempsChemin', 'tempsCalcul'], axis=1) #on enlève les colonnes superflues dijsktra = data.loc[data['nomAlgo'] == 'Dijsktra'].drop(['heuristique', 'nomAlgo'], axis=1) data.drop(['nomAlgo'], axis=1) manhattan = data.loc[data['heuristique'] == 'Manhattan'].drop(['heuristique'], axis=1) #extraction par catégories euclidienne = data.loc[data['heuristique'] == 'euclidienne'].drop(['heuristique'], axis=1) x = manhattan['nbSommetsGraphe'].tolist() # les valeurs en x yManhattan = manhattan['nbSommetsParcourus'].tolist() # les valeurs en y yEuclidienne = euclidienne['nbSommetsParcourus'].tolist() yDijsktra = dijsktra['nbSommetsParcourus'].tolist() plt.xlabel("Nombre de sommets du graphe") plt.ylabel("Nombre de sommets visités avant de trouver le plus court chemin") plt.title("Plus court chemin et nombre de sommets visités") plt.yscale("log") # échelle logarithmique plt.plot(x, yManhattan, label='A* - Manhattan') plt.plot(x, yEuclidienne, label='A* - Euclidienne') plt.plot(x, yDijsktra, label='Dijsktra') print("Nombre de sommets visités moyen - Manhattan : ",avg.Average(yManhattan)) print("Nombre de sommets visités moyen - euclidienne : ",avg.Average(yEuclidienne)) print("Nombre de sommets visités moyen - Dijsktra : ",avg.Average(yDijsktra)) plt.legend() plt.show()
from os import listdir from os.path import isfile, join import re DIR_PATH = 'data' FILES = [DIR_PATH + '/' + file for file in listdir(DIR_PATH) if isfile(join(DIR_PATH, file))] def main_code(): p = re.compile(r'^".*"$') is_blank = False for file in FILES: with open(file, 'r', encoding='utf-8') as f: for line in f: if p.search(line): print(line.replace('"', '').strip()) is_blank = False else: if not is_blank: is_blank = True print() print('-- ' * 100) if __name__ == '__main__': main_code()
from collections import OrderedDict import torch import torch.nn as nn import numpy as np from utils.tools import get_mask_from_lengths, pad, word_level_pooling from .blocks import ( ConvNorm, RelativeFFTBlock, WordToPhonemeAttention, ) from text.symbols import symbols def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): """ Sinusoid position encoding table """ def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array( [get_posi_angle_vec(pos_i) for pos_i in range(n_position)] ) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0.0 return torch.FloatTensor(sinusoid_table) class LinguisticEncoder(nn.Module): """ Linguistic Encoder """ def __init__(self, model_config, train_config): super(LinguisticEncoder, self).__init__() n_position = model_config["max_seq_len"] + 1 n_src_vocab = len(symbols) + 1 d_word_vec = model_config["transformer"]["encoder_hidden"] n_layers = model_config["transformer"]["encoder_layer"] n_head = model_config["transformer"]["encoder_head"] d_k = d_v = ( model_config["transformer"]["encoder_hidden"] // model_config["transformer"]["encoder_head"] ) d_model = model_config["transformer"]["encoder_hidden"] d_inner = model_config["transformer"]["conv_filter_size"] kernel_size = model_config["transformer"]["conv_kernel_size"] # dropout = model_config["transformer"]["encoder_dropout"] window_size = model_config["transformer"]["encoder_window_size"] self.helper_type = train_config["aligner"]["helper_type"] self.max_seq_len = model_config["max_seq_len"] self.d_model = d_model self.n_head = n_head self.src_emb = nn.Embedding( n_src_vocab, d_word_vec, padding_idx=0 ) self.abs_position_enc = nn.Parameter( get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0), requires_grad=False, ) self.kv_position_enc = nn.Parameter( get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0), requires_grad=True, ) self.q_position_enc = nn.Parameter( get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0), requires_grad=True, ) self.phoneme_encoder = RelativeFFTBlock( hidden_channels=d_model, filter_channels=d_inner, n_heads=n_head, n_layers=n_layers, kernel_size=kernel_size, # p_dropout=dropout, window_size=window_size, ) self.word_encoder = RelativeFFTBlock( hidden_channels=d_model, filter_channels=d_inner, n_heads=n_head, n_layers=n_layers, kernel_size=kernel_size, # p_dropout=dropout, window_size=window_size, ) self.length_regulator = LengthRegulator() self.duration_predictor = VariancePredictor(model_config) self.w2p_attn = WordToPhonemeAttention( n_head, d_model, d_k, d_v # , dropout=dropout ) def get_mapping_mask(self, q, kv, dur_w, wb, src_w_len): """ For applying a word-to-phoneme mapping mask to the attention weight to force each query (Q) to only attend to the phonemes belongs to the word corresponding to this query. """ batch_size, q_len, kv_len, device = q.shape[0], q.shape[1], kv.shape[1], kv.device mask = torch.ones(batch_size, q_len, kv_len, device=device) for b, (w, p, l) in enumerate(zip(dur_w, wb, src_w_len)): w, p = [0]+[d.item() for d in torch.cumsum(w[:l], dim=0)], [0] + \ [d.item() for d in torch.cumsum(p[:l], dim=0)] # assert len(w) == len(p) for i in range(1, len(w)): mask[b, w[i-1]:w[i], p[i-1]:p[i] ] = torch.zeros(w[i]-w[i-1], p[i]-p[i-1], device=device) return mask == 0. def add_position_enc(self, src_seq, position_enc=None, coef=None): batch_size, max_len = src_seq.shape[0], src_seq.shape[1] if not self.training and src_seq.shape[1] > self.max_seq_len: pos_enc = get_sinusoid_encoding_table( src_seq.shape[1], self.d_model )[: src_seq.shape[1], :].unsqueeze(0).expand(batch_size, -1, -1).to( src_seq.device ) if coef is not None: pos_enc = coef.unsqueeze(-1) * pos_enc enc_output = src_seq + pos_enc else: position_enc = self.abs_position_enc if position_enc is None else position_enc pos_enc = position_enc[ :, :max_len, : ].expand(batch_size, -1, -1) if coef is not None: pos_enc = coef.unsqueeze(-1) * pos_enc enc_output = src_seq + pos_enc return enc_output def get_rel_coef(self, dur, dur_len, mask): """ For adding a well-designed positional encoding to the inputs of word-to-phoneme attention module. """ idx, L, device = [], [], dur.device for d, dl in zip(dur, dur_len): idx_b, d = [], d[:dl].long() m = torch.repeat_interleave(d, torch.tensor( list(d), device=device), dim=0) # [tgt_len] L.append(m) for d_i in d: idx_b += list(range(d_i)) idx.append(torch.tensor(idx_b).to(device)) # assert L[-1].shape == idx[-1].shape return torch.div(pad(idx).to(device), pad(L).masked_fill(mask == 0., 1.).to(device)) def forward( self, src_p_seq, src_p_len, word_boundary, src_p_mask, src_w_len, src_w_mask, mel_mask=None, max_len=None, attn_prior=None, duration_target=None, duration_control=1.0, ): # Phoneme Encoding src_p_seq = self.src_emb(src_p_seq) enc_p_out = self.phoneme_encoder(src_p_seq.transpose( 1, 2), src_p_mask.unsqueeze(1)).transpose(1, 2) # Word-level Pooing src_w_seq = word_level_pooling( enc_p_out, src_p_len, word_boundary, src_w_len, reduce="mean") # Word Encoding enc_w_out = self.word_encoder(src_w_seq.transpose( 1, 2), src_w_mask.unsqueeze(1)).transpose(1, 2) # Phoneme-level Duration Prediction log_duration_p_prediction = self.duration_predictor( enc_p_out, src_p_mask) # Word-level Pooling (in log scale) log_duration_w_prediction = word_level_pooling( log_duration_p_prediction.exp().unsqueeze(-1), src_p_len, word_boundary, src_w_len, reduce="sum").log().squeeze(-1) x = enc_w_out if duration_target is not None: # Word-level Pooing duration_w_rounded = word_level_pooling( duration_target.unsqueeze(-1), src_p_len, word_boundary, src_w_len, reduce="sum").squeeze(-1) # Word-level Length Regulate x, mel_len = self.length_regulator(x, duration_w_rounded, max_len) else: # Word-level Duration duration_w_rounded = torch.clamp( (torch.round(torch.exp(log_duration_w_prediction) - 1) * duration_control), min=0, ).long() # Word-level Length Regulate x, mel_len = self.length_regulator(x, duration_w_rounded, max_len) mel_mask = get_mask_from_lengths(mel_len) # Word-to-Phoneme Attention # [batch, mel_len, seq_len] src_mask_ = src_p_mask.unsqueeze(1).expand(-1, mel_mask.shape[1], -1) # [batch, mel_len, seq_len] mel_mask_ = mel_mask.unsqueeze(-1).expand(-1, -1, src_p_mask.shape[1]) # [batch, mel_len, seq_len] mapping_mask = self.get_mapping_mask( x, enc_p_out, duration_w_rounded, word_boundary, src_w_len) q = self.add_position_enc(x, position_enc=self.q_position_enc, coef=self.get_rel_coef( duration_w_rounded, src_w_len, mel_mask)) k = self.add_position_enc( enc_p_out, position_enc=self.kv_position_enc, coef=self.get_rel_coef(word_boundary, src_p_len, src_p_mask)) v = self.add_position_enc( enc_p_out, position_enc=self.kv_position_enc, coef=self.get_rel_coef(word_boundary, src_p_len, src_p_mask)) # q = self.add_position_enc(x) # k = self.add_position_enc(enc_p_out) # v = self.add_position_enc(enc_p_out) x, attns, attn_logprob = self.w2p_attn( q=q, k=k, v=v, key_mask=src_mask_, query_mask=mel_mask_, mapping_mask=mapping_mask, indivisual_attn=True, attn_prior=attn_prior if self.helper_type == "ctc" else None, ) return ( x, log_duration_w_prediction, duration_w_rounded, mel_len, mel_mask, attns, attn_logprob, ) class LengthRegulator(nn.Module): """ Length Regulator """ def __init__(self): super(LengthRegulator, self).__init__() def LR(self, x, duration, max_len): output = list() mel_len = list() for batch, expand_target in zip(x, duration): expanded = self.expand(batch, expand_target) output.append(expanded) mel_len.append(expanded.shape[0]) if max_len is not None: output = pad(output, max_len) else: output = pad(output) return output, torch.LongTensor(mel_len).to(x.device) def expand(self, batch, predicted): out = list() for i, vec in enumerate(batch): expand_size = predicted[i].item() out.append(vec.expand(max(int(expand_size), 0), -1)) out = torch.cat(out, 0) return out def forward(self, x, duration, max_len): output, mel_len = self.LR(x, duration, max_len) return output, mel_len class VariancePredictor(nn.Module): """ Duration, Pitch and Energy Predictor """ def __init__(self, model_config): super(VariancePredictor, self).__init__() self.input_size = model_config["transformer"]["encoder_hidden"] self.filter_size = model_config["variance_predictor"]["filter_size"] self.kernel = model_config["variance_predictor"]["kernel_size"] self.conv_output_size = model_config["variance_predictor"]["filter_size"] self.dropout = model_config["variance_predictor"]["dropout"] self.conv_layer = nn.Sequential( OrderedDict( [ ( "conv1d_1", ConvNorm( self.input_size, self.filter_size, kernel_size=self.kernel, stride=1, padding=(self.kernel - 1) // 2, dilation=1, channel_last=True, ), ), ("relu_1", nn.ReLU()), ("layer_norm_1", nn.LayerNorm(self.filter_size)), ("dropout_1", nn.Dropout(self.dropout)), ( "conv1d_2", ConvNorm( self.filter_size, self.filter_size, kernel_size=self.kernel, stride=1, padding=1, dilation=1, channel_last=True, ), ), ("relu_2", nn.ReLU()), ("layer_norm_2", nn.LayerNorm(self.filter_size)), ("dropout_2", nn.Dropout(self.dropout)), ] ) ) self.linear_layer = nn.Linear(self.conv_output_size, 1) def forward(self, encoder_output, mask): out = self.conv_layer(encoder_output) out = self.linear_layer(out) out = out.squeeze(-1) if mask is not None: out = out * mask return out
from __future__ import unicode_literals import re from collections import OrderedDict import io from sqlalchemy import create_engine from sqlalchemy.orm import joinedload, joinedload_all import json from clld.scripts.util import parsed_args from clld.lib.dsv import reader, UnicodeWriter from clld.db.meta import DBSession from clld.db.models.common import Language, ValueSet, ValueSetReference, Value class GBFeature(object): @staticmethod def yield_domainelements(s): try: for m in re.split('\s*,|;\s*', re.sub('^multistate\s+', '', s.strip())): if m.strip(): if m.startswith('As many'): for i in range(100): yield '%s' % i, '%s' % i else: number, desc = m.split(':') yield number.strip(), desc.strip() except: print s raise def __init__(self, d): self.id = d['GramBank ID'].strip() self.name = d['Feature'] self.domain = OrderedDict() for n, desc in self.yield_domainelements(d['Possible Values']): self.domain[n] = desc self.domain.update({'?': 'Not known'}) def format_domain(self): return '; '.join('%s: %s' % item for item in self.domain.items() if item[0] != '?') def row(gc, f, vs=None, value=None): return [ gc, f.id, f.name, f.format_domain(), value or '', (vs.source or '') if vs else '', (vs.values[0].comment or '') if vs else '', ] def export(args, lang, features, gc, ma): values = {k: row(gc, f) for k, f in features.items()} errors = [] sources = {} n = 0 for vs in DBSession.query(ValueSet).filter(ValueSet.language == lang).options( joinedload(ValueSet.parameter), joinedload_all(ValueSet.values, Value.domainelement), joinedload(ValueSet.references, ValueSetReference.source), ): if vs.parameter.id in features: n += 1 f = features[vs.parameter.id] value = vs.values[0].domainelement.name if value == 'N/A': value = '?' assert value in f.domain values[vs.parameter.id] = row(gc, f, vs, value) for ref in vs.references: sources[ref.source.name] = ref.source print lang.id, ':', n, 'of', len(values) subdir = args.data_file('grambank', ma) if not subdir.exists(): subdir.mkdir() path = lambda suffix: subdir.joinpath(gc + suffix) with UnicodeWriter(path('.tsv'), delimiter=b'\t') as writer: writer.writerow(['Language_ID', 'Feature_ID', 'Feature', 'Domain', 'Value', 'Source', 'Comment']) writer.writerows(sorted(values.values(), key=lambda r: r[1])) with open(path('.tsv-metadata.json'), 'wb') as fp: json.dump({ 'type': 'FeatureCollection', 'features': [ { "type": "Feature", "id": 'http://glottolog.org/resource/languoid/id/%s' % gc, "geometry": { "type": "Point", "coordinates": [lang.longitude, lang.latitude] }, "properties": { 'name': lang.name, 'glottocode': gc, 'iso-639-3': lang.iso_code, }, }, ], 'comment': 'Converted from NTS data', #'sources': { # name: sources[name].bibtex().id for name in sorted(sources.keys()) #} }, fp, indent=4, #allow_unicode=True, #default_flow_style=False ) with io.open(path('.bib'), 'w', encoding='utf8') as fp: for src in set(sources.values()): rec = src.bibtex() rec['key'] = src.name fp.write('%s\n\n' % rec) return errors def main(args): features = reader(args.data_file('grambank_features.csv'), dicts=True, ) features = [GBFeature(f) for f in features] features = {'%s' % int(f.id[2:]): f for f in features} errors = [] db = create_engine('postgresql://robert@/glottolog3') for l in DBSession.query(Language): if l.id == 'qgr': continue gc = l.glottocode ma = db.execute(""" select m.id from macroarea as m, languoidmacroarea as lm, language as l where m.pk = lm.macroarea_pk and lm.languoid_pk = l.pk and l.id = '%s';""" % gc).fetchone()[0] if ma == 'pacific': ma = 'papunesia' errors.extend(export(args, l, features, gc, ma)) with UnicodeWriter(args.data_file('na_errors.tsv'), delimiter=b'\t') as writer: writer.writerow(['Language', 'Feature', 'Value', 'Source', 'Comment']) writer.writerows(errors) if __name__ == '__main__': main(parsed_args())
# Generated by Django 3.1.7 on 2021-05-28 16:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dm_page', '0012_auto_20210527_1458'), ] operations = [ migrations.AlterField( model_name='donation', name='date_donated', field=models.DateField(blank=True, null=True), ), ]
class DataModel: """holds the data for STL models""" def __init__(self): """add doc""" self.header = None self.triangles = [] self.nr_of_faces = 0 class Triangle: """each Triangle object holds coordinates for normals and vertexes""" def __init__(self): """add doc""" self.normal_coordinates = [] self.vertex_list = [] self.byte_count = 0
""" Checks the github API for projects within a certain set that do not use CI tools. """ import argparse import json import requests import time from bs4 import BeautifulSoup try: from urllib import urlencode except ImportError: from urllib.parse import urlencode class Scraper: """ This class scrapes GitHub for information, depending on the specified query. """ REQUEST_LIMIT = 2400 def __init__(self, user, authFile=None, target="API"): if authFile is None: raise Exception("No authentication file provided!!") if target == "API": self.gh_request = "https://api.github.com/" elif target == "WEB": self.gh_request = "https://github.com/" self.parameters = dict() self.result = dict() self.user = user self.requests = 0 self.target = target token = json.load(open(authFile)) self.user = token['user'] self.token = token['token'] def query(self, endpoint, parameters=dict(), method="GET", data_type="std"): """ Queries the desired endpoint using the given parameters. :param endpoint: The GitHub endpoint to be queried. :param parameters: A dictionary containing the endpoint's parameters. :param data_type: The type of data queried by the user (diff, patch, std) :return: The result in the requested format. """ result = None # Perform the request: gh_query = self.gh_request + endpoint header_type = '' if data_type.lower() == "diff": header_type = 'application/vnd.github.diff' elif data_type.lower() == "patch": header_type = 'application/vnd.github.patch' else: header_type = 'application/vnd.github+json' if self.target == "API": gh_uri = "%s?%s" % (gh_query, urlencode(parameters)) gh_json_result = requests.request( method, gh_uri, auth=(self.user, self.token), headers={'Accept': header_type} ) if data_type.lower() == 'std': content = gh_json_result.content.decode('utf-8') if content is not None and not content == '': result = json.loads(content) else: result = json.loads( '{"message": "No result returned"}' ) else: result = gh_json_result.content elif self.target == "WEB": gh_uri = "%s" % (gh_query) gh_result = requests.get(gh_uri) soup = BeautifulSoup(gh_result.text.encode("utf8"), 'html.parser') result = soup self.requests += 1 time.sleep(1) return result
import sigopt from data_and_model_setup import LoadTransformData, log_inference_metrics import time import platform from xgboost.sklearn import XGBClassifier def train_xgboost_model(dataset, random_state=1): print("loading and transforming data") load_transform_data = LoadTransformData() trainX, testX, trainY, testY = load_transform_data.load_split_dataset(dataset) # model architecture sigopt.log_model("XGBClassifier") # model_keras.__class__ sigopt.log_dataset('Unscaled') sigopt.log_metadata('Training Records', len(trainX)) sigopt.log_metadata('Testing Reccords', len(testX)) sigopt.log_metadata("Platform", platform.uname()) parameters = { 'objective': 'binary:logistic', 'learning_rate': sigopt.get_parameter('learning_rate', default=0.3), 'n_estimators': sigopt.get_parameter('n_estimators', default=20), 'max_depth': sigopt.get_parameter('max_depth', default=5), 'gamma': sigopt.get_parameter('gamma', default=0), 'min_child_weight': sigopt.get_parameter('min_child_weight', default=1), 'random_state': random_state, 'importance_type': 'gain', 'missing': None, 'verbosity': 2} model = XGBClassifier(**parameters) modelfit = model.fit(trainX, trainY) # Collect model metrics start = time.perf_counter() prediction = modelfit.predict(testX) sigopt.log_metric("Inference Time", time.perf_counter() - start) probability = modelfit.predict_proba(testX)[:, 1] log_inference_metrics(prediction, probability, testY, testX) if __name__ == "__main__": dataset_file = 'https://www.dropbox.com/s/437qdt4yjj64sxd/Fraud_Detection_SigOpt_dataset.csv?dl=1' train_xgboost_model(dataset_file)
""" You dug up a treasure with a lock that has N binary dials. The lock can be unlocked by turning one dial at a time towards the unlock pattern. WARNING: only some patterns are safe (you can access them in a global variable SAFE). Any other pattern will cause the destruction of the contents inside. Your task is to write a function that will accept a lock description: the current state of dials and the unlock sequence. Your function should return "TREASURE" if it's possible to unlock the treasure, and "IMPOSSIBLE" otherwise. As a secondary goal, you'd love to do this as quickly as possible, and record the sequence used. Example 1: Initial pattern: 010 Unlocked pattern: 111 Safe patterns: 000 001 010 101 111 Correct response is: TREASURE because there is a safe sequence from the initial pattern to the unlock pattern: 010 -> 000 -> 001 -> 101 -> 111 Example 2: Initial pattern: 00 Unlocked pattern: 11 Safe patterns: 00 11 Correct response is: "IMPOSSIBLE" as no sequence can go from 00 to 11 with one dial turn at a time. Example 3: Initial pattern: 00 Unlocked pattern: 11 Safe patterns: 00 01 11 Correct response is: TREASURE because there is a safe sequence to the unlock pattern (00->01->11). """ SAFE = [] # sequence = [00, 01, 11] # sequence = [010, 000, 001, 101, 111] def findTreasure(start, final, sequence = []): if length(final) != length(start): return "Impossible" for i in range(0, length(start)): bit = start[i] bit = 0 if bit else bit = 1 flip = copy(start) flip[i] = bit if flip is final: sequence.append(flip) return "TREASURE" else if flip is in sequence: continue else if flip is in SAFE: sequence.append(start) return findTreasure(start, final) return "Impossible" """ You own an ice cream shop, and want to help undecided customers with their flavor choices. You have a history of all of the flavor combinations that people have bought in the past six months. Write an algorithm that suggests a another scoop, given that the customer has picked up to two themselves. """ Customers = { Name : FlavorGraph } def FlavorGraph: flavors Adjacency[flavor] Chocolate->Vanilla->Strawberry # listOfChoices = [(Chocolate, Vnilla), (Straweberry)] def createFlavorGraph(listOfChoices): graph = FlavorGraph() for choice in listOfChoices: for flavor in choice: otherFlavors = choice.remove(flavor) if flavor not in graph.vertices(): node = Flavor(flavor) graph.Adjacency(flavor) = otherFlavors else: for otherFlavor in otherFlavors: graph.weight[graph.edges((flavor, otherFlavor))] += 1
# 대신증권 API # 해외선물 잔고(미결제약정)과 실시간 주문체결 처리 예제 # 해외선물 미결제 내역을 조회 하고 실시간으로 주문 체결 처리를 하는 참고용 예제입니다. # # 사용된 PLUS OBJECT # ■ CpForeTrade.OvfNotPaymentInq - 해외선물 미결제(잔고) 조회 # ■ CpForeDib.OvFutBalance : 해외선물 미결제(잔고) 실시간 업데이트 # # 제공되는 기능 # - 해외선물 미결제 잔고 조회 # - 실사간 주문 체결 업데이트 # # 미제공 기능 # - 현재가 조회 및 실시간 현재가 업데이트 미제공 예제임 # - 평가금액 실시간 업데이트 안됨. # # ※ 주의사항: 본 예제는 단순 참고용으로만 제공되는 예제임 import sys from PyQt5.QtWidgets import * import win32com.client from pandas import Series, DataFrame import pandas as pd import locale import os locale.setlocale(locale.LC_ALL, '') # cp object g_objCodeMgr = win32com.client.Dispatch('CpUtil.CpCodeMgr') g_objCpStatus = win32com.client.Dispatch('CpUtil.CpCybos') g_objCpTrade = win32com.client.Dispatch('CpTrade.CpTdUtil') g_objOptionMgr = win32com.client.Dispatch("CpUtil.CpOptionCode") gExcelFile = 'ovfuturejango.xlsx' # CpEvent: 실시간 이벤트 수신 클래스 class CpEvent: def set_params(self, client, name, caller): self.client = client # CP 실시간 통신 object self.name = name # 서비스가 다른 이벤트를 구분하기 위한 이름 self.caller = caller # callback 을 위해 보관 def OnReceived(self): if self.name == "ovfjango": pbdata = {} pbdata["처리구분"] = self.client.GetHeaderValue(2) # “00”-주문, “01”-정정, “02”-취소, “03”-체결 pbdata["code"] = self.client.GetHeaderValue(6) # 종목코드 pbdata["종목명"] = self.client.GetHeaderValue(7) # 종목코드 pbdata["매매구분"] = self.client.GetHeaderValue(8) # 매매구분 pbdata["잔고수량"] = self.client.GetHeaderValue(9) # 잔고수량 pbdata["단가"] = self.client.GetHeaderValue(10) # 단가 pbdata["청산가능"] = self.client.GetHeaderValue(11) # 청산가능수량 pbdata["미체결수량"] = self.client.GetHeaderValue(12) # 미체결수량 pbdata["현재가"] = self.client.GetHeaderValue(13) # 현재가 pbdata["대비부호"] = self.client.GetHeaderValue(14) # 전일대비부호 pbdata["전일대비"] = self.client.GetHeaderValue(15) # 전일대비 pbdata["전일대비율"] = self.client.GetHeaderValue(16) # 전일대비율 pbdata["평가금액"] = self.client.GetHeaderValue(17) # 평가금액 pbdata["평가손익"] = self.client.GetHeaderValue(18) # 평가손익 pbdata["손익률"] = self.client.GetHeaderValue(19) # 손익률 pbdata["매입금액"] = self.client.GetHeaderValue(20) # 매입금액 pbdata["승수"] = self.client.GetHeaderValue(21) # 승수 pbdata["통화코드"] = self.client.GetHeaderValue(23) # 통화코드 print(pbdata) self.caller.updateContract(pbdata) class CpPublish: def __init__(self, name, serviceID): self.name = name self.obj = win32com.client.Dispatch(serviceID) self.bIsSB = False def Subscribe(self, var, caller): if self.bIsSB: self.Unsubscribe() if (len(var) > 0): self.obj.SetInputValue(0, var) handler = win32com.client.WithEvents(self.obj, CpEvent) handler.set_params(self.obj, self.name, caller) self.obj.Subscribe() self.bIsSB = True def Unsubscribe(self): if self.bIsSB: self.obj.Unsubscribe() self.bIsSB = False class CpPBOvfJango(CpPublish): def __init__(self): super().__init__('ovfjango', 'CpForeDib.OvFutBalance') # 해외선물 잔고(미결제) 통신 class CpOvfJango: def __init__(self): self.acc = g_objCpTrade.AccountNumber[0] # 계좌번호 def Request(self, caller): if (g_objCpStatus.IsConnect == 0): print('PLUS가 정상적으로 연결되지 않음. ') return False # 해외선물 미결제 잔고 objRq = win32com.client.Dispatch('CpForeTrade.OvfNotPaymentInq') objRq.SetInputValue(1, self.acc) # 계좌번호 while True: objRq.BlockRequest() # 현재가 통신 및 통신 에러 처리 rqStatus = objRq.GetDibStatus() rqRet = objRq.GetDibMsg1() print('통신상태', rqStatus, rqRet) if rqStatus != 0: return False # 조회 건수 cnt = objRq.GetHeaderValue(0) print(cnt) if cnt == 0: break for i in range(cnt): item = {} item['code'] = objRq.GetDataValue(3, i) # 코드 item['종목명'] = objRq.GetDataValue(4, i) item['매매구분'] = objRq.GetDataValue(5, i) item['잔고수량'] = objRq.GetDataValue(6, i) item['단가'] = objRq.GetDataValue(7, i) item['청산가능'] = objRq.GetDataValue(8, i) item['미체결수량'] = objRq.GetDataValue(9, i) item['현재가'] = objRq.GetDataValue(10, i) item['전일대비'] = objRq.GetDataValue(11, i) item['전일대비율'] = objRq.GetDataValue(12, i) item['평가금액'] = objRq.GetDataValue(13, i) item['평가손익'] = objRq.GetDataValue(14, i) item['손익률'] = objRq.GetDataValue(15, i) item['매입금액'] = objRq.GetDataValue(16, i) item['승수'] = objRq.GetDataValue(17, i) item['통화코드'] = objRq.GetDataValue(18, i) key = item['code'] + item['매매구분'] caller.ovfJangadata[key] = item print(item) if objRq.Continue == False: print("연속 조회 여부: 다음 데이터가 없음") break # print(self.data) class MyWindow(QMainWindow): def __init__(self): super().__init__() self.bTradeInit = False # 연결 여부 체크 if (g_objCpStatus.IsConnect == 0): print("PLUS가 정상적으로 연결되지 않음. ") return False if (g_objCpTrade.TradeInit(0) != 0): print("주문 초기화 실패") return False self.bTradeInit = True self.pbContract = CpPBOvfJango() self.setWindowTitle('PLUS API TEST') self.setGeometry(300, 300, 300, 240) # 해외선물 잔고 self.ovfJangadata = {} nH = 20 btnPrint = QPushButton('DF Print', self) btnPrint.move(20, nH) btnPrint.clicked.connect(self.btnPrint_clicked) nH += 50 btnExcel = QPushButton('엑셀 내보내기', self) btnExcel.move(20, nH) btnExcel.clicked.connect(self.btnExcel_clicked) nH += 50 btnExit = QPushButton('종료', self) btnExit.move(20, nH) btnExit.clicked.connect(self.btnExit_clicked) self.btnStart_clicked() def btnStart_clicked(self): # 요청 필드 배열 - 종목코드, 시간, 대비부호 대비, 현재가, 거래량, 종목명 obj = CpOvfJango() obj.Request(self); self.pbContract.Unsubscribe() self.pbContract.Subscribe("", self) def btnPrint_clicked(self): for key, value in self.ovfJangadata.items(): print(key, value) def btnExit_clicked(self): self.pbContract.Unsubscribe() exit() def btnExcel_clicked(self): if (len(self.ovfJangadata) == 0): print('잔고 없음') return # df= pd.DataFrame(columns=self.ovfJangadata.keys()) isFirst = True for k, v in self.ovfJangadata.items(): # 데이터 프레임의 컬럼은 데이터의 key 값으로 생성 if isFirst: df = pd.DataFrame(columns=v.keys()) isFirst = False df.loc[len(df)] = v # create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter(gExcelFile, engine='xlsxwriter') # Convert the dataframe to an XlsxWriter Excel object. df.to_excel(writer, sheet_name='Sheet1') # Close the Pandas Excel writer and output the Excel file. writer.save() os.startfile(gExcelFile) return # 실시간 주문 체결 업데이트 def updateContract(self, pbdata): key = pbdata['code'] + pbdata['매매구분'] print(key) # 새로운 잔고 추가 if key not in self.ovfJangadata.keys(): print(key, '찾기 실패') if pbdata["잔고수량"] == 0: return item = {} item['code'] = pbdata['code'] item['종목명'] = pbdata['종목명'] item['매매구분'] = pbdata['매매구분'] item['잔고수량'] = pbdata['잔고수량'] item['단가'] = pbdata['단가'] item['청산가능'] = pbdata['청산가능'] item['미체결수량'] = pbdata['미체결수량'] item['현재가'] = pbdata['현재가'] item['전일대비'] = pbdata['전일대비'] item['전일대비율'] = pbdata['전일대비율'] item['평가금액'] = pbdata['평가금액'] item['평가손익'] = pbdata['평가손익'] item['손익률'] = pbdata['손익률'] item['매입금액'] = pbdata['매입금액'] item['승수'] = pbdata['승수'] item['통화코드'] = pbdata['통화코드'] self.ovfJangadata[key] = item print('새로운 잔고 추가 -', key) return # 기존 잔고에 대한 처리 item = self.ovfJangadata[key] item['잔고수량'] = pbdata['잔고수량'] item['청산가능'] = pbdata['청산가능'] if (pbdata["처리구분"] == '00'): # 주문 접수 print('주문 접수 -', key) self.ovfJangadata[key] = item return if item['잔고수량'] == 0: # 잔고 삭제 del self.ovfJangadata[key] print('잔고 삭제 -', key) return print('체결 업데이트-', key) item['단가'] = pbdata['단가'] item['미체결수량'] = pbdata['미체결수량'] item['현재가'] = pbdata['현재가'] item['전일대비'] = pbdata['전일대비'] item['전일대비율'] = pbdata['전일대비율'] item['평가금액'] = pbdata['평가금액'] item['평가손익'] = pbdata['평가손익'] item['손익률'] = pbdata['손익률'] item['매입금액'] = pbdata['매입금액'] self.ovfJangadata[key] = item return if __name__ == '__main__': app = QApplication(sys.argv) myWindow = MyWindow() myWindow.show() app.exec_()
r""" Discrete Valuation Rings (DVR) and Fields (DVF) """ #************************************************************************** # Copyright (C) 2013 Xavier Caruso <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #************************************************************************** from sage.misc.abstract_method import abstract_method from sage.categories.category_singleton import Category_singleton from sage.categories.euclidean_domains import EuclideanDomains from sage.categories.fields import Fields class DiscreteValuationRings(Category_singleton): """ The category of discrete valuation rings EXAMPLES:: sage: GF(7)[['x']] in DiscreteValuationRings() True sage: TestSuite(DiscreteValuationRings()).run() """ def super_categories(self): """ EXAMPLES:: sage: DiscreteValuationRings().super_categories() [Category of euclidean domains] """ return [EuclideanDomains()] class ParentMethods: @abstract_method def uniformizer(self): """ Return a uniformizer of this ring. EXAMPLES:: sage: Zp(5).uniformizer() 5 + O(5^21) sage: K.<u> = QQ[[]] sage: K.uniformizer() u """ @abstract_method def residue_field(self): """ Return the residue field of this ring. EXAMPLES:: sage: Zp(5).residue_field() Finite Field of size 5 sage: K.<u> = QQ[[]] sage: K.residue_field() Rational Field """ class ElementMethods: @abstract_method def valuation(self): """ Return the valuation of this element. EXAMPLES:: sage: x = Zp(5)(50) sage: x.valuation() 2 """ def euclidean_degree(self): """ Return the Euclidean degree of this element. TESTS:: sage: R.<q> = GF(5)[[]] sage: (q^3).euclidean_degree() 3 sage: R(0).euclidean_degree() Traceback (most recent call last): ... ValueError: Euclidean degree of the zero element not defined """ if not self: raise ValueError("Euclidean degree of the zero element not defined") return self.valuation() def quo_rem(self, other): """ Return the quotient and remainder for Euclidean division of ``self`` by ``other``. TESTS:: sage: R.<q> = GF(5)[[]] sage: (q^2 + q).quo_rem(q) (1 + q, 0) sage: (q + 1).quo_rem(q^2) (0, 1 + q) sage: q.quo_rem(0) Traceback (most recent call last): ... ZeroDivisionError: Euclidean division by the zero element not defined """ if not other: raise ZeroDivisionError("Euclidean division by the zero element not defined") P = self.parent() if self.valuation() >= other.valuation(): return P(self / other), P.zero() else: return P.zero(), self def is_unit(self): """ Return True if self is invertible. EXAMPLES:: sage: x = Zp(5)(50) sage: x.is_unit() False sage: x = Zp(7)(50) sage: x.is_unit() True """ return self.valuation() == 0 def gcd(self,other): """ Return the greatest common divisor of self and other, normalized so that it is a power of the distinguished uniformizer. """ from sage.rings.infinity import Infinity val = min(self.valuation(), other.valuation()) if val is Infinity: return self.parent()(0) else: return self.parent().uniformizer() ** val def lcm(self,other): """ Return the least common multiple of self and other, normalized so that it is a power of the distinguished uniformizer. """ from sage.rings.infinity import Infinity val = max(self.valuation(), other.valuation()) if val is Infinity: return self.parent()(0) else: return self.parent().uniformizer() ** val class DiscreteValuationFields(Category_singleton): """ The category of discrete valuation fields EXAMPLES:: sage: Qp(7) in DiscreteValuationFields() True sage: TestSuite(DiscreteValuationFields()).run() """ def super_categories(self): """ EXAMPLES:: sage: DiscreteValuationFields().super_categories() [Category of fields] """ return [Fields()] class ParentMethods: @abstract_method def uniformizer(self): """ Return a uniformizer of this ring. EXAMPLES:: sage: Qp(5).uniformizer() 5 + O(5^21) """ @abstract_method def residue_field(self): """ Return the residue field of the ring of integers of this discrete valuation field. EXAMPLES:: sage: Qp(5).residue_field() Finite Field of size 5 sage: K.<u> = LaurentSeriesRing(QQ) sage: K.residue_field() Rational Field """ class ElementMethods: @abstract_method def valuation(self): """ Return the valuation of this element. EXAMPLES:: sage: x = Qp(5)(50) sage: x.valuation() 2 """
from queue import PriorityQueue from pxtrade import AbstractEvent class EventsQueue(PriorityQueue): def put(self, event): if not isinstance(event, AbstractEvent): raise TypeError("Only expecting Event objects in the queue.") super().put((event.datetime, event)) def __len__(self): return len(self.queue)
# -*- coding: utf-8 -*- from flask import g, jsonify import json import kuas_api.kuas.cache as cache import kuas_api.modules.error as error import kuas_api.modules.const as const from kuas_api.modules.stateless_auth import auth from .doc import auto # Nestable blueprints problem # not sure isn't this a best practice now. # https://github.com/mitsuhiko/flask/issues/593 #from kuas_api.views.v2 import api_v2 routes = [] def route(rule, **options): def decorator(f): url_rule = { "rule": rule, "view_func": f, "options": options if options else {} } routes.append(url_rule) return f return decorator @route("/token") @auto.doc(groups=["public"]) @auth.login_required def get_auth_token(): """Login to KUAS, and return token for KUAS API. :reqheader Authorization: Using Basic Auth :resjson int duration: The duration of this token to expired. :resjson string token_type: Token type of this token. :resjson strin gauth_token: Auth token. :statuscode 200: success login :statuscode 401: login fail or auth_token expired **Request**: .. sourcecode:: http GET /latest/token HTTP/1.1 Host: kuas.grd.idv.tw:14769 Authorization: Basic xxxxxxxxxxxxx= Accept: */* .. sourcecode:: shell curl -X GET -u username:password https://kuas.grd.idv.tw:14769/v2/token **Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "duration": 3600, "token_type": "Basic", "auth_token": "adfakdflakds.fladkjflakjdf.adslkfakdadf" } """ is_login = json.loads(str(cache.red.get(g.username), "utf-8"))['is_login'] token = g.token return jsonify( auth_token=token.decode('ascii'), token_type="Basic", duration=const.token_duration, is_login= is_login ) @route('/versions/<string:device_type>') @auto.doc(groups=["public"]) def device_version(device_type): """Get latest version for app on (`device_type`) in webstore. :param device_type: device we support :resjson version: Object of version (see below) The versions `version` is a json object list below. :json string device: query device. :json string version: latest version for device. **Request** .. sourcecode:: http GET /latest/versions/android HTTP/1.1 Host: kuas.grd.idv.tw:14769 .. sourcecode:: shell curl -X GET https://kuas.grd.idv.tw:14769/v2/versions/android **Response** .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "version": { "device": "android", "version": "1.5.4" } } """ if device_type in const.device_version: result = { "version": { "device": device_type, "version": const.device_version[device_type] } } return jsonify(result) return error.error_handle(status=404, developer_message="Device not found.", user_message="Device not found.") @route('/servers/status') @auto.doc(groups=["public"]) def servers_status(): """Get KUAS API status for service :resjson list status: Status list (see below) Servers status list :json service: service name. :json status: HTTP status code. **Request** .. sourcecode:: http GET /v2/servers/status HTTP/1.1 Host: kuas.grd.idv.tw:14769 .. sourcecode:: shell curl -X GET https://kuas.grd.idv.tw:14769/v2/servers/status **Response** .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "status": [ { "service": "ap", "status": 200 }, { "service": "bus", "status": 200 }, { "service": "leave", "status": 200 } ] } """ try: original_status = cache.server_status() except Exception as err: return error.error_handle(status=404, developer_message=str(err), user_message="Something wrong.") status = { "status": [ {"service": "ap", "status": original_status[0]}, {"service": "bus", "status": original_status[1]}, {"service": "leave", "status": original_status[2]} ] } return jsonify(status)
import csv from typing import Any, Dict from contrib.descriptions import VulnDescriptionProvider from contrib.internal_types import ScanResult from contrib.report_builders import ReportBuilder class CSVReportBuilder(ReportBuilder): def __init__(self, description_provider: VulnDescriptionProvider): self.description_provider = description_provider self._buffer = '' def build(self) -> Any: return self._buffer pass def add_vulnerable_services(self, scan_results: Dict[str, ScanResult]): with open('tempcsv.csv', "w+") as csvfile: wr = csv.writer(csvfile, dialect='excel') for app_name, result in scan_results.items(): for vulnResult in result.vulns: for addr, ports in result.locations.items(): description = self.description_provider.get_description(vulnResult.name, vulnResult.vuln_type) csvRow = [addr, ports, app_name, vulnResult.name, description.text, vulnResult.severity, vulnResult.severity_str, description.url] wr.writerow(csvRow) with open('tempcsv.csv', "r+") as csvfile: reader = csv.reader(csvfile, delimiter=' ', quotechar='|', skipinitialspace=True) data = [] VulnData = 'IP, Port, Title, CVE,Description,Risk Score,Severity,References\n' for row in reader: data = ' '.join(row) VulnData = VulnData + data + '\n' self._buffer = VulnData return self._buffer
# Implementation to test the CNN as detailed in: # 'Segmentation of histological images and fibrosis identification with a convolutional neural network' # https://doi.org/10.1016/j.compbiomed.2018.05.015 # https://arxiv.org/abs/1803.07301 # Test segmentation performance of the models which were saved at each epoch during training # Computes mean accuracy and DSC across test set for each model import numpy as np import scipy as scp import tensorflow as tf import os import logging import sys import network import utils logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO, stream=sys.stdout) # os.environ['TF_CPP_MIN_LOG_LEVEL']='2' n_epochs = 100 # Number of models h = 1536 # Image height w = 2064 # Image width img_idx = 0 # test_(n-1).png in folder, n-1 = img_idx n_predict = 48 # Number of test images if not os.path.exists("predictions test"): os.makedirs("predictions test") # Initialise model logging.info("Getting predictions") convnet = network.CNN(keep_rate=1.0, train_mode=False) images = tf.placeholder(tf.float32, shape=(1, h, w, 3)) # Build network convnet.build(images) logging.info("Finished building network") # Get and save predictions epoch_acc = np.zeros(n_epochs) epoch_dsc = np.zeros(n_epochs) for j in range(n_epochs): init = tf.global_variables_initializer() # if restore is True: saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) # Reload current model saver.restore(sess, "model/epoch_%d/model.ckpt" %(j+1)) logging.info("Model restored for prediction") for i in range(img_idx,(img_idx+n_predict)): # Get prediction for input image print("Epoch %d, image %d of %d" %((j+1), (i+1), n_predict)) unlabelled = utils.get_unlabelled(i, batch_size=1, test=True) pred = sess.run(convnet.out_max, feed_dict={images: unlabelled}) # Compute accuracy and dsc if mask is available if os.path.isfile("testing set/test_%d_mask.png" %(i+1)): labels = utils.get_labelled(i, 1, test=True) accuracy, dsc = utils.compute_accuracy(pred, labels) print("Prediction percent accuracy: %.3f and DSC: %.3f" %(accuracy, dsc)) epoch_acc[j] += accuracy epoch_dsc[j] += dsc logging.info("Creating output map") map = utils.generate_map(pred) scp.misc.imsave('predictions test/pred_%d_epoch_%d_a_%.3f_d_%.3f.png' %(i+1, j+1, accuracy, dsc), map) else: print("Mask not found. Cannot compute accuracy and DSC") logging.info("Creating output map") map = utils.generate_map(pred) scp.misc.imsave('predictions test/pred_%d_epoch_%d.png' %(i+1, j+1), map) # Stats for each epoch epoch_acc = np.divide(epoch_acc, n_predict) epoch_dsc = np.divide(epoch_dsc, n_predict) print('Accuracy each epoch') print(epoch_acc) print('DSC each epoch') print(epoch_dsc) print('Best accuracy and DSC with epoch') print(np.amax(epoch_acc), np.argmax(epoch_acc)+1, np.amax(epoch_dsc), np.argmax(epoch_dsc)+1)
"""Service implementation for the Galaxy application.""" import os import urllib2 import subprocess from datetime import datetime from cm.services.apps import ApplicationService from cm.services import service_states from cm.services import ServiceRole from cm.services import ServiceDependency from cm.util import paths from cm.util import misc from cm.util.decorators import TestFlag, delay from cm.util.galaxy_conf import attempt_chown_galaxy from cm.util.galaxy_conf import galaxy_option_manager from cm.util.galaxy_conf import populate_process_options from cm.util.galaxy_conf import populate_dynamic_options from cm.util.galaxy_conf import populate_galaxy_paths from cm.util.galaxy_conf import populate_admin_users import logging log = logging.getLogger('cloudman') NUM_START_ATTEMPTS = 2 # Number of times we attempt to start Galaxy class GalaxyService(ApplicationService): def __init__(self, app): super(GalaxyService, self).__init__(app) self.name = ServiceRole.to_string(ServiceRole.GALAXY) self.svc_roles = [ServiceRole.GALAXY] self.remaining_start_attempts = NUM_START_ATTEMPTS # Indicates if the environment for running Galaxy has been configured self.configured = False self.ssl_is_on = False # Environment variables to set before executing galaxy's run.sh self.env_vars = {} self.dependencies = [ ServiceDependency(self, ServiceRole.JOB_MANAGER), ServiceDependency(self, ServiceRole.GALAXY_POSTGRES), ServiceDependency(self, ServiceRole.GALAXY_DATA), ServiceDependency(self, ServiceRole.GALAXY_INDICES), # ServiceDependency(self, ServiceRole.PROFTPD), ServiceDependency(self, ServiceRole.GALAXY_TOOLS) ] self.option_manager = galaxy_option_manager(app) @property def galaxy_home(self): """ Return the path where the Galaxy application is available """ return self.app.path_resolver.galaxy_home def start(self): self.state = service_states.STARTING self.time_started = datetime.utcnow() if not self.activated: self.activated = True log.debug("Service {0} self-activated".format(self.get_full_name())) self.manage_galaxy(True) def remove(self, synchronous=False): log.info("Removing '%s' service" % self.name) super(GalaxyService, self).remove(synchronous) self.state = service_states.SHUTTING_DOWN # Reset the number of restart attempts log.debug("Resetting Galaxy remaining_start_attempts to {0}." .format(self.remaining_start_attempts)) self.remaining_start_attempts = NUM_START_ATTEMPTS self.manage_galaxy(False) def restart(self): log.info('Restarting Galaxy service') self.remove() self.status() self.start() @TestFlag(None) def manage_galaxy(self, to_be_started=True): """ Use this method to start and stop Galaxy application. :type to_be_started: bool :param to_be_started: If set, this method will attempt to start the Galaxy application process. If not set, the method will attempt to shut down the application process. """ log.debug("Using Galaxy from '{0}'".format(self.galaxy_home)) os.putenv("GALAXY_HOME", self.galaxy_home) os.putenv("TEMP", self.app.path_resolver.galaxy_temp) os.putenv("TMPDIR", self.app.path_resolver.galaxy_temp) self.env_vars["GALAXY_HOME"] = self.galaxy_home self.env_vars["TEMP"] = self.app.path_resolver.galaxy_temp self.env_vars["TMPDIR"] = self.app.path_resolver.galaxy_temp conf_dir = self.option_manager.setup() if conf_dir: self.env_vars["GALAXY_UNIVERSE_CONFIG_DIR"] = conf_dir if self.multiple_processes(): self.env_vars["GALAXY_RUN_ALL"] = "TRUE" # HACK: Galaxy has a known problem when starting from a fresh # configuration in multiple process mode. Each process attempts to # create the same directories and one or more processes can fail to # start because it "failed" to create said directories (because # another process created them first). This hack staggers # the process starts in an attempt to circumvent this problem. patch_run_sh_command = ("sudo sed -i -e \"s/server.log \\$\\@$/\\0; " "sleep 4/\" %s/run.sh" % self.galaxy_home) misc.run(patch_run_sh_command) self.extra_daemon_args = "" else: # Instead of sticking with default paster.pid and paster.log, # explicitly set pid and log file to ``main.pid`` and ``main.log`` # to bring single process case inline with defaults for for multiple # process case (i.e. when GALAXY_RUN_ALL is set and multiple servers # are defined). # self.extra_daemon_args = "--pid-file=main.pid --log-file=main.log" # No longer required pass if to_be_started and self.remaining_start_attempts > 0: self.status() if not self.configured: log.debug("Setting up Galaxy application") # Set job manager configs if necessary for job_manager_svc in self.app.manager.service_registry.active( service_role=ServiceRole.JOB_MANAGER): if ServiceRole.SGE in job_manager_svc.svc_roles: log.debug("Running on SGE; setting env_vars") self.env_vars["SGE_ROOT"] = self.app.path_resolver.sge_root, self.env_vars["DRMAA_LIBRARY_PATH"] = self.app.path_resolver.drmaa_library_path # Make sure Galaxy home dir exists if not os.path.exists(self.galaxy_home): log.error("Galaxy application directory '%s' does not " "exist! Aborting." % self.galaxy_home) log.debug("ls /mnt/: %s" % os.listdir('/mnt/')) self.state = service_states.ERROR self.last_state_change_time = datetime.utcnow() return False # Ensure the necessary directories exist for dir_name in [paths.P_GALAXY_INDICES, ('%s/tmp/job_working_directory' % self.app.path_resolver.galaxy_data)]: misc.make_dir(dir_name, 'galaxy') self.configured = True if not self._is_galaxy_running(): log.debug("Starting Galaxy...") self.update_galaxy_config() start_command = self.galaxy_run_command( "%s --daemon" % self.extra_daemon_args) attempt_chown_galaxy(self.galaxy_home) if misc.run(start_command): self.remaining_start_attempts -= 1 elif self.remaining_start_attempts > 0: log.debug("It seems Galaxy failed to start; will atempt to " "auto-restart (up to {0} more time(s))." .format(self.remaining_start_attempts)) self.state = service_states.UNSTARTED self.last_state_change_time = datetime.utcnow() else: log.debug("It seems Galaxy failed to start; setting service " "state to {0}.".format(service_states.ERROR)) self.state = service_states.ERROR self.last_state_change_time = datetime.utcnow() else: log.debug("Galaxy already running.") else: log.info("Shutting down Galaxy...") self.state = service_states.SHUTTING_DOWN stop_command = self.galaxy_run_command( "%s --stop-daemon" % self.extra_daemon_args) if self._is_galaxy_running(): misc.run(stop_command) if not self._is_galaxy_running(): log.debug("Galaxy not running; setting service state to SHUT_DOWN.") self.state = service_states.SHUT_DOWN self.last_state_change_time = datetime.utcnow() # Move all log files subprocess.call("bash -c 'for f in $GALAXY_HOME/{main,handler,manager,web}*.log; " "do mv \"$f\" \"$f.%s\"; done'" % datetime.utcnow() .strftime('%H_%M'), shell=True) def multiple_processes(self): """ Check CloudMan's config if Galaxy should be setup to run in multiple processes mode. :rtype: bool :return: ``True`` if Galaxy should be setup to use multiple processes, ``False`` otherwise. """ return self.app.config.multiple_processes def galaxy_run_command(self, args): """ Compose the command used to manage Galaxy process. This will source Galaxy's virtualenv and compose the run command with provided `args`. :type args: string :param args: Arguments to feed to Galaxy's run command, for example: `--daemon` or `--stop-daemon`. """ env_exports = "; ".join(["export %s='%s'" % ( key, value) for key, value in self.env_vars.iteritems()]) venv = "source $GALAXY_HOME/.venv/bin/activate" run_command = '%s - galaxy -c "%s; %s; sh $GALAXY_HOME/run.sh %s"' % ( paths.P_SU, env_exports, venv, args) return run_command @delay def status(self): """Set the status of the service based on the state of the app process.""" old_state = self.state if self._is_galaxy_running(): self.state = service_states.RUNNING elif (self.state == service_states.SHUTTING_DOWN or self.state == service_states.SHUT_DOWN or self.state == service_states.UNSTARTED or self.state == service_states.WAITING_FOR_USER_ACTION): pass else: if self.state == service_states.STARTING and \ (datetime.utcnow() - self.last_state_change_time).seconds < 200: # Give Galaxy a minutes to start; otherwise, because # the monitor is running as a separate thread, it often happens # that the .pid file is not yet created after the Galaxy process # has been started so the monitor thread erroneously reports # as if starting the Galaxy process has failed. pass else: log.error("Galaxy daemon not running.") if self.remaining_start_attempts > 0: log.debug("Remaining Galaxy start attempts: {0}; setting " "svc state to UNSTARTED" .format(self.remaining_start_attempts)) self.state = service_states.UNSTARTED self.last_state_change_time = datetime.utcnow() else: log.debug("No remaining Galaxy start attempts; setting svc " "state to ERROR") self.state = service_states.ERROR self.last_state_change_time = datetime.utcnow() if old_state != self.state: log.info("Galaxy service state changed from '%s' to '%s'" % ( old_state, self.state)) self.last_state_change_time = datetime.utcnow() if self.state == service_states.RUNNING: # Once the service gets running, reset the number of start attempts self.remaining_start_attempts = NUM_START_ATTEMPTS log.debug("Granting SELECT permission to galaxyftp user on " "'galaxy' database") misc.run('%s - postgres -c "%s -p %s galaxy -c \\\"GRANT SELECT ON galaxy_user TO galaxyftp\\\" "' % (paths.P_SU, self.app.path_resolver.psql_cmd, self.app.path_resolver.psql_db_port), "Error granting SELECT grant to 'galaxyftp' user", "Successfully added SELECT grant to 'galaxyftp' user") # Force cluster configuration state update on status change self.app.manager.console_monitor.store_cluster_config() def _is_galaxy_running(self): """Check is Galaxy process is running and the UI is accessible.""" if self._check_daemon('galaxy'): dns = "http://127.0.0.1:8080" running_error_codes = [403] # Error codes under which Galaxy runs try: urllib2.urlopen(dns) return True except urllib2.HTTPError, e: return e.code in running_error_codes except: return False else: log.debug("Galaxy UI does not seem to be accessible.") return False def update_galaxy_config(self): """ Update Galaxy application configuration. Optionally set Galaxy to use multiple processes, then populate dynamic options (i.e., arbitrary options coming from user data), adjust system paths and set admin users. """ log.debug("Updating Galaxy config") if self.multiple_processes(): populate_process_options(self.option_manager) populate_dynamic_options(self.option_manager) populate_galaxy_paths(self.option_manager) populate_admin_users(self.option_manager) def add_galaxy_admin_users(self, admins_list=[]): """ Set email addresses provided as Galaxy admin users. :type admins_list: list :param admins_list: A list of email addresses corresponding to registered Galaxy users. """ self.option_manager.app.config.galaxy_admin_users = admins_list
import matplotlib.pyplot as plt from sklearn.feature_selection import mutual_info_regression import numpy as np import pymc3 as pm import scipy.stats as st import pickle import datetime class SimulationMetrics: """ A method used to convert traces to something a data analyst can use to analyse """ def __init__(self, traces=[], path=""): """ Constructor for SimulationMetrics Parameters: ---------- traces: List[Pymc3.trace] - A list of traces returned from simulation path: String - The path to a stored SimulationMetrics """ if isinstance(traces, str): path = traces traces = [] if len(traces): self.traces = traces else: self.traces = self.load_from_file(path) self.I = [] def __str__(self): """ Overrides the __str__ str method to print traces """ return self.traces.__str__() def load_from_file(self, location): """ A method which loads a pickled object as the trace Returns: ---------------- - A "un"pickled object Parameters: ---------------- Location: str - The location of the file """ with open(location, "rb") as file: return pickle.load(file) def plot_mutual_bar(self, shift=0): """ A method used in case of multiple parameters Is needed since the traces are than stored in a different sense Parameters ------------------ Shift: int - Since there are quite a large number of simulation a shift in the data can be needed """ start, stop = 0,10 executions = 5 #len(sm.traces)//2//10 fig, ax = plt.subplots(executions,2, figsize=(20,18)) for j in range(shift, shift+executions): for p in range(2): start = (p*10)+(j*20) stop = ((p*10)+10)+(j*20) traces = self.traces[start:stop] Is = {} labels = [] for i in range(10): trace = traces[i][0] name = traces[i][2][0] alice = trace[f"intDist_{i}"] output = trace[f"Output_{i}"] I = mutual_info_regression([[a] for a in alice], output, discrete_features=True)[0] if name[0] in Is: Is[name[0]].append(I) else: labels.append(name[0]) Is[name[0]] = [I] values = len(Is.keys()) vals = [max(v[1]) for v in Is.items()] ax[j-shift][p].bar(labels, vals) ax[j-shift][p].set_ylim(0,7) ax[j-shift][p].set_title(f"Parameter {p} opposite was {self.traces[start+stop//2][2][1]}") ax[j-shift][p].set_ylabel("$I(X;Y)$") plt.tight_layout() plt.show() def plot_mutual_information(self, figsize=(16,8), as_bar=True): """ Plots the mutual information as a graph for each distribution Parameters -------------- figsize: Tuple<Int> - The size of the images as_bar: bool - Determines if the distribution should be a dot plot or a bar plot """ I = self.mutual_information() size = len(I) if len(I) > 1 else 2 plt.style.use('seaborn-darkgrid') _, ax = plt.subplots(2, 2,figsize=figsize) ylim = round(max(self.highest_leakage(head=1, verbose=0), key=lambda x: x[0])[0][0]+0.5) for pos, (axs, values) in enumerate(zip(ax.flatten(), I)): x = 0 items = values.items() labels = [] best_vals = [] for k,v in items: if as_bar: best = max(v, key=lambda x: x[0]) best_vals.append(best[0]) else: for value, info in v: axs.plot([x], value, "x", label=str(info[1:])) best_info = round(max(v, key=lambda x: x[0])[0],2) axs.annotate(str(best_info), xy=(x, best_info), fontsize=16) if str(k) == "TruncatedNormal": labels.append("Truncated \n Normal") else: labels.append(str(k)) x+=1 if as_bar: axs.bar([i for i in range(len(best_vals))], best_vals) alice = {0: (0,100), 1: (0,300), 2: (0,10), 3: (0,1)} pi_pos = "A_{\pi_" + str(pos+1) + "}" title = f"$I(Y_{pos+1};{pi_pos})$ for parameter {pos+1} where ${pi_pos}$ ~ $U$ {alice[pos]}" ylabel = f"$I(Y_{pos+1};{pi_pos})$" axs.set_title(title, fontsize=16) axs.set_ylabel(ylabel, fontsize=14) axs.set_xlabel(f"Distributions", fontsize=14) axs.set_xticks(range(len(labels))) axs.set_xticklabels(labels, fontsize=14) axs.set_ylim(0,ylim) pos += 1 plt.tight_layout() plt.show() def highest_leakage(self, head=1, verbose=1): """ A method used to calculate the highest leakage grouped by each distribution Returns ----------- List[Tuple[Float, Tuple[String, ]]] - Returns a list containing the mutual information next to the specific distribution Parameters ----------- head: Int - Determines how many distributions are included verbose: int - Detmines if the distributions should be printed """ if not len(self.I): self.mutual_information() best_vals = [] for parameter_pos, l in enumerate(self.I): best_dist = [] for k,v in l.items(): best = max(v, key=lambda x: x[0]) best_dist.append(best) best_dist = list(sorted(best_dist, key=lambda x: x[0], reverse=True)) if verbose: print(f"The distribution that had the most leakage was {best_dist[:head]} for parameter {parameter_pos}") best_vals.append(best_dist[:head]) return best_vals def save_to_file(self, location=""): """ Save the particular trace to a file with the format: Metrics-%Y-%m-%d-%H-%M-%S.priv Parameter: ----------- location: string - The location in which the files should be saved """ date = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") with open(location+f"metrics-{date}.priv", "wb") as file: pickle.dump(self.traces, file) def mutual_information(self): """ Calculates the mutual information for each distribution and appends them to a global variable I Returns -------- List[float, List[String,]] - A list of the mutual information paired with its respective distribution """ _, names, _ = self.traces[0] size = len(names) mutual_information = [{} for _ in range(size)] for i in range(size): for trace, names, info in self.traces: discrete = ("int" in str(names[i])) alice = trace[names[i]] try: output = trace["Output"] except: pos = int(str(names[i]).split("_")[-1]) if pos < 10: output = trace[f"Output_{pos}"] else: continue I_ao = mutual_info_regression([[j] for j in alice], output, discrete_features=discrete)[0] while (len(info) == 1): info = info[0] # Used to unwrap the inner information in case of subtypes such as List[List[Tuple[...]]] if isinstance(info, tuple) or (isinstance(info, list) and isinstance(info[0], list)): info = info[i] if info[0] in mutual_information[i]: mutual_information[i][info[0]].append((I_ao,info)) else: mutual_information[i][info[0]] = [(I_ao, info)] self.I = mutual_information return mutual_information
import json from Name import NameDefinition, Gender, Region, NameSource class TestNames: def test_meaning_none(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning=None) assert len(name.meanings) is 0 def test_meaning_merge_same_origin(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name.add_meaning(meaning="meaning2", origin=Region.United_States) assert len(name.meanings) is 2 assert name.meanings[0].meaning == "meaning1" assert name.meanings[0].origins == [Region.United_States] assert name.meanings[1].meaning == "meaning2" assert name.meanings[1].origins == [Region.United_States] def test_meaning_merge_same_meaning_different_origins(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name.add_meaning(meaning="meaning1", origin=Region.United_Kingdom) assert len(name.meanings) is 1 assert name.meanings[0].meaning == "meaning1" assert name.meanings[0].origins == [Region.United_States, Region.United_Kingdom] def test_gender_boy_to_unisex(self): name = NameDefinition(name="name1", gender=Gender.boy) assert name.gender == Gender.boy name.append_attrs(gender=Gender.girl) assert name.gender == Gender.unisex def test_gender_girl_to_unisex(self): name = NameDefinition(name="name1", gender=Gender.girl) assert name.gender == Gender.girl name.append_attrs(gender=Gender.boy) assert name.gender == Gender.unisex def test_gender_unisex_to_girl_still_unisex(self): name = NameDefinition(name="name1", gender=Gender.unisex) assert name.gender == Gender.unisex name.append_attrs(gender=Gender.girl) assert name.gender == Gender.unisex def test_gender_unisex_to_boy_still_unisex(self): name = NameDefinition(name="name1", gender=Gender.unisex) assert name.gender == Gender.unisex name.append_attrs(gender=Gender.boy) assert name.gender == Gender.unisex def test_name_to_dict(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name_dict = name.to_dict() name_json = json.dumps(name_dict) assert name_json == '{"name": "name1", "gender": "boy", "meanings": [{"meaning": "meaning1", "origins": ["United States"]}], "known_persons": "", "source": []}' def test_get_all_origins_same_meaning(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name.add_meaning("meaning1", origin=Region.United_Kingdom) expected_meanings = [Region.United_States, Region.United_Kingdom] expected_meanings.sort() assert name.get_all_origins() == expected_meanings def test_get_all_origins_different_meanings(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name.add_meaning("meaning1", origin=Region.United_Kingdom) name.add_meaning("meaning2", origin=Region.India) name.add_meaning("meaning2", origin=Region.Tamil) expected_meanings = [Region.United_Kingdom, Region.United_States, Region.India, Region.Tamil] expected_meanings.sort() assert name.get_all_origins() == expected_meanings def test_get_all_meanings_same_meaning(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name.add_meaning("meaning1", origin=Region.United_Kingdom) assert name.get_all_meanings() == ["meaning1"] def test_get_all_meanings_different_meanings(self): name = NameDefinition(name="name1", gender=Gender.boy, meaning="meaning1", origin=Region.United_States) name.add_meaning("meaning1", origin=Region.United_Kingdom) name.add_meaning("meaning2", origin=Region.India) name.add_meaning("meaning2", origin=Region.Tamil) assert name.get_all_meanings() == ["meaning1", "meaning2"] def test_append_source(self): name = NameDefinition(name="name1", gender=Gender.boy, source=NameSource.ssa) name.append_attrs(source=NameSource.pantheon) assert len(name.sources) is 2 assert name.sources == {NameSource.ssa, NameSource.pantheon} def test_merge_source(self): name1 = NameDefinition(name="name1", gender=Gender.boy, source=NameSource.ssa) name2 = NameDefinition(name="name1", gender=Gender.boy, source=NameSource.pantheon) name1.merge_name(name2) assert len(name1.sources) is 2 assert name1.sources == {NameSource.ssa, NameSource.pantheon}
# ============================================================================ # 付録 A 設置する暖房設備機器又は放熱器の種類に応じた暖房方式及び運転方法の決定方法 # 並びに評価上想定される暖房設備機器又は放熱器の種類 # ============================================================================ # ============================================================================ # A.1 設置する暖房設備機器又は放熱器の種類に応じた暖房方式及び運転方法の決定方法 # ============================================================================ def calc_heating_mode(region, H_A=None, H_MR=None, H_OR=None): """暖房方式及び運転方法の区分を取得する Args: region(int): 省エネルギー地域区分 H_A(dict, optional): 暖房方式 (Default value = None) H_MR(dict, optional): 主たる居室の暖房機器の仕様 (Default value = None) H_OR(dict, optional): その他の居室の暖房機器の仕様 (Default value = None) Returns: tuple(str, str): 暖房方式及び運転方法の区分 """ if H_A is None: if H_MR is None and H_OR is None: return None, None default_spec = get_default_heating_spec(region) if H_MR['type'] in ['設置しない', 'その他']: H_MR_type = default_spec[0]['type'] else: H_MR_type = H_MR['type'] if H_OR is not None: if H_OR['type'] in ['設置しない', 'その他']: H_OR_type = default_spec[1]['type'] else: H_OR_type = H_OR['type'] y = get_index_of_table_a_1(H_MR_type) def to_roha(s): """ Args: s: Returns: """ if type(s) is tuple: return (to_roha(s[0]), to_roha(s[1])) else: if s == '連続': return 'ろ' elif s == '間歇': return 'は' else: raise ValueError(s) if H_OR is not None: x = get_index_of_table_a_1(H_OR_type) return to_roha(get_table_a_1_a()[y][x]) else: tmp = get_table_a_1_b()[y] if type(tmp) is tuple: if region in [1, 2]: return to_roha(tmp[0]), None elif region in [3, 4, 5, 6, 7]: return to_roha(tmp[1]), None else: raise ValueError(region) else: return to_roha(tmp), None if H_A['type'] == 'ダクト式セントラル空調機': # 住宅全体を連続的に暖房する方式 return 'い' else: raise ValueError(H_A['type']) def get_index_of_table_a_1(type): """表A.1における行番号を取得する Args: type(str): 主たる居室に設置する暖冷房設備機器等 Returns: int: 表A.1における行番号 """ key_table = { '電気蓄熱暖房器': 0, '温水暖房用パネルラジエーター': 1, '温水暖房用床暖房': 2, '温水暖房用ファンコンベクター': 3, 'ルームエアコンディショナー': 4, 'FF暖房機': 5, '電気ヒーター床暖房': 6, 'ルームエアコンディショナー付温水床暖房機': 7 } return key_table[type] def get_table_a_1_a(): """表 A.1(a) 主たる居室及びその他の居室の運転方法(その他の居室がある場合) Args: Returns: list: 表 A.1(a) 主たる居室及びその他の居室の運転方法(その他の居室がある場合) """ table_a_1_a = [ # 電気蓄熱暖房器 ( ('連続', '連続'), ('連続', '連続'), ('連続', '連続'), ('連続', '間歇'), ('連続', '間歇'), ('連続', '間歇'), ('連続', '間歇'), ('連続', '間歇'), ), # パネルラジエータ― ( ('連続', '連続'), ('連続', '連続'), ('連続', '連続'), ('連続', '間歇'), ('連続', '間歇'), ('連続', '間歇'), ('連続', '間歇'), ('連続', '間歇'), ), # 温水床暖房 ( ('連続', '連続'), ('連続', '連続'), ('連続', '連続'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ), # ファンコンベクター ( ('間歇', '連続'), ('間歇', '連続'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ), # ルームエアコンディショナー ( ('間歇', '連続'), ('間歇', '連続'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ), # FF暖房機 ( ('間歇', '連続'), ('間歇', '連続'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ), # 電気ヒーター床暖房 ( ('間歇', '連続'), ('間歇', '連続'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ), # ルームエアコンディショナー付温水床暖房 ( ('間歇', '連続'), ('間歇', '連続'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ('間歇', '間歇'), ) ] return table_a_1_a def get_table_a_1_b(): """表 A.1(b) 主たる居室の運転方法(その他の居室がない場合) Args: Returns: list: 表 A.1(b) 主たる居室の運転方法(その他の居室がない場合) """ table_a_1_b = [ '連続', '連続', ('連続', '間歇'), '間歇', '間歇', '間歇', '間歇', '間歇', ] return table_a_1_b def get_default_heating_spec(region): """暖房設備機器等が設置されない場合の評価上想定される暖房設備機器等の種(表A.3)を取得する Args: region(int): 省エネルギー地域区分 Returns: tuple(dict, dict, dict): 暖房設備機器等が設置されない場合の評価上想定される暖房設備機器等の種 """ def to_spec(type): """ Args: type(str): Returns: """ if type == '温水暖房用パネルラジエーター': return { 'type': type } elif type == 'FF暖房機': return { 'type': type, 'e_rtd': 0.86 } elif type == 'ルームエアコンディショナー': return { 'type': type, 'e_class': 'ろ', 'dualcompressor': False } else: raise ValueError(type) if region != 8: type_list = get_table_a_5()[region - 1] if region in [1, 2]: hw_spec = { 'type': '石油従来型温水暖房機', 'e_rtd': 0.83 } return to_spec(type_list[0]), to_spec(type_list[1]), hw_spec else: return to_spec(type_list[0]), to_spec(type_list[1]), None else: return None, None, None def get_default_heatsource(region): """温水暖房用熱源機を設置しない場合又はその他の温水暖房機を設置する場合に想定する温水暖房用熱源機の仕様を取得する Args: region(int): 省エネルギー地域区分 Returns: dict: 温水暖房用熱源機を設置しない場合又はその他の温水暖房機を設置する場合に想定する温水暖房用熱源機の仕様 """ if region == 8: return None hs_type = get_table_a_6()[region - 1] e_rtd_table = { '石油従来型温水暖房機': 0.830, 'ガス従来型温水暖房機': 0.825 } e_rtd = e_rtd_table[hs_type] return { 'type': hs_type, 'e_rtd_hs': e_rtd, # 配管を設置しない場合においては、配管の断熱措置を「断熱被覆のないもの」として評価 'pipe_insulation': False, 'underfloor_pipe_insulation': False } def get_table_a_5(): """表 A.5 主たる居室若しくはその他の居室に暖房設備機器等を設置しない場合又は表 A.1 に掲げる 暖房設備機器等以外の暖房設備機器等を設置する場合の評価において想定する暖房設備機器等 Args: Returns: 表 A.5 主たる居室若しくはその他の居室に暖房設備機器等を設置しない場合又は表 A.1 に掲げる 暖房設備機器等以外の暖房設備機器等を設置する場合の評価において想定する暖房設備機器等 """ table_a_5 = [ ('温水暖房用パネルラジエーター', '温水暖房用パネルラジエーター'), ('温水暖房用パネルラジエーター', '温水暖房用パネルラジエーター'), ('FF暖房機', 'FF暖房機'), ('FF暖房機', 'FF暖房機'), ('ルームエアコンディショナー', 'ルームエアコンディショナー'), ('ルームエアコンディショナー', 'ルームエアコンディショナー'), ('ルームエアコンディショナー', 'ルームエアコンディショナー'), ] return table_a_5 def get_table_a_6(): """表 A.6 温水暖房用熱源機を設置しない又はその他の温水暖房用熱源機を設置する場合の評価において想定する温水暖房用熱源機 Args: Returns: list: 表 A.6 温水暖房用熱源機を設置しない又はその他の温水暖房用熱源機を設置する場合の評価において想定する温水暖房用熱源機 """ table_a_6 = [ '石油従来型温水暖房機', '石油従来型温水暖房機', '石油従来型温水暖房機', '石油従来型温水暖房機', 'ガス従来型温水暖房機', 'ガス従来型温水暖房機', 'ガス従来型温水暖房機', ] return table_a_6
from django.apps import AppConfig class SitespaceConfig(AppConfig): name = 'SiteSpace'
StudentofFRI = ["Anton", "Budi", "Doni", "Huda"] print("List of Student = ") print(StudentofFRI[0]) print(StudentofFRI[1]) print(StudentofFRI[2]) print(StudentofFRI[3])
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import threading import allreducer as ar import torch import torch.nn as nn import time from mpi4py import MPI from compression import NoneCompressor from settings import logger is_py2 = sys.version[0] == '2' if is_py2: import Queue else: import queue as Queue class _DistributedOptimizer(torch.optim.Optimizer): def __init__(self, params, named_parameters, compressor, is_sparse=True, err_handler=None, layerwise_times=None, sigma_scale=2.5, density=0.01, norm_clip=None, writer=None): super(self.__class__, self).__init__(params) self._compressor= compressor self._sparse = is_sparse self._layerwise_times = layerwise_times self._msg_queue = Queue.Queue() self._msg_queue2 = Queue.Queue() if named_parameters is not None: named_parameters = list(named_parameters) else: named_parameters = [] # make sure that named_parameters are tuples if any([not isinstance(p, tuple) for p in named_parameters]): raise ValueError('named_parameters should be a sequence of ' 'tuples (name, parameter), usually produced by ' 'model.named_parameters().') if len(named_parameters) > 0: self._parameter_names = {v: k for k, v in sorted(named_parameters)} else: self._parameter_names = {v: 'allreduce.noname.%s' % i for param_group in self.param_groups for i, v in enumerate(param_group['params'])} self._handles = {} self._grad_accs = [] self._requires_update = set() self._register_hooks() self._lock = threading.Lock() self._key_lock = threading.Lock() self.momentum_correction = False self._allreducer = ar.AllReducer(named_parameters, self._lock, self._key_lock, compressor, sparse=self._sparse, err_callback=err_handler, layerwise_times=layerwise_times, sigma_scale=sigma_scale, density=density, norm_clip=norm_clip, msg_queue=self._msg_queue, msg_queue2=self._msg_queue2, writer=writer) self.allreducer_thread = threading.Thread(name='allreducer', target=self._allreducer.run) self.allreducer_thread.start() self.local = False self._synced = False def _register_hooks(self): for param_group in self.param_groups: for p in param_group['params']: if p.requires_grad: p.grad = p.data.new(p.size()).zero_() self._requires_update.add(p) p_tmp = p.expand_as(p) grad_acc = p_tmp.grad_fn.next_functions[0][0] grad_acc.register_hook(self._make_hook(p)) self._grad_accs.append(grad_acc) def _make_hook(self, p): def hook(*ignore): assert p not in self._handles assert not p.grad.requires_grad if not self.local: name = self._parameter_names.get(p) d_p = p.grad.data if self.momentum_correction: param_state = self.state[p] momentum = 0.9 if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p) d_p = buf self._handles[p] = self._allreducer.add_tensor(name, d_p) torch.cuda.synchronize() #if rank() == 0: # logger.info('-->pushed time [%s]: %s, norm: %f', name, time.time(), p.grad.data.norm()) self._msg_queue.put(name) return hook def synchronize(self): if not self._synced: self._msg_queue2.get() # wait for allreducer self._synced = True for p, value in self._handles.items(): output = self._allreducer.get_result(value) p.grad.data.set_(output.data) self._handles.clear() def _step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = p.grad.data name = self._parameter_names.get(p) if weight_decay != 0: d_p.add_(weight_decay, p.data) #if name.find('bias') >= 0 or name.find('bn') >= 0: # print('batch norm or bias detected, continue, %s' % name) if momentum != 0 and not self.momentum_correction: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) buf.mul_(momentum).add_(d_p) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf p.data.add_(-group['lr'], d_p) return loss def _step_with_mc(self, closure=None): """Performs a single optimization step with momemtum correction. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = p.grad.data name = self._parameter_names.get(p) if weight_decay != 0: d_p.add_(weight_decay, p.data) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) buf.mul_(momentum).add_(d_p) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf p.data.add_(-group['lr'], d_p) return loss def step(self, closure=None): if not self.local: self.synchronize() ret = self._step(closure) self._synced = False return ret def stop(self): self._allreducer.stop() self._msg_queue.put('STOP') def add_train_epoch(self): self._allreducer.train_epoch += 1 def get_current_density(self): return self._allreducer.get_current_density() def DistributedOptimizer(optimizer, named_parameters=None, compression=NoneCompressor, is_sparse=False, err_handler=None, layerwise_times=None, sigma_scale=2.5, density=0.1, norm_clip=None, writer=None): cls = type(optimizer.__class__.__name__, (optimizer.__class__,), dict(_DistributedOptimizer.__dict__)) return cls(optimizer.param_groups, named_parameters, compression, is_sparse, err_handler, layerwise_times, sigma_scale=sigma_scale, density=density, norm_clip=norm_clip, writer=writer) def rank(): return MPI.COMM_WORLD.rank def size(self): return MPI.COMM_WORLD.size
#! /usr/bin/env python ## RFC5246 Data definition language parser ## Rich Salz, [email protected], June 2013. ## Copyright 2013-2015, Rich Salz ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. import os, StringIO, subprocess, sys tests = ( ( "uint8 f; uint8 f;\n", "INFILE:1: error near ``;'': Duplicate symbol ``f'' found\n" ), ( "", "INFILE:1: error near ``'': syntax error, unexpected $end\n" ), ( "uint16 f<10..1>;\n", "INFILE:1: error near ``;'': ``f'' range 10 less than 1\n" ), ( "uint16 f[0];\n", "INFILE:1: error near ``;'': ``f'' size (0) is not positive\n" ), ( "uint16 f[2^33-1];\n", "INFILE:1: error near ``2^33-1'': Exponent out of range\n" "INFILE:1: error near ``;'': ``f'' size (0) is not positive\n" ), ( "uint16 f[2^3-1];\n", "INFILE:1: error near ``2^3-1'': Bad exponent\n" "INFILE:1: error near ``;'': ``f'' size (0) is not positive\n" ), ( "uint16 f[2^3-2];\n", "INFILE:1: error near ``2^3-2'': Bad exponent\n" "INFILE:1: error near ``;'': ``f'' size (0) is not positive\n" ), ( "enum { a, a } b;", "INFILE:1: error near ``a'': Duplicate ``a'' in enum\n" ), ( "enum { c(1), a(1..3) } b;", "INFILE:1: error near ``)'': Enum range for ``a'' for non-reserved name\n" ), ( "enum { c(1), reserved(1..3) } b;", "" ), ( "enum { a(1), b } c;", "INFILE:1: error near ``}'': syntax error, unexpected '}', expecting '('\n" ), ( "enum { a(1), b, } c;", "INFILE:1: error near ``,'': syntax error, unexpected ',', expecting '('\n" ), ( "enum { a(20), b(20), (12) } d; ", "INFILE:1: error near ``;'': Value for ``a'' is too big (20 > 12)\n" "INFILE:1: error near ``;'': Enum ``b'' duplicates value 20\n" "INFILE:1: error near ``;'': Value for ``b'' is too big (20 > 12)\n" ), ( '''extern f; uint32 g[f]; uint32 gg[ff];''', "INFILE:3: error near ``;'': Unknown size reference ``ff''\n" ), ( "select (f) { case a: ; } f;", "INFILE:1: error near ``{'': Unknown variant selector ``f''\n" ), ( '''extern f; select (f) { case a: ; } g;''', "" ), ( '''enum { true, false } bool; select (bool) { case a: case a: ; } g;''', "INFILE:3: error near ``:'': Duplicate case ``a''\n" ), ( '''extern f; extern extensions; select (f) { case a: case b: case c: digitally-signed extensions; case d: ; } s;''', "" ), ( '''extern f; extern extensions; select (f) { case a: case b: case c: digitally-signed extensions; case a: ; } s;''', "INFILE:5: error near ``;'': Duplicate case ``a'' in ``s''\n" ), ( '''extern f; extern extensions; select (f) { case a: case b: case b: digitally-signed extensions; } s;''', "INFILE:3: error near ``:'': Duplicate case ``b''\n" ), ( '''extern f; extern extensions; select (f) { case a: case b: case c: digitally-signed extensions ; uint8 spacer; } s;''', "INFILE:3: error near ``uint8'': syntax error, unexpected tUINT8, expecting tCASE or '}'\n" ), ( '''extern f; extern extensions; extern d; select (f) { case a: case b: case c: digitally-signed extensions; d e; } s;''', "" ), ( '''extern f; extern extensions; select (f) { case a: digitally-signed extensions ; case b: f; } s;''', "" ), ( '''extern f; extern extensions; select (f) { case a: digitally-signed extensions ; case b: f field; } s;''', "" ), ( '''extern f; extern extensions; select (f) { case c: f2 field; } s;''', "INFILE:4: error near ``}'': Unknown member type ``f2''\n" ), ( "uint8 f; extern f;", "" ), ( "extern f; uint8 f;", "" ), ( "struct { uint8 f; uint8 f; } s;", "INFILE:1: error near ``;'': Duplicate item ``f'' in ``s''\n" ), ( '''extern ZZ; struct { uint8 f; ZZ g; } s;''', "" ), ( "struct { uint8 f; mytype g; } s;", "INFILE:1: error near ``;'': Unknown member type ``mytype''\n" ), ( '''struct { uint8 size; opaque g[s.size]; } s;''', "INFILE:3: error near ``;'': Unknown size reference ``s.size''\n" "INFILE:3: error near ``;'': Note: cannot resolve dotted items.\n" ), ( '''struct { uint8 size; } s; opaque g[s.size]; opaque h[s.size];''', "INFILE:4: error near ``;'': Unknown size reference ``s.size''\n" "INFILE:4: error near ``;'': Note: cannot resolve dotted items.\n" "INFILE:5: error near ``;'': Unknown size reference ``s.size''\n" ), ( "struct { } empty;", "" ), ( '''// comment uint8 foo; struct {foo bar;} baz;''', "" ), ( "uint8 f; /* comment", "INFILE:1: error near ``'': EOF in comment\n" ), ( "uint8 f; // /* comment", "" ), ( '''extern Extension; extern extensions_present; uint8 ProtocolVersion; opaque Random[12]; opaque SessionID[2^8-1]; struct { ProtocolVersion client_version; Random random; SessionID session_id; select (extensions_present) { case false: ; case true: Extension extensions<0..2^16-1>; }; } ClientHello;''', "" ), ( '''uint8 f; struct {} empty; select (f) { case false: select (f) { case false: ; } }''', "INFILE:4: error near ``select'': syntax error, unexpected tSELECT\n" ), ( '''struct { struct { uint16 x[2]; } n; uint32 x; } b;''', "" ), ( '''struct { uint8 f[12]; } x; struct { struct { x nested[2]; } n; uint32 x; } b;''', "" ), ( '''struct { struct { foo nested[2]; } n; uint32 x; } b;''', "INFILE:4: error near ``;'': Unknown member type ``foo''\n" ), ( '''struct { select (b.x) { case foo: ; } n; uint32 x; } b;''', "INFILE:2: error near ``{'': Unknown variant selector ``b.x''\n" "INFILE:2: error near ``{'': Note: cannot resolve dotted items.\n" ), ) infile = "test-in" outfile = "test-out" passed = 0 failed = 0 argv = ( "./parser", infile ) for test,expected in tests: open(infile, "w").write(test) subprocess.Popen(argv, stdout=open(outfile, "w")).wait() results = open(outfile).read() expected = expected.replace("INFILE", infile) if results == expected: passed += 1 else: failed += 1 print "---\nFail" print " - Test", passed + failed + 1, "\n", test, "\n" print " - Expected\n", expected, "\n" print " - Got\n", results, "\n" print "---" os.unlink(infile) os.unlink(outfile) print "passed", passed, "failed", failed, "total", passed + failed sys.exit(failed)
from flask import Flask from flask_bcrypt import Bcrypt from modules.secrets import secrets app = Flask('bookmark') app.secret_key = secrets.bookmark_secret bcrypt = Bcrypt(app)
from .list_builder import ListBuilder, ListRootBuilder from moff.node import OrderedListNode, ListItemNode, node class OrderedListRootBuilder (ListRootBuilder): pass class OrderedListBuilder (ListBuilder): # override def build_node(self): lnode = OrderedListNode() for anyone in self.get_collection(): inode = ListItemNode() inode.add_node(node(anyone)) lnode.add_node(inode) return lnode
# -*- coding: utf-8 -*- """ Enelvo ~~~~~~~~~~~~~~~~~~~ A flexible normalizer for user-generated content. :copyright: (c) 2017-2019 by Thales Bertaglia :licence: MIT, see LICENSE for more details """ import logging try: from importlib.metadata import version, PackageNotFoundError # type: ignore except ImportError: # pragma: no cover from importlib_metadata import version, PackageNotFoundError # type: ignore try: __version__ = version(__name__) except PackageNotFoundError: # pragma: no cover __version__ = "unknown" __prog__ = "enelvo" __title__ = "Enelvo" __summary__ = "A flexible normaliser for user-generated content." __uri__ = "https://www.github.com/tfcbertaglia/enelvo" __author__ = "Thales Bertaglia" __email__ = "[email protected]" __license__ = "MIT" __copyright__ = "Copyright 2017-2020 Thales Bertaglia" # the user should dictate what happens when a logging event occurs logging.getLogger(__name__).addHandler(logging.NullHandler())
# Generated by Django 2.2.1 on 2019-07-03 12:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Alumno', '0004_alumno_token'), ] operations = [ migrations.AlterField( model_name='alumno', name='token', field=models.IntegerField(max_length=254, null=True), ), ]
from piston.commands.file import run_file # noqa: F401 from piston.commands.input import user_input # noqa: F401 from piston.commands.link import run_link # noqa: F401 from piston.commands.shell import Shell # noqa: F401 from piston.commands.theme_list import theme_list # noqa: F401
from sleap import Labels, Instance from typing import List, Tuple import numpy as np def get_stable_node_pairs( all_points_arrays: np.ndarray, node_names, min_dist: float = 0.0 ): """Returns sorted list of node pairs with mean and standard dev distance.""" # Calculate distance from each point to each other point within each instance intra_points = ( all_points_arrays[:, :, np.newaxis, :] - all_points_arrays[:, np.newaxis, :, :] ) intra_dist = np.linalg.norm(intra_points, axis=-1) # Find mean and standard deviation for distances between each pair of nodes inter_std = np.nanstd(intra_dist, axis=0) inter_mean = np.nanmean(intra_dist, axis=0) # Clear pairs with too small mean distance inter_std[inter_mean <= min_dist] = np.nan # Ravel so that we can sort along single dimension flat_inter_std = np.ravel(inter_std) flat_inter_mean = np.ravel(inter_mean) # Get indices for sort by standard deviation (asc) sorted_flat_inds = np.argsort(flat_inter_std) sorted_inds = np.stack(np.unravel_index(sorted_flat_inds, inter_std.shape), axis=1) # Take every other, since we'll get A->B and B->A for each pair sorted_inds = sorted_inds[::2] sorted_flat_inds = sorted_flat_inds[::2] # print(all_points_arrays.shape) # print(intra_points.shape) # print(intra_dist.shape) # print(inter_std.shape) # print(sorted_inds.shape) # Make sorted list of data to return results = [] for inds, flat_idx in zip(sorted_inds, sorted_flat_inds): node_a, node_b = inds std, mean = flat_inter_std[flat_idx], flat_inter_mean[flat_idx] if mean <= min_dist: break results.append(dict(node_a=node_a, node_b=node_b, std=std, mean=mean)) return results def get_most_stable_node_pair( all_points_arrays: np.ndarray, min_dist: float = 0.0 ) -> Tuple[int, int]: """Returns pair of nodes which are at stable distance (over min threshold).""" all_pairs = get_stable_node_pairs(all_points_arrays, min_dist) return all_pairs[0]["node_a"], all_pairs[0]["node_b"] def align_instances( all_points_arrays: np.ndarray, node_a: int, node_b: int, rotate_on_node_a: bool = False, ) -> np.ndarray: """Rotates every instance so that line from node_a to node_b aligns.""" # For each instance, calculate the angle between nodes A and B node_to_node_lines = ( all_points_arrays[:, node_a, :] - all_points_arrays[:, node_b, :] ) theta = np.arctan2(node_to_node_lines[:, 1], node_to_node_lines[:, 0]) # Make rotation matrix for each instance based on this angle R = np.ndarray((len(theta), 2, 2)) c, s = np.cos(theta), np.sin(theta) R[:, 0, 0] = c R[:, 1, 1] = c R[:, 0, 1] = -s R[:, 1, 0] = s # Rotate each instance by taking dot product with its corresponding rotation rotated = np.einsum("aij,ajk->aik", all_points_arrays, R) if rotate_on_node_a: # Shift so that rotation is "around" node A node_a_pos = points[:, node_a, :][:, np.newaxis, :] else: # Shift so node A is at fixed position for every instance node_a_pos = rotated[:, node_a, :][:, np.newaxis, :] # Do the shift rotated -= node_a_pos return rotated def align_instances_on_most_stable( all_points_arrays: np.ndarray, min_stable_dist: float = 4.0 ) -> np.ndarray: """ Gets most stable pair of nodes and aligned instances along these nodes. """ node_a, node_b = get_most_stable_node_pair( all_points_arrays, min_dist=min_stable_dist ) aligned = align_instances(all_points_arrays, node_a, node_b, rotate_on_node_a=False) return aligned def get_mean_and_std_for_points( aligned_points_arrays: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: """ Returns mean and standard deviation for every node given aligned points. """ mean = np.nanmean(aligned_points_arrays, axis=0) stdev = np.nanstd(aligned_points_arrays, axis=0) return mean, stdev def make_mean_instance( aligned_points_arrays: List[np.ndarray], std_thresh: int = 0 ) -> Instance: mean, stdev = get_mean_and_std_for_points(aligned_points_arrays) # Remove points with standard deviation higher than threshold if std_thresh: mean[stdev > std_thresh] = np.nan from sleap import Instance from sleap.instance import Point OFFSET = 0 # FIXME new_instance = Instance( skeleton=labels.skeletons[0], points=[Point(p[0] + OFFSET, p[1] + OFFSET) for p in mean], ) return new_instance def align_instance_points(source_points_array, target_points_array): """Transforms source for best fit on to target.""" # Find (furthest) pair of points in target to use for alignment pairwise_distances = np.linalg.norm( target_points_array[:, np.newaxis, :] - target_points_array[np.newaxis, :, :], axis=-1, ) node_a, node_b = np.unravel_index( np.nanargmax(pairwise_distances), shape=pairwise_distances.shape ) # Align source to target source_line = source_points_array[node_a] - source_points_array[node_b] target_line = target_points_array[node_a] - target_points_array[node_b] source_theta = np.arctan2(source_line[1], source_line[0]) target_theta = np.arctan2(target_line[1], target_line[0]) rotation_theta = source_theta - target_theta c, s = np.cos(rotation_theta), np.sin(rotation_theta) R = np.array([[c, -s], [s, c]]) rotated = source_points_array.dot(R) # Shift source to minimize total point different from target target_row_mask = ~np.isnan(target_points_array)[:, 0] shift = np.mean( rotated[target_row_mask] - target_points_array[target_row_mask], axis=0 ) rotated -= shift return rotated def get_instances_points(instances: List[Instance]) -> np.ndarray: """Returns single (instance, node, 2) matrix with points for all instances.""" return np.stack([inst.points_array for inst in instances]) def get_template_points_array(instances: List[Instance]) -> np.ndarray: """Returns mean of aligned points for instances.""" points = get_instances_points(instances) node_a, node_b = get_most_stable_node_pair(points, min_dist=4.0) aligned = align_instances(points, node_a=node_a, node_b=node_b) points_mean, points_std = get_mean_and_std_for_points(aligned) return points_mean if __name__ == "__main__": # filename = "tests/data/json_format_v2/centered_pair_predictions.json" # filename = "/Volumes/fileset-mmurthy/shruthi/code/sleap_expts/preds/screen_all.5pts_tmp_augment_200122/191210_102108_18159112_rig3_2.preds.h5" filename = "/Volumes/fileset-mmurthy/talmo/wt_gold_labeling/100919.sleap_wt_gold.13pt_init.n=288.junyu.h5" labels = Labels.load_file(filename) points = get_instances_points(labels.instances()) get_stable_node_pairs(points, np.array(labels.skeletons[0].node_names)) # import time # # t0 = time.time() # labels.add_instance( # frame=labels.find_first(video=labels.videos[0]), # instance=make_mean_instance(align_instances(points, 12, 0)) # ) # print(labels.find_first(video=labels.videos[0])) # print("time", time.time() - t0) # # Labels.save_file(labels, "mean.h5") # R = np.array(((c, -s), (s, c))) # a_rotated = a.dot(R) # a_rotated += a[0] - a_rotated[0]
""" desinging optimum quantizers for different probability distributions. """ import itertools import numpy as np import scipy.stats as stat class OptimumQuantizer: def __init__(self): self._model = None self._valid_levels = None self._quantizer_bins = None self._quantizer_centers = None def initialize_quantizer(self, model, num_levels=(2, 4, 8), sparsity_thr=1e-4, x=None): self._model = model self._valid_levels = np.array(num_levels) self._quantizer_bins = [None] * len(self._valid_levels) self._quantizer_centers = [None] * len(self._valid_levels) if model == 'normal' or model == 'n': self._initialize_normal_quantizer() elif model == 'sparse-normal' or model == 'sn': self._initialize_sparse_normal_quantizer(sparsity_thr) elif model == 'folded-normal' or model == 'fn': self._initialize_folded_normal_quantizer() elif model == 'sparse-folded-normal' or model == 'sfn': self._initialize_sparse_folded_normal_quantizer(sparsity_thr) elif model == 'uniform' or model == 'u': self._initialize_uniform_quantizer() elif model == 'sparse-uniform' or model == 'su': self._initialize_sparse_uniform_quantizer(sparsity_thr) elif model == 'empirical' or model == 'e': self._initialize_empirical_quantizer(x) else: raise ValueError('Unknown data distribution model!') def quantize(self, x, num_levels): if num_levels not in self._valid_levels: raise ValueError('Quantizer for the given number of levels has not been initialized.') q_idx = np.where(self._valid_levels == num_levels)[0][0] q = np.digitize(x, self._quantizer_bins[q_idx]) return q, self._quantizer_centers[q_idx] def dequantize(self, q, num_levels): if num_levels not in self._valid_levels: raise ValueError('Quantizer for the given number of levels has not been initialized.') q_idx = np.where(self._valid_levels == num_levels)[0][0] x = self._quantizer_centers[q_idx][q] return x # ========================================================================= # using Lloyd-Max algorithm, find the optimum quantizer for different distributions def _initialize_normal_quantizer(self): s = np.sqrt(2*np.pi) max_iterations = 1000 for n, num_levels in enumerate(self._valid_levels): # initialize quantizer's thresholds and centers bins = np.linspace(-1, 1, num_levels + 1) centers = (bins[1:] + bins[:-1]) / 2 bins = bins[1:-1] for _ in range(max_iterations): old_centers = centers.copy() cdf_x = stat.norm.cdf(bins) exp_x = -np.exp(-bins**2 / 2) / s # a- updating centers centers[0] = exp_x[0] / cdf_x[0] centers[1:-1] = (exp_x[1:] - exp_x[0:-1]) / (cdf_x[1:] - cdf_x[0:-1]) centers[-1] = -exp_x[-1] / (1-cdf_x[-1]) # b- update bins bins = (centers[:-1] + centers[1:]) / 2 # c- check for convergence if np.max(np.abs(centers - old_centers)) < 1e-3: break self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers def _initialize_sparse_normal_quantizer(self, thr): s = np.sqrt(2*np.pi) max_iterations = 1000 for n, num_levels in enumerate(self._valid_levels): # initialize quantizer's thresholds and centers K = 1 + num_levels // 2 bins = np.linspace(thr, 1, K) bins = np.concatenate((np.linspace(-1, -thr, K), np.linspace(thr, 1, K))) centers = (bins[1:] + bins[:-1]) / 2 bins = bins[1:-1] for _ in range(max_iterations): old_centers = centers.copy() cdf_x = stat.norm.cdf(bins) exp_x = -np.exp(-bins**2 / 2) / s # a- updating centers centers[0] = exp_x[0] / cdf_x[0] centers[1:-1] = (exp_x[1:] - exp_x[0:-1]) / (cdf_x[1:] - cdf_x[0:-1]) centers[-1] = -exp_x[-1] / (1-cdf_x[-1]) # b- update bins bins = (centers[:-1] + centers[1:]) / 2 bins[K - 2] = -thr bins[K - 1] = thr # c- check for convergence if np.max(np.abs(centers - old_centers)) < 1e-3: break self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers def _initialize_folded_normal_quantizer(self): s = np.sqrt(2 / np.pi) max_iterations = 1000 for n, num_levels in enumerate(self._valid_levels): # initialize quantizer's thresholds and centers bins = np.linspace(0, 1, num_levels + 1) centers = (bins[1:] + bins[:-1]) / 2 bins = bins[1:-1] for _ in range(max_iterations): old_centers = centers.copy() cdf_x = 2 * stat.norm.cdf(bins) - 1 mean_x = s * (1 - np.exp(-bins**2 / 2)) # a- updating centers centers[0] = mean_x[0] / cdf_x[0] centers[1:-1] = (mean_x[1:] - mean_x[0:-1]) / (cdf_x[1:] - cdf_x[0:-1]) centers[-1] = (s - mean_x[-1]) / (1-cdf_x[-1]) # b- update bins bins = (centers[:-1] + centers[1:]) / 2 # c- check for convergence if np.max(np.abs(centers - old_centers)) < 1e-3: break self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers def _initialize_sparse_folded_normal_quantizer(self, thr): s = np.sqrt(2 / np.pi) max_iterations = 1000 for n, num_levels in enumerate(self._valid_levels): # initialize quantizer's thresholds and centers bins = np.linspace(thr, 1, num_levels + 1) centers = np.concatenate(([0], (bins[1:] + bins[:-1]) / 2)) bins = bins[:-1] for _ in range(max_iterations): old_centers = centers.copy() cdf_x = 2 * stat.norm.cdf(bins) - 1 mean_x = s * (1 - np.exp(-bins**2 / 2)) # a- updating centers centers[1:-1] = (mean_x[1:] - mean_x[0:-1]) / (cdf_x[1:] - cdf_x[0:-1]) centers[-1] = (s - mean_x[-1]) / (1-cdf_x[-1]) # b- update bins bins = (centers[:-1] + centers[1:]) / 2 bins[0] = thr # c- check for convergence if np.max(np.abs(centers - old_centers)) < 1e-3: break self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers def _initialize_uniform_quantizer(self): for n, num_levels in enumerate(self._valid_levels): bins = np.linspace(0, 1, num_levels + 1) centers = (bins[1:] + bins[:-1]) / 2 bins = bins[1:-1] self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers def _initialize_sparse_uniform_quantizer(self, thr): for n, num_levels in enumerate(self._valid_levels): bins = np.linspace(thr, 1, num_levels + 1) bins = np.concatenate(([-thr], bins)) centers = (bins[1:] + bins[:-1]) / 2 bins = bins[1:-1] self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers def _initialize_empirical_quantizer(self, X): x = np.reshape(X, newshape=-1) min_x = np.min(x) max_x = np.max(x) for n, num_levels in enumerate(self._valid_levels): # initialize bins bins = np.linspace(min_x, max_x, num_levels + 1) centers = (bins[:-1] + bins[1:]) / 2 bins = bins[1:-1] for _ in range(1000): centers_old = centers.copy() # quantize input vector q = np.digitize(x, bins) _optimize_centers_average(x, q, centers, num_levels) bins = (centers[1:] + centers[:-1]) / 2 if np.max(np.abs(centers - centers_old)) < 1e-3: break self._quantizer_bins[n] = bins self._quantizer_centers[n] = centers # ============================================================================= # optimize quantizer's reconstruction points by averaging the points in each bin def _optimize_centers_average(w, q, center, num_levels): for n in range(num_levels): if n in q: center[n] = np.mean(w[q == n])
# Copyright (C) 2013 Google Inc., authors, and contributors <see AUTHORS file> # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> # Created By: # Maintained By: import datetime import factory import random from factory.base import BaseFactory, FactoryMetaClass, CREATE_STRATEGY from factory.fuzzy import FuzzyChoice, FuzzyDate, FuzzyDateTime, FuzzyInteger from factory.compat import UTC from ggrc import models from ggrc.models.reflection import AttributeInfo def random_string(prefix=''): return '{prefix}{suffix}'.format( prefix=prefix, suffix=random.randint(0,9999999999), ) def random_string_attribute(prefix=''): return factory.LazyAttribute(lambda m: random_string(prefix)) class FactoryAttributeGenerator(object): """Use the SQLAlchemy ORM model to generate factory attributes.""" @classmethod def generate(cls, attrs, model_class, attr): """Generate a factory attribute for `attr` by inspecting the mapping type of the attribute in `model_class`. Add the attribute to the `attrs` dictionary. """ if (hasattr(attr, '__call__')): attr_name = attr.attr_name value = [] else: attr_name = attr class_attr = getattr(model_class, attr_name) #look up the class method to use to generate the attribute method = getattr(cls, class_attr.__class__.__name__) value = method(attr_name, class_attr) attrs[attr_name] = value @classmethod def InstrumentedAttribute(cls, attr_name, class_attr): method = getattr(cls, class_attr.property.__class__.__name__) return method(attr_name, class_attr) @classmethod def ColumnProperty(cls, attr_name, class_attr): method = getattr( cls, class_attr.property.expression.type.__class__.__name__, cls.default_column_handler) return method(attr_name, class_attr) @classmethod def default_column_handler(cls, attr_name, class_attr): return random_string_attribute(attr_name) @classmethod def DateTime(cls, attr_name, class_attr): return FuzzyDateTime( datetime.datetime(2013,1,1,tzinfo=UTC), datetime.datetime.now(UTC) + datetime.timedelta(days=730), ) @classmethod def Date(cls, attr_name, class_attr): return FuzzyDate( datetime.date(2013,1,1), datetime.date.today() + datetime.timedelta(days=730), ) @classmethod def Boolean(cls, attr_name, class_attr): return FuzzyChoice([True, False]) @classmethod def Integer(cls, attr_name, class_attr): return FuzzyInteger(0,100000) @classmethod def RelationshipProperty(cls, attr_name, class_attr): if class_attr.property.uselist: return [] else: return None @classmethod def AssociationProxy(cls, attr_name, class_attr): return [] @classmethod def property(cls, attr_name, class_atr): return None class ModelFactoryMetaClass(FactoryMetaClass): def __new__(cls, class_name, bases, attrs, extra_attrs=None): """Use model reflection to build up the list of factory attributes. The default attributes can be overridden by defining a subclass of `ModelFactory` and defining the attribute to be overriden. """ model_class = attrs.pop('MODEL', None) if model_class: attrs['FACTORY_FOR'] = dict attribute_info = AttributeInfo(model_class) for attr in attribute_info._create_attrs: if hasattr(attr, '__call__'): attr_name = attr.attr_name else: attr_name = attr if not hasattr(cls, attr_name): FactoryAttributeGenerator.generate(attrs, model_class, attr) return super(ModelFactoryMetaClass, cls).__new__( cls, class_name, bases, attrs) ModelFactory = ModelFactoryMetaClass( 'ModelFactory', (BaseFactory,), { 'ABSTRACT_FACTORY': True, 'FACTORY_STRATEGY': CREATE_STRATEGY, '__doc__': """ModelFactory base with build and create support. This class has supports SQLAlchemy ORM. """, }) def factory_for(model_class): """Get the factory for a model by name or by class. If there is a factory defined for this model in globals() that factory will be used. Otherwise, one will be created and added to globals(). """ if type(model_class) is str or type(model_class) is unicode: factory_name = model_class import ggrc.models model_class = getattr(ggrc.models, model_class) else: factory_name = model_class.__name__ factory_name = '{0}Factory'.format(factory_name) factory = globals().get(factory_name, None) if not factory: class model_factory(ModelFactory): MODEL = model_class model_factory.__name__ = factory_name globals()[factory_name] = model_factory factory = model_factory return factory class ProgramFactory(ModelFactory): MODEL = models.Program kind = FuzzyChoice(['Directive', 'Company Controls'])
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @file Occupancy_scraper.py @author Colin Laganier @version V0.3 @date 2021-12-05 @brief This script scrapes the Imperial Occupancy platform to retrieve the occupancy of Level 2. """ from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver import DesiredCapabilities from time import sleep from paho.mqtt import client as mqtt_client import config import random from datetime import datetime broker = config.IPAddress port = 1883 topic = "smellStation/occupancy" # generate client ID with pub prefix randomly client_id = f'python-mqtt-{random.randint(0, 1000)}' def ConnectMQTT(): def on_connect(client, userdata, flags, rc): if rc == 0: print("Connected to MQTT Broker!") else: print("Failed to connect, return code %d\n", rc) client = mqtt_client.Client(client_id) # client.username_pw_set(config.username, config.password) client.on_connect = on_connect client.connect(broker, port) return client def Publish(client): current_occupancy = GetOccupancy() result = client.publish(topic, current_occupancy) status = result[0] if status == 0: print(f"Sent message - sleep for 60 seconds") sleep(60) print("wake") else: print(f"Failed to send message") def PublishExpected(): current_time = datetime.now() if (current_time.minute % 10 == 0): return True else: return False def MQTT(): client = ConnectMQTT() if PublishExpected(): Publish(client) def GetOccupancy(): attempt = 0 opts = webdriver.ChromeOptions() d = DesiredCapabilities.CHROME browser = webdriver.Chrome(desired_capabilities=d, options=opts) for attempt in range(5): try: browser.get(config.url) sleep(5) # Login to platform login_elem = browser.find_elements( By.XPATH, "//*[@class='align-center background-green display-block clickable mb4 px2 py3 font-size-3 font-normal']")[0] login_elem.click() sleep(5) browser.find_element(By.ID, "username").send_keys(config.username) browser.find_element( By.ID, "password_label").send_keys(config.password) browser.find_element(By.ID, "submitButton").submit() sleep(5) occupancy = browser.find_element(By.CSS_SELECTOR, "#root > div > div > main > div > div.flex__1.overflow-auto.mb3 > div > div:nth-child(4) > div > div > div > div > span").text print(occupancy) browser.quit() return occupancy except: attempt += 1 if attempt == 5: browser.quit() print("Scraping failed too many times") # SendWarningEmail() return -1 if __name__ == '__main__': while True: MQTT()
from .instrument import instrument_factory __VERSION__ = "1.0" def get(resource_name, resource_manager=None, identity=None, timeout=10): return instrument_factory(resource_name, resource_manager, identity, timeout)
#-*-coding: utf-8 -*- """ /dms/webquest/views_navigation_left.py .. enthaelt den View zum Aendern des linken Navigationsbereichs Django content Management System Hans Rauch [email protected] Die Programme des dms-Systems koennen frei genutzt und den spezifischen Beduerfnissen entsprechend angepasst werden. 0.01 30.04.2008 Beginn der Arbeit """ from django.http import HttpResponse, HttpResponseRedirect from django import newforms as forms from django.utils.translation import ugettext as _ from dms.roles import require_permission from dms.queries import get_site_url from dms.queries import get_min_max_menu_left from dms.queries import delete_menuitem_navmenu_left from dms.utils_navigation import save_menus_left from dms.folder.utils import get_folder_content from dms_ext.extension import * # dms-Funktionen ueberschreiben # ----------------------------------------------------- def get_menu_left_webquest(item_containers, item_container): """ .. liefert das Webquest-Menu """ start_name = u'webquest' content = '0 | %s | %s | Webquest | Startseite | %s\n' % \ (start_name, item_container.get_absolute_url(), '<b><i><span class="red">::</span></i></b>') content += '999\n' for i in item_containers: if i.item.app.name in ['dmsDocument'] or i.item.app.is_folderish: content += '1 | %s | %s | %s\n' % \ (i.item.name, i.get_absolute_url(), i.item.title) return content # ----------------------------------------------------- def create_new_menu_webquest(item_container): item_containers, sections, d_sections = get_folder_content(item_container) n_min, n_max = get_min_max_menu_left() menu_left_id = 1 + max(abs(n_min), n_max) text = get_menu_left_webquest(item_containers, item_container) save_menus_left(menu_left_id, text) item_container.container.menu_left_id = menu_left_id item_container.container.nav_name_left = 'webquest|' item_container.container.save() for ic in item_containers: if ic.item.app.is_folderish: ic.container.menu_left_id = menu_left_id ic.container.nav_name_left = _(u'webquest|') + ic.item.name ic.container.save() return menu_left_id # ----------------------------------------------------- @require_permission('perm_edit_folderish') def webquest_navigation_left(request, item_container): """ Eigenschaften des Ordners aendern """ menu_id = item_container.container.menu_left_id delete_menuitem_navmenu_left(menu_id) #sub_menu = item_container.container.nav_name_left menu_id_new = create_new_menu_webquest(item_container) item_container.container.menu_id = menu_id_new item_container.container.save() return HttpResponseRedirect(get_site_url(item_container, 'index.html'))
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-12-15 22:19 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mentoring', '0020_auto_20161215_1455'), ] operations = [ migrations.AlterField( model_name='mentoreducation', name='degree', field=models.CharField(choices=[('ba', 'Bachelor of Arts'), ('bs', 'Bachelor of Sciences'), ('m', 'Masters'), ('d', 'Ph.D'), ('pd', 'MD Ph.D'), ('md', 'MD')], default='', max_length=3), preserve_default=False, ), migrations.AlterField( model_name='mentoreducation', name='graduation_year', field=models.DateField(blank=True, null=True), ), ]
from celery.utils import get_cls_by_name ALIASES = { "processes": "celery.concurrency.processes.TaskPool", "eventlet": "celery.concurrency.evlet.TaskPool", "gevent": "celery.concurrency.evg.TaskPool", } def get_implementation(cls): return get_cls_by_name(cls, ALIASES)
# Kenny Sprite Sheet Slicer # Sprite.py # Copyright Will Blankenship 2015 class Sprite: def reverse_y(self, image_height): self.y = str(image_height - int(self.y) - int(self.height)) def __init__(self, name, x, y, width, height): self.name = name self.x = x self.y = y self.width = width self.height = height
# -*- coding: utf-8 -*- # Copyright 2019 Cohesity Inc. import cohesity_management_sdk.models.alerting_config import cohesity_management_sdk.models.environment_type_job_parameters import cohesity_management_sdk.models.indexing_policy class RpoPolicySettings(object): """Implementation of the 'RpoPolicySettings' model. Specifies all the additional settings that are applicable only to an RPO policy. This can include storage domain, settings of different environments, etc. Attributes: alerting_config (AlertingConfig): Specifies optional settings for alerting. alerting_policy (list of AlertingPolicyEnum): Array of Job Events. During Job Runs, the following Job Events are generated: 1) Job succeeds 2) Job fails 3) Job violates the SLA These Job Events can cause Alerts to be generated. 'kSuccess' means the Protection Job succeeded. 'kFailure' means the Protection Job failed. 'kSlaViolation' means the Protection Job took longer than the time period specified in the SLA. environment_type_job_params (EnvironmentTypeJobParameters): Specifies additional parameters that are common to all Protection Sources in a Protection Job created for a particular environment type. indexing_policy (IndexingPolicy): Specifies settings for indexing files found in an Object (such as a VM) so these files can be searched and recovered. This also specifies inclusion and exclusion rules that determine the directories to index. qos_type (QosTypeRpoPolicySettingsEnum): Specifies the QoS policy type to use. 'kBackupHDD' indicates the Cohesity Cluster writes data directly to the HDD tier for this Protection Job. This is the recommended setting. 'kBackupSSD' indicates the Cohesity Cluster writes data directly to the SSD tier for this Protection Job. Only specify this policy if you need fast ingest speed for a small number of Protection Jobs. storage_domain_id (long|int): Specifies the Storage Domain to which data will be written. """ # Create a mapping from Model property names to API property names _names = { "alerting_config":'alertingConfig', "alerting_policy":'alertingPolicy', "environment_type_job_params":'environmentTypeJobParams', "indexing_policy":'indexingPolicy', "qos_type":'qosType', "storage_domain_id":'storageDomainId' } def __init__(self, alerting_config=None, alerting_policy=None, environment_type_job_params=None, indexing_policy=None, qos_type=None, storage_domain_id=None): """Constructor for the RpoPolicySettings class""" # Initialize members of the class self.alerting_config = alerting_config self.alerting_policy = alerting_policy self.environment_type_job_params = environment_type_job_params self.indexing_policy = indexing_policy self.qos_type = qos_type self.storage_domain_id = storage_domain_id @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary alerting_config = cohesity_management_sdk.models.alerting_config.AlertingConfig.from_dictionary(dictionary.get('alertingConfig')) if dictionary.get('alertingConfig') else None alerting_policy = dictionary.get('alertingPolicy') environment_type_job_params = cohesity_management_sdk.models.environment_type_job_parameters.EnvironmentTypeJobParameters.from_dictionary(dictionary.get('environmentTypeJobParams')) if dictionary.get('environmentTypeJobParams') else None indexing_policy = cohesity_management_sdk.models.indexing_policy.IndexingPolicy.from_dictionary(dictionary.get('indexingPolicy')) if dictionary.get('indexingPolicy') else None qos_type = dictionary.get('qosType') storage_domain_id = dictionary.get('storageDomainId') # Return an object of this model return cls(alerting_config, alerting_policy, environment_type_job_params, indexing_policy, qos_type, storage_domain_id)