content
stringlengths
5
1.05M
# problem name: Minimum Absolute Sum Difference # problem link: https://leetcode.com/contest/weekly-contest-235/problems/minimum-absolute-sum-difference/ # contest link: https://leetcode.com/contest/weekly-contest-235/ # time: (?) # author: reyad # other_tags: sorting # difficulty_level: beginner class Solution: def minAbsoluteSumDiff(self, nums1: List[int], nums2: List[int]) -> int: d = [abs(nums1[i] - nums2[i]) for i in range(0, len(nums1))] x = [] for i, v in enumerate(d): if len(x) == 0: x.append(i) else: if v == d[x[0]]: x.append(i) elif v > d[x[0]]: x = [i] sel = d[x[0]] b = sorted(nums1) for y in x: s = 0 e = len(nums1)-1 p = -1 while s <= e: m = (s + e) // 2 if b[m] < nums2[y]: p = m s = m + 1 else: e = m - 1 if p < len(b)-1 and abs(b[p+1]-nums2[y]) < abs(b[p]-nums2[y]): p += 1 sel = min(sel, abs(b[p]-nums2[y])) ans = sum(d) - d[x[0]] + sel return ans % 1000000007
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 19 18:09:17 2019. @author: mtageld """ import numpy as np from histomicstk.utils import ( convert_image_to_matrix, convert_matrix_to_image) from histomicstk.preprocessing.color_conversion import ( rgb_to_sda, sda_to_rgb) from histomicstk.preprocessing.color_deconvolution import ( color_deconvolution_routine) def perturb_stain_concentration( StainsFloat, W, I_0=None, mask_out=None, sigma1=0.9, sigma2=0.9): u"""Perturb stain concentrations in SDA space and return augmented image. This is an implementation of the method described in Tellez et al, 2018 (see below). The SDA matrix is perturbed by multiplying each channel independently by a value chosen from a random uniform distribution in the range [1 - sigma1, 1 + sigma1], then add a value chosed from another random uniform distribution in the range [-sigma2, sigma2]. Parameters ------------ StainsFloat : array_like An intensity image (m, n, 3) of deconvolved stains that is unbounded, suitable for reconstructing color images of deconvolved stains with color_convolution. W : array_like A 3x3 complemented stain matrix. I_0 : float or array_like, optional A float a 3-vector containing background RGB intensities. If unspecified, use the old OD conversion. mask_out : array_like, default is None if not None, should be (m x n) boolean numpy array. This parameter ensures exclusion of non-masked areas from perturbing. This is relevant because elements like blood, sharpie marker, white space, etc cannot be simply modeled as a mix of two stains. sigma1 : float parameter, see beginning of this docstring. sigma2 : float parameter, see beginning of this docstring. Returns -------- array_like Color augmented RGB image (m x n x 3) References ---------- .. [#] Tellez, David, Maschenka Balkenhol, Irene Otte-Höller, Rob van de Loo, Rob Vogels, Peter Bult, Carla Wauters et al. "Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks." IEEE transactions on medical imaging 37, no. 9 (2018): 2126-2136. .. [#] Tellez, David, Geert Litjens, Peter Bandi, Wouter Bulten, John-Melle Bokhorst, Francesco Ciompi, and Jeroen van der Laak. "Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology." arXiv preprint arXiv:1902.06543 (2019). .. [#] Implementation inspired by Peter Byfield StainTools repository. See https://github.com/Peter554/StainTools/blob/master/LICENSE.txt for copyright license (MIT license). """ # augment everything, otherwise only augment specific pixels if mask_out is None: keep_mask = np.zeros(StainsFloat.shape[:2]) == 0 else: keep_mask = np.equal(mask_out, False) keep_mask = np.tile(keep_mask[..., None], (1, 1, 3)) keep_mask = convert_image_to_matrix(keep_mask) # transform 3D input stain image to 2D stain matrix format m = convert_image_to_matrix(StainsFloat) # transform input stains to optical density values sda_fwd = rgb_to_sda( m, 255 if I_0 is not None else None, allow_negatives=True) # perturb concentrations in SDA space augmented_sda = sda_fwd.copy() for i in range(3): alpha = np.random.uniform(1 - sigma1, 1 + sigma1) beta = np.random.uniform(-sigma2, sigma2) augmented_sda[i, keep_mask[i, :]] *= alpha augmented_sda[i, keep_mask[i, :]] += beta # convolve with stains column vectors and convert to RGB sda_conv = np.dot(W, augmented_sda) sda_inv = sda_to_rgb(sda_conv, I_0) # reshape output, transform type augmented_rgb = ( convert_matrix_to_image(sda_inv, StainsFloat.shape) .clip(0, 255).astype(np.uint8)) return augmented_rgb def rgb_perturb_stain_concentration( im_rgb, stain_unmixing_routine_params=None, **kwargs): """Apply wrapper that calls perturb_stain_concentration() on RGB. Parameters ------------ im_rgb : array_like An RGB image (m x n x 3) to color normalize stain_unmixing_routine_params : dict kwargs to pass as-is to the color_deconvolution_routine(). kwargs : k,v pairs Passed as-is to perturb_stain_concentration() Returns -------- array_like Color augmented RGB image (m x n x 3) """ stain_unmixing_routine_params = { 'stains': ['hematoxylin', 'eosin'], 'stain_unmixing_method': 'macenko_pca', } if stain_unmixing_routine_params is None else stain_unmixing_routine_params _, StainsFloat, W_source = color_deconvolution_routine( im_rgb, W_source=None, **stain_unmixing_routine_params) return perturb_stain_concentration(StainsFloat, W_source, **kwargs)
# -*- coding: utf-8 -*- a = 1 def getA(): return a def modA(input_v): global a a = input_v
import numpy as np # Load matlab's file import scipy.io # Build-in K-means clustering model of sklearn lib from sklearn.cluster import KMeans from findClosestCentroids import find_closest_centroid from computeCentroidMean import compute_centroid_mean from KmeansAlgo import kmeans_algo ############### (1) Find the closest centroids #################### print(f"Find the closest centroids") # Loading the example dataset data2 = scipy.io.loadmat("data/ex7data2.mat") # Find the closest centroid with with initial K=3 K = 3 initial_centroids = np.array([[3, 3], [6, 2], [8, 5]]) idx = find_closest_centroid(data2["X"], initial_centroids) print(f"Closest centroids of the 1st 3 examples: {idx[:3].T}") print(f"The closet centroids should be 1, 3, 2 respectively") input("Pause program, Press enter to continue") ############## (2) Compute the centroids means ################ print(f"\nCompute means of data point closed to each associated centroid") centroids = compute_centroid_mean(data2["X"], idx, K) print(f"Centroids computed after initial finding of closest centroid:\n {centroids}\n") print(f"(the centroids should be\n [ 2.428301 3.157924 ]\n[ 5.813503 2.633656 ]\n[ 7.119387 3.616684 ]") input("Pause program, Press enter to continue") ################ (3) K-means clustering ###################### print(f"\nRunning K-means clustering on example dataset") # Initial setting K = 3 max_iter = 10 initial_centroids = np.array([[3, 3], [6, 2], [8, 5]]) # Run K-means clustering algorithm. "true" values at last parameter indicate plotting the progress of K-means centroids, idx = kmeans_algo(data2["X"], initial_centroids, max_iter, True) input("Pause program, Press enter to continue") ############# (4) K-means clustering using sklearn lib ############### # from sklearn.cluster import KMeans initial_centroids = np.array([[3, 3], [6, 2], [8, 5]]) # Create KMeans model kmeans_model = KMeans(n_clusters=K, max_iter=max_iter, init=initial_centroids) # Fit data to the model kmeans_model.fit(data2["X"]) # Return trained centroids kmeans_model_centroids = kmeans_model.cluster_centers_ # Comparing centroids of 2 ways print(f"Trained cluster centroid of sklearn model:\n" f"{kmeans_model_centroids[0]}\n" f"{kmeans_model_centroids[1]}\n" f"{kmeans_model_centroids[2]}\n") print(f"Trained cluster centroid of manual generation:\n" f"{centroids[0]}\n" f"{centroids[1]}\n" f"{centroids[2]}\n") input("Pause program, Press enter to continue")
import os import dask.dataframe as dd from utils.config import Config, mappings from utils.es_wrapper import ElasticWrapper def get_docs_json(index, docs_df): for _, row in docs_df.iterrows(): yield { "_index": index, "_id": row[Config.DOCID_KEY], "_source": { Config.DOCID_KEY: row[Config.DOCID_KEY], "url": row["url"], "query": row["title"], "title": row["title"], "body": row["body"] } } def bulk_index_docs(es_wrapper, docs_df, index, mapping): es_wrapper.create_index(index, mapping, recreate_exist=True) es_wrapper.bulk_index(index, get_docs_json(index, docs_df)) def index_docs(doc_path=None): if not doc_path: doc_path = os.path.join(Config.SUBSAMPLED_ROOT, Config.DOCS_FILE_SAMPLED) docs_df = dd.read_csv(doc_path, keep_default_na=False) es_wrapper = ElasticWrapper() bulk_index_docs(es_wrapper, docs_df, Config.VSM_INDEX_KEY, mappings.VSM_MAPPING) bulk_index_docs(es_wrapper, docs_df, Config.BM25_INDEX_KEY, mappings.BM25_MAPPING) es_wrapper.close()
def do_mul: a=2 b=4 print(a*b) do_mul() #aaa
"Placing Callbacks on Queues" ''' Luckily, queues support much more than just strings—any type of Python object can be placed on a queue. Perhaps the most general of these is a callable object: by placing a function or other callable object on the queue, a producer thread can tell the GUI how to handle the message in a very direct way. The GUI simply calls the objects it pulls off the queue. Since threads all run within the same process and memory space, any type of callable object works on a queue—simple functions, lambdas, and even bound methods that combine a function with an implied subject object that gives access to state information and methods. Any updates performed by the callback object update state shared across the entire process. ''' """ ################################################################################# System-wide thread interface utilities for GUIs. Implements a single thread callback queue and checker timer loop shared by all the windows in a program; worker threads queue their exit and progress actions to be run in the main thread; this doesn't block the GUI - it just spawns operations and manages and dispatches exits and progress; worker threads can overlap freely with the main thread, and with other workers. Using a queue of callback functions and arguments is more useful than a simple data queue if there can be many kinds of threads running at the same time - each kind may have different implied exit actions. Because GUI API is not completely thread-safe, instead of calling GUI update callbacks directly after thread main action, place them on a shared queue, to be run from a timer loop in the main thread, not a child thread; this also makes GUI update points less random and unpredictable; requires threads to be split into main action, exit actions, and progress action. Assumes threaded action raises an exception on failure, and has a 'progress' callback argument if it supports progress updates; also assumes callbacks are either short-lived or update as they run, and that queue will contain callback functions (or other callables) for use in a GUI app - requires a widget in order to schedule and catch 'after' event loop callbacks; to use this model in non-GUI contexts, could use simple thread timer instead. ################################################################################# """ # run even if no threads # in standard lib now try: # raise ImportError to import _thread as thread # run with GUI blocking except ImportError: # if threads not available import _dummy_thread as thread # same interface, no threads # shared cross-process queue # named in shared global scope, lives in shared object memory import queue, sys threadQueue = queue.Queue(maxsize=0) # infinite size ################################################################################# # IN MAIN THREAD - periodically check thread completions queue; run implied GUI # actions on queue in this main GUI thread; one consumer (GUI), and multiple # producers (load, del, send); a simple list may suffice too: list.append and # pop atomic?; 4E: runs at most N actions per timer event: looping through all # queued callbacks on each timer event may block GUI indefinitely, but running # only one can take a long time or consume CPU for timer events (e.g., progress); # assumes callback is either short-lived or updates display as it runs: after a # callback run, the code here reschedules and returns to event loop and updates; # because this perpetual loop runs in main thread, does not stop program exit; ################################################################################# def threadChecker(widget, delayMsecs=100, perEvent=1): # 10x/sec, 1/timer for i in range(perEvent): # pass to set speed try: (callback, args) = threadQueue.get(block=False) # run <= N callbacks except queue.Empty: break # anything ready? else: callback(*args) # run callback here widget.after(delayMsecs, # reset timer event lambda: threadChecker(widget, delayMsecs, perEvent)) # back to event loop ################################################################################# # IN A NEW THREAD - run action, manage thread queue puts for exits and progress; # run action with args now, later run on* calls with context; calls added to # queue here are dispatched in main thread only, to avoid parallel GUI updates; # allows action to be fully ignorant of use in a thread here; avoids running # callbacks in thread directly: may update GUI in thread, since passed func in # shared memory called in thread; progress callback just adds callback to queue # with passed args; don't update in-progress counters here: not finished till # exit actions taken off queue and dispatched in main thread by threadChecker; ################################################################################# def threaded(action, args, context, onExit, onFail, onProgress): try: if not onProgress: # wait for action in this thread action(*args) # assume raises exception if fails else: def progress(*any): threadQueue.put((onProgress, any + context)) action(progress=progress, *args) except: threadQueue.put((onFail, (sys.exc_info(), ) + context)) else: threadQueue.put((onExit, context)) def startThread(action, args, context, onExit, onFail, onProgress=None): thread.start_new_thread( threaded, (action, args, context, onExit, onFail, onProgress)) ################################################################################# # a thread-safe counter or flag: useful to avoid operation overlap if threads # update other shared state beyond that managed by the thread callback queue ################################################################################# class ThreadCounter: def __init__(self): self.count = 0 self.mutex = thread.allocate_lock() # or use Threading.semaphore def incr(self): self.mutex.acquire() # or with self.mutex: self.count += 1 self.mutex.release() def decr(self): self.mutex.acquire() self.count -= 1 self.mutex.release() def __len__(self): return self.count # True/False if used as a flag ################################################################################# # self-test code: split thread action into main, exits, progress ################################################################################# if __name__ == '__main__': # self-test code when run import time from tkinter.scrolledtext import ScrolledText # or PP4E.Gui.Tour.scrolledtext def onEvent(i): # code that spawns thread myname = 'thread-%s' % i startThread(action = threadaction, args = (i, 3), context = (myname,), onExit = threadexit, onFail = threadfail, onProgress = threadprogress) # thread's main action def threadaction(id, reps, progress): # what the thread does for i in range(reps): time.sleep(1) if progress: progress(i) # progress callback: queued if id % 2 == 1: raise Exception # odd numbered: fail # thread exit/progress callbacks: dispatched off queue in main thread def threadexit(myname): text.insert('end', '%s\texit\n' % myname) text.see('end') def threadfail(exc_info, myname): text.insert('end', '%s\tfail\t%s\n' % (myname, exc_info[0])) text.see('end') def threadprogress(count, myname): text.insert('end', '%s\tprog\t%s\n' % (myname, count)) text.see('end') text.update() # works here: run in main thread # make enclosing GUI and start timer loop in main thread # spawn batch of worker threads on each mouse click: may overlap text = ScrolledText() text.pack() threadChecker(text) # start thread loop in main thread text.bind('<Button-1>', # 3.x need list for map, range ok lambda event: list(map(onEvent, range(6))) ) text.mainloop() # pop-up window, enter tk event loop
# -*- coding: utf-8 -*- thislist = ["apple", "banana", "cherry"] thislist.insert(1, "orange") print(thislist)
from torch import nn import torch.nn.functional as F class BasicNet(nn.Module): def __init__(self): super(BasicNet, self).__init__() self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
import unittest import numpy as np import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from config import OptimizationConfigEuRoC from utils import to_quaternion, to_rotation, Isometry3d from feature import Feature from msckf import CAMState class TestFeature(unittest.TestCase): def test_feature_initialization(self): """ Test feature initialization. """ optimization_config = OptimizationConfigEuRoC() Feature.R_cam0_cam1 = np.identity(3) Feature.t_cam0_cam1 = np.zeros(3) # feature = np.array([0.5, 0., 0.]) feature = np.random.random(3) * 0.5 # Add 6 camera poses, all of which are able to see the # feature at the origin. For simplicity, the six camera # view are located at the six intersections between a # unit sphere and the coordinate system. And the z axes # of the camera frames are facing the origin. cam_poses = [ Isometry3d(np.array([ [0., 0., -1.], [1., 0., 0.], [0., -1., 0.]] ), np.array([1., 0., 0.])), Isometry3d(np.array([ [-1., 0., 0.], [0., 0., -1.], [0., -1., 0.]] ), np.array([0., 1., 0.])), Isometry3d(np.array([ [0., 0., 1.], [-1., 0., 0.], [0., -1., 0.]] ), np.array([-1., 0., 0.])), Isometry3d(np.array([ [1., 0., 0.], [0., 0., 1.], [0., -1., 0.]] ), np.array([0., -1., 0.])), Isometry3d(np.array([ [0., -1., 0.], [-1., 0., 0.], [0., 0., -1.]] ), np.array([0., 0., 1.])), Isometry3d(np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.]] ), np.array([0., 0., -1.])), ] # Set the camera states cam_states = dict() for i in range(6): cam_state = CAMState(i) cam_state.timestamp = i cam_state.orientation = cam_poses[i].R cam_state.position = cam_poses[i].t cam_states[i] = cam_state # Compute measurements. measurements = [] for i in range(6): cam_pose_inv = cam_poses[i].inverse() p = cam_pose_inv.R @ feature + cam_pose_inv.t u, v = p[:2] / p[2] + np.random.randn(2) * 0.01 measurements.append(np.array([u, v, u, v])) # Initialize a feature object. feature_object = Feature(0, optimization_config=optimization_config) for i in range(6): feature_object.observations[i] = measurements[i] # Compute the 3d position of the feature. status = feature_object.initialize_position(cam_states) # Check the difference between the computed 3d # feature position and the groud truth. print('status:', status) print('ground truth position:\n', feature) print('estimated position:\n', feature_object.position) e = np.linalg.norm(feature - feature_object.position) print('error norm:', e) self.assertTrue(e < 0.05) if __name__ == '__main__': unittest.main()
def get_arg_types(pred:str): move_list=["north","south","east","west","northwest","northeast","southeast","southwest"] if pred in move_list or pred == 'get': return ['cell'] elif pred == 'cell': return ['cell'] elif pred == 'deepwater': return ['cell'] elif pred == 'at' or pred == 'not at': return ['cell', 'xcoord', 'ycoord'] elif pred == 'agentat' or pred == 'not agentat': return ['cell'] elif pred == 'wall' or pred == 'not wall': return ['cell'] elif pred == '=': #if '-' in self.args or '+' in self.args: return ['int', 'int', 'operator', 'constant'] #else: #return ['int', 'int'] elif pred == 'throw': #####################Non-Deterministic return ['cell', 'xcoord','ycoord'] elif pred == 'get': return ['cell'] elif pred == 'open_door': #TODO:Implement Below return ['cell'] elif pred == 'closed_door': return ['cell'] elif pred == 'drop': return ['cell'] elif pred == 'wait': return ['cell'] elif pred == 'itemtype': return ['item_type'] elif pred == 'inv_item': return ['item_type', 'quantity'] elif pred == 'inv_id': return ['id', 'item'] elif pred == 'item': return ['cell','item_type','quantity'] class Term: def __init__(self,predicate_str:str,arg_strs:[str]): self.pred_str = predicate_str self.args = arg_strs self.arg_types = None self.human_readable_args = [] self._set_arg_types(predicate_str) def get_pred_str(self): return self.pred_str def _set_arg_types(self, pred:str): #print("pred is {}".format(pred)) self.arg_types=get_arg_types(pred) def set_human_readable_args(self, args:[str]): #print("args={}".format(args)) assert len(args) == len(self.arg_types) self.human_readable_args = args def substitute_args(self,curr:[str],new:[str]): new_args = [] for a in self.human_readable_args: new_args.append(curr.index(a)) self.human_readable_args = new_args def __eq__(self, other): return self.pred_str == other.pred_str and self.human_readable_args == other.standardized_args def __hash__(self): return hash(self.__str__()) def __str__(self): upper_args = map(lambda s: s.upper(), self.args) if self.pred_str == '=': return '{} = {} {} {}'.format(*upper_args) else: s = '{}('.format(self.pred_str) for a in upper_args: s += '{},'.format(a) s = s[0:-1] + ')' return s def __repr__(self): return self.__str__()
import pymysql import settings from dao.DAOUsuario import DAOUsuario class DAOCart: def connect(self): host = settings.MYSQL_HOST user = settings.MYSQL_USER password = settings.MYSQL_PASSWORD db = settings.MYSQL_DB return pymysql.connect(host, user, password, db) def getUsers(self): con = DAOCart.connect(self) cur = con.cursor() try: cur.execute("SELECT id_usuario FROM cart") users = list(dict.fromkeys(cur.fetchall())) if not users: return [] db = DAOUsuario() return db.readUsingIdList(users) except Exception as e: print("Exception occured in DAOCart:{}".format(e)) return finally: con.close()
# lightning imports from pytorch_lightning import LightningModule, LightningDataModule, Callback, Trainer from pytorch_lightning.loggers import LightningLoggerBase from pytorch_lightning import seed_everything # hydra imports from omegaconf import DictConfig from hydra.utils import log import hydra # normal imports from typing import List, Optional # src imports from src.utils import template_utils def train(config: DictConfig) -> Optional[float]: """Contains training pipeline. Instantiates all PyTorch Lightning objects from config. Args: config (DictConfig): Configuration composed by Hydra. Returns: Optional[float]: Metric score for hyperparameter optimization. """ # Set seed for random number generators in pytorch, numpy and python.random if "seed" in config: seed_everything(config.seed) # Init Lightning datamodule log.info(f"Instantiating datamodule <{config.datamodule._target_}>") datamodule: LightningDataModule = hydra.utils.instantiate(config.datamodule) # Init Lightning model log.info(f"Instantiating model <{config.model._target_}>") model: LightningModule = hydra.utils.instantiate( config.model, _recursive_=False ) # Init Lightning callbacks callbacks: List[Callback] = [] if "callbacks" in config: for _, cb_conf in config["callbacks"].items(): if "_target_" in cb_conf: log.info(f"Instantiating callback <{cb_conf._target_}>") callbacks.append(hydra.utils.instantiate(cb_conf)) # Init Lightning loggers logger: List[LightningLoggerBase] = [] if "logger" in config: for _, lg_conf in config["logger"].items(): if "_target_" in lg_conf: log.info(f"Instantiating logger <{lg_conf._target_}>") logger.append(hydra.utils.instantiate(lg_conf)) # Init Lightning trainer log.info(f"Instantiating trainer <{config.trainer._target_}>") trainer: Trainer = hydra.utils.instantiate( config.trainer, callbacks=callbacks, logger=logger, _convert_="partial" ) # Send some parameters from config to all lightning loggers log.info("Logging hyperparameters!") template_utils.log_hyperparameters( config=config, model=model, datamodule=datamodule, trainer=trainer, callbacks=callbacks, logger=logger, ) # Train the model log.info("Starting training!") trainer.fit(model=model, datamodule=datamodule) # Evaluate model on test set after training if not config.trainer.get("fast_dev_run"): log.info("Starting testing!") trainer.test() # Make sure everything closed properly log.info("Finalizing!") template_utils.finish( config=config, model=model, datamodule=datamodule, trainer=trainer, callbacks=callbacks, logger=logger, ) # Return metric score for Optuna optimization optimized_metric = config.get("optimized_metric") if optimized_metric: return trainer.callback_metrics[optimized_metric]
import pickle import os import sys import numpy as np import pc_util import scene_util class ScannetDataset(): def __init__(self, root, npoints=8192, split='train'): self.npoints = npoints self.root = root self.split = split self.data_filename = os.path.join(self.root, 'scannet_%s.pickle'%(split)) with open(self.data_filename,'rb') as fp: self.scene_points_list = pickle.load(fp) self.semantic_labels_list = pickle.load(fp) if split=='train': labelweights = np.zeros(21) for seg in self.semantic_labels_list: tmp,_ = np.histogram(seg,range(22)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) self.labelweights = 1/np.log(1.2+labelweights) elif split=='test': self.labelweights = np.ones(21) def __getitem__(self, index): point_set = self.scene_points_list[index] semantic_seg = self.semantic_labels_list[index].astype(np.int32) coordmax = np.max(point_set,axis=0) coordmin = np.min(point_set,axis=0) smpmin = np.maximum(coordmax-[1.5,1.5,3.0], coordmin) smpmin[2] = coordmin[2] smpsz = np.minimum(coordmax-smpmin,[1.5,1.5,3.0]) smpsz[2] = coordmax[2]-coordmin[2] isvalid = False for i in range(10): curcenter = point_set[np.random.choice(len(semantic_seg),1)[0],:] curmin = curcenter-[0.75,0.75,1.5] curmax = curcenter+[0.75,0.75,1.5] curmin[2] = coordmin[2] curmax[2] = coordmax[2] curchoice = np.sum((point_set>=(curmin-0.2))*(point_set<=(curmax+0.2)),axis=1)==3 cur_point_set = point_set[curchoice,:] cur_semantic_seg = semantic_seg[curchoice] if len(cur_semantic_seg)==0: continue mask = np.sum((cur_point_set>=(curmin-0.01))*(cur_point_set<=(curmax+0.01)),axis=1)==3 vidx = np.ceil((cur_point_set[mask,:]-curmin)/(curmax-curmin)*[31.0,31.0,62.0]) vidx = np.unique(vidx[:,0]*31.0*62.0+vidx[:,1]*62.0+vidx[:,2]) isvalid = np.sum(cur_semantic_seg>0)/len(cur_semantic_seg)>=0.7 and len(vidx)/31.0/31.0/62.0>=0.02 if isvalid: break choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=True) point_set = cur_point_set[choice,:] semantic_seg = cur_semantic_seg[choice] mask = mask[choice] sample_weight = self.labelweights[semantic_seg] sample_weight *= mask return point_set, semantic_seg, sample_weight def __len__(self): return len(self.scene_points_list) class ScannetDatasetWholeScene(): def __init__(self, root, npoints=8192, split='train'): self.npoints = npoints self.root = root self.split = split self.data_filename = os.path.join(self.root, 'scannet_%s.pickle'%(split)) with open(self.data_filename,'rb') as fp: self.scene_points_list = pickle.load(fp) self.semantic_labels_list = pickle.load(fp) if split=='train': labelweights = np.zeros(21) for seg in self.semantic_labels_list: tmp,_ = np.histogram(seg,range(22)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) self.labelweights = 1/np.log(1.2+labelweights) elif split=='test': self.labelweights = np.ones(21) def __getitem__(self, index): point_set_ini = self.scene_points_list[index] semantic_seg_ini = self.semantic_labels_list[index].astype(np.int32) coordmax = np.max(point_set_ini,axis=0) coordmin = np.min(point_set_ini,axis=0) nsubvolume_x = np.ceil((coordmax[0]-coordmin[0])/1.5).astype(np.int32) nsubvolume_y = np.ceil((coordmax[1]-coordmin[1])/1.5).astype(np.int32) point_sets = list() semantic_segs = list() sample_weights = list() isvalid = False for i in range(nsubvolume_x): for j in range(nsubvolume_y): curmin = coordmin+[i*1.5,j*1.5,0] curmax = coordmin+[(i+1)*1.5,(j+1)*1.5,coordmax[2]-coordmin[2]] curchoice = np.sum((point_set_ini>=(curmin-0.2))*(point_set_ini<=(curmax+0.2)),axis=1)==3 cur_point_set = point_set_ini[curchoice,:] cur_semantic_seg = semantic_seg_ini[curchoice] if len(cur_semantic_seg)==0: continue mask = np.sum((cur_point_set>=(curmin-0.001))*(cur_point_set<=(curmax+0.001)),axis=1)==3 choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=True) point_set = cur_point_set[choice,:] # Nx3 semantic_seg = cur_semantic_seg[choice] # N mask = mask[choice] if sum(mask)/float(len(mask))<0.01: continue sample_weight = self.labelweights[semantic_seg] sample_weight *= mask # N point_sets.append(np.expand_dims(point_set,0)) # 1xNx3 semantic_segs.append(np.expand_dims(semantic_seg,0)) # 1xN sample_weights.append(np.expand_dims(sample_weight,0)) # 1xN point_sets = np.concatenate(tuple(point_sets),axis=0) semantic_segs = np.concatenate(tuple(semantic_segs),axis=0) sample_weights = np.concatenate(tuple(sample_weights),axis=0) return point_sets, semantic_segs, sample_weights def __len__(self): return len(self.scene_points_list) class ScannetDatasetVirtualScan(): def __init__(self, root, npoints=8192, split='train'): self.npoints = npoints self.root = root self.split = split self.data_filename = os.path.join(self.root, 'scannet_%s.pickle'%(split)) with open(self.data_filename,'rb') as fp: self.scene_points_list = pickle.load(fp) self.semantic_labels_list = pickle.load(fp) if split=='train': labelweights = np.zeros(21) for seg in self.semantic_labels_list: tmp,_ = np.histogram(seg,range(22)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) self.labelweights = 1/np.log(1.2+labelweights) elif split=='test': self.labelweights = np.ones(21) def __getitem__(self, index): point_set_ini = self.scene_points_list[index] semantic_seg_ini = self.semantic_labels_list[index].astype(np.int32) sample_weight_ini = self.labelweights[semantic_seg_ini] point_sets = list() semantic_segs = list() sample_weights = list() for i in range(8): smpidx = scene_util.virtual_scan(point_set_ini,mode=i) if len(smpidx)<300: continue point_set = point_set_ini[smpidx,:] semantic_seg = semantic_seg_ini[smpidx] sample_weight = sample_weight_ini[smpidx] choice = np.random.choice(len(semantic_seg), self.npoints, replace=True) point_set = point_set[choice,:] # Nx3 semantic_seg = semantic_seg[choice] # N sample_weight = sample_weight[choice] # N point_sets.append(np.expand_dims(point_set,0)) # 1xNx3 semantic_segs.append(np.expand_dims(semantic_seg,0)) # 1xN sample_weights.append(np.expand_dims(sample_weight,0)) # 1xN point_sets = np.concatenate(tuple(point_sets),axis=0) semantic_segs = np.concatenate(tuple(semantic_segs),axis=0) sample_weights = np.concatenate(tuple(sample_weights),axis=0) return point_sets, semantic_segs, sample_weights def __len__(self): return len(self.scene_points_list) if __name__=='__main__': d = ScannetDatasetWholeScene(root = './data', split='test', npoints=8192) labelweights_vox = np.zeros(21) for ii in range(len(d)): print ii ps,seg,smpw = d[ii] for b in range(ps.shape[0]): _, uvlabel, _ = pc_util.point_cloud_label_to_surface_voxel_label_fast(ps[b,smpw[b,:]>0,:], seg[b,smpw[b,:]>0], res=0.02) tmp,_ = np.histogram(uvlabel,range(22)) labelweights_vox += tmp print labelweights_vox[1:].astype(np.float32)/np.sum(labelweights_vox[1:].astype(np.float32)) exit()
from PIL import Image import os import argparse def rescale_images(directory): for img in os.listdir(directory): im = Image.open(directory+img) im_resized = im.resize((800,600), Image.ANTIALIAS) im_resized.save(directory+img) rescale_images("test/")
# -*- coding: utf-8 -*- """ Category model for Product Catalog """ from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from mptt.managers import TreeManager from mptt.models import MPTTModel from mptt.models import TreeForeignKey from product_catalog.managers import ProductsRelatedPublishedManager from product_catalog.managers import product_published @python_2_unicode_compatible class Category(MPTTModel): """ Simple model for categorizing products. """ title = models.CharField( _('title'), max_length=255) slug = models.SlugField( _('slug'), unique=True, max_length=255, db_index=True, help_text=_("Used to build the category's URL.")) description = models.TextField( _('description'), blank=True) parent = TreeForeignKey( 'self', related_name='children', null=True, blank=True, on_delete=models.SET_NULL, verbose_name=_('parent category')) objects = TreeManager() published = ProductsRelatedPublishedManager() @models.permalink def get_absolute_url(self): """ Builds and returns the category's URL based on his tree path. """ return 'product_catalog:category_detail', (self.slug,) def __str__(self): return self.title def product_published(self): """ Returns category's published products. """ return product_published(self.products) class Meta: """ Category's meta information. """ ordering = ['title'] verbose_name = _('category') verbose_name_plural = _('categories') class MPTTMeta: """ Category MPTT's meta information. """ order_insertion_by = ['title']
# Slixmpp: The Slick XMPP Library # Copyright (C) 2010 Nathanael C. Fritz, Lance J.T. Stout # This file is part of Slixmpp. # See the file LICENSE for copying permission. from slixmpp.plugins.base import register_plugin from slixmpp.plugins.xep_0092 import stanza from slixmpp.plugins.xep_0092.stanza import Version from slixmpp.plugins.xep_0092.version import XEP_0092 register_plugin(XEP_0092)
from typing import Any # Common properties which can be used at any schema class CommonProperties: def __init__(self, title: str, description: str, type: str, nullable: bool, deprecated: bool, readonly: bool): self.title = title self.description = description self.type = type self.nullable = nullable self.deprecated = deprecated self.readonly = readonly from typing import Any class ScalarProperties: def __init__(self, format: str, enum: Union[StringArray, NumberArray], default: Union[str, float, bool]): self.format = format self.enum = enum self.default = default from typing import Any from typing import Dict # Properties of a schema class Properties(Dict[str, PropertyValue]): from typing import Any # Properties specific for a container class ContainerProperties: def __init__(self, type: str): self.type = type from typing import Any # Struct specific properties class StructProperties: def __init__(self, properties: Properties, required: List[str]): self.properties = properties self.required = required from typing import Any # Map specific properties class MapProperties: def __init__(self, additionalProperties: Union[BooleanType, NumberType, StringType, ArrayType, CombinationType, ReferenceType, GenericType], maxProperties: int, minProperties: int): self.additionalProperties = additionalProperties self.maxProperties = maxProperties self.minProperties = minProperties from typing import Any # Array properties class ArrayProperties: def __init__(self, type: str, items: Union[BooleanType, NumberType, StringType, ReferenceType, GenericType], maxItems: int, minItems: int, uniqueItems: bool): self.type = type self.items = items self.maxItems = maxItems self.minItems = minItems self.uniqueItems = uniqueItems from typing import Any # Boolean properties class BooleanProperties: def __init__(self, type: str): self.type = type from typing import Any # Number properties class NumberProperties: def __init__(self, type: str, multipleOf: float, maximum: float, exclusiveMaximum: bool, minimum: float, exclusiveMinimum: bool): self.type = type self.multipleOf = multipleOf self.maximum = maximum self.exclusiveMaximum = exclusiveMaximum self.minimum = minimum self.exclusiveMinimum = exclusiveMinimum from typing import Any # String properties class StringProperties: def __init__(self, type: str, maxLength: int, minLength: int, pattern: str): self.type = type self.maxLength = maxLength self.minLength = minLength self.pattern = pattern from typing import Any from typing import Dict # An object to hold mappings between payload values and schema names or references class DiscriminatorMapping(Dict[str, str]): from typing import Any # Adds support for polymorphism. The discriminator is an object name that is used to differentiate between other schemas which may satisfy the payload description class Discriminator: def __init__(self, propertyName: str, mapping: DiscriminatorMapping): self.propertyName = propertyName self.mapping = mapping from typing import Any from typing import List # An intersection type combines multiple schemas into one class AllOfProperties: def __init__(self, description: str, allOf: List[OfValue]): self.description = description self.allOf = allOf from typing import Any from typing import List # An union type can contain one of the provided schemas class OneOfProperties: def __init__(self, description: str, discriminator: Discriminator, oneOf: List[OfValue]): self.description = description self.discriminator = discriminator self.oneOf = oneOf from typing import Any from typing import Dict class TemplateProperties(Dict[str, ReferenceType]): from typing import Any # Represents a reference to another schema class ReferenceType: def __init__(self, ref: str, template: TemplateProperties): self.ref = ref self.template = template from typing import Any # Represents a generic type class GenericType: def __init__(self, generic: str): self.generic = generic from typing import Any from typing import Dict # Schema definitions which can be reused class Definitions(Dict[str, DefinitionValue]): from typing import Any from typing import Dict # Contains external definitions which are imported. The imported schemas can be used via the namespace class Import(Dict[str, str]): from typing import Any # TypeSchema meta schema which describes a TypeSchema class TypeSchema: def __init__(self, import: Import, title: str, description: str, type: str, definitions: Definitions, properties: Properties, required: List[str]): self.import = import self.title = title self.description = description self.type = type self.definitions = definitions self.properties = properties self.required = required
import math from random import randint from numerus import is_numeric from omnicanvas import Canvas, colors from .series import Series, LineSeries, ScatterSeries class Chart: """The base class for all charts. It controls the attributes common to all charts - namely dimensions and title. :param str title: The chart's title. This will be displayed at the top of\ the chart. :param width: The width in pixels of the chart. :param height: The height in pixels of the chart.""" def __init__(self, title="", width=700, height=500): if not isinstance(title, str): raise TypeError("title must be str, not '%s'" % str(title)) self._title = title if not is_numeric(width): raise TypeError("width must be numeric, not '%s'" % str(width)) self._width = width if not is_numeric(height): raise TypeError("height must be numeric, not '%s'" % str(height)) self._height = height def __repr__(self): return "<Chart (%i×%i)>" % (self._width, self._height) def title(self, title=None): """Returns or sets (if a value is provided) the chart's title. :param str title: If given, the chart's title will be set to this. :rtype: ``str``""" if title is None: return self._title else: if not isinstance(title, str): raise TypeError("title must be str, not '%s'" % str(title)) self._title = title def width(self, width=None): """Returns or sets (if a value is provided) the chart's width. :param width: If given, the chart's width will be set to this.""" if width is None: return self._width else: if not is_numeric(width): raise TypeError("width must be numeric, not '%s'" % str(width)) self._width = width def height(self, height=None): """Returns or sets (if a value is provided) the chart's height. :param height: If given, the chart's height will be set to this.""" if height is None: return self._height else: if not is_numeric(height): raise TypeError("height must be numeric, not '%s'" % str(height)) self._height = height def create(self): """Renders the chart to an OmniCanvas `canvas <https://omnicanvas.readt\ hedocs.io/en/latest/api/canvas.html#omnicanvas.canvas.Canvas>`_. This object can then be `saved <https://omnicanvas.readthedocs.io/en/latest/\ api/canvas.html#omnicanvas.canvas.Canvas.save>`_ or `rendered <https://\ omnicanvas.readthedocs.io/en/latest/api/canvas.html#omnicanvas.canvas.C\ anvas.render>`_ as SVG.""" canvas = Canvas(self.width(), self.height()) canvas.add_text( self.width() / 2, 0, self.title(), vertical_align="bottom", name="title" ) return canvas class AxisChart(Chart): """Base class: :py:class:`Chart` A chart with axes, onto which series can be shown. Line charts, scatter charts, bar charts etc. are all AxisCharts with the relevant series. An AxisChart can have multiple series associated with it, and they will all be drawn onto the chart. AxisCharts have the usual properties relating to axes, such as axes labels and ticks. :param Series \*series: One or more :py:class:`.Series` objects to be\ associated with the chart. :param str title: The chart's title. This will be displayed at the top of\ the chart. :param width: The width in pixels of the chart. :param height: The height in pixels of the chart. :param str x_label: The label for the x-axis. :param str y_label: The label for the y-axis. :raises ValueError: If no series are given.""" def __init__(self, *series, x_label="", y_label="", **kwargs): Chart.__init__(self, **kwargs) for s in series: if not isinstance(s, Series): raise TypeError("'%s' is not a Series" % str(s)) if len(series) == 0: raise ValueError("AxisChart needs at least one series") self._all_series = list(series) for s in series: s._chart = self if not isinstance(x_label, str): raise TypeError("x_label must be str, not '%s'" % str(x_label)) self._x_label = x_label if not isinstance(y_label, str): raise TypeError("y_label must be str, not '%s'" % str(y_label)) self._y_label = y_label self._horizontal_padding = 0.1 self._vertical_padding = 0.1 self._x_lower_limit = None self._x_upper_limit = None self._y_lower_limit = None self._y_upper_limit = None self._x_ticks = None self._y_ticks = None self._x_grid = True self._y_grid = True def __repr__(self): return "<AxisChart (%i series)>" % len(self._all_series) def all_series(self): """Returns a ``list`` of all the :py:class:`.Series` objects associated with the chart. :rtype: ``list``""" return list(self._all_series) def series(self): """Returns the first :py:class:`.Series` objects associated with the chart. :rtype: :py:class:`.Series`""" return self._all_series[0] def add_series(self, series): """Adds a :py:class:`.Series` to the chart. :param Series series: The :py:class:`.Series` to add.""" if not isinstance(series, Series): raise TypeError("'%s' is not a Series" % str(series)) self._all_series.append(series) series._chart = self def remove_series(self, series): """Removes a :py:class:`.Series` from the chart. :param Series series: The :py:class:`.Series` to remove. :raises ValueError: if you try to remove the last\ :py:class:`.Series`.""" if len(self.all_series()) == 1: raise ValueError("Cannot remove last series from %s" % str(self)) self._all_series.remove(series) series._chart = None def next_color(self): current_colors = [series.color() for series in self.all_series()] for color in colors: if color not in current_colors: return color return "#%02x%02x%02x" % (randint(0,255), randint(0,255), randint(0,255)) def line(self, *args, **kwargs): """Adds a :py:class:`.LineSeries` to the chart. :param \*data: The data for the series as either (x,y) values or two big\ tuples/lists of x and y values respectively. :param str name: The name to be associated with the series. :param str color: The hex colour of the line. :param str linestyle: The line pattern. See\ `OmniCanvas docs <https://omnicanvas.readthedocs.io/en/latest/api/graph\ ics.html#omnicanvas.graphics.ShapeGraphic.line_style>`_ for acceptable \ values. :param Number linewidth: The width in pixels of the line. :raises ValueError: if the size and length of the data doesn't match\ either format.""" if "color" not in kwargs: kwargs["color"] = self.next_color() series = LineSeries(*args, **kwargs) self.add_series(series) def scatter(self, *args, **kwargs): """Adds a :py:class:`.ScatterSeries` to the chart. :param \*data: The data for the series as either (x,y) values or two big\ tuples/lists of x and y values respectively. :param str name: The name to be associated with the series. :param str color: The hex colour of the line. :param Number size: The size of each data point - generally the diameter. :param Number linewidth: The width in pixels of the data points' edge. :raises ValueError: if the size and length of the data doesn't match\ either format.""" if "color" not in kwargs: kwargs["color"] = self.next_color() series = ScatterSeries(*args, **kwargs) self.add_series(series) def get_series_by_name(self, name): """Returns the first :py:class:`.Series` of a given name, or ``None``. :param str name: The name to search by.""" if not isinstance(name, str): raise TypeError( "Can only search series by str name, not '%s'" % str(name) ) for series in self.all_series(): if series.name() == name: return series def x_label(self, x_label=None): """Returns or sets (if a value is provided) the chart's x-axis label. :param str x_label: If given, the chart's x_label will be set to this. :rtype: ``str``""" if x_label is None: return self._x_label else: if not isinstance(x_label, str): raise TypeError("x_label must be str, not '%s'" % str(x_label)) self._x_label = x_label def y_label(self, y_label=None): """Returns or sets (if a value is provided) the chart's y-axis label. :param str y_label: If given, the chart's y_label will be set to this. :rtype: ``str``""" if y_label is None: return self._y_label else: if not isinstance(y_label, str): raise TypeError("y_label must be str, not '%s'" % str(y_label)) self._y_label = y_label def horizontal_padding(self, padding=None): """Returns or sets (if a value is provided) the chart's horizontal padding. This determines how much space will be on either side of the display area, as a proportion of overall width, and should be a value between 0 and 0.5 :param float padding: If given, the chart's horizontal_padding\ will be set to this. :raises ValueError: if a value outside of 0 < n < 0.5 is given. :rtype: float""" if padding is None: return self._horizontal_padding else: if not isinstance(padding, float): raise TypeError("padding must be float, not '%s'" % str(padding)) if not 0 < padding < 0.5: raise ValueError( "padding must be between 0 and 0.5 (not inclusive), not '%s'" % str(padding) ) self._horizontal_padding = padding def vertical_padding(self, padding=None): """Returns or sets (if a value is provided) the chart's vertical padding. This determines how much space will be above and below the display area, as a proportion of overall height, and should be a value between 0 and 0.5 :param float padding: If given, the chart's vertical_padding\ will be set to this. :raises ValueError: if a value outside of 0 < n < 0.5 is given. :rtype: float""" if padding is None: return self._vertical_padding else: if not isinstance(padding, float): raise TypeError("padding must be float, not '%s'" % str(padding)) if not 0 < padding < 0.5: raise ValueError( "padding must be between 0 and 0.5 (not inclusive), not '%s'" % str(padding) ) self._vertical_padding = padding def smallest_x(self): """Returns the smallest x-value in all the :py:class:`.Series` associated with the chart.""" return min( [series.data()[0][0] for series in self.all_series()] ) def largest_x(self): """Returns the largest x-value in all the :py:class:`.Series` associated with the chart.""" return max( [series.data()[-1][0] for series in self.all_series()] ) def smallest_y(self): """Returns the smallest y-value in all the :py:class:`.Series` associated with the chart.""" return min( [series.smallest_y() for series in self.all_series()] ) def largest_y(self): """Returns the largest y-value in all the :py:class:`.Series` associated with the chart.""" return max( [series.largest_y() for series in self.all_series()] ) def x_lower_limit(self, limit=None): """Returns or sets (if a value is provided) the value at which the x-axis should start. By default this is zero (unless there are negative values). :param limit: If given, the chart's x_lower_limit will be set to this. :raises ValueError: if you try to make the lower limit larger than the\ upper limit.""" if limit is None: if self._x_lower_limit is None: if self.smallest_x() < 0: if self.smallest_x() == self.largest_x(): return int(self.smallest_x() - 1) else: return self.smallest_x() else: return 0 else: return self._x_lower_limit else: if not is_numeric(limit): raise TypeError( "lower x limit must be numeric, not '%s'" % str(limit) ) if limit >= self.largest_x(): raise ValueError( "lower x limit must be less than upper limit (%s), not %s" % ( str(self.largest_x()), str(limit) ) ) self._x_lower_limit = limit def y_lower_limit(self, limit=None): """Returns or sets (if a value is provided) the value at which the y-axis should start. By default this is zero (unless there are negative values). :param limit: If given, the chart's y_lower_limit will be set to this. :raises ValueError: if you try to make the lower limit larger than the\ upper limit.""" if limit is None: if self._y_lower_limit is None: if self.smallest_y() < 0: if self.smallest_y() == self.largest_y(): return int(self.smallest_y() - 1) else: return self.smallest_y() else: return 0 else: return self._y_lower_limit else: if not is_numeric(limit): raise TypeError( "lower y limit must be numeric, not '%s'" % str(limit) ) if limit >= self.largest_y(): raise ValueError( "lower y limit must be less than upper limit (%s), not %s" % ( str(self.largest_y()), str(limit) ) ) self._y_lower_limit = limit def x_upper_limit(self, limit=None): """Returns or sets (if a value is provided) the value at which the x-axis should end. By default this is the highest x value in the associated series. :param limit: If given, the chart's x_upper_limit will be set to this. :raises ValueError: if you try to make the upper limit smaller than the\ lower limit.""" if limit is None: if self._x_upper_limit is None: if self.smallest_x() == self.largest_x(): if int(self.largest_x()) == float(self.largest_x()): return self.largest_x() + 1 else: return math.ceil(self.largest_x()) else: return self.largest_x() else: return self._x_upper_limit else: if not is_numeric(limit): raise TypeError( "upper x limit must be numeric, not '%s'" % str(limit) ) if limit <= self.smallest_x(): raise ValueError( "upper x limit must be greater than lower limit (%s), not %s" % ( str(self.smallest_x()), str(limit) ) ) self._x_upper_limit = limit def y_upper_limit(self, limit=None): """Returns or sets (if a value is provided) the value at which the y-axis should end. By default this is the highest y value in the associated series. :param limit: If given, the chart's y_upper_limit will be set to this. :raises ValueError: if you try to make the upper limit smaller than the\ lower limit.""" if limit is None: if self._y_upper_limit is None: if self.smallest_y() == self.largest_y(): if int(self.largest_y()) == float(self.largest_y()): return self.largest_y() + 1 else: return math.ceil(self.largest_y()) else: return self.largest_y() else: return self._y_upper_limit else: if not is_numeric(limit): raise TypeError( "upper y limit must be numeric, not '%s'" % str(limit) ) if limit <= self.smallest_y(): raise ValueError( "upper y limit must be greater than lower limit (%s), not %s" % ( str(self.smallest_y()), str(limit) ) ) self._y_upper_limit = limit def x_ticks(self, *ticks): """The points on the x-axis for which there are markers and grid lines. There are default ticks, but you can pass values to this method to override the defaults. Otherwise the method will return the ticks. :param \*ticks: if given, these will be chart's x-ticks. :rtype: ``tuple``""" if ticks: for tick in ticks: if not is_numeric(tick): raise TypeError("'%s' is not a numeric tick" % str(tick)) self._x_ticks = tuple(sorted(ticks)) else: if self._x_ticks: return self._x_ticks else: return determine_ticks(self.x_lower_limit(), self.x_upper_limit()) def y_ticks(self, *ticks): """The points on the y-axis for which there are markers and grid lines. There are default ticks, but you can pass values to this method to override the defaults. Otherwise the method will return the ticks. :param \*ticks: if given, these will be chart's x-ticks. :rtype: ``tuple``""" if ticks: for tick in ticks: if not is_numeric(tick): raise TypeError("'%s' is not a numeric tick" % str(tick)) self._y_ticks = tuple(sorted(ticks)) else: if self._y_ticks: return self._y_ticks else: return determine_ticks(self.y_lower_limit(), self.y_upper_limit()) def x_grid(self, grid=None): """The horizontal lines that run accross the chart from the x-ticks. If a boolean value is given, these gridlines will be turned on or off. Otherwise, the method will return their current state. :param bool grid: Turns the gridlines on or off. :rtype: ``bool``""" if grid is None: return self._x_grid else: if not isinstance(grid, bool): raise TypeError("grid must be boolean, not '%s'" % grid) self._x_grid = grid def y_grid(self, grid=None): """The vertical lines that run accross the chart from the y-ticks. If a boolean value is given, these gridlines will be turned on or off. Otherwise, the method will return their current state. :param bool grid: Turns the gridlines on or off. :rtype: ``bool``""" if grid is None: return self._y_grid else: if not isinstance(grid, bool): raise TypeError("grid must be boolean, not '%s'" % grid) self._y_grid = grid def grid(self, grid): """Turns all gridlines on or off :param bool grid: turns the gridlines on if ``True``, off if ``False``""" if not isinstance(grid, bool): raise TypeError("grid must be boolean, not '%s'" % grid) self._x_grid = self._y_grid = grid def create(self): """Renders the chart to an OmniCanvas `canvas <https://omnicanvas.readt\ hedocs.io/en/latest/api/canvas.html#omnicanvas.canvas.Canvas>`_. This object can then be `saved <https://omnicanvas.readthedocs.io/en/latest/\ api/canvas.html#omnicanvas.canvas.Canvas.save>`_ or `rendered <https://\ omnicanvas.readthedocs.io/en/latest/api/canvas.html#omnicanvas.canvas.C\ anvas.render>`_ as SVG.""" canvas = Chart.create(self) for index, series in enumerate(self.all_series(), start=1): series.write_to_canvas(canvas, "series%i" % index) canvas.add_rectangle( 0, 0, self.horizontal_padding() * canvas.width(), canvas.height(), opacity=1, line_width=0, name="block-w" ) canvas.add_rectangle( 0, 0, canvas.width(), self.vertical_padding() * canvas.height(), opacity=1, line_width=0, name="block-n" ) canvas.add_rectangle( canvas.width() - (self.horizontal_padding() * canvas.width()), 0, self.horizontal_padding() * canvas.width(), canvas.height(), opacity=1, line_width=0, name="block-e" ) canvas.add_rectangle( 0, canvas.height() - (self.vertical_padding() * canvas.height()), canvas.width(), self.vertical_padding() * canvas.height(), opacity=1, line_width=0, name="block-s" ) title = canvas.graphics()[0] while canvas.graphics().index(title) != len(canvas.graphics()) - 1: canvas.move_graphic_forward(title) canvas.graphics()[-1].y(self.vertical_padding() * canvas.height() * 0.5) canvas.graphics()[-1].vertical_align("center") axes = canvas.add_rectangle( self.horizontal_padding() * canvas.width(), self.vertical_padding() * canvas.height(), canvas.width() - (2 * self.horizontal_padding() * canvas.width()), canvas.height() - (2 * self.vertical_padding() * canvas.height()), name="axes", opacity=0 ) if self.x_label(): canvas.add_text( canvas.width() / 2, canvas.height() - (self.vertical_padding() * canvas.height() * 0.25), self.x_label(), name="x_label" ) y_label_x = self.horizontal_padding() * canvas.width() * 0.25 if self.y_label(): canvas.add_text( y_label_x, canvas.height() * 0.5, self.y_label(), rotation=(y_label_x, canvas.height() * 0.5, 270), name="y_label" ) x_tick_series = Series(*[(tick, 0) for tick in self.x_ticks()]) x_tick_series._chart = self x_tick_points = x_tick_series.canvas_points() for index, tick in enumerate(x_tick_series.data()): canvas.add_text( x_tick_points[index][0], canvas.height() - (self.vertical_padding() * canvas.height() * 0.75), str(tick[0]), name="xtick" ) if self.x_grid(): line = canvas.add_line( x_tick_points[index][0], canvas.height() * (1 - self.vertical_padding()), x_tick_points[index][0], canvas.height() * self.vertical_padding(), line_style="..", line_color="#333333", name="xgrid" ) while canvas.graphics()[0] is not line: canvas.move_graphic_backward(line) y_tick_series = Series(*[(0, tick) for tick in self.y_ticks()]) y_tick_series._chart = self y_tick_points = y_tick_series.canvas_points() for index, tick in enumerate(y_tick_series.data()): canvas.add_text( self.horizontal_padding() * canvas.width() * 0.75, y_tick_points[index][1], str(tick[1]), name="ytick" ) if self.y_grid(): line = canvas.add_line( canvas.width() * self.horizontal_padding(), y_tick_points[index][1], canvas.width() * (1 - self.horizontal_padding()), y_tick_points[index][1], line_style="..", line_color="#333333", name="ygrid" ) while canvas.graphics()[0] is not line: canvas.move_graphic_backward(line) return canvas def determine_ticks(low, high): """The function used to auto-generate ticks for an axis, based on its range of values. :param Number low: The lower bound of the axis. :param Number high: The upper bound of the axis. :rtype: ``tuple``""" range_ = high - low tick_difference = 10 ** math.floor(math.log10(range_ / 1.25)) low_tick = math.floor(low / tick_difference) * tick_difference ticks = [low_tick + tick_difference] if low_tick < low else [low_tick] while ticks[-1] + tick_difference <= high: ticks.append(ticks[-1] + tick_difference) return tuple(ticks)
CELERY_RESULT_BACKEND = "django-db"
"""DEPRECATED 2014-03-01 by cam. This csv stuff is now all done through compute engine. I'll leave this file around in case we want to know how to interact with cloud storage from app engine in the future. Note 2013-04-11 by ajb: Adding a delete file classmethod. This will be used to clean out our backup buckets with a cron job, to keep them from getting too gross. TODO: If we want to do more stuff with GCS, we should clean up this class because it's getting a little smelly. Currently it's geared around one specific bucket--perts_prod/--but we should generalize it to make it more useful. (also it like doesn't really make sense that the file's called csv_file) """ import cloudstorage as gcs import json import util # The demo code in this library download is very useful. This particular # download is for SDK version 1.8.8 # https://code.google.com/p/appengine-gcs-client/downloads/detail?name=appengine-gcs-client-python-r127.zip&can=2&q= # Some documentation for the GCS client library: # https://developers.google.com/appengine/docs/python/googlecloudstorageclient/ # https://developers.google.com/appengine/docs/python/googlecloudstorageclient/functions class CsvFile: """Uses Google Cloud Storage to manage csv files with certain presets.""" mime_type = 'text/plain' if util.is_development(): bucket = 'perts_dev' else: bucket = 'perts_prod' # You can specific some parameters here, see commented example. retry_params = gcs.RetryParams() # retry_params = gcs.RetryParams(initial_delay=0.2, # max_delay=5.0, # backoff_factor=2, # max_retry_period=15) # Only used during writes. Controls permissions. For types of permission, # see https://developers.google.com/storage/docs/accesscontrol#extension write_options = { 'x-goog-acl': 'project-private', # default permission # 'x-goog-meta-foo': 'foo', # arbitrary meta data # 'x-goog-meta-bar': 'bar', } @classmethod def list_bucket_files(klass, bucket_name): iterable = gcs.listbucket('/' + bucket_name + '/') return [f.filename for f in iterable] def __init__(self, filename): self.relative_path = filename self.absolute_path = '/{}/{}'.format(self.bucket, self.relative_path) # create the file, if it doesn't exist already # This doesn't work. try: gcs_file = gcs.open(self.absolute_path, mode='r', retry_params=self.retry_params) gcs_file.close() except: self.write(json.dumps([])) def read(self): gcs_file = gcs.open(self.absolute_path, mode='r', retry_params=self.retry_params) string = gcs_file.read() gcs_file.close() return string def write(self, string): gcs_file = gcs.open(self.absolute_path, mode='w', content_type=self.mime_type, retry_params=self.retry_params, options=self.write_options) # unicode not allowed here gcs_file.write(str(string)) gcs_file.close() @classmethod def delete(self, filename): """Delete method will remove a file from GCS, provided an absolute file path.""" try: gcs.delete(filename) return "{} deleted.".format(filename) except gcs.NotFoundError: return 'GCS File Not Found'
from unittest import TestCase import PyObjectTree class TestNode(TestCase): def test_Node(self): pass
from sympy.multipledispatch import dispatch, Dispatcher from sympy.core import Basic, Expr, Function, Add, Mul, Pow, Dummy, Integer from sympy import Min, Max, Set, sympify, Lambda, symbols, exp, log, S from sympy.core.numbers import Infinity, NegativeInfinity from sympy.sets import (imageset, Interval, FiniteSet, Union, ImageSet, ProductSet, EmptySet, Intersection) from sympy.core.function import FunctionClass from sympy.logic.boolalg import And, Or, Not, true, false _x, _y = symbols("x y") @dispatch(Basic, Basic) def _set_add(x, y): return None @dispatch(Expr, Expr) def _set_add(x, y): return x+y @dispatch(Interval, Interval) def _set_add(x, y): """ Additions in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ return Interval(x.start + y.start, x.end + y.end, x.left_open or y.left_open, x.right_open or y.right_open) @dispatch(Interval, Infinity) def _set_add(x, y): if x.start == S.NegativeInfinity: return Interval(-oo, oo) return FiniteSet({S.Infinity}) @dispatch(Interval, NegativeInfinity) def _set_add(x, y): if x.end == S.Infinity: return Interval(-oo, oo) return FiniteSet({S.NegativeInfinity}) @dispatch(Basic, Basic) def _set_sub(x, y): return None @dispatch(Expr, Expr) def _set_sub(x, y): return x-y @dispatch(Interval, Interval) def _set_sub(x, y): """ Subtractions in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ return Interval(x.start - y.end, x.end - y.start, x.left_open or y.right_open, x.right_open or y.left_open) @dispatch(Interval, Infinity) def _set_sub(x, y): if self.start is S.NegativeInfinity: return Interval(-oo, oo) return FiniteSet(-oo) @dispatch(Interval, NegativeInfinity) def _set_sub(x, y): if self.start is S.NegativeInfinity: return Interval(-oo, oo) return FiniteSet(-oo)
BASE_URL = "https://www.duolingo.com/stories"
from gui import * class MainFrame(MyFrame): def __init__(self,master): super().__init__(master) self.panel1 = MyPanel(self) self.panel2 = MyPanel(self,orient=tk.HORIZONTAL) self.panel3 = MyPanel(self,orient=tk.HORIZONTAL) self.label1 = MyLabel(self,"Word Similarity Checker",f_size=30) self.entry = MyEntry(self,text="Word you want to check") self.entry2 = MyEntry(self,text="Word to check with") self.go_btn = MyBtn(self,"Go") self.ans = MyLabel(self,"",f_size=20,fg="darkblue") self.binding() self.entry.focus_force() def binding(self): self.go_btn.bind('<Button-1>',self.respond) def show(self): self.pack(pady=150) self.panel1.pack() self.panel1.add(self.label1) self.panel1.add(self.panel2,pady=50) self.panel1.add(self.panel3,pady=50) self.panel2.add(self.entry) self.panel2.add(self.entry2) self.panel2.add(self.go_btn) self.panel3.add(self.ans) def respond(self,x): self.ans.configure(text=s.score(self.entry.get(),self.entry2.get()))
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.1-9346c8cc45 (http://hl7.org/fhir/StructureDefinition/DataRequirement) on 2020-02-03. # 2020, SMART Health IT. import sys from dataclasses import dataclass, field from typing import ClassVar, Optional, List from .codeableconcept import CodeableConcept from .coding import Coding from .duration import Duration from .element import Element from .fhirdate import FHIRDate from .fhirreference import FHIRReference from .period import Period @dataclass class DataRequirementCodeFilter(Element): """ What codes are expected. Code filters specify additional constraints on the data, specifying the value set of interest for a particular element of the data. Each code filter defines an additional constraint on the data, i.e. code filters are AND'ed, not OR'ed. """ resource_type: ClassVar[str] = "DataRequirementCodeFilter" path: Optional[str] = None searchParam: Optional[str] = None valueSet: Optional[str] = None code: Optional[List[Coding]] = None @dataclass class DataRequirementDateFilter(Element): """ What dates/date ranges are expected. Date filters specify additional constraints on the data in terms of the applicable date range for specific elements. Each date filter specifies an additional constraint on the data, i.e. date filters are AND'ed, not OR'ed. """ resource_type: ClassVar[str] = "DataRequirementDateFilter" path: Optional[str] = None searchParam: Optional[str] = None valueDateTime: Optional[FHIRDate] = field(default=None, metadata=dict(one_of_many='value',)) valuePeriod: Optional[Period] = field(default=None, metadata=dict(one_of_many='value',)) valueDuration: Optional[Duration] = field(default=None, metadata=dict(one_of_many='value',)) @dataclass class DataRequirementSort(Element): """ Order of the results. Specifies the order of the results to be returned. """ resource_type: ClassVar[str] = "DataRequirementSort" path: str = None direction: str = None @dataclass class DataRequirement(Element): """ Describes a required data item. Describes a required data item for evaluation in terms of the type of data, and optional code or date-based filters of the data. """ resource_type: ClassVar[str] = "DataRequirement" type: str = None profile: Optional[List[str]] = None subjectCodeableConcept: Optional[CodeableConcept] = field(default=None, metadata=dict(one_of_many='subject',)) subjectReference: Optional[FHIRReference] = field(default=None, metadata=dict(one_of_many='subject',)) mustSupport: Optional[List[str]] = None codeFilter: Optional[List[DataRequirementCodeFilter]] = None dateFilter: Optional[List[DataRequirementDateFilter]] = None limit: Optional[int] = None sort: Optional[List[DataRequirementSort]] = None
null = "null" # from BlueTest.logInit import * import BlueTest,time,random,asyncio def test(): with open(".//srcdata//test.json.postman_collection","w") as file: a = { "id": "3560d742-c3da-4ad7-32c1-222", "name": "test", "requests": [ { "id": "49c2b90f-8ea7-c53e-910b-222", "headers": "Origin: https://blog.csdn.net\nUser-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36\nContent-Type: text/plain\nAccept: */*\nReferer: https://blog.csdn.net/qq_37159430/article/details/79970518\nAccept-Encoding: gzip, deflate, br\nAccept-Language: zh-CN,zh;q=0.8", "url": "https://nbrecsys.4paradigm.com/action/api/log?requestID=Abac6ban&clientToken=1f9d3d10b0ab404e86c2e61a935d3888", "pathVariables": {}, "preRequestScript": null, "method": "POST", "collectionId": "3560d742-c3da-4ad7-32c1-222", "data": [], "dataMode": "raw", "name": "testapi", "description": "", "descriptionFormat": "html", "time": 1542777522436, "version": 2, "responses": [], "tests": null, "currentHelper": "normal", "helperAttributes": {}, "rawModeData": "{\"date\":\"2018-11-04 10:21:06\",\"actions\":[{\"requestID\":\"2222\",\"actionTime\":1542248466944,\"action\":\"show\",\"sceneId\":420,\"userId\":\"xubyCjC6zO\",\"itemId\":\"user_define\",\"itemSetId\":\"39\",\"uuid_tt_dd\":\"10_28867322960-222-222\",\"specialType\":\"csdn_net_alliance_ads\",\"ads\":1}]}" } ], "order": [ "49c2b90f-8ea7-c53e-910b-05a3c7014269" ], "timestamp": 1542777522437 } file.write(str(a)) BlueTest.log.logger.info("测试数据生成 .//srcdata//test.json.postman_collection") # time.sleep(1) BlueTest.initPostMan("test") BlueTest.testByCsvData("test") # BlueTest.testByCsvData("test", limit_check=False, extras_check=True) def presstest(): temp = ["temp1", "temp2", "temp3"] class press_2(BlueTest.SoloPress): def setup(self): self.num = temp[0] self.count = 20 def runcase(self): response = random.choice(["成功","失败"]) self.file_write(str(self.num), response, BlueTest.toolbox.responseAssert(response)) press = BlueTest.Press(200) press.run(press_2) press.dataReduction() def pressTestByCsv(): a = BlueTest.Csv2Dict(path="./srcdata/test.csv") a = a.run() b = BlueTest.apiTest(a[0]) b.error_list = ["error", "Error", "False", "false", "失败", "错误", "异常", "禁止"] temp = ["temp1", "temp2", "temp3"] class press_2(BlueTest.SoloPress): def setup(self): self.num = temp[self.index-1] self.count = 20 def runcase(self): response = b.soloRequest() #dothing .... self.file_write(str(self.num),response,b.responseAssert(response)) # print (self.name,self.num) press= BlueTest.Press(2) press.run(press_2) press.dataReduction() def pressAioTest(): class Test(BlueTest.SoloPressAsync): async def setup(self, **kwargs): kwargs["data"]["code"] = await self.queue.get() return kwargs def newQueue(self): temp_list = [] for i in range(0, 1000000): if len(str(i)) < 6: i = "0" * (6 - len(str(i))) + str(i) temp_list.append(str(i)) queue = asyncio.Queue() [queue.put_nowait(temp) for temp in temp_list] self.queue = queue new = Test("http://hq.sinajs.cn/list=sh600001", "Get", headers={"requestTime": "test","User-Agent":"Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50 IE 9.0"}, vuser=500, total_num=2000, data={"code": "", "phone": "13111111111"}) new.mainrun() new.dataReduction() def rsafileTest(): from BlueTest.toolbox import ToolBox as toolbox toolbox.RsaFile.creatKeys() toolbox.RsaFile.rsaEncrypt('public.pem', 'a.xlsx') # public.pem生成的公钥,a.xlsx加密文件,默认加密后文件名Encrypt toolbox.RsaFile.rsaDecrypt('private.pem', "Encrypt", "dfc.xlsx") # private.pem私钥文件,Encrypt需要解密的文件,dfc.xlsx解密后文件 if __name__ == '__main__': new = Test("http://hq.sinajs.cn/list=sh600001", "Get", headers={"requestTime": "test", "User-Agent": "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50 IE 9.0"}, vuser=500, total_num=2000, data={"code": "", "phone": "13111111111"}) new.mainrun() new.dataReduction()
# Write your solution here: class Person: def __init__(self, name: str): self.name = name def return_first_name(self): first_name = self.name.split(" ")[0] return first_name def return_last_name(self): last_name = self.name.split(" ")[1] return last_name if __name__ == "__main__": peter = Person("Peter Pythons") print(peter.return_first_name()) print(peter.return_last_name()) paula = Person("Paula Pythonnen") print(paula.return_first_name()) print(paula.return_last_name())
import requests from bs4 import BeautifulSoup # Hardcode URL for testing purposes, will integrate input later url = "" # needs to be verified as valid URL try: # downloading HTML page target = requests.get(url) # initializing bs4 object soup = BeautifulSoup(target.content, 'html.parser') status = target.status_code # contains names or ids of text fields only; final output of the program field = [] for form in soup.find_all('input', type='text'): ''' Build input field list here Remember to only record text inputs ''' field.append([{'id': form.get('id'), 'name': form.get('name')}]) ''' field is stored as a list of dictionaries each containing the 'id' and 'name' attributes of the respective input text fields. If the attribute isn't present it's value is stored as None ''' except Exception as exception: print(exception) print('URL DOES NOT EXIST!')
#!/usr/bin/env python3 import sys import ipaddress for line in sys.stdin: line = line.rstrip("\r\n") if not line: break ip = ipaddress.IPv6Address(line) print(ip.reverse_pointer + ".\tPTR")
#!/usr/bin/python # -*- coding: utf-8 -*- """ PyCOMPSs Testbench ======================== """ # Imports from pycompss.api.task import task from pycompss.api.binary import binary @binary(binary="date") @task() def myDate(dprefix, param): pass def main(): from pycompss.api.api import compss_barrier myDate("-d", "next friday") compss_barrier() print("Finished") if __name__ == '__main__': main()
# Copyright 2017-2021 object_database Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from object_database.web.cells.cell import Cell from object_database.web.cells.leaves import Octicon from object_database.web.cells.session_state import sessionState class Expands(Cell): def __init__(self, closed, open, closedIcon=None, openedIcon=None): super().__init__() self.closed = closed self.open = open self.openedIcon = openedIcon or Octicon("diff-removed") self.closedIcon = closedIcon or Octicon("diff-added") @property def isExpanded(self): isExpandedSlot = sessionState().slotFor(self.identityPath + ("ExpandsState",)) return isExpandedSlot.get() or False @isExpanded.setter def isExpanded(self, isExpanded): isExpandedSlot = sessionState().slotFor(self.identityPath + ("ExpandsState",)) isExpandedSlot.set(bool(isExpanded)) def sortsAs(self): if self.isExpanded: return self.open.sortsAs() return self.closed.sortsAs() def recalculate(self): self.children.addFromDict( { "content": self.open if self.isExpanded else self.closed, "icon": self.openedIcon if self.isExpanded else self.closedIcon, } ) self.exportData["isOpen"] = self.isExpanded for c in self.children.allChildren: if c.cells is not None: c.prepareForReuse() def onMessage(self, msgFrame): self.isExpanded = not self.isExpanded
import ipyvuetify as v import pandas as pd from ipywidgets import Output from matplotlib import pyplot as plt from component import parameter as cp class LayerFull(v.Layout): COLORS = cp.gradient(5) + ["grey"] def __init__(self, layer_name, values, aoi_names, colors): # read the layer list and find the layer information based on the layer name layer_list = pd.read_csv(cp.layer_list).fillna("") layer_row = layer_list[layer_list.layer_name == layer_name] if len(layer_row) != 1: raise IndexError( f"The layer {layer_name} is not part of the existing layers of the application. Please contact our maintainer." ) # build the internal details details = v.ExpansionPanels( xs12=True, class_="mt-3", children=[ v.ExpansionPanel( children=[ v.ExpansionPanelHeader( children=["Details"], expand_icon="mdi-help-circle-outline", disable_icon_rotate=True, ), v.ExpansionPanelContent( children=[layer_row.layer_info.values[0]] ), ] ) ], ) # create a title with the layer name title = v.Html( class_="mt-2 mb-2", xs12=True, tag="h3", children=[f"{layer_name} ({layer_row.unit.values[0]})"], ) # taken from https://stackoverflow.com/questions/579310/formatting-long-numbers-as-strings-in-python def human_format(num, round_to=2): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num = round(num / 1000.0, round_to) return "{:.{}f}{}".format( round(num, round_to), round_to, ["", "K", "M", "G", "T", "P"][magnitude] ) # create a matplotlib stack horizontal bar chart chart = Output() with chart: # change pyplot style plt.style.use("dark_background") # create the chart fig, ax = plt.subplots( figsize=[50, len(values) * 2], facecolor=((0, 0, 0, 0)) ) # set the datas max_value = max(values) norm_values = [v / max_value * 100 for v in reversed(values)] human_values = [f"{human_format(val)}" for val in reversed(values)] colors = [ colors[i - 1] if i else v.theme.themes.dark.primary for i in range(len(values)) ][::-1] # add the axes ax.barh(aoi_names, norm_values, color=colors) # add the text for i, (norm, name, val, color) in enumerate( zip(norm_values, aoi_names, human_values, colors) ): ax.text(norm + 1, i, val, fontsize=40, color=color) # cosmetic tuning ax.set_xlim(0, 110) ax.tick_params(axis="y", which="major", pad=30, labelsize=40, left=False) ax.tick_params(axis="x", bottom=False, labelbottom=False) ax.set_frame_on(False) plt.show() super().__init__( class_="ma-5", row=True, children=[ v.Flex(xs12=True, children=[title]), v.Flex(xs12=True, children=[chart]), v.Flex(xs12=True, children=[details]), ], ) class LayerPercentage(v.Layout): def __init__(self, layer_name, pcts, colors): # read the layer list and find the layer information based on the layer name layer_list = pd.read_csv(cp.layer_list).fillna("") layer_row = layer_list[layer_list.layer_name == layer_name] if len(layer_row) != 1 and layer_name not in cp.criterias: raise IndexError( f"The layer {layer_name} is not part of the existing layers of the application. Please contact our maintainer." ) if len(layer_row) != 1 and layer_name in cp.criterias: layer_row = pd.DataFrame( [["", "", layer_name, "", layer_name, "HA"]], columns=[ "theme", "subtheme", "layer_name", "gee_asset", "layer_info", "unit", ], ) # add the title title = v.Html(tag="h4", children=[layer_name]) # build the internal details details = v.ExpansionPanels( xs12=True, class_="mt-3", children=[ v.ExpansionPanel( children=[ v.ExpansionPanelHeader( children=["Details"], expand_icon="mdi-help-circle-outline", disable_icon_rotate=True, ), v.ExpansionPanelContent( children=[layer_row.layer_info.values[0]] ), ] ) ], ) # create the list of value spans = [] for i, val in enumerate(pcts): # if val != 0: #TODO: do we need this still? spans.append( v.Html( tag="span", class_="ml-1 mr-1", style_=f"color: {colors[i-1] if i else v.theme.themes.dark.primary}", children=[f"{round(val,2)}%"], ) ) super().__init__( class_="ma-5", row=True, children=[ v.Flex(xs12=True, children=[title] + spans), v.Flex(xs12=True, children=[details]), ], )
import numpy as np import torch import torch.nn as nn from diff_models import diff_CSDI class CSDI_base(nn.Module): def __init__(self, target_dim, config, device): super().__init__() self.device = device self.target_dim = target_dim self.emb_time_dim = config["model"]["timeemb"] self.emb_feature_dim = config["model"]["featureemb"] self.is_unconditional = config["model"]["is_unconditional"] self.target_strategy = config["model"]["target_strategy"] self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim if self.is_unconditional == False: self.emb_total_dim += 1 # for conditional mask self.embed_layer = nn.Embedding( num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim ) config_diff = config["diffusion"] config_diff["side_dim"] = self.emb_total_dim input_dim = 1 if self.is_unconditional == True else 2 self.diffmodel = diff_CSDI(config_diff, input_dim) # parameters for diffusion models self.num_steps = config_diff["num_steps"] if config_diff["schedule"] == "quad": self.beta = np.linspace( config_diff["beta_start"] ** 0.5, config_diff["beta_end"] ** 0.5, self.num_steps ) ** 2 elif config_diff["schedule"] == "linear": self.beta = np.linspace( config_diff["beta_start"], config_diff["beta_end"], self.num_steps ) self.alpha_hat = 1 - self.beta self.alpha = np.cumprod(self.alpha_hat) self.alpha_torch = torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1) def time_embedding(self, pos, d_model=128): pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(self.device) position = pos.unsqueeze(2) div_term = 1 / torch.pow( 10000.0, torch.arange(0, d_model, 2).to(self.device) / d_model ) pe[:, :, 0::2] = torch.sin(position * div_term) pe[:, :, 1::2] = torch.cos(position * div_term) return pe def get_randmask(self, observed_mask): rand_for_mask = torch.rand_like(observed_mask) * observed_mask rand_for_mask = rand_for_mask.reshape(len(rand_for_mask), -1) for i in range(len(observed_mask)): sample_ratio = np.random.rand() # missing ratio num_observed = observed_mask[i].sum().item() num_masked = round(num_observed * sample_ratio) rand_for_mask[i][rand_for_mask[i].topk(num_masked).indices] = -1 cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float() return cond_mask def get_hist_mask(self, observed_mask, for_pattern_mask=None): if for_pattern_mask is None: for_pattern_mask = observed_mask if self.target_strategy == "mix": rand_mask = self.get_randmask(observed_mask) cond_mask = observed_mask.clone() for i in range(len(cond_mask)): mask_choice = np.random.rand() if self.target_strategy == "mix" and mask_choice > 0.5: cond_mask[i] = rand_mask[i] else: # draw another sample for histmask (i-1 corresponds to another sample) cond_mask[i] = cond_mask[i] * for_pattern_mask[i - 1] return cond_mask def get_side_info(self, observed_tp, cond_mask): B, K, L = cond_mask.shape time_embed = self.time_embedding(observed_tp, self.emb_time_dim) # (B,L,emb) time_embed = time_embed.unsqueeze(2).expand(-1, -1, K, -1) feature_embed = self.embed_layer( torch.arange(self.target_dim).to(self.device) ) # (K,emb) feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1) side_info = torch.cat([time_embed, feature_embed], dim=-1) # (B,L,K,*) side_info = side_info.permute(0, 3, 2, 1) # (B,*,K,L) if self.is_unconditional == False: side_mask = cond_mask.unsqueeze(1) # (B,1,K,L) side_info = torch.cat([side_info, side_mask], dim=1) return side_info def calc_loss_valid( self, observed_data, cond_mask, observed_mask, side_info, is_train ): loss_sum = 0 for t in range(self.num_steps): # calculate loss for all t loss = self.calc_loss( observed_data, cond_mask, observed_mask, side_info, is_train, set_t=t ) loss_sum += loss.detach() return loss_sum / self.num_steps def calc_loss( self, observed_data, cond_mask, observed_mask, side_info, is_train, set_t=-1 ): B, K, L = observed_data.shape if is_train != 1: # for validation t = (torch.ones(B) * set_t).long().to(self.device) else: t = torch.randint(0, self.num_steps, [B]).to(self.device) current_alpha = self.alpha_torch[t] # (B,1,1) noise = torch.randn_like(observed_data) noisy_data = (current_alpha ** 0.5) * observed_data + (1.0 - current_alpha) ** 0.5 * noise total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask) predicted = self.diffmodel(total_input, side_info, t) # (B,K,L) target_mask = observed_mask - cond_mask residual = (noise - predicted) * target_mask num_eval = target_mask.sum() loss = (residual ** 2).sum() / (num_eval if num_eval > 0 else 1) return loss def set_input_to_diffmodel(self, noisy_data, observed_data, cond_mask): if self.is_unconditional == True: total_input = noisy_data.unsqueeze(1) # (B,1,K,L) else: cond_obs = (cond_mask * observed_data).unsqueeze(1) noisy_target = ((1 - cond_mask) * noisy_data).unsqueeze(1) total_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L) return total_input def impute(self, observed_data, cond_mask, side_info, n_samples): B, K, L = observed_data.shape imputed_samples = torch.zeros(B, n_samples, K, L).to(self.device) for i in range(n_samples): # generate noisy observation for unconditional model if self.is_unconditional == True: noisy_obs = observed_data noisy_cond_history = [] for t in range(self.num_steps): noise = torch.randn_like(noisy_obs) noisy_obs = (self.alpha_hat[t] ** 0.5) * noisy_obs + self.beta[t] ** 0.5 * noise noisy_cond_history.append(noisy_obs * cond_mask) current_sample = torch.randn_like(observed_data) for t in range(self.num_steps - 1, -1, -1): if self.is_unconditional == True: diff_input = cond_mask * noisy_cond_history[t] + (1.0 - cond_mask) * current_sample diff_input = diff_input.unsqueeze(1) # (B,1,K,L) else: cond_obs = (cond_mask * observed_data).unsqueeze(1) noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1) diff_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L) predicted = self.diffmodel(diff_input, side_info, torch.tensor([t]).to(self.device)) coeff1 = 1 / self.alpha_hat[t] ** 0.5 coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5 current_sample = coeff1 * (current_sample - coeff2 * predicted) if t > 0: noise = torch.randn_like(current_sample) sigma = ( (1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t] ) ** 0.5 current_sample += sigma * noise imputed_samples[:, i] = current_sample.detach() return imputed_samples def forward(self, batch, is_train=1): ( observed_data, observed_mask, observed_tp, gt_mask, for_pattern_mask, _, ) = self.process_data(batch) if is_train == 0: cond_mask = gt_mask elif self.target_strategy != "random": cond_mask = self.get_hist_mask( observed_mask, for_pattern_mask=for_pattern_mask ) else: cond_mask = self.get_randmask(observed_mask) side_info = self.get_side_info(observed_tp, cond_mask) loss_func = self.calc_loss if is_train == 1 else self.calc_loss_valid return loss_func(observed_data, cond_mask, observed_mask, side_info, is_train) def evaluate(self, batch, n_samples): ( observed_data, observed_mask, observed_tp, gt_mask, _, cut_length, ) = self.process_data(batch) with torch.no_grad(): cond_mask = gt_mask target_mask = observed_mask - cond_mask side_info = self.get_side_info(observed_tp, cond_mask) samples = self.impute(observed_data, cond_mask, side_info, n_samples) for i in range(len(cut_length)): # to avoid double evaluation target_mask[i, ..., 0 : cut_length[i].item()] = 0 return samples, observed_data, target_mask, observed_mask, observed_tp class CSDI_PM25(CSDI_base): def __init__(self, config, device, target_dim=36): super(CSDI_PM25, self).__init__(target_dim, config, device) def process_data(self, batch): observed_data = batch["observed_data"].to(self.device).float() observed_mask = batch["observed_mask"].to(self.device).float() observed_tp = batch["timepoints"].to(self.device).float() gt_mask = batch["gt_mask"].to(self.device).float() cut_length = batch["cut_length"].to(self.device).long() for_pattern_mask = batch["hist_mask"].to(self.device).float() observed_data = observed_data.permute(0, 2, 1) observed_mask = observed_mask.permute(0, 2, 1) gt_mask = gt_mask.permute(0, 2, 1) for_pattern_mask = for_pattern_mask.permute(0, 2, 1) return ( observed_data, observed_mask, observed_tp, gt_mask, for_pattern_mask, cut_length, ) class CSDI_Physio(CSDI_base): def __init__(self, config, device, target_dim=35): super(CSDI_Physio, self).__init__(target_dim, config, device) def process_data(self, batch): observed_data = batch["observed_data"].to(self.device).float() observed_mask = batch["observed_mask"].to(self.device).float() observed_tp = batch["timepoints"].to(self.device).float() gt_mask = batch["gt_mask"].to(self.device).float() observed_data = observed_data.permute(0, 2, 1) observed_mask = observed_mask.permute(0, 2, 1) gt_mask = gt_mask.permute(0, 2, 1) cut_length = torch.zeros(len(observed_data)).long().to(self.device) for_pattern_mask = observed_mask return ( observed_data, observed_mask, observed_tp, gt_mask, for_pattern_mask, cut_length, )
import random try: from urlparse import urlsplit except ImportError: # try python3 then from urllib.parse import urlsplit class HostIterator(object): """An iterator that returns selected hosts in order. A host is guaranteed to not be selected twice unless there is only one host in the collection. """ def __init__(self, hosts): self.hosts = hosts def __iter__(self): for host in self.hosts[:]: yield host def __len__(self): return len(self.hosts) class RandomHostIterator(HostIterator): """An iterator that returns a randomly selected host.""" def __iter__(self): hostslist = self.hosts[:] random.shuffle(hostslist) for host in hostslist: yield host def collect_hosts(hosts, randomize=True): """Collect a set of hosts and an optional chroot from a string.""" host_ports, chroot = hosts.partition("/")[::2] chroot = "/" + chroot if chroot else None result = [] for host_port in host_ports.split(","): # put all complexity of dealing with # IPv4 & IPv6 address:port on the urlsplit res = urlsplit("xxx://" + host_port) host = res.hostname port = int(res.port) if res.port else 2181 result.append((host.strip(), port)) if randomize: return (RandomHostIterator(result), chroot) return (HostIterator(result), chroot)
from random import randint matriz = [] cartela = [] cont = contador = 0 cont_cartela = 0 cont_cartela2 = 5 while contador < 5: num = randint(0, 100) if num not in cartela: cartela.append(num) cont = cont + 1 if cont == 5: if contador == 1: cont_cartela = 5 if contador > 1: cont_cartela = cont_cartela + cont_cartela cont_cartela2 = cont_cartela2 + cont_cartela2 matriz.append(cartela[cont_cartela:cont_cartela2]) cont = 0 contador = contador + 1 print(cartela) print(matriz)
class Stock_IEX: def __init__(self,key): self.key = key import requests import json from pandas.io.json import json_normalize import pandas as pd import numpy as np def get_quote(self,ticker,range = 'YTD'): """ Returns the historic daily stock prices for one ticker API Documentation https://iexcloud.io/docs/api/#historical-prices Arguements -- ticker -> One ticker (STR) -- range (Optional, default = YTD, STR) Options: max, 5y, 2y, 1y, ytd, 6m, 3m, 1m, 1mm, 5d, 5dm """ temp = self.pd.DataFrame() base_url = 'https://sandbox.iexapis.com/'+'stable/stock/' url = base_url + ticker + '/chart/' + range company = self.requests.get(url, params = {"token": self.key}) if company.status_code != 200: print(company) #Error Checking company = company.json() company = self.pd.DataFrame(company) temp = self.pd.concat([temp,company]).drop_duplicates() return temp def get_daily_stocks(self,tickers,range = 'ytd',return_value = 'close'): """ Returns daily stock data for entered tickers. -- Tickers -> List[] of stock tickers -- Range -> time frame (Optional, default = YTD, STR) Options: max, 5y, 2y, 1y, ytd, 6m, 3m, 1m, 1mm, 5d, 5dm -- Return_value -> (Optional,default = close, STR) Options: open, close, high, low, volume, change, changePercent """ temp = self.pd.DataFrame() for i,t in enumerate(tickers): stock_temp = self.get_quote(t,range) if i == 0: temp['date'] = stock_temp['date'] temp[t] = stock_temp[return_value] temp[t] = stock_temp[return_value] temp.set_index('date', inplace = True) temp.index = self.pd.to_datetime(temp.index, format='%Y-%m-%d').to_period('D') temp = temp.sort_index() return temp
#!/usr/bin/env python # -*- coding: utf-8 -*- import pygame, sys, random, time from pygame.locals import * pygame.init() DISPLAYSURF = pygame.display.set_mode((960, 720)) pygame.display.set_caption('快乐小鸡') WHITE = (0, 0, 255) DISPLAYSURF.fill(WHITE) backdrop = pygame.image.load('images/backdrop.png') chickens = [pygame.image.load('images/hmc.png'), pygame.image.load('images/hmc2.png')] egg = pygame.image.load('images/egg.png') chicken_position = (random.randint(0, 960-157), random.randint(0, 720-195)) chicken_number = 0 IMAGE_TIME = 20 egg_positions = [] meow = pygame.mixer.Sound('sounds/meow.wav') clock = pygame.time.Clock() while True: # main game loop clock.tick(60) for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() elif event.type == KEYUP: if event.key == K_SPACE: egg_positions.append(chicken_position) chicken_position = (random.randint(0, 960-157), random.randint(0, 720-195)) meow.play() if IMAGE_TIME > 0: IMAGE_TIME -= 1 else: IMAGE_TIME = 20 chicken_number ^= 1 DISPLAYSURF.blit(backdrop, (0, 0)) for p in egg_positions: DISPLAYSURF.blit(egg, p) DISPLAYSURF.blit(chickens[chicken_number], chicken_position) font = pygame.font.Font(None, 100) count_text = font.render(str(len(egg_positions)), 1, WHITE) DISPLAYSURF.blit(count_text, (19,19)) pygame.display.update()
"""Main entry point.""" import json import random import sys from .culture import Culture def main(culture_key, gender=None): cultures = _get_cultures() chosen_culture = None for culture in cultures: if culture.key == culture_key: chosen_culture = culture print(chosen_culture.get_name(gender)) def _get_cultures(): names_json = _read_file('./misc/names.json') cultures = [] for culture_key, culture_dict in names_json.items(): new_culture = Culture(culture_key, culture_dict) cultures.append(new_culture) return cultures def _read_file(file_path): contents = None with open(file_path, mode='r') as name_file: contents = json.loads(name_file.read()) return contents if __name__ == '__main__': if len(sys.argv) == 3: culture_key = sys.argv[1] name_gender = sys.argv[2] main(culture_key, name_gender) elif len(sys.argv) == 2: culture_key = sys.argv[1] main(culture_key) else: print('Invalid number of arguments.') print('Usage:') print('\tname_randomiser culture_key gender')
from pymtl import * from lizard.util.rtl.interface import Interface, UseInterface from lizard.util.rtl.method import MethodSpec from lizard.util.rtl.types import canonicalize_type from lizard.util.rtl.case_mux import CaseMuxInterface, CaseMux class LookupTableInterface(Interface): def __init__(s, in_type, out_type): s.In = canonicalize_type(in_type) s.Out = canonicalize_type(out_type) super(LookupTableInterface, s).__init__([ MethodSpec( 'lookup', args={ 'in_': s.In, }, rets={ 'out': s.Out, 'valid': Bits(1), }, call=False, rdy=False, ), ]) class LookupTable(Model): def __init__(s, interface, mapping): UseInterface(s, interface) size = len(mapping) # Sort by key to ensure it is deterministic svalues, souts = zip(*[(key, mapping[key]) for key in sorted(mapping.keys())]) s.mux = CaseMux( CaseMuxInterface(s.interface.Out, s.interface.In, size), svalues) s.connect(s.mux.mux_default, 0) s.connect(s.mux.mux_select, s.lookup_in_) for i, sout in enumerate(souts): s.connect(s.mux.mux_in_[i], int(sout)) s.connect(s.lookup_out, s.mux.mux_out) s.connect(s.lookup_valid, s.mux.mux_matched) def line_trace(s): return "{} ->({}) {}".format(s.lookup_in_, s.lookup_valid, s.lookup_out)
from __future__ import absolute_import import functools import logging import time from datetime import timedelta from hashlib import md5 from django.db.models import Q from django.utils import timezone from sentry import options, quotas from sentry.api.event_search import convert_search_filter_to_snuba_query, InvalidSearchQuery from sentry.api.paginator import DateTimePaginator, SequencePaginator, Paginator from sentry.constants import ALLOWED_FUTURE_DELTA from sentry.models import Group, Release, GroupEnvironment from sentry.search.base import SearchBackend from sentry.utils import snuba, metrics logger = logging.getLogger("sentry.search.snuba") datetime_format = "%Y-%m-%dT%H:%M:%S+00:00" EMPTY_RESULT = Paginator(Group.objects.none()).get_result() # mapping from query parameter sort name to underlying scoring aggregation name sort_strategies = { "date": "last_seen", "freq": "times_seen", "new": "first_seen", "priority": "priority", } dependency_aggregations = {"priority": ["last_seen", "times_seen"]} aggregation_defs = { "times_seen": ["count()", ""], "first_seen": ["multiply(toUInt64(min(timestamp)), 1000)", ""], "last_seen": ["multiply(toUInt64(max(timestamp)), 1000)", ""], # https://github.com/getsentry/sentry/blob/804c85100d0003cfdda91701911f21ed5f66f67c/src/sentry/event_manager.py#L241-L271 "priority": ["toUInt64(plus(multiply(log(times_seen), 600), last_seen))", ""], # Only makes sense with WITH TOTALS, returns 1 for an individual group. "total": ["uniq", "issue"], } issue_only_fields = set( [ "query", "status", "bookmarked_by", "assigned_to", "unassigned", "subscribed_by", "active_at", "first_release", "first_seen", ] ) class QuerySetBuilder(object): def __init__(self, conditions): self.conditions = conditions def build(self, queryset, search_filters): for search_filter in search_filters: name = search_filter.key.name if name in self.conditions: condition = self.conditions[name] queryset = condition.apply(queryset, search_filter) return queryset class Condition(object): """\ Adds a single filter to a ``QuerySet`` object. Used with ``QuerySetBuilder``. """ def apply(self, queryset, name, parameters): raise NotImplementedError class QCallbackCondition(Condition): def __init__(self, callback): self.callback = callback def apply(self, queryset, search_filter): value = search_filter.value.raw_value q = self.callback(value) if search_filter.operator not in ("=", "!="): raise InvalidSearchQuery( u"Operator {} not valid for search {}".format(search_filter.operator, search_filter) ) queryset_method = queryset.filter if search_filter.operator == "=" else queryset.exclude queryset = queryset_method(q) return queryset class ScalarCondition(Condition): """ Adds a scalar filter to a ``QuerySet`` object. Only accepts `SearchFilter` instances """ OPERATOR_TO_DJANGO = {">=": "gte", "<=": "lte", ">": "gt", "<": "lt"} def __init__(self, field, extra=None): self.field = field self.extra = extra def _get_operator(self, search_filter): django_operator = self.OPERATOR_TO_DJANGO.get(search_filter.operator, "") if django_operator: django_operator = "__{}".format(django_operator) return django_operator def apply(self, queryset, search_filter): django_operator = self._get_operator(search_filter) qs_method = queryset.exclude if search_filter.operator == "!=" else queryset.filter q_dict = {"{}{}".format(self.field, django_operator): search_filter.value.raw_value} if self.extra: q_dict.update(self.extra) return qs_method(**q_dict) def assigned_to_filter(actor, projects): from sentry.models import OrganizationMember, OrganizationMemberTeam, Team if isinstance(actor, Team): return Q(assignee_set__team=actor) teams = Team.objects.filter( id__in=OrganizationMemberTeam.objects.filter( organizationmember__in=OrganizationMember.objects.filter( user=actor, organization_id=projects[0].organization_id ), is_active=True, ).values("team") ) return Q( Q(assignee_set__user=actor, assignee_set__project__in=projects) | Q(assignee_set__team__in=teams) ) def unassigned_filter(unassigned, projects): from sentry.models.groupassignee import GroupAssignee query = Q( id__in=GroupAssignee.objects.filter(project_id__in=[p.id for p in projects]).values_list( "group_id", flat=True ) ) if unassigned: query = ~query return query def get_search_filter(search_filters, name, operator): """ Finds the value of a search filter with the passed name and operator. If multiple values are found, returns the most restrictive value :param search_filters: collection of `SearchFilter` objects :param name: Name of the field to find :param operator: '<' or '>' :return: The value of the field if found, else None """ assert operator in ("<", ">") comparator = max if operator.startswith(">") else min found_val = None for search_filter in search_filters: # Note that we check operator with `startswith` here so that we handle # <, <=, >, >= if search_filter.key.name == name and search_filter.operator.startswith(operator): val = search_filter.value.raw_value found_val = comparator(val, found_val) if found_val else val return found_val class SnubaSearchBackend(SearchBackend): def query( self, projects, environments=None, sort_by="date", limit=100, cursor=None, count_hits=False, paginator_options=None, search_filters=None, date_from=None, date_to=None, ): from sentry.models import Group, GroupStatus, GroupSubscription search_filters = search_filters if search_filters is not None else [] # ensure projects are from same org if len({p.organization_id for p in projects}) != 1: raise RuntimeError("Cross organization search not supported") if paginator_options is None: paginator_options = {} group_queryset = Group.objects.filter(project__in=projects).exclude( status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, GroupStatus.PENDING_MERGE, ] ) qs_builder_conditions = { "status": QCallbackCondition(lambda status: Q(status=status)), "bookmarked_by": QCallbackCondition( lambda user: Q(bookmark_set__project__in=projects, bookmark_set__user=user) ), "assigned_to": QCallbackCondition( functools.partial(assigned_to_filter, projects=projects) ), "unassigned": QCallbackCondition( functools.partial(unassigned_filter, projects=projects) ), "subscribed_by": QCallbackCondition( lambda user: Q( id__in=GroupSubscription.objects.filter( project__in=projects, user=user, is_active=True ).values_list("group") ) ), "active_at": ScalarCondition("active_at"), } group_queryset = QuerySetBuilder(qs_builder_conditions).build( group_queryset, search_filters ) # filter out groups which are beyond the retention period retention = quotas.get_event_retention(organization=projects[0].organization) if retention: retention_window_start = timezone.now() - timedelta(days=retention) else: retention_window_start = None # TODO: This could be optimized when building querysets to identify # criteria that are logically impossible (e.g. if the upper bound # for last seen is before the retention window starts, no results # exist.) if retention_window_start: group_queryset = group_queryset.filter(last_seen__gte=retention_window_start) # This is a punt because the SnubaSearchBackend (a subclass) shares so much that it # seemed better to handle all the shared initialization and then handoff to the # actual backend. return self._query( projects, retention_window_start, group_queryset, environments, sort_by, limit, cursor, count_hits, paginator_options, search_filters, date_from, date_to, ) def _query( self, projects, retention_window_start, group_queryset, environments, sort_by, limit, cursor, count_hits, paginator_options, search_filters, date_from, date_to, ): # TODO: It's possible `first_release` could be handled by Snuba. if environments is not None: environment_ids = [environment.id for environment in environments] group_queryset = group_queryset.filter( groupenvironment__environment_id__in=environment_ids ) group_queryset = QuerySetBuilder( { "first_release": QCallbackCondition( lambda version: Q( # if environment(s) are selected, we just filter on the group # environment's first_release attribute. groupenvironment__first_release__organization_id=projects[ 0 ].organization_id, groupenvironment__first_release__version=version, groupenvironment__environment_id__in=environment_ids, ) ), "first_seen": ScalarCondition( "groupenvironment__first_seen", {"groupenvironment__environment_id__in": environment_ids}, ), } ).build(group_queryset, search_filters) else: group_queryset = QuerySetBuilder( { "first_release": QCallbackCondition( lambda release_version: Q( # if no specific environments are supplied, we either choose any # groups/issues whose first release matches the given release_version, Q( first_release_id__in=Release.objects.filter( version=release_version, organization_id=projects[0].organization_id, ) ) | # or we choose any groups whose first occurrence in any environment and the latest release at # the time of the groups' first occurrence matches the given # release_version Q( id__in=GroupEnvironment.objects.filter( first_release__version=release_version, first_release__organization_id=projects[0].organization_id, environment__organization_id=projects[0].organization_id, ).values_list("group_id") ) ) ), "first_seen": ScalarCondition("first_seen"), } ).build(group_queryset, search_filters) now = timezone.now() end = None end_params = filter(None, [date_to, get_search_filter(search_filters, "date", "<")]) if end_params: end = min(end_params) if not end: end = now + ALLOWED_FUTURE_DELTA # This search is for some time window that ends with "now", # so if the requested sort is `date` (`last_seen`) and there # are no other Snuba-based search predicates, we can simply # return the results from Postgres. if ( cursor is None and sort_by == "date" and not environments and # This handles tags and date parameters for search filters. not [ sf for sf in search_filters if sf.key.name not in issue_only_fields.union(["date"]) ] ): group_queryset = group_queryset.order_by("-last_seen") paginator = DateTimePaginator(group_queryset, "-last_seen", **paginator_options) # When its a simple django-only search, we count_hits like normal return paginator.get_result(limit, cursor, count_hits=count_hits) # TODO: Presumably we only want to search back to the project's max # retention date, which may be closer than 90 days in the past, but # apparently `retention_window_start` can be None(?), so we need a # fallback. retention_date = max(filter(None, [retention_window_start, now - timedelta(days=90)])) # TODO: We should try and consolidate all this logic together a little # better, maybe outside the backend. Should be easier once we're on # just the new search filters start_params = [date_from, retention_date, get_search_filter(search_filters, "date", ">")] start = max(filter(None, start_params)) end = max([retention_date, end]) if start == retention_date and end == retention_date: # Both `start` and `end` must have been trimmed to `retention_date`, # so this entire search was against a time range that is outside of # retention. We'll return empty results to maintain backwards compatibility # with Django search (for now). return EMPTY_RESULT if start >= end: # TODO: This maintains backwards compatibility with Django search, but # in the future we should find a way to notify the user that their search # is invalid. return EMPTY_RESULT # Here we check if all the django filters reduce the set of groups down # to something that we can send down to Snuba in a `group_id IN (...)` # clause. max_candidates = options.get("snuba.search.max-pre-snuba-candidates") too_many_candidates = False candidate_ids = list(group_queryset.values_list("id", flat=True)[: max_candidates + 1]) metrics.timing("snuba.search.num_candidates", len(candidate_ids)) if not candidate_ids: # no matches could possibly be found from this point on metrics.incr("snuba.search.no_candidates", skip_internal=False) return EMPTY_RESULT elif len(candidate_ids) > max_candidates: # If the pre-filter query didn't include anything to significantly # filter down the number of results (from 'first_release', 'query', # 'status', 'bookmarked_by', 'assigned_to', 'unassigned', # 'subscribed_by', 'active_at_from', or 'active_at_to') then it # might have surpassed the `max_candidates`. In this case, # we *don't* want to pass candidates down to Snuba, and instead we # want Snuba to do all the filtering/sorting it can and *then* apply # this queryset to the results from Snuba, which we call # post-filtering. metrics.incr("snuba.search.too_many_candidates", skip_internal=False) too_many_candidates = True candidate_ids = [] sort_field = sort_strategies[sort_by] chunk_growth = options.get("snuba.search.chunk-growth-rate") max_chunk_size = options.get("snuba.search.max-chunk-size") chunk_limit = limit offset = 0 num_chunks = 0 hits = None paginator_results = EMPTY_RESULT result_groups = [] result_group_ids = set() max_time = options.get("snuba.search.max-total-chunk-time-seconds") time_start = time.time() if count_hits and (too_many_candidates or cursor is not None): # If we had too many candidates to reasonably pass down to snuba, # or if we have a cursor that bisects the overall result set (such # that our query only sees results on one side of the cursor) then # we need an alternative way to figure out the total hits that this # query has. # To do this, we get a sample of groups matching the snuba side of # the query, and see how many of those pass the post-filter in # postgres. This should give us an estimate of the total number of # snuba matches that will be overall matches, which we can use to # get an estimate for X-Hits. # The sampling is not simple random sampling. It will return *all* # matching groups if there are less than N groups matching the # query, or it will return a random, deterministic subset of N of # the groups if there are more than N overall matches. This means # that the "estimate" is actually an accurate result when there are # less than N matching groups. # The number of samples required to achieve a certain error bound # with a certain confidence interval can be calculated from a # rearrangement of the normal approximation (Wald) confidence # interval formula: # # https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval # # Effectively if we want the estimate to be within +/- 10% of the # real value with 95% confidence, we would need (1.96^2 * p*(1-p)) # / 0.1^2 samples. With a starting assumption of p=0.5 (this # requires the most samples) we would need 96 samples to achieve # +/-10% @ 95% confidence. sample_size = options.get("snuba.search.hits-sample-size") snuba_groups, snuba_total = snuba_search( start=start, end=end, project_ids=[p.id for p in projects], environment_ids=environments and [environment.id for environment in environments], sort_field=sort_field, limit=sample_size, offset=0, get_sample=True, search_filters=search_filters, ) snuba_count = len(snuba_groups) if snuba_count == 0: return EMPTY_RESULT else: filtered_count = group_queryset.filter( id__in=[gid for gid, _ in snuba_groups] ).count() hit_ratio = filtered_count / float(snuba_count) hits = int(hit_ratio * snuba_total) # Do smaller searches in chunks until we have enough results # to answer the query (or hit the end of possible results). We do # this because a common case for search is to return 100 groups # sorted by `last_seen`, and we want to avoid returning all of # a project's groups and then post-sorting them all in Postgres # when typically the first N results will do. while (time.time() - time_start) < max_time: num_chunks += 1 # grow the chunk size on each iteration to account for huge projects # and weird queries, up to a max size chunk_limit = min(int(chunk_limit * chunk_growth), max_chunk_size) # but if we have candidate_ids always query for at least that many items chunk_limit = max(chunk_limit, len(candidate_ids)) # {group_id: group_score, ...} snuba_groups, total = snuba_search( start=start, end=end, project_ids=[p.id for p in projects], environment_ids=environments and [environment.id for environment in environments], sort_field=sort_field, cursor=cursor, candidate_ids=candidate_ids, limit=chunk_limit, offset=offset, search_filters=search_filters, ) metrics.timing("snuba.search.num_snuba_results", len(snuba_groups)) count = len(snuba_groups) more_results = count >= limit and (offset + limit) < total offset += len(snuba_groups) if not snuba_groups: break if candidate_ids: # pre-filtered candidates were passed down to Snuba, so we're # finished with filtering and these are the only results. Note # that because we set the chunk size to at least the size of # the candidate_ids, we know we got all of them (ie there are # no more chunks after the first) result_groups = snuba_groups if count_hits and hits is None: hits = len(snuba_groups) else: # pre-filtered candidates were *not* passed down to Snuba, # so we need to do post-filtering to verify Sentry DB predicates filtered_group_ids = group_queryset.filter( id__in=[gid for gid, _ in snuba_groups] ).values_list("id", flat=True) group_to_score = dict(snuba_groups) for group_id in filtered_group_ids: if group_id in result_group_ids: # because we're doing multiple Snuba queries, which # happen outside of a transaction, there is a small possibility # of groups moving around in the sort scoring underneath us, # so we at least want to protect against duplicates continue group_score = group_to_score[group_id] result_group_ids.add(group_id) result_groups.append((group_id, group_score)) # TODO do we actually have to rebuild this SequencePaginator every time # or can we just make it after we've broken out of the loop? paginator_results = SequencePaginator( [(score, id) for (id, score) in result_groups], reverse=True, **paginator_options ).get_result(limit, cursor, known_hits=hits) # break the query loop for one of three reasons: # * we started with Postgres candidates and so only do one Snuba query max # * the paginator is returning enough results to satisfy the query (>= the limit) # * there are no more groups in Snuba to post-filter if candidate_ids or len(paginator_results.results) >= limit or not more_results: break # HACK: We're using the SequencePaginator to mask the complexities of going # back and forth between two databases. This causes a problem with pagination # because we're 'lying' to the SequencePaginator (it thinks it has the entire # result set in memory when it does not). For this reason we need to make some # best guesses as to whether the `prev` and `next` cursors have more results. if len(paginator_results.results) == limit and more_results: # Because we are going back and forth between DBs there is a small # chance that we will hand the SequencePaginator exactly `limit` # items. In this case the paginator will assume there are no more # results, so we need to override the `next` cursor's results. paginator_results.next.has_results = True if cursor is not None and (not cursor.is_prev or len(paginator_results.results) > 0): # If the user passed a cursor, and it isn't already a 0 result `is_prev` # cursor, then it's worth allowing them to go back a page to check for # more results. paginator_results.prev.has_results = True metrics.timing("snuba.search.num_chunks", num_chunks) groups = Group.objects.in_bulk(paginator_results.results) paginator_results.results = [groups[k] for k in paginator_results.results if k in groups] return paginator_results def snuba_search( start, end, project_ids, environment_ids, sort_field, cursor=None, candidate_ids=None, limit=None, offset=0, get_sample=False, search_filters=None, ): """ This function doesn't strictly benefit from or require being pulled out of the main query method above, but the query method is already large and this function at least extracts most of the Snuba-specific logic. Returns a tuple of: * a sorted list of (group_id, group_score) tuples sorted descending by score, * the count of total results (rows) available for this query. """ filters = {"project_id": project_ids} if environment_ids is not None: filters["environment"] = environment_ids if candidate_ids: filters["issue"] = sorted(candidate_ids) conditions = [] having = [] for search_filter in search_filters: if ( # Don't filter on issue fields here, they're not available search_filter.key.name in issue_only_fields or # We special case date search_filter.key.name == "date" ): continue converted_filter = convert_search_filter_to_snuba_query(search_filter) # Ensure that no user-generated tags that clashes with aggregation_defs is added to having if search_filter.key.name in aggregation_defs and not search_filter.key.is_tag: having.append(converted_filter) else: conditions.append(converted_filter) extra_aggregations = dependency_aggregations.get(sort_field, []) required_aggregations = set([sort_field, "total"] + extra_aggregations) for h in having: alias = h[0] required_aggregations.add(alias) aggregations = [] for alias in required_aggregations: aggregations.append(aggregation_defs[alias] + [alias]) if cursor is not None: having.append((sort_field, ">=" if cursor.is_prev else "<=", cursor.value)) selected_columns = [] if get_sample: query_hash = md5(repr(conditions)).hexdigest()[:8] selected_columns.append(("cityHash64", ("'{}'".format(query_hash), "issue"), "sample")) sort_field = "sample" orderby = [sort_field] referrer = "search_sample" else: # Get the top matching groups by score, i.e. the actual search results # in the order that we want them. orderby = ["-{}".format(sort_field), "issue"] # ensure stable sort within the same score referrer = "search" snuba_results = snuba.dataset_query( dataset=snuba.Dataset.Events, start=start, end=end, selected_columns=selected_columns, groupby=["issue"], conditions=conditions, having=having, filter_keys=filters, aggregations=aggregations, orderby=orderby, referrer=referrer, limit=limit, offset=offset, totals=True, # Needs to have totals_mode=after_having_exclusive so we get groups matching HAVING only turbo=get_sample, # Turn off FINAL when in sampling mode sample=1, # Don't use clickhouse sampling, even when in turbo mode. ) rows = snuba_results["data"] total = snuba_results["totals"]["total"] if not get_sample: metrics.timing("snuba.search.num_result_groups", len(rows)) return [(row["issue"], row[sort_field]) for row in rows], total
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Service to monitor a set of OPC UA nodes and send commands to a socket service upon node value changes and, conversely, change node values upon socket responses. The service parameters are defined in a YAML file. """ import argparse import logging import yaml import coloredlogs from opc_client import OpcClient from opcua import ua from socket_client import SocketClient from logiclibrary import opc_node_triggers __author__ = "Giuseppe Cogoni" __author__ = "Brent Maranzano" __license__ = "MIT" class OpcSocketRelay(object): """OPC - socket relay class """ def __init__(self, configuration_file): """Create logger, socket client and OPC UA client. Args: configuration_file (str): Filename containing the parameters \ for the socket client, the OPC client and the mapping to \ relay commands and values. """ self._setup_logger() self._get_parameters(configuration_file) self._create_socket_client() self._create_opc_client() self._getOPCnodes() self._subscribe_to_opc_changes() self._logic_handle = opc_node_triggers(self._OPCnodes, self._socket, self._parameters) def _setup_logger(self, config_file="./configs/logger_conf.yml"): """Start the logger using the provided configuration file. Args: config_file (YAML file): logger configuration file. """ try: with open(config_file, "rt") as file_obj: config = yaml.safe_load(file_obj.read()) logging.config.dictConfig(config) coloredlogs.install(level="DEBUG") except Exception as e: print(e) self._logger = logging.getLogger(__name__) self._logger.info("Logger started...") def _get_parameters(self, configuration_file): """Read and parse the yaml file containing the parameters to start the services. Sets the object attribute self._parameters. Args: configuration_file (str): Filename containing parameters formatted as yaml. """ with open(configuration_file, "rt") as file_obj: self._parameters = yaml.safe_load(file_obj.read()) def _create_socket_client(self): """Create the socket client. """ socket_parameters = self._parameters['socket'] self._socket = SocketClient(*socket_parameters.values()) def _create_opc_client(self): """Create an OPC UA client """ endpoint = self._parameters['opc']['endpoint'] self._opc_client = OpcClient(endpoint) def _getOPCnodes(self): """Creates a dictionary with the OPC UA nodes and variat types from the tag parameters entered in the configuration.yml file. """ nodes_dict = self._parameters['opc']['tags'] self._logger.info('This is the client object {}'.format(nodes_dict)) self._OPCnodes = {} for info in nodes_dict: for name, tag_type in info.items(): tag_node = '{}{}'.format(self._parameters['opc']['root_node'], name) self._logger.info('Tag node {}'.format(tag_node)) self._OPCnodes[name] = {} self._OPCnodes[name]['node'] = \ self._opc_client.client.get_node(tag_node) self._OPCnodes[name]['vtype'] = getattr(ua.VariantType, tag_type) self._logger.info('OPC tags retrieved: {}'.format(self._OPCnodes)) def _subscribe_to_opc_changes(self): """Instantiate a subscription class that passes self as the handler. Then subscribe to the nodes. """ subs = [self._parameters['mapping']['subscribed_tags']['configuration'][0], self._parameters['mapping']['subscribed_tags']['watchdog'][0], self._parameters['mapping']['subscribed_tags']['sequencing'][0]] nodes = [self._OPCnodes[i]['node'] for i in subs] self._subscription = self._opc_client.client.create_subscription( 500, self ) self._subscription.subscribe_data_change(nodes) def datachange_notification(self, node, val, data): """Main function to capture datachenges coming from DeltaV server. The function is called for every datachange notification from DeltaV server subscribed tags. Note: The function executes specific logic associated to the changing subscribed node. These logics are define within the `logiclibrary.py`. """ self._logger.debug( """OPC-server data change: node:{} value:{} data: {}""".format(node, val, data)) self._logic_handle._logicBlock_1(node, val) self._logic_handle._logicBlock_2(node, val) self._logic_handle._logicBlock_3(node, val) #Main routine if __name__ == "__main__": parser = argparse.ArgumentParser( description="Service to relay data and commands between" " OPC client and socket client." ) parser.add_argument( "--configuration_file", help="YAML file containing the configuration that define the services." " See docstring for example.", type=str, default="./configs/configuration.yml" ) args = parser.parse_args() OpcSocketRelay(args.configuration_file)
import re import json import math import time import datetime from explorer.views import homepage from explorer.settings import LOGGING import logging #from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED logging.config.dictConfig(LOGGING) logger = logging.getLogger('django.request') from django.shortcuts import render from django.db.models import Q from django.http import HttpResponse from .models import * from .chain import Chain ############################################## from django.template import loader from pyecharts.charts import Line3D import pyecharts.options as opts def block_update_finished(request): blocks_list = Block.objects.all() context = { 'blocks': blocks_list, } context = { 'blocks': blocks_list } return render(request, 'block/block_list.html', context) def block_detail(request): hash = request.GET.get('hash') logger.info("hash: %s" %(hash)) ablock = Block.objects.get(hash=hash) blmessages = BlsMessage.objects.filter(block=ablock) context = { 'ablock': ablock, 'blmessages': blmessages } return render(request, 'block/block_detail.html', context) def block_count(request): to = request.GET.get('to') method = request.GET.get('method') logger.info("to: %s, method:%s" %(to, method)) # 查询集 blsmessages = BlsMessage.objects.filter(to=to,method=method) blsmessages = blsmessages.order_by('block') context = { 'to': to, 'method': method, 'blsmessages': blsmessages } return render(request, 'block/block_count.html', context) def block_search(request): search = request.GET.get('search') blocks_list = Block.objects.all() # 搜索查询集 logger.info("search: %s" %(search)) if search: blocks_list = blocks_list.filter( Q(miner__icontains=search) | Q(height__icontains=search) | Q(hash__icontains=search) ) else: # 将 search 参数重置为空 search = '' blocks_list.order_by('height') context = { 'blocks': blocks_list, 'search': search, } return render(request, 'block/block_search.html', context) # get blocklist with date def block_list(request): date = request.GET.get('date') if (None == date): date = datetime.date.today() startTimestr = ("%s %s" %(date, " 00:00:00")) startTimestamp = time.mktime(time.strptime(startTimestr, "%Y-%m-%d %H:%M:%S")) endTimeStr = ("%s %s" %(date, " 23:59:59")) endTimestamp = time.mktime(time.strptime(endTimeStr, "%Y-%m-%d %H:%M:%S")) blocks_list = Block.objects.all().filter(timestamp__gte=startTimestamp, timestamp__lte=endTimestamp) blocks_list.order_by('height') # 需要传递给模板(templates)的对象 context = { 'blocks': blocks_list, 'date': date, 'startTimestamp' : startTimestamp, 'endTimestamp' : endTimestamp, 'currentTimestamp' : startTimestamp, } # render函数:载入模板,并返回context对象 return render(request, 'block/block_list.html', context)
""" Quaternion - defined as (x, y, z, w) to be compatible with ROS and RealSense ROS: http://wiki.ros.org/tf2/Tutorials/Quaternions ROS uses quaternions to track and apply rotations. A quaternion has 4 components (x,y,z,w). That's right, 'w' is last (but beware: some libraries like Eigen put w as the first number!). The commonly-used unit quaternion that yields no rotation about the x/y/z axes is (0,0,0,1) https://www.andre-gaschler.com/rotationconverter/ https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles """ import math def multiply(quaternion1, quaternion0): x0, y0, z0, w0 = quaternion0 x1, y1, z1, w1 = quaternion1 return [ x1*w0 + y1*z0 - z1*y0 + w1*x0, -x1*z0 + y1*w0 + z1*x0 + w1*y0, x1*y0 - y1*x0 + z1*w0 + w1*z0, -x1*x0 - y1*y0 - z1*z0 + w1*w0] def conjugate(quaternion): x, y, z, w = quaternion return [-x, -y, -z, w] def identity(): return [0, 0, 0, 1] def rotate_vector(vector, quaternion): # https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation qvector = vector + [0] con = conjugate(quaternion) part1 = multiply(quaternion, qvector) return multiply(part1, con)[:-1] def transform(vector, transformation): translation, rotation = transformation rotated = rotate_vector(vector, rotation) return [sum(v) for v in zip(rotated, translation)] def normalize(quaternion): x0, y0, z0, w0 = quaternion sqr_size = x0*x0 + y0*y0 + z0*z0 + w0*w0 if abs(sqr_size - 1.0) > 0.00001: k = math.sqrt(sqr_size) x0, y0, z0, w0 = x0/k, y0/k, z0/k, w0/k return [x0, y0, z0, w0] def euler_to_quaternion(yaw, pitch, roll): qx = math.sin(roll/2) * math.cos(pitch/2) * math.cos(yaw/2) - math.cos(roll/2) * math.sin(pitch/2) * math.sin(yaw/2) qy = math.cos(roll/2) * math.sin(pitch/2) * math.cos(yaw/2) + math.sin(roll/2) * math.cos(pitch/2) * math.sin(yaw/2) qz = math.cos(roll/2) * math.cos(pitch/2) * math.sin(yaw/2) - math.sin(roll/2) * math.sin(pitch/2) * math.cos(yaw/2) qw = math.cos(roll/2) * math.cos(pitch/2) * math.cos(yaw/2) + math.sin(roll/2) * math.sin(pitch/2) * math.sin(yaw/2) return [qx, qy, qz, qw] def euler_zyx(quaternion): x0, y0, z0, w0 = normalize(quaternion) ax = math.atan2(2*(w0*x0+y0*z0), 1-2*(x0*x0+y0*y0)) ay = math.asin(max(-1, min(1, 2*(w0*y0-z0*x0)))) # cliping the range because of posible small overflows az = math.atan2(2*(w0*z0+x0*y0), 1-2*(y0*y0+z0*z0)) return [az, ay, ax] def heading(quaternion): x0, y0, z0, w0 = quaternion az = math.atan2(2*(w0*z0+x0*y0), 1-2*(y0*y0+z0*z0)) return az def from_axis_angle(axis, angle): ax, ay, az = axis qx = ax * math.sin(angle / 2) qy = ay * math.sin(angle / 2) qz = az * math.sin(angle / 2) qw = math.cos(angle / 2) return [qx, qy, qz, qw] def rotation_matrix(quaternion): qx, qy, qz, qw = quaternion r1 = [1 - 2*qy**2 - 2*qz**2, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw] r2 = [2*qx*qy + 2*qz*qw, 1 - 2*qx**2 - 2*qz**2, 2*qy*qz - 2*qx*qw] r3 = [2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw, 1 - 2*qx**2 - 2*qy**2] return [r1, r2, r3] def from_rotation_matrix(rotation_matrix): # http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm # https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion m00, m01, m02 = rotation_matrix[0] m10, m11, m12 = rotation_matrix[1] m20, m21, m22 = rotation_matrix[2] qw = math.sqrt(max(0, 1 + m00 + m11 + m22)) / 2 qx = math.sqrt(max(0, 1 + m00 - m11 - m22)) / 2 qy = math.sqrt(max(0, 1 - m00 + m11 - m22)) / 2 qz = math.sqrt(max(0, 1 - m00 - m11 + m22)) / 2 qx = math.copysign(qx, m21 - m12) qy = math.copysign(qy, m02 - m20) qz = math.copysign(qz, m10 - m01) return [qx, qy, qz, qw] def angle_between(quaternion0, quaternion1): # https://math.stackexchange.com/questions/90081/quaternion-distance inner_product = sum(a * b for (a, b) in zip(quaternion0, quaternion1)) val = 2 * inner_product**2 - 1 return math.acos(max(-1.0, min(1.0, val))) # vim: expandtab sw=4 ts=4
from bfio import BioReader, BioWriter import bioformats import javabridge as jutil import logging, traceback from pathlib import Path import os import cv2 import numpy as np logging.basicConfig(format='%(asctime)s - %(name)-8s - %(levelname)-8s - %(message)s', datefmt='%d-%b-%y %H:%M:%S') logger = logging.getLogger("main") logger.setLevel(logging.INFO) def invert_binary(image, kernel=None, n=None): """ This function inverts the binary image. The 0s get mapped to 1. The 1s get mapped to 0. """ invertedimg = np.zeros(image.shape).astype('uint8') invertedimg = 1 - image return invertedimg def dilate_binary(image, kernel=None, n=None): """ Increases the white region in the image, or the foreground object increases. Additional Arguments: --------------------- n : int (iterations) The number of times to apply the dilation. """ dilatedimg = cv2.dilate(image, kernel, iterations=n) return dilatedimg def erode_binary(image, kernel=None, n=None): """ Decreases the white region in the image, or the foreground object decreases. Additional Arguments: --------------------- n : int (iterations) The number of times to apply the erosion. """ erodedimg = cv2.erode(image, kernel, iterations=n) return erodedimg def open_binary(image, kernel=None, n=None): """ An opening operation is similar to applying an erosion followed by a dilation. It removes small objects/noise in the background of the images. """ openimg = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel) return openimg def close_binary(image, kernel=None, n=None): """ A closing operation is similar to applying a dilation followed by an erosion. It is useful in closing small holes inside the foreground objects, or small black points inside the image. """ closeimg = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel) return closeimg def morphgradient_binary(image, kernel=None, n=None): """ This operation is the difference between dilation and erosion of an image. It creates an outline of the foreground object. """ mg = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel) return mg def fill_holes_binary(image, kernel=None, n=None): """ This function fills segments. It finds countours in the image, and then fills it with black, and inverts it back https://stackoverflow.com/questions/10316057/filling-holes-inside-a-binary-object """ contour,hier = cv2.findContours(image,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE) for cnt in contour: cv2.drawContours(image,[cnt],0,1,-1) return image def skeleton_binary(image, kernel=None, n=None): """ This operation reduces the foreground regions in a binary image to a skeletal remnant that largely preserves the extent and connectivity of the original region while throwing away most of the original foreground pixels. https://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm """ done = False size = np.size(image) skel = np.zeros(image.shape,np.uint8) while (not done): erode = cv2.erode(image,kernel) temp = cv2.dilate(erode,kernel) temp = cv2.subtract(image,temp) skel = cv2.bitwise_or(skel,temp) image = erode.copy() zeros = size - cv2.countNonZero(image) if zeros==size: done = True return skel def tophat_binary(image, kernel=None, n=None): """ It is the difference between input image and opening of the image """ tophat = cv2.morphologyEx(image,cv2.MORPH_TOPHAT, kernel) return tophat def blackhat_binary(image, kernel=None, n=None): """ It is the difference between the closing of the input image and input image. """ blackhat = cv2.morphologyEx(image,cv2.MORPH_BLACKHAT, kernel) return blackhat def areafiltering_remove_smaller_objects_binary(image, kernel=None, n=None): """ Removes all objects in the image that have an area larger than the threshold specified. Additional Arguments -------------------- n : int Specifies the threshold. """ nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8) sizes = stats[1:, -1]; nb_components = nb_components - 1 af = np.zeros((image.shape)) count_removed = 0 logger.info("{} ROI in tile".format(nb_components)) for i in range(0, nb_components): if sizes[i] >= n: af[output == i+1] = 1 count_removed = count_removed + 1 logger.info("{} ROI removed in tile".format(count_removed)) return af def areafiltering_remove_larger_objects_binary(image, kernel=None, n=None): """ Removes all objects in the image that have an area smaller than the threshold specified. Additional Arguments -------------------- n : int Specifies the threshold. """ nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8) sizes = stats[1:, -1] nb_components = nb_components - 1 af = np.zeros((image.shape)) count_removed = 0 logger.info("{} ROI in tile".format(nb_components)) for i in range(0, nb_components): if sizes[i] <= n: af[output == i+1] = 1 count_removed = count_removed + 1 logger.info("{} ROI removed in tile".format(count_removed)) return af def binary_operation(image, output, function, extra_arguments, extra_padding, kernel, Tile_Size): """ This function goes through the images and calls the appropriate binary operation Parameters ---------- image : str Location of image function_to_call : str The binary operation to dispatch on image extra_arguments : int Extra argument(s) for the binary operation that is called extra_padding : int The extra padding around each tile so that binary operations do not skewed around the edges. kernel : cv2 object The kernel used for most binary operations output : str Location for BioWriter Tile_Size : int Tile Size for reading images """ # Start the javabridge with proper java logging logger.info('Initializing the javabridge...') log_config = Path(__file__).parent.joinpath("log4j.properties") jutil.start_vm(args=["-Dlog4j.configuration=file:{}".format(str(log_config.absolute()))],class_path=bioformats.JARS) try: # Read the image br = BioReader(image) # Get the dimensions of the Image br_x, br_y, br_z, br_c, br_t = br.num_x(), br.num_y(), br.num_z(), br.num_c(), br.num_t() br_shape = (br_x, br_y, br_z, br_c, br_t) datatype = br.pixel_type() max_datatype_val = np.iinfo(datatype).max logger.info("Original Datatype {}: ({})".format(datatype, max_datatype_val)) logger.info("Shape of Input (XYZCT): {}".format(br_shape)) # Initialize Output bw = BioWriter(file_path=output, metadata=br.read_metadata()) # Initialize the Python Generators to go through each "tile" of the image tsize = Tile_Size + (2*extra_padding) logger.info("Tile Size {}x{}".format(tsize, tsize)) readerator = br.iterate(tile_stride=[Tile_Size, Tile_Size],tile_size=[tsize, tsize], batch_size=1) writerator = bw.writerate(tile_size=[Tile_Size, Tile_Size], tile_stride=[Tile_Size, Tile_Size], batch_size=1) next(writerator) for images,indices in readerator: # Extra tiles do not need to be calculated. # Indices should range from -intkernel < index value < Image_Dimension + intkernel if (indices[0][0][0] == br_x - extra_padding) or (indices[1][0][0] == br_y - extra_padding): continue logger.info(indices) # Images are (1, Tile_Size, Tile_Size, 1) # Need to convert to (Tile_Size, Tile_Size) to be able to do operation images = np.squeeze(images) images[images == max_datatype_val] = 1 # Initialize which function we are dispatching if callable(function): trans_image = function(images, kernel=kernel, n=extra_arguments) trans_image = trans_image.astype(datatype) trans_image[trans_image==1] = max_datatype_val # The image needs to be converted back to (1, Tile_Size_Tile_Size, 1) to write it reshape_img = np.reshape(trans_image[extra_padding:-extra_padding,extra_padding:-extra_padding], (1, Tile_Size, Tile_Size, 1)) # Send it to the Writerator writerator.send(reshape_img) # Close the image bw.close_image() except: traceback.print_exc() # Always close the JavaBridge finally: jutil.kill_vm()
#!/usr/bin/env python3 # -*- coding: utf-8; py-indent-offset:4 -*- import sys import os import io import socket import logging import numpy as np import pandas as pd import datetime as dt import argparse from influxdb import DataFrameClient as dfclient from influxdb.exceptions import InfluxDBClientError class IQFeedTool(object): def __init__(self): timeout = 10.0 self._dbhost = args.dbhost if args.dbhost else 'localhost' self._dbport = args.dbport if args.dbport else 8086 self._username = args.username if args.username else None self._password = args.password if args.password else None self._database = args.database if args.database else 'instruments' self._ticker = args.ticker self._iqhost = args.iqhost if args.iqhost else 'localhost' self._iqport = args.iqport if args.iqport else 9100 self._ticker = args.ticker self._year = None self._recv_buf = "" self._ndf = pd.DataFrame() # Open a streaming socket to the IQFeed daemon self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.connect((self._iqhost, self._iqport)) self._sock.settimeout(timeout) self.dfdb = dfclient(self._dbhost, self._dbport, self._username, self._password, self._database) if not args.fromdate: self._start = str(dt.datetime.today().year) elif len(args.fromdate) == 4 or len(args.fromdate == 10): self._start = args.fromdate else: log.error('Starting date required in YYYY-MM-DD or YYYY format.') sys.exit(-1) if not args.todate: self._stop = str(dt.datetime.today().year) elif len(args.fromdate) == 4 or len(args.fromdate == 10): self._stop = args.todate else: log.error('Starting date required in YYYY-MM-DD or YYYY format.') sys.exit(-1) def _send_cmd(self, cmd: str): """Encode IQFeed API messages.""" self._sock.sendall(cmd.encode(encoding='latin-1', errors='strict')) def iq_query(self, message: str): """Send data query to IQFeed API.""" end_msg = '!ENDMSG!' recv_buffer = 4096 # Send the historical data request message and buffer the data self._send_cmd(message) chunk = "" data = "" while True: chunk = self._sock.recv(recv_buffer).decode('latin-1') data += chunk if chunk.startswith('E,'): # error condition if chunk.startswith('E,!NO_DATA!'): log.warn('No data available for the given symbol or dates') return else: raise Exception(chunk) elif end_msg in chunk: break # Clean up the data. data = data[:-1 * (len(end_msg) + 3)] data = "".join(data.split("\r")) data = data.replace(",\n", ",")[:-1] data = data.split(",") return data def get_historical_minute_data(self, ticker: str): """Request historical 5 minute data from DTN.""" start = self._start stop = self._stop if len(stop) > 4: stop = stop[:4] if len(start) > 4: start = start[:4] for year in range(int(start), int(stop) + 1): beg_time = ('%s0101000000' % year) end_time = ('%s1231235959' % year) msg = "HIT,%s,60,%s,%s,,,,1,,,s\r\n" % (ticker, beg_time, end_time) try: data = iq.iq_query(message=msg) iq.add_data_to_df(data=data) except Exception as err: log.error('No data returned because %s', err) try: self.dfdb.write_points(self._ndf, ticker) except InfluxDBClientError as err: log.error('Write to database failed: %s' % err) def add_data_to_df(self, data: np.array): """Build Pandas Dataframe in memory""" col_names = ['high_p', 'low_p', 'open_p', 'close_p', 'volume', 'oi'] data = np.array(data).reshape(-1, len(col_names) + 1) df = pd.DataFrame(data=data[:, 1:], index=data[:, 0], columns=col_names) df.index = pd.to_datetime(df.index) # Sort the dataframe based on ascending dates. df.sort_index(ascending=True, inplace=True) # Convert dataframe columns to float and ints. df[['high_p', 'low_p', 'open_p', 'close_p']] = df[ ['high_p', 'low_p', 'open_p', 'close_p']].astype(float) df[['volume', 'oi']] = df[['volume', 'oi']].astype(int) if self._ndf.empty: self._ndf = df else: self._ndf = self._ndf.append(df) def get_tickers_from_file(self, filename): """Load ticker list from txt file""" if not os.path.exists(filename): log.error("Ticker List file does not exist: %s", filename) tickers = [] with io.open(filename, 'r') as fd: for ticker in fd: tickers.append(ticker.rstrip()) return tickers if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Import IQFeed Historical Data to InfluxDB") exoptgroup = parser.add_mutually_exclusive_group(required=True) exoptgroup.add_argument("--ticker", action='store', default='SPY', help="Ticker to request data for.") exoptgroup.add_argument('--ticker-list', action='store', default=None, help='Path to folder to create files.') parser.add_argument('--dbhost', required=False, action='store', default=None, help='InfluxDB hostname.') parser.add_argument('--dbport', required=False, action='store', default=None, type=int, help='InfluxDB port number.') parser.add_argument('--iqhost', required=False, action='store', default=None, help='IQfeed Connect hostname.') parser.add_argument('--iqport', required=False, action='store', default=None, type=int, help='IQfeed Connect port number.') parser.add_argument('--username', required=False, action='store', default=None, help='InfluxDB username.') parser.add_argument('--password', required=False, action='store', default=None, help='InfluxDB password.') parser.add_argument('--database', required=False, action='store', default=None, help='InfluxDB database to use.') parser.add_argument('--fromdate', required=False, action='store', default=None, type=str, help=('Starting date for historical download ' 'with format: YYYY[-MM-DDTHH:MM:SS].')) parser.add_argument('--todate', required=False, action='store', default=None, type=str, help=('Ending date for historical download ' 'with format: YYYY[-MM-DDTHH:MM:SS].')) parser.add_argument('--debug', required=False, action='store_true', help='Turn on debug logging level.') parser.add_argument('--info', required=False, action='store_true', help='Turn on info logging level.') args = parser.parse_args() iq = IQFeedTool() log = logging.getLogger() log_console = logging.StreamHandler(sys.stdout) log.addHandler(log_console) tickers = [] if args.ticker_list: tickers = iq.get_tickers_from_file(args.ticker_list) else: tickers.append(args.ticker.rstrip()) for (i, ticker) in enumerate(tickers): try: log.info("Processing %s (%d out of %d)", ticker, i+1, len(tickers)) iq.get_historical_minute_data(ticker=ticker) except Exception as err: log.error('Error returned: %s', err)
# Generated by Django 3.1.4 on 2021-10-26 17:44 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dashboard', '0022_auto_20211026_2254'), ] operations = [ migrations.AlterField( model_name='addroom', name='image1', field=models.FileField(upload_to='media/'), ), migrations.AlterField( model_name='bookingrooms', name='timestamp', field=models.DateTimeField(default=datetime.datetime(2021, 10, 26, 23, 14, 21, 50545)), ), ]
from rest_framework.views import APIView from rest_framework.response import Response class SimpleAPI(APIView): def get(self, request, format=None): return Response('hidden')
from compas.geometry import add_vectors from compas.geometry import cross_vectors from compas.geometry import normalize_vector from compas.geometry import scale_vector from compas.geometry import subtract_vectors from numpy import array from numpy import cos from numpy import cross from numpy import hstack from numpy import newaxis from numpy import ones from numpy import sin from numpy import tile from numpy import zeros from numpy.linalg import norm from numba import float64 from numba import int64 from numba import jit from compas.hpc import cross_vectors_numba from compas.hpc import length_vector_numba from time import time __author__ = ['Andrew Liew <[email protected]>'] __copyright__ = 'Copyright 2017, BLOCK Research Group - ETH Zurich' __license__ = 'MIT License' __email__ = '[email protected]' def f(x, y): return sin(x) * cos(y) @jit(float64(float64, float64), nogil=True, nopython=True) def fj(x, y): return sin(x) * cos(y) def python_normals(points, offset=0.1, delta=10**(-5)): tic = time() n = len(points) normals = [0] * n c = 0 for x, y, z in points: zx = f(x + delta, y) zy = f(x, y + delta) xyz = [x, y, z] vecx = subtract_vectors([x + delta, y, zx], xyz) vecy = subtract_vectors([x, y + delta, zy], xyz) vecn = normalize_vector(cross_vectors(vecx, vecy)) normals[c] = add_vectors(xyz, scale_vector(vecn, offset)) c += 1 toc = time() - tic return normals, toc def numpy_normals(points, offset=0.1, delta=10**(-5)): tic = time() xyz = array(points) X = xyz[:, 0][:, newaxis] Y = xyz[:, 1][:, newaxis] Z = xyz[:, 2][:, newaxis] delta_ = ones(X.shape) * delta zeros_ = zeros(X.shape) zx = f(X + delta_, Y) zy = f(X, Y + delta_) vecx = hstack([delta_, zeros_, zx - Z]) vecy = hstack([zeros_, delta_, zy - Z]) n_ = cross(vecx, vecy) vecn = n_ / tile(norm(n_, ord=2, axis=1)[:, newaxis], (1, 3)) normals = xyz + offset * vecn toc = time() - tic return [list(i) for i in list(normals)], toc def numba_normals(points, offset=0.1, delta=10**(-5)): tic = time() n = len(points) normals = zeros((n, 3)) xyz = array(points) X = xyz[:, 0] Y = xyz[:, 1] Z = xyz[:, 2] normals = njit(normals, X, Y, Z, n, delta, offset) toc = time() - tic return [list(i) for i in list(normals)], toc @jit(float64[:, :](float64[:, :], float64[:], float64[:], float64[:], int64, float64, float64), nogil=True, nopython=True) def njit(normals, X, Y, Z, n, delta, offset): vecx = array([delta, 0, 0]) vecy = array([0, delta, 0]) for i in range(n): xi = X[i] yi = Y[i] zi = Z[i] zx = fj(xi + delta, yi) zy = fj(xi, yi + delta) vecx[2] = zx - zi vecy[2] = zy - zi n_ = cross_vectors_numba(vecx, vecy) vecn = n_ / length_vector_numba(n_) normals[i, 0] = xi + offset * vecn[0] normals[i, 1] = yi + offset * vecn[1] normals[i, 2] = zi + offset * vecn[2] return normals # ============================================================================== # Debugging # ============================================================================== if __name__ == '__main__': points = [[1., 2., 3.], [2., 3., 4.], [5., 6., 7.]] normals = numba_normals(points=points) print(normals)
from __future__ import unicode_literals import frappe import erpnext from frappe import auth import random import datetime import json, ast from erpnext.accounts.utils import get_balance_on from frappe.utils import (flt, getdate, get_url, now, nowtime, get_time, today, get_datetime, add_days) from frappe.utils import add_to_date, now, nowdate from frappe.utils import cstr from frappe.utils.make_random import get_random @frappe.whitelist() def general_service(doctype, filter1='%%', filter2='%%', filter3='%%', filter4='%%', filter5='%%', filter6='%%', filter7='%%', search_text='%%', cur_nam='%%', con_doc='%%', start=0, page_length=20): ############################################ LEAD ############################################ ########################### Lead Full List & Search ############################ if doctype == "Lead" and con_doc == '%%': conditions = {} conditions1 = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["lead_name"] = ['like', search_text] conditions1["company_name"] = ['like', search_text] conditions1["mobile_no"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["lead_owner"] = filter2 if filter3 != '%%': conditions["organization_lead"] = filter3 if filter4 != '%%': conditions["creation"] = ['>=', filter4] if filter5 != '%%': conditions["creation"] = ['<=', filter5] query = frappe.db.get_list('Lead', or_filters=conditions1, filters=conditions, fields=["name", "lead_name", "company_name", "territory", "source", "market_segment", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Lead" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabLead`.name like '%{search_text}%' or `tabLead`.lead_name like '%{search_text}%' or `tabLead`.company_name like '%{search_text}%' or `tabLead`.mobile_no like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabLead`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabLead`.lead_owner = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabLead`.organization_lead = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and Date_Format(`tabLead`.creation,'%Y-%m-%d') >= '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and Date_Format(`tabLead`.creation,'%Y-%m-%d') <= '{filter5}' ".format(filter5=filter5) query = frappe.db.sql( """ select name, lead_name, company_name, territory, source, market_segment, status from `tabLead` where `tabLead`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ########################### Quotations Connected With Lead & Search ############################ if doctype == "Quotation" and con_doc == "Lead": connections = frappe.db.sql( """ select name, quotation_to, customer_name, transaction_date, grand_total, status from `tabQuotation` where `party_name` = '{cur_nam}' and (`tabQuotation`.name like '%{search_text}%' or `tabQuotation`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Opportunities Connected With Lead & Search ############################ if doctype == "Opportunity" and con_doc == "Lead": connections = frappe.db.sql( """ select name,opportunity_from,customer_name,transaction_date,opportunity_type,sales_stage,status from `tabOpportunity` where `party_name` = '{cur_nam}' and (`tabOpportunity`.name like '%{search_text}%' or `tabOpportunity`.customer_name like '%{search_text}%' or `tabOpportunity`.party_name like '%{search_text}%' or `tabOpportunity`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ############################################ OPPORTUNITY ############################################ ########################### Opportunity Full List & Search ############################ if doctype == "Opportunity" and con_doc == '%%': conditions = {} conditions1 = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["customer_name"] = ['like', search_text] conditions1["party_name"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["opportunity_from"] = filter2 if filter3 != '%%': conditions["party_name"] = filter3 if filter4 != '%%': conditions["opportunity_type"] = filter4 if filter5 != '%%': conditions["transaction_date"] = ['>=', filter5] if filter6 != '%%': conditions["transaction_date"] = ['<=', filter6] query = frappe.db.get_list('Opportunity', or_filters=conditions1, filters=conditions, fields=["name", "opportunity_from", "customer_name", "transaction_date", "opportunity_type", "sales_stage", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Opportunity" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabOpportunity`.name like '%{search_text}%' or `tabOpportunity`.customer_name like '%{search_text}%' or `tabOpportunity`.party_name like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabOpportunity`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabOpportunity`.opportunity_from = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabOpportunity`.party_name = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabOpportunity`.opportunity_type = '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and `tabOpportunity`.transaction_date >= '{filter5}' ".format(filter5=filter5) if filter6 != '%%': conditions += " and `tabOpportunity`.transaction_date <= '{filter6}' ".format(filter6=filter6) query = frappe.db.sql( """ select name, opportunity_from, customer_name, transaction_date, opportunity_type, sales_stage, status from `tabOpportunity` where `tabOpportunity`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ########################### Quotations Connected With Opportunity & Search ############################ if doctype == "Quotation" and con_doc == "Opportunity": connections = frappe.db.sql( """ select name, quotation_to, customer_name, transaction_date, grand_total, status from `tabQuotation` where `opportunity` = '{cur_nam}' and (`tabQuotation`.name like '%{search_text}%' or `tabQuotation`.customer_name like '%{search_text}%' or `tabQuotation`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Supplier Quotations Connected With Opportunity & Search ############################ if doctype == "Supplier Quotation" and con_doc == "Opportunity": connections = frappe.db.sql( """ select name,supplier,transaction_date,valid_till,grand_total,status from `tabSupplier Quotation` where `opportunity` = '{cur_nam}' and (`tabSupplier Quotation`.name like '%{search_text}%' or `tabSupplier Quotation`.supplier like '%{search_text}%' or `tabSupplier Quotation`.supplier_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ############################################ QUOTATION ############################################ ########################### Quotation Full List & Search ############################ if doctype == "Quotation" and con_doc == '%%': conditions = {} conditions1 = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["customer_name"] = ['like', search_text] conditions1["party_name"] = ['like', search_text] conditions1["customer_address"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["quotation_to"] = filter2 if filter3 != '%%': conditions["customer_name"] = filter3 if filter4 != '%%': conditions["order_type"] = filter4 if filter5 != '%%': conditions["transaction_date"] = ['>=', filter5] if filter6 != '%%': conditions["transaction_date"] = ['<=', filter6] query = frappe.db.get_list('Quotation', or_filters=conditions1, filters=conditions, fields=["name", "quotation_to", "customer_name", "transaction_date", "grand_total", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Quotation" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabQuotation`.name like '%{search_text}%' or `tabQuotation`.customer_name like '%{search_text}%' or `tabQuotation`.party_name like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabQuotation`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabQuotation`.quotation_to = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabQuotation`.customer_name = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabQuotation`.order_type = '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and `tabQuotation`.transaction_date >= '{filter5}' ".format(filter5=filter5) if filter6 != '%%': conditions += " and `tabQuotation`.transaction_date <= '{filter6}' ".format(filter6=filter6) query = frappe.db.sql( """ select name, quotation_to, customer_name, transaction_date, grand_total, status from `tabQuotation` where `tabQuotation`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ########################### Sales Orders Connected With Quotation & Search ############################ if doctype == "Sales Order" and con_doc == "Quotation": connections = frappe.db.sql( """ select distinct `tabSales Order`.name as name,`tabSales Order`.customer_name as customer_name,`tabSales Order`.customer_address as customer_address, `tabSales Order`.transaction_date as transaction_date,`tabSales Order`.grand_total as grand_total,`tabSales Order`.status as status from `tabSales Order` join `tabSales Order Item` on `tabSales Order`.name = `tabSales Order Item`.parent where `tabSales Order Item`.prevdoc_docname = '{cur_nam}' and (`tabSales Order`.name like '%{search_text}%' or `tabSales Order`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ############################################ CUSTOMER ############################################ ########################### Customer Full List & Search ############################ if doctype == "Customer" and con_doc == '%%': conditions1 = {} conditions = {"disabled": ['=', 0]} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["customer_name"] = ['like', search_text] conditions1["mobile_no"] = ['like', search_text] if filter1 != '%%': conditions["customer_group"] = filter1 if filter2 != '%%': conditions["territory"] = filter2 if filter3 != '%%': conditions["customer_type"] = filter3 if filter4 != '%%': conditions["creation"] = ['>=', filter4] if filter5 != '%%': conditions["creation"] = ['<=', filter5] query = frappe.db.get_list('Customer', or_filters=conditions1, filters=conditions, fields=["name","customer_name","customer_group","customer_type","territory","mobile_no","tax_id","customer_primary_address","customer_primary_contact","default_currency","default_price_list","payment_terms","default_sales_partner"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Customer" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabCustomer`.name like '%{search_text}%' or `tabCustomer`.customer_name like '%{search_text}%' or `tabCustomer`.mobile_no like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabCustomer`.customer_group = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabCustomer`.territory = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabCustomer`.customer_type = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and Date_Format(`tabCustomer`.creation,'%Y-%m-%d') >= '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and Date_Format(`tabCustomer`.creation,'%Y-%m-%d') <= '{filter5}' ".format(filter5=filter5) query = frappe.db.sql( """ select name,customer_name,customer_group,customer_type,territory,mobile_no,tax_id,customer_primary_address,customer_primary_contact,default_currency,default_price_list,payment_terms,default_sales_partner from `tabCustomer` where `tabCustomer`.disabled = 0 {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ########################### Quotations Connected With Customer & Search ############################ if doctype == "Quotation" and con_doc == "Customer": connections = frappe.db.sql( """ select name, quotation_to, customer_name, transaction_date, grand_total, status from `tabQuotation` where `party_name` = '{cur_nam}' and (`tabQuotation`.name like '%{search_text}%' or `tabQuotation`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Opportunities Connected With Customer & Search ############################ if doctype == "Opportunity" and con_doc == "Customer": connections = frappe.db.sql( """ select name,opportunity_from,customer_name,transaction_date,opportunity_type,sales_stage,status from `tabOpportunity` where `party_name` = '{cur_nam}' and (`tabOpportunity`.name like '%{search_text}%' or `tabOpportunity`.customer_name like '%{search_text}%' or `tabOpportunity`.party_name like '%{search_text}%' or `tabOpportunity`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Sales Orders Connected With Customer & Search ############################ if doctype == "Sales Order" and con_doc == "Customer": connections = frappe.db.sql( """ select name,customer_name,customer_address,transaction_date,grand_total,status from `tabSales Order` where `customer` = '{cur_nam}' and (`tabSales Order`.name like '%{search_text}%' or `tabSales Order`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Delivery Notes Connected With Customer & Search ############################ if doctype == "Delivery Note" and con_doc == "Customer": connections = frappe.db.sql( """ select name,customer,territory,posting_date,set_warehouse,status from `tabDelivery Note` where `customer` = '{cur_nam}' and (`tabDelivery Note`.name like '%{search_text}%' or `tabDelivery Note`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Sales Invoices Connected With Customer & Search ############################ if doctype == "Sales Invoice" and con_doc == "Customer": connections = frappe.db.sql( """ select name,customer_name,customer_address,posting_date,grand_total,status from `tabSales Invoice` where `customer` = '{cur_nam}' and (`tabSales Invoice`.name like '%{search_text}%' or `tabSales Invoice`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Payment Entries Connected With Customer & Search ############################ if doctype == "Payment Entry" and con_doc == "Customer": connections = frappe.db.sql( """ select name,party_name,payment_type,mode_of_payment,posting_date,paid_amount,status from `tabPayment Entry` where `party` = '{cur_nam}' and (`tabPayment Entry`.name like '%{search_text}%' or `tabPayment Entry`.mode_of_payment like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ############################################ SALES ORDER ############################################ ########################### Sales Order Full List & Search ############################ if doctype == "Sales Order" and con_doc == '%%': conditions1 = {} conditions = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["customer_name"] = ['like', search_text] conditions1["customer"] = ['like', search_text] conditions1["customer_address"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["customer"] = filter2 if filter3 != '%%': conditions["delivery_status"] = filter3 if filter4 != '%%': conditions["billing_status"] = filter4 if filter5 != '%%': conditions["transaction_date"] = ['>=', filter5] if filter6 != '%%': conditions["transaction_date"] = ['<=', filter6] query = frappe.db.get_list('Sales Order', or_filters=conditions1, filters=conditions, fields=["name", "customer_name", "customer_address", "transaction_date", "grand_total", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Sales Order" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabSales Order`.name like '%{search_text}%' or `tabSales Order`.customer_name like '%{search_text}%' or `tabSales Order`.customer like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabSales Order`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabSales Order`.customer = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabSales Order`.delivery_status = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabSales Order`.billing_status = '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and `tabSales Order`.transaction_date >= '{filter5}' ".format(filter5=filter5) if filter6 != '%%': conditions += " and `tabSales Order`.transaction_date <= '{filter6}' ".format(filter6=filter6) query = frappe.db.sql( """ select name, customer_name, customer_address, transaction_date, grand_total, status from `tabSales Order` where `tabSales Order`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ########################### Sales Invoices Connected With Sales Order & Search ############################ if doctype == "Sales Invoice" and con_doc == "Sales Order": connections = frappe.db.sql( """ select distinct `tabSales Invoice`.name as name,`tabSales Invoice`.customer_name as customer_name,`tabSales Invoice`.customer_address as customer_address, `tabSales Invoice`.posting_date as posting_date,`tabSales Invoice`.grand_total as grand_total,`tabSales Invoice`.status as status from `tabSales Invoice` join `tabSales Invoice Item` on `tabSales Invoice`.name = `tabSales Invoice Item`.parent where `tabSales Invoice Item`.sales_order = '{cur_nam}' and (`tabSales Invoice`.name like '%{search_text}%' or `tabSales Invoice`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Delivery Notes Connected With Sales Order & Search ############################ if doctype == "Delivery Note" and con_doc == "Sales Order": connections = frappe.db.sql( """ select distinct `tabDelivery Note`.name as name,`tabDelivery Note`.customer as customer,`tabDelivery Note`.territory as territory, `tabDelivery Note`.posting_date as posting_date,`tabDelivery Note`.set_warehouse as set_warehouse,`tabDelivery Note`.status as status from `tabDelivery Note` join `tabDelivery Note Item` on `tabDelivery Note`.name = `tabDelivery Note Item`.parent where `tabDelivery Note Item`.against_sales_order = '{cur_nam}' and (`tabDelivery Note`.name like '%{search_text}%' or `tabDelivery Note`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Material Requests Connected With Sales Order & Search ############################ if doctype == "Material Request" and con_doc == "Sales Order": connections = frappe.db.sql( """ select distinct `tabMaterial Request`.name as name,`tabMaterial Request`.material_request_type as material_request_type, `tabMaterial Request`.transaction_date as transaction_date,`tabMaterial Request`.set_warehouse as set_warehouse,`tabMaterial Request`.status as status from `tabMaterial Request` join `tabMaterial Request Item` on `tabMaterial Request`.name = `tabMaterial Request Item`.parent where `tabMaterial Request Item`.sales_order = '{cur_nam}' and (`tabMaterial Request`.name like '%{search_text}%' or `tabMaterial Request`.material_request_type like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Purchase Orders Connected With Sales Order & Search ############################ if doctype == "Purchase Order" and con_doc == "Sales Order": connections = frappe.db.sql( """ select distinct `tabPurchase Order`.name as name,`tabPurchase Order`.supplier as supplier, `tabPurchase Order`.grand_total as grand_total, `tabPurchase Order`.transaction_date as transaction_date,`tabPurchase Order`.set_warehouse as set_warehouse,`tabPurchase Order`.status as status from `tabPurchase Order` join `tabPurchase Order Item` on `tabPurchase Order`.name = `tabPurchase Order Item`.parent where `tabPurchase Order Item`.sales_order = '{cur_nam}' and (`tabPurchase Order`.name like '%{search_text}%' or `tabPurchase Order`.supplier_address like '%{search_text}%' or `tabPurchase Order`.supplier like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Quotations Connected With Sales Order & Search ############################ if doctype == "Quotation" and con_doc == "Sales Order": connections = frappe.db.sql( """ select distinct `tabQuotation`.name as name, `tabQuotation`.quotation_to as quotation_to, `tabQuotation`.customer_name as customer_name, `tabQuotation`.transaction_date as transaction_date, `tabQuotation`.grand_total as grand_total, `tabQuotation`.status as status from `tabQuotation` join `tabSales Order Item` on `tabQuotation`.name = `tabSales Order Item`.prevdoc_docname where `tabSales Order Item`.parent = '{cur_nam}' and (`tabQuotation`.name like '%{search_text}%' or `tabQuotation`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Payment Entries Connected With Sales Order & Search ############################ if doctype == "Payment Entry" and con_doc == "Sales Order": connections = frappe.db.sql( """ select distinct `tabPayment Entry`.name as name,`tabPayment Entry`.party_name as party_name, `tabPayment Entry`.payment_type as payment_type,`tabPayment Entry`.mode_of_payment as mode_of_payment, `tabPayment Entry`.posting_date as posting_date,`tabPayment Entry`.paid_amount as paid_amount,`tabPayment Entry`.status as status from `tabPayment Entry` join `tabPayment Entry Reference` on `tabPayment Entry`.name = `tabPayment Entry Reference`.parent where `tabPayment Entry Reference`.reference_name = '{cur_nam}' and (`tabPayment Entry`.name like '%{search_text}%' or `tabPayment Entry`.mode_of_payment like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ############################################ SALES INVOICE ############################################ ########################### Sales Invoice Full List & Search ############################ if doctype == "Sales Invoice" and con_doc == '%%': conditions1 = {} conditions = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["customer_name"] = ['like', search_text] conditions1["customer"] = ['like', search_text] conditions1["customer_address"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["customer"] = filter2 if filter3 != '%%': conditions["posting_date"] = ['>=', filter3] if filter4 != '%%': conditions["posting_date"] = ['<=', filter4] query = frappe.db.get_list('Sales Invoice', or_filters=conditions1, filters=conditions, fields=["name", "customer_name", "customer_address", "posting_date", "grand_total", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Sales Invoice" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabSales Invoice`.name like '%{search_text}%' or `tabSales Invoice`.customer_name like '%{search_text}%' or `tabSales Invoice`.customer like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabSales Invoice`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabSales Invoice`.customer = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabSales Invoice`.posting_date >= '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabSales Invoice`.posting_date <= '{filter4}' ".format(filter4=filter4) query = frappe.db.sql( """ select name, customer_name, customer_address, posting_date, grand_total, status from `tabSales Invoice` where `tabSales Invoice`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ########################### Sales Orders Connected With Sales Invoice & Search ############################ if doctype == "Sales Order" and con_doc == "Sales Invoice": connections = frappe.db.sql( """ select distinct `tabSales Order`.name as name,`tabSales Order`.customer_name as customer_name,`tabSales Order`.customer_address as customer_address, `tabSales Order`.transaction_date as transaction_date,`tabSales Order`.grand_total as grand_total,`tabSales Order`.status as status from `tabSales Order` join `tabSales Invoice Item` on `tabSales Order`.name = `tabSales Invoice Item`.sales_order where `tabSales Invoice Item`.parent = '{cur_nam}' and (`tabSales Order`.name like '%{search_text}%' or `tabSales Order`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Delivery Notes Connected With Sales Invoice & Search ############################ if doctype == "Delivery Note" and con_doc == "Sales Invoice": connections = frappe.db.sql( """ select distinct `tabDelivery Note`.name as name,`tabDelivery Note`.customer as customer,`tabDelivery Note`.territory as territory, `tabDelivery Note`.posting_date as posting_date,`tabDelivery Note`.set_warehouse as set_warehouse,`tabDelivery Note`.status as status from `tabDelivery Note` join `tabDelivery Note Item` on `tabDelivery Note`.name = `tabDelivery Note Item`.parent where `tabDelivery Note Item`.against_sales_invoice = '{cur_nam}' and (`tabDelivery Note`.name like '%{search_text}%' or `tabDelivery Note`.customer_address like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ########################### Payment Entries Connected With Sales Invoice & Search ############################ if doctype == "Payment Entry" and con_doc == "Sales Invoice": connections = frappe.db.sql( """ select distinct `tabPayment Entry`.name as name,`tabPayment Entry`.party_name as party_name, `tabPayment Entry`.payment_type as payment_type,`tabPayment Entry`.mode_of_payment as mode_of_payment, `tabPayment Entry`.posting_date as posting_date,`tabPayment Entry`.paid_amount as paid_amount,`tabPayment Entry`.status as status from `tabPayment Entry` join `tabPayment Entry Reference` on `tabPayment Entry`.name = `tabPayment Entry Reference`.parent where `tabPayment Entry Reference`.reference_name = '{cur_nam}' and (`tabPayment Entry`.name like '%{search_text}%' or `tabPayment Entry`.mode_of_payment like '%{search_text}%') LIMIT {start},{page_length} """.format(start=start, page_length=page_length, cur_nam=cur_nam, search_text=search_text), as_dict=1) if connections: return connections else: return "لا يوجد روابط !" ############################################ PAYMENT ENTRY ############################################ ########################### Payment Entry Full List & Search ############################ if doctype == "Payment Entry" and con_doc == '%%': conditions1 = {} conditions = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["party_name"] = ['like', search_text] conditions1["mode_of_payment"] = ['like', search_text] conditions1["party"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["payment_type"] = filter2 if filter3 != '%%': conditions["mode_of_payment"] = filter3 if filter4 != '%%': conditions["party_type"] = filter4 if filter5 != '%%': conditions["party"] = filter5 if filter6 != '%%': conditions["posting_date"] = ['>=', filter6] if filter7 != '%%': conditions["posting_date"] = ['<=', filter7] query = frappe.db.get_list('Payment Entry', or_filters=conditions1, filters=conditions, fields=["name", "party_name", "payment_type", "mode_of_payment", "posting_date", "paid_amount", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Payment Entry" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabPayment Entry`.name like '%{search_text}%' or `tabPayment Entry`.party_name like '%{search_text}%' or `tabPayment Entry`.party like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabPayment Entry`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabPayment Entry`.payment_type = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabPayment Entry`.mode_of_payment = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabPayment Entry`.party_type = '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and `tabPayment Entry`.party = '{filter5}' ".format(filter5=filter5) if filter6 != '%%': conditions += " and `tabPayment Entry`.posting_date >= '{filter6}' ".format(filter6=filter6) if filter7 != '%%': conditions += " and `tabPayment Entry`.posting_date <= '{filter7}' ".format(filter7=filter7) query = frappe.db.sql( """ select name, party_name, payment_type, mode_of_payment, posting_date, paid_amount, status from `tabPayment Entry` where `tabPayment Entry`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ############################################ LEAD SOURCE ############################################ ########################### Lead Source Full List & Search ############################ if doctype == "Lead Source" and con_doc == '%%': query = frappe.db.get_list('Lead Source', or_filters=[{'name': ['like', search_text]}, {'source_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ PROJECT ############################################ ########################### Project Segment Full List & Search ############################ if doctype == "Project" and con_doc == '%%': query = frappe.db.get_list('Project', filters=[{'is_active': ['=', 'Yes']}], or_filters=[{'name': ['like', search_text]}, {'project_name': ['like', search_text]}], fields=["name", "project_name", "status"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ PAYMENT TERMS TEMPLATE ############################################ ########################### Payment Terms Template Full List & Search ############################ if doctype == "Payment Terms Template" and con_doc == '%%': query = frappe.db.get_list('Payment Terms Template', or_filters=[{'name': ['like', search_text]}, {'template_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ MARKET SEGEMENT ############################################ ########################### Market Segment Full List & Search ############################ if doctype == "Market Segment" and con_doc == '%%': query = frappe.db.get_list('Market Segment', or_filters=[{'name': ['like', search_text]}, {'market_segment': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ TERRITORY ############################################ ########################### Territory Full List & Search ############################ if doctype == "Territory" and con_doc == '%%': query = frappe.db.get_list('Territory', filters=[{'is_group': ['=', 0]}], or_filters=[{'name': ['like', search_text]}, {'territory_name': ['like', search_text]}], fields=["name", "parent_territory"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ WAREHOUSE ############################################ ########################### Warehouse Full List & Search ############################ if doctype == "Warehouse" and con_doc == '%%': query = frappe.db.get_list('Warehouse', filters=[{'is_group': ['=', 0]}], or_filters=[{'name': ['like', search_text]}, {'warehouse_name': ['like', search_text]}], fields=["name", "warehouse_name", "warehouse_type", "parent_warehouse"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ COUNTRY ############################################ ########################### Country Full List & Search ############################ if doctype == "Country" and con_doc == '%%': query = frappe.db.get_list('Country', or_filters=[{'name': ['like', search_text]}, {'country_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ OPPORTUNITY TYPE ############################################ ########################### Opportunity Type Full List & Search ############################ if doctype == "Opportunity Type" and con_doc == '%%': query = frappe.db.get_list('Opportunity Type', or_filters=[{'name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ CUSTOMER GROUP ############################################ ########################### Customer Group Full List & Search ############################ if doctype == "Customer Group" and con_doc == '%%': query = frappe.db.get_list('Customer Group', filters=[{'is_group': ['=', 0]}], or_filters=[{'name': ['like', search_text]}, {'customer_group_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ ITEM GROUP ############################################ ########################### Item Group Full List & Search ############################ if doctype == "Item Group" and con_doc == '%%': query = frappe.db.get_list('Item Group', or_filters=[{'name': ['like', search_text]}, {'item_group_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ BRAND ############################################ ########################### Brand Full List & Search ############################ if doctype == "Brand" and con_doc == '%%': query = frappe.db.get_list('Brand', or_filters=[{'name': ['like', search_text]}, {'brand': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ UOM ############################################ ########################### UOM Full List & Search ############################ if doctype == "UOM" and con_doc == '%%': query = frappe.db.get_list('UOM', filters=[{'enabled': 1}], or_filters=[{'name': ['like', search_text]}, {'uom_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ User ############################################ ########################### User Full List & Search ############################ if doctype == "User" and con_doc == '%%': query = frappe.db.get_list('User', filters=[{'enabled': 1}], or_filters=[{'name': ['like', search_text]}, {'full_name': ['like', search_text]}], fields=["name", "full_name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ Stock Entry Type ############################################ ########################### Stock Entry Type Full List & Search ############################ if doctype == "Stock Entry Type" and con_doc == '%%': query = frappe.db.get_list('Stock Entry Type', or_filters=[{'name': ['like', search_text]}, {'purpose': ['like', search_text]}], fields=["name", "purpose"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ CAMPAIGN ############################################ ########################### Campaign Full List & Search ############################ if doctype == "Campaign" and con_doc == '%%': query = frappe.db.get_list('Campaign', or_filters=[{'name': ['like', search_text]}, {'campaign_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ INDUSTRY TYPE ############################################ ########################### Industry Type Full List & Search ############################ if doctype == "Industry Type" and con_doc == '%%': query = frappe.db.get_list('Industry Type', or_filters=[{'name': ['like', search_text]}, {'industry': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ CURRENCY ############################################ ########################### Currency Full List & Search ############################ if doctype == "Currency" and con_doc == '%%': query = frappe.db.get_list('Currency', or_filters=[{'name': ['like', search_text]}, {'currency_name': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ SALES PARTNER ############################################ ########################### Sales Partner Full List & Search ############################ if doctype == "Sales Partner" and con_doc == '%%': query = frappe.db.get_list('Sales Partner', or_filters=[{'name': ['like', search_text]}, {'partner_name': ['like', search_text]}], fields=["name","commission_rate"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ TERMS & CONDITIONS ############################################ ########################### Terms and Conditions Full List & Search ############################ if doctype == "Terms and Conditions" and con_doc == '%%': query = frappe.db.get_list('Terms and Conditions', or_filters=[{'name': ['like', search_text]}, {'title': ['like', search_text]}], fields=["name"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ MODE OF PAYMENT ############################################ ########################### Mode of Payment Full List & Search ############################ if doctype == "Mode of Payment" and con_doc == '%%': query = frappe.db.get_list('Mode of Payment', or_filters=[{'name': ['like', search_text]}, {'mode_of_payment': ['like', search_text]}], fields=["name", "type"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ PRICE LIST ############################################ ########################### Price List Full List & Search ############################ if doctype == "Price List" and con_doc == '%%': query = frappe.db.get_list('Price List', or_filters=[{'name': ['like', search_text]}, {'price_list_name': ['like', search_text]}], fields=["name", "currency"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ COST CENTER ############################################ ########################### Cost Center Full List & Search ############################ if doctype == "Cost Center" and con_doc == '%%': query = frappe.db.get_list('Cost Center', filters=[{'is_group': ['=', 0]}], or_filters=[{'name': ['like', search_text]}, {'cost_center_name': ['like', search_text]}], fields=["name", "cost_center_name", "parent_cost_center"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ ACCOUNT ############################################ ########################### Account Full List & Search ############################ if doctype == "Account" and con_doc == '%%': query = frappe.db.get_list('Account', filters=[{'is_group': ['=', 0]}], or_filters=[{'name': ['like', search_text]}, {'account_name': ['like', search_text]}, {'account_number': ['like', search_text]}], fields=["name", "account_type", "root_type", "account_currency", "parent_account"], order_by='name asc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ ITEM ############################################ ########################### Item Full List & Search ############################ if doctype == "Item" and con_doc == '%%': conditions = {} conditions1 = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["item_name"] = ['like', search_text] conditions1["item_code"] = ['like', search_text] if filter1 != '%%': conditions["item_group"] = filter1 if filter2 != '%%': conditions["brand"] = filter2 if filter3 != '%%': conditions["is_stock_item"] = filter3 if filter4 != '%%': conditions["stock_uom"] = filter4 query = frappe.db.get_list('Item', or_filters=conditions1, filters=conditions, fields=["name", "item_name", "item_group", "stock_uom", "image"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Item" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabItem`.name like '%{search_text}%' or `tabItem`.item_name like '%{search_text}%' or `tabItem`.item_code like '%{search_text}%') ".format(search_text=search_text) if filter1 != '%%': conditions += " and `tabItem`.item_group = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabItem`.brand = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabItem`.is_stock_item = '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabItem`.stock_uom = '{filter4}' ".format(filter4=filter4) query = frappe.db.sql( """ select name, item_name, item_group, stock_uom, image from `tabItem` where `tabItem`.disabled = 0 {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ############################################ MATERIAL REQUEST ############################################ ########################### Material Request Full List & Search ############################ if doctype == "Material Request" and con_doc == '%%': query = frappe.db.get_list('Material Request', or_filters=[{'name': ['like', search_text]}, {'title': ['like', search_text]}], fields=["name", "material_request_type", "transaction_date", "set_warehouse", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ STOCK ENTRY ############################################ ########################### Stock Entry Full List & Search ############################ if doctype == "Stock Entry" and con_doc == '%%': conditions = {} conditions1 = {} if search_text != '%%': conditions1["name"] = ['like', search_text] if filter1 != '%%': conditions["docstatus"] = filter1 if filter2 != '%%': conditions["stock_entry_type"] = filter2 if filter3 != '%%': conditions["posting_date"] = ['>=', filter3] if filter4 != '%%': conditions["posting_date"] = ['<=', filter4] if filter5 != '%%': conditions["from_warehouse"] = filter5 if filter6 != '%%': conditions["to_warehouse"] = filter6 query = frappe.db.get_list('Stock Entry', or_filters=conditions1, filters=conditions, fields=["name", "stock_entry_type", "posting_date", "from_warehouse", "to_warehouse", "docstatus"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Stock Entry" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`tabStock Entry`.name like '%{search_text}%' or `tabStock Entry`.title like '%{search_text}%') ".format(search_text=search_text) if filter1 != '%%': conditions += " and `tabStock Entry`.docstatus = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabStock Entry`.stock_entry_type = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabStock Entry`.posting_date >= '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabStock Entry`.posting_date <= '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and `tabStock Entry`.from_warehouse = '{filter5}' ".format(filter5=filter5) if filter6 != '%%': conditions += " and `tabStock Entry`.to_warehouse = '{filter6}' ".format(filter6=filter6) query = frappe.db.sql( """ select name, stock_entry_type, posting_date, from_warehouse, to_warehouse, docstatus from `tabStock Entry` where `tabStock Entry`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ############################################ PURCHASE RECEIPT ############################################ ########################### Purchase Receipt Full List & Search ############################ if doctype == "Purchase Receipt" and con_doc == '%%': query = frappe.db.get_list('Purchase Receipt', or_filters=[{'name': ['like', search_text]}, {'title': ['like', search_text]}, {'supplier': ['like', search_text]}, {'supplier_name': ['like', search_text]}], fields=["name", "supplier", "posting_date", "set_warehouse", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ DELIVERY NOTE ############################################ ########################### Delivery Note Full List & Search ############################ if doctype == "Delivery Note" and con_doc == '%%': conditions = {} conditions1 = {} if search_text != '%%': conditions1["name"] = ['like', search_text] conditions1["title"] = ['like', search_text] conditions1["customer"] = ['like', search_text] conditions1["customer_name"] = ['like', search_text] if filter1 != '%%': conditions["status"] = filter1 if filter2 != '%%': conditions["customer"] = filter2 if filter3 != '%%': conditions["posting_date"] = ['>=', filter3] if filter4 != '%%': conditions["posting_date"] = ['<=', filter4] if filter5 != '%%': conditions["set_warehouse"] = filter5 query = frappe.db.get_list('Delivery Note', or_filters=conditions1, filters=conditions, fields=["name", "customer", "territory", "posting_date", "set_warehouse", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ''' if doctype == "Delivery Note" and con_doc == '%%': conditions = "" if search_text != '%%': conditions += " and (`taDelivery Note`.name like '%{search_text}%' or `taDelivery Note`.title like '%{search_text}%' or `tabDelivery Note`.customer_name like '%{search_text}%' or `tabDelivery Note`.customer like '%{search_text}%') ".format( search_text=search_text) if filter1 != '%%': conditions += " and `tabDelivery Note`.status = '{filter1}' ".format(filter1=filter1) if filter2 != '%%': conditions += " and `tabDelivery Note`.customer = '{filter2}' ".format(filter2=filter2) if filter3 != '%%': conditions += " and `tabDelivery Note`.posting_date >= '{filter3}' ".format(filter3=filter3) if filter4 != '%%': conditions += " and `tabDelivery Note`.posting_date <= '{filter4}' ".format(filter4=filter4) if filter5 != '%%': conditions += " and `tabDelivery Note`.set_warehouse = '{filter5}' ".format(filter5=filter5) query = frappe.db.sql( """ select name, customer, territory, posting_date, set_warehouse, status from `tabDelivery Note` where `tabDelivery Note`.docstatus in (0, 1, 2) {conditions} order by modified desc LIMIT {start},{page_length} """.format(conditions=conditions, start=start, page_length=page_length), as_dict=1) if query: return query else: return "لا يوجد !" ''' ############################################ SUPPLIER ############################################ ########################### Supplier Full List & Search ############################ if doctype == "Supplier" and con_doc == '%%': query = frappe.db.get_list('Supplier', or_filters=[{'name': ['like', search_text]}, {'supplier_name': ['like', search_text]}, {'mobile_no': ['like', search_text]}], fields=["name", "supplier_name", "supplier_group", "supplier_type", "country", "mobile_no"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ SUPPLIER QUOTATION ############################################ ########################### Supplier Quotation Full List & Search ############################ if doctype == "Supplier Quotation" and con_doc == '%%': query = frappe.db.get_list('Supplier Quotation', or_filters=[{'name': ['like', search_text]}, {'supplier': ['like', search_text]}], fields=["name", "supplier", "transaction_date", "valid_till", "grand_total", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ PURCHASE ORDER ############################################ ########################### Purchase Order Full List & Search ############################ if doctype == "Purchase Order" and con_doc == '%%': query = frappe.db.get_list('Purchase Order', or_filters=[{'name': ['like', search_text]}, {'supplier': ['like', search_text]}], fields=["name", "supplier", "transaction_date", "set_warehouse", "grand_total", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ PURCHASE INVOICE ############################################ ########################### Purchase Invoice Full List & Search ############################ if doctype == "Purchase Invoice" and con_doc == '%%': query = frappe.db.get_list('Purchase Invoice', or_filters=[{'name': ['like', search_text]}, {'supplier': ['like', search_text]}], fields=["name", "supplier", "posting_date", "grand_total", "status"], order_by='modified desc', start=start, page_length=page_length ) if query: return query else: return "لا يوجد !" ############################################ ADDRESS ############################################ ########################### Filtered Address List & Search ############################ if doctype == "Address" and con_doc == '%%': addresses = frappe.db.get_list('Dynamic Link', filters={'link_name': cur_nam}, fields=['parent']) result = [] for d in addresses: query = frappe.db.sql(""" select name as name , address_title as address_title, address_line1 as address_line1, city as city, phone as phone from tabAddress where name = '{filtered}' and (address_title like '{search_text}' or address_line1 like '{search_text}' or city like '{search_text}' or phone like '{search_text}') LIMIT {start},{page_length} """.format(filtered=d.parent, search_text=search_text, start=start, page_length=page_length,), as_dict=1) for x in query: data = { 'name': x.name, 'address_title': x.address_title, 'address_line1': x.address_line1, 'city': x.city, 'phone': x.phone } result.append(data) if result: return result else: return "لا يوجد !" ############################################ CONTACT ############################################ ########################### Filtered Contact List & Search ############################ if doctype == "Contact" and con_doc == '%%': contacts = frappe.db.get_list('Dynamic Link', filters={'link_name': cur_nam}, fields=['parent']) result = [] for d in contacts: query = frappe.db.sql(""" select name as name , email_id as email_id, mobile_no as mobile_no, phone as phone, company_name as company_name from tabContact where name = '{filtered}' and (name like '{search_text}' or email_id like '{search_text}' or mobile_no like '{search_text}' or phone like '{search_text}' or company_name like '{search_text}') LIMIT {start},{page_length} """.format(filtered=d.parent, search_text=search_text, start=start, page_length=page_length,), as_dict=1) for x in query: data = { 'name': x.name, 'email_id': x.email_id, 'mobile_no': x.mobile_no, 'company_name': x.company_name, 'phone': x.phone } result.append(data) if result: return result else: return "لا يوجد !"
import numpy as np from subriemannian_qc.matrix_util import conj_transpose ''' Input validation utility functions. ''' def is_matrix(a: np.ndarray) -> bool: return len(a.shape) == 2 and a.shape[0] == a.shape[1] # Not very efficient, but gets the job done def is_unitary_matrix(a: np.ndarray) -> bool: if not is_matrix(a): return False return np.isclose(np.linalg.inv(a), conj_transpose(a)).all()
#Non-Boolean and operator print(10 and 5) # --A1 print(0 and 12) # -- A2 print(13 and 0) # --A3 print(12 and 'python') # --A4
from stanza.research.metrics import * # TODO: define new metrics METRICS = { name: globals()[name] for name in dir() if (name not in ['np'] and not name.startswith('_')) }
from __future__ import absolute_import, print_function, division, unicode_literals import unittest import numpy as np from sklearn.datasets import load_iris, load_breast_cancer, load_boston from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.model_selection import cross_val_predict from xcessiv import functions from xcessiv.presets import metricsetting clf = LogisticRegression(random_state=8) multiclass_X, multiclass_y = load_iris(return_X_y=True) multiclass_preds = cross_val_predict(clf, multiclass_X, multiclass_y, method='predict') multiclass_probas = cross_val_predict(clf, multiclass_X, multiclass_y, method='predict_proba') binary_X, binary_y = load_breast_cancer(return_X_y=True) binary_preds = cross_val_predict(clf, binary_X, binary_y, method='predict') binary_probas = cross_val_predict(clf, binary_X, binary_y, method='predict_proba') regression_X, regression_y = load_boston(return_X_y=True) reg = LinearRegression() regression_preds = cross_val_predict(reg, regression_X, regression_y, method='predict') class TestAccuracyFromScores(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.accuracy_from_scores['source']) assert np.round(module.metric_generator(binary_y, binary_probas), 2) == 0.95 assert np.round(module.metric_generator(multiclass_y, multiclass_probas), 2) == 0.95 del module class TestAccuracyFromPreds(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.accuracy_from_preds['source']) assert np.round(module.metric_generator(binary_y, binary_preds), 2) == 0.95 assert np.round(module.metric_generator(multiclass_y, multiclass_preds), 2) == 0.95 del module class TestRecallFromScores(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.recall_from_scores['source']) assert np.round(module.metric_generator(binary_y, binary_probas), 2) == 0.97 assert np.round(module.metric_generator(multiclass_y, multiclass_probas), 2) == 0.95 del module class TestRecallFromPreds(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.recall_from_preds['source']) assert np.round(module.metric_generator(binary_y, binary_preds), 2) == 0.97 assert np.round(module.metric_generator(multiclass_y, multiclass_preds), 2) == 0.95 del module class TestPrecisionFromScores(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.precision_from_scores['source']) assert np.round(module.metric_generator(binary_y, binary_probas), 2) == 0.95 assert np.round(module.metric_generator(multiclass_y, multiclass_probas), 2) == 0.95 del module class TestPrecisionFromPreds(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.precision_from_preds['source']) assert np.round(module.metric_generator(binary_y, binary_preds), 2) == 0.95 assert np.round(module.metric_generator(multiclass_y, multiclass_preds), 2) == 0.95 del module class TestF1ScoreFromScores(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.f1_score_from_scores['source']) assert np.round(module.metric_generator(binary_y, binary_probas), 2) == 0.96 assert np.round(module.metric_generator(multiclass_y, multiclass_probas), 2) == 0.95 del module class TestF1ScoreFromPreds(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.f1_score_from_preds['source']) assert np.round(module.metric_generator(binary_y, binary_preds), 2) == 0.96 assert np.round(module.metric_generator(multiclass_y, multiclass_preds), 2) == 0.95 del module class TestROCAUCFromScores(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module( metricsetting.roc_auc_score_from_scores['source'] ) assert np.round(module.metric_generator(binary_y, binary_probas), 2) == 0.99 assert np.round(module.metric_generator(multiclass_y, multiclass_probas), 2) == 0.99 del module class TestMAE(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.mae['source']) assert np.round(module.metric_generator(regression_y, regression_preds), 2) == 6.99 del module class TestMSE(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.mse['source']) assert np.round(module.metric_generator(regression_y, regression_preds), 2) == 168.09 del module class TestMedianAbsoluteError(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.median_absolute_error['source']) assert np.round(module.metric_generator(regression_y, regression_preds), 2) == 3.72 del module class TestR2Score(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.r2_score['source']) assert np.round(module.metric_generator(regression_y, regression_preds), 2) == -0.99 del module class TestExplainedVarianceScore(unittest.TestCase): def test_source(self): module = functions.import_string_code_as_module(metricsetting.explained_variance_score['source']) assert np.round(module.metric_generator(regression_y, regression_preds), 2) == -0.89 del module
from __future__ import absolute_import, division, print_function import json import datasets _CITATION = """\ """ _DESCRIPTION = """\ """ _TRAIN_DOWNLOAD_URL = f"data/covid_info/train.json" _VAL_DOWNLOAD_URL = f"data/covid_info/val.json" class CovidDataConfig(datasets.BuilderConfig): def __init__( self, **kwargs, ): # self.second_choice=kwargs.pop("second_choice",None) super(CovidDataConfig, self).__init__(version=datasets.Version("0.0.0", ""), **kwargs) class CovidData(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ CovidDataConfig( name="default", description="", ), ] """customize dataset.""" # VERSION = datasets.Version("0.0.0") def _info(self): data_info = datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "source": datasets.Value("string"), "target": datasets.Value("string"), } ), supervised_keys=None, homepage="#", citation=_CITATION, ) return data_info def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) val_path = dl_manager.download_and_extract(_VAL_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}), ] def _generate_examples(self, filepath): with open(filepath, encoding='utf-8') as f: for id_, row in enumerate(f): data = json.loads(row) yield id_, { "source": data["text"], "target": data["label"], }
#!/usr/bin/env python """ This script accepts Kraken/Kaiju output and a file listing all taxids, and gives a .csv file with taxid statistics """ __author__ = "Paul Donovan" __maintainer__ = "Paul Donovan" __email__ = "[email protected]" import sys from ete3 import NCBITaxa import argparse #Display help and usage parser = argparse.ArgumentParser(description="Incorrect number of command line arguments") parser.add_argument('KrakenOutput.tsv') parser.add_argument('Taxids.txt') parser.add_argument('Output.tsv') if len(sys.argv[1:]) == 0: parser.print_help() parser.exit() args = parser.parse_args() ncbi = NCBITaxa() ResultsTuple = tuple(line.strip().split("\t") for line in open(sys.argv[1])) AllTaxidSet = tuple(line.strip() for line in open(sys.argv[2])) Output = open(sys.argv[3], "w") Output.write("#Taxon name,Taxid,Reads mapping to taxid,Reads mapping to children taxids,Pearson skewness score,Percent of pseudo-chromosomes with read hits\n") AllTaxidDict = dict.fromkeys(AllTaxidSet, 0) ResultTaxids = list() TaxidPearsonDict = dict() for line in ResultsTuple: ResultTaxid = line[2] Pearson = line[5] + "___" + line[6] ResultTaxids.append(ResultTaxid) if ResultTaxid in AllTaxidDict: OldValue = int(AllTaxidDict[ResultTaxid]) AllTaxidDict[ResultTaxid] = OldValue + 1 if ResultTaxid in TaxidPearsonDict: pass else: TaxidPearsonDict[ResultTaxid] = Pearson for k,v in AllTaxidDict.iteritems(): ChildrenCount = 0 try: descendants = ncbi.get_lineage(str(k)) except ValueError: pass taxid = list([k]) name = ncbi.get_taxid_translator(taxid) for i in descendants: if str(i) in AllTaxidDict: ChildrenCount = ChildrenCount + int(AllTaxidDict[str(i)]) PearsonSkewness = TaxidPearsonDict.get(k) Skewness = (PearsonSkewness.strip().split("___"))[0] HitDist= (PearsonSkewness.strip().split("___"))[1] if PearsonSkewness == "": Output.write(str(name.itervalues().next()) + "," + str(k) + "," + str(v) + "," + str(ChildrenCount) + ",N/A (Pearson score only calculated for leaf nodes\n") else: Output.write(str(name.itervalues().next()) + "," + str(k) + "," + str(v) + "," + str(ChildrenCount) + "," + str(Skewness) + "," + str(HitDist) + "\n") Output.close()
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. import tensorflow as tf from typing import Type def add_l2_regularization(optimizer_class: Type[tf.keras.optimizers.Optimizer], l2_regularization: float) -> Type[tf.keras.optimizers.Optimizer]: class L2Regularizer(optimizer_class): def __init__(self, *args, **kwargs): super(L2Regularizer, self).__init__(*args, **kwargs) self.l2_regularization = l2_regularization def _resource_apply_dense(self, grad, var, apply_state): return super()._resource_apply_dense(grad + var * self.l2_regularization, var, apply_state) return L2Regularizer
import unittest from pychess.element.piecer import generate_pieces, Piece, get_piece_row_place from pychess import constant as c class TestPiecer(unittest.TestCase): def test_sort_pieces(self): import itertools pieces = sorted([ Piece(pd[0], pd[1]) for pd in itertools.product(c.PieceType, c.Color) ]) expected_result = [ '<Piece(black pawn 0)>', '<Piece(white pawn 0)>', '<Piece(black knight 0)>', '<Piece(white knight 0)>', '<Piece(black bishop 0)>', '<Piece(white bishop 0)>', '<Piece(black rook 0)>', '<Piece(white rook 0)>', '<Piece(black queen 0)>', '<Piece(white queen 0)>', '<Piece(black king 0)>', '<Piece(white king 0)>', ] self.assertEqual([repr(p) for p in pieces], expected_result) def test_generate_pieces(self): pieces = generate_pieces() w_pieces = [p for p in pieces if p.color == c.Color.white] b_pieces = [p for p in pieces if p.color == c.Color.black] self.assertTrue(len(w_pieces) == len(b_pieces) == 16) w_pawns = [p for p in w_pieces if p.type == c.PieceType.pawn] b_pawns = [p for p in b_pieces if p.type == c.PieceType.pawn] self.assertTrue(len(w_pawns) == len(b_pawns) == 8) w_knights = [p for p in w_pieces if p.type == c.PieceType.knight] b_knights = [p for p in b_pieces if p.type == c.PieceType.knight] self.assertTrue(len(w_knights) == len(b_knights) == 2) w_bishops = [p for p in w_pieces if p.type == c.PieceType.bishop] b_bishops = [p for p in b_pieces if p.type == c.PieceType.bishop] self.assertTrue(len(w_bishops) == len(b_bishops) == 2) w_bishops = [p for p in w_pieces if p.type == c.PieceType.bishop] b_bishops = [p for p in b_pieces if p.type == c.PieceType.bishop] self.assertTrue(len(w_bishops) == len(b_bishops) == 2) w_rooks = [p for p in w_pieces if p.type == c.PieceType.rook] b_rooks = [p for p in b_pieces if p.type == c.PieceType.rook] self.assertTrue(len(w_rooks) == len(b_rooks) == 2) w_queens = [p for p in w_pieces if p.type == c.PieceType.queen] b_queens = [p for p in b_pieces if p.type == c.PieceType.queen] self.assertTrue(len(w_queens) == len(b_queens) == 1) w_kings = [p for p in w_pieces if p.type == c.PieceType.king] b_kings = [p for p in b_pieces if p.type == c.PieceType.king] self.assertTrue(len(w_kings) == len(b_kings) == 1) def test_name(self): expected_result = ['pawn', 'knight', 'bishop', 'rook', 'queen', 'king'] pieces = [Piece(p, c.Color.black) for p in c.PieceType] names = [p.name for p in pieces] self.assertEqual(names, expected_result) def test_code(self): expected_result = ['p', 'n', 'b', 'r', 'q', 'k'] pieces = [Piece(p, c.Color.black) for p in c.PieceType] codes = [p.code for p in pieces] self.assertEqual(codes, expected_result) def test_color(self): p = Piece(c.PieceType.pawn, color=c.Color.black) self.assertEqual(p.color, c.Color.black) p = Piece(c.PieceType.pawn, color=c.Color.white) self.assertEqual(p.color, c.Color.white) def test_color_code(self): p = Piece(c.PieceType.pawn, color=c.Color.black) self.assertEqual(p.color_code, 'b') p = Piece(c.PieceType.pawn, color=c.Color.white) self.assertEqual(p.color_code, 'w') def test_worth(self): expected_result = [1, 3, 3, 5, 9, 10] pieces = [Piece(p, c.Color.black) for p in c.PieceType] worths = [p.worth for p in pieces] self.assertEqual(worths, expected_result) def test_type(self): pieces = [Piece(p, c.Color.black) for p in c.PieceType] types = [p.type for p in pieces] self.assertEqual(types, [t for t in c.PieceType]) def test_nb_pieces(self): expected_result = [8, 2, 2, 2, 1, 1] pieces = [Piece(p, c.Color.black) for p in c.PieceType] nb_pieces = [p.nb_pieces for p in pieces] self.assertEqual(nb_pieces, expected_result) def test_order(self): nb_pieces = { c.PieceType.pawn: 8, c.PieceType.knight: 2, c.PieceType.bishop: 2, c.PieceType.rook: 2, c.PieceType.queen: 1, c.PieceType.king: 1, } for piece_type in nb_pieces.keys(): pieces = [] orders = [] for i in range(nb_pieces[piece_type]): pieces.append(Piece(piece_type, c.Color.black, order=i)) orders = [p.order for p in pieces] expected_result = list(range(nb_pieces[piece_type])) self.assertEqual(orders, expected_result) def test_uid(self): expected_result = [ '0bb', '0bw', '0kb', '0kw', '0nb', '0nw', '0pb', '0pw', '0qb', '0qw', '0rb', '0rw', '1bb', '1bw', '1nb', '1nw', '1pb', '1pw', '1rb', '1rw', '2pb', '2pw', '3pb', '3pw', '4pb', '4pw', '5pb', '5pw', '6pb', '6pw', '7pb', '7pw' ] pieces = generate_pieces() uids = sorted([p.uid for p in pieces]) self.assertEqual(uids, expected_result) def test_hash(self): import itertools piece_data = [d for d in itertools.product(c.PieceType, c.Color)] expected_results = [ (d[0].value * 100) + (d[1].value * 10) + (0) # default order for d in piece_data ] pieces = [Piece(piece_type=d[0], color=d[1]) for d in piece_data] for piece, expected_result in zip(pieces, expected_results): try: self.assertEqual(hash(piece), expected_result) except AssertionError: print(f'{piece} != {expected_result}') raise def test_equals(self): p1 = Piece(c.PieceType.pawn, c.Color.black) p2 = Piece(c.PieceType.pawn, c.Color.black) self.assertTrue(p1 is not p2) self.assertEqual(p1, p2) def test_not_equals(self): p1 = Piece(c.PieceType.rook, c.Color.black) p2 = Piece(c.PieceType.rook, c.Color.black, order=1) self.assertNotEqual(p1, p2) def test_greater(self): p1 = Piece(c.PieceType.king, c.Color.black) p2 = Piece(c.PieceType.queen, c.Color.white) self.assertGreater(p1, p2) p1 = Piece(c.PieceType.king, c.Color.white) p2 = Piece(c.PieceType.king, c.Color.black) self.assertGreater(p1, p2) def test_less(self): p1 = Piece(c.PieceType.queen, c.Color.black) p2 = Piece(c.PieceType.king, c.Color.white) self.assertLess(p1, p2) p1 = Piece(c.PieceType.queen, c.Color.black) p2 = Piece(c.PieceType.queen, c.Color.white) self.assertLess(p1, p2) def test_greater_equals(self): p1 = Piece(c.PieceType.king, c.Color.black) p2 = Piece(c.PieceType.queen, c.Color.white) self.assertGreaterEqual(p1, p2) p1 = Piece(c.PieceType.king, c.Color.white) p2 = Piece(c.PieceType.king, c.Color.white) self.assertGreaterEqual(p1, p2) def test_less_equals(self): p1 = Piece(c.PieceType.queen, c.Color.black) p2 = Piece(c.PieceType.king, c.Color.white) self.assertLessEqual(p1, p2) p1 = Piece(c.PieceType.king, c.Color.white) p2 = Piece(c.PieceType.king, c.Color.white) self.assertLessEqual(p1, p2) def test_get_pieces_row_place(self): places = { (c.PieceType.rook, 0): 0, (c.PieceType.knight, 0): 1, (c.PieceType.bishop, 0): 2, (c.PieceType.queen, 0): 3, (c.PieceType.king, 0): 4, (c.PieceType.bishop, 1): 5, (c.PieceType.knight, 1): 6, (c.PieceType.rook, 1): 7, } for piece in generate_pieces(): if piece.type == c.PieceType.pawn: expected_result = piece.order else: expected_result = places[(piece.type, piece.order)] row_place = get_piece_row_place(piece) self.assertEqual(row_place, expected_result) def test_first_row(self): pieces = generate_pieces() expected_result = None for p in pieces: if p.color == c.Color.black: expected_result = 7 if p.type == c.PieceType.pawn: expected_result = 6 else: expected_result = 0 if p.type == c.PieceType.pawn: expected_result = 1 self.assertEqual(p.first_row, expected_result) def test_move_path(self): expected_paths = { c.PieceType.pawn: (((-1, 1), ), ((0, 1), ), ((1, 1), )), c.PieceType.knight: ( ((1, 2), ), ((1, -2), ), ((-1, 2), ), ((-1, -2), ), ((2, 1), ), ((2, -1), ), ((-2, 1), ), ((-2, -1), ), ), c.PieceType.bishop: ( ( (-1, -1), (-2, -2), (-3, -3), (-4, -4), (-5, -5), (-6, -6), (-7, -7), ), ( (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), ), ( (-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5), (-6, 6), (-7, 7), ), ( (1, -1), (2, -2), (3, -3), (4, -4), (5, -5), (6, -6), (7, -7), ), ), c.PieceType.rook: ( ((0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)), ( (0, -1), (0, -2), (0, -3), (0, -4), (0, -5), (0, -6), (0, -7) ), ((1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)), ( (-1, 0), (-2, 0), (-3, 0), (-4, 0), (-5, 0), (-6, 0), (-7, 0) ), ), c.PieceType.queen: ( ( (-1, -1), (-2, -2), (-3, -3), (-4, -4), (-5, -5), (-6, -6), (-7, -7), ), ( (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), ), ( (-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5), (-6, 6), (-7, 7), ), ( (1, -1), (2, -2), (3, -3), (4, -4), (5, -5), (6, -6), (7, -7), ), ( (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7) ), ( (0, -1), (0, -2), (0, -3), (0, -4), (0, -5), (0, -6), (0, -7) ), ( (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0) ), ( (-1, 0), (-2, 0), (-3, 0), (-4, 0), (-5, 0), (-6, 0), (-7, 0) ), ), c.PieceType.king: ( ((-1, 1), ), ((0, 1), ), ((1, 1), ), ((1, 0), ), ((1, -1), ), ((0, -1), ), ((-1, -1), ), ((-1, 0), ), ), } for p in generate_pieces(): expected_result = expected_paths[p.type] self.assertEqual(p.move_paths, expected_result) if __name__ == "__main__": unittest.main()
# Author: Andreas Putz # Copyright (c) 2013, PythonFCST # License: TBD. r""" **************************************************************** :mod:`PythonFCST.mesh`: Mesh Generation Classes for PythonFCST **************************************************************** .. module:: PythonFCST.mesh Contents -------- The PythonFCST package imports all the functions from the top level modules. Import ------ >>> import PythonFCST as fcst Submodules ---------- .. automodule:: PythonFCST.mesh.GridGenerator :members: :undoc-members: :show-inheritance: """ from GridGenerator import GridGenerator from PhaseGenerator import PhaseGenerator from distanceSD import distanceSD
import FWCore.ParameterSet.Config as cms HCALHighEnergyFilter = cms.EDFilter("HCALHighEnergyFilter", JetTag = cms.InputTag("iterativeCone5CaloJets"), JetThreshold = cms.double(20), EtaCut = cms.double(3.0) # CentralJets = cms.untracked.InputTag("hltL1extraParticles","Central"), # TauJets = cms.untracked.InputTag("hltL1extraParticles","Tau") )
import json import os from copy import deepcopy from main import main, parse_args from utils import get_stats def load_config(path="./grid_search_config.json"): with open(path, "r") as f: return json.load(f) def run_experiments(args): res = [] for i in range(args.num_trials): print("Trial {}/{}".format(i + 1, args.num_trials)) acc, _ = main(args) res.append(acc) mean, err_bd = get_stats(res, conf_interval=True) return mean, err_bd def grid_search(config:dict): args = parse_args() results = {} for d in config["dataset"]: args.dataset = d best_acc, err_bd = 0., 0. best_args = vars(args) for arch in config["arch"]: args.architecture = arch for hidden in config["hidden"]: args.hid_dim = hidden for pool_ratio in config["pool_ratio"]: args.pool_ratio = pool_ratio for lr in config["lr"]: args.lr = lr for weight_decay in config["weight_decay"]: args.weight_decay = weight_decay acc, bd = run_experiments(args) if acc > best_acc: best_acc = acc err_bd = bd best_args = deepcopy(vars(args)) args.output_path = "./output" if not os.path.exists(args.output_path): os.makedirs(args.output_path) args.output_path = "./output/{}.log".format(d) result = { "params": best_args, "result": "{:.4f}({:.4f})".format(best_acc, err_bd) } with open(args.output_path, "w") as f: json.dump(result, f, sort_keys=True, indent=4) grid_search(load_config())
#!/usr/bin/env python import click import os import codecs import shutil from bs4 import UnicodeDammit from functools import partial from multiprocessing import Pool from nlppln.utils import create_dirs, get_files, out_file_name def check_file(in_file, convert, out_dir): fo = out_file_name(out_dir, in_file) try: with codecs.open(in_file, encoding='utf-8') as f: text = f.read() if convert: # don't copy if it's the same file if os.path.abspath(in_file) != fo: shutil.copy2(in_file, fo) except UnicodeDecodeError: with codecs.open(in_file, 'rb') as f: text = f.read() dammit = UnicodeDammit(text) print('{}: {}'.format(in_file, dammit.original_encoding)) if convert: with codecs.open(fo, 'w', encoding='utf-8') as f: f.write(dammit.unicode_markup) @click.command() @click.argument('in_dir', type=click.Path(exists=True)) @click.option('--convert/--no-convert', default=False) @click.option('--processes', '-p', default=1) @click.option('--out_dir', '-o', default=os.getcwd(), type=click.Path()) def check_utf8(in_dir, convert, processes, out_dir): create_dirs(out_dir) in_files = get_files(in_dir) check = partial(check_file, convert=convert, out_dir=out_dir) pool = Pool(processes=processes) pool.map(check, in_files) if __name__ == '__main__': check_utf8()
from django.urls import reverse from django.views import generic as views from testing_demos.web.models import Profile class ProfileCreateView(views.CreateView): model = Profile fields = '__all__' template_name = 'profiles/create.html' def get_success_url(self): return reverse('details profile', kwargs={'pk': self.object.pk}) class ProfilesListView(views.ListView): model = Profile template_name = 'profiles/list.html' context_user_key = 'user' no_logged_in_user_value = 'No user' def get_context_data(self, *args, **kwargs): context = super().get_context_data(*args, **kwargs) if self.request.user.is_authenticated: context[self.context_user_key] = self.request.user.username else: context[self.context_user_key] = self.no_logged_in_user_value return context # def get_queryset(self): # return super().get_queryset() \ # .prefetch_related('') \ # .filter() class ProfileDetailsView(views.DetailView): model = Profile template_name = 'profiles/details.html'
from django.db import models from customer.models import Customer, Department from engineer.models import Area, Engineer from django.utils import timezone from datetime import datetime, timedelta from django.db.transaction import atomic # Create your models here. #print(datetime.now()+datetime) speed_choices=((20,20),(30,30),(35,35),(45,45),(55,55),(65,65),(75,75),(90,90)) class MachineDetail(models.Model): name= models.CharField(max_length=200) serial = models.IntegerField('standard seial', help_text='fill this if your serial is numbers only', unique=True, blank=True) serial2 = models.CharField('non-standard serial', max_length=10, help_text="fill this if your serial consists of numbers and letters", unique=True, blank=True) machine_model = models.CharField(max_length=100) slug = models.SlugField(unique=True) description = models.TextField() added = models.DateTimeField(auto_now_add=True) speed = models.IntegerField(blank = True, null=True, choices=speed_choices) class Meta: abstract=True class Category(models.Model): type_choice= (('black-white machine','B&W Machine'),('color machine', 'Colour Machine'),('White Format machine','White-Format machine')) category_type = models.CharField(max_length=150, choices=type_choice, unique=True) def __str__(self): return self.category_type class MachineManager(models.Manager): def get_machines_by_customer(self,customer=None): if customer: return Machine.objects.filter(customer=customer) else: return None class Machine(MachineDetail): category = models.ForeignKey(Category, on_delete=models.CASCADE) customer = models.ForeignKey(Customer, on_delete=models.CASCADE) department = models.ForeignKey(Department, related_name='machines_dep', on_delete=models.CASCADE) area = models.ForeignKey(Area, related_name='machines', on_delete=models.CASCADE, blank=True,null=True) engineers = models.ManyToManyField(Engineer, related_name='machines', blank=True) #call = models.OneToOneField() objects = MachineManager() def __str__(self): return self.machine_model + '({})'.format(self.category)+" "+self.customer.name+" "+self.department.department_name class Call(models.Model): #from machine.models import Machine def customer_name(self): machine = Machine.objects.get(id=self.machine.id) customer = Customer.objects.get(id=machine.customer.id) return customer.name engineer = models.ForeignKey(Engineer, on_delete=models.CASCADE, blank=True, null=True) customer = models.ForeignKey(Customer,related_name='calls',on_delete=models.CASCADE, blank=True, null=True) machine = models.ForeignKey(to='Machine', related_name='calls', on_delete=models.CASCADE) assign_date = models.DateTimeField(auto_now_add=True) end_date = models.DateTimeField(help_text="the default value is 6 hours + assign_date", default=datetime.now()+timedelta(hours=6)) notification_number = models.PositiveIntegerField(primary_key=True) class Meta: get_latest_by=['notification_number'] def __str__(self): return (Engineer.objects.get(id=self.engineer.id).name) '''class ex(models.Field): def db_type(self, connection): if connection.setting_dict['ENGINE']=='django.db.backends.mysql': return 'datetime' else: return 'timestamp def get_end_date(self): #d = datetime.now() d= self.assign_date if d.hour+6 >= 24: t = datetime(d.year, d.month, d.day+1, d.hour+6-24) print(t) return t else: t = datetime(d.year, d.month, d.day+1, d.hour+6) return t def save(self,*args,**kwargs): with atomic(): #last_notification = Call.objects.latest('id').select_for_update(nowait=False).notification_number if Call.objects.all(): self.notification_number = Call.objects.all().count()+1 self.save() #self.notification_number += 1 else: self.notification_number=1 self.save() def save(self,*args,**kwargs): with atomic(): #last_notification = Call.objects.latest('id').select_for_update(nowait=False).notification_number if Call.objects.all(): self.notification_number = Call.objects.all().count()+1 self.save() #self.notification_number += 1 else: self.notification_number=1 self.save()'''
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest import HTMLTestRunner import xmlrunner global DRIVER global MS_ip # Import test cases ################################## from Login_and_Accounts import * from Service_Offering import * from TemplatesAndISO import * from VM_lifeCycle import * ################################### # Following are BVT Tests # serialize the test cases suite = unittest.TestSuite() # setup new test suite #################################################################################################### # Following logs admin user in and creates test account then logs admin user out and logs in as test to run tests. # You should leave this as is for all the tests. suite.addTest(unittest.makeSuite(login)) #Login Admin time.sleep(5) suite.addTest(unittest.makeSuite(createAcc)) # Create an Account test. We will use test account for all our tests time.sleep(5) suite.addTest(unittest.makeSuite(logout)) #Logout Admin time.sleep(5) suite.addTest(unittest.makeSuite(login_test)) # Login Test #################################################################################################### time.sleep(5) suite.addTest(unittest.makeSuite(Disk_offering_Add)) time.sleep(5) suite.addTest(unittest.makeSuite(Disk_offering_Edit)) time.sleep(5) suite.addTest(unittest.makeSuite(Disk_offering_Delete)) time.sleep(5) suite.addTest(unittest.makeSuite(Compute_offering_Add)) time.sleep(5) suite.addTest(unittest.makeSuite(Compute_offering_Edit)) time.sleep(5) suite.addTest(unittest.makeSuite(Compute_offering_Delete)) # time.sleep(5) # suite.addTest(unittest.makeSuite(deployVM)) # time.sleep(5) # suite.addTest(unittest.makeSuite(stopVM)) # time.sleep(5) # suite.addTest(unittest.makeSuite(startVM)) # time.sleep(5) # suite.addTest(unittest.makeSuite(destroyVM)) # time.sleep(5) # suite.addTest(unittest.makeSuite(restoreVM)) # time.sleep(5) # suite.addTest(unittest.makeSuite(Template_Add)) # time.sleep(5) # suite.addTest(unittest.makeSuite(Template_Edit)) # time.sleep(5) # suite.addTest(unittest.makeSuite(Template_Delete)) #################################################################################################### # Following logs test user out and logs back in as Admin and tears down the test account. # You should leave this as is for all the tests. suite.addTest(unittest.makeSuite(logout)) #Logout test time.sleep(5) suite.addTest(unittest.makeSuite(login)) #Login Admin time.sleep(5) suite.addTest(unittest.makeSuite(tearAcc)) # Delete Account test #################################################################################################### # If XML reports compatible with junit's XML output are desired then leave folowing code as is. # If HTML reports are desired follow instructions #Comment following line for HTML and uncomment for XML runner = xmlrunner.XMLTestRunner(output='test-reports') #Comment following line for XML and uncomment for HTML #runner = HTMLTestRunner.HTMLTestRunner() #header is required for displaying the website #Comment following line for XML and uncomment for HTML #print "Content-Type: text/html\n" # Leave following as is for either XML or HTML runner.run(suite)
suitable_locations = land_use_residential * (dem_gent > 10) * (1 - roads_buffer_arr)
from abc import ABC, abstractmethod, abstractproperty from pytz import timezone class EngageScraper(ABC): def __init__(self, tz_string): super().__init__() self._agenda_locations = [] self._tz = timezone(tz_string) @property def agenda_locations(self): return self._agenda_locations @agenda_locations.setter def agenda_locations(self, locations): self._agenda_locations = locations @abstractmethod def get_available_agendas(self): """ Method to determine what agendas are available. Sets the self._agenda_locations property In a typical HTML scraper, these resources would be HTTP URLs """ pass @abstractmethod def scrape(self): """ Scrape processes all agendas in self._agenda_locations It calls process agenda on all items in _agenda_locations with data downloaded from those locations. The result of scrape is the stored agendas and agenda items. """ pass @abstractmethod def _process_agenda(self, agenda_data, meeting_id): """ process_agenda takes one agenda document (for instance HTML document) data. A processed agenda will have to process each of its items. Each agenda item might be at a different location or contained within an agenda. If they are contained within the agenda, progress to process_agenda_item with its data. If not, scrape_agenda_item should be called with the location of the agenda_item. The result of process agenda will be a dict that can be saved by store_agenda and store_agenda_items """ pass @abstractmethod def _scrape_agenda_item(self, agenda_item_location): """ Takes a location and produces the data from the item and calls process_agenda_item """ pass @abstractmethod def _process_agenda_item(self, agenda_item_data, agenda_item_id, meeting_id, meeting_time): """ The result of process agenda item will be a dict that can be stored by store_agenda_item """ pass @abstractmethod def _store_agenda(self, processed_agenda, committee): """ Calls to DB should be here for the main agenda content """ pass @abstractmethod def _store_agenda_items(self, agenda_dict, agenda_saved): """ Calls to the DB should be here for agenda item content """ pass
import numpy as np def target_transform(y: np.array, increment: float=0.01) -> np.array: """ Transform non-negative array to R using np.log :param y: np.array :param increment: float :return: """ return np.log(y + increment) def target_inverse_transform(y_trn: np.array, increment: float=0.01) -> np.array: """ Inverse transform of array in R to non-negative :param y_trn: np.array :param increment: float :return: """ return np.exp(y_trn) - increment
from os.path import abspath, dirname, join from setuptools import find_packages, setup basedir = abspath(dirname(__file__)) with open(join(basedir, "README.md"), encoding="utf-8") as f: README = f.read() with open(join(basedir, "fimed", "__init__.py"), "r") as f: version_marker = "__version__ = " for line in f: if line.startswith(version_marker): _, VERSION = line.split(version_marker) VERSION = VERSION.strip().strip('"') break else: raise RuntimeError("Version not found on __init__") install_requires = [ # routes "fastapi", "pydantic[dotenv]", "uvicorn", "aiofiles", "pyjwt", "passlib[bcrypt]", "python-multipart", "strconv", "requests", # database "pymongo", "cryptography", #package "numpy", "pandas" ] setup( name="fimed", version=VERSION, description="FIMED 2.0", long_description=README, long_description_content_type="text/markdown", author="Khaos Research", author_email="", maintainer="Daniel Doblas", maintainer_email="", license="MIT", url="https://github.com/dandobjim/FIMED2.0", packages=find_packages(exclude=["test_"]), classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.7", ], entry_points={"console_scripts": ["fimed=fimed.__main__:cli",],}, install_requires=install_requires, )
import os import sys import re from pathlib import Path from paraview.simple import * PATH = Path(os.getenv('HOME')) / "SPHinXsys-build"/"tests"/"user_examples"/"2d_boulder_on_slop" if sys.platform.startswith('linux'): PATH = str(PATH) + "/bin/output/" else: PATH = str(PATH) + "\\src\\output\\" def open_files(): wall_re = re.compile(r'SPHBody_Wall_[0-9.]+.vtp$') boulder_re = re.compile(r'SPHBody_Boulder_[0-9.]+.vtp$') wall_files = [] boulder_files = [] files = os.listdir(PATH) for name in files: if boulder_re.fullmatch(name): boulder_files.append(PATH + name) elif wall_re.fullmatch(name): wall_files.append(PATH + name) num_re = re.compile(r'_([0-9]+).vtp$') boulder_files.sort(key=lambda x: int(num_re.findall(x)[0])) return (OpenDataFile(wall_files), OpenDataFile(boulder_files), len(boulder_files)) ResetSession() # for x in GetSources().values(): # Delete(x[0]) view = GetActiveView() wall, boulder, number_of_files = open_files() scene = GetAnimationScene() scene.PlayMode = 'Snap To TimeSteps' RenameSource('Wall', wall) RenameSource('Boulder', boulder) wall_disp = GetDisplayProperties(wall, view) boulder_disp = GetDisplayProperties(boulder, view) for disp in (wall_disp, boulder_disp): disp.SetRepresentationType('Point Gaussian') disp.GaussianRadius = 0.0013 boulder_disp.DiffuseColor = [0.67, 0.33, 0.0] for source in [wall, boulder]: Show(source, view) Render()
from colorama import init from colorama import Fore, Back, Style from menu import menu_one, menu_two, menu_three, menu_four def show_menu(): '''Display menu on terminal''' print('='*30) print('=' + ' '*12 + 'menu' + ' '*12 + '=') print('='*30) print('1. Add new record') print('2. Show All Apps/WebPages connected with Login/Email') print('3. Show Login and Password for App/WebPage') print('4. Generate New Password') print('5. Exit') print() menu_respond() def menu_respond(): '''Listener for user response''' while True: try: response = int(input(Fore.CYAN + 'Choose menu option: ' + Style.RESET_ALL)) if response == 1: menu_one() show_menu() elif response == 2: menu_two() show_menu() elif response == 3: menu_three() show_menu() elif response == 4: menu_four() show_menu() elif response == 5: print(Fore.GREEN + 'Exiting...' + Style.RESET_ALL) exit() break else: print(Fore.RED + 'Number must be one of available menu options!') except ValueError: print(Fore.RED + 'Expected integer value, not char!' + Style.RESET_ALL) if __name__ == '__main__': init() show_menu()
#!/usr/bin/env python2 # Win32 named pipe helper from __future__ import absolute_import __all__ = ["Win32Pipe"] import sys import ctypes import logging import random from ctypes import POINTER as PTR from ctypes.wintypes import (BOOL, DWORD, HANDLE, LPCWSTR, LPVOID, LPCVOID) class OVERLAPPED(ctypes.Structure): class PointerUnion(ctypes.Union): class OffsetStruct(ctypes.Structure): _fields_ = [("Offset", DWORD), ("OffsetHigh", DWORD)] _anonymous_ = ("s",) _fields_ = [("s", OffsetStruct), ("Pointer", LPVOID)] _anonymous_ = ("u",) _fields_ = [("Internal", LPVOID), ("InternalHigh", LPVOID), ("u", PointerUnion), ("hEvent", HANDLE)] def __init__(self): super(OVERLAPPED, self).__init__(Offset=0, OffsetHigh=0, Pointer=0, Internal=0, InternalHigh=0, hEvent=None) self.hEvent = CreateEvent(None, True, False, None) LPOVERLAPPED = ctypes.POINTER(OVERLAPPED) log = logging.getLogger("py.win32_named_pipe") kernel32 = ctypes.WinDLL("kernel32", use_last_error=True) def _decl(name, ret=None, args=()): fn = getattr(kernel32, name) fn.restype = ret fn.argtypes = args return fn CloseHandle = _decl("CloseHandle", BOOL, (HANDLE,)) CreateEvent = _decl("CreateEventW", HANDLE, (LPVOID, BOOL, BOOL, LPCWSTR)) CreateFile = _decl("CreateFileW", HANDLE, (LPCWSTR, DWORD, DWORD, LPVOID, DWORD, DWORD, HANDLE)) CreateNamedPipe = _decl("CreateNamedPipeW", HANDLE, (LPCWSTR, DWORD, DWORD, DWORD, DWORD, DWORD, DWORD, LPVOID)) ConnectNamedPipe = _decl("ConnectNamedPipe", BOOL, (HANDLE, LPOVERLAPPED)) WriteFile = _decl("WriteFile", BOOL, (HANDLE, LPCVOID, DWORD, PTR(DWORD), PTR(OVERLAPPED))) ReadFile = _decl("ReadFile", BOOL, (HANDLE, LPVOID, DWORD, PTR(DWORD), PTR(OVERLAPPED))) GetOverlappedResult = _decl("GetOverlappedResult", BOOL, (HANDLE, PTR(OVERLAPPED), PTR(DWORD), BOOL)) ERROR_ACCESS_DENIED = 5 ERROR_IO_PENDING = 997 FILE_FLAG_OVERLAPPED = 0x40000000 FILE_FLAG_FIRST_PIPE_INSTANCE = 0x00080000 GENERIC_READ = 0x80000000 GENERIC_WRITE = 0x40000000 INVALID_HANDLE_VALUE = -1 OPEN_EXISTING = 3 PIPE_ACCESS_DUPLEX = 0x00000003 PIPE_READMODE_BYTE = 0x00000000 PIPE_REJECT_REMOTE_CLIENTS = 0x00000008 PIPE_TYPE_BYTE = 0x00000000 del _decl class Win32Pipe(object): """This class implements a Win32 named pipe; it has a file-like API. It is oriented towards byte streams. Usage: pipe = Win32Pipe() # Create a new pipe with a randomly generated name pipe = Win32Pipe("name") # Create a new pipe, \\.\pipe\name pipe = Win32Pipe("name", client=True) # Connect to an existing pipe """ name = None ###< The name of the pipe _has_stream = False ###< Whether we have connected to the other end yet _pipe = None ###< The underlying Win32 handle pipe_prefix = None ###< Prefix to place before randomly generated pipe names def __init__(self, name=None, client=False): if client: self._connect_to_existing(name=name) else: self._create(name=name) def _create(self, name=None): """Create a new pipe as a server, with the given name""" self._has_stream = False flags = (PIPE_ACCESS_DUPLEX | FILE_FLAG_FIRST_PIPE_INSTANCE | FILE_FLAG_OVERLAPPED) mode = PIPE_TYPE_BYTE | PIPE_READMODE_BYTE # Windows XP, version (5, 1) doesn't support PIPE_REJECT_REMOTE_CLIENTS # see bug 104569. if sys.getwindowsversion() >= (5, 2): mode |= PIPE_REJECT_REMOTE_CLIENTS pipe_prefix = "\\\\.\\pipe\\" if name is not None: if not name.lower().startswith(pipe_prefix): name = pipe_prefix + name log.debug("Creating new named pipe %s", name) self._pipe = CreateNamedPipe(name, flags, mode, 1, 0x1000, 0x1000, 0, None) if self._pipe == INVALID_HANDLE_VALUE: self._pipe = None raise ctypes.WinError(ctypes.get_last_error()) else: bits = min((256, (255 - len(pipe_prefix)) * 4)) start = random.getrandbits(bits) log.debug("Trying to create pipe with randomness %s", hex(start)) # Try a few variations on the name in case it's somehow taken for i in range(1024): name = (pipe_prefix + (self.pipe_prefix or "") + hex(start + i)[2:-1]) assert len(name) <= 256 # Unfortuantely, it is more reliable to create a nowait pipe # and poll for it than it is to create a blocking pipe. self._pipe = CreateNamedPipe(name, flags, mode, 1, 0x1000, 0x1000, 0, None) if self._pipe != INVALID_HANDLE_VALUE: break self._pipe = None errno = ctypes.get_last_error() if errno != ERROR_ACCESS_DENIED: # we get access denied on a name collision raise ctypes.WinError(errno) else: raise ctypes.WinError(ctypes.get_last_error()) self.name = name def _connect_to_existing(self, name): self._has_stream = False pipe_prefix = "\\\\.\\pipe\\" if not name.lower().startswith(pipe_prefix): name = pipe_prefix + name log.debug("Connecting to existing named pipe %s", name) self._pipe = CreateFile(name, GENERIC_READ | GENERIC_WRITE, 0, None, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, None) if self._pipe == INVALID_HANDLE_VALUE: self._pipe = None error = ctypes.WinError(ctypes.get_last_error()) log.debug("Failed to open pipe %s: %s", name, error) raise error self._has_stream = True def _ensure_stream(self, action="open"): if self._pipe is None: raise IOError("Cannot %s closed pipe" % (action,)) if self._has_stream: return overlapped = OVERLAPPED() try: if not ConnectNamedPipe(self._pipe, overlapped): errno = ctypes.get_last_error() if errno != ERROR_IO_PENDING: raise ctypes.WinError(errno) if not GetOverlappedResult(self._pipe, overlapped, ctypes.byref(DWORD(0)), True): raise ctypes.WinError(ctypes.get_last_error()) self._has_stream = True finally: CloseHandle(overlapped.hEvent) def write(self, data): self._ensure_stream("write to") overlapped = OVERLAPPED() try: if not WriteFile(self._pipe, data, len(data), None, ctypes.byref(overlapped)): errno = ctypes.get_last_error() if errno != ERROR_IO_PENDING: raise ctypes.WinError(errno) written = DWORD(0) if not GetOverlappedResult(self._pipe, ctypes.byref(overlapped), ctypes.byref(written), True): raise ctypes.WinError(ctypes.get_last_error()) assert written.value == len(data), "Incomplete write" finally: CloseHandle(overlapped.hEvent) def read(self, count): self._ensure_stream("read from") overlapped = OVERLAPPED() try: buf = ctypes.create_string_buffer(count) if not ReadFile(self._pipe, ctypes.byref(buf), count, None, ctypes.byref(overlapped)): errno = ctypes.get_last_error() if errno != ERROR_IO_PENDING: raise ctypes.WinError(errno) read = DWORD(0) if not GetOverlappedResult(self._pipe, ctypes.byref(overlapped), ctypes.byref(read), True): raise ctypes.WinError(ctypes.get_last_error()) assert read.value == count return buf.value finally: CloseHandle(overlapped.hEvent) def close(self): CloseHandle(self._pipe) self._pipe = None
#!/usr/bin/env python import argparse import os import requests import json import urllib.parse import m3u8 from pathlib import Path import re import ffmpeg import shutil class TwitterDownloader: video_player_prefix = 'https://twitter.com/i/videos/tweet/' video_api = 'https://api.twitter.com/1.1/videos/tweet/config/' tweet_data = {} def __init__(self, tweet_url, output_dir, debug): self.tweet_url = tweet_url self.output_dir = output_dir self.debug = debug if debug > 2: self.debug = 2 self.tweet_data['tweet_url'] = tweet_url.split('?', 1)[0] self.tweet_data['user'] = self.tweet_data['tweet_url'].split('/')[3] self.tweet_data['id'] = self.tweet_data['tweet_url'].split('/')[5] self.downloaded_video_names = [] output_path = Path(output_dir) storage_dir = output_path #/ self.tweet_data['user'] / self.tweet_data['id'] Path.mkdir(storage_dir, parents = True, exist_ok = True) self.storage = str(storage_dir) self.requests = requests.Session() def download(self): self.__debug('Tweet URL', self.tweet_data['tweet_url']) # Get the bearer token token = self.__get_bearer_token() # Get the M3u8 file - this is where rate limiting has been happening video_host, playlist = self.__get_playlist(token) print('[+] Multiple resolutions found.') for plist in playlist.playlists: resolution = str(plist.stream_info.resolution[0]) + 'x' + str(plist.stream_info.resolution[1]) resolution_file = Path(self.storage) / Path(resolution + '_' + self.tweet_data['id'] + '_' + '.mp4') self.downloaded_video_names.append(resolution_file) print('[+] Downloading ' + resolution) playlist_url = video_host + plist.uri ts_m3u8_response = self.requests.get(playlist_url, headers = {'Authorization': None}) ts_m3u8_parse = m3u8.loads(ts_m3u8_response.text) ts_list = [] ts_full_file_list = [] for ts_uri in ts_m3u8_parse.segments.uri: #ts_list.append(video_host + ts_uri) ts_file = requests.get(video_host + ts_uri) fname = ts_uri.split('/')[-1] ts_path = Path(self.storage) / Path(fname) ts_list.append(ts_path) ts_path.write_bytes(ts_file.content) ts_full_file = Path(self.storage) / Path(resolution + '.ts') ts_full_file = str(ts_full_file) ts_full_file_list.append(ts_full_file) # Shamelessly taken from https://stackoverflow.com/questions/13613336/python-concatenate-text-files/27077437#27077437 with open(str(ts_full_file), 'wb') as wfd: for f in ts_list: with open(f, 'rb') as fd: shutil.copyfileobj(fd, wfd, 1024 * 1024 * 10) for ts in ts_full_file_list: print('\t[*] Doing the magic ...') ffmpeg\ .input(ts)\ .output(str(resolution_file), acodec = 'copy', vcodec = 'libx264', format = 'mp4', loglevel = 'error')\ .overwrite_output()\ .run() print('\t[+] Doing cleanup') for ts in ts_list: p = Path(ts) p.unlink() for ts in ts_full_file_list: p = Path(ts) p.unlink() #else: #print('[-] Sorry, single resolution video download is not yet implemented. Please submit a bug report with the link to the tweet.') for x in range(0, len(self.downloaded_video_names)-1): os.system("sudo rm " + str(self.downloaded_video_names[x])) def __get_bearer_token(self): video_player_url = self.video_player_prefix + self.tweet_data['id'] video_player_response = self.requests.get(video_player_url).text self.__debug('Video Player Body', '', video_player_response) js_file_url = re.findall('src="(.*js)', video_player_response)[0] js_file_response = self.requests.get(js_file_url).text self.__debug('JS File Body', '', js_file_response) bearer_token_pattern = re.compile('Bearer ([a-zA-Z0-9%-])+') bearer_token = bearer_token_pattern.search(js_file_response) bearer_token = bearer_token.group(0) self.requests.headers.update({'Authorization': bearer_token}) self.__debug('Bearer Token', bearer_token) self.__get_guest_token() return bearer_token def __get_playlist(self, token): player_config_req = self.requests.get(self.video_api + self.tweet_data['id'] + '.json') player_config = json.loads(player_config_req.text) if 'errors' not in player_config: self.__debug('Player Config JSON', '', json.dumps(player_config)) m3u8_url = player_config['track']['playbackUrl'] else: self.__debug('Player Config JSON - Error', json.dumps(player_config['errors'])) print('[-] Rate limit exceeded. Could not recover. Try again later.') sys.exit(1) # Get m3u8 m3u8_response = self.requests.get(m3u8_url) self.__debug('M3U8 Response', '', m3u8_response.text) m3u8_url_parse = urllib.parse.urlparse(m3u8_url) video_host = m3u8_url_parse.scheme + '://' + m3u8_url_parse.hostname m3u8_parse = m3u8.loads(m3u8_response.text) return [video_host, m3u8_parse] def __get_guest_token(self): res = self.requests.post("https://api.twitter.com/1.1/guest/activate.json") res_json = json.loads(res.text) self.requests.headers.update({'x-guest-token': res_json.get('guest_token')}) def __debug(self, msg_prefix, msg_body, msg_body_full = ''): if self.debug == 0: return if self.debug == 1: print('[Debug] ' + '[' + msg_prefix + ']' + ' ' + msg_body) if self.debug == 2: print('[Debug+] ' + '[' + msg_prefix + ']' + ' ' + msg_body + ' - ' + msg_body_full) if __name__ == '__main__': import sys if sys.version_info[0] == 2: print('Python3 is required.') sys.exit(1) parser = argparse.ArgumentParser() parser.add_argument('tweet_url', help = 'The video URL on Twitter (https://twitter.com/<user>/status/<id>).') parser.add_argument('-o', '--output', dest = 'output', default = './output', help = 'The directory to output to. The structure will be: <output>/<user>/<id>.') parser.add_argument('-d', '--debug', default = 0, action = 'count', dest = 'debug', help = 'Debug. Add more to print out response bodies (maximum 2).') args = parser.parse_args() twitter_dl = TwitterDownloader(args.tweet_url, args.output, args.debug) twitter_dl.download()
import os import shutil import unittest import torch import torchvision import torch.nn as nn from neural_compressor.data import DATASETS from neural_compressor.experimental.data.dataloaders.pytorch_dataloader import PyTorchDataLoader def build_fake_yaml(): fake_yaml = """ model: name: imagenet_prune framework: pytorch pruning: train: start_epoch: 0 end_epoch: 4 iteration: 10 dataloader: batch_size: 30 dataset: dummy: shape: [128, 3, 224, 224] label: True optimizer: SGD: learning_rate: 0.1 momentum: 0.1 nesterov: True weight_decay: 0.1 criterion: CrossEntropyLoss: reduction: sum approach: weight_compression: initial_sparsity: 0.0 target_sparsity: 0.97 start_epoch: 0 end_epoch: 4 pruners: - !Pruner start_epoch: 1 end_epoch: 3 prune_type: basic_magnitude names: ['layer1.0.conv1.weight'] - !Pruner target_sparsity: 0.6 prune_type: gradient_sensitivity update_frequency: 2 names: ['layer1.0.conv2.weight'] evaluation: accuracy: metric: topk: 1 dataloader: batch_size: 30 dataset: dummy: shape: [128, 3, 224, 224] label: True """ with open('fake.yaml', 'w', encoding="utf-8") as f: f.write(fake_yaml) class TestPruning(unittest.TestCase): model = torchvision.models.resnet18() @classmethod def setUpClass(cls): build_fake_yaml() @classmethod def tearDownClass(cls): os.remove('fake.yaml') shutil.rmtree('./saved', ignore_errors=True) shutil.rmtree('runs', ignore_errors=True) def test_pruning_internal(self): from neural_compressor.experimental import Pruning, common prune = Pruning('fake.yaml') prune.model = self.model _ = prune() if __name__ == "__main__": unittest.main()
# Downstream: bikeshare prediction with latent representation # The model consists of a 3d cnn network that uses # historical ST data to predict next hour bike demand # as well as taking a latent feature map trained from # an autoencoder that includes multiple urban features # Treat latent representation as ordinary 3D dataset # which will go through 3D CNN import numpy as np import tensorflow as tf import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from matplotlib import pyplot as plt import math import datetime from datetime import timedelta from utils import datetime_utils import os HEIGHT = 32 WIDTH = 20 TIMESTEPS = 168 # without exogenous data, the only channel is the # of trip starts BIKE_CHANNEL = 1 LATENT_CHANNEL = 5 # or dim, dimension of latent features should be customized BATCH_SIZE = 32 TRAINING_STEPS = 200 LEARNING_RATE = 0.005 def my_leaky_relu(x): return tf.nn.leaky_relu(x, alpha=0.2) class generateData(object): def __init__(self, input_data, timesteps, batchsize): self.timesteps = timesteps self.batchsize = batchsize self.rawdata = input_data self.train_batch_id = 0 X, y = self.load_data() # x should be [batchsize, time_steps, height, width,channel] self.X = X['train'] # y should be [batchsize, height, width, channel] self.y = y['train'] # load raw data def load_data(self): data = self.rawdata train_x = data[:self.timesteps, :, :, :] train_y = data[self.timesteps:,:, :, :] # reshape x to [None, time_steps, height, width,channel] train_x = np.expand_dims(train_x, axis=4) # transpose train_x = np.swapaxes(train_x,0,1) train_y = np.expand_dims(train_y, axis=4) # transpose train_y = np.swapaxes(train_y,0,1) # sqeeze to [batch_size, height, width, channel] train_y = np.squeeze(train_y, axis = 1) return dict(train=train_x), dict(train = train_y) def train_next(self): """ Return a batch of data. When dataset end is reached, start over. """ if self.train_batch_id == len(self.X): self.train_batch_id = 0 batch_data = (self.X[self.train_batch_id:min(self.train_batch_id + self.batchsize, len(self.X))]) batch_labels = (self.y[self.train_batch_id:min(self.train_batch_id + self.batchsize, len(self.y))]) self.train_batch_id = min(self.train_batch_id + self.batchsize, len(self.X)) return batch_data, batch_labels class generateData_1d(object): def __init__(self, input_data, timesteps, batchsize): self.timesteps = timesteps self.batchsize = batchsize self.rawdata = input_data self.train_batch_id = 0 X, y = self.load_data() # x should be [batchsize, time_steps, height, width,channel] self.X = X['train'] # y should be [batchsize, height, width, channel] self.y = y['train'] def rnn_data(self, data, labels=False): """ creates new data frame based on previous observation * example: l = [1, 2, 3, 4, 5] time_steps = 2 -> labels == False [[1, 2], [2, 3], [3, 4]] #Data frame for input with 2 timesteps -> labels == True [3, 4, 5] # labels for predicting the next timestep """ rnn_df = [] for i in range(len(data) - self.timesteps): if labels: try: rnn_df.append(data.iloc[i + self.timesteps].as_matrix()) except AttributeError: rnn_df.append(data.iloc[i + self.timesteps]) else: data_ = data.iloc[i: i + self.timesteps].as_matrix() rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_]) return np.array(rnn_df, dtype=np.float32) # load raw data def load_data(self): # (169, 1296, 1, 1, 3) data = self.rawdata train_x = data[:self.timesteps, :, :] train_y = data[self.timesteps:,:, :] train_x = np.swapaxes(train_x,0,1) # transpose train_y = np.swapaxes(train_y,0,1) # sqeeze to [batch_size, height, width, channel] train_y = np.squeeze(train_y, axis = 1) return dict(train=train_x), dict(train = train_y) # input train_x, train_y or test_x or test_y def train_next(self): """ Return a batch of data. When dataset end is reached, start over. """ if self.train_batch_id == len(self.X): self.train_batch_id = 0 batch_data = (self.X[self.train_batch_id:min(self.train_batch_id + self.batchsize, len(self.X))]) batch_labels = (self.y[self.train_batch_id:min(self.train_batch_id + self.batchsize, len(self.y))]) self.train_batch_id = min(self.train_batch_id + self.batchsize, len(self.X)) return batch_data, batch_labels class Conv3DPredictor: def __init__(self, intersect_pos_set, demo_mask_arr, channel, time_steps, height, width): self.time_steps = time_steps self.width = width self.height = height self.channel = channel self.x = tf.placeholder(tf.float32, shape=[None,time_steps, height, width, channel], name = 'x_input') self.y = tf.placeholder(tf.float32, shape= [None, height, width, channel], name = 'y_input') self.latent_fea = tf.placeholder(tf.float32, shape=[None, time_steps, height, width, LATENT_CHANNEL], name = 'latent') self.is_training = tf.placeholder(tf.bool) self.global_step = tf.Variable(0, trainable=False) # for 3d cnn stream def cnn_model(self, x_train_data, is_training, dim = 1, seed=None): # output from 3d cnn (?, 168, 32, 20, 1) -> (?, 32, 20, 1) with tf.name_scope("3d_layer_a"): conv1 = tf.layers.conv3d(inputs=x_train_data, filters=16, kernel_size=[3,3,3], padding='same', activation=None) conv1 = tf.layers.batch_normalization(conv1, training=is_training) conv1 = tf.nn.leaky_relu(conv1, alpha=0.2) conv2 = tf.layers.conv3d(inputs=conv1, filters=32, kernel_size=[3,3,3], padding='same', activation=None) conv2 = tf.layers.batch_normalization(conv2, training=is_training) conv2 = tf.nn.leaky_relu(conv2, alpha=0.2) conv3 = tf.layers.conv3d(inputs=conv2, filters=1, kernel_size=[3,3,3], padding='same', activation=None) conv3 = tf.layers.batch_normalization(conv3, training=is_training) conv3 = tf.nn.leaky_relu(conv3, alpha=0.2) cnn3d_bn_squeeze = tf.squeeze(conv3, axis = 4) cnn3d_bn_squeeze = tf.transpose(cnn3d_bn_squeeze, perm=[0,2,3,1]) with tf.name_scope("3d_layer_b"): conv5 = tf.layers.conv2d( inputs=cnn3d_bn_squeeze, filters=dim, kernel_size=[1, 1], padding="same", activation=my_leaky_relu ) with tf.name_scope("3d_batch_norm_b"): conv5_bn = tf.layers.batch_normalization(inputs=conv5, training= is_training) out = conv5_bn # output size should be [None, height, width, channel] return out # fuse 3D CNN with latent representations def model_fusion_latent_feature(self,prediction_3d, latent_feature, is_training): fuse_feature = tf.concat([prediction_3d, latent_feature], 3) with tf.name_scope("fusion_layer_a"): conv1 = tf.layers.conv2d(fuse_feature, 16, 3, padding='same',activation=my_leaky_relu) conv2 = tf.layers.conv2d(conv1, 16, 3, padding='same',activation=my_leaky_relu) with tf.name_scope("fusion_batch_norm"): cnn2d_bn = tf.layers.batch_normalization(inputs=conv2, training=is_training) # output should be (?, 32, 20, 1) with tf.name_scope("fusion_layer_b"): conv3 = tf.layers.conv2d( inputs=cnn2d_bn, filters=1, kernel_size=[1, 1], padding="same", activation=my_leaky_relu ) out = conv3 # output size should be [batchsize, height, width, 1] return out def train_neural_network(self, x_train_data, y_train_data, x_test_data, y_test_data, demo_mask_arr, latent_train_series,latent_test_series, save_folder_path, resume_training = False, checkpoint_path = None, epochs=10, batch_size=64): with tf.device('/gpu:0'): starter_learning_rate = LEARNING_RATE learning_rate = tf.train.exponential_decay(starter_learning_rate, self.global_step, 5000, 0.9, staircase=True) # fusion model prediction_3d = self.cnn_model(self.x, self.is_training, 1, seed=1) latent_fea_output = self.cnn_model(self.latent_fea, self.is_training, latent_train_series.shape[-1], seed=1) # fusion prediction = self.model_fusion_latent_feature(prediction_3d, latent_fea_output, self.is_training) demo_mask_arr_expanded = tf.expand_dims(demo_mask_arr, 0) # [1, 2] demo_mask_arr_expanded = tf.tile(demo_mask_arr_expanded, [tf.shape(prediction)[0],1,1,1]) weight = tf.cast(tf.greater(demo_mask_arr_expanded, 0), tf.float32) acc_loss = tf.losses.absolute_difference(prediction, self.y, weight) cost = acc_loss with tf.name_scope("training"): optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost, global_step = self.global_step) saver = tf.train.Saver() test_result = list() if not os.path.exists(save_folder_path): os.makedirs(save_folder_path) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess: sess.run(tf.global_variables_initializer()) # ---- if resume training ----- if resume_training: if checkpoint_path is not None: saver.restore(sess, checkpoint_path) else: saver.restore(sess, tf.train.latest_checkpoint(save_folder_path)) # check global step print("global step: ", sess.run([self.global_step])) print("Model restore finished, current globle step: %d" % self.global_step.eval()) # get new epoch num print("int(len(x_train_data) / batch_size +1): ", int(len(x_train_data) / batch_size +1)) start_epoch_num = tf.div(self.global_step, int(len(x_train_data) / batch_size +1)) print("start_epoch_num: ", start_epoch_num.eval()) start_epoch = start_epoch_num.eval() else: start_epoch = 0 start_time = datetime.datetime.now() if len(x_train_data)%batch_size ==0: iterations = int(len(x_train_data)/batch_size) else: iterations = int(len(x_train_data)/batch_size) + 1 for epoch in range(start_epoch,epochs): print('Epoch', epoch, 'started', end='') epoch_loss = 0 epoch_fairloss = 0 epoch_accloss = 0 # mini batch for itr in range(iterations): mini_batch_x = x_train_data[itr*batch_size: (itr+1)*batch_size] mini_batch_y = y_train_data[itr*batch_size: (itr+1)*batch_size] mini_batch_latent = latent_train_series[itr*batch_size: (itr+1)*batch_size] _optimizer, _cost, _acc_loss = sess.run([optimizer, cost, acc_loss], feed_dict={self.x: mini_batch_x, self.y: mini_batch_y, self.latent_fea: mini_batch_latent, self.is_training: True }) epoch_loss += _cost epoch_accloss += _acc_loss if itr % 10 == 0: print('epoch: {}, step: {}, train err: {}, mae:{}'.format(epoch, itr, _cost, _acc_loss)) # report loss per epoch epoch_loss = epoch_loss/ iterations epoch_accloss = epoch_accloss / iterations print('epoch: ', epoch, 'Trainig Set Epoch total Cost: ',epoch_loss) print('epoch: ', epoch, 'Trainig Set Epoch accuracy Cost: ',epoch_accloss) test_cost = 0 test_acc_loss = 0 final_output = list() print('testing') start_time_epoch = datetime.datetime.now() itrs = int(len(x_test_data)/batch_size) + 1 for itr in range(itrs): mini_batch_x_test = x_test_data[itr*batch_size: (itr+1)*batch_size] mini_batch_y_test = y_test_data[itr*batch_size: (itr+1)*batch_size] mini_batch_latent_test = latent_test_series[itr*batch_size: (itr+1)*batch_size] test_cost += sess.run(cost, feed_dict={self.x: mini_batch_x_test, self.y: mini_batch_y_test, self.latent_fea: mini_batch_latent_test, self.is_training: True }) test_acc_loss += sess.run(acc_loss, feed_dict={self.x: mini_batch_x_test, self.y: mini_batch_y_test, self.latent_fea: mini_batch_latent_test, self.is_training: True}) batch_output = sess.run(prediction, feed_dict={self.x: mini_batch_x_test, self.y: mini_batch_y_test, self.latent_fea: mini_batch_latent_test, self.is_training: True}) # model fusion final_output.extend(batch_output) end_time_epoch = datetime.datetime.now() test_time_per_epoch = end_time_epoch - start_time_epoch test_time_per_sample = test_time_per_epoch/ len(x_test_data) print(' Testing Set Cost:',test_cost/itrs, ' Time elapse: ', str(test_time_per_epoch), 'Time per sample: ', str(test_time_per_sample)) print(' Testing Set Accuracy Cost:',test_acc_loss/itrs, ' Time elapse: ', str(end_time_epoch - start_time_epoch)) save_path = saver.save(sess, save_folder_path +'latent_fea_model_' +str(epoch)+'.ckpt', global_step=self.global_step) print('Model saved to {}'.format(save_path)) # save epoch statistics to csv ecoch_res_df = pd.DataFrame([[epoch_loss, test_cost/itrs, epoch_accloss, test_acc_loss/itrs]], columns=[ 'train_loss','test_loss', 'train_acc', 'test_acc']) res_csv_path = save_folder_path + 'ecoch_res_df_' +'.csv' with open(res_csv_path, 'a') as f: ecoch_res_df.to_csv(f, header=f.tell()==0) # save results to txt txt_name = save_folder_path + 'latent_fea_df_' + '.txt' with open(txt_name, 'w') as the_file: #the_file.write('Only account for grids that intersect with city boundary \n') the_file.write('epoch\n') the_file.write(str(epoch)+'\n') the_file.write(' Testing Set Cost:\n') the_file.write(str(test_cost/itrs) + '\n') the_file.write('Testing Set Accuracy Cost\n') the_file.write(str(test_acc_loss/itrs)+ '\n') the_file.write('total time of last test epoch\n') the_file.write(str(test_time_per_epoch) + '\n') the_file.write('time per sample\n') the_file.write(str(test_time_per_sample) + '\n') the_file.write('\n') the_file.close() if epoch == epochs-1: test_result.extend(final_output) # plot results print('saving train_test plots') train_test = pd.read_csv(save_folder_path + 'ecoch_res_df_' +'.csv') # train_test = train_test.loc[:, ~train_test.columns.str.contains('^Unnamed')] train_test[['train_loss', 'test_loss']].plot() plt.savefig(save_folder_path + 'total_loss_inprogress.png') train_test[['train_acc', 'test_acc']].plot() plt.savefig(save_folder_path + 'acc_loss_inprogress.png') plt.close() output = np.array(test_result) return output class Conv3D: def __init__(self, train_obj, train_arr, test_arr, intersect_pos_set, train_latent_arr, test_latent_arr, demo_mask_arr, save_path, HEIGHT, WIDTH, TIMESTEPS, BIKE_CHANNEL, BATCH_SIZE, TRAINING_STEPS, LEARNING_RATE, is_inference = False, checkpoint_path = None, resume_training = False, train_dir = None ): self.train_obj = train_obj self.train_df = train_obj.train_df self.test_df = train_obj.test_df self.train_arr = train_arr self.test_arr = test_arr self.intersect_pos_set = intersect_pos_set self.demo_mask_arr = demo_mask_arr self.latent_train_series = train_latent_arr self.latent_test_series = test_latent_arr self.save_path = save_path globals()['HEIGHT'] = HEIGHT globals()['WIDTH'] = WIDTH globals()['TIMESTEPS'] = TIMESTEPS globals()['BIKE_CHANNEL'] = BIKE_CHANNEL globals()['BATCH_SIZE'] = BATCH_SIZE globals()['TRAINING_STEPS'] = TRAINING_STEPS globals()['LEARNING_RATE'] = LEARNING_RATE globals()['LATENT_CHANNEL'] = self.latent_test_series.shape[-1] self.is_inference = is_inference self.checkpoint_path = checkpoint_path self.resume_training = resume_training self.train_dir = train_dir self.test_df_cut = self.test_df.loc[:,self.test_df.columns.isin(list(self.intersect_pos_set))] if is_inference == False: if resume_training == False: # get prediction results print('training from scratch, and get prediction results') # predicted_vals: (552, 30, 30, 1) self.predicted_vals = self.run_conv3d() np.save(self.save_path +'prediction_arr.npy', self.predicted_vals) else: # resume training print("resume training, and get prediction results") self.predicted_vals = self.run_resume_training() np.save(self.save_path +'resumed_prediction_arr.npy', self.predicted_vals) else: # inference only print('get inference results') self.predicted_vals = self.run_inference() np.save(self.save_path +'inference_arr.npy', self.predicted_vals) self.evaluation() self.conv3d_predicted = self.arr_to_df() # run training and testing together def run_conv3d(self): tf.reset_default_graph() predictor = Conv3DPredictor(self.intersect_pos_set, self.demo_mask_arr, channel=BIKE_CHANNEL, time_steps=TIMESTEPS, height=HEIGHT, width = WIDTH, ) self.train_data = generateData(self.train_arr, TIMESTEPS, BATCH_SIZE) self.test_data = generateData(self.test_arr, TIMESTEPS, BATCH_SIZE) self.train_latent = generateData(self.latent_train_series, TIMESTEPS, BATCH_SIZE) self.test_latent = generateData(self.latent_test_series, TIMESTEPS, BATCH_SIZE) self.train_lat = np.squeeze(self.train_latent.X, axis = 4) self.test_lat= np.squeeze(self.test_latent.X, axis = 4) predicted_vals = predictor.train_neural_network(self.train_data.X, self.train_data.y, self.test_data.X, self.test_data.y, self.demo_mask_arr, self.train_lat, self.test_lat, self.save_path, epochs=TRAINING_STEPS, batch_size=BATCH_SIZE) predicted = predicted_vals.flatten() y = self.test_data.y.flatten() rmse = np.sqrt((np.asarray((np.subtract(predicted, y))) ** 2).mean()) mae = mean_absolute_error(predicted, y) return predicted_vals # run training and testing together def run_resume_training(self): tf.reset_default_graph() predictor = Conv3DPredictor(self.intersect_pos_set, self.demo_mask_arr, channel=BIKE_CHANNEL, time_steps=TIMESTEPS, height=HEIGHT, width = WIDTH, ) self.train_data = generateData(self.train_arr, TIMESTEPS, BATCH_SIZE) self.test_data = generateData(self.test_arr, TIMESTEPS, BATCH_SIZE) self.train_latent = generateData(self.latent_train_series, TIMESTEPS, BATCH_SIZE) self.test_latent = generateData(self.latent_test_series, TIMESTEPS, BATCH_SIZE) self.train_lat = np.squeeze(self.train_latent.X, axis = 4) self.test_lat= np.squeeze(self.test_latent.X, axis = 4) predicted_vals = predictor.train_neural_network(self.train_data.X, self.train_data.y, self.test_data.X, self.test_data.y, self.demo_mask_arr, self.train_lat, self.test_lat, self.save_path, self.train_dir, self.checkpoint_path, epochs=TRAINING_STEPS, batch_size=BATCH_SIZE) predicted = predicted_vals.flatten() y = self.test_data.y.flatten() rmse = np.sqrt((np.asarray((np.subtract(predicted, y))) ** 2).mean()) mae = mean_absolute_error(predicted, y) return predicted_vals # evaluate rmse and mae with grids that intersect with city boundary def evaluation(self): sample_pred_squeeze = np.squeeze(self.predicted_vals) test_squeeze = np.squeeze(self.test_data.y) pred_shape = self.predicted_vals.shape mse = 0 mae = 0 count = 0 for i in range(0, pred_shape[0]): temp_image = sample_pred_squeeze[i] test_image = test_squeeze[i] # rotate temp_rot = np.rot90(temp_image, axes=(1,0)) test_rot= np.rot90(test_image, axes=(1,0)) for c in range(pred_shape[1]): for r in range(pred_shape[2]): temp_str = str(r)+'_'+str(c) if temp_str in self.intersect_pos_set: #print('temp_str: ', temp_str) count +=1 mse += (test_rot[r][c] - temp_rot[r][c]) ** 2 mae += abs(test_rot[r][c] - temp_rot[r][c]) rmse = math.sqrt(mse / (pred_shape[0] * len(self.intersect_pos_set))) mae = mae / (pred_shape[0] * len(self.intersect_pos_set)) # convert predicted result tensor back to pandas dataframe def arr_to_df(self): df_predicted = pd.DataFrame(np.nan, index=self.test_df_cut[self.train_obj.predict_start_time: self.train_obj.predict_end_time].index, columns=list(self.test_df_cut)) sample_pred_squeeze = np.squeeze(self.predicted_vals) pred_shape = self.predicted_vals.shape # loop through time stamps for i in range(0, pred_shape[0]): temp_image = sample_pred_squeeze[i] temp_rot = np.rot90(temp_image, axes=(1,0)) dt = datetime_utils.str_to_datetime(self.train_obj.test_start_time) + datetime.timedelta(hours=i) predicted_timestamp = dt+self.train_obj.window predicted_timestamp_str = pd.to_datetime(datetime_utils.datetime_to_str(predicted_timestamp)) for c in range(pred_shape[1]): for r in range(pred_shape[2]): temp_str = str(r)+'_'+str(c) if temp_str in self.intersect_pos_set: df_predicted.loc[predicted_timestamp_str, temp_str] = temp_rot[r][c] return df_predicted
import os head = input("Enter beginning of file to be trimmed: ") tail = input("Enter end of file to be trimmed (Do not include file etension) : ") ext = input("Enter the file extension (.exe, .avi, .jpg, etc...): ") if ext == "": ext = ".txt" if "." not in ext: ext = "." + ext for filename in os.listdir("."): if filename.endswith(ext): if filename.startswith(head): os.rename(filename, filename[len(head):]) for filename in os.listdir("."): if filename.endswith(ext): if filename.endswith(tail + ext): try: os.rename(filename, filename[:-len(tail + ext)]) except FileNotFoundError: print("Tried to create blank file name...") break; for filename in os.listdir("."): if "." not in filename: os.rename(filename, filename + ext) for filename in os.listdir("."): if filename.endswith(ext): print(filename) input("Press any key to exit...")
# A simple two state example, but with several separate decay rates and starting values, which are fitted individually import StateModeling as stm import numpy as np NumMolecules = 16 M = stm.Model() # creates a new Model instance M.addAxis("Different Molecules", NumMolecules) sigma = 0.2 true_I0 = 1200 * np.random.normal(np.ones(NumMolecules), sigma) I0 = M.newVariables({'I0': true_I0}) k = M.newVariables({'k': 0.02 * 1. / np.random.normal(np.ones(NumMolecules), sigma)}) M.newState(name='S0', axesInit={'Different Molecules': M.Axes['Different Molecules'].init(0)}) # ground state M.newState(name='S1', axesInit={'Different Molecules': M.Axes['Different Molecules'].init(I0())}) # excited state. Systems starts in the excited state M.addRate('S1', 'S0', 'k') # S1 --> S0 first order decay leading to a single exponential decay M.addResult('detected', lambda State: State['S1']) # ('I', 'S') M.toFit(['k', 'I0']) # fitting S1 works, but not fitting I0 ! # M.toFit(['k']) # simulate data Tmax = 80 measured = M.simulate('measured', {'detected': None}, Tmax=Tmax, applyPoisson=True) # Fit with distorted starting values M.relDistort({'k': 0.8, 'I0': 1.2}) distorted = M.simulate('distorted', {'detected': None}, Tmax=Tmax) oparam={'noiseModel': 'Gaussian', "normFac": "max"} # if True: otype = "L-BFGS" lossScale = None else: # lossScale = None otype = "adagrad" # "adadelta" "SGD" "nesterov" "adam" fittedVars, fittedRes = M.fit({'detected': measured}, Tmax, otype=otype, oparam=oparam, NIter=150, verbose=True, lossScale=lossScale) M.compareFit() M.showResults(ylabel='Intensity') M.showStates()
Second Largest Value among N integers The program must accept N integers and print the second largest value among the N integers. Input Format: The first line denotes the value of N. Next N lines will contain the N integer values. Output Format: The first line contains the second largest integer. Boundary Conditions: 2 <= N <= 100 The value of the integers will be from -999999 to 999999. Example Input/Output 1: Input: 3 100 2200 345 Output: 345 Example Input/Output 2: Input: 6 -23 -256 -87 -90 -11019 -2 Output: -23 n=int(input()) l=[] for i in range(n): a=int(input()) l.append(a) l.sort() print(l[-2])
"""Script to plot 3-body ground state energies for the SRG run.""" import glob import json import matplotlib import matplotlib.pyplot as plt # matplotlib font configurations matplotlib.rcParams["text.latex.preamble"] = [ # i need upright \micro symbols, but you need... r"\usepackage{siunitx}", # ...this to force siunitx to actually use your fonts r"\sisetup{detect-all}", # set the normal font here r"\usepackage{helvet}", # load up the sansmath so that math -> helvet r"\usepackage{sansmath}", # <- tricky! -- gotta actually tell tex to use! r"\sansmath", ] # Use tex for matplotlib plt.rc("text", usetex=True) # Set path for data # pylint: disable=C0103 path = "./fig_data/{}" # Height for figure fig_height = 1.3 # Create figure fig1, ax1 = plt.subplots() # Load file file = glob.glob(path.format("t_rel*eigen*.json"))[0] with open(file) as f: data = json.load(f) # Get lambdas and values lambdas = [float(key) for key in data] vals = [data[key]["ho3"] for key in data] # Plot data, once for points, one for the line ax1.plot(lambdas, vals, "r.", label=r"$T_{rel}$") ax1.plot(lambdas, vals, "r-") # Load file file = glob.glob(path.format("BlD*eigen*.json"))[0] with open(file) as f: data = json.load(f) # Get lambdas and values lambdas = [float(key) for key in data] vals = [data[key]["ho3"] for key in data] # Plot data, once for points, one for the line ax1.plot(lambdas, vals, "b.", label=r"Block") ax1.plot(lambdas, vals, "b-") # Set x-axis scale and ticks ax1.set_xscale("log") ax1.set_xticks([1, 2, 5, 10, 20, 50]) ax1.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) # Set axis labels and title plt.xlabel(r"$\lambda$ (fm$^{-1}$)") plt.ylabel(r"$E_3$ (MeV)") plt.title("3-Body Binding Energy", x=0.4, y=1.05) # Set y-axis limits plt.ylim(-3.0, -2.5) # Enable legend plt.legend(loc="lower right", fontsize="small") # Adjust margins plt.gcf().subplots_adjust(left=0.30) plt.gcf().subplots_adjust(right=0.99) plt.gcf().subplots_adjust(top=0.85) plt.gcf().subplots_adjust(bottom=0.20) # Set size of plot plt.gcf().set_size_inches(1.6 * fig_height, 1.6 * fig_height) # Save as PDF plt.savefig("eigenvalues.pdf")
import sys sys.path.append('../Nets/') from glob import glob from os.path import join from multiprocessing import Pool from scipy.ndimage.interpolation import rotate from keras.callbacks import ModelCheckpoint from tqdm import tqdm from functools import partial from Nodule import * from numpy import * PATH = { 'DATA': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/TRAIN', 'DATA_OUT': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/TRAIN_OUT', 'CSV': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/CSV', 'LABELS': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/CSV/stage1_labels.csv', 'LUNA': '/fasthome/a.dobrenkii/LUNA', 'LUNA_DATA': '/fasthome/a.dobrenkii/LUNA/DATA', 'LUNA_SOBEL': '/fasthome/a.dobrenkii/LUNA/SOBEL_IMG', 'LUNA_LUNGS': '/fasthome/a.dobrenkii/LUNA/LUNGS_IMG', 'LUNA_MASKS': '/fasthome/a.dobrenkii/LUNA/MASKS', 'LUNA_CSV': '/fasthome/a.dobrenkii/LUNA/CSVFILES', 'LUNA_PRED': '/fasthome/a.dobrenkii/LUNA/PRED', 'PATCH_PATHS': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/LUNA/OUT/PATCHES', 'LUNA_NODULES': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/LUNA/OUT/PATCHES/NODULES', 'LUNA_VESSELS': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/LUNA/OUT/PATCHES/VESSELS', 'WEIGHTS': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data/WEIGHTS', 'CHECKPOINTS': '/home/a.dobrenkii/Projects/Kaggle/DataScienceBowl2K17/data' } CPU = 10 ANGLE = 35 SHIFT = 4 SHAPE = (8, 64, 64) TRAIN_TEST = .2 NB_EPOCH = 50 model, bottle_neck = dim_concentration() model.compile('adam', 'mse') def augment_patch(patch, shape, angle=15, shift=4): if angle: shift = random.randint(-shift, shift, 3) patch = rotate(patch, random.uniform(-angle, angle), axes=[1,2]) patch = rotate(patch, random.uniform(-angle, angle), axes=[0,1]) patch = rotate(patch, random.uniform(-angle, angle), axes=[0,2]) center = (array(patch.shape) // 2) + shift left = array(shape) // 2 right = array(shape) - left patch = patch[center[0] - left[0]:center[0] + right[0], center[1] - left[1]:center[1] + right[1], center[2] - left[2]:center[2] + right[2]] mn = patch.min() mx = patch.max() if (mx - mn) != 0: patch = (patch - mn) / (mx - mn) else: patch[:, :, :] = 0. return patch def batch_generator(patch_paths, batch_size, shape=(8, 64, 64), angle=15, shift=4, CPU=4): number_of_batches = ceil(len(patch_paths) / batch_size) counter = 0 random.shuffle(patch_paths) while True: batch_files = patch_paths[batch_size * counter:batch_size * (counter + 1)] patch_list = [load(patch_path) for patch_path in batch_files] augment = partial(augment_patch, shape=shape, angle=angle, shift=shift) with Pool(CPU) as pool: patch_list = pool.map(augment, patch_list) counter += 1 yield expand_dims(array(patch_list), 1), expand_dims(array(patch_list), 1) if counter == number_of_batches: random.shuffle(patch_paths) counter = 0 # patch_paths = glob(join(PATH['LUNA_NODULES'], '*_patch.npy')) # patch_paths += glob(join(PATH['LUNA_VESSELS'], '*_patch.npy')) # shuffle(patch_paths) # save(join(PATH['PATCH_PATHS'], 'LUNA'), array(patch_paths)) patch_paths = load(join(PATH['PATCH_PATHS'], 'LUNA.npy')) train = patch_paths[int(len(patch_paths) * .2):] valid = patch_paths[:int(len(patch_paths) * .2)] SAMPLES_PER_EPOCH = len(train) NB_VAL_SAMPLES = len(valid) train_generator = batch_generator(train, batch_size=32, shape=SHAPE, angle=ANGLE, shift=SHIFT, CPU=CPU) valid_generator = batch_generator(valid, batch_size=32, shape=SHAPE, angle=0, shift=0, CPU=CPU) checkpoint = ModelCheckpoint(filepath=join(PATH['WEIGHTS'], '3DCAE_nodule_model'), verbose=1, save_best_only=True) model.fit_generator(train_generator, samples_per_epoch=1853, nb_epoch=NB_EPOCH, callbacks=[checkpoint], validation_data=valid_generator, class_weight=None, nb_val_samples=463, nb_worker=1)
"""Module for raceplan adapter.""" import logging from typing import Any, List, Optional class RaceplansAdapter: """Class representing an adapter for raceplans.""" @classmethod async def get_all_raceplans(cls: Any, db: Any) -> List[dict]: # pragma: no cover """Get all raceplans function.""" raceplans: List = [] cursor = db.raceplans_collection.find() for raceplan in await cursor.to_list(None): raceplans.append(raceplan) logging.debug(raceplan) return raceplans @classmethod async def create_raceplan( cls: Any, db: Any, raceplan: dict ) -> str: # pragma: no cover """Create raceplan function.""" result = await db.raceplans_collection.insert_one(raceplan) return result @classmethod async def get_raceplan_by_id( cls: Any, db: Any, id: str ) -> dict: # pragma: no cover """Get raceplan function.""" result = await db.raceplans_collection.find_one({"id": id}) return result @classmethod async def get_raceplan_by_event_id( cls: Any, db: Any, event_id: str ) -> List[dict]: # pragma: no cover """Get raceplan by event_id function.""" raceplans: List = [] result = await db.raceplans_collection.find_one({"event_id": event_id}) if result: raceplans.append(result) return raceplans @classmethod async def update_raceplan( cls: Any, db: Any, id: str, raceplan: dict ) -> Optional[str]: # pragma: no cover """Get raceplan function.""" result = await db.raceplans_collection.replace_one({"id": id}, raceplan) return result @classmethod async def delete_raceplan( cls: Any, db: Any, id: str ) -> Optional[str]: # pragma: no cover """Get raceplan function.""" result = await db.raceplans_collection.delete_one({"id": id}) return result
#!/usr/bin/env python # Step 1 - Get a list of your Webex Teams Rooms with the token import requests, os from pprint import pprint token = os.getenv('WEBEX_TOKEN') headers = {'Content-Type':'application/json','Authorization':f'Bearer {token}'} get_url = 'https://webexapis.com/v1/rooms' get_response = requests.get(get_url, headers=headers) pprint(get_response.json()) # display all rooms print() # blank line between output pprint(get_response.json()['items'][0]) # display the first room in the response # Step 2 - Create a new Webex Teams Room new_room = {'title':'New Python Room'} post_url = 'https://webexapis.com/v1/rooms' post_response = requests.post(post_url, headers=headers, json=new_room) print(f'{post_response.status_code} {post_response.reason}') pprint(post_response.json()) # Step 3 - Post a message to the new Webex Teams Room new_msg = {'roomId':post_response.json()['id'],'text':'Hello from Python'} msg_url = 'https://webexapis.com/v1/messages' msg_response = requests.post(msg_url, headers=headers, json=new_msg) print(f'{msg_response.status_code} {msg_response.reason}') pprint(msg_response.json())
import time from pathlib import Path import superannotate as sa from .common import upload_project PROJECT_NAME1 = "test_get_exports1" PROJECT_FOLDER = Path("tests") / "sample_project_vector" def test_get_exports(tmpdir): tmpdir = Path(tmpdir) project = upload_project( PROJECT_FOLDER, PROJECT_NAME1, 'gg', 'Vector', annotation_status='QualityCheck' ) time.sleep(2) # projects_found = sa.search_projects(PROJECT_NAME1, return_metadata=True) # for pr in projects_found: # sa.delete_project(pr) # project = sa.create_project(PROJECT_NAME1, "gg", "Vector") # sa.upload_images_from_folder_to_project( # project, # "./tests/sample_project_vector/", # annotation_status="QualityCheck" # ) # sa.create_annotation_classes_from_classes_json( # project, # "./tests/sample_project_vector/classes/classes.json", # ) # sa.upload_annotations_from_folder_to_project( # project, # "./tests/sample_project_vector/", # ) exports_old = sa.get_exports(project) export = sa.prepare_export(project) time.sleep(2) sa.download_export(project, export["name"], tmpdir) js = list(tmpdir.glob("*.json")) assert len(js) == 4 exports_new = sa.get_exports(project) assert len(exports_new) == len(exports_old) + 1
__version__ = '3.15.0dev'
from abc import ABC, abstractmethod from dataclasses import dataclass from math import radians, sin, cos from math import pi as π from typing import Tuple, Union from numba import njit import numpy as np from zodipy._functions import interplanetary_temperature, blackbody_emission @dataclass class Component(ABC): """Base class for an Interplanetary Dust Component. This class defines a method for getting the coordinates to a shell at distance R around an observer in the primed coordinate system (component-centric ecliptic cartesian coordinates). Attributes ---------- x_0 x-offset from the Sun in helliocentric ecliptic cartesian coordinates. y_0 y-offset from the Sun in helliocentric ecliptic cartesian coordinates. z_0 z-offset from the Sun in helliocentric ecliptic cartesian coordinates. i Inclination with respect to the ecliptic plane [deg]. Ω Ascending node [deg]. """ x_0: float y_0: float z_0: float i: float Ω: float def __post_init__(self) -> None: self.i = radians(self.i) self.Ω = radians(self.Ω) self.X_component = np.expand_dims([self.x_0, self.y_0, self.z_0], axis=1) @abstractmethod def get_density( self, R_prime: np.ndarray, Z_prime: np.ndarray, *, θ_prime: np.ndarray ) -> np.ndarray: """Returns the dust density at a shell around the observer. Parameters ---------- R_prime Array of distances corresponding to discrete points along a line-of-sight for a shell surrounding the observer in the primed coordinates. Z_prime Heights above the midplane in primed coordinates of a component corresponding to the distances in `R_prime`. θ_prime Relative mean lognitude between the discrete points along the line-of-sight describe by `R_prime` and the Earth. Returns ------- Density of the component at the coordinates given by R_prime, Z_prime, and θ_prime. """ @staticmethod @njit def get_coordinates( R_comp: Union[float, np.ndarray], X_observer: np.ndarray, X_earth: np.ndarray, X_unit: np.ndarray, X_component: np.ndarray, Ω_component: float, i_component: float, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Returns a set of coordinates for a component. Given a set of heliocentric ecliptic positions in space given by the unit vectors `X_unit` and `R_comp`, we compute the `R_helio`, `R_prime`, `Z_prime`, and `θ_prime` coordinates as seen by and observer whos heliocentric ecliptic coordinates are given by `X_observer`. These are the coordinates required by the Interplanetary Dust Model to evalutate the density of a Zodiacal Component at the given positions. Parameters ---------- R_comp Distance R to a shell centered on the observer at which we want to evaluate the Zodiacal emission at. X_observer Heliocentric ecliptic cartesian coordinates of the observer. X_earth Heliocentric ecliptic cartesian coordinates of the Earth. X_unit Heliocentric ecliptic cartesian unit vectors pointing to each position in space we that we consider. X_component Heliocentric ecliptic cartesian off-set of the component (x_0, y_0, z_0). Ω_component Ascending node of the component. i_component Inclination of the component. Returns ------- R_helio Array of distances corresponding to discrete points along a line-of-sight for a shell surrounding the observer in heliocentric ecliptic coordinates. R_prime Array of distances corresponding to discrete points along a line-of-sight for a shell surrounding the observer in the primed coordinates. Z_prime Heights above the midplane in primed coordinates of a component corresponding to the distances in `R_prime`. θ_prime Relative mean lognitude between the discrete points along the line-of-sight describe by `R_prime` and the Earth. """ X_helio = R_comp * X_unit + X_observer R_helio = np.sqrt(X_helio[0] ** 2 + X_helio[1] ** 2 + X_helio[2] ** 2) X_prime = X_helio - X_component R_prime = np.sqrt(X_prime[0] ** 2 + X_prime[1] ** 2 + X_prime[2] ** 2) Z_prime = ( X_prime[0] * sin(Ω_component) * sin(i_component) - X_prime[1] * cos(Ω_component) * sin(i_component) + X_prime[2] * cos(i_component) ) X_earth_prime = X_earth - X_component[0] θ_prime = np.arctan2(X_prime[1], X_prime[0]) - np.arctan2( X_earth_prime[1], X_earth_prime[0] ) return R_helio, R_prime, Z_prime, θ_prime def get_emission( self, distance_to_shell: Union[float, np.ndarray], observer_position: np.ndarray, earth_position: np.ndarray, unit_vectors: np.ndarray, freq: float, ) -> np.ndarray: """Returns the emission at a shell of distance R from the observer. For a description on X_observer, X_earth, X_unit and R, please see the get_coords function. Parameters ---------- distance_to_shell Distance R to a shell centered on the observer for which we want to evaluate the Zodiacal emission. observer_position Heliocentric ecliptic cartesian coordinates of the observer. earth_position Heliocentric ecliptic cartesian coordinates of the Earth. unit_vectors Heliocentric ecliptic cartesian unit vectors pointing to each position in space we that we consider. freq Frequency at which to evaluate the Zodiacal emission. Returns ------- emission Zodiacal emission at Array containing the Zodiacal emission emitted from a shell at distance R from the observer. The shape is (len(R), `NPIX`). """ observer_position = np.expand_dims(observer_position, axis=1) R_helio, R_prime, Z_prime, θ_prime = self.get_coordinates( R_comp=distance_to_shell, X_observer=observer_position, X_earth=earth_position, X_unit=unit_vectors, X_component=self.X_component, Ω_component=self.Ω, i_component=self.i, ) density = self.get_density( R_prime=R_prime, Z_prime=Z_prime, θ_prime=θ_prime, ) temperature = interplanetary_temperature(R=R_helio) emission = blackbody_emission(T=temperature, ν=freq) return emission * density @dataclass class Cloud(Component): """The Zodiacal Diffuse Cloud component. This class represents the diffuse cloud in the K98 IPD model. It provides a method to estimate the density of the diffuse cloud at a shell around the observer. Attributes ---------- n_0 Density at 1 AU. α Radial power-law exponent. β Vertical shape parameter. γ Vertical power-law exponent. μ Widening parameter for the modified fan. """ n_0: float α: float β: float γ: float μ: float def __post_init__(self) -> None: super().__post_init__() def get_density(self, R_prime: np.ndarray, Z_prime: np.ndarray, **_) -> np.ndarray: """See base class for documentation.""" ζ = np.abs(Z_prime) / R_prime μ = self.μ g = np.zeros_like(ζ) condition = ζ < μ g[condition] = ζ[condition] ** 2 / (2 * μ) g[~condition] = ζ[~condition] - (μ / 2) return self.n_0 * R_prime ** -self.α * np.exp(-self.β * g * self.γ) @dataclass class Band(Component): """The Zodiacal Astroidal Band component. This class represents the Astroidal Dust Band components in the K98 IPD model. It provides a method to estimate the density of the dust bands at a shell around the observer. Attributes ---------- n_0 Density at 3 AU. δ_ζ Shape parameter [deg]. v Shape parameter. p Shape parameter. δ_r Inner radial cutoff. """ n_0: float δ_ζ: float v: float p: float δ_r: float def __post_init__(self) -> None: super().__post_init__() self.δ_ζ = radians(self.δ_ζ) def get_density(self, R_prime: np.ndarray, Z_prime: np.ndarray, **_) -> np.ndarray: """See base class for documentation.""" ζ = np.abs(Z_prime) / R_prime ζ_over_δ_ζ = ζ / self.δ_ζ term1 = (3 * self.n_0 / R_prime) * np.exp(-((ζ_over_δ_ζ) ** 6)) term2 = 1 + ((ζ_over_δ_ζ) ** self.p) / self.v term3 = 1 - np.exp(-((R_prime / self.δ_r) ** 20)) return term1 * term2 * term3 @dataclass class Ring(Component): """The Zodiacal Circum-solar Ring component. This class represents the Circum-solar Ring component in the K98 IPD model. It provides a method to estimate the density of the Circum-solar Ring at a shell around the observer. Attributes ---------- n_0 Density at 1 AU. R Radius of the peak density. σ_r Radial dispersion. σ_z Vertical dispersion. """ n_0: float R: float σ_r: float σ_z: float def __post_init__(self) -> None: super().__post_init__() def get_density(self, R_prime: np.ndarray, Z_prime: np.ndarray, **_) -> np.ndarray: """See base class for documentation.""" term1 = -(((R_prime - self.R) / self.σ_r) ** 2) term2 = np.abs(Z_prime) / self.σ_z return self.n_0 * np.exp(term1 - term2) @dataclass class Feature(Component): """The Zodiacal Earth-trailing Feature component. This class represents the Earth-trailing Feature component in the K98 IPD model. It provides a method to estimate the density of the Earth-trailing Feature at a shell around the observer. Attributes ---------- n_0 Density at 1 AU. R Radius of the peak density. σ_r Radial dispersion. σ_z Vertical dispersion. θ Longitude with respect to Earth. σ_θ Longitude dispersion. """ n_0: float R: float σ_r: float σ_z: float θ: float σ_θ: float def __post_init__(self) -> None: super().__post_init__() self.θ = radians(self.θ) self.σ_θ = radians(self.σ_θ) def get_density( self, R_prime: np.ndarray, Z_prime: np.ndarray, θ_prime: np.ndarray ) -> np.ndarray: """See base class for documentation.""" Δθ = θ_prime - self.θ condition1 = Δθ < -π condition2 = Δθ > π Δθ[condition1] = Δθ[condition1] + 2 * π Δθ[condition2] = Δθ[condition2] - 2 * π term1 = -(((R_prime - self.R) / self.σ_r) ** 2) term2 = np.abs(Z_prime) / self.σ_z term3 = (Δθ / self.σ_θ) ** 2 return self.n_0 * np.exp(term1 - term2 - term3)
# -*- coding: utf-8 -*- """ Created on Thu Oct 22 15:58:28 2020 @author: Andrea """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import os import conda conda_file_dir = conda.__file__ conda_dir = conda_file_dir.split('lib')[0] proj_lib = os.path.join(os.path.join(conda_dir, 'share'), 'proj') os.environ["PROJ_LIB"] = proj_lib from mpl_toolkits.basemap import Basemap #from mpi4py import MPI import pandapower as pp import pandapower.networks import numpy as np import sys import time import random import itertools import networkx as nx import multiprocessing import pandapower.plotting as pplt import math #import geopy.distance #from geopy.point import Point from cascade_power import OPA_model import collections import copy ###################################### INITIALIZE RAILWAY AND POWER NETWORKS ################# list_station = [ 'Glasgow', 'Edinburgh', 'Newcastle', 'Tees Valley', 'Leeds', 'Sheffield', 'Nottingham', 'Cambridge', 'Stansted', 'London', 'Heathrow', 'Bristol', 'Cardiff', 'Birmingham', 'Manchester', 'Liverpool' ] list_railway = [ (0, 1), (0, 14), (0, 13), (1, 2), (1, 13), (2, 3), (3, 4), (4, 5), (4, 14), (5, 6), (5, 14), (6, 7), (7, 8), (7, 9), (8, 9), (9, 10), (9, 13), (10, 11), (11, 12), (13, 14), (14,15) ] net = pp.networks.GBreducednetwork() G=pp.topology.create_nxgraph(net) pp.replace_sgen_by_gen(net) list_ext_grid = list(net.ext_grid.index) initial_slack = pp.replace_ext_grid_by_gen(net, list_ext_grid, slack=True) net.line.loc[:,'max_loading_percent'] = 100 net.trafo.loc[:,'max_loading_percent'] = 100 net.load.loc[:,'max_p_mw'] = net.load.p_mw net.load.loc[:,'min_p_mw'] = 0 net.gen.loc[:,'max_p_mw'] = net.gen.max_p_mw/1.438 net.gen.loc[:,'p_mw'] = net.gen.max_p_mw list_load_bus = list(net.load.bus) list_load_bus.sort() net.load.loc[:,'controllable'] = True net.poly_cost.loc[:,'cp0_eur'] = 0 net.poly_cost.loc[:,'cp1_eur_per_mw'] = 1 net.poly_cost.loc[:,'cp2_eur_per_mw2'] = 0 list_load =list(net.load.index) for load in list_load: globals()['costload%s' %load] = pp.create_poly_cost(net, load, 'load',cp0_eur=0, cp1_eur_per_mw = -100,cp2_eur_per_mw2=0) initial_state_load = dict(net.load.loc[:,'p_mw']) order_dict_load = collections.OrderedDict(sorted(initial_state_load.items())) initial_load_power = list(order_dict_load.values()) # initial_interdep_power = power to subtract to each load when one of the corresponding station is failed list_interdependencies = [4, 3, 9, 9, 14, 13, 16, 20, 20, 24, 24, 22, 28, 17, 12, 11] set_interdependencies = list(set(list_interdependencies)) initial_interdep_power = np.zeros(len(initial_load_power)) for i,l in enumerate(initial_load_power): counter = list_interdependencies.count(i) if counter > 0: initial_interdep_power[i] = l/counter else: initial_interdep_power[i] = 0 n_bus = len(list(net.bus.index)) n_line = len(list(net.line.index)) n_trafo = len(list(net.trafo.index)) n_comp_power = n_bus + n_line + n_trafo list_components_power = list(range(n_comp_power)) n_station = 16 n_railway = 21 n_comp_rail = n_station + n_railway list_components_rail = list(range(n_comp_rail)) # Define if the component n is a bus, a normal line or a line with a trafo def power_failed_element(n, f_bus, f_line, f_trafo): lim_1 = n_bus lim_2 = lim_1 + n_line if n < lim_1: f_bus += [n] elif n >= lim_1 and n < lim_2: f_line += [n - lim_1] elif n >= lim_2: f_trafo += [n - lim_2] return(f_bus, f_line, f_trafo) # Define if the component n is a station or a railway def rail_failed_element(n, f_station, f_rail): lim_1 = n_station if n < lim_1: f_station += [n] elif n >= lim_1: f_rail += [n - lim_1] return(f_station, f_rail) # Adjacency matrix railway adj_matrix_rail = np.zeros((len(list_station), len(list_station))) for i in list_railway: adj_matrix_rail[i[0]][i[1]] = 1 adj_matrix_rail[i[1]][i[0]] = 1 # This function computes the accessibility of a railway network given its adjacency matrix def accessibility(matrix): G = nx.convert_matrix.from_numpy_array(matrix) if nx.is_connected(G): C = 1 else: conn = 0 nominal_conn = math.comb(len(matrix[0]), 2) islands = list(nx.connected_components(G)) for i in islands: #print(islands) couples = math.comb(len(i), 2) conn += couples C = conn/nominal_conn return(C) power_threshold = 0.5 n_exp = 500 matrix_vulnerability_rail = np.zeros((11,11)) matrix_vulnerability_rail_std = np.zeros((11,11)) matrix_vulnerability_power = np.zeros((11,11)) matrix_vulnerability_power_std = np.zeros((11,11)) idx_frac_rail = 0 frazioni = list(np.arange(0.0,1.1,0.1)) for idx_frac_rail, frac_rail in enumerate(frazioni[:]): for idx_frac_power, frac_power in enumerate(frazioni[:]): vuln_frac_power = np.zeros(n_exp) vuln_frac_rail = np.zeros(n_exp) exp = 0 while exp < n_exp: print(frac_rail, frac_power, exp) # Define elements to remove in both the networks n_failures_power = int(n_comp_power*frac_power) list_failures_power = random.sample(list_components_power, k=n_failures_power) n_failures_rail = int(n_comp_rail*frac_rail) list_failures_rail = random.sample(list_components_rail, k=n_failures_rail) f_bus = []; f_line = []; f_trafo = []; f_station = []; f_rail = [] for f in list_failures_power: f_bus, f_line, f_trafo = power_failed_element(f, f_bus, f_line, f_trafo) for f in list_failures_rail: f_station, f_rail = rail_failed_element(f, f_station, f_rail) # Initialize networks new_matrix = np.copy(adj_matrix_rail) net_GB = copy.deepcopy(net) # Remove elements from railway network for f in f_station: new_matrix[f, :] = 0 new_matrix[:, f] = 0 for f in f_rail: new_matrix[list_railway[f][0], list_railway[f][1]] = 0 new_matrix[list_railway[f][1], list_railway[f][0]] = 0 G = nx.convert_matrix.from_numpy_array(new_matrix) # Cascading failures in railway network islands = list(nx.connected_components(G)) for isl in islands: isl = list(isl) if len(isl) == 1: if isl[0] not in f_station: f_station += [isl[0]] f_station = list(set(f_station)) # Adjust loads powers for f in f_station: load_sh = list_interdependencies[f] net_GB.load.loc[load_sh, 'p_mw'] -= initial_interdep_power[load_sh] net_GB.load.loc[load_sh, 'max_p_mw'] -= initial_interdep_power[load_sh] if net_GB.load.loc[load_sh, 'p_mw'] < 0: net_GB.load.loc[load_sh, 'p_mw'] = 0 if net_GB.load.loc[load_sh, 'max_p_mw'] < 0: net_GB.load.loc[load_sh, 'max_p_mw'] = 0 # Run cascading failures in power networks initial_state_load = dict(net_GB.load.loc[:,'p_mw']) order_dict_load = collections.OrderedDict(sorted(initial_state_load.items())) new_initial_load_power = list(order_dict_load.values()) for i,j in enumerate(new_initial_load_power): if j == 0: new_initial_load_power[i] = 0 g,l = OPA_model(net_GB, f_bus, [], [], f_line, f_trafo) l = np.around(l, 2) load_shedding = np.zeros(len(new_initial_load_power)) for i,j in enumerate(l): if new_initial_load_power[i] > 0: load_shedding[i] = j/new_initial_load_power[i] else: load_shedding[i] = 1 load_shedding = np.around(load_shedding, 2) ''' print(sum(load_shedding)/len(load_shedding)) print(new_initial_load_power) print(l) ''' # Cascading failures between networks for i,j in enumerate(list_interdependencies): if load_shedding[j] < power_threshold or load_shedding[j] == 0: if i not in f_station: f_station += [i] # Compute vulnerabilities for f in f_station: new_matrix[f, :] = 0 new_matrix[:, f] = 0 for f in f_rail: new_matrix[list_railway[f][0], list_railway[f][1]] = 0 new_matrix[list_railway[f][1], list_railway[f][0]] = 0 delta_conn = 1 - accessibility(new_matrix) vuln_frac_rail[exp] = delta_conn if sum(new_initial_load_power) > 0: vuln_power_shed = sum(l)/sum(new_initial_load_power) else: vuln_power_shed = 1 vuln_frac_power[exp] = 1-vuln_power_shed exp += 1 v_rail = sum(vuln_frac_rail)/n_exp v_power = sum(vuln_frac_power)/n_exp matrix_vulnerability_rail[idx_frac_rail][idx_frac_power] = v_rail matrix_vulnerability_power[idx_frac_rail][idx_frac_power] = v_power matrix_vulnerability_rail_std[idx_frac_rail][idx_frac_power] = np.std(vuln_frac_rail) matrix_vulnerability_power_std[idx_frac_rail][idx_frac_power] = np.std(vuln_frac_power) ''' matrix_vulnerability_rail[-1,:] = 1 matrix_vulnerability_rail[:,-1] = 1 matrix_vulnerability_power[:,-1] = 1 ''' np.save(os.path.join('vuln_pr', 'matrix_vulnerability_rail_'+str(int(power_threshold*100))), matrix_vulnerability_rail) np.save(os.path.join('vuln_pr', 'matrix_vulnerability_power_'+str(int(power_threshold*100))), matrix_vulnerability_power) np.save(os.path.join('vuln_pr', 'std_matrix_vulnerability_rail_'+str(int(power_threshold*100))), matrix_vulnerability_rail_std) np.save(os.path.join('vuln_pr', 'std_matrix_vulnerability_power_'+str(int(power_threshold*100))), matrix_vulnerability_power_std)
from collections import OrderedDict import torch from torch import nn from torch.nn import functional as F class _SimpleSegmentationModel(nn.Module): __constants__ = ["aux_classifier"] def __init__(self, backbone, classifier, aux_classifier=None): super(_SimpleSegmentationModel, self).__init__() self.backbone = backbone self.classifier = classifier self.aux_classifier = aux_classifier def logits(self, **kargs): x = kargs["x"].float() if "extra" in kargs: extra = kargs["extra"].float() x = torch.cat([x, extra], axis=1) x = 2 * x / 255 - 1 input_shape = x.shape[-2:] # contract: features is a dict of tensors features = self.backbone(x) result = OrderedDict() x = features["out"] x = self.classifier(x) x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) result["out"] = x if self.aux_classifier is not None: x = features["aux"] x = self.aux_classifier(x) x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) result["aux"] = x return result else: return x def forward(self, **kargs): x = self.logits(**kargs) x = (x + 1) / 2 y = kargs["y"].float() / 255 loss = F.mse_loss(x, y) return loss
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import requests import aiohttp import asyncio import datetime import json from os import getenv from urllib.parse import urlparse, urlunparse from urllib3.util import Retry class DistributedApiTaskManager: def __init__(self): self.cache_connector_upsert_url = getenv('CACHE_CONNECTOR_UPSERT_URI') self.cache_connector_get_url = getenv('CACHE_CONNECTOR_GET_URI') def AddTask(self): ret = asyncio.get_event_loop().run_until_complete(self.AddTaskAsync()) return json.loads(ret) async def AddTaskAsync(self): async with aiohttp.ClientSession() as session: async with session.post(self.cache_connector_upsert_url) as resp: if resp.status != 200: return '{"TaskId": "-1", "Status": "error"}' else: return await resp.text("UTF-8") def _UpdateTaskStatus(self, taskId, status, backendStatus): old_stat = self.GetTaskStatus(taskId) endpoint = 'http://localhost' if not old_stat['Endpoint']: print("Cannot find task status. Creating") else: endpoint = old_stat['Endpoint'] ret = asyncio.get_event_loop().run_until_complete(self._UpdateTaskStatusAsync(taskId, status, backendStatus, endpoint)) return json.loads(ret) async def _UpdateTaskStatusAsync(self, taskId, status, backendStatus, endpoint): session = aiohttp.ClientSession() resp = await session.post(self.cache_connector_upsert_url, json={'TaskId': taskId, 'Timestamp': datetime.datetime.strftime(datetime.datetime.now(), "%Y-%m-%d %H:%M:%S"), 'Status': status, 'BackendStatus': backendStatus, 'Endpoint': endpoint, 'PublishToGrid': False }) if resp.status != 200: print("status code: " + str(resp.status_code)) resstr = '{"TaskId": "' + taskId + '", "Status": "not found"}' else: resstr = await resp.text("UTF-8") await session.close() return resstr def CompleteTask(self, taskId, status): return self._UpdateTaskStatus(taskId, status, 'completed') def UpdateTaskStatus(self, taskId, status): return self._UpdateTaskStatus(taskId, status, 'running') def FailTask(self, taskId, status): return self._UpdateTaskStatus(taskId, status, 'failed') def AddPipelineTask(self, taskId, organization_moniker, version, api_name, body): old_stat = self.GetTaskStatus(taskId) if old_stat['Status'] == "not found": print("Cannot find task status.") return json.loads('{"TaskId": "-1", "Status": "error"}') parsed_endpoint = urlparse(old_stat['Endpoint']) path = '{}/{}/{}'.format(version, organization_moniker, api_name) next_endpoint = '{}://{}/{}'.format(parsed_endpoint.scheme, parsed_endpoint.netloc, path) print("Sending to next endpoint: " + next_endpoint) asyncio.set_event_loop(asyncio.new_event_loop()) ret = asyncio.get_event_loop().run_until_complete(self.AddPipelineTaskAsync(taskId, next_endpoint, body)) return json.loads(ret) async def AddPipelineTaskAsync(self, taskId, next_endpoint, body): session = aiohttp.ClientSession() resp = await session.post(self.cache_connector_upsert_url, json={'TaskId': taskId, 'Timestamp': datetime.datetime.strftime(datetime.datetime.now(), "%Y-%m-%d %H:%M:%S"), 'Status': 'created', 'BackendStatus': 'created', 'Endpoint': next_endpoint, 'Body': body, 'PublishToGrid': True }) if resp.status != 200: print("status code: " + str(r.status_code)) resstr = '{"TaskId": "' + taskId + '", "Status": "not found"}' else: resstr = await resp.text("UTF-8") await session.close() return resstr def GetTaskStatus(self, taskId): asyncio.set_event_loop(asyncio.new_event_loop()) ret = asyncio.get_event_loop().run_until_complete(self.GetTaskStatusAsync(taskId)) return json.loads(ret) async def GetTaskStatusAsync(self, taskId): session = aiohttp.ClientSession() resp = await session.get(self.cache_connector_get_url, params={'taskId': taskId}) if resp.status != 200: resstr = '{"TaskId": "' + taskId + '", "Status": "not found"}' else: resstr = await resp.text("UTF-8") await session.close() return resstr
import csv input_path = "../resources/normalization/resources/rawdata/CL_20210810.csv" output_path = "../resources/normalization/resources/dictionary/best_dict_CellType_20210810.txt" cui2names = {} with open(input_path) as f: rdr = csv.reader(f) for line in rdr: class_id = line[0] # only consider CL if not class_id.split("/")[-1].startswith("CL"): continue cui = class_id.split("/")[-1] name = line[1] synonyms = line[2].split("|") if line[2].strip() != '': cui2names[cui] = '|'.join([name] + synonyms) else: cui2names[cui] = name # save with open(output_path, 'w') as f: for cui, names in cui2names.items(): f.write(cui + "||" + names) f.write("\n")
from network import * from PIL import Image import scipy.misc as misc import os class DnCNN: def __init__(self): self.clean_img = tf.placeholder(tf.float32, [None, None, None, IMG_C]) self.noised_img = tf.placeholder(tf.float32, [None, None, None, IMG_C]) self.train_phase = tf.placeholder(tf.bool) dncnn = net("DnCNN") self.res = dncnn(self.noised_img, self.train_phase) self.denoised_img = self.noised_img - self.res self.loss = tf.reduce_mean(tf.reduce_sum(tf.square(self.res - (self.noised_img - self.clean_img)), [1, 2, 3])) self.Opt = tf.train.AdamOptimizer(1e-3).minimize(self.loss) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def train(self): filepath = "./TrainingSet//" filenames = os.listdir(filepath) saver = tf.train.Saver() for epoch in range(50): for i in range(filenames.__len__()//BATCH_SIZE): cleaned_batch = np.zeros([BATCH_SIZE, IMG_H, IMG_W, IMG_C]) for idx, filename in enumerate(filenames[i*BATCH_SIZE:i*BATCH_SIZE+BATCH_SIZE]): cleaned_batch[idx, :, :, 0] = np.array(Image.open(filepath+filename)) noised_batch = cleaned_batch + np.random.normal(0, SIGMA, cleaned_batch.shape) self.sess.run(self.Opt, feed_dict={self.clean_img: cleaned_batch, self.noised_img: noised_batch, self.train_phase: True}) if i % 10 == 0: [loss, denoised_img] = self.sess.run([self.loss, self.denoised_img], feed_dict={self.clean_img: cleaned_batch, self.noised_img: noised_batch, self.train_phase: False}) print("Epoch: %d, Step: %d, Loss: %g"%(epoch, i, loss)) compared = np.concatenate((cleaned_batch[0, :, :, 0], noised_batch[0, :, :, 0], denoised_img[0, :, :, 0]), 1) Image.fromarray(np.uint8(compared)).save("./TrainingResults//"+str(epoch)+"_"+str(i)+".jpg") if i % 500 == 0: saver.save(self.sess, "./save_para//DnCNN.ckpt") np.random.shuffle(filenames) def test(self, cleaned_path="./TestingSet//02.png"): saver = tf.train.Saver() saver.restore(self.sess, "./save_para/DnCNN.ckpt") cleaned_img = np.reshape(np.array(misc.imresize(np.array(Image.open(cleaned_path)), [256, 256])), [1, 256, 256, 1]) noised_img = cleaned_img + np.random.normal(0, SIGMA, cleaned_img.shape) [denoised_img] = self.sess.run([self.denoised_img], feed_dict={self.clean_img: cleaned_img, self.noised_img: noised_img, self.train_phase: False}) compared = np.concatenate((cleaned_img[0, :, :, 0], noised_img[0, :, :, 0], denoised_img[0, :, :, 0]), 1) Image.fromarray(np.uint8(compared)).show() if __name__ == "__main__": dncnn = DnCNN() dncnn.train()
def lex(): return raw_input().split() def input_set(size): a = map(int, lex()) assert len(a) == int(size) return set(a) def input_query(): cmd, size = lex() return cmd.strip(), input_set(size) s = input_set(raw_input()) for i in xrange(0, int(raw_input())): cmd, t = input_query() if cmd == 'update': s |= t elif cmd == 'intersection_update': s &= t elif cmd == 'difference_update': s -= t elif cmd == 'symmetric_difference_update': s ^= t print sum(s)
import torch import torchvision import torch.nn as nn import torch.nn.functional as F import math class Memory: def __init__(self): self.actions = [] self.states = [] self.logprobs = [] self.rewards = [] self.is_terminals = [] self.hidden = [] def clear_memory(self): del self.actions[:] del self.states[:] del self.logprobs[:] del self.rewards[:] del self.is_terminals[:] del self.hidden[:] class ActorCritic(nn.Module): def __init__(self, feature_dim, state_dim, hidden_state_dim=1024, policy_conv=True, action_std=0.1): super(ActorCritic, self).__init__() # encoder with convolution layer for MobileNetV3, EfficientNet and RegNet if policy_conv: self.state_encoder = nn.Sequential( nn.Conv2d(feature_dim, 32, kernel_size=1, stride=1, padding=0, bias=False), nn.ReLU(), nn.Flatten(), nn.Linear(int(state_dim * 32 / feature_dim), hidden_state_dim), nn.ReLU() ) # encoder with linear layer for ResNet and DenseNet else: self.state_encoder = nn.Sequential( nn.Linear(state_dim, 2048), nn.ReLU(), nn.Linear(2048, hidden_state_dim), nn.ReLU() ) self.gru = nn.GRU(hidden_state_dim, hidden_state_dim, batch_first=False) self.actor = nn.Sequential( nn.Linear(hidden_state_dim, 2), nn.Sigmoid()) self.critic = nn.Sequential( nn.Linear(hidden_state_dim, 1)) self.action_var = torch.full((2,), action_std).cuda() self.hidden_state_dim = hidden_state_dim self.policy_conv = policy_conv self.feature_dim = feature_dim self.feature_ratio = int(math.sqrt(state_dim/feature_dim)) def forward(self): raise NotImplementedError def act(self, state_ini, memory, restart_batch=False, training=False): if restart_batch: del memory.hidden[:] memory.hidden.append(torch.zeros(1, state_ini.size(0), self.hidden_state_dim).cuda()) if not self.policy_conv: state = state_ini.flatten(1) else: state = state_ini state = self.state_encoder(state) state, hidden_output = self.gru(state.view(1, state.size(0), state.size(1)), memory.hidden[-1]) memory.hidden.append(hidden_output) state = state[0] action_mean = self.actor(state) cov_mat = torch.diag(self.action_var).cuda() dist = torch.distributions.multivariate_normal.MultivariateNormal(action_mean, scale_tril=cov_mat) action = dist.sample().cuda() if training: action = F.relu(action) action = 1 - F.relu(1 - action) action_logprob = dist.log_prob(action).cuda() memory.states.append(state_ini) memory.actions.append(action) memory.logprobs.append(action_logprob) else: action = action_mean return action.detach() def evaluate(self, state, action): seq_l = state.size(0) batch_size = state.size(1) if not self.policy_conv: state = state.flatten(2) state = state.view(seq_l * batch_size, state.size(2)) else: state = state.view(seq_l * batch_size, state.size(2), state.size(3), state.size(4)) state = self.state_encoder(state) state = state.view(seq_l, batch_size, -1) state, hidden = self.gru(state, torch.zeros(1, batch_size, state.size(2)).cuda()) state = state.view(seq_l * batch_size, -1) action_mean = self.actor(state) cov_mat = torch.diag(self.action_var).cuda() dist = torch.distributions.multivariate_normal.MultivariateNormal(action_mean, scale_tril=cov_mat) action_logprobs = dist.log_prob(torch.squeeze(action.view(seq_l * batch_size, -1))).cuda() dist_entropy = dist.entropy().cuda() state_value = self.critic(state) return action_logprobs.view(seq_l, batch_size), \ state_value.view(seq_l, batch_size), \ dist_entropy.view(seq_l, batch_size) class PPO: def __init__(self, feature_dim, state_dim, hidden_state_dim, policy_conv, action_std=0.1, lr=0.0003, betas=(0.9, 0.999), gamma=0.7, K_epochs=1, eps_clip=0.2): self.lr = lr self.betas = betas self.gamma = gamma self.eps_clip = eps_clip self.K_epochs = K_epochs self.policy = ActorCritic(feature_dim, state_dim, hidden_state_dim, policy_conv, action_std).cuda() self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr, betas=betas) self.policy_old = ActorCritic(feature_dim, state_dim, hidden_state_dim, policy_conv, action_std).cuda() self.policy_old.load_state_dict(self.policy.state_dict()) self.MseLoss = nn.MSELoss() def select_action(self, state, memory, restart_batch=False, training=True): return self.policy_old.act(state, memory, restart_batch, training) def update(self, memory): rewards = [] discounted_reward = 0 for reward in reversed(memory.rewards): discounted_reward = reward + (self.gamma * discounted_reward) rewards.insert(0, discounted_reward) rewards = torch.cat(rewards, 0).cuda() rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5) old_states = torch.stack(memory.states, 0).cuda().detach() old_actions = torch.stack(memory.actions, 0).cuda().detach() old_logprobs = torch.stack(memory.logprobs, 0).cuda().detach() for _ in range(self.K_epochs): logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions) ratios = torch.exp(logprobs - old_logprobs.detach()) advantages = rewards - state_values.detach() surr1 = ratios * advantages surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages loss = -torch.min(surr1, surr2) + 0.5 * self.MseLoss(state_values, rewards) - 0.01 * dist_entropy self.optimizer.zero_grad() loss.mean().backward() self.optimizer.step() self.policy_old.load_state_dict(self.policy.state_dict()) class Full_layer(torch.nn.Module): def __init__(self, feature_num, hidden_state_dim=1024, fc_rnn=True, class_num=1000): super(Full_layer, self).__init__() self.class_num = class_num self.feature_num = feature_num self.hidden_state_dim = hidden_state_dim self.hidden = None self.fc_rnn = fc_rnn # classifier with RNN for ResNet, DenseNet and RegNet if fc_rnn: self.rnn = nn.GRU(feature_num, self.hidden_state_dim) self.fc = nn.Linear(self.hidden_state_dim, class_num) # cascaded classifier for MobileNetV3 and EfficientNet else: self.fc_2 = nn.Linear(self.feature_num * 2, class_num) self.fc_3 = nn.Linear(self.feature_num * 3, class_num) self.fc_4 = nn.Linear(self.feature_num * 4, class_num) self.fc_5 = nn.Linear(self.feature_num * 5, class_num) def forward(self, x, restart=False): if self.fc_rnn: if restart: output, h_n = self.rnn(x.view(1, x.size(0), x.size(1)), torch.zeros(1, x.size(0), self.hidden_state_dim).cuda()) self.hidden = h_n else: output, h_n = self.rnn(x.view(1, x.size(0), x.size(1)), self.hidden) self.hidden = h_n return self.fc(output[0]) else: if restart: self.hidden = x else: self.hidden = torch.cat([self.hidden, x], 1) if self.hidden.size(1) == self.feature_num: return None elif self.hidden.size(1) == self.feature_num * 2: return self.fc_2(self.hidden) elif self.hidden.size(1) == self.feature_num * 3: return self.fc_3(self.hidden) elif self.hidden.size(1) == self.feature_num * 4: return self.fc_4(self.hidden) elif self.hidden.size(1) == self.feature_num * 5: return self.fc_5(self.hidden) else: print(self.hidden.size()) exit()
import pytest import kleat.misc.settings as S from kleat.misc.calc_genome_offset import calc_genome_offset @pytest.mark.parametrize("ctg_clv, tail_side, skip_check_size, expected_gnm_offset", [ # [1, 'left', 0, 1], # [1, 'right', 0, 1], # [2, 'left', 0, 3], # [2, 'right', 0, 3], [1, 'left', 1, 3], [1, 'right', 1, 1], [2, 'left', 1, 3], [2, 'right', 1, 1], ]) def test_clv_before_insertion(ctg_clv, tail_side, skip_check_size, expected_gnm_offset): """ TT AA <-bridge read tail └C┘ <-bridge read, for visual convenience two cases for different tail sides are merged with only one base shown | # blank line to separate the bridge read the insertion | AGC <-inserted sequence | 345 <-contig offset coord for inserted sequence | ┬ AT-G GT <-contig 01 2 678 <-contig offset coord ^ctg_clv 0123 456 <-genome offset coord ^gnm_offset """ ctg_cigartuples = ( (S.BAM_CMATCH, 2), (S.BAM_CREF_SKIP, 1), (S.BAM_CMATCH, 1), (S.BAM_CINS, 3), (S.BAM_CMATCH, 2) ) assert calc_genome_offset(ctg_cigartuples, ctg_clv, tail_side, skip_check_size) == expected_gnm_offset @pytest.mark.parametrize("ctg_clv, tail_side, skip_check_size, expected_gnm_offset", [ [3, 'left', 0, 3], [3, 'right', 0, 4], [5, 'left', 0, 3], [5, 'right', 0, 4], [3, 'left', 1, 3], [3, 'right', 1, 4], [5, 'left', 1, 3], [5, 'right', 1, 4], [3, 'left', 2, 3], # this case is considered fine for now [3, 'right', 2, 4], [2, 'left', 2, 3], [2, 'right', 2, 1], [5, 'left', 2, 3], [5, 'right', 2, 4], ]) def test_clv_inside_insertion(ctg_clv, tail_side, skip_check_size, expected_gnm_offset): """ TT AA <-bridge read tail └A┘ <-bridge read, for visual convenience two cases for different tail sides are merged with only one base shown | # blank line to separate the bridge read the insertion AGC <-inserted sequence 345 <-contig offset coord for inserted sequence ctg_clv^| |┬ AT-G GT <-contig 01 2 678 <-contig offset coord 0123 456 <-genome offset coord ^gnm_offset """ ctg_cigartuples = ( (S.BAM_CMATCH, 2), (S.BAM_CREF_SKIP, 1), (S.BAM_CMATCH, 1), (S.BAM_CINS, 3), (S.BAM_CMATCH, 2) ) assert calc_genome_offset(ctg_cigartuples, ctg_clv, tail_side, skip_check_size) == expected_gnm_offset @pytest.mark.parametrize("ctg_clv, tail_side, skip_check_size, expected_gnm_offset", [ [6, 'left', 0, 4], [6, 'right', 0, 4], [7, 'left', 0, 5], [7, 'right', 0, 5], [6, 'left', 2, 4], [6, 'right', 2, 4], [6, 'left', 3, 4], [6, 'right', 3, 4], [6, 'left', 4, 4], [6, 'right', 4, 4], [6, 'left', 5, 4], [6, 'right', 5, 4], [6, 'left', 6, 4], [6, 'right', 6, 4], # varying skip_check_size won't change the result the current # implementation only considers the last skip. Here the insertion is # between skip and match when tail_side is right ]) def test_clv_after_insertion(ctg_clv, tail_side, skip_check_size, expected_gnm_offset): """ TT AA <-bridge read tail └A┘ <-bridge read, for visual convenience two cases for different tail sides are merged with only one base shown | # blank line to separate the bridge read the insertion AGC <-inserted sequence 345 <-contig offset coord for inserted sequence ┬ AT-G GT <-contig 01 2 678 <-contig offset coord ^ctg_clv 0123 456 <-genome offset coord ^gnm_offset """ ctg_cigartuples = ( (S.BAM_CMATCH, 2), (S.BAM_CREF_SKIP, 1), (S.BAM_CMATCH, 1), (S.BAM_CINS, 3), (S.BAM_CMATCH, 2) ) assert calc_genome_offset(ctg_cigartuples, ctg_clv, tail_side, skip_check_size) == expected_gnm_offset
# -*- coding: utf-8 -*- from flask import Flask, request, render_template from gevent.pywsgi import WSGIServer import numpy as np import re import requests import os app = Flask(__name__) def check(output): url = "https://image-to-text2.p.rapidapi.com/cloudVision/imageToText" querystring = {"source":output,"sourceType":"url"} payload = '''{\r\n \"source\": "'''+output+'''" ,\r\n \"sourceType\": \"url\"\r\n}''' headers = { 'content-type': "application/json", 'x-rapidapi-key': "fbd4199c1amsh2c93fd54d73d474p1d7c4cjsn786fe34bf93d", 'x-rapidapi-host': "image-to-text2.p.rapidapi.com" } response = requests.request("POST", url, data=payload, headers=headers, params=querystring) print(response.text) return (response.json()['text']) #home page @app.route('/') def home(): return render_template('base.html') #Summarizer page @app.route('/predict',methods=['POST']) def predict(): output=request.form['output'] text=check(output) return render_template('base.html',output=text) port = os.getenv('VCAP_APP_PORT', '8080') if __name__ == "__main__": app.secret_key= os.urandom(12) app.run(debug=True, host='0.0.0.0', port=port)
import queue import numpy as np from scipy import optimize as op import matplotlib.pyplot as plt import sys import random import math MACHINE = 5 PER_GPU = 2 DBL_MIN = float('-Infinity') JOB_TIME = 5 COM_TIME = 0 READ_INF = 0 PTA = 10 # real # trace = [8, 8, 4, 16, 8, 16, 8, 4, 4, 4, 4, 16, 4, 4, 8, 8, 4, 4, 2, 2, 4, 8, 8, 4, 16, 8, 16, 32, 4, 8, 4, 2, 4, 8, 4, 4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 4, 4, 24, 4, 16, 2, 8, 16, 4, 8, 4, 4, 16, 8, 8, 8, 4, 8, 8, 4, 4, 8, 8, 4, 8, 4, 4, 4, 4, 8, 4, 8] # trace = [5, 4, 2, 5, 4, 5, 5, 2, 3, 3, 2, 6, 3, 3, 3, 4, 3, 2, 1, 1, 3, 5, 5, 2, 6, 3, 7, 6, 2, 3, 2, 1, 3, 4, 3, 2, 5, 5, 4, 5, 4, 2, 4, 5, 3, 3, 1, 3, 4, 3, 3, 4, 3, 5, 3, 5, 3, 3, 4, 3, 5, 5, 3, 5, 2, 5, 4, 3, 3, 2, 5, 2, 5, 1, 3, 5, 3, 5, 3, 3, 7, 5, 3, 5, 2, 5, 3, 2, 2, 3, 5, 2, 4, 3, 3, 3, 2, 3, 2, 3] # trace = [3, 3, 2, 4, 3, 6, 3, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 2, 1, 1, 3, 3, 5, 3, 6, 5, 5, 7, 3, 3, 3, 1, 3, 5, 3, 2, 5, 5, 5, 5, 5, 3, 5, 3, 5, 4, 1, 5, 3, 5, 4, 3, 3, 3, 3, 3, 4, 5, 4, 5, 5, 4, 4, 3, 3, 4, 3, 3, 2, 3, 4, 2, 6, 1, 5, 6, 3, 5, 3, 3, 4, 4, 4, 5, 3, 5, 5, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 3, 5] # for i in range(len(trace)): # base = int(math.log(trace[i], 2)) # trace[i] = random.randint(base, base*2-1) # norm # trace = [3, 7, 5, 3, 5, 4, 6, 1, 5, 4, 4, 8, 2, 7, 4, 3, 9, 2, 2, 7, 6, 3, 5, 2, 6, 6, 4, 7, 3, 5, 4, 7, 8, 8, 5, 5, 5, 5, 4, 6, 8, 4, 5, 9, 3, 8, 6, 5, 4, 5] # trace = [5, 5, 4, 4, 3, 4, 2, 8, 3, 4, 1, 4, 7, 6, 4, 4, 1, 3, 2, 8, 5, 4, 0, 1, 1, 6, 5, 1, 4, 8, 5, 6, 6, 4, 1, 2, 4, 4, 2, 3, 3, 0, 3, 0, 6, 5, 3, 7, 0, 5, 7, 5, 8, 2, 6, 6, 0, 5, 6, 3, 6, 3, 4, 2, 4, 1, 3, 9, 1, 4, 7, 4, 5, 3, 4, 3, 5, 5, 1, 3, 5, 5, 2, 2, 4, 7, 1, 6, 2, 0, 3, 2, 1, 3, 4, 3, 6, 2, 2, 2] # trace = np.random.normal(PER_GPU, 2, 100).astype(int) # poisson # trace = [6, 4, 6, 2, 4, 5, 9, 2, 4, 4, 3, 7, 4, 5, 2, 5, 4, 1, 3, 0, 4, 7, 3, 2, 1, 3, 4, 4, 3, 2, 3, 2, 4, 4, 0, 5, 7, 3, 0, 6, 5, 1, 4, 1, 4, 5, 4, 5, 3, 2, 2, 8, 4, 3, 3, 4, 5, 4, 4, 4, 6, 7, 7, 5, 4, 9, 2, 4, 1, 4, 2, 4, 4, 4, 3, 4, 6, 2, 4, 9, 1, 3, 2, 3, 0, 2, 6, 1, 0, 3, 4, 5, 6, 6, 0, 6, 4, 4, 6, 8] # trace = [7, 3, 4, 1, 3, 4, 6, 2, 6, 2, 6, 1, 5, 5, 1, 3, 2, 2, 2, 5, 4, 5, 3, 3, 6, 7, 1, 4, 2, 10, 6, 3, 6, 5, 1, 5, 8, 1, 2, 3, 4, 4, 4, 8, 6, 4, 9, 1, 5, 1, 3, 4, 4, 0, 2, 3, 3, 1, 1, 4, 3, 5, 7, 4, 6, 6, 5, 6, 6, 5, 1, 5, 3, 4, 0, 1, 4, 2, 6, 1, 8, 5, 8, 5, 3, 5, 4, 5, 2, 2, 6, 3, 4, 6, 3, 3, 2, 3, 8, 2] # trace = np.random.poisson(2, 20) trace = [3,1,1,2,2,3,5,2,3,2,2,5,2,1,3,3,1,3,1,2] # trace = [1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 3, 2, 3, 1, 3, 1, 2, 1, 2, 2] period = np.array([5 for x in range(100)]) # period = np.array([16.966666666666665, 3221.05, 3318.3333333333335, 3112.4333333333334, 14.266666666666667, 5726.25, 1698.5333333333333, 1694.3166666666666, 1689.5333333333333, 15144.35, 3759.2333333333336, 172.46666666666667, 5672.7, 1639.5333333333333, 2996.1833333333334, 1622.1166666666668, 1622.3, 669.7666666666667, 10024.716666666667, 1592.1333333333332, 5096.55, 5594.383333333333, 1534.8666666666666, 1527.9666666666667, 12722.566666666666, 26094.916666666668, 1513.1666666666667, 11185.216666666667, 3394.35, 1488.2333333333333, 161.06666666666666, 401.43333333333334, 15780.566666666666, 2956.2, 3115.733333333333, 1936.7666666666667, 1407.9666666666667, 5431.583333333333, 5416.116666666667, 5414.383333333333, 1387.6833333333334, 3145.4166666666665, 4894.15, 3398.9833333333336, 1330.3166666666666, 3113.733333333333, 1321.0666666666666, 3406.7666666666664, 1295.6833333333334, 5308.433333333333, 2929.1666666666665, 1264.6833333333334, 3197.0333333333333, 5643.116666666667, 9866.2, 3372.85, 2757.05, 2278.0166666666664, 4698.016666666666, 1151.3833333333334, 2798.8, 1142.65, 1653.2833333333333, 1094.0833333333333, 9703.716666666667, 3388.0833333333335, 45.03333333333333, 2433.5166666666664, 2054.0166666666664, 65.43333333333334, 962.5666666666667, 4466.266666666666, 45816.95, 32654.15, 33076.416666666664, 32653.933333333334, 32656.333333333332, 15705.3, 791.0833333333334, 789.0666666666667, 783.6833333333333, 782.4333333333333, 617.0166666666667, 14216.483333333334, 683.3833333333333, 2764.2333333333336, 2752.866666666667, 3183.2, 661.9333333333333, 1365.8833333333334, 3166.6666666666665, 655.0166666666667, 13519.233333333334, 2751.416666666667, 6299.95, 8833.616666666667, 6212.833333333333, 21.616666666666667, 3019.0333333333333, 6163.166666666667, 1624.0166666666667, 15.483333333333333, 15.366666666666667, 272.98333333333335, 254.36666666666667, 2885.266666666667, 1111.35, 1107.85, 13.85, 15.366666666666667, 49.333333333333336, 17.183333333333334, 16.05, 4369.716666666666, 17.6, 15.25, 1415.25, 736.2666666666667, 14.216666666666667, 3395.55, 223.45, 255.16666666666666, 255.28333333333333, 256.35, 249.93333333333334, 255.26666666666668, 160.68333333333334, 160.58333333333334, 205.7, 38.55, 118.55, 217.66666666666666, 22.333333333333332, 17853.35, 17.266666666666666, 2758.0666666666666, 987.4333333333333, 46.63333333333333, 979.1833333333333, 24.25, 12.05, 11.75, 10359.033333333333, 14.716666666666667, 4141.883333333333, 810.7166666666667, 5739.55, 3696.9166666666665, 2560.25, 20.233333333333334, 1400.0833333333333, 2819.0, 2497.15, 2478.15, 1469.85, 15427.183333333334, 99.95, 3056.866666666667, 2370.6666666666665, 3034.0333333333333, 327.43333333333334, 2336.35, 2841.083333333333, 1856.05, 2267.0666666666666, 835.4666666666667, 789.2666666666667, 2201.0333333333333, 775.4166666666666, 90.5, 709.3833333333333, 1322.6166666666666, 3361.383333333333, 1203.7333333333333, 48.916666666666664, 147.56666666666666, 1226.8666666666666, 50.0, 1200.7666666666667, 23602.216666666667, 2015.2333333333333, 207.33333333333334, 3506.616666666667, 1353.0333333333333, 1203.6833333333334, 1212.6333333333334, 625.85, 11.833333333333334, 16.6, 49.88333333333333, 2763.7666666666664, 3135.6, 2752.383333333333, 1744.0333333333333, 2304.366666666667, 893.5666666666667, 9329.983333333334, 1658.1, 2453.0, 1645.5666666666666]) # period = np.log(period).astype(int) if type(trace) == list: print(trace) else: print(trace.tolist()) def update(server, link, job_trace, job_load, bandwidth, job_ps, ce): release = 0 workload = 0 for i in range(len(bandwidth)): job = job_trace.get() load = job_load.get() ps = job_ps.get() load[2] += 1 if load[0] > 0 and load[1] <= 0: load[0] -= 1 if load[0] >= 0: workload += 1 load[1] = 1 else: if bandwidth[i] == 0: load[1] = 0 load[0] -= 1 if load[0] >= 0: workload += 1 else: load[1] -= bandwidth[i] if load[0] <= 0 and load[1] <= 0: for p in job: server[p[0]] -= p[1] release += p[1] if len(job) > 1: link[p[0]] -= 1 if ps != -1: link[ps] -= 1 ce.append(load[3]/load[2]) else: job_trace.put(job) job_load.put(load) job_ps.put(ps) return release, workload def linear_evaluation(server, link, job_trace, job_ps): m = job_trace.qsize() n = len(server) bd = [] for x in range(m): bd.append([0,1]) c = np.array([-1 for x in range(m)]) A_ub = [[0 for x in range(m)] for x in range(n)] B_ub = [1 for x in range(n)] A_eq = [[0 for x in range(m)]] B_eq = [0] job_link = [1 for x in range(m)] for i in range(m): job = job_trace.get() job_trace.put(job) ps = job_ps.get() job_ps.put(ps) if len(job) > 1: for p in job: A_ub[p[0]][i] += 1 job_link[i] = max(job_link[i], link[p[0]]) else: job_link[i] = 0 if ps != -1: A_ub[ps][i] += 1 job_link[i] = max(job_link[i], link[ps]) for i in range(m): if job_link[i] > 0: tmp = [0 for x in range(m)] tmp[i] = -1*job_link[i] A_ub.append(tmp) B_ub.append(-1) else: tmp = [0 for x in range(m)] tmp[i] = 1 A_eq.append(tmp) B_eq.append(0) res = op.linprog(c, np.array(A_ub), np.array(B_ub), np.array(A_eq), np.array(B_eq), bounds=bd) # print(res['x']) num = 0 sums = 0.0 for x in res['x']: # if x > 0: # sums += x # num += 1 if x > 1: print("warning!") if x > 0: sums += 1/x num += 1 else: sums += 0 num += 1 if num > 0: avg = sums/num else: avg = 0 # print(avg) return avg, res['x'] def bw_evaluation(server, tmp_job, job_trace, job_ps): m = job_trace.qsize() n = len(server) job_link = [[] for x in range(m)] server_link = [[] for x in range(n)] job_bw = [[0.0, 0.0] for x in range(m)] server_bw = [1.0 for x in range(n)] alloc = 0 pta = PTA for i in range(m): job = job_trace.get() job_trace.put(job) ps = job_ps.get() job_ps.put(ps) if ps != -1: job_link[i].append(-1*ps-1) server_link[ps].append(-1*i-1) for p in job: job_link[i].append(p[0]) server_link[p[0]].append(i) else: alloc += 1 if len(tmp_job) > 1: m += 1 job_link.append([]) job_bw.append([0.0, 0.0]) for p in tmp_job: job_link[m-1].append(p[0]) server_link[p[0]].append(m-1) # stage 1 for i in range(n): min_bw = 1.1 bottle = -1 for j in range(n): if server_bw[j] > 0 and len(server_link[j]) > 0 and server_bw[j]/len(server_link[j]) < min_bw: bottle = j min_bw = server_bw[j]/len(server_link[j]) if bottle == -1: break bw = server_bw[bottle]/len(server_link[bottle]) if pta/(m-alloc) < bw: # step into stage two break for j in server_link[bottle]: jdx = j if jdx < 0: jdx = -1*(jdx + 1) if job_bw[jdx][0] > 0: continue job_bw[jdx][0] = bw alloc += 1 pta -= bw for s in job_link[jdx]: sdx = s if sdx < 0: sdx = -1*(sdx + 1) if sdx != bottle: if s < 0: server_link[sdx].remove(-1*jdx-1) else: server_link[sdx].remove(jdx) server_bw[sdx] -= bw server_link[bottle] = [] if alloc == m: break # stage 2 if alloc < m: a = pta / (m - alloc) for i in range(m): if job_bw[i][0] == 0 and len(job_link[i]) > 1: job_bw[i][0] = a for s in job_link[i]: sdx = s if sdx < 0: sdx = -1 * (sdx + 1) server_bw[sdx] -= a for i in range(n): min_bw = 1.1 bottle = -1 for j in range(n): x = 0 for k in server_link[j]: if k >= 0: x += 1 else: kdx = -1*(k+1) x += len(job_link[kdx]) - 1 if server_bw[j] > 0 and x > 0 and server_bw[j]/x < min_bw: bottle = j min_bw = server_bw[j]/x if bottle == -1: break bw = min_bw for j in server_link[bottle]: jdx = j if jdx < 0: jdx = -1*(jdx + 1) if job_bw[jdx][1] > 0: continue job_bw[jdx][1] = bw alloc += 1 for s in job_link[jdx]: sdx = s if sdx < 0: sdx = -1*(sdx + 1) if s < 0: if sdx != bottle: server_link[sdx].remove(-1*jdx-1) server_bw[sdx] -= bw * (len(job_link[jdx])-1) else: if sdx != bottle: server_link[sdx].remove(jdx) server_bw[sdx] -= bw server_link[bottle] = [] if alloc == m: break bandwidth = [x[0]+x[1] for x in job_bw] num = 0 sums = 0.0 for x in bandwidth: # if x > 0: # sums += x # num += 1 if x > 1: print("warning!") if x > 0: sums += x num += 1 else: sums += 0 # num += 1 if num > 0: avg = sums / num else: avg = 0 # print(avg) return avg, bandwidth, server_bw def gpu_balance(server, link, gpus, job_trace, job_ps): n = len(server) ls = [] flag = 0 job = [] tmp = [] rest = gpus for i in range(n): tmp.append([i, server[i]]) tmp = sorted(tmp, key=lambda x: x[1]) # tmp.reverse() for i in range(n): usage = min(rest, PER_GPU - tmp[i][1]) server[tmp[i][0]] += usage rest -= usage if usage > 0: job.append([tmp[i][0], usage]) if usage > 0 and usage != gpus: link[tmp[i][0]] += 1 flag = 1 if rest == 0: break if flag == 1: for i in range(n): ls.append([i, link[i]]) ls = sorted(ls, key=lambda x: x[1]) job_ps.put(ls[0][0]) link[ls[0][0]] += 1 else: job_ps.put(-1) job_trace.put(job) def Tetris(server, link, gpus, job_trace, job_ps): ls = [] n = len(server) flag = 0 job = [] tmp = [] rest = gpus for i in range(n): tmp.append([i, server[i]*gpus/PER_GPU/PER_GPU+link[i]*1]) tmp = sorted(tmp, key=lambda x: x[1]) for i in range(n): usage = min(rest, PER_GPU - server[tmp[i][0]]) server[tmp[i][0]] += usage rest -= usage if usage > 0: job.append([tmp[i][0], usage]) if usage > 0 and usage != gpus: link[tmp[i][0]] += 1 flag = 1 if rest == 0: break if flag == 1: for i in range(n): ls.append([i, link[i]]) ls = sorted(ls, key=lambda x: x[1]) job_ps.put(ls[0][0]) link[ls[0][0]] += 1 else: job_ps.put(-1) job_trace.put(job) def Optimus(server, link, gpus, job_trace, job_ps): n = len(server) ls = [] flag = 0 job = [] tmp = [] rest = gpus for i in range(n): tmp.append([i, server[i]]) tmp = sorted(tmp, key=lambda x: x[1]) # tmp.reverse() idx = [] for i in range(n): usage = min(rest, PER_GPU - tmp[i][1]) idx.append(tmp[i]) rest -= usage if rest == 0: break allocate = [0 for x in range(len(idx))] k = 0 for i in range(gpus): while True: if allocate[k % len(idx)] < PER_GPU - idx[k % len(idx)][1]: allocate[k % len(idx)] += 1 k += 1 break else: k += 1 for i in range(len(idx)): server[idx[i][0]] += allocate[i] if allocate[i] > 0: job.append([idx[i][0], allocate[i]]) if 0 < allocate[i] < gpus: link[idx[i][0]] += 1 flag = 1 if flag == 1: for i in range(n): ls.append([i, link[i]]) ls = sorted(ls, key=lambda x: x[1]) job_ps.put(ls[0][0]) link[ls[0][0]] += 1 else: job_ps.put(-1) job_trace.put(job) def link_balance(server, link, gpus, job_trace, job_ps): n = len(server) tmp = [] ls = [] flag = 0 job = [] rest = gpus for i in range(n): tmp.append([i, link[i]]) tmp = sorted(tmp, key=lambda x: x[1]) for i in range(n): usage = min(rest, PER_GPU - server[tmp[i][0]]) server[tmp[i][0]] += usage rest -= usage if usage > 0: job.append([tmp[i][0], usage]) if usage > 0 and usage != gpus: link[tmp[i][0]] += 1 flag = 1 if rest == 0: break if flag == 1: for i in range(n): ls.append([i, link[i]]) ls = sorted(ls, key=lambda x: x[1]) job_ps.put(ls[0][0]) link[ls[0][0]] += 1 else: job_ps.put(-1) job_trace.put(job) def least_fragment(server, link, gpus, job_trace, job_ps): n = len(server) tmp = [] ls = [] flag = 0 job = [] rest = gpus for i in range(n): tmp.append([i, server[i]]) tmp = sorted(tmp, key=lambda x: x[1]) tmp.reverse() for i in range(n): usage = min(rest, PER_GPU - tmp[i][1]) server[tmp[i][0]] += usage rest -= usage if usage > 0: job.append([tmp[i][0], usage]) if usage > 0 and usage != gpus: link[tmp[i][0]] += 1 flag = 1 if rest == 0: break if flag == 1: for i in range(n): ls.append([i, link[i]]) ls = sorted(ls, key=lambda x: x[1]) job_ps.put(ls[0][0]) link[ls[0][0]] += 1 else: job_ps.put(-1) job_trace.put(job) def packing(server, link, gpus, job_trace, job_ps): n = len(server) # shadow link computing shadow_link = [0.0 for x in range(n)] empty = 0 up_link = 0 for i in range(n): shadow_link[i] = link[i] if server[i] < PER_GPU: up_link = max(up_link, link[i]) if link[i] == 0: empty = 1 # m = job_trace.qsize() # for i in range(m): # job = job_trace.get() # job_trace.put(job) # ps = job_ps.get() # job_ps.put(ps) # if ps == -1: # continue # max_link = link[ps] # for j in job: # max_link = max(max_link, link[j[0]]) # for j in job: # if link[j[0]] == 1 and max_link > 1: # shadow_link[j[0]] = 0 avg, bandwidth, sbw = bw_evaluation(server, [], job_trace, job_ps) ls = [] # connectionless solution if gpus <= PER_GPU: min_del = sys.maxsize min_link = 0 min_bw = 0 idx = -1 for i in range(n): if PER_GPU - server[i] == gpus: idx = i break if PER_GPU - server[i] > gpus: if min_del > PER_GPU - server[i] - gpus: min_del = PER_GPU - server[i] - gpus min_link = link[i] min_bw = sbw[i] idx = i elif min_del == PER_GPU - server[i] - gpus: if min_link < link[i]: min_del = PER_GPU - server[i] - gpus min_link = link[i] min_bw = sbw[i] idx = i elif min_link == link[i]: if min_bw < sbw[i]: min_del = PER_GPU - server[i] - gpus min_link = link[i] min_bw = sbw[i] idx = i if idx != -1: server[idx] += gpus job_trace.put([[idx, gpus]]) job_ps.put(-1) return # connection-oriented solution dp = [[DBL_MIN for x in range(gpus+PER_GPU+1)] for j in range(up_link+1)] trace = [[[[-1, -1] for x in range(gpus+PER_GPU+1)]for x in range(n)]for j in range(up_link+1)] for i in range(up_link+1): dp[i][0] = 1/(i+1) for i in range(n): w = PER_GPU - server[i] # v = -1 * (1 - 1 / (shadow_link[i] + 1)) # v = 0 # if shadow_link[i] > 0: # v = -shadow_link[i]*(1/shadow_link[i]-1/(shadow_link[i]+1)) v = sbw[i] - (1/(link[i]+1)) l = link[i] for s in range(up_link + 1): for j in range(gpus+PER_GPU, -1, -1): trace[s][i][j] = trace[s][i-1][j] if w == 0: continue for s in range(up_link, -1, -1): wl = max(s, l) for j in range(gpus+PER_GPU, w-1, -1): if dp[s][j-w] != DBL_MIN and dp[wl][j] < dp[s][j-w] + v - 1/(s+1) + 1/(wl+1): dp[wl][j] = dp[s][j-w] + v - 1/(s+1) + 1/(wl+1) trace[wl][i][j] = [i, s] # decide solution ans = -1 level = DBL_MIN state = 0 for s in range(up_link + 1): if dp[s][gpus] > level: # exist exact solution ans = gpus level = dp[s][gpus] state = s if ans == -1 or empty: for s in range(up_link + 1): for i in range(gpus+1, gpus+PER_GPU+1): if dp[s][i] == DBL_MIN: continue tmp = dp[s][i] if tmp > level: ans = i level = tmp state = s # print("gain: ", level) job = [] cur_w = ans row = n-1 while cur_w > 0: idx = trace[state][row][cur_w][0] pre_s = trace[state][row][cur_w][1] usage = PER_GPU - server[idx] job.append([idx, usage]) cur_w -= usage state = pre_s row = idx - 1 if ans > gpus: job = sorted(job, key=lambda x: x[1], reverse=True) for i in range(len(job)): if job[i][1] >= ans-gpus: job[i][1] -= ans-gpus break for j in job: server[j[0]] += j[1] link[j[0]] += 1 # compute best ps avg, bandwidth, sbw = bw_evaluation(server, job, job_trace, job_ps) for i in range(n): shadow_link[i] = link[i] m = job_trace.qsize() for i in range(m): ejob = job_trace.get() job_trace.put(ejob) ps = job_ps.get() job_ps.put(ps) if ps == -1: continue max_link = link[ps] for j in ejob: max_link = max(max_link, link[j[0]]) for j in ejob: if link[j[0]] == 1 and max_link > 1: shadow_link[j[0]] = 0 if link[ps] == 1 and max_link > 1: shadow_link[ps] = 0 for i in range(n): ls.append([i, 1 - sbw[i], link[i]+shadow_link[i]]) ls = sorted(ls, key=lambda x: [x[1], x[2]]) job_ps.put(ls[0][0]) # print(ls[0][1]) link[ls[0][0]] += 1 job_trace.put(job) monitor = [] gce = [] for fn in [packing, Optimus, Tetris, gpu_balance, link_balance, least_fragment]: job_trace = queue.Queue() job_load = queue.Queue() job_ps = queue.Queue() if READ_INF: print(fn.__name__) server = [0 for x in range(MACHINE)] link = [0 for x in range(MACHINE)] gpu_sum = MACHINE * PER_GPU cur_sum = 0 res = [] term = 0 idx = 0 avg = 0 bandwidth = [] t = 0 workload = 0 progress = [] comm_load = [] band_sum = [] ce = [] while True: while idx < len(trace) and trace[idx] == 0: idx += 1 if idx < len(trace): t = trace[idx] a, b = update(server, link, job_trace, job_load, bandwidth, job_ps, ce) cur_sum -= a workload += b progress.append(workload) if idx < len(trace) and cur_sum + t <= gpu_sum: fn(server, link, t, job_trace, job_ps) job_load.put([period[idx], COM_TIME, 0, period[idx]]) cur_sum += t idx += 1 # print(cur_sum, np.sum(np.array(server))) if job_trace.qsize() > 0: # avg, bandwidth = linear_evaluation(server, link, job_trace, job_ps) avg, bandwidth, sbw = bw_evaluation(server, [], job_trace, job_ps) if fn.__name__ == "packing": if link[2]: monitor.append(1-sbw[2]) else: monitor.append(0) band_sum.append(np.sum(bandwidth)) # print(link) # print(bandwidth) res.append(avg) cur_load = 0.0 for i in range(job_load.qsize()): ps = job_ps.get() job_ps.put(ps) load = job_load.get() job_load.put(load) if ps != -1: cur_load += max(load[0], 0.0)+max(load[1], 0.0) comm_load.append(cur_load) if job_trace.qsize() == 0: break term += 1 # if READ_INF: # print(band_sum) gce.append(np.average(np.array(ce))) # plt.plot(progress, label=fn.__name__) # print(server) # print(link) print(term) num = 0 sums = 0 avg = 0 for x in res: if x > 0: sums += x num += 1 if num > 0: avg = sums / num else: avg = 0 if READ_INF: print(avg) # print(job_trace) # plt.bar([x.__name__ for x in [packing, gpu_balance, link_balance, least_fragment, Optimus, Tetris]], gce, color=['r','g','b', 'c', 'm', 'y']) # plt.xticks(rotation=45) monitor = [0] + monitor + [0] plt.plot(monitor) plt.legend() plt.show()
from adobject import * from pyadexceptions import InvalidObjectException, invalidResults import aduser, adcomputer, addomain, addomain, adgroup, adobject, pyadconstants, adcontainer def from_cn(common_name, search_base=None, options={}): try: q = ADObject.from_cn(common_name, search_base, options) q.adjust_pyad_type() return q except invalidResults: return None def from_dn(distinguished_name, options={}): try: q = ADObject.from_dn(distinguished_name,options) q.adjust_pyad_type() return q except InvalidObjectException: return None def from_guid(cls, guid, options={}): "Generates ADObject based on GUID" try: guid = "<GUID=%s>" % guid.strip('}').strip('{') q = ADObject.from_dn(guid, options) q.adjust_pyad_type() return q except InvalidObjectException: return None
# 3.1.1.5 n = int(input('Input for n greater or equal to 100: ')) print(n >= 100) # 3.1.1.9 n1 = int(input('Enter the first number: ')) n2 = int(input('Enter the second number: ')) n3 = int(input('Enter the third number: ')) if n1 > n2 and n1 > n3: largest = n1 elif n2 > n1 and n2 > n3: largest = n2 elif n3 > n1 and n3 > n2: largest = n3 print('The largest number is:', largest) # 3.1.1.10 print('Largest with max():', max(n1, n2, n3)) # 3.1.1.11 # TBC(ontinued)
import numpy as np import matplotlib.pyplot as plt class NSG: def __init__(self, epsilon, alpha, delta, tasks, arms): self.epsilon = epsilon self.alpha = alpha self.beta = 1 self.delta = delta self.n = tasks self.k = arms self.Q = [([0]*self.k) for i in range(self.n)] #self.Q2 = [[([0]*self.k) for i in range(self.n)] for y in range(self.delta)] self.VQ = [([0]*self.k) for i in range(self.n)] self.CQ = [([0]*self.k) for i in range(self.n)] self.VN = [([0]*self.k) for i in range(self.n)] self.CN = [([0]*self.k) for i in range(self.n)] self.VR = [0]*self.delta self.CR = [0]*self.delta def RW(self, x): for i in range(len(x)): x[i]=x[i]+np.random.randint(-1,2) return x def V(self): for i in range(self.delta): for j in range(self.n): self.Q[j] = self.RW(self.Q[j]) #self.Q2[i][j] = self.Q[j] tmp = np.random.random() if tmp <= self.epsilon: arm = np.random.randint(0, self.k) else: arm = np.argmax(self.VQ[j]) R = self.Q[j][arm] self.VN[j][arm] = self.VN[j][arm] + 1 self.VQ[j][arm] = self.VQ[j][arm] + 1/self.VN[j][arm] * (R - self.VQ[j][arm]) self.VR[i] = self.VR[i] + R/self.n if i % 100 == 0: print(i) def C(self): self.Q = [([0]*self.k) for i in range(self.n)] for i in range(self.delta): for j in range(self.n): self.Q[j] = self.RW(self.Q[j]) tmp = np.random.random() if tmp <= self.epsilon: arm = np.random.randint(0, self.k) else: arm = np.argmax(self.CQ[j]) R = self.Q[j][arm] self.CN[j][arm] = self.CN[j][arm] + 1 self.CQ[j][arm] = self.CQ[j][arm] + self.alpha * (R - self.CQ[j][arm]) self.CR[i] = self.CR[i] + R/self.n if i % 100 == 0: print(i) def plot(self): plt.plot(self.VR, color='red', label='V') plt.plot(self.CR, color='blue', label='C') plt.legend() plt.show() if __name__ == "__main__": r = NSG(0.1, 0.1, 10000, 500, 10) r.V() r.C() r.plot()
from string import digits, ascii_lowercase, ascii_uppercase from random import choice as rand_choice from secrets import choice as sec_choice def slug_generator(size: int = 10, char: str = digits + ascii_uppercase + ascii_lowercase) -> str: return "".join(rand_choice(char) for _ in range(size)) def otp_generator(size: int = 6, char: str = digits) -> str: return "".join(sec_choice(char) for _ in range(size))
#!/usr/bin/env python3 from aws_cdk import core from {{cookiecutter.alexa_skill_name_slug}}_cdk.cdk_stack import AlexaCdkStack as CdkStack app = core.App() CdkStack( app, "{{cookiecutter.alexa_skill_cdk_stack_name}}", stack_name = "{{cookiecutter.alexa_skill_cdk_stack_name}}", description = "Lambda / DynamoDB stack for {{cookiecutter.alexa_skill_name}}" ) app.synth()