content
stringlengths
5
1.05M
# coding:utf-8 # -- standard library --------------------------------------------------------- import json import unittest # --Modules to test ----------------------------------------------------------- from VestaService.Report import WorkerReport, TaskReport class UtilsTests(unittest.TestCase): def test_WorkerReport_update(self): wr = WorkerReport(nb_tasks=3) tr = TaskReport(doc_id="secret", tool="screwdriver") tr.set_succeeded() wr.update(tr) self.assertEqual(wr.nb_success, 1, msg="Error by updating a worker report " "with a successful task report.") tr.set_failed(code=444, message="No screwdriver in this drawer.") wr.update(tr) self.assertEqual(wr.nb_failures, 1, msg="Error by updating a worker report " "with a failed task report.") self.assertEqual(len(wr.detail), 2, msg="Error by updating a worker report " "with a failed task report. " " Wrong number of tasks.") def test_WorkerReport_tojson(self): wr = WorkerReport(nb_tasks=2) tr = TaskReport(doc_id="secret", tool="screwdriver") tr.set_succeeded() wr.update(tr) tr2 = TaskReport(doc_id="secret", tool="screwdriver") tr2.set_failed(code=444, message="No screwdriver in this drawer.") wr.update(tr2) wr.set_succeeded() wr.update_completion_ratio() attended_wrjson_str = ('{"nb_success": 1, "nb_ignores": 0, ' '"nb_failures": 1, "completion_ratio" : 1.0, ' '"nb_tasks" : 2, "status" : "success",' '"detail": [' '{"doc_id" : "secret", "step" : "screwdriver", ' '"status" : "success"},' '{"doc_id" : "secret", "step" : "screwdriver", ' '"status" : "failure", "code":444, ' '"message" : "No screwdriver in this drawer."}' ']' '}') wrjson = wr.to_json() self.assertEqual(json.JSONDecoder().decode(wrjson), json.JSONDecoder().decode(attended_wrjson_str)) def test_WorkerReport_abbreviated_json(self): wr = WorkerReport(nb_tasks=2) tr = TaskReport(doc_id="secret", tool="screwdriver") tr.set_succeeded() wr.update(tr) tr2 = TaskReport(doc_id="secret", tool="screwdriver") tr2.set_failed(code=444, message="No screwdriver in this drawer.") wr.update(tr2) wr.set_succeeded() wr.update_completion_ratio() attended_wrjson_str = ('{"nb_success": 1, "nb_ignores": 0, ' '"nb_failures": 1, "completion_ratio" : 1.0, ' '"nb_tasks" : 2, "status" : "success",' '"full_report_url":"http://mss:1234"' '}') wrjson = wr.abbreviated_json("http://mss:1234") self.assertEqual(json.JSONDecoder().decode(wrjson), json.JSONDecoder().decode(attended_wrjson_str))
#!/usr/bin/env python2.7 # vim : set fileencoding=utf-8 expandtab noai ts=4 sw=4 filetype=python : """ embeddedfactor GmbH 2015 Simple python orchestration with fabric, stitch.datastore and fabtools """ from __future__ import print_function import stitch.datastore from stitch.datastore.utils import resolve from stitch.execution import execute_step class Commands(dict): """A simple dict extension to store command tuples""" def __init__(self, lst): """ With in the constructor a list of python modules names is given. The module must contain the typical stitch command structure. Which means the docstring of the module, option and execute method as well as the docstring of the execution method are important. In the options method the subparser for the arguments of the commands is filled. Execute is executed with all argeuments in the kw args. """ super(Commands, self).__init__() import importlib for cmd in lst: mod = importlib.import_module(cmd) name = getattr(mod, '__name__', cmd).split('.')[-1] doc = getattr(mod, '__doc__', "") options = getattr(mod, 'options', None) funct = getattr(mod, 'execute', None) if funct: self[name] = (doc, options, funct) def add_yaml_command(self, cmd): """Create and register YAML command""" name = cmd.get("name") doc = cmd.get("help", "") description = cmd.get("description", "") args = cmd.get("arguments", {}) obj = dict(cmd) def options(parser): """Get options from yaml file""" for k, kwargs in args.items(): if not kwargs: kwargs = {} parser.add_argument(*k, **kwargs) def execute(): """Execute YAML description""" global_defaults = dict(stitch.datastore.env) global_defaults.update(**resolve(obj.get("defaults", {}), **global_defaults)) execute_step(obj, global_defaults) execute.__doc__ = description self.add_command(name, doc, options, execute) def import_from_yaml(self): """Import all commands from the stitch.datastore datastore""" for cmd in stitch.datastore.env.conf.get("command", {}).values(): self.add_yaml_command(cmd) def add_command(self, name, doc, options, funct): """Adding firther commands""" self[name] = (doc, options, funct) def help(self, name): """Show help of the command with the name name""" if name in self: print(self[name][0]) def execute(self, name): """Execute the command with name name and all the arguments in the kw dict""" return self[name][2]() def parse(self, parser): """Create argparser for all subcommands""" commands = parser.add_subparsers( title='Available Command', help="Available commands", dest='command' ) for key, cmd in self.items(): subparser = commands.add_parser(key, help=cmd[2].__doc__) if cmd[1]: cmd[1](subparser) return commands
# -*- python -*- # This software was produced by NIST, an agency of the U.S. government, # and by statute is not subject to copyright in the United States. # Recipients of this software assume all responsibilities associated # with its operation, modification and maintenance. However, to # facilitate maintenance we ask that before distributing modified # versions of this software, you first contact the authors at # [email protected]. ## TODO 3.1: This file has not been updated to use new (April 2009) ## Progress objects. from ooflib.SWIG.common import mpitools from ooflib.SWIG.common import switchboard from ooflib.common import debug from ooflib.common import primitives from ooflib.common import registeredclass from ooflib.common import utils from ooflib.common.IO import oofmenu from ooflib.common.IO import parameter from ooflib.common.IO import reporter from ooflib.SWIG.engine import cfiddlenodesbaseParallel from ooflib.engine import skeletoncontext from ooflib.engine import deputy from ooflib.engine import skeletonmodifier from ooflib.engine.IO import skeletonIPC from ooflib.engine.IO import skeletonmenu import math import random import string import sys import time cfiddler = cfiddlenodesbaseParallel _rank = mpitools.Rank() _size = mpitools.Size() def _apply(self, oldskeleton, context): if _rank == 0: pBar = progressbar.getProgress() pBar.set_message(self.intro) return oldskeleton.deputyCopy() def _postProcess(self, context): if _rank == 0: pBar = progressbar.getProgress() pBar.set_message(self.header) skeleton = context.getObject() before = mpitools.Allreduce_DoubleSum( skeleton.energyTotal(self.criterion.alpha)) if _rank == 0: if self.pbar_type == "continuous": n = self.iteration.iterations self.count = 0 while self.iteration.goodToGo(): self.count += 1 # the context to acquires the writing persmissions # inside coreProcess. mpitools.Barrier() self.coreProcess_parallel(context) self.updateIteration_parallel() if _rank == 0: if pBar.query_stop(): pBar.set_failure() pBar.set_message("Failed") # Sending a break signal mpitools.Isend_Bool(False, range(1,_size)) break else: if self.pbar_type == "continuous": pBar.set_progress(1.0*self.count/n) # does this ever get displayed? pBar.set_message("%s%d/%d" % (self.header, self.count, n)) # Sending a continue signal mpitools.Isend_Bool(True, range(1,_size)) else: if not mpitools.Recv_Bool(0): break switchboard.notify("skeleton nodes moved", context) if _rank == 0: if pBar.query_stop(): # or pBar.get_success() <0: pBar.set_failure() pBar.set_message("Failed") mpitools.Isend_Bool(False, range(1,_size)) return else: mpitools.Isend_Bool(True, range(1,_size)) else: if not mpitools.Recv_Bool(0): return mpitools.Barrier() after = mpitools.Allreduce_DoubleSum( skeleton.energyTotal(self.criterion.alpha)) # Reporting to the message window if _rank == 0: if before: rate = 100.0*(before-after)/before else: rate = 0.0 diffE = after - before reporter.report("%s deltaE = %10.4e (%6.3f%%)" % (self.outro, diffE, rate)) ################################################################# ##def _coreProcess(self, context): ## global _rank ## fiddler = FiddleNodesParallel(context, ## self.criterion, ## self.targets, ## self.T, ## self.movedPosition) ## context.begin_writing() ## try: ## fiddler.play() ## # Information for upate ## self.deltaE = fiddler.deltaE ## self.totalE = fiddler.totalE ## self.nok = fiddler.nok ## self.nbad = fiddler.nbad ## finally: ## context.end_writing() ## if _rank == 0: ## switchboard.notify("redraw") ################################################################# def _annealCoreProcess(self, context): fiddler = AnnealParallel(context, self.criterion, self.targets, self.T, self.movedPosition) _commonCoreProcess(self, context, fiddler) def _smoothCoreProcess(self, context): fiddler = SmoothParallel(context, self.criterion, self.targets, self.T, self.movedPosition) _commonCoreProcess(self, context, fiddler) def _snapCoreProcess(self, context): fiddler = SnapParallel(context, self.criterion, self.targets, self.T, #trivial self.movedPosition) _commonCoreProcess(self, context, fiddler) def _commonCoreProcess(method, context, fiddler): global _rank context.begin_writing() try: fiddler.play() # Information for upate method.deltaE = fiddler.deltaE method.totalE = fiddler.totalE method.nok = fiddler.nok method.nbad = fiddler.nbad finally: context.end_writing() if _rank == 0: switchboard.notify("redraw") ################################################################# def _updateIteration(self): deltaE = mpitools.Allreduce_DoubleSum(self.deltaE) totalE = mpitools.Allreduce_DoubleSum(self.totalE) nok = mpitools.Allreduce_IntSum(self.nok) nbad = mpitools.Allreduce_IntSum(self.nbad) if nok+nbad > 0: self.iteration.update(deltaE, totalE, (1.0*nok)/(nok+nbad), self.count) else: self.iteration.update(None, None, None, self.count) # Custom debug message function with message ID report_id = 0 def REPORT(*args): global _rank global report_id report_id += 1 values =["###"]+[_rank]+["("]+[report_id]+[")"]+[":"]+list(args) print string.join(map(str, values), ' ') sys.stdout.flush() ################################################################# # Now the schedule class Scheduler: def __init__(self, nnodes, allnodes, allshared, fiddler): global _size self.nnodes = nnodes self.allnodes = allnodes self.allshared = allshared self.fiddler = fiddler self.works = [[] for i in range(_size)] self.pointers = [0]*_size # Current node (list) index self.completed = [False]*_size # Current work size def done(self, i): return self.pointers[i] == self.nnodes[i] def completedTurn(self, i): return self.completed[i] def completedTurns(self, ii): # True, if any. for i in ii: if self.completedTurn(i): return True return False def __call__(self, rank): global _rank global _size while self.pointers != self.nnodes: for i in range(_size): if self.done(i) or self.completedTurn(i): continue # Add something to the queue node = self.allnodes[i][self.pointers[i]] shared = self.allshared[i][self.pointers[i]] # Shared or not if shared: # Do the share-holders first if self.completedTurns(shared): # If any of shared holders finished its turn, # the node should be done in the later turn. continue for s in shared: # passive work self.works[s].append((self.fiddler.passiveProcess, i)) self.completed[s] = True self.works[i].append((self.fiddler.activeProcess, node)) else: self.works[i].append((self.fiddler.soloProcess, node)) self.completed[i] = True self.pointers[i] += 1 # Filling the void for i in range(_size): if not self.completedTurn(i): self.works[i].append(None) self.completed = [False]*_size return self.works[rank] ################################################################# # FiddleNodesParallel class will do the majority of fiddling class FiddleNodesParallel: def __init__(self, context, criterion, targets, T, mover): self.context = context self.skeleton = context.getObject() self.criterion = criterion self.targets = targets self.T = T self.mover = mover self.alpha = criterion.alpha self.totalE = self.skeleton.energyTotal(self.alpha) # initial E self.deltaE = 0. # improvement self.nok = 0 # successful ones self.nbad = 0 # unsuccessful ones # Data communication self.move_channel = 1 self.illegal_channel = 2 self.report_channel = 3 self.verdict_channel = 4 # Initialize MPI datatype for communication cfiddler.tuneFiddle() def ownNode(self, node): global _rank return _rank == node.master() def passiveProcess(self, stopper): self.mover.passive(self.skeleton, stopper) # Non-trivial for Smooth moveData = cfiddler.Recv_MoveData(stopper, tag=self.move_channel) node = self.skeleton.getNodeWithIndex(moveData.index) ## REPORT("HELPING", stopper, "FOR NODE #", node.remoteIndex(stopper)) # recording energy-before (should this use periodic neighbor Elements?) neighbors = node.aperiodicNeighborElements(self.skeleton) reportData = [el.energyHomogeneity(self.skeleton) for el in neighbors] reportData += [el.energyShape() for el in neighbors] # move to the position -- self.skeleton is a DeputySkeleton self.skeleton.moveNodeTo( node, primitives.Point(moveData.x, moveData.y)) # Check & send illegality mpitools.Send_Bool(bool(node.illegal()), stopper, tag=self.illegal_channel) # if illegal in any processes, it should be aborted if mpitools.Recv_Bool( stopper, tag=self.verdict_channel): # True:continue, False:abort # recording energy-after reportData += [el.energyHomogeneity(self.skeleton) for el in neighbors] reportData += [el.energyShape() for el in neighbors] # reporting mpitools.Send_DoubleVec(reportData, stopper, tag=self.report_channel) # receiving verdivt, True:stay, False:move back if not mpitools.Recv_Bool(stopper, self.verdict_channel): self.skeleton.moveNodeBack(node) else: # Illegal! self.skeleton.moveNodeBack(node) ## REPORT("DONE HELPING", moveData.master, " ON NODE #", ## node.remoteIndex(moveData.master)) def activeProcess(self, index): node = self.skeleton.getNodeWithIndex(index) change = deputy.DeputyProvisionalChanges() move_to = self.mover(self.skeleton, node) change.moveNode(node, move_to, self.skeleton) # moved the node # Building data to be sent to sharers. shared = node.sharedWith() nodeMoves = [] for s in shared: nodeMoves.append( cfiddler.create_movedata( _rank, # master process node.remoteIndex(s), # remote index move_to.x, # x move_to.y # y )) # Sending move data to shared processes cfiddler.Isend_MoveData(nodeMoves, shared, tag=self.move_channel) ## REPORT("STARTED WORKING ON NODE #", index, "WITH", shared) # receiving illegality from shared processes illegal = mpitools.Irecv_Bools(shared, tag=self.illegal_channel) if True in illegal or change.illegal(self.skeleton): self.moveBack(node) return else: # continue mpitools.Isend_Bool(True, shared, tag=self.verdict_channel) # Receiving report from shared processes reports = mpitools.Irecv_DoubleVecs(shared, tag=self.report_channel) homog0 = [] shape0 = [] homog1 = [] shape1 = [] for r in reports: n = len(r)/4 homog0 += r[:n] shape0 += r[n:2*n] homog1 += r[2*n:3*n] shape1 += r[3*n:4*n] change.augmentData(homog0, homog1, shape0, shape1) # Now, the decision time bestchange = self.criterion([change], self.skeleton) if bestchange is not None: self.stay(node, bestchange) elif self.T > 0. and not self.criterion.hopeless(): diffE = change.deltaE(self.skeleton, self.alpha) if math.exp(-diffE/self.T) > random.random(): self.stay(node, change) else: self.moveBack(node) else: self.moveBack(node) ## REPORT("DONE WORKING ON NODE #", index, "WITH", shared) def stay(self, node, change): self.nok += 1 self.deltaE += change.deltaE(self.skeleton, self.alpha) change.accept(self.skeleton) if node.isShared(): mpitools.Isend_Bool(True, node.sharedWith(), tag=self.verdict_channel) def moveBack(self, node): self.nbad += 1 if node.isShared(): mpitools.Isend_Bool(False, node.sharedWith(), tag=self.verdict_channel) def soloProcess(self, index): ## REPORT("WORKING SOLO ON NODE #", index) node = self.skeleton.getNodeWithIndex(index) change = deputy.DeputyProvisionalChanges() change.moveNode(node, self.mover(self.skeleton, node), self.skeleton) # moved # Now, the decision time bestchange = self.criterion([change], self.skeleton) if bestchange is not None: self.stay(node, bestchange) elif self.T > 0. and not self.criterion.hopeless(): diffE = change.deltaE(self.skeleton, self.alpha) if math.exp(-diffE/self.T) > random.random(): self.stay(node, change) else: self.moveBack(node) else: self.moveBack(node) ## REPORT("DONE SOLO ON NODE #", index) def createWorkOrder(self, activeNodes): global _rank global _size # First the data collection nnodes = mpitools.Allgather_Int(len(activeNodes)) allnodes = mpitools.Allgather_IntVec( [n.getIndex() for n in activeNodes], size_known=nnodes) allsignatures = mpitools.Allgather_IntVec( [n.nshared() for n in activeNodes], size_known=nnodes) nshared = [reduce(lambda x,y: x+y, s) for s in allsignatures] myshared = [n.sharedWith() for n in activeNodes] myshared = reduce(lambda x,y: x+y, myshared) allshared = mpitools.Allgather_IntVec(myshared, size_known=nshared) def listrize(list, signature): nsig = len(signature) count = 0 output = [[] for i in range(nsig)] for i in range(nsig): for j in range(signature[i]): output[i].append(list[count]) count += 1 return output for i in range(len(allshared)): allshared[i] = listrize(allshared[i], allsignatures[i]) scheduler = Scheduler(nnodes, allnodes, allshared, self) self.mywork = scheduler(_rank) def play(self): global _rank global _size # Get the nodes & shuffle them activeNodes = self.targets(self.context) activeNodes = filter(self.ownNode, activeNodes) random.shuffle(activeNodes) self.createWorkOrder(activeNodes) mpitools.Barrier() for work in self.mywork: if work is not None: # work = (callback function, arguments) work[0](work[1]) mpitools.Barrier() skeletonIPC.collect_pieces(self.skeleton) self.skeleton.timestamp.increment() ################################################################# class AnnealParallel(FiddleNodesParallel): pass ################################################################# class SmoothParallel(FiddleNodesParallel): pass ################################################################# class SnapParallel(FiddleNodesParallel): def passiveProcess(self, stopper): # the node to move myindex = mpitools.Recv_Int(stopper, tag=self.move_channel) node = self.skeleton.getNodeWithIndex(myindex) self.mover.passive(self.skeleton, node, stopper) # getting no. of move candidates nmoves = mpitools.Recv_Int(stopper, tag=self.move_channel) for i in range(nmoves): moveData = cfiddler.Recv_MoveData(stopper, tag=self.move_channel) ## REPORT("HELPING", stopper, "FOR NODE #", node.remoteIndex(stopper)) # recording energy-before neighbors = node.aperiodicNeighborElements(self.skeleton) reportData = [el.energyHomogeneity(self.skeleton) for el in neighbors] reportData += [el.energyShape() for el in neighbors] # move to the position -- self.skeleton is a DeputySkeleton self.skeleton.moveNodeTo( node, primitives.Point(moveData.x, moveData.y)) # Check & send illegality mpitools.Send_Bool(bool(node.illegal()), stopper, tag=self.illegal_channel) # if illegal in any processes, it should be aborted if mpitools.Recv_Bool( stopper, tag=self.verdict_channel): # True:continue, False:abort # recording energy-after reportData += [el.energyHomogeneity(self.skeleton) for el in neighbors] reportData += [el.energyShape() for el in neighbors] # reporting mpitools.Send_DoubleVec(reportData, stopper, tag=self.report_channel) # reset for the next one self.skeleton.moveNodeBack(node) ## REPORT("DONE HELPING", moveData.master, " ON NODE #", ## node.remoteIndex(moveData.master)) # receiving verdivt, True:stay, False:move back if mpitools.Recv_Bool(stopper, self.verdict_channel): x, y = mpitools.Recv_DoubleVec(stopper, tag=self.move_channel, size=2) self.skeleton.moveNodeTo(node, primitives.Point(x, y)) def activeProcess(self, index): node = self.skeleton.getNodeWithIndex(index) shared = node.sharedWith() # send the node (remote) index for s in shared: mpitools.Send_Int(node.remoteIndex(s), s, self.move_channel) move_candidates = self.mover.active(self.skeleton, node) mpitools.Isend_Int(len(move_candidates), shared, tag=self.move_channel) changes = [] for mc in move_candidates: change = deputy.DeputyProvisionalChanges() change.moveNode(node, mc, self.skeleton) # moved the node # Building data to be sent to sharers. nodeMoves = [] for s in shared: nodeMoves.append( cfiddler.create_movedata( _rank, # master process node.remoteIndex(s), # remote index mc.x, # x mc.y # y )) # Sending move data to shared processes cfiddler.Isend_MoveData(nodeMoves, shared, tag=self.move_channel) ## REPORT("STARTED WORKING ON NODE #", index, "WITH", shared) # receiving illegality from shared processes illegal = mpitools.Irecv_Bools(shared, tag=self.illegal_channel) legal = True not in illegal and not change.illegal(self.skeleton) mpitools.Isend_Bool(legal, shared, tag=self.verdict_channel) if not legal: continue # Receiving report from shared processes reports = mpitools.Irecv_DoubleVecs(shared, tag=self.report_channel) homog0 = [] shape0 = [] homog1 = [] shape1 = [] for r in reports: n = len(r)/4 homog0 += r[:n] shape0 += r[n:2*n] homog1 += r[2*n:3*n] shape1 += r[3*n:4*n] change.augmentData(homog0, homog1, shape0, shape1) changes.append(change) # Now, the decision time bestchange = self.criterion(changes, self.skeleton) if bestchange is not None: self.nok += 1 self.deltaE += bestchange.deltaE(self.skeleton, self.alpha) bestchange.accept(self.skeleton) mpitools.Isend_Bool(True, shared, tag=self.verdict_channel) theindex = changes.index(bestchange) x = move_candidates[theindex].x y = move_candidates[theindex].y mpitools.Isend_DoubleVec([x, y], shared, tag=self.move_channel, size=2) else: self.nbad += 1 mpitools.Isend_Bool(False, shared, tag=self.verdict_channel) ## REPORT("DONE WORKING ON NODE #", index, "WITH", shared) def soloProcess(self, index): ## REPORT("WORKING SOLO ON NODE #", index) node = self.skeleton.getNodeWithIndex(index) move_candidates = self.mover(self.skeleton, node) # list of points move_candidates = [mc for mc in move_candidates if mc] # removes "None" changes = [] for mc in move_candidates: change = deputy.DeputyProvisionalChanges() change.moveNode(node, mc, self.skeleton) # moved the node changes.append(change) # Now, the decision time bestchange = self.criterion(changes, self.skeleton) if bestchange is not None: self.nok += 1 self.deltaE += bestchange.deltaE(self.skeleton, self.alpha) bestchange.accept(self.skeleton) else: self.nbad += 1 ## REPORT("DONE SOLO ON NODE #", index)
import os import numpy as np from datetime import datetime as dt,timedelta import pandas as pd import requests import pickle from scipy.interpolate import interp1d from scipy.ndimage import gaussian_filter as gfilt,gaussian_filter1d as gfilt1d from scipy.ndimage.filters import minimum_filter import matplotlib.dates as mdates try: import matplotlib as mlib import matplotlib.lines as mlines import matplotlib.colors as mcolors import matplotlib.patheffects as path_effects import matplotlib.pyplot as plt import matplotlib.ticker as mticker except: warnings.warn("Warning: Matplotlib is not installed in your python environment. Plotting functions will not work.") from .plot import ReconPlot #Import tools from .tools import * from ..utils import * class ReconDataset: r""" Creates an instance of a ReconDataset object containing all recon data for a single storm. Parameters ---------- stormtuple : tuple or list Requested storm. Can be either tuple or list containing storm name and year (e.g., ("Matthew",2016)). save_path : str, optional Filepath to save recon data in. Recommended in order to avoid having to re-read in the data. read_path : str, optional Filepath to read saved recon data from. If specified, "save_path" cannot be passed as an argument. Returns ------- Dataset An instance of ReconDataset, initialized with the following: * **missiondata** - A dictionary of missions. Each entry is a dateframe from a single mission. Dictionary keys are given by mission number and agency (e.g. '15_NOAA'). * **recentered** - A dataframe with all missions concatenated together, and columns 'xdist' and 'ydist' indicating the distance (km) of the ob from the interpolated center of the storm. Notes ----- Recon data is currently read in via Tropical Atlantic. Future releases of Tropycal will incorporate NHC recon archives. """ def __init__(self, storm, deltap_thresh=8, mission_url_list=None, save_path="", read_path="", update=False): #Error check #if save_path != "" and read_path != "": # raise ValueError("Error: Cannot read in and save a file at the same time.") #Create URL prefix for reading in recon data self.url_prefix = 'http://tropicalatlantic.com/recon/recon.cgi?' self.storm_obj = storm self.storm = str(storm.name) self.year = str(storm.year) self.deltap_thresh = deltap_thresh self.UPDATE = update self.mission_url_list = mission_url_list #If reading in a pickled file, load it in if read_path != "": self.missiondata = pickle.load(open(read_path,'rb')) if self.UPDATE: self.missiondata = self.allMissions() #Otherwise, retrieve all mission data for this storm else: self.missiondata = self.allMissions() #Save mission data as a pickle if necessary if save_path != "": pickle.dump(self.missiondata,open(save_path,'wb'),-1) #Convert recon data to storm-centered coordinates self.recentered = self.recenter() #print(f'Most recent data: {max(self.recentered['time']):%Y %b %d %H:%M} UTC') #print(f'Most recent center pass: {max(self.recentered.loc[self.recentered['iscenter']>0]['time']):%Y %b %d %H:%M} UTC') def getMission(self,agency,mission_num,url_mission=None): if url_mission is None: url_mission = f'{self.url_prefix}basin=al&year={self.year}&product=hdob&storm={self.storm}&mission={mission_num}&agency={agency}' content = np.array(requests.get(url_mission).content.decode("utf-8").split('\n')) obs = [line.split('\"')[1] for line in content if 'option value=' in line][::-1] for i,ob in enumerate(obs): url_ob = url_mission+'&ob='+ob data = pd.read_html(url_ob)[0] data = data.rename(columns = {[name for name in data if 'Time' in name][0]:'Time'}) if i==0: mission = data[:-1] day0 = dt.strptime(self.year+ob[:5],'%Y%m-%d') else: mission = mission.append(data[:-1],ignore_index=True) def getVar(x,name): a = np.nan if x!='-' and '*' not in x and x!='No Wind': if name == 'Time': a = x if name == 'Coordinates': lat,lon = x.split(' ') lat = float(lat[:-1])*[1,-1][lat[-1]=='S'] lon = float(lon[:-1])*[1,-1][lon[-1]=='W'] a = np.array((lon,lat)) elif name == 'Aircraft Static Air Pressure': a=float(x.split(' mb')[0]) elif name == 'Aircraft Geo. Height': a=float(x.split(' meters')[0].replace(',', '')) elif name == 'Extrapolated Sfc. Pressure': a=float(x.split(' mb')[0]) elif name == 'Flight Level Wind (30 sec. Avg.)': a=x.split(' ') wdir = float(a[1][:-1]) wspd = float(a[3]) a = np.array((wdir,wspd)) elif name == 'Peak (10 sec. Avg.) Flight Level Wind': a=float(x.split(' knots')[0]) elif name == 'SFMR Peak (10s Avg.) Sfc. Wind': a=x.split(' knots') a=float(a[0]) if name in ['Coordinates','Flight Level Wind (30 sec. Avg.)'] and type(a)==float: a=np.array([a]*2) return a varnames = ['Time','Coordinates','Aircraft Static Air Pressure','Aircraft Geo. Height', 'Extrapolated Sfc. Pressure','Flight Level Wind (30 sec. Avg.)', 'Peak (10 sec. Avg.) Flight Level Wind','SFMR Peak (10s Avg.) Sfc. Wind'] mission = {name:[getVar(item,name) for item in mission[name]] for name in varnames} for i,t in enumerate(mission['Time']): mission['Time'][i] = day0.replace(hour=int(t[:2]),minute=int(t[3:5]),second=int(t[6:8])) if i>0 and (mission['Time'][i]-mission['Time'][i-1]).total_seconds()<0: mission['Time'][i]+=timedelta(days=1) data={} data['lon'],data['lat'] = zip(*mission['Coordinates']) data['time'] = mission['Time'] data['p_sfc'] = mission['Extrapolated Sfc. Pressure'] data['wdir'],data['wspd'] = zip(*mission['Flight Level Wind (30 sec. Avg.)']) data['pkwnd'] = mission['Peak (10 sec. Avg.) Flight Level Wind'] data['sfmr'] = mission['SFMR Peak (10s Avg.) Sfc. Wind'] data['plane_p'] = mission['Aircraft Static Air Pressure'] data['plane_z'] = mission['Aircraft Geo. Height'] return_data = pd.DataFrame.from_dict(data) return_data['time'] = [pd.to_datetime(i) for i in return_data['time']] #remove nan's for lat/lon coordinates return_data = return_data.dropna(subset=['lat', 'lon']) return return_data def allMissions(self): url_storm = f'{self.url_prefix}basin=al&year={self.year}&storm={self.storm}&product=hdob' if self.mission_url_list is None: missions = pd.read_html(url_storm)[0] else: URL_LIST = self.mission_url_list missions = pd.DataFrame.from_dict({'Agency':['listedurl']*len(URL_LIST),'MissionNumber':[f'{n:02}' for n in range(len(URL_LIST))],'URL':URL_LIST}) if self.UPDATE: missiondata = self.missiondata lastMissionNumber = max([int(x.split('_')[0]) for x in list(missiondata.keys())]) idxf = [x for x in missions['MissionNumber']].index(lastMissionNumber)+1 idxf = min([idxf+1,len(missions)]) # update last two missions else: idxf = len(missions) missiondata={} timer_start = dt.now() print(f'--> Starting to read in recon missions') for i_mission in range(0,idxf): if self.mission_url_list is None: mission_num = str(missions['MissionNumber'][i_mission]).zfill(2) agency = ''.join(filter(str.isalpha, missions['Agency'][i_mission])) missiondata[f'{mission_num}_{agency}'] = self.getMission(agency,mission_num) else: mission_num = missions['MissionNumber'][i_mission] agency = missions['Agency'][i_mission] url = missions['URL'][i_mission] missiondata[f'{mission_num}{agency}'] = self.getMission(agency,mission_num,url) print(f'{mission_num}_{agency}') print('--> Completed reading in recon missions (%.2f seconds)' % (dt.now()-timer_start).total_seconds()) return missiondata def find_centers(self,data): def fill_nan(A): #Interpolate to fill nan values A = np.array(A) inds = np.arange(len(A)) good = np.where(np.isfinite(A)) good_grad = np.gradient(good[0]) if len(good[0])>=3: f = interp1d(inds[good], A[good],bounds_error=False,kind='quadratic') B = np.where(np.isfinite(A)[good[0][0]:good[0][-1]+1], A[good[0][0]:good[0][-1]+1], f(inds[good[0][0]:good[0][-1]+1])) return [np.nan]*good[0][0]+list(B)+[np.nan]*(inds[-1]-good[0][-1]) else: return [np.nan]*len(A) #Check that sfc pressure spread is big enough to identify real minima if np.nanpercentile(data['p_sfc'],90)-np.nanpercentile(data['p_sfc'],10)>self.deltap_thresh: data['p_sfc'][:20]=[np.nan]*20 #NaN out the first 10 minutes of the flight p_sfc_interp = fill_nan(data['p_sfc']) #Interp p_sfc across missing data wspd_interp = fill_nan(data['wspd']) #Interp wspd across missing data #Smooth p_sfc and wspd p_sfc_smooth = [np.nan]*1+list(np.convolve(p_sfc_interp,[1/3]*3,mode='valid'))+[np.nan]*1 wspd_smooth = [np.nan]*1+list(np.convolve(wspd_interp,[1/3]*3,mode='valid'))+[np.nan]*1 #Add wspd to p_sfc to encourage finding p mins with wspd mins #and prevent finding p mins in intense thunderstorms pw_test = np.array(p_sfc_smooth)+np.array(wspd_smooth)*.1 #Find mins in 15-minute windows imin = np.nonzero(pw_test == minimum_filter(pw_test,30))[0] #Only use mins if below 15th %ile of mission p_sfc data and when plane p is 500-900mb imin = [i for i in imin if 800<p_sfc_interp[i]<np.nanpercentile(data['p_sfc'],15) and \ 550<data['plane_p'][i]<950] else: imin=[] data['iscenter'] = np.zeros(len(data['p_sfc'])) for i in imin: j = data.index.values[i] data['iscenter'][j] = 1 return data def recenter(self,use='all'): self.use = use def stitchMissions(): list_of_dfs=[] for name in self.missiondata: if self.use == 'all' or self.use in name: mission = self.missiondata[name] tmp = self.find_centers(mission) list_of_dfs.append( tmp ) data_concat = pd.concat(list_of_dfs,ignore_index=True) data_chron = data_concat.sort_values(by='time').reset_index(drop=True) return data_chron data = stitchMissions() centers = data.loc[data['iscenter']>0] if len(centers)<2: print('Sorry, less than 2 center passes') else: print(f'Found {len(centers)} center passes!') timer_start = dt.now() #Interpolate center position to time of each ob f1 = interp1d(mdates.date2num(centers['time']),centers['lon'],fill_value='extrapolate',kind='linear') interp_clon = f1(mdates.date2num(data['time'])) f2 = interp1d(mdates.date2num(centers['time']),centers['lat'],fill_value='extrapolate',kind='linear') interp_clat = f2(mdates.date2num(data['time'])) #Get x,y distance of each ob from coinciding interped center position data['xdist'] = [great_circle( (interp_clat[i],interp_clon[i]), \ (interp_clat[i],data['lon'][i]) ).kilometers* \ [1,-1][int(data['lon'][i] < interp_clon[i])] for i in range(len(data))] data['ydist'] = [great_circle( (interp_clat[i],interp_clon[i]), \ (data['lat'][i],interp_clon[i]) ).kilometers* \ [1,-1][int(data['lat'][i] < interp_clat[i])] for i in range(len(data))] print('--> Completed recentering recon data (%.2f seconds)' % (dt.now()-timer_start).total_seconds()) return data def __getSubTime(self,time): if isinstance(time,(tuple,list)): t1=min(time) t2=max(time) else: t1 = time-timedelta(hours=6) t2 = time+timedelta(hours=6) subRecon = self.recentered.loc[(self.recentered['time']>=t1) & \ (self.recentered['time']<t2)] return subRecon def findMission(self,time): r""" Returns the name of a mission or list of missions given a specified time. Parameters ---------- time : datetime.datetime or list Datetime object or list of datetime objects representing the time of the requested mission. Returns ------- list The names of any/all missions that had in-storm observations during the specified time. """ if isinstance(time,list): t1=min(time) t2=max(time) else: t1 = t2 = time selected=[] for name in self.missiondata: t_start = min(self.missiondata[name]['time']) t_end = max(self.missiondata[name]['time']) if (t_start<t1<t_end) or (t_start<t2<t_end) or (t1<t_start<t2): selected.append(name) if len(selected)==0: print('There were no in-storm recon missions during this time') return selected def plot_points(self,recon_select=None,varname='wspd',domain="dynamic",plane_p_range=None,\ ax=None,return_ax=False,cartopy_proj=None,**kwargs): r""" Creates a plot of recon data points. Parameters ---------- recon_select : Requested recon data pandas.DataFrame or dict, or string referencing the mission name (e.g. '12_NOAA'), or datetime or list of start/end datetimes. varname : str Variable to plot. Can be one of the following keys in recon_select dataframe: * **"sfmr"** = SFMR surface wind * **"wspd"** = 30-second flight level wind (default) * **"pkwnd"** = 10-second flight level wind * **"p_sfc"** = extrapolated surface pressure domain : str Domain for the plot. Default is "dynamic". Please refer to :ref:`options-domain` for available domain options. ax : axes Instance of axes to plot on. If none, one will be generated. Default is none. return_ax : bool If True, returns the axes instance on which the plot was generated for the user to further modify. Default is False. cartopy_proj : ccrs Instance of a cartopy projection to use. If none, one will be generated. Default is none. Other Parameters ---------------- prop : dict Customization properties of recon plot. Please refer to :ref:`options-prop-recon-plot` for available options. map_prop : dict Customization properties of Cartopy map. Please refer to :ref:`options-map-prop` for available options. """ #Pop kwargs prop = kwargs.pop('prop',{}) map_prop = kwargs.pop('map_prop',{}) #Get plot data if recon_select is None: dfRecon = self.recentered elif isinstance(recon_select,pd.core.frame.DataFrame): dfRecon = recon_select elif isinstance(recon_select,dict): dfRecon = pd.DataFrame.from_dict(recon_select) elif isinstance(recon_select,str): dfRecon = self.missiondata[recon_select] else: dfRecon = self.__getSubTime(recon_select) #Apply flight level filter if plane_p_range is not None: dfRecon = dfRecon.loc[(dfRecon['plane_p']>min(plane_p_range)) & (dfRecon['plane_p']<max(plane_p_range))] #Create instance of plot object self.plot_obj = ReconPlot() #Create cartopy projection if cartopy_proj == None: self.plot_obj.create_cartopy(proj='PlateCarree',central_longitude=0.0) cartopy_proj = self.plot_obj.proj #Plot recon plot_info = self.plot_obj.plot_points(self.storm_obj,dfRecon,domain,varname=varname,\ ax=ax,return_ax=return_ax,prop=prop,map_prop=map_prop) #Return axis if ax != None or return_ax==True: return plot_info def plot_hovmoller(self,recon_select=None,varname='wspd',radlim=None,track_dict=None,plane_p_range=None,\ window=6,align='center',ax=None,return_ax=False,**kwargs): r""" Creates a hovmoller plot of azimuthally-averaged recon data. Parameters ---------- recon_select : Requested recon data pandas.DataFrame or dict, or datetime or list of start/end datetimes. varname : Variable to average and plot (e.g. 'wspd'). String ax : axes Instance of axes to plot on. If none, one will be generated. Default is none. return_ax : bool If True, returns the axes instance on which the plot was generated for the user to further modify. Default is False. cartopy_proj : ccrs Instance of a cartopy projection to use. If none, one will be generated. Default is none. Other Parameters ---------------- prop : dict Customization properties for recon plot. Please refer to :ref:`options-prop-recon-hovmoller` for available options. """ #Pop kwargs prop = kwargs.pop('prop',{}) default_prop = {'cmap':'category','levels':None,'smooth_contourf':False} for key in default_prop.keys(): if key not in prop.keys(): prop[key]=default_prop[key] #Get recon data based on recon_select if recon_select is None: dfRecon = self.recentered elif isinstance(recon_select,pd.core.frame.DataFrame): dfRecon = recon_select elif isinstance(recon_select,dict): dfRecon = pd.DataFrame.from_dict(recon_select) else: dfRecon = self.__getSubTime(recon_select) #Apply flight level filter if plane_p_range is not None: dfRecon = dfRecon.loc[(dfRecon['plane_p']>min(plane_p_range)) & (dfRecon['plane_p']<max(plane_p_range))] #Retrieve track dictionary if none is specified if track_dict is None: track_dict = self.storm_obj.dict #Interpolate recon data to a hovmoller iRecon = interpRecon(dfRecon,varname,radlim,window=window,align=align) Hov_dict = iRecon.interpHovmoller(track_dict) #title = get_recon_title(varname) #may not be necessary #If no contour levels specified, generate levels based on data min and max if prop['levels'] is None: prop['levels'] = (np.nanmin(Hov_dict['hovmoller']),np.nanmax(Hov_dict['hovmoller'])) #Retrieve updated contour levels and colormap based on input arguments and variable type cmap,clevs = get_cmap_levels(varname,prop['cmap'],prop['levels']) #Retrieve hovmoller times, radii and data time = Hov_dict['time'] radius = Hov_dict['radius'] vardata = Hov_dict['hovmoller'] #Error check time time = [dt.strptime((i.strftime('%Y%m%d%H%M')),'%Y%m%d%H%M') for i in time] #------------------------------------------------------------------------------ #Create plot plt.figure(figsize=(9,11),dpi=150) ax = plt.subplot() #Plot surface category colors individually, necessitating normalizing colormap if varname in ['vmax','sfmr','fl_to_sfc'] and prop['cmap'] == 'category': norm = mcolors.BoundaryNorm(clevs,cmap.N) cf = ax.contourf(radius,time,gfilt1d(vardata,sigma=3,axis=1), levels=clevs,cmap=cmap,norm=norm) #Multiple clevels or without smooth contouring elif len(prop['levels']) > 2 or prop['smooth_contourf'] == False: cf = ax.contourf(radius,time,gfilt1d(vardata,sigma=3,axis=1), levels=clevs,cmap=cmap) #Automatically generated levels with smooth contouring else: cf = ax.contourf(radius,time,gfilt1d(vardata,sigma=3,axis=1), cmap=cmap,levels=np.linspace(min(prop['levels']),max(prop['levels']),256)) ax.axis([0,max(radius),min(time),max(time)]) #Plot colorbar cbar = plt.colorbar(cf,orientation='horizontal',pad=0.1) #Format y-label ticks and labels as dates ax.yaxis.set_major_formatter(mdates.DateFormatter('%m-%d %H')) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) #Set axes labels ax.set_ylabel('UTC Time (MM-DD HH)',fontsize=15) ax.set_xlabel('Radius (km)',fontsize=15) #-------------------------------------------------------------------------------------- #Generate left and right title strings title_left, title_right = hovmoller_plot_title(self.storm_obj,Hov_dict,varname) ax.set_title(title_left,loc='left',fontsize=16,fontweight='bold') ax.set_title(title_right,loc='right',fontsize=12) #Return axis if return_ax: return ax #PLOT FUNCTION FOR RECON MAPS def plot_maps(self,recon_select=None,varname='wspd',track_dict=None,recon_stats=None,domain="dynamic",\ window=6,align='center',radlim=None,plane_p_range=None,ax=None,return_ax=False,savetopath=None,cartopy_proj=None,**kwargs): #plot_time, plot_mission (only for dots) r""" Creates maps of interpolated recon data. Parameters ---------- recon_select : Requested recon data pandas.DataFrame or dict, or string referencing the mission name (e.g. '12_NOAA'), or datetime or list of start/end datetimes. varname : str Variable to plot. Can be one of the following keys in recon_select dataframe: * **"sfmr"** = SFMR surface wind * **"wspd"** = 30-second flight level wind (default) * **"pkwnd"** = 10-second flight level wind * **"p_sfc"** = extrapolated surface pressure domain : str Domain for the plot. Default is "dynamic". Please refer to :ref:`options-domain` for available domain options. ax : axes Instance of axes to plot on. If none, one will be generated. Default is none. return_ax : bool If True, returns the axes instance on which the plot was generated for the user to further modify. Default is False. cartopy_proj : ccrs Instance of a cartopy projection to use. If none, one will be generated. Default is none. Other Parameters ---------------- prop : dict Customization properties of recon plot. Please refer to :ref:`options-prop-recon-swath` for available options. map_prop : dict Customization properties of Cartopy map. Please refer to :ref:`options-map-prop` for available options. """ #Pop kwargs prop = kwargs.pop('prop',{}) map_prop = kwargs.pop('map_prop',{}) #Get plot data ONE_MAP = False if recon_select is None: dfRecon = self.recentered elif isinstance(recon_select,pd.core.frame.DataFrame): dfRecon = recon_select elif isinstance(recon_select,dict): dfRecon = pd.DataFrame.from_dict(recon_select) elif isinstance(recon_select,str): dfRecon = self.missiondata[recon_select] else: dfRecon = self.__getSubTime(recon_select) if not isinstance(recon_select,(tuple,list)): ONE_MAP = True MULTIVAR=False if isinstance(varname,(tuple,list)): MULTIVAR=True #Apply flight level filter if plane_p_range is not None: dfRecon = dfRecon.loc[(dfRecon['plane_p']>min(plane_p_range)) & (dfRecon['plane_p']<max(plane_p_range))] if track_dict is None: track_dict = self.storm_obj.dict #Error check for time dimension name if 'time' not in track_dict.keys(): track_dict['time'] = track_dict['date'] if ONE_MAP: f = interp1d(mdates.date2num(track_dict['time']),track_dict['lon'], fill_value='extrapolate') clon = f(mdates.date2num(recon_select)) f = interp1d(mdates.date2num(track_dict['time']),track_dict['lat'], fill_value='extrapolate') clat = f(mdates.date2num(recon_select)) #clon = np.interp(mdates.date2num(recon_select),mdates.date2num(track_dict['time']),track_dict['lon']) #clat = np.interp(mdates.date2num(recon_select),mdates.date2num(track_dict['time']),track_dict['lat']) track_dict = {'time':recon_select,'lon':clon,'lat':clat} if MULTIVAR: Maps=[] for v in varname: iRecon = interpRecon(dfRecon,v,radlim,window=window,align=align) tmpMaps = iRecon.interpMaps(track_dict) Maps.append(tmpMaps) else: iRecon = interpRecon(dfRecon,varname,radlim,window=window,align=align) Maps = iRecon.interpMaps(track_dict) #titlename,units = get_recon_title(varname) if 'levels' not in prop.keys() or 'levels' in prop.keys() and prop['levels'] is None: prop['levels'] = np.arange(np.floor(np.nanmin(Maps['maps'])/10)*10, np.ceil(np.nanmax(Maps['maps'])/10)*10+1,10) if not ONE_MAP: if savetopath is True: savetopath = f'{self.storm}{self.year}_{varname}_maps' try: os.system(f'mkdir {savetopath}') except: pass if MULTIVAR: Maps2 = Maps[1] Maps = Maps[0] print(np.nanmax(Maps['maps']),np.nanmin(Maps2['maps'])) figs = [] for i,t in enumerate(Maps['time']): Maps_sub = {'time':t,'grid_x':Maps['grid_x'],'grid_y':Maps['grid_y'],'maps':Maps['maps'][i],\ 'center_lon':Maps['center_lon'][i],'center_lat':Maps['center_lat'][i],'stats':Maps['stats']} #Create instance of plot object self.plot_obj = ReconPlot() #Create cartopy projection self.plot_obj.create_cartopy(proj='PlateCarree',central_longitude=0.0) cartopy_proj = self.plot_obj.proj #Maintain the same lat / lon dimensions for all dynamic maps #Determined by the dynamic domain from the first map if i>0 and domain is 'dynamic': d1 = {'n':Maps_sub['center_lat']+dlat,\ 's':Maps_sub['center_lat']-dlat,\ 'e':Maps_sub['center_lon']+dlon,\ 'w':Maps_sub['center_lon']-dlon} else: d1 = domain #Plot recon if MULTIVAR: Maps_sub1 = dict(Maps_sub) Maps_sub2 = dict(Maps_sub) Maps_sub = [Maps_sub1,Maps_sub2] Maps_sub[1]['maps'] = Maps2['maps'][i] print(np.nanmax(Maps_sub[0]['maps']),np.nanmin(Maps_sub[1]['maps'])) plot_ax,d0 = self.plot_obj.plot_maps(self.storm_obj,Maps_sub,varname,recon_stats,\ domain=d1,ax=ax,return_ax=True,return_domain=True,prop=prop,map_prop=map_prop) #Get domain dimensions from the first map if i==0: dlat = .5*(d0['n']-d0['s']) dlon = .5*(d0['e']-d0['w']) figs.append(plot_ax) if savetopath is not None: plt.savefig(f'{savetopath}/{t.strftime("%Y%m%d%H%M")}',bbox_inches='tight') plt.close() if savetopath is None: return figs else: #Create instance of plot object self.plot_obj = ReconPlot() #Create cartopy projection if cartopy_proj is None: self.plot_obj.create_cartopy(proj='PlateCarree',central_longitude=0.0) cartopy_proj = self.plot_obj.proj #Plot recon plot_info = self.plot_obj.plot_maps(self.storm_obj,Maps,varname,recon_stats,\ domain,ax,return_ax,prop=prop,map_prop=map_prop) #Return axis if ax is not None or return_ax: return plot_info #PLOT FUNCTION FOR RECON SWATH def plot_swath(self,recon_select=None,varname='wspd',swathfunc=None,track_dict=None,radlim=None,\ domain="dynamic",plane_p_range=None,ax=None,return_ax=False,cartopy_proj=None,**kwargs): r""" Creates a map plot of a swath of interpolated recon data. Parameters ---------- recon_select : Requested recon data pandas.DataFrame or dict, or string referencing the mission name (e.g. '12_NOAA'), or datetime or list of start/end datetimes. varname : str Variable to plot. Can be one of the following keys in recon_select dataframe: * **"sfmr"** = SFMR surface wind * **"wspd"** = 30-second flight level wind (default) * **"pkwnd"** = 10-second flight level wind * **"p_sfc"** = extrapolated surface pressure swathfunc : function Function to operate on interpolated recon data. e.g., np.max, np.min, or percentile function domain : str Domain for the plot. Default is "dynamic". Please refer to :ref:`options-domain` for available domain options. ax : axes Instance of axes to plot on. If none, one will be generated. Default is none. return_ax : bool If True, returns the axes instance on which the plot was generated for the user to further modify. Default is False. cartopy_proj : ccrs Instance of a cartopy projection to use. If none, one will be generated. Default is none. Other Parameters ---------------- prop : dict Customization properties of recon plot. Please refer to :ref:`options-prop-recon-swath` for available options. map_prop : dict Customization properties of Cartopy map. Please refer to :ref:`options-map-prop` for available options. """ #Pop kwargs prop = kwargs.pop('prop',{}) map_prop = kwargs.pop('map_prop',{}) #Get plot data if recon_select is None: dfRecon = self.recentered elif isinstance(recon_select,pd.core.frame.DataFrame): dfRecon = recon_select elif isinstance(recon_select,dict): dfRecon = pd.DataFrame.from_dict(recon_select) elif isinstance(recon_select,str): dfRecon = self.missiondata[recon_select] else: dfRecon = self.__getSubTime(recon_select) #Apply flight level filter if plane_p_range is not None: dfRecon = dfRecon.loc[(dfRecon['plane_p']>min(plane_p_range)) & (dfRecon['plane_p']<max(plane_p_range))] if track_dict is None: track_dict = self.storm_obj.dict if swathfunc is None: if varname == 'p_sfc': swathfunc = np.min else: swathfunc = np.max iRecon = interpRecon(dfRecon,varname) Maps = iRecon.interpMaps(track_dict,interval=.2) #Create instance of plot object self.plot_obj = ReconPlot() #Create cartopy projection if cartopy_proj == None: self.plot_obj.create_cartopy(proj='PlateCarree',central_longitude=0.0) cartopy_proj = self.plot_obj.proj #Plot recon plot_info = self.plot_obj.plot_swath(self.storm_obj,Maps,varname,swathfunc,track_dict,radlim,\ domain,ax,return_ax,prop=prop,map_prop=map_prop) #Return axis if ax != None or return_ax==True: return plot_info
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, AveragePooling2D, concatenate,\ GlobalAveragePooling2D, add, UpSampling2D, Dropout, Activation from tensorflow.keras.models import Model def unet(num_channels, ds=2, lr=1e-4, verbose=0,): inputs = Input((None, None, num_channels)) conv1 = Conv2D(64//ds, 3, activation='relu', padding='same', )(inputs) conv1 = Conv2D(64//ds, 3, activation='relu', padding='same', )(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128//ds, 3, activation='relu', padding='same',)(pool1) conv2 = Conv2D(128//ds, 3, activation='relu', padding='same', )(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256//ds, 3, activation='relu', padding='same', )(pool2) conv3 = Conv2D(256//ds, 3, activation='relu', padding='same', )(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512//ds, 3, activation='relu', padding='same', )(pool3) conv4 = Conv2D(512//ds, 3, activation='relu', padding='same', )(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(1024//ds, 3, activation='relu', padding='same', )(pool4) conv5 = Conv2D(1024//ds, 3, activation='relu', padding='same', )(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(512//ds, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(drop5)) merge6 = concatenate([drop4, up6], axis=3) conv6 = Conv2D(512//ds, 3, activation='relu', padding='same')(merge6) conv6 = Conv2D(512//ds, 3, activation='relu', padding='same')(conv6) up7 = Conv2D(256//ds, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv6)) merge7 = concatenate([conv3, up7], axis=3) conv7 = Conv2D(256//ds, 3, activation='relu', padding='same')(merge7) conv7 = Conv2D(256//ds, 3, activation='relu', padding='same')(conv7) up8 = Conv2D(128//ds, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv7)) merge8 = concatenate([conv2, up8], axis=3) conv8 = Conv2D(128//ds, 3, activation='relu', padding='same')(merge8) conv8 = Conv2D(128//ds, 3, activation='relu', padding='same')(conv8) up9 = Conv2D(64//ds, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv8)) merge9 = concatenate([conv1, up9], axis=3) conv9 = Conv2D(64//ds, 3, activation='relu', padding='same')(merge9) conv9 = Conv2D(64//ds, 3, activation='relu', padding='same')(conv9) conv9 = Conv2D(2, 3, activation='relu', padding='same', )(conv9) conv10 = Conv2D(1, 1, activation='sigmoid')(conv9) model = Model(inputs=inputs, outputs=conv10) return model
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from rest_framework import viewsets from rest_framework.authentication import TokenAuthentication from rest_framework import filters from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from profiles_api import serializers from profiles_api import models from profiles_api import permissions class HelloApiView(APIView): """ Test API View""" serializer_class = serializers.HelloSerializer def get(self, request, format=None): """Returns a list of APIView features""" an_apiview = [ 'Uses HTTP methods as function(get,post,patcth, put delete)', 'is similar to a traditional Django View', 'gives you the mosst control over you applicaiton logic', 'is mapped manually to URLs', ] return Response({'an_apiview': an_apiview}) def post(self,request): """Create a hello message""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f'Hello {name}' return Response({'message' : message}) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def put(self, request, pk=None): """handle updating an bject""" return Response({'method' : 'PUT'}) def patch(self, request, pk=None): """Handle a partial update of an object""" return Response({'method': ' PATCH'}) def delete(self,request,pk=None): """delete an object""" return Response({'method':'DELETE'}) class HelloViewSet(viewsets.ViewSet): """test viewwset""" serializer_class = serializers.HelloSerializer def list(self, request): """return a hello message""" a_viewset = [ 'uses actions (list,create,retrieve,updte,partial_updare)' ] return Response({'a_viewset': a_viewset}) def create(self,request): """create a new hello message""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f'Hello{name}!' return Response({'message':message}) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def retrieve(self, request, pk=None): """henadle getting an object by its ID""" return Response({'hhtp_method':'GET'}) def update(self,request,pk=None): """handle updating an object""" return Response({'http_metohd':'PUT'}) def partial_update(self,request,pk=None): """handle updating part of an object""" return Response({'http_method':'PATCH'}) def destroy(self,request, pk=None): """handle removing an object""" return Response({'http_method':'DELETE'}) class UserProfileViewSet(viewsets.ModelViewSet): """Handle creating and updating profiles""" serializer_class = serializers.UserProfileSerializer queryset = models.UserProfile.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (permissions.UpdateOwnProfile,) filter_backends = (filters.SearchFilter,) search_fields = ('name','email',) class UserLoginApiView(ObtainAuthToken): """"Handle creating user authenticaiton tokens""" renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES
#!/usr/bin/env python """A widget to display changing values in real time as a strip chart Known issues: Matplotlib's defaults present a number of challenges for making a nice strip chart display. Here are manual workarounds for some common problems: - Memory Leak: Matplotlib 1.0.0 has a memory leak in canvas.draw(), at least when using TgAgg: <https://sourceforge.net/tracker/?func=detail&atid=560720&aid=3124990&group_id=80706> Unfortunately canvas.draw is only way to update the display after altering the x/time axis. Thus every StripChartWdg will leak memory until the matplotlib bug is fixed; the best you can do is reduce the leak rate by increasing updateInterval. - Jumping Ticks: By default the major time ticks and grid jump to new values as time advances. I haven't found an automatic way to keep them steady, but you can do it manually by following these examples: # show a major tick every 10 seconds on even 10 seconds stripChart.xaxis.set_major_locator(matplotlib.dates.SecondLocator(bysecond=range(0, 60, 10))) # show a major tick every 5 seconds on even 5 minutes stripChart.xaxis.set_major_locator(matplotlib.dates.MinuteLocator(byminute=range(0, 60, 5))) - Reducing The Spacing Between Subplots: Adjacent subplots are rather widely spaced. You can manually shrink the spacing but then the major Y labels will overlap. Here is a technique that includes "pruning" the top major tick label from each subplot and then shrinking the subplot horizontal spacing: for subplot in stripChartWdg.subplotArr: subplot.yaxis.get_major_locator().set_params(prune = "upper") stripChartWdg.figure.subplots_adjust(hspace=0.1) - Truncated X Axis Labels: The x label is truncated if the window is short, due to poor auto-layout on matplotlib's part. Also the top and sides may have too large a margin. Tony S Yu provided code that should solve the issue automatically, but I have not yet incorporated it. You can try the following manual tweak: (values are fraction of total window height or width, so they must be in the range 0-1): stripChartWdg.figure.subplots_adjust(bottom=0.15) # top=..., left=..., right=... Unfortunately, values that look good at one window size may not be suitable at another. - Undesirable colors and font sizes: If you are unhappy with the default choices of font size and background color you can edit the .matplotlibrc file or make settings programmatically. Some useful programmatic settings: # by default the background color of the outside of the plot is gray; set using figure.facecolor: matplotlib.rc("figure", facecolor="white") # by default legends have large text; set using legend.fontsize: matplotlib.rc("legend", fontsize="medium") Requirements: - Requires matplotlib built with TkAgg support Acknowledgements: I am grateful to Benjamin Root, Tony S Yu and others on matplotlib-users for advice on tying the x axes together and improving the layout. History: 2010-09-29 ROwen 2010-11-30 ROwen Fixed a memory leak (Line._purgeOldData wasn't working correctly). 2010-12-10 ROwen Document a memory leak caused by matplotlib's canvas.draw. 2010-12-23 ROwen Backward-incompatible changes: - addPoint is now called on the object returned by addLine, not StripChartWdg. This eliminate the need to give lines unique names. - addPoint is silently ignored if y is None - addLine and addConstantLine have changed: - There is no "name" argument; use label if you want a name that shows up in legends. - The label does not have to be unique. - They return an object. Added removeLine method. 2010-12-29 ROwen Document useful arguments for addLine. 2012-05-31 ROwen Add a clear method to StripChartWdg and _Line. 2012-06-04 ROwen Reduce CPU usage by doing less work if not visible (not mapped). 2012-07-09 ROwen Modified to use opscore.RO.TkUtil.Timer. 2012-09-18 ROwen Explicitly import matplotlib.dates to avoid a problem with matplotlib 1.2.0rc1 2015-09-24 ROwen Replace "== None" with "is None" to modernize the code. 2015-11-03 ROwen Replace "!= None" with "is not None" to modernize the code. """ __all__ = ["StripChartWdg"] import bisect import datetime import time import numpy from six.moves import tkinter import matplotlib import matplotlib.dates from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from opscore.RO.TkUtil import Timer class StripChartWdg(tkinter.Frame): """A widget to changing values in real time as a strip chart Usage Hints: - For each variable quantity to display: - Call addLine once to specify the quantity - Call addPoint for each new data point you wish to display - For each constant line (e.g. limit) to display call addConstantLine - To make sure a plot includes one or two y values (e.g. 0 or a range of values) call showY - To manually scale a Y axis call setYLimits (by default all y axes are autoscaled). - All supplied times are POSIX timestamps (e.g. as supplied by time.time()). You may choose the kind of time displayed on the time axis (e.g. UTC or local time) using cnvTimeFunc and the format of that time using dateFormat. Known Issues: matplotlib's defaults present a number of challenges for making a nice strip chart display. Some issues and manual solutions are discussed in the main file's document string. Potentially Useful Attributes: - canvas: the matplotlib FigureCanvas - figure: the matplotlib Figure - subplotArr: list of subplots, from top to bottom; each is a matplotlib Subplot object, which is basically an Axes object but specialized to live in a rectangular grid - xaxis: the x axis shared by all subplots """ def __init__(self, master, timeRange = 3600, numSubplots = 1, width = 8, height = 2, showGrid = True, dateFormat = "%H:%M:%S", updateInterval = None, cnvTimeFunc = None, ): """Construct a StripChartWdg with the specified time range Inputs: - master: Tk parent widget - timeRange: range of time displayed (seconds) - width: width of graph in inches - height: height of graph in inches - numSubplots: the number of subplots - showGrid: if True a grid is shown - dateFormat: format for major axis labels, using time.strftime format - updateInterval: now often the time axis is updated (seconds); if None a value is calculated - cnvTimeFunc: a function that takes a POSIX timestamp (e.g. time.time()) and returns matplotlib days; typically an instance of TimeConverter; defaults to TimeConverter(useUTC=False) """ tkinter.Frame.__init__(self, master) self._timeRange = timeRange self._isVisible = self.winfo_ismapped() self._isFirst = True if updateInterval is None: updateInterval = max(0.1, min(5.0, timeRange / 2000.0)) self.updateInterval = float(updateInterval) # print "updateInterval=", self.updateInterval if cnvTimeFunc is None: cnvTimeFunc = TimeConverter(useUTC=False) self._cnvTimeFunc = cnvTimeFunc # how many time axis updates occur before purging old data self._maxPurgeCounter = max(1, int(0.5 + (5.0 / self.updateInterval))) self._purgeCounter = 0 self.figure = matplotlib.figure.Figure(figsize=(width, height), frameon=True) self.canvas = FigureCanvasTkAgg(self.figure, self) self.canvas.get_tk_widget().grid(row=0, column=0, sticky="news") self.canvas.mpl_connect('draw_event', self._handleDrawEvent) self.grid_rowconfigure(0, weight=1) self.grid_columnconfigure(0, weight=1) bottomSubplot = self.figure.add_subplot(numSubplots, 1, numSubplots) self.subplotArr = [self.figure.add_subplot(numSubplots, 1, n+1, sharex=bottomSubplot) \ for n in range(numSubplots-1)] + [bottomSubplot] if showGrid: for subplot in self.subplotArr: subplot.grid(True) self.xaxis = bottomSubplot.xaxis bottomSubplot.xaxis_date() self.xaxis.set_major_formatter(matplotlib.dates.DateFormatter(dateFormat)) # dictionary of constant line name: (matplotlib Line2D, matplotlib Subplot) self._constLineDict = dict() for subplot in self.subplotArr: subplot._scwLines = [] # a list of contained _Line objects; # different than the standard lines property in that: # - lines contains Line2D objects # - lines contains constant lines as well as data lines subplot._scwBackground = None # background for animation subplot.label_outer() # disable axis labels on all but the bottom subplot subplot.set_ylim(auto=True) # set auto scaling for the y axis self.bind("<Map>", self._handleMap) self.bind("<Unmap>", self._handleUnmap) self._timeAxisTimer = Timer() self._updateTimeAxis() def addConstantLine(self, y, subplotInd=0, **kargs): """Add a new constant to plot Inputs: - y: value of constant line - subplotInd: index of subplot - All other keyword arguments are sent to the matplotlib Line2D constructor to control the appearance of the data. See addLine for more information. """ subplot = self.subplotArr[subplotInd] line2d = subplot.axhline(y, **kargs) yMin, yMax = subplot.get_ylim() if subplot.get_autoscaley_on() and numpy.isfinite(y) and not (yMin <= y <= yMax): subplot.relim() subplot.autoscale_view(scalex=False, scaley=True) return line2d def addLine(self, subplotInd=0, **kargs): """Add a new quantity to plot Inputs: - subplotInd: index of subplot - All other keyword arguments are sent to the matplotlib Line2D constructor to control the appearance of the data. Useful arguments include: - label: name of line (displayed in a Legend) - color: color of line - linestyle: style of line (defaults to a solid line); "" for no line, "- -" for dashed, etc. - marker: marker shape, e.g. "+" Please do not attempt to control other sorts of line properties, such as its data. Arguments to avoid include: animated, data, xdata, ydata, zdata, figure. """ subplot = self.subplotArr[subplotInd] return _Line( subplot = subplot, cnvTimeFunc = self._cnvTimeFunc, wdg = self, **kargs) def clear(self): """Clear data in all non-constant lines """ for subplot in self.subplotArr: for line in subplot._scwLines: line.clear() def getDoAutoscale(self, subplotInd=0): return self.subplotArr[subplotInd].get_autoscaley_on() def removeLine(self, line): """Remove an existing line added by addLine or addConstantLine Raise an exception if the line is not found """ if isinstance(line, _Line): # a _Line object needs to be removed from _scwLines as well as the subplot line2d = line.line2d subplot = line.subplot subplot._scwLines.remove(line) else: # a constant line is just a matplotlib Line2D instance line2d = line subplot = line.axes subplot.lines.remove(line2d) if subplot.get_autoscaley_on(): subplot.relim() subplot.autoscale_view(scalex=False, scaley=True) self.canvas.draw() def setDoAutoscale(self, doAutoscale, subplotInd=0): """Turn autoscaling on or off for the specified subplot You can also turn off autoscaling by calling setYLimits. """ doAutoscale = bool(doAutoscale) subplot = self.subplotArr[subplotInd] subplot.set_ylim(auto=doAutoscale) if doAutoscale: subplot.relim() subplot.autoscale_view(scalex=False, scaley=True) def setYLimits(self, minY, maxY, subplotInd=0): """Set y limits for the specified subplot and disable autoscaling. Note: if you want to autoscale with a minimum range, use showY. """ self.subplotArr[subplotInd].set_ylim(minY, maxY, auto=False) def showY(self, y0, y1=None, subplotInd=0): """Specify one or two values to always show in the y range. Inputs: - subplotInd: index of subplot - y0: first y value to show - y1: second y value to show; None to omit Warning: setYLimits overrides this method (but the values are remembered in case you turn autoscaling back on). """ subplot = self.subplotArr[subplotInd] yMin, yMax = subplot.get_ylim() if y1 is not None: yList = [y0, y1] else: yList = [y0] doRescale = False for y in yList: subplot.axhline(y, linestyle=" ") if subplot.get_autoscaley_on() and numpy.isfinite(y) and not (yMin <= y <= yMax): doRescale = True if doRescale: subplot.relim() subplot.autoscale_view(scalex=False, scaley=True) def _handleDrawEvent(self, event=None): """Handle draw event """ # print "handleDrawEvent" for subplot in self.subplotArr: subplot._scwBackground = self.canvas.copy_from_bbox(subplot.bbox) for line in subplot._scwLines: subplot.draw_artist(line.line2d) self.canvas.blit(subplot.bbox) def _handleMap(self, evt): """Handle map event (widget made visible) """ self._isVisible = True self._handleDrawEvent() self._updateTimeAxis() def _handleUnmap(self, evt): """Handle unmap event (widget made not visible) """ self._isVisible = False def _updateTimeAxis(self): """Update the time axis; calls itself """ tMax = time.time() + self.updateInterval tMin = tMax - self._timeRange minMplDays = self._cnvTimeFunc(tMin) maxMplDays = self._cnvTimeFunc(tMax) self._purgeCounter = (self._purgeCounter + 1) % self._maxPurgeCounter doPurge = self._purgeCounter == 0 if doPurge: for subplot in self.subplotArr: for line in subplot._scwLines: line._purgeOldData(minMplDays) if self._isVisible or self._isFirst: for subplot in self.subplotArr: subplot.set_xlim(minMplDays, maxMplDays) if doPurge: if subplot.get_autoscaley_on(): # since data is being purged the y limits may have changed subplot.relim() subplot.autoscale_view(scalex=False, scaley=True) self._isFirst = False self.canvas.draw() self._timeAxisTimer.start(self.updateInterval, self._updateTimeAxis) class _Line(object): """A line (trace) on a strip chart representing some varying quantity Attributes that might be useful: - line2d: the matplotlib.lines.Line2D associated with this line - subplot: the matplotlib Subplot instance displaying this line - cnvTimeFunc: a function that takes a POSIX timestamp (e.g. time.time()) and returns matplotlib days; typically an instance of TimeConverter; defaults to TimeConverter(useUTC=False) """ def __init__(self, subplot, cnvTimeFunc, wdg, **kargs): """Create a line Inputs: - subplot: the matplotlib Subplot instance displaying this line - cnvTimeFunc: a function that takes a POSIX timestamp (e.g. time.time()) and returns matplotlib days; typically an instance of TimeConverter; defaults to TimeConverter(useUTC=False) - wdg: parent strip chart widget; used to test visibility - **kargs: keyword arguments for matplotlib Line2D, such as color """ self.subplot = subplot self._cnvTimeFunc = cnvTimeFunc self._wdg = wdg # do not use the data in the Line2D because in some versions of matplotlib # line.get_data returns numpy arrays, which cannot be appended to self._tList = [] self._yList = [] self.line2d = matplotlib.lines.Line2D([], [], animated=True, **kargs) self.subplot.add_line(self.line2d) self.subplot._scwLines.append(self) def addPoint(self, y, t=None): """Append a new data point Inputs: - y: y value; if None the point is silently ignored - t: time as a POSIX timestamp (e.g. time.time()); if None then "now" """ if y is None: return if t is None: t = time.time() mplDays = self._cnvTimeFunc(t) self._tList.append(mplDays) self._yList.append(y) self._redraw() def _redraw(self): """Redraw the graph """ self.line2d.set_data(self._tList, self._yList) if not self._wdg.winfo_ismapped(): return if len(self._yList) > 0: # see if limits need updating to include last point lastY = self._yList[-1] if self.subplot.get_autoscaley_on() and numpy.isfinite(lastY): yMin, yMax = self.subplot.get_ylim() self.line2d.set_data(self._tList, self._yList) if not (yMin <= lastY <= yMax): self.subplot.relim() self.subplot.autoscale_view(scalex=False, scaley=True) return # a draw event was triggered # did not trigger redraw event so do it now if self.subplot._scwBackground: canvas = self.subplot.figure.canvas canvas.restore_region(self.subplot._scwBackground) for line in self.subplot._scwLines: self.subplot.draw_artist(line.line2d) canvas.blit(self.subplot.bbox) def clear(self): """Clear all data """ self._tList = [] self._yList = [] self._redraw() def _purgeOldData(self, minMplDays): """Purge data with t < minMplDays Inputs: - minMplDays: time before which to delete data (matpotlib days) Warning: does not update the display (the caller must do that) """ if not self._tList: return numToDitch = bisect.bisect_left(self._tList, minMplDays) - 1 # -1 avoids a gap at the left if numToDitch > 0: self._tList = self._tList[numToDitch:] self._yList = self._yList[numToDitch:] self.line2d.set_data(self._tList, self._yList) class TimeConverter(object): """A functor that takes a POSIX timestamp (e.g. time.time()) and returns matplotlib days """ _DaysPerSecond = 1.0 / (24.0 * 60.0 * 60.0) def __init__(self, useUTC, offset=0.0): """Create a TimeConverter Inputs: - useUTC: use UTC instead of the local time zone? - offset: time offset: returned time - supplied time (sec) """ self._offset = float(offset) unixSec = time.time() if useUTC: d = datetime.datetime.utcfromtimestamp(unixSec) else: d = datetime.datetime.fromtimestamp(unixSec) matplotlibDays = matplotlib.dates.date2num(d) self.mplSecMinusUnixSec = (matplotlibDays / self._DaysPerSecond) - unixSec def __call__(self, unixSec): """Given a a POSIX timestamp (e.g. from time.time()) return matplotlib days """ return (unixSec + self._offset + self.mplSecMinusUnixSec) * self._DaysPerSecond if __name__ == "__main__": import opscore.RO.Alg root = tkinter.Tk() stripChart = StripChartWdg( master = root, timeRange = 60, numSubplots = 2, # updateInterval = 5, width = 9, height = 3, ) stripChart.pack(expand=True, fill="both") countsLine = stripChart.addLine(label="Counts", subplotInd=0, color="blue") satConstLine = stripChart.addConstantLine(2.5, label="Saturated", subplotInd=0, color="red") stripChart.subplotArr[0].yaxis.set_label_text("Counts") # make sure the Y axis of subplot 0 always includes 0 and 2.7 # stripChart.showY(0.0, 2.8, subplotInd=0) walk1Line = stripChart.addLine(label="Walk 1", subplotInd=1, color="blue") walk2Line = stripChart.addLine(label="Walk 2", subplotInd=1, color="green") stripChart.subplotArr[1].yaxis.set_label_text("Random Walk") # stripChart.showY(0.0, subplotInd=0) stripChart.subplotArr[1].legend(loc=3) # stop major time ticks from jumping around as time advances: stripChart.xaxis.set_major_locator(matplotlib.dates.SecondLocator(bysecond=list(range(0,60,10)))) varDict = { countsLine: opscore.RO.Alg.ConstrainedGaussianRandomWalk(1, 0.2, 0, 2.8), walk1Line: opscore.RO.Alg.RandomWalk.GaussianRandomWalk(0, 2), walk2Line: opscore.RO.Alg.RandomWalk.GaussianRandomWalk(0, 2), } def addRandomValues(line, interval=0.1): """Add random values to the specified strip chart line Inputs: - line: strip chart line - interval: interval between updates (sec) """ var = varDict[line] line.addPoint(next(var)) Timer(interval, addRandomValues, line, interval) addRandomValues(countsLine, interval=0.5) addRandomValues(walk1Line, 1.6) addRandomValues(walk2Line, 1.9) def deleteSatConstLine(): stripChart.removeLine(satConstLine) tkinter.Button(root, text="Delete Saturated Counts", command=deleteSatConstLine).pack() def deleteWalk1(): stripChart.removeLine(walk1Line) tkinter.Button(root, text="Delete Walk 1", command=deleteWalk1).pack() root.mainloop()
# Copyright 2019 Atalaya Tech, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import base64 from io import BytesIO from typing import Iterable from werkzeug.utils import secure_filename from werkzeug.wrappers import Request from bentoml import config from bentoml.utils.lazy_loader import LazyLoader from bentoml.marshal.utils import SimpleRequest, SimpleResponse from bentoml.exceptions import BadInput from bentoml.adapters.base_input import BaseInputAdapter # BentoML optional dependencies, using lazy load to avoid ImportError imageio = LazyLoader('imageio', globals(), 'imageio') def verify_image_format_or_raise(file_name, accept_format_list): """ Raise error if file's extension is not in the accept_format_list """ if accept_format_list: _, extension = os.path.splitext(file_name) if extension.lower() not in accept_format_list: raise BadInput( "Input file not in supported format list: {}".format(accept_format_list) ) def get_default_accept_image_formats(): """With default bentoML config, this returns: ['.jpg', '.png', '.jpeg', '.tiff', '.webp', '.bmp'] """ return [ extension.strip() for extension in config("apiserver") .get("default_image_input_accept_file_extensions") .split(",") ] class ImageInput(BaseInputAdapter): """Transform incoming image data from http request, cli or lambda event into numpy array. Handle incoming image data from different sources, transform them into numpy array and pass down to user defined API functions * If you want to operate raw image file stream or PIL.Image objects, use lowlevel alternative FileInput. Args: accept_image_formats (string[]): A list of acceptable image formats. Default value is loaded from bentoml config 'apiserver/default_image_input_accept_file_extensions', which is set to ['.jpg', '.png', '.jpeg', '.tiff', '.webp', '.bmp'] by default. List of all supported format can be found here: https://imageio.readthedocs.io/en/stable/formats.html pilmode (string): The pilmode to be used for reading image file into numpy array. Default value is 'RGB'. Find more information at: https://imageio.readthedocs.io/en/stable/format_png-pil.html Raises: ImportError: imageio package is required to use ImageInput Example: >>> from bentoml import BentoService, api, artifacts >>> from bentoml.artifact import TensorflowArtifact >>> from bentoml.adapters import ImageInput >>> >>> CLASS_NAMES = ['cat', 'dog'] >>> >>> @artifacts([TensorflowArtifact('classifer')]) >>> class PetClassification(BentoService): >>> @api(input=ImageInput()) >>> def predict(self, image_ndarrays): >>> results = self.artifacts.classifer.predict(image_ndarrays) >>> return [CLASS_NAMES[r] for r in results] """ HTTP_METHODS = ["POST"] BATCH_MODE_SUPPORTED = True def __init__( self, accept_image_formats=None, pilmode="RGB", is_batch_input=False, **base_kwargs, ): assert imageio, "`imageio` dependency can be imported" if is_batch_input: raise ValueError('ImageInput can not accpept batch inputs') super(ImageInput, self).__init__(is_batch_input=is_batch_input, **base_kwargs) if 'input_names' in base_kwargs: raise TypeError( "ImageInput doesn't take input_names as parameters since bentoml 0.8." "Update your Service definition " "or use LegacyImageInput instead(not recommended)." ) self.pilmode = pilmode self.accept_image_formats = ( accept_image_formats or get_default_accept_image_formats() ) @property def config(self): return { # Converting to list, google.protobuf.Struct does not work with tuple type "accept_image_formats": self.accept_image_formats, "pilmode": self.pilmode, } @property def request_schema(self): return { "image/*": {"schema": {"type": "string", "format": "binary"}}, "multipart/form-data": { "schema": { "type": "object", "properties": { "image_file": {"type": "string", "format": "binary"} }, } }, } @property def pip_dependencies(self): return ["imageio"] def _load_image_data(self, request: Request): if len(request.files): if len(request.files) != 1: raise BadInput( "ImageInput requires one and at least one image file at a time, " "if you just upgraded from bentoml 0.7, you may need to use " "FileInput or LegacyImageInput instead" ) input_file = next(iter(request.files.values())) if not input_file: raise BadInput("BentoML#ImageInput unexpected HTTP request format") file_name = secure_filename(input_file.filename) verify_image_format_or_raise(file_name, self.accept_image_formats) input_stream = input_file.stream else: data = request.get_data() if not data: raise BadInput("BentoML#ImageInput unexpected HTTP request format") else: input_stream = data input_data = imageio.imread(input_stream, pilmode=self.pilmode) return input_data def handle_batch_request( self, requests: Iterable[SimpleRequest], func: callable ) -> Iterable[SimpleResponse]: """ Batch version of handle_request """ input_datas = [] ids = [] for i, req in enumerate(requests): if not req.data: ids.append(None) continue request = Request.from_values( input_stream=BytesIO(req.data), content_length=len(req.data), headers=req.headers, ) try: input_data = self._load_image_data(request) except BadInput: ids.append(None) continue input_datas.append(input_data) ids.append(i) results = func(input_datas) if input_datas else [] return self.output_adapter.to_batch_response(results, ids, requests) def handle_request(self, request, func): """Handle http request that has one image file. It will convert image into a ndarray for the function to consume. Args: request: incoming request object. func: function that will take ndarray as its arg. options: configuration for handling request object. Return: response object """ input_data = self._load_image_data(request) result = func((input_data,))[0] return self.output_adapter.to_response(result, request) def handle_cli(self, args, func): parser = argparse.ArgumentParser() parser.add_argument("--input", required=True, nargs='+') parser.add_argument("--batch-size", default=None, type=int) parsed_args, unknown_args = parser.parse_known_args(args) file_paths = parsed_args.input batch_size = ( parsed_args.batch_size if parsed_args.batch_size else len(file_paths) ) for i in range(0, len(file_paths), batch_size): step_file_paths = file_paths[i : i + batch_size] image_arrays = [] for file_path in step_file_paths: verify_image_format_or_raise(file_path, self.accept_image_formats) if not os.path.isabs(file_path): file_path = os.path.abspath(file_path) image_arrays.append(imageio.imread(file_path, pilmode=self.pilmode)) results = func(image_arrays) for result in results: return self.output_adapter.to_cli(result, unknown_args) def handle_aws_lambda_event(self, event, func): if event["headers"].get("Content-Type", "").startswith("images/"): image = imageio.imread( base64.decodebytes(event["body"]), pilmode=self.pilmode ) else: raise BadInput( "BentoML currently doesn't support Content-Type: {content_type} for " "AWS Lambda".format(content_type=event["headers"]["Content-Type"]) ) result = func((image,))[0] return self.output_adapter.to_aws_lambda_event(result, event)
import re from src.detection import Result from src.detection.harness import Harness def check_effective_with_differential_test(testcase: str, normal_outputs: list, suspicious_outputs: list, with_output_info=False): testbed = [] for output in (normal_outputs + suspicious_outputs): testbed.append(output.testbed) harness = Harness() harness_result = harness.run_testcase(testcase) bug_info = Result.differential_test(harness_result) if len(bug_info) != len(suspicious_outputs): return False else: suspicious_testbeds_before = set(output.testbed for output in suspicious_outputs) suspicious_testbeds_after = [info.testbed for info in bug_info] if len(suspicious_testbeds_before.union(suspicious_testbeds_after)) > len(suspicious_testbeds_before): return False if with_output_info: testbed_output_dict_before = dict( [(output.testbed, get_key_outputs(output)) for output in (suspicious_outputs + normal_outputs)]) for output in harness_result.outputs: if get_key_outputs(output) != testbed_output_dict_before.get(output.testbed): return False return True def split_output(result: Result.HarnessResult): """ 将所有的输出拆分为可疑的(可能说是bug)和输出正常的 :param result: :return: """ # 此处不重新进行差分测试会导致bug,原因:由于过滤导致的从数据库中读取的测试结果不一定是差分测试后的所有不一致的全部结果 differential_result_output_ids = [info.output_id for info in Result.differential_test(result)] suspicious_output_ids_set = set(differential_result_output_ids) suspicious_output = [] normal_output = [] for output in result.outputs: if suspicious_output_ids_set.__contains__(output.id): suspicious_output.append(output) else: normal_output.append(output) return [suspicious_output, normal_output] def is_removable(init_result: Result.HarnessResult, code: str, with_output_info=False): [suspicious_outputs, normal_outputs] = split_output(init_result) return check_effective_with_differential_test(code, normal_outputs, suspicious_outputs, with_output_info=with_output_info) def get_key_outputs(output: Result.Output): """ 返回lithium能识别的关键报错信息或输出 :param output: :return: """ key_outputs = list_essential_exception_message(output.stderr + output.stdout) if key_outputs == "": key_outputs = output.stdout return key_outputs def list_essential_exception_message(outputs_info: str): """ 若能匹配异常信息,则返回异常信息,否则返回"" """ regex_error = "(([a-zA-Z]*Error|timeout):.*?)(\\.\\s|\\n|\\.$)" regex_hermes_error = "(error:.*?)(\\. |\\n|\\.$)" regex_note = "(note:.*?)(\\.\\s|\\n|\\.$)" regex_elegent = "[a-zA-Z]+Error:.*" pattern_error = re.compile(regex_error, re.M) pattern_hermes_error = re.compile(regex_hermes_error, re.M) pattern_note = re.compile(regex_note, re.M) pattern_elegent = re.compile(regex_elegent, re.M) matcher_error = set([e[0] for e in pattern_error.findall(outputs_info)]) matcher_hermes_error = set([e[0] for e in pattern_hermes_error.findall(outputs_info)]) matcher_note = set([e[0] for e in pattern_note.findall(outputs_info)]) matcher_error_list = list(matcher_error) for index in range(len(matcher_error_list)): tmp = pattern_elegent.findall(matcher_error_list[index]) if len(tmp) > 0: matcher_error_list[index] = tmp[0] matcher = [] if len(matcher_error) > 0: matcher += matcher_error_list elif len(matcher_hermes_error) > 0: # 只有Hermes的报错信息没有具体的错误类型 matcher += matcher_hermes_error elif len(matcher_note) > 0: # Hermes没有报错信息 matcher += matcher_note matcher_key_exceptions = "\n".join(matcher) return matcher_key_exceptions
# Copyright (C) 2019-2020 Intel Corporation # # SPDX-License-Identifier: MIT # pylint: disable=unused-import from enum import Enum from io import BytesIO import numpy as np import os import os.path as osp _IMAGE_BACKENDS = Enum("_IMAGE_BACKENDS", ["cv2", "PIL"]) _IMAGE_BACKEND = None try: import cv2 _IMAGE_BACKEND = _IMAGE_BACKENDS.cv2 except ImportError: import PIL _IMAGE_BACKEND = _IMAGE_BACKENDS.PIL from datumaro.util.image_cache import ImageCache as _ImageCache def load_image(path, dtype=np.float32): """ Reads an image in the HWC Grayscale/BGR(A) float [0; 255] format. """ if _IMAGE_BACKEND == _IMAGE_BACKENDS.cv2: import cv2 image = cv2.imread(path, cv2.IMREAD_UNCHANGED) image = image.astype(dtype) elif _IMAGE_BACKEND == _IMAGE_BACKENDS.PIL: from PIL import Image image = Image.open(path) image = np.asarray(image, dtype=dtype) if len(image.shape) == 3 and image.shape[2] in {3, 4}: image[:, :, :3] = image[:, :, 2::-1] # RGB to BGR else: raise NotImplementedError() if image is None: raise ValueError("Can't open image '%s'" % path) assert len(image.shape) in {2, 3} if len(image.shape) == 3: assert image.shape[2] in {3, 4} return image def save_image(path, image, create_dir=False, dtype=np.uint8, **kwargs): # NOTE: Check destination path for existence # OpenCV silently fails if target directory does not exist dst_dir = osp.dirname(path) if dst_dir: if create_dir: os.makedirs(dst_dir, exist_ok=True) elif not osp.isdir(dst_dir): raise FileNotFoundError("Directory does not exist: '%s'" % dst_dir) if not kwargs: kwargs = {} if _IMAGE_BACKEND == _IMAGE_BACKENDS.cv2: import cv2 params = [] ext = path[-4:] if ext.upper() == ".JPG": params = [int(cv2.IMWRITE_JPEG_QUALITY), kwargs.get("jpeg_quality", 75)] image = image.astype(dtype) cv2.imwrite(path, image, params=params) elif _IMAGE_BACKEND == _IMAGE_BACKENDS.PIL: from PIL import Image params = {} params["quality"] = kwargs.get("jpeg_quality") if kwargs.get("jpeg_quality") == 100: params["subsampling"] = 0 image = image.astype(dtype) if len(image.shape) == 3 and image.shape[2] in {3, 4}: image[:, :, :3] = image[:, :, 2::-1] # BGR to RGB image = Image.fromarray(image) image.save(path, **params) else: raise NotImplementedError() def encode_image(image, ext, dtype=np.uint8, **kwargs): if not kwargs: kwargs = {} if _IMAGE_BACKEND == _IMAGE_BACKENDS.cv2: import cv2 params = [] if not ext.startswith("."): ext = "." + ext if ext.upper() == ".JPG": params = [int(cv2.IMWRITE_JPEG_QUALITY), kwargs.get("jpeg_quality", 75)] image = image.astype(dtype) success, result = cv2.imencode(ext, image, params=params) if not success: raise Exception("Failed to encode image to '%s' format" % (ext)) return result.tobytes() elif _IMAGE_BACKEND == _IMAGE_BACKENDS.PIL: from PIL import Image if ext.startswith("."): ext = ext[1:] params = {} params["quality"] = kwargs.get("jpeg_quality") if kwargs.get("jpeg_quality") == 100: params["subsampling"] = 0 image = image.astype(dtype) if len(image.shape) == 3 and image.shape[2] in {3, 4}: image[:, :, :3] = image[:, :, 2::-1] # BGR to RGB image = Image.fromarray(image) with BytesIO() as buffer: image.save(buffer, format=ext, **params) return buffer.getvalue() else: raise NotImplementedError() def decode_image(image_bytes, dtype=np.float32): if _IMAGE_BACKEND == _IMAGE_BACKENDS.cv2: import cv2 image = np.frombuffer(image_bytes, dtype=np.uint8) image = cv2.imdecode(image, cv2.IMREAD_UNCHANGED) image = image.astype(dtype) elif _IMAGE_BACKEND == _IMAGE_BACKENDS.PIL: from PIL import Image image = Image.open(BytesIO(image_bytes)) image = np.asarray(image, dtype=dtype) if len(image.shape) == 3 and image.shape[2] in {3, 4}: image[:, :, :3] = image[:, :, 2::-1] # RGB to BGR else: raise NotImplementedError() assert len(image.shape) in {2, 3} if len(image.shape) == 3: assert image.shape[2] in {3, 4} return image class lazy_image: def __init__(self, path, loader=None, cache=None): if loader is None: loader = load_image self.path = path self.loader = loader # Cache: # - False: do not cache # - None: use the global cache # - object: an object to be used as cache assert cache in {None, False} or isinstance(cache, object) self.cache = cache def __call__(self): image = None image_id = hash(self) # path is not necessary hashable or a file path cache = self._get_cache(self.cache) if cache is not None: image = cache.get(image_id) if image is None: image = self.loader(self.path) if cache is not None: cache.push(image_id, image) return image @staticmethod def _get_cache(cache): if cache is None: cache = _ImageCache.get_instance() elif cache == False: return None return cache def __hash__(self): return hash((id(self), self.path, self.loader)) class Image: def __init__(self, data=None, path=None, loader=None, cache=None, size=None): assert size is None or len(size) == 2 if size is not None: assert len(size) == 2 and 0 < size[0] and 0 < size[1], size size = tuple(size) self._size = size # (H, W) assert path is None or isinstance(path, str) if path is None: path = "" self._path = path assert data is not None or path or loader, "Image can not be empty" if data is not None: assert callable(data) or isinstance(data, np.ndarray), type(data) if data is None and (path or loader): if osp.isfile(path) or loader: data = lazy_image(path, loader=loader, cache=cache) self._data = data @property def path(self): return self._path @property def ext(self): return osp.splitext(osp.basename(self.path))[1] @property def data(self): if callable(self._data): return self._data() return self._data @property def has_data(self): return self._data is not None @property def size(self): if self._size is None: data = self.data if data is not None: self._size = data.shape[:2] return self._size def __eq__(self, other): if isinstance(other, np.ndarray): return self.has_data and np.array_equal(self.data, other) if not isinstance(other, __class__): return False return ( (np.array_equal(self.size, other.size)) and (self.has_data == other.has_data) and ( self.has_data and np.array_equal(self.data, other.data) or not self.has_data ) ) class ByteImage(Image): def __init__(self, data=None, path=None, ext=None, cache=None, size=None): loader = None if data is not None: if callable(data) and not isinstance(data, lazy_image): data = lazy_image(path, loader=data, cache=cache) loader = lambda _: decode_image(self.get_bytes()) super().__init__(path=path, size=size, loader=loader, cache=cache) if data is None and loader is None: # unset defaults for regular images # to avoid random file reading to bytes self._data = None self._bytes_data = data if ext: ext = ext.lower() if not ext.startswith("."): ext = "." + ext self._ext = ext def get_bytes(self): if callable(self._bytes_data): return self._bytes_data() return self._bytes_data @property def ext(self): if self._ext: return self._ext return super().ext def __eq__(self, other): if not isinstance(other, __class__): return super().__eq__(other) return ( (np.array_equal(self.size, other.size)) and (self.has_data == other.has_data) and ( self.has_data and self.get_bytes() == other.get_bytes() or not self.has_data ) )
import os, sys import warnings from os.path import join as opj import yaml import numpy as np import random import pathlib import subprocess import torch from torch.utils.data import Subset def save_args(args, odir): if type(args) != dict: args = vars(args) with open(opj(odir,"args.yaml"),mode="w") as f: f.write(yaml.dump(args)) def make_folders(odir): if not os.path.exists(odir): os.makedirs(odir) def is_absolute(path:str)->bool: path_pl = pathlib.Path(path) return path_pl.is_absolute() def get_git_commit_hash(): cmd = "git rev-parse --short HEAD" hash_code = subprocess.check_output(cmd.split()).strip().decode('utf-8') return hash_code class PytorchTools: def __init__(self): print("This class is for staticmethod.") @staticmethod def create_subset(dataset, subset): if type(subset) is int: subset_number_list = np.random.randint(0,len(dataset)-1,subset) elif type(subset) is list: subset_number_list = subset else: NotImplementedError() return Subset(dataset,subset_number_list), subset_number_list @staticmethod def set_seed(seed, cuda=True, consistency=False): """ Sets seeds in all frameworks""" random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if cuda: torch.cuda.manual_seed(seed) if cuda and torch.cuda.is_available() and not consistency: torch.backends.cudnn.enabled = True # use cuDNN else: torch.backends.cudnn.enabled = False @staticmethod def select_device(device_name): if type(device_name) is str: if device_name in ["cpu", "-1"]: device = "cpu" elif device_name in ["cuda", "gpu","0"]: device = "cuda" elif device_name in ["tpu"]: raise NotImplementedError() else: raise NotImplementedError("1 Unknow device: {}".format(device_name)) elif type(device_name) is int: if device_name < 0: device = "cpu" elif device_name >= 0: device = "cuda" else: raise NotImplementedError("2 Unknow device: {}".format(device_name)) else: raise NotImplementedError("0 Unknow device: {}".format(device_name)) return device @staticmethod def fix_model(model): for param in model.parameters(): param.requires_grad = False @staticmethod def load_data(path): print("-> loading data '{}'".format(path)) # https://discuss.pytorch.org/t/out-of-memory-error-when-resume-training-even-though-my-gpu-is-empty/30757 checkpoint = torch.load(path, map_location='cpu') return checkpoint @staticmethod def resume(checkpoint, model, optimizer, scheduler): """ return: model, optimizer, scheduler """ model.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint["scheduler"]) return model, optimizer, scheduler @staticmethod def t2n(torch_tensor): return torch_tensor.cpu().detach().numpy() @staticmethod def dict2tensorboard(log_dict, writer, step): for key in log_dict: writer.add_scalar(key, log_dict[key] ,step)
import hoomd from hoomd.conftest import pickling_check import numpy import pytest @pytest.fixture(scope='session') def polymer_snapshot_factory(device): """Make a snapshot with polymers and distance constraints.""" def make_snapshot(polymer_length=10, N_polymers=10, polymer_spacing=1.2, bead_spacing=1.1): """Make the snapshot. Args: polymer_length: Number of particles in each polymer N_polymers: Number of polymers to place polymer_spacing: distance between the polymers bead_spacing: distance between the beads in the polymer Place N_polymers polymers in a 2D simulation with distance constraints between beads in each polymer. """ s = hoomd.Snapshot(device.communicator) if s.communicator.rank == 0: s.configuration.box = [ polymer_spacing * N_polymers, bead_spacing * polymer_length, 0, 0, 0, 0 ] s.particles.N = polymer_length * N_polymers s.particles.types = ['A'] x_coords = numpy.linspace(-polymer_spacing * N_polymers / 2, polymer_spacing * N_polymers / 2, num=N_polymers, endpoint=False) + polymer_spacing / 2 y_coords = numpy.linspace(-bead_spacing * polymer_length / 2, bead_spacing * polymer_length / 2, num=N_polymers, endpoint=False) + bead_spacing / 2 position = [] constraint_values = [] constraint_groups = [] for x in x_coords: for i, y in enumerate(y_coords): position.append([x, y, 0]) if i & 1: constraint_values.append(bead_spacing) tag = len(position) - 1 constraint_groups.append([tag, tag - 1]) s.particles.position[:] = position s.constraints.N = len(constraint_values) s.constraints.value[:] = constraint_values s.constraints.group[:] = constraint_groups return s return make_snapshot def test_attach_detach(simulation_factory, polymer_snapshot_factory): """Ensure that md.constrain.Distance can be attached. Also test that parameters can be set. """ # detached d = hoomd.md.constrain.Distance(tolerance=1e-5) assert d.tolerance == 1e-5 d.tolerance = 1e-3 assert d.tolerance == 1e-3 # attached sim = simulation_factory(polymer_snapshot_factory()) integrator = hoomd.md.Integrator(dt=0.005) nve = hoomd.md.methods.NVE(filter=hoomd.filter.All()) integrator.methods.append(nve) integrator.constraints.append(d) sim.run(0) assert d.tolerance == 1e-3 d.tolerance = 1e-5 assert d.tolerance == 1e-5 def test_pickling(simulation_factory, polymer_snapshot_factory): """Test that md.constrain.Distance can be pickled and unpickled.""" # detached d = hoomd.md.constrain.Distance(tolerance=1e-5) pickling_check(d) # attached sim = simulation_factory(polymer_snapshot_factory()) integrator = hoomd.md.Integrator(dt=0.005) nve = hoomd.md.methods.NVE(filter=hoomd.filter.All()) integrator.methods.append(nve) integrator.constraints.append(d) sim.run(0) pickling_check(d) def test_basic_simulation(simulation_factory, polymer_snapshot_factory): """Ensure that distances are constrained in a basic simulation.""" d = hoomd.md.constrain.Distance() sim = simulation_factory(polymer_snapshot_factory()) integrator = hoomd.md.Integrator(dt=0.005) nve = hoomd.md.methods.NVE(filter=hoomd.filter.All()) integrator.methods.append(nve) integrator.constraints.append(d) cell = hoomd.md.nlist.Cell(buffer=0.4) lj = hoomd.md.pair.LJ(nlist=cell) lj.params[('A', 'A')] = dict(epsilon=1, sigma=1) lj.r_cut[('A', 'A')] = 2**(1 / 6) integrator.forces.append(lj) sim.operations.integrator = integrator sim.state.thermalize_particle_momenta(filter=hoomd.filter.All(), kT=1.0) sim.run(100) snap = sim.state.get_snapshot() if snap.communicator.rank == 0: # compute bond lengths in unwrapped particle coordinates box_lengths = snap.configuration.box[0:3] r = snap.particles.position + snap.particles.image * box_lengths constraints = snap.constraints.group delta_r = r[constraints[:, 1]] - r[constraints[:, 0]] bond_lengths = numpy.sqrt(numpy.sum(delta_r * delta_r, axis=1)) numpy.testing.assert_allclose(bond_lengths, snap.constraints.value, rtol=1e-5)
# GNU MediaGoblin -- federated, autonomous media hosting # Copyright (C) 2011, 2012 MediaGoblin contributors. See AUTHORS. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import logging from itsdangerous import BadSignature from mediagoblin import mg_globals, messages from mediagoblin.auth.tools import register_user, check_login_simple from mediagoblin.db.models import User from mediagoblin.decorators import allow_registration, auth_enabled from mediagoblin.decorators import require_active_login from mediagoblin.plugins.recaptcha import forms as auth_forms from mediagoblin.plugins.recaptcha import tools from mediagoblin.tools import pluginapi from mediagoblin.tools.crypto import get_timed_signer_url from mediagoblin.tools.mail import email_debug_message from mediagoblin.tools.response import redirect, render_to_response, render_404 from mediagoblin.tools.translate import pass_to_ugettext as _ from recaptcha.client import captcha _log = logging.getLogger(__name__) @auth_enabled def login(request): """ MediaGoblin login view. If you provide the POST with 'next', it'll redirect to that view. """ #if 'pass_auth' not in request.template_env.globals: # redirect_name = hook_handle('auth_no_pass_redirect') # if redirect_name: # return redirect(request, 'mediagoblin.plugins.{0}.login'.format( # redirect_name)) # else: # return redirect(request, 'index') login_form = auth_forms.LoginForm(request.form) login_failed = False #if request.method == 'POST' and login_form.validate(): if request.method == 'POST': if login_form.validate(): user = check_login_simple( login_form.username.data, login_form.password.data) if user: # set up login in session if login_form.stay_logged_in.data: request.session['stay_logged_in'] = True request.session['user_id'] = unicode(user.id) request.session.save() if request.form.get('next'): return redirect(request, location=request.form['next']) else: return redirect(request, "index") login_failed = True return render_to_response( request, 'mediagoblin/plugins/recaptcha/login.html', {'login_form': login_form, 'next': request.GET.get('next') or request.form.get('next'), 'login_failed': login_failed, 'post_url': request.urlgen('mediagoblin.plugins.recaptcha.login'), 'allow_registration': mg_globals.app_config["allow_registration"]}) @allow_registration @auth_enabled def register(request): # if request.method == 'GET': # return redirect( # request, # 'mediagoblin.plugins.recaptcha.register') register_form = auth_forms.RegistrationForm(request.form) config = pluginapi.get_config('mediagoblin.plugins.recaptcha') recaptcha_protocol = '' if config['RECAPTCHA_USE_SSL']: recaptcha_protocol = 'https' else: recaptcha_protocol = 'http' _log.debug("Connecting to reCAPTCHA service via %r", recaptcha_protocol) if register_form.validate(): recaptcha_challenge = request.form['recaptcha_challenge_field'] recaptcha_response = request.form['recaptcha_response_field'] _log.debug("response field is: %r", recaptcha_response) _log.debug("challenge field is: %r", recaptcha_challenge) response = captcha.submit( recaptcha_challenge, recaptcha_response, config.get('RECAPTCHA_PRIVATE_KEY'), request.remote_addr, ) goblin = response.is_valid if response.error_code: _log.warning("reCAPTCHA error: %r", response.error_code) if goblin: user = register_user(request, register_form) if user: # redirect the user to their homepage... there will be a # message waiting for them to verify their email return redirect( request, 'mediagoblin.user_pages.user_home', user=user.username) else: messages.add_message( request, messages.WARNING, _('Sorry, captcha was incorrect. Please try again.')) return render_to_response( request, 'mediagoblin/plugins/recaptcha/register.html', {'register_form': register_form, 'post_url': request.urlgen('mediagoblin.plugins.recaptcha.register'), 'recaptcha_public_key': config.get('RECAPTCHA_PUBLIC_KEY'), 'recaptcha_protocol' : recaptcha_protocol}) def forgot_password(request): """ Forgot password view Sends an email with an url to renew forgotten password. Use GET querystring parameter 'username' to pre-populate the input field """ fp_form = auth_forms.ForgotPassForm(request.form, username=request.args.get('username')) if not (request.method == 'POST' and fp_form.validate()): # Either GET request, or invalid form submitted. Display the template return render_to_response(request, 'mediagoblin/plugins/recaptcha/forgot_password.html', {'fp_form': fp_form}) # If we are here: method == POST and form is valid. username casing # has been sanitized. Store if a user was found by email. We should # not reveal if the operation was successful then as we don't want to # leak if an email address exists in the system. found_by_email = '@' in fp_form.username.data if found_by_email: user = User.query.filter_by( email=fp_form.username.data).first() # Don't reveal success in case the lookup happened by email address. success_message = _("If that email address (case sensitive!) is " "registered an email has been sent with " "instructions on how to change your password.") else: # found by username user = User.query.filter_by( username=fp_form.username.data).first() if user is None: messages.add_message(request, messages.WARNING, _("Couldn't find someone with that username.")) return redirect(request, 'mediagoblin.auth.forgot_password') success_message = _("An email has been sent with instructions " "on how to change your password.") if user and user.has_privilege(u'active') is False: # Don't send reminder because user is inactive or has no verified email messages.add_message(request, messages.WARNING, _("Could not send password recovery email as your username is in" "active or your account's email address has not been verified.")) return redirect(request, 'mediagoblin.user_pages.user_home', user=user.username) # SUCCESS. Send reminder and return to login page if user: email_debug_message(request) tools.send_fp_verification_email(user, request) messages.add_message(request, messages.INFO, success_message) return redirect(request, 'mediagoblin.auth.login') def verify_forgot_password(request): """ Check the forgot-password verification and possibly let the user change their password because of it. """ # get form data variables, and specifically check for presence of token formdata = _process_for_token(request) if not formdata['has_token']: return render_404(request) formdata_vars = formdata['vars'] # Catch error if token is faked or expired try: token = get_timed_signer_url("mail_verification_token") \ .loads(formdata_vars['token'], max_age=10*24*3600) except BadSignature: messages.add_message( request, messages.ERROR, _('The verification key or user id is incorrect.')) return redirect( request, 'index') # check if it's a valid user id user = User.query.filter_by(id=int(token)).first() # no user in db if not user: messages.add_message( request, messages.ERROR, _('The user id is incorrect.')) return redirect( request, 'index') # check if user active and has email verified if user.has_privilege(u'active'): cp_form = auth_forms.ChangeForgotPassForm(formdata_vars) if request.method == 'POST' and cp_form.validate(): user.pw_hash = tools.bcrypt_gen_password_hash( cp_form.password.data) user.save() messages.add_message( request, messages.INFO, _("You can now log in using your new password.")) return redirect(request, 'mediagoblin.auth.login') else: return render_to_response( request, 'mediagoblin/plugins/recaptcha/change_fp.html', {'cp_form': cp_form}) ## Commenting this out temporarily because I'm checking into ## what's going on with user.email_verified. ## ## ... if this commit lasts long enough for anyone but me (cwebber) to ## notice it, they should pester me to remove this or remove it ## themselves ;) # # if not user.email_verified: # messages.add_message( # request, messages.ERROR, # _('You need to verify your email before you can reset your' # ' password.')) if not user.status == 'active': messages.add_message( request, messages.ERROR, _('You are no longer an active user. Please contact the system' ' admin to reactivate your account.')) return redirect( request, 'index') def _process_for_token(request): """ Checks for tokens in formdata without prior knowledge of request method For now, returns whether the userid and token formdata variables exist, and the formdata variables in a hash. Perhaps an object is warranted? """ # retrieve the formdata variables if request.method == 'GET': formdata_vars = request.GET else: formdata_vars = request.form formdata = { 'vars': formdata_vars, 'has_token': 'token' in formdata_vars} return formdata @require_active_login def change_pass(request): form = auth_forms.ChangePassForm(request.form) user = request.user if request.method == 'POST' and form.validate(): if not tools.bcrypt_check_password( form.old_password.data, user.pw_hash): form.old_password.errors.append( _('Wrong password')) return render_to_response( request, 'mediagoblin/plugins/recaptcha/change_pass.html', {'form': form, 'user': user}) # Password matches user.pw_hash = tools.bcrypt_gen_password_hash( form.new_password.data) user.save() messages.add_message( request, messages.SUCCESS, _('Your password was changed successfully')) return redirect(request, 'mediagoblin.edit.account') return render_to_response( request, 'mediagoblin/plugins/recaptcha/change_pass.html', {'form': form, 'user': user})
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is part of Karesansui. # # Copyright (C) 2012 HDE, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # """ <comment-ja> 使用方法: add_disk.py [オプション] オプション: --version show program's version number and exit -h, --help show this help message and exit -t HOST, --target=HOST ターゲットホスト名 -a AUTH, --auth=AUTH 認証タイプ -u USER, --user=USER 認証ユーザー名 -p PASSWORD, --password=PASSWORD 認証パスワード -w PASSWORD_FILE, --password-file=PASSWORD_FILE 認証パスワードファイル -s, --autostart 自動起動 </comment-ja> <comment-en> Attach a new disk device to the domain. usage: add_disk.py [options] options: --version show program's version number and exit -h, --help show this help message and exit -t HOST, --target=HOST Target host name -a AUTH, --auth=AUTH Authentication type -u USER, --user=USER Authentication user name -p PASSWORD, --password=PASSWORD Authentication password -w PASSWORD_FILE, --password-file=PASSWORD_FILE Authentication password file -s, --autostart Autostart </comment-en> """ import os import sys import re import logging import fcntl from optparse import OptionParser from ksscommand import KssCommand, KssCommandException, KssCommandOptException import __cmd__ try: import karesansui from karesansui import __version__ from karesansui.lib.utils import load_locale, execute_command, is_readable from karesansui.lib.parser.iscsid import iscsidParser from karesansui.lib.dict_op import DictOp from karesansui.lib.iscsi import iscsi_parse_node, iscsi_print_format_node from karesansui.lib.const import ISCSI_CONFIG_KEY_AUTH_METHOD, ISCSI_CONFIG_KEY_AUTH_USER, \ ISCSI_CONFIG_KEY_AUTH_PASSWORD, ISCSI_CONFIG_KEY_SATRTUP, ISCSI_CONFIG_VALUE_AUTH_METHOD_CHAP, \ ISCSI_CONFIG_VALUE_AUTH_METHOD_NONE, ISCSI_CONFIG_VALUE_SATRTUP_ON, ISCSI_CONFIG_VALUE_SATRTUP_OFF, \ ISCSI_CMD, ISCSI_CMD_OPTION_MODE, ISCSI_CMD_OPTION_MODE_DISCOVERY, ISCSI_CMD_OPTION_TYPE, \ ISCSI_CMD_OPTION_TYPE_SENDTARGETS, ISCSI_CMD_OPTION_PORTAL except ImportError as e: print("[Error] some packages not found. - %s" % e, file=sys.stderr) sys.exit(1) _ = load_locale() usage = '%prog [options]' def getopts(): optp = OptionParser(usage=usage, version=__version__) optp.add_option('-t', '--target', dest='host', help=_('Target host name'), default=None) optp.add_option('-a', '--auth', dest='auth', help=_('Authentication type'), default=None) optp.add_option('-u', '--user', dest='user', help=_('Authentication user'), default=None) optp.add_option('-p', '--password', dest='password', help=_('Authentication password'), default=None) optp.add_option('-w', '--password-file', dest='password_file', help=_('Authentication password file'), default=None) optp.add_option('-s', '--autostart', dest='autostart', action="store_true", help=_('Autostart'), default=False) return optp.parse_args() def chkopts(opts): reg = re.compile("[^a-zA-Z0-9\./_:-]") if opts.host: if reg.search(opts.host): raise KssCommandOptException('ERROR: Illigal option value. option=%s value=%s' % ('-t or --target', opts.host)) else: raise KssCommandOptException('ERROR: %s option is required.' % '-t or --target') if opts.auth: if not opts.auth == ISCSI_CONFIG_VALUE_AUTH_METHOD_CHAP and not opts.auth == ISCSI_CONFIG_VALUE_AUTH_METHOD_NONE: raise KssCommandOptException('ERROR: %s option is require %s or %s.' % '-a', ISCSI_CONFIG_VALUE_AUTH_METHOD_CHAP, ISCSI_CONFIG_VALUE_AUTH_METHOD_NONE) if opts.auth == ISCSI_CONFIG_VALUE_AUTH_METHOD_CHAP: if opts.user is None: raise KssCommandOptException('ERROR: %s option is required.' % '-u or --user') if opts.password is None and opts.password_file is None: raise KssCommandOptException('ERROR: %s option is required.' % '-p or --password or -w or --password-file') if opts.password_file is not None and not is_readable(opts.password_file): raise KssCommandOptException('ERROR: %s is not found.' % opts.password_file) else: raise KssCommandOptException('ERROR: %s option is required.' % '-a or --auth') class AddIscsi(KssCommand): def process(self): (opts, args) = getopts() chkopts(opts) self.up_progress(10) original_parser = iscsidParser() new_parser = iscsidParser() dop = DictOp() dop.addconf("original", original_parser.read_conf()) dop.addconf("new", new_parser.read_conf()) self.up_progress(10) dop.cdp_set("new", ISCSI_CONFIG_KEY_AUTH_METHOD, opts.auth) if opts.auth == ISCSI_CONFIG_VALUE_AUTH_METHOD_CHAP: password = "" if opts.password is not None: password = opts.password elif opts.password_file is not None and is_readable(opts.password_file): try: fp = open(opts.password_file, "r") try: fcntl.lockf(fp.fileno(), fcntl.LOCK_SH) try: password = fp.readline().strip("\n") finally: fcntl.lockf(fp.fileno(), fcntl.LOCK_UN) self.up_progress(10) finally: fp.close() except: raise KssCommandException('Failed to read file. - target host=%s password_file=%s' \ % (opts.host,opts.password_file)) try: os.remove(opts.password_file) except: raise KssCommandException('Failed to remove file. - target host=%s password_file=%s' \ % (opts.host,opts.password_file)) dop.cdp_set("new", ISCSI_CONFIG_KEY_AUTH_METHOD, opts.auth) dop.cdp_set("new", ISCSI_CONFIG_KEY_AUTH_USER, opts.user) dop.cdp_set("new", ISCSI_CONFIG_KEY_AUTH_PASSWORD, password) else: dop.comment("new", ISCSI_CONFIG_KEY_AUTH_USER) dop.comment("new", ISCSI_CONFIG_KEY_AUTH_PASSWORD) self.up_progress(10) if opts.autostart: dop.cdp_set("new", ISCSI_CONFIG_KEY_SATRTUP, ISCSI_CONFIG_VALUE_SATRTUP_ON) else: dop.cdp_set("new", ISCSI_CONFIG_KEY_SATRTUP, ISCSI_CONFIG_VALUE_SATRTUP_OFF) new_parser.write_conf(dop.getconf("new")) self.up_progress(10) discovery_command_args = (ISCSI_CMD, ISCSI_CMD_OPTION_MODE, ISCSI_CMD_OPTION_MODE_DISCOVERY, ISCSI_CMD_OPTION_TYPE, ISCSI_CMD_OPTION_TYPE_SENDTARGETS, ISCSI_CMD_OPTION_PORTAL, opts.host ) (discovery_rc,discovery_res) = execute_command(discovery_command_args) self.up_progress(10) original_parser.write_conf(dop.getconf("original")) self.up_progress(10) if discovery_rc != 0: raise KssCommandException('Failed to add iSCSI. - host=%s message=%s' % (opts.host, discovery_res)) if discovery_res == []: raise KssCommandException('Failed to add iSCSI. - host=%s message=No exist permit iSCSI disk for target.' % (opts.host)) for node_line in discovery_res: if not node_line: continue try: node = iscsi_parse_node(node_line) except: self.logger.warn('Failed to parse iSCSI discovery command response. message="%s"' % (node_line)) continue self.logger.info("%s" % (iscsi_print_format_node(node))) print(_("%s") % (iscsi_print_format_node(node)), file=sys.stdout) return True if __name__ == "__main__": target = AddIscsi() sys.exit(target.run())
# # @lc app=leetcode id=700 lang=python3 # # [700] Search in a Binary Search Tree # # https://leetcode.com/problems/search-in-a-binary-search-tree/description/ # # algorithms # Easy (73.58%) # Total Accepted: 290.2K # Total Submissions: 394.1K # Testcase Example: '[4,2,7,1,3]\n2' # # You are given the root of a binary search tree (BST) and an integer val. # # Find the node in the BST that the node's value equals val and return the # subtree rooted with that node. If such a node does not exist, return null. # # # Example 1: # # # Input: root = [4,2,7,1,3], val = 2 # Output: [2,1,3] # # # Example 2: # # # Input: root = [4,2,7,1,3], val = 5 # Output: [] # # # # Constraints: # # # The number of nodes in the tree is in the range [1, 5000]. # 1 <= Node.val <= 10^7 # root is a binary search tree. # 1 <= val <= 10^7 # # # # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def searchBST(self, root: TreeNode, val: int) -> TreeNode: if root is None: return None elif root.val == val: return root elif root.val < val: return self.searchBST(root.right, val) else: return self.searchBST(root.left, val)
from typing import Any from convertible.Convert.ExceptionHandler.ConvertException import ConvertException from .Convertible import Convertible class Optional(Convertible): """ A Convertible that will either Convert the argument with the Convertible provided or return None. """ __slots__ = ("convertible",) def __init__(self, convertible: Convertible): """ Initialize a Optional Convertible. Parameters ---------- convertible : Convertible The Convertible that convert or provide an exception. """ self.convertible = convertible def __repr__(self) -> str: if self.convertible is self: return f"{self.__class__.__name__}(...)" else: return f"{self.__class__.__name__}({self.convertible})" def convert(self, argument: Any) -> Any: """ Converts the argument to the specified type of the Convertible provided or returns None. Parameters ---------- argument : Any The argument to be converted. Returns ------- Any The converted argument or None. """ try: return self.convertible.convert(argument) except ConvertException: return None except StopIteration: return None
import math a,b,c = map(float,input().split()) d = (b*b) - (4*a*c) if(a==0 or d<0): print("Impossivel calcular") else: d = math.sqrt(d) r1 = (-b + d) / (2*a) r2 = (-b -d) / (2*a) print(f'R1 = {r1:.5f}') print(f'R2 = {r2:.5f}')
from graphviz import Source s = Source.from_file('fboaventuradev_terraform.dot', format='png') s.save(filename='fboaventuradev_tf') s.view()
from colorama import Fore, Style import logging LEVEL_NAMES = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] LEVEL_COLORS = { "DEBUG": Style.DIM, "INFO": '', "WARNING": Fore.YELLOW, "ERROR": Fore.RED, "CRITICAL": Fore.RED } LEVEL_SHOW_LABEL = { "DEBUG": False, "INFO": False, "WARNING": True, "ERROR": True, "CRITICAL": True } RESET_SEQ = Fore.RESET + Style.RESET_ALL class ColoredFormatter(logging.Formatter): def __init__(self, supports_color: bool, format_string: str, verbose: bool): self.is_verbose = verbose # logging.Formatter.__init__(self, "%(asctime)s - %(name)s - %(levelname)s - %(message)s") logging.Formatter.__init__(self, format_string) self.use_color = supports_color def format(self, record: logging.LogRecord): levelname = record.levelname if self.use_color and levelname in LEVEL_COLORS: formatted_level_name = f"[{levelname}]: " if LEVEL_SHOW_LABEL[levelname] or self.is_verbose else "" colorized_level_name = f"{LEVEL_COLORS[levelname]}{formatted_level_name}" record.levelname = colorized_level_name record.msg = f"{colorized_level_name}{record.msg}{RESET_SEQ}" return logging.Formatter.format(self, record)
# -*- coding: utf-8 -*- # # Copyright (c) 2021 VMware, Inc. All Rights Reserved. # SPDX-License-Identifier: BSD-2-Clause """ SPDX document formatting """ # document level strings spdx_version = 'SPDX-2.2' data_license = 'CC0-1.0' spdx_id = 'SPDXRef-DOCUMENT' document_name = 'Tern report for {image_name}' document_comment = 'This document was generated by ' \ 'the Tern Project: https://github.com/tern-tools/tern' document_namespace = 'https://spdx.org/spdxdocs/tern-' \ 'report-{version}-{image}-{uuid}' license_list_version = '3.8' creator = 'Tool: tern-{version}' created = '{timestamp}' # Dictionary Formatting def get_relationship_dict(element_id, related_element_id, relationship_type): '''Given two SPDX element IDs and their relationship type, return a dictionary that represents the relationship. Assume that the element_id inputs are provided as SPDXRefs. { "spdxElementId" : "SPDXRef-element_id", "relatedSpdxElement" : "SPDXRef-related_element_id", "relationshipType" : "relationship_type" }''' return { "spdxElementId": element_id, "relatedSpdxElement": related_element_id, "relationshipType": relationship_type } def get_extracted_text_dict(extracted_text, license_ref): '''Given a plain text license string and the corresponding license_ref, return a dictionary that describes the key-value pair: { "extractedText" : "extracted_text" "licenseId": "license_ref" }''' return { "extractedText": extracted_text, "licenseId": license_ref }
# -*- coding: utf-8 -*- """ Created on Sat Mar 28 15:36:42 2020 @author: nikbakht """ #--------------------------------- import tensorflow as tf #import socket GPU_mode = 0 if GPU_mode: num_GPU =0# GPU to use, can be 0, 2 mem_growth = True print('Tensorflow version: ', tf.__version__) gpus = tf.config.experimental.list_physical_devices("GPU") print('Number of GPUs available :', len(gpus)) tf.config.experimental.set_visible_devices(gpus[num_GPU], 'GPU') tf.config.experimental.set_memory_growth(gpus[num_GPU], mem_growth) print('Used GPU: {}. Memory growth: {}'.format(num_GPU, mem_growth)) import numpy as np import os import time # import matplotlib.pyplot as plt import scipy.io as sio #import h5py #import pandas as pd from datetime import datetime # from Data_conv import Data from Data0 import Data from Plot_results_downlink import Plot # from UNNdebug import UNN from UNN_downlink import UNN from Loss_downlink import Loss import pickle #------------------------------------------ # tf.keras.backend.set_floatx('float64') #train_iterations = 100 batch_size =100 # train_per_database=100 # database_size=batch_size*train_per_database EPOCHS =int(10e3) Nuser = 30 Nap = 30 #Lambda=.001 #alpha=1 Id_save='2' save_model=1 P_over_noise=120 # dB cost_type='maxmin' # cost_type = 'maxproduct' # load = True # set it False for training load = False # ----------------------------------------- # def train(obj,Dataobj,epochs,mode): # TF board logs current_time = datetime.now().strftime("%Y%m%d-%H%M%S") train_log_dir = './logs/' + current_time + '/train' train_summary_writer = tf.summary.create_file_writer(train_log_dir) best_test_rate = -float('inf') best_W = None LR=np.logspace(-3,-4.5, num=epochs) G_batch,_=Dataobj(5*batch_size) SNR = np.power(10,P_over_noise/10)*G_batch #--------------Uncomment one of the following options Xin = np.reshape(np.log(SNR),[SNR.shape[0],-1]) # Xin=tf.linalg.diag_part(SNR) #----------------------------------- obj.Xin_av=np.mean(Xin,axis=0) obj.Xin_std=np.std(Xin,axis=0) J_total =[] min_SINR_total=[] try: for i in range(epochs): LR_i=LR[i ] optimizer = tf.keras.optimizers.Adam(LR_i) G_batch,_=Dataobj(5*batch_size) SNR=tf.pow(10.0,P_over_noise/10.0)*G_batch # --------------Uncomment one of the following options xin=tf.reshape(tf.math.log(SNR),[SNR.shape[0],-1]) # xin=np.log(np.diagonal(SNR,axis1=1,axis2=2)) xin=(xin-obj.Xin_av)/obj.Xin_std J=[] min_SINR_vec =[] for j in range(5): index = tf.random.uniform([batch_size],0,xin.shape[0],dtype=tf.dtypes.int32) xin_j = tf.gather(xin,index,axis=0) SNR_j = tf.gather(SNR,index,axis=0) with tf.GradientTape() as tape: # Forward pass. cost, _, min_SINR = obj(xin_j, SNR_j) # Get gradients of loss wrt the weights. gradients = tape.gradient(cost, obj.trainable_weights) # Gradient clipping gradients, grad_norm = tf.clip_by_global_norm(gradients, 1.0) # Update the weights of our linear layer. # grad_check = [0]*len(c_gradients) # for grad_i in range(len(c_gradients)): # # try: # grad_check = tf.debugging.check_numerics(c_gradients[grad_i],'UNN: Gradient error') # # except: # # pass # with tf.control_dependencies([grad_check]): optimizer.apply_gradients(zip(gradients, obj.trainable_weights)) J.append(cost.numpy()) min_SINR_vec.append(min_SINR.numpy()) J_total.append(cost.numpy()) min_SINR_total.append(min_SINR.numpy()) # print(i) if i % 10 == 0: # test_rate=cost.numpy()[0] test_rate = np.mean(J) # bit2r.LR=bit2r.LR*.85 # print('iter i=',i,'average cost is ', test_rate) print('Iteration = ', i, 'Cost = ', np.mean(J), 'sir_min_av = ', np.mean(min_SINR_vec)) # if test_rate > best_test_rate: best_test_rate = test_rate best_W = obj.get_weights() save_model(obj, 'models/' + mode + 'UNN_' + current_time + '.mod') with train_summary_writer.as_default(): tf.summary.scalar('test rate', test_rate, step=i) tf.summary.scalar('best test rate', best_test_rate, step=i) except KeyboardInterrupt: pass obj.set_weights(best_W) return J_total,min_SINR_total def save_model(model, fn): # W = model.get_weights() W = [model.get_weights(), model.Xin_av, model.Xin_std] with open(fn, 'wb') as f: pickle.dump(W, f) def load_model(model, fn): with open(fn, 'rb') as f: W = pickle.load(f) model.set_weights(W[0]) model.Xin_av = W[1] model.Xin_std = W[2] # --------------------------------------------- data = Data(Nuser) G_batch, p_frac = data(2 * batch_size, .3) # xin=np.reshape(G_batch,[batch_size,-1]) SNR = np.power(10, P_over_noise / 10) * G_batch xin = np.reshape(np.log(SNR),[SNR.shape[0],-1]) # xin = np.log(np.diagonal(SNR, axis1=1, axis2=2)) # xin = tf.linalg.diag_part(SNR) # ###### unn = UNN(Nap, Nuser, cost_type) if load: cost, SINR, _ = unn(xin, SNR) current_dir = os.getcwd() path = os.path.join(current_dir, '../Downlink/models_trained', 'maxminUNN.mod') # load_model(unn, 'C:\\Users\\nikbakht\\OneDrive - Nokia\\UPF\\Codes\\UNN\\Cellular\\python\\lib\\models\\xUNN.mod') load_model(unn, path) # xin=(xin-unn.Xin_av)/unn.Xin_std else: J_train, min_SINR_train = train(unn, data, EPOCHS, cost_type) # tensorboard --logdir ./logs --bind_all xin = (xin - unn.Xin_av) / unn.Xin_std cost, SINR, min_SINR = unn.Loss(SNR, unn.Network(xin)) print('Test cost is ', cost.numpy(), ' min_SINR is ', min_SINR.numpy()) RP = Plot() SIR_NN_clip = RP.sinr_av(SNR, unn.Network(xin), Nap, Nuser) SIR_NN = RP.sinr_av(SNR, unn.Network(xin), Nap, Nuser, 'Noclip') SIR_frac = RP.sinr_av(SNR, p_frac, Nap, Nuser) plot = Plot() sir_vec = [SIR_NN.numpy(), SIR_frac.numpy()] plot.cdfplot(sir_vec) # ---------------------------------------- # unique_name=time.ctime(time.time()) # unique_name=unique_name[0:19] if not load: sio.savemat('SIR' + 'Uplink' + cost_type + '.mat', {'SIR_NN': SIR_NN.numpy(), 'SIR_NN_clip': SIR_NN_clip.numpy(), 'SIR_frac': SIR_frac.numpy(), 'J_train': J_train, 'min_SINR_train': min_SINR_train, 'Nap': Nap, 'Nuser': Nuser})
from django.contrib.auth.models import User from django.core.exceptions import ValidationError from django.db import models from django.db.models.signals import post_save from django.dispatch import receiver from hustlers.constants import REGULAR_HUSTLER_PERMISSIONS from hustlers.utils.permission_utils import ( assign_hustler_admin_panel_access, assign_hustler_permission_group, ) class Hustler(models.Model): """ One to One with the Django User model Each hustler can have interests in zero or more categories """ bio = models.TextField(max_length=500, blank=True) # todo consider remove this primary key contraint for uniformity across model pks django_user = models.OneToOneField( to=User, primary_key=True, related_name="hustler", on_delete=models.PROTECT ) interests = models.ManyToManyField( to="knowledge.Category", blank=True, related_name="hustlers" ) created_by = models.ForeignKey( to="self", null=True, blank=True, on_delete=models.PROTECT ) modified_by = models.ForeignKey( to="self", null=True, blank=True, on_delete=models.PROTECT, related_name="hustlers_modified", ) created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) class Meta: db_table = "hustlers" @classmethod def from_db(cls, db, field_names, values): new = super(Hustler, cls).from_db(db, field_names, values) # cache existing value new._updated_django_user_id = values[field_names.index("django_user_id")] return new def save(self, *args, **kwargs): hustler_created = True if self._state.adding else False if hasattr(self, "_updated_django_user_id"): if ( not hustler_created and self._updated_django_user_id is not None and self._updated_django_user_id != self.django_user_id ): raise ValidationError("You cannot reassign Hustler to different User!") super(Hustler, self).save(*args, **kwargs) if hustler_created: assign_hustler_admin_panel_access( self, **REGULAR_HUSTLER_PERMISSIONS.get("admin_panel") ) assign_hustler_permission_group( hustler_object=self, permission_groups=REGULAR_HUSTLER_PERMISSIONS.get("groups"), ) @property def username(self): return "{0}".format(self.django_user.username) @property def first_name(self): return "{0}".format(self.django_user.first_name) @property def last_name(self): return "{0}".format(self.django_user.last_name) @property def full_name(self): return "{0} {1}".format(self.first_name, self.last_name) @property def email(self): return "{0}".format(self.django_user.email) @property def active(self): return "{0}".format(self.django_user.is_active) @property def superuser_access(self): return self.django_user.is_superuser def __str__(self): return "{0}".format(self.username) # signals @receiver(post_save, sender=User) def save_hustler(sender, instance, **kwargs): """ Saving/Updating Hustler every time user object is changed for syncing updated_at """ if hasattr(instance, "hustler"): instance.hustler.save()
""" 机器学习是关于学习数据集的一些属性并将其应用于新数据。 这就是为什么在机器的普遍做法学习评价的算法是手头上的数据分成两组, 一个是我们所说的训练集上, 我们了解到,我们称之为数据属性和一个测试集 上,我们测试这些属性。 scikit-learn提供了一些标准数据集,例如: 用于分类的 虹膜和数字数据集和波士顿房价回归数据集。 数据集是一个类似字典的对象,它保存有关数据的所有数据和一些元数据。该数据存储在.data成员中,它是一个数组。 在监督问题的情况下,一个或多个响应变量存储在成员中。 有关不同数据集的更多详细信息,请参见 : 数据集加载工具一节。 """
import numpy import theano import theano.tensor as tensor from neural_srl.theano.util import floatX def adadelta(parameters, gradients, rho=0.95, eps=1e-6): """ Reference: ADADELTA: An Adaptive Learning Rate Method, Zeiler 2012. https://arxiv.org/abs/1212.5701 Adapted from the Adadelta implementation from Tensorflow. """ accum = [theano.shared(numpy.zeros(p.get_value().shape, floatX)) for p in parameters] accum_updates = [theano.shared(numpy.zeros(p.get_value().shape, floatX)) for p in parameters] new_accum = [rho * g0 + (1.0 - rho) * (g**2) for g0, g in zip(accum, gradients)] updates = [tensor.sqrt(d0 + eps) / tensor.sqrt(g0 + eps) * g for d0, g0, g in zip(accum_updates, new_accum, gradients)] new_accum_updates = [rho * d0 + (1.0 - rho) * (d**2) for d0, d in zip(accum_updates, updates)] accum_ = list(zip(accum, new_accum)) accum_updates_ = list(zip(accum_updates, new_accum_updates) ) parameters_ = [ (p, (p - d)) for p,d in zip(parameters, updates)] return accum_ + accum_updates_ + parameters_ def gradient_clipping(gradients, max_norm=5.0): global_grad_norm = tensor.sqrt(sum(map(lambda x: tensor.sqr(x).sum(), gradients))) multiplier = tensor.switch(global_grad_norm < max_norm, 1.0, max_norm / global_grad_norm) return [g * multiplier for g in gradients]
# -*- coding: utf-8 -*- ''' Often-needed functions when using binet Copyright © 2013-2015 Thomas Unterthiner. Licensed under GPL, version 2 or a later (see LICENSE.rst) ''' from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import import sys if sys.version_info < (3,): range = xrange import cPickle as pickle else: import pickle import numpy as np import time import os import gc import logging import warnings import copy # Importing matplotlib might fail under special conditions # e.g. when using ssh w/o X11 forwarding try: import matplotlib.pyplot as plt except ImportError: warnings.warn("matplotlib unavailable") def generate_slices(n, size, ignore_last_minibatch_if_smaller=False): """Generates slices of given size up to n""" start, end = 0, 0 for pack_num in range(int(n / size)): end = start + size yield slice(start, end, None) start = end # last slice might not be a full batch if not ignore_last_minibatch_if_smaller: if end < n: yield slice(end, n, None) def plot_images(data, nrows, ncols, is_color=False, axis=None, local_norm="maxabs", **kwargs): ''' Plots several images stored in the rows of data.''' nchannels = 3 if is_color else 1 ppi = int(np.sqrt(data.shape[-1]/nchannels) + 2) # pixel per image +2 for borders imgshape = (nrows*ppi, ncols*ppi, nchannels) # make sure border is black img = {"maxabs": lambda s: (data.min() / np.abs(data).max()) * np.ones(imgshape, dtype=data.dtype), "minmax": lambda s: np.zeros(imgshape, dtype=data.dtype), "none": lambda s: np.ones(imgshape, dtype=data.dtype)*data.min() }[local_norm.lower()](None) if len(data.shape) < 3: data = data.reshape(data.shape[0], nchannels, ppi-2, ppi-2) n = min(nrows*ncols, data.shape[0]) normfunc = {"maxabs": lambda d: d / np.abs(d).max(), "minmax": lambda d: (d - d.min()) / d.ptp(), # normalize to [0, 1] "none": lambda d: d }[local_norm.lower()] idx = 0 for r in range(nrows): for c in range(ncols): if idx >= n: break d = np.rollaxis(data[idx, ], 0, 3) d = normfunc(d) img[r*ppi+1:(r+1)*ppi-1, c*ppi+1:(c+1)*ppi-1] = d idx += 1 if axis==None: fig = plt.figure(facecolor="black", **kwargs) fig.subplots_adjust(hspace=0, top=1, bottom=0, wspace=0, left=0, right=1) axis = fig.gca() else: fig = None if is_color: axis.imshow(img, interpolation="none") else: axis.imshow(img.reshape(nrows*ppi, ncols*ppi), interpolation="none", cmap="Greys_r") axis.axis("off") return fig def heuristic_svm_c(x): ''' Heuristic for setting the C for linear SVMS proposed by Thorsten Joachims.''' c = 0 n = x.shape[0] for i in range(n): c += np.sqrt(x[i, ].dot(x[i, ])) c /= n return 1.0 / c def plot_learning_curves(net, start_idx=5, end_idx=None, min_error=np.log(np.finfo(np.float32).tiny), *args, **kwargs): if end_idx is None or end_idx > net.statistics.shape[0]: end_idx = net.statistics.shape[0] if end_idx - start_idx <= 0: warnings.warn("Not enough data to plot learning curves") return data = net.statistics.ix[start_idx:end_idx] fig = plt.figure(*args, **kwargs) ax1 = plt.gca() np.log10(data[["train_error", "val_error"]]).plot(ax=ax1, legend=False) ax1.set_xlabel("epoch") ax1.set_ylabel("Cross-Entropy Error (log10)") ax2 = ax1.twinx() colcyc = ax2._get_lines.color_cycle # we need to jump 2 colors col = [next(colcyc), next(colcyc), next(colcyc)] data[['val_score']].plot(ax=ax2, color=col[2], linestyle=":", legend=False) ax2.set_ylabel("Validationset Accuracy", color=col[2]) # we need to draw the legend separately, otherwise each axis would create # its own legend handles, labels = ax1.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() handles += h2 labels += l2 fig.legend(handles, labels, loc="lower left", prop={'size':9}) fig.tight_layout return fig def train(net, dataset, fname=None, skip_output=25, show_plots=False, use_gpu=True, **kwargs): ''' Trains a neural network on the given dataset. If desired, the log-statements during training can be buffered into a StringIO object. This has the drawback that the output is only visible once the net has been fully trained, but it allows to only print only every n-th message. Parameters ---------- net: the neural net. dataset: tuple containing 'trainx', 'trainy', 'validx', 'validy' fname: file-name in which to store the (pickled) network after training. The file will be stored in the 'data' subfolder of the CWD. skip_output: how many lines of output to skip between two lines that will actually be printed. show_plots: If True, plot the first 256 weights of the lowest layer. use_gpu: if True, use gnumpy to run the code on the GPU. **kwargs: additional parameters for the `plotImages` cool when `plot_weights=True`. ''' from binet import op if use_gpu: gc.collect() if not op._IS_CUDA_INITIALIZED: logger = logging.getLogger(__name__) logger.warn("CUDA not initialized, initializing GPU 0") op.init_gpu(0) X, y, Xvalid, yvalid = [op.to_gpu(d) for d in dataset] net = op.to_gpu(net) else: X, y, Xvalid, yvalid = dataset try: init_out = net.transform(X) init_err = net._get_loss(y, init_out) net.track_progress(time.time(), init_err, X, y, Xvalid, yvalid) net.fit(X, y, Xvalid, yvalid, skip_output=skip_output) #if net.verbose and net.current_epoch % skip_output != 0: # make sure we show the last line # net.track_progress(time.time(), -1, X, y, Xvalid, yvalid) except KeyboardInterrupt: print("Intercepted KeyboardInterrupt, stopping... current status:") net.track_progress(time.time(), -1, X, y, Xvalid, yvalid) net.statistics = net.statistics[:-1] # we just added an invalid point finally: net = op.to_cpu(net) if fname: if not os.path.exists("data"): warnings.warn("creating 'data' directory to store pickled net") os.mkdir("data") with open(os.path.join("data", fname), "wb") as f: pickle.dump(net, f, -1) if show_plots: plot_images(net.weights[0], 16, 16, **kwargs) plot_learning_curves(net, **kwargs) return net def train_ensemble(prototype_net, dataset, outfile=None, n_nets=10, use_gpu=True): ''' Trains a given number of networks on a given dataset. All networks will be clones of the given prototoype, and they will all be pickled into the given outfile.''' from binet import op if use_gpu: gc.collect() if not op._IS_CUDA_INITIALIZED: logger = logging.getLogger(__name__) logger.warn("CUDA not initialized, initializing GPU 0") op.init_gpu(0) X, y, Xvalid, yvalid = [op.to_gpu(d) for d in dataset] prototype_net = op.to_gpu(prototype_net) else: X, y, Xvalid, yvalid = dataset if outfile is not None: f = open(outfile, "wb") nets = [] try: for i in range(n_nets): prototype_net.reset() if use_gpu: prototype_net = op.to_gpu(prototype_net) prototype_net.fit(X, y, Xvalid, yvalid) prototype_net = op.to_cpu(prototype_net) nets.append(copy.deepcopy(prototype_net)) if outfile is not None: pickle.dump(prototype_net, f, -1) finally: if outfile is not None: f.close() return nets def load_ensemble(fn): nets = [] with open(fn) as f: try: while f: nets.append(pickle.load(f)) except EOFError: return nets def print_system_information(additional_modules=[]): '''Prints general system information. Prints host information as well as version information about some of the more important packages. This is useful in IPython notebooks.''' import sys, os, datetime, platform host_info = (platform.node(), platform.platform()) print("Host: ", "%s: %s" % host_info) print("Date: ", str(datetime.datetime.now())) print("Python version: ", sys.version.replace("\n", "\n" + " "*21)) repo_version = str(os.popen("git log | head -1").readline().strip()) if not repo_version.startswith("fatal:"): print("repository version: ", repo_version) print("\nloaded modules:") # make sure most important modules are here, even if we only imported # some submodules import binet, numpy, scipy modlist = ['scipy', 'numpy', 'sklearn', 'IPython', 'matplotlib', 'binet', 'pandas', 'joblib'] modlist.extend(additional_modules) mod = [sys.modules[m]for m in modlist if m in sys.modules] mod.sort(key = lambda x: x.__name__) for m in mod: try: print("\t", m.__name__, m.__version__) except AttributeError: pass def get_timestamp(fmt='%Y%m%d_%H%M%S'): '''Returns a string that contains the current date and time.''' import datetime now = datetime.datetime.now() return datetime.datetime.strftime(now, fmt)
coords = [] while True: try: pair = list(map(int, input().split(","))) coords.append(pair) except: break xmin = min([pair[0] for pair in coords]) xmax = max([pair[0] for pair in coords]) ymin = min([pair[1] for pair in coords]) ymax = max([pair[1] for pair in coords]) xd = xmax - xmin + 3 yd = ymax - ymin + 3 board = [[(-1, xmax + ymax) for _ in range(xd)] for _ in range(yd)] def update(i, a, b): for xRel in range(xd): for yRel in range(yd): x = xmin - 1 + xRel y = ymin - 1 + yRel d = abs(a-x) + abs(b-y) if d < board[yRel][xRel][1]: board[yRel][xRel] = (i, d) elif d == board[yRel][xRel][1]: board[yRel][xRel] = (-1, d) for (j, (x, y)) in enumerate(coords): update(j, x, y) infinite = set([i[0] for i in board[0]]) infinite = infinite.union(set([i[0] for i in board[yd-1]])) infinite = infinite.union(set([i[0][0] for i in board])) infinite = infinite.union(set([i[xd-1][0] for i in board])) biggest = -1 pos = 0 for i in range(len(coords)): area = sum([[pair[0] for pair in board[j]].count(i) for j in range(yd)]) if (area > biggest) and (i not in infinite): biggest = area pos = i print("a: " + str(biggest) + " (" + str(pos) + ")") # b) --- upperB = 10000 count = 0 for xRel in range(xd): for yRel in range(yd): x = xmin - 1 + xRel y = ymin - 1 + yRel sumDist = sum([abs(x - pair[0]) + abs(y - pair[1]) for pair in coords]) if sumDist < upperB: count += 1 print("b: " + str(count))
from z3 import * npcs = [] biomes = [] class npc(object): def __init__(self, name): self.name = name self.sells = True self.guide = False self._loves = [] self._likes = [] self._dislikes = [] self._hates = [] self.near = {} npcs.append(self) def loves(self, *loves): self._loves = loves def likes(self, *likes): self._likes = likes def dislikes(self, *dislikes): self._dislikes = dislikes def hates(self, *hates): self._hates = hates guide = npc("Guide") merchant = npc("Merchant") zoologist = npc("Zoologist") golfer = npc("Golfer") nurse = npc("Nurse") tavernkeep = npc("Tavernkeep") party_girl = npc("Party girl") wizard = npc("Wizard") demolitionist = npc("Demolitionist") goblin_tinkerer = npc("Goblin tinkerer") clothier = npc("Clothier") dye_trader = npc("Dye trader") arms_dealer = npc("Arms dealer") steampunker = npc("Steampunker") dryad = npc("Dryad") painter = npc("Painter") witch_doctor = npc("Witch doctor") stylist = npc("Stylist") angler = npc("Angler") pirate = npc("Pirate") mechanic = npc("Mechanic") tax_collector = npc("Tax collector") cyborg = npc("Cyborg") #santa = npc("Santa claus") truffle = npc("Truffle") class biome(object): def __init__(self, name): self.name = name biomes.append(self) forest = biome("Forest") hallow = biome("Hallow") underground = biome("Underground") desert = biome("Desert") jungle = biome("Jungle") ocean = biome("Ocean") snow = biome("Snow") mushroom = biome("Mushroom") guide.likes(forest, clothier, zoologist) guide.dislikes(ocean, steampunker) guide.hates(painter) guide.sells = False guide.guide = True merchant.likes(forest, golfer, nurse) merchant.dislikes(desert, tax_collector) merchant.hates(angler) zoologist.loves(witch_doctor) zoologist.likes(forest, golfer) zoologist.dislikes(desert, angler) zoologist.hates(arms_dealer) golfer.loves(angler) golfer.likes(forest, painter, zoologist) golfer.dislikes(underground, pirate) golfer.hates(merchant) nurse.loves(arms_dealer) nurse.likes(hallow, wizard) nurse.dislikes(snow, dryad, party_girl) nurse.hates(zoologist) nurse.sells = False tavernkeep.loves(demolitionist) tavernkeep.likes(hallow, goblin_tinkerer) tavernkeep.dislikes(snow, guide) tavernkeep.hates(dye_trader) party_girl.loves(wizard, zoologist) party_girl.likes(hallow, stylist) party_girl.dislikes(underground, merchant) party_girl.hates(tax_collector) wizard.loves(golfer) wizard.likes(hallow, merchant) wizard.dislikes(ocean, witch_doctor) wizard.hates(cyborg) demolitionist.loves(tavernkeep) demolitionist.likes(underground, mechanic) demolitionist.dislikes(ocean, arms_dealer, goblin_tinkerer) goblin_tinkerer.loves(mechanic) goblin_tinkerer.likes(underground, dye_trader) goblin_tinkerer.dislikes(jungle, clothier) goblin_tinkerer.hates(stylist) clothier.loves(truffle) clothier.likes(underground, tax_collector) clothier.dislikes(hallow, nurse) clothier.hates(mechanic) dye_trader.likes(desert, arms_dealer, painter) dye_trader.dislikes(forest, steampunker) dye_trader.hates(pirate) arms_dealer.loves(nurse) arms_dealer.likes(desert, steampunker) arms_dealer.dislikes(snow, golfer) arms_dealer.hates(demolitionist) steampunker.loves(cyborg) steampunker.likes(desert, painter) steampunker.dislikes(jungle, dryad, wizard, party_girl) dryad.likes(jungle, witch_doctor, truffle) dryad.dislikes(desert, angler) dryad.hates(golfer) painter.loves(dryad) painter.likes(jungle, party_girl) painter.dislikes(forest, truffle, cyborg) witch_doctor.likes(jungle, dryad, guide) witch_doctor.dislikes(hallow, nurse) witch_doctor.hates(truffle) stylist.loves(dye_trader) stylist.likes(ocean, pirate) stylist.dislikes(snow, tavernkeep) stylist.hates(goblin_tinkerer) angler.likes(ocean, demolitionist, party_girl, tax_collector) angler.hates(tavernkeep) angler.sells = False pirate.loves(angler) pirate.likes(ocean, tavernkeep) pirate.dislikes(underground, stylist) pirate.hates(guide) mechanic.loves(goblin_tinkerer) mechanic.likes(snow, cyborg) mechanic.dislikes(underground, arms_dealer) mechanic.hates(clothier) tax_collector.loves(merchant) tax_collector.likes(snow, party_girl) tax_collector.dislikes(hallow, demolitionist, mechanic) #tax_collector.hates(santa) tax_collector.sells = False cyborg.likes(snow, steampunker, pirate, stylist) cyborg.dislikes(jungle, zoologist) cyborg.hates(wizard) #santa.loves(snow) #santa.hates(desert, tax_collector) truffle.loves(guide) truffle.likes(dryad) truffle.dislikes(clothier) truffle.hates(witch_doctor) NPC = Datatype("NPC") for n in npcs: NPC.declare(n.name) NPC = NPC.create() for n in npcs: n.ctr = getattr(NPC, n.name) Biome = Datatype("Biome") for b in biomes: Biome.declare(b.name) Biome = Biome.create() for b in biomes: b.ctr = getattr(Biome, b.name) for n in npcs: n.biome = Const(n.name + "_biome", Biome) n.near = {} for i in range(len(npcs)): for j in range(i+1, len(npcs)): near = Bool("near_" + npcs[i].name + "_" + npcs[j].name) npcs[i].near[npcs[j].name] = near npcs[j].near[npcs[i].name] = near r = RealVal def modifier(l, n, mod, result): if isinstance(l, biome): return result + If(l.ctr == n.biome, mod, 0) elif isinstance(l, npc): return result + If(n.near[l.name], mod, 0) else: raise def happiness(npc): result = 95 for l in npc._loves: result = modifier(l, npc, -12, result) for l in npc._likes: result = modifier(l, npc, -6, result) for l in npc._dislikes: result = modifier(l, npc, 6, result) for l in npc._hates: result = modifier(l, npc, 12, result) return If(result >= 150, 75, If(result <= 75, 0, result - 75)) def sells_pylon(npc): if not npc.sells: return False return happiness(npc) <= 10 def biome_sells_pylon(biome): accum = False for n in npcs: accum = Or(accum, And(sells_pylon(n), n.biome == biome.ctr)) return accum total = 0 for n in npcs: if not n.guide: n.happiness = happiness(n) total += n.happiness o = Optimize() o.add(truffle.biome == mushroom.ctr) o.add(goblin_tinkerer.happiness <= 0) o.add(tax_collector.happiness <= 2) o.add(angler.happiness <= 2) for b in biomes: #o.add(biome_sells_pylon(b)) nbiome = 0 for n in npcs: nbiome += If(n.biome == b.ctr, 1, 0) o.add(nbiome <= 4) for n in npcs: nnear = 0 for n2 in npcs: if n.name != n2.name: o.add(Implies(n.near[n2.name], n.biome == n2.biome)) for n3 in npcs: if n3.name != n2.name and n3.name != n.name: o.add(Implies(And(n.near[n2.name], n2.near[n3.name]), n.near[n3.name])) nnear += If(n.near[n2.name], 1, 0) o.add(nnear < 3) o.minimize(total) print(o.check()) m = o.model() print(m.eval(total)) for n in npcs: print(n.name, ":", m[n.biome], "=", str(m.eval(happiness(n)).as_long() + 75) + "%", end=' ') near=False for n2 in npcs: if n.name != n2.name: if m[n.near[n2.name]]: near=True if near: print("near", end=' ') for n2 in npcs: if n.name != n2.name: if m[n.near[n2.name]]: print(n2.name, end=' ') print()
from django.shortcuts import render from .models import Post # Create your views here.
import sys sys.path.insert(0, "multidoc") from multidoc.generate import generate_pybind_documented, generate_cpp_documented if __name__ == "__main__": generate_pybind_documented(api_prefix="docstrings", target_src="../tudatpy") generate_cpp_documented(api_prefix="docstrings", target_src="../tudat")
#!/usr/bin/env python # coding: utf-8 ''' Usage: process_task.py <config_file> process_task.py (--help|--version) Arguments: config_file the path of config_file Options: -h --help show this help message and exit -v --version show version and exit ''' import time import sys import os import json import shutil import docopt from schema import Schema, SchemaError import traceback import dbpc import rating_global_vars as gv from task_rating import Worker from kombu import Connection from rating_util import * from logging.handlers import SysLogHandler import MySQLdb import statsd import random def get_conf_abspath(args): os.chdir(gv.run_dir) conf_path = args['<config_file>'] conf_abs_path = os.path.abspath(conf_path) os.chdir(gv.bin_dir) return conf_abs_path def check_conf_validation(cf): try: Schema(lambda x: os.path.exists(x), error='config file should exists').validate(cf) except SchemaError as e: exit(e) def parse_conf_file(cfg_file): with open(cfg_file) as f: return json.load(f) def get_global_vars(cfg): cas_cfg = cfg['casmq'] gv.cas_url = cas_cfg['url'] gv.cas_queue = cas_cfg['queue'] gv.cas_exchange = cas_cfg['exchange'] gv.cas_routing_key = cas_cfg['routing_key'] #gv.priority = cas_cfg['priority'] dbpc_cfg = cfg['dbpc'] gv.dbpc_host = dbpc_cfg['host'] gv.dbpc_port = dbpc_cfg['port'] gv.dppc_service = dbpc_cfg['service'] ''' gv.component = dbpc_cfg['component'] ''' gv.interval = dbpc_cfg['interval'] #gv.try_times_limit = dbpc_cfg['try_times_limit'] gv.dp = dbpc.dbpc(gv.dbpc_host, int(gv.dbpc_port), gv.dppc_service, "query_broker.qb_rating", int(gv.interval)) ''' swift_cfg = cfg['swift'] gv.st_auth = swift_cfg['ST_AUTH'] gv.st_user = swift_cfg['ST_USER'] gv.st_key = swift_cfg['ST_KEY'] ''' taskpriorit_cfg = cfg['taskprioritymq'] gv.taskpriorit_url = taskpriorit_cfg['url'] gv.taskpriorit_queue = taskpriorit_cfg['queue'] gv.taskpriorit_exchange = taskpriorit_cfg['exchange'] gv.taskpriorit_routing_key = taskpriorit_cfg['routing_key'] gv.databases = cfg['mysql'] gv.file_ext_list = cfg['filter']['file_ext'] gv.min_file_size = cfg['filter']['minfilesize'] gv.max_file_size = cfg['filter']['maxfilesize'] gv.suspicious_mime_types = cfg['filter']['suspicious_mime_types'] statsd_cfg = cfg['statsdserver'] gv.statsdhost = statsd_cfg['host'] gv.statsdport = statsd_cfg['port'] gv.score = cfg['filter']['score'] gv.video_rating_url = cfg['video_rating'] def init_statsd(): gv.statsd_conn = statsd.client.StatsClient( host=gv.statsdhost, port=gv.statsdport) def init_logger(cf): #log_level_map = {'ERROR': 40, 'WARN': 30, 'INFO': 20, 'DEBUG': 10} #module = cf['module'] log_level = cf['log']['level'] if cf['log'].has_key('logfile'): gv.log_file = cf['log']['logfile'] g_logger.init_logger( "query_broker#qb_rating", log_level, gv.log_file, SysLogHandler.LOG_LOCAL2) g_logger_info.init_logger( "query_broker#qb_rating", log_level, gv.log_file, SysLogHandler.LOG_LOCAL1) else: g_logger.init_logger( "query_broker#qb_rating", log_level, 'syslog', SysLogHandler.LOG_LOCAL2) g_logger_info.init_logger( "query_broker#qb_rating", log_level, 'syslog', SysLogHandler.LOG_LOCAL1) def main(): args = docopt.docopt(__doc__, version=gv.version) cfg_file = get_conf_abspath(args) check_conf_validation(cfg_file) cfg = parse_conf_file(cfg_file) init_logger(cfg) get_global_vars(cfg) init_statsd() gv.dp.start() while True: with Connection(gv.taskpriorit_url) as conn: try: worker = Worker( conn, gv.taskpriorit_exchange, gv.taskpriorit_queue, gv.taskpriorit_routing_key) g_logger.info(trans2json('task priority escalator start')) worker.run() except Exception: g_logger.error( trans2json("task priority escalator %s happend!" % str(traceback.format_exc()))) gv.dp.join() if __name__ == '__main__': main()
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-13 00:52 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20171012_1411'), ] operations = [ migrations.AlterField( model_name='customer', name='phone', field=models.CharField(blank=True, max_length=15, null=True, verbose_name='Telefone'), ), ]
VERSION = (0, 10, 0, 'alpha', 1)
from setuptools import setup import httpie_jwt_auth setup( name='httpie-jwt-auth', description='JWTAuth plugin for HTTPie.', long_description=open('README.rst').read().strip(), version=httpie_jwt_auth.__version__, author=httpie_jwt_auth.__author__, author_email='[email protected]', license=httpie_jwt_auth.__license__, url='https://github.com/teracyhq/httpie-jwt-auth', download_url='https://github.com/teracyhq/httpie-jwt-auth', py_modules=['httpie_jwt_auth'], zip_safe=False, entry_points={ 'httpie.plugins.auth.v1': [ 'httpie_jwt_auth = httpie_jwt_auth:JWTAuthPlugin' ] }, install_requires=[ 'httpie>=1.0.0' ], classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Intended Audience :: Developers', 'Environment :: Plugins', 'License :: OSI Approved :: BSD License', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Utilities' ], )
import cv2 import numpy as np ''' we can use OpenCV functions to draw different Shaps like line, rectangle, circle etc ''' # Create an image # here i have created an image of 400*400 and having # 3 channels and in OpenCV datatype = uint8 img = np.zeros((400, 400, 3), dtype = 'uint8') a = img.copy() line = cv2.line(a, (50,50), (350,350), (0, 0, 255), 3) line_ = cv2.line(a, (50,350), (350,50), (0, 0, 255), 3) ''' here first argument is img itself then starting x,y ending x,y after that color and finally thickness ''' cv2.imshow('line', line) # Drawing rectangle b = img.copy() rectangle = cv2.rectangle(b,(50, 50), (350, 350), (0, 0, 255), 3) cv2.imshow('rectangle', rectangle) # Drawing cirlce c = img.copy() # calculating the center of img (x, y) = (int(img.shape[1]/2), int(img.shape[0]/2)) circle = cv2.circle(c, (x,y), (120), (0, 0, 255), 3) cv2.imshow('circle', circle) # a single image having line rectangle and circle d = img.copy() line_1 = cv2.line(d, (50,50), (350,350), (0, 0, 255), 3) line_ = cv2.line(d, (50,350), (350,50), (0, 0, 255), 3) rectangle_1 = cv2.rectangle(d,(50, 50), (350, 350), (0, 0, 255), 3) circle_ = cv2.circle(d, (x,y), (60), (0, 0, 255), 3) circle_1 = cv2.circle(d, (x,y), (120), (0, 0, 255), 3) cv2.imshow('combined', circle_1) cv2.waitKey(0) cv2.destroyAllWindows()
from django.conf.urls import url from demo.views import (Home, QuestionDetail) urlpatterns = [ url(r'^question/(?P<pk>[0-9]+)$', QuestionDetail.as_view(), name="questiondetail"), url(r'^$', Home.as_view(), name="home"), ] from django.conf.urls.static import static, settings urlpatterns = urlpatterns + [ # ... the rest of your URLconf goes here ... ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
from machine import Pin from time import ticks_us from time import ticks_diff IR_PIN = 14 timeStart = -1 data = 0 dataBitIndex = 0 irQueue = [ ] pin = None pinIR = None lastData = 0 def onIRPinChange(p): global timeStart, data, dataBitIndex, irQueue, lastData if p.value() == 1: # 1 timeStart = ticks_us() else: # 0 t = ticks_diff(ticks_us(), timeStart) # print(t) if t > 4000: # start signal data = 0 dataBitIndex = 0 elif t > 2000 and t < 4000 and dataBitIndex == 0: # print("RE") irQueue.append(lastData) else: if dataBitIndex < 32: data |= (1 if t > 1000 else 0) << (dataBitIndex) dataBitIndex = dataBitIndex + 1 if dataBitIndex == 32: addr = data & 0xFF iaddr = (data >> 8) & 0xFF cmd = (data >> 16) & 0xFF icmd = (data >> 24) & 0xFF # print(hex(data)) if addr == (iaddr ^ 0xFF) and cmd == (icmd ^ 0xFF): # print("OK") irQueue.append(cmd) lastData = cmd else: print("ERROR") lastData = 0 dataBitIndex = -1 pinIR = Pin(IR_PIN, Pin.IN, Pin.PULL_UP) pinIR.irq(onIRPinChange, Pin.IRQ_FALLING|Pin.IRQ_RISING) def read(): global irQueue if len(irQueue): data = irQueue[0] irQueue = irQueue[1:] return data else: return 0
import requests from bs4 import BeautifulSoup def fetch_reddit_posts(): news = [] community = [] media = [] art = [] funny = [] gaming = [] # def get_stories_from_url(url): headers = { 'user-agent': 'the front page/0.0.1' } url = 'https://www.reddit.com/r/news+worldnews+upliftingnews+funny+programmerhumor+jokes+blackpeopletwitter+gaming+leagueoflegends+hearthstone+askreddit+iama+tifu+videos+gifs+pics+movies+art+music+listentothis/.json?limit=75' # # if subreddit_name == None: # r = requests.get(url, headers) # else: # r = requests.get('https://www.reddit.com/r/'+subreddit_name+'.json', headers) r = requests.get(url, headers) result = r.json() stories = result['data']['children'] for story in stories: story_data = story['data'] story_subreddit = story_data.get('subreddit', '').encode('utf-8').lower() if story_subreddit == 'news' or story_subreddit == 'upliftingnews' or story_subreddit == 'worldnews': news.append(story_data) if story_subreddit == 'askreddit' or story_subreddit == 'iama' or story_subreddit == 'tifu': community.append(story_data) if story_subreddit == 'videos' or story_subreddit == 'pics' or story_subreddit == 'gifs': media.append(story_data) if story_subreddit == 'movies' or story_subreddit == 'art' or story_subreddit == 'music' or story_subreddit == 'listentothis': art.append(story_data) if story_subreddit == 'funny' or story_subreddit == 'programmerhumor' or story_subreddit == 'jokes' or story_subreddit == 'blackpeopletwitter': funny.append(story_data) if story_subreddit == 'gaming' or story_subreddit == 'leagueoflegends' or story_subreddit == 'hearthstone': gaming.append(story_data) return {'news':news, 'community':community, 'media':media, 'art':art, 'funny':funny, 'gaming':gaming} # count = 25 #
#!/usr/bin/env python # # portable serial port access with python # this is a wrapper module for different platform implementations # # (C) 2017-2017 Kenneth Ceyer <[email protected]> # this is distributed under # Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
import argparse import socket import datetime import yaml import torch import numpy as np import time import random import math import os import getpass import glob from functools import reduce import operator def pad_with_last_col(matrix, cols): out = [matrix] pad = [matrix[:, [-1]]] * (cols - matrix.size(1)) out.extend(pad) return torch.cat(out, dim=1) def pad_with_last_val(vect, k): device = "cuda" if vect.is_cuda else "cpu" pad = torch.ones(k - vect.size(0), dtype=torch.long, device=device) * vect[-1] vect = torch.cat([vect, pad]) return vect def sparse_prepare_tensor(tensor, torch_size, ignore_batch_dim=True): if ignore_batch_dim: tensor = sp_ignore_batch_dim(tensor) tensor = make_sparse_tensor(tensor, tensor_type="float", torch_size=torch_size) return tensor def sp_ignore_batch_dim(tensor_dict): tensor_dict["idx"] = tensor_dict["idx"][0] tensor_dict["vals"] = tensor_dict["vals"][0] return tensor_dict def sort_by_time(data, time_col): _, sort = torch.sort(data[:, time_col]) data = data[sort] return data def print_sp_tensor(sp_tensor, size): print( torch.sparse.FloatTensor( sp_tensor["idx"].t(), sp_tensor["vals"], torch.Size([size, size]) ).to_dense() ) def reset_param(t): stdv = 2.0 / math.sqrt(t.size(0)) t.data.uniform_(-stdv, stdv) # Takes an edge list and turns it into an adjacency matrix def make_sparse_tensor(adj, tensor_type, torch_size): if len(torch_size) == 2: tensor_size = torch.Size(torch_size) elif len(torch_size) == 1: tensor_size = torch.Size(torch_size * 2) if tensor_type == "float": return torch.sparse.FloatTensor( adj["idx"].t(), adj["vals"].type(torch.float), tensor_size ) elif tensor_type == "long": return torch.sparse.LongTensor( adj["idx"].t(), adj["vals"].type(torch.long), tensor_size ) else: raise NotImplementedError("only make floats or long sparse tensors") def sp_to_dict(sp_tensor): return {"idx": sp_tensor._indices().t(), "vals": sp_tensor._values()} class Namespace(object): """ helps referencing object in a dictionary as dict.key instead of dict['key'] """ def __init__(self, adict): self.__dict__.update(adict) def random_param_value(param, param_min, param_max, type="int"): if str(param) is None or str(param).lower() == "none": if type == "int": return random.randrange(param_min, param_max + 1) elif type == "logscale": interval = np.logspace(np.log10(param_min), np.log10(param_max), num=100) return np.random.choice(interval, 1)[0] else: return random.uniform(param_min, param_max) else: return param def load_data(file): with open(file) as file: file = file.read().splitlines() data = torch.tensor([[float(r) for r in row.split(",")] for row in file[1:]]) return data def load_data_from_tar( file, tar_archive, replace_unknow=False, starting_line=1, sep=",", type_fn=float, tensor_const=torch.DoubleTensor, ): f = tar_archive.extractfile(file) lines = f.read() lines = lines.decode("utf-8") if replace_unknow: lines = lines.replace("unknow", "-1") lines = lines.replace("-1n", "-1") lines = lines.splitlines() data = [[type_fn(r) for r in row.split(sep)] for row in lines[starting_line:]] data = tensor_const(data) return data def create_parser(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "--config_file", default="experiments/parameters_example.yaml", type=argparse.FileType(mode="r"), help="optional, yaml file containing parameters to be used, overrides command line parameters", ) parser.add_argument( "--one_cell", action="store_true", help="optional, indicate whether to search just one grid cell in the grid search or all", ) # parser.add_argument('--ncores', type=int, help='optional, indicate how many threads pytorch should spawn, note that dataloader has a num workers and joblib also spawn parallel processes') return parser def parse_args(parser): args = parser.parse_args() if args.config_file: data = yaml.load(args.config_file, Loader=yaml.FullLoader) # delattr(args, 'config_file') arg_dict = args.__dict__ for key, value in data.items(): arg_dict[key] = value arg_dict["config_file"] = arg_dict["config_file"].name return arg_dict def read_master_args(yaml_file): try: with open(yaml_file) as f: data = yaml.load(f, Loader=yaml.FullLoader) arg_dict = {} for key, value in data.items(): arg_dict[key] = value return arg_dict except FileNotFoundError as e: raise type(e)(str(e) + " Master file not found in config folder") def get_log_folder(args): if hasattr(args, "log_folder"): root_log_folder = args.log_folder else: root_log_folder = "log" log_folder = root_log_folder + "/" + args.data + "-" + args.model + "/" os.makedirs(log_folder, exist_ok=True) return log_folder def get_log_name(args, classifier_name="decoder", train_encoder=True): log_folder = get_log_folder(args) hostname = socket.gethostname() if args.temporal_granularity == "continuous" and train_encoder == True: gridcell = str( args.learning_rate ) # Only learning rate is significant for this log, also used to distinguish between encoder and decoder logs else: gridcell = get_gridcell(args) currdate = str(datetime.datetime.today().strftime("%Y%m%d%H%M%S")) log_name = ( log_folder + "log_" + args.data + "_" + args.task + "_" + currdate + "_" + args.model + "_" + classifier_name + "_r" + str(args.rank) + "_" + hostname + "__grid_" + gridcell + ".log" ) return log_name def get_experiment_notification(args): hostname = socket.gethostname() username = getpass.getuser() def arg2str(arg): # If list to string if type(arg) is type([]): return "&".join(arg) else: return arg return ( arg2str(args.data) + "_" + arg2str(args.model) + "_" + hostname + "_" + username ) def get_gridcell(args): grid = args.grid.items() if len(grid) <= 0: grid_str = "nogrid" else: grid_str = "_".join( ["{}:{}".format(key, value) for key, value in args.grid.items()] ) return grid_str # Returns bool whether to skip a grid cell or not def skip_cell(args): log_folder = get_log_folder(args) gridcell = get_gridcell(args) for filename in glob.glob(log_folder + "*"): if gridcell in filename: return args.skip_computed_grid_cells == True def add_log_lock(args): if args.use_logfile: open(get_log_folder(args) + "/" + get_gridcell(args) + "_lock.log", "a").close() def remove_log_lock(args): gridcell = get_gridcell(args) for filename in glob.glob(get_log_folder(args) + "*"): if gridcell in filename and "_lock" in filename: os.remove(filename) def prod(iterable): return reduce(operator.mul, iterable, 1) def get_initial_features_continuous( args, gcn_args, dataset, force_random_edge_features ): ## TGAT requires that node and edge features are the same size. # if args.random_feats == True: # num_feats = gcn_args.layer_2_feats # edge_features = np.random.rand(dataset.num_edges, num_feats) # node_features = np.zeros((dataset.num_nodes, edge_features.shape[1])) # elif type(dataset.edge_features) == type(None): # # Edge features don't exist, make random edge features, size defined by node features # start_idx = tasker.data.min_time + args.num_hist_steps # # Get initial node features # s = tasker.get_sample(start_idx, partition='TRAIN', test = False, snapshot_based=False, split_start=tasker.data.min_time) # assert(len(s['hist_ndFeats']) == 1) # node_features = s['hist_ndFeats'][0] # node_features = make_sparse_tensor(node_features, tensor_type='float', # torch_size=[dataset.num_nodes, tasker.feats_per_node]).to_dense().cpu().numpy() # # Random init of node features. The same number as the output layer should have.. no change of features through the model. # gcn_args.layer_2_feats = tasker.feats_per_node # #features_per_node = gcn_args.layer_2_feats # #node_features = np.random.rand(dataset.num_nodes, features_per_node) # # Random initiation of (all) edge features # # Use same dimensions as node features, if not, the attention model breaks... # features_per_edge = node_features.shape[1] # num_edges = len(dataset.edges['vals']) # edge_features = np.random.rand(num_edges, features_per_edge) # else: # Edge features exist, make zero node features, size defined by edge features if type(dataset.edge_features) == type(None) and not force_random_edge_features: num_feats = gcn_args.layer_2_feats features_per_edge = num_feats num_edges = len(dataset.edges["vals"]) edge_features = np.random.rand(num_edges, features_per_edge) else: edge_features = dataset.edge_features node_features = np.zeros((dataset.num_nodes, edge_features.shape[1])) return edge_features, node_features
# encoding=utf-8 # Project: transfer_cws # Author: xingjunjie # Create Time: 07/11/2017 2:35 PM on PyCharm import argparse from data_utils import load_pre_train, load_vocab, get_processing, Dataset, EvaluateSet import tensorflow as tf import os import pickle import json from utils import get_logger def train_pos(args): src_embedding = None target_embedding = None logger = get_logger(args.log) logger.info('Model Type: {}'.format(args.type)) if os.path.exists(args.config) and (not args.config == 'debug.json'): logger.info('Loading config from {}'.format(args.config)) config = json.load(open(args.config, 'r')) try: vocab_word = pickle.load(open(config['word'], 'rb')) vocab_tag = pickle.load(open(config['tag'], 'rb')) target_vocab_word = pickle.load(open(config['target_word'], 'rb')) assert len(vocab_word) == config['nword'] assert len(vocab_tag) == config['ntag'] assert len(target_vocab_word) == config['ntarword'] if args.use_pretrain_src: _, src_embedding = load_pre_train(args.src_embedding) if args.use_pretrain_target: _, target_embedding = load_pre_train(args.target_embedding) except Exception as e: logger.error(e) exit(0) else: if args.use_pretrain_src: pre_dictionary, src_embedding = load_pre_train(args.src_embedding) vocab_word, vocab_tag = load_vocab(args.train_file, pre_dictionary) else: vocab_word, vocab_tag = load_vocab(args.train_file) if args.use_pretrain_target: pre_dictionary, target_embedding = load_pre_train(args.target_embedding) target_vocab_word, _ = load_vocab(args.train_file, pre_dictionary) else: target_vocab_word, _ = load_vocab(args.target_train_file) i = 0 while os.path.exists('./.cache/vocab_{}.pickle'.format(str(i))) or os.path.exists( './.cache/tag_{}.pickle'.format(str(i))): i += 1 if not os.path.exists('./.cache'): os.makedirs('./.cache') with open('./.cache/vocab_{}.pickle'.format(str(i)), 'wb') as vocab, open( './.cache/tag_{}.pickle'.format(str(i)), 'wb') as tag, open( './.cache/target_vocab_{}.pickle'.format(str(i)), 'wb') as tar_vocab: pickle.dump(vocab_word, vocab) pickle.dump(vocab_tag, tag) pickle.dump(target_vocab_word, tar_vocab) with open(args.config, 'w+') as config: json.dump({ 'word': './.cache/vocab_{}.pickle'.format(str(i)), 'tag': './.cache/tag_{}.pickle'.format(str(i)), 'target_word': './.cache/target_vocab_{}.pickle'.format(str(i)), 'nword': len(vocab_word), 'ntag': len(vocab_tag), 'ntarword': len(target_vocab_word) }, config, indent='\t') nword = len(vocab_word) ntag = len(vocab_tag) ntarword = len(target_vocab_word) logger.info("Src: {} {}".format(nword, ntag)) logger.info("Target: {}".format(ntarword)) logger.info("Flag: {}".format(args.flag)) logger.info("Src embed trainable: {}".format(not args.disable_src_embed_training)) logger.info("\ntrain:{}\ndev :{}\ntest :{}\n\n".format(args.train_file, args.dev_file, args.test_file)) logger.info("\nTarget: \ntrain:{}\ndev :{}\ntest :{}\n".format(args.target_train_file, args.target_dev_file, args.target_test_file)) logger.info("MSG: {}\n".format(args.msg)) logger.info("lr_ratio: {}\n".format(str(args.lr_ratio))) logger.info("penalty_ratio: {}\n".format(str(args.penalty_ratio))) logger.info("penalty: {}\n".format(str(args.penalty))) processing_word = get_processing(vocab_word) processing_tag = get_processing(vocab_tag) processing_target_word = get_processing(target_vocab_word) src_train = Dataset(args.train_file, processing_word, processing_tag, None) src_dev = Dataset(args.dev_file, processing_word, processing_tag, None) src_test = Dataset(args.test_file, processing_word, processing_tag, None) target_train = Dataset(args.target_train_file, processing_target_word, processing_tag) target_dev = Dataset(args.target_dev_file, processing_target_word, processing_tag) target_test = Dataset(args.target_test_file, processing_target_word, processing_tag) src_len = len(src_train) target_len = len(target_train) ratio = target_len / (src_len + target_len) logger.info("\nsrc: {}\ntarget: {}\n".format(src_len, target_len)) # ratio = 0.1 if ratio < 0.1 else ratio target_batch_size = int(ratio * args.batch_size) target_batch_size = 1 if target_batch_size < 1 else target_batch_size src_batch_size = args.batch_size - target_batch_size logger.info("\nsrc_batch_size: {}\ntarget_batch_size: {}".format(src_batch_size, target_batch_size)) assert target_batch_size >= 0 model = Model(args, ntag, nword, ntarwords=ntarword, src_embedding=src_embedding, target_embedding=target_embedding, logger=logger, src_batch_size=src_batch_size) model.build() try: print("========If !!! it's debugging!==========") print(args.debug) if args.debug: print("========it's debugging!==========") model.train(src_dev, src_dev, vocab_tag, target_dev, target_dev, target_test, src_batch_size, target_batch_size) else: # model.train(src_train, src_dev, vocab_tag, target_train, target_dev, src_batch_size, target_batch_size) model.train(src_train, src_dev, vocab_tag, target_train, target_dev, target_test, src_batch_size, target_batch_size) except KeyboardInterrupt: model.evaluate(target_dev, vocab_tag, target='target') def predict(args): config = json.load(open(args.config, 'r')) try: vocab_word = pickle.load(open(config['word'], 'rb')) vocab_tag = pickle.load(open(config['tag'], 'rb')) target_vocab_word = pickle.load(open(config['target_word'], 'rb')) assert len(vocab_word) == config['nword'] assert len(vocab_tag) == config['ntag'] assert len(target_vocab_word) == config['ntarword'] except Exception as e: print(e) exit(0) id_to_word = {value: key for key, value in vocab_word.items()} id_to_tag = {value: key for key, value in vocab_tag.items()} processing_word = get_processing(vocab_word) predict = EvaluateSet(args.predict_file, processing_word) model = Model(args, len(vocab_tag), len(vocab_word)) model.build() saver = tf.train.Saver() tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True tf_config.gpu_options.per_process_gpu_memory_fraction = model.args.gpu_frac with tf.Session(config=tf_config) as sess: saver.restore(sess, model.args.model_input) model.predict(sess, predict, id_to_tag, id_to_word) print('result saved in {}'.format(args.predict_out)) def main(args): if args.func == 'train': train_pos(args) elif args.func == 'predict': predict(args) if __name__ == '__main__': """ Functions """ parser = argparse.ArgumentParser() parser.add_argument('func', type=str, choices=['train', 'predict'], help='Function to run.') """ Several paths """ parser.add_argument('--log', type=str, default="./debug.log", help="path to log file") parser.add_argument('--src_embedding', type=str, help="Path to pretrained embedding.") parser.add_argument('--target_embedding', type=str, help="Path to pretrained embedding.") """ Model type """ parser.add_argument('-t', '--type', type=str, default='1', choices=['1', '2', '3'], help="Model type") """ Shared Hyper parameters """ # parser.add_argument('--batch_size', type=int, default=20, help="Training batch size") parser.add_argument('--batch_size', type=int, default=50, help="Training batch size") # parser.add_argument('--epoch', type=int, default=100, help="Training epoch") parser.add_argument('--epoch', type=int, default=1, help="Training epoch") parser.add_argument('--optim', type=str, default='Adam', help="optimizer, SGD or Adam") parser.add_argument('--learning_rate', type=float, default=0.01, help="Learning rate") parser.add_argument('--lr_decay', type=float, default=0.99, help="Learning rate decay rate") parser.add_argument('--embedding_size', type=int, default=50, help="Embedding size") """ training """ parser.add_argument('--lstm_hidden', type=int, default=50, help="Hidden dimension of lstm model.") parser.add_argument('--dropout', type=float, default=0.8, help="Dropout rate of lstm.") parser.add_argument('--model_output', type=str, default='./model/debug') parser.add_argument('--model_input', type=str, default='./model/pku', help='path of model used for predict') parser.add_argument('--train_file', type=str, default='./data/pku_train.txt') parser.add_argument('--dev_file', type=str, default='./data/pku_dev.txt') parser.add_argument('--test_file', type=str, default='./data/pku_dev.txt') # parser.add_argument('--target_train_file', type=str, default='medical_data/forum_train_0.1.txt') # parser.add_argument('--target_dev_file', type=str, default='medical_data/forum_dev.txt') # parser.add_argument('--target_test_file', type=str, default='medical_data/forum_test.txt') parser.add_argument('--target_train_file', type=str, default='./data/pku_train.txt') parser.add_argument('--target_dev_file', type=str, default='./data/pku_dev.txt') parser.add_argument('--target_test_file', type=str, default='medical_data/forum_test.txt') parser.add_argument('--use_pretrain_src', action="store_true") parser.add_argument('--use_pretrain_target', action="store_true") parser.add_argument('--nepoch_no_imprv', type=int, default=5, help="Num of epoch with no improvement") parser.add_argument('--gpu_frac', type=float, default=1.0) parser.add_argument('-d', '--debug', action='store_true', help='Flag for debug.') parser.add_argument('--config', type=str, default='debug.json', help='Path to saved config file') parser.add_argument('--flag', type=int, default=0, help='training flag') parser.add_argument('--disable_src_embed_training', action="store_true", default=False) parser.add_argument('--msg', default='No msg.') parser.add_argument('--matrix', default='matrix.p') parser.add_argument('--use_adapt', action="store_true") parser.add_argument('--lr_ratio', default=1.0, type=float) parser.add_argument('--gpu_device', default=0, type=int) parser.add_argument('--share_crf', action="store_true") parser.add_argument('--share_embed', action="store_true") parser.add_argument('--use_l2', action="store_true") parser.add_argument('--l2_ratio', default=0.1, type=float) parser.add_argument('--crf_l2_ratio', default=0.3, type=float) parser.add_argument('-p', '--penalty', type=str, default='mmd', choices=['kl', 'mmd', 'cmd']) # parser.add_argument('--penalty_ratio', default=0.05, type=float) parser.add_argument('--penalty_ratio', default=0, type=float) """ Predict """ parser.add_argument('--predict_file', type=str, help='Path to file for prediction') parser.add_argument('--predict_out', type=str, default='predict_out.txt', help='Path to save predict result.') args = parser.parse_args() global Model Model = getattr(__import__('model_{}'.format(args.type)), 'Model') main(args)
import datetime import json import os import spotipy from tzlocal import get_localzone class StreamingHistory: def __init__(self, path: str = '.') -> None: self.current_year = datetime.date.today().year self.end = None self.minutes_listened = 0 self.hours_listened = 0 files = [file for file in os.listdir(path) if file[:16] + file[-5:] == 'StreamingHistory.json'] files.sort(key=lambda a: int(a[16:-5])) if not files: raise FileNotFoundError('The directory does not contain listening information') self.data = () for file in files: streaming_file = open(os.path.join(path, file), 'r', encoding='utf-8') streaming_json = streaming_file.read() streaming_file.close() self.data += tuple(json.loads(streaming_json)) for song in self.data: time_i = datetime.datetime.strptime(song['endTime'] + ' +00:00', '%Y-%m-%d %H:%M %z').astimezone( get_localzone()) time = datetime.datetime(time_i.year, time_i.month, time_i.day, time_i.hour, time_i.minute) song['endTime'] = time self.data = tuple(song for song in self.data if song['endTime'].year == self.current_year and song['msPlayed'] > 30000) def activity_by_date(self) -> dict: dates = {month: [0, 0] for month in range(1, 13)} for song in self.data: dates[song['endTime'].month][0] += 1 dates[song['endTime'].month][1] += song['msPlayed'] return dates def activity_by_time(self) -> dict: times = {hour: 0 for hour in range(24)} for song in self.data: times[song['endTime'].hour] += 1 return times def retrieve_data(self) -> None: self.end = self.data[-1]['endTime'].strftime('%b %-d') self.minutes_listened = round(sum([s['msPlayed'] for s in self.data]) / (1000 * 60)) self.hours_listened = round(self.minutes_listened / 60) class ListeningInformation: def __init__(self, streaming_history: StreamingHistory) -> None: self.data = {} self.albums = 0 self.top_albums = () self.genres = 0 self.top_genres = () self.top_artists = () self.top_songs = () for song in streaming_history.data: artist, time, duration, track = song['artistName'], song['endTime'], song['msPlayed'], song['trackName'] if artist not in self.data: self.data[artist] = [0, {}] if track not in self.data[artist][1]: self.data[artist][1][track] = 0 self.data[artist][1][track] += 1 self.data[artist][0] += duration def get_top_artists(self) -> None: self.top_artists = tuple((artist, self.data[artist][0]) for artist in sorted(self.data, key=lambda a: self.data[a][0], reverse=True)[:20]) def get_top_songs(self) -> None: all_songs = {(artist, song): self.data[artist][1][song] for artist in self.data for song in self.data[artist][1]} self.top_songs = tuple((artist, all_songs[artist]) for artist in sorted(all_songs, key=all_songs.get, reverse=True)[:100]) class SpotifyAPI: # Add your own client_id = '' client_secret = '' redirect_uri = 'http://localhost:7777/callback' scope = 'user-read-recently-played' def __init__(self, username): self.username = username self.authorization = spotipy.oauth2.SpotifyOAuth(username=username, scope=SpotifyAPI.scope, client_id=SpotifyAPI.client_id, client_secret=SpotifyAPI.client_secret, redirect_uri=SpotifyAPI.redirect_uri) self.token = self.authorization.get_access_token() def check_token(self): if spotipy.SpotifyOAuth.is_token_expired(self.token): self.token = self.authorization.refresh_access_token(self.token['refresh_token']) def get_track(self, track_name: str, artist_name: str): self.check_token() sp = spotipy.Spotify(auth=self.token['access_token']) while True: try: return sp.track( sp.search(q=f'artist:{artist_name} track:{track_name}', type='track')['tracks']['items'][0]['id']) except IndexError: return None except: continue def get_artist(self, artist_name: str): self.check_token() sp = spotipy.Spotify(auth=self.token['access_token']) while True: try: return sp.artist(sp.search(q=f'artist:{artist_name}', type='artist')['artists']['items'][0]['id']) except IndexError: return None except: continue def get_features(self, track_id: str): self.check_token() sp = spotipy.Spotify(auth=self.token['access_token']) while True: try: features = sp.audio_features([track_id])[0] return features except: continue def top_albums(self, listening_information: ListeningInformation) -> None: all_songs = {(artist, song) for artist in listening_information.data for song in listening_information.data[artist][1]} albums = {} counter = 0 for artist, song in all_songs: track = self.get_track(song, artist) if not track: counter += 1 print(counter, 'out of', len(all_songs), 'completed', end='\r') continue album = track['album']['name'] key = tuple(artist['name'] for artist in track['album']['artists']) + (album,) if key not in albums: albums[key] = 0 albums[key] += listening_information.data[artist][1][song] counter += 1 print(counter, 'out of', len(all_songs), 'completed', end='\r') print() listening_information.albums = len(albums) listening_information.top_albums = tuple((key[-1], key[:-1], albums[key]) for key in sorted(albums, key=albums.get, reverse=True)[:10]) def top_genres(self, listening_information: ListeningInformation) -> None: all_artists = {artist: sum(tuple(listening_information.data[artist][1][song] for song in listening_information.data[artist][1])) for artist in listening_information.data} genres = {} counter = 0 for artist in all_artists: try: a_genres = self.get_artist(artist)['genres'] except TypeError: counter += 1 print(counter, 'out of', len(all_artists), 'completed', end='\r') continue for genre in a_genres: if genre not in genres: genres[genre] = 0 genres[genre] += all_artists[artist] counter += 1 print(counter, 'out of', len(all_artists), 'completed', end='\r') print() listening_information.genres = len(genres) listening_information.top_genres = tuple(genre for genre in sorted(genres, key=genres.get, reverse=True)[:10]) def analyse_listening(sAPI: SpotifyAPI, listening_information: ListeningInformation, sh: StreamingHistory) -> None: listening_information.get_top_artists() listening_information.get_top_songs() sAPI.top_albums(listening_information) sAPI.top_genres(listening_information) sh.retrieve_data()
from typing import Union import scipy.stats as stats from beartype import beartype from UQpy.distributions.baseclass import DistributionContinuous1D class GeneralizedExtreme(DistributionContinuous1D): @beartype def __init__( self, c: Union[None, float, int], loc: Union[None, float, int] = 0.0, scale: Union[None, float, int] = 1.0, ): """ :param c: shape parameter :param loc: location parameter :param scale: scale parameter """ super().__init__( c=c, loc=loc, scale=scale, ordered_parameters=("c", "loc", "scale") ) self._construct_from_scipy(scipy_name=stats.genextreme)
import os import strax import numba import numpy as np export, __all__ = strax.exporter() # (5-10x) faster than np.sort(order=...), as np.sort looks at all fields # TODO: maybe this should be a factory? @export @numba.jit(nopython=True, nogil=True, cache=True) def sort_by_time(x): """Sort pulses by time, then channel. Assumes you have no more than 10k channels, and records don't span more than 100 days. TODO: FIX this """ if len(x) == 0: # Nothing to do, and .min() on empty array doesn't work, so: return x # I couldn't get fast argsort on multiple keys to work in numba # So, let's make a single key... sort_key = (x['time'] - x['time'].min()) * 10000 + x['channel'] sort_i = np.argsort(sort_key) return x[sort_i] # Getting endtime jitted is a bit awkward, especially since it has to # keep working with NUMBA_DISABLE_JIT, which we use for coverage tests. # See https://github.com/numba/numba/issues/4759 if os.environ.get("NUMBA_DISABLE_JIT"): @export def endtime(x): """Return endtime of intervals x""" if 'endtime' in x.dtype.fields: return x['endtime'] else: return x['time'] + x['length'] * x['dt'] else: @export @numba.generated_jit(nopython=True, nogil=True) def endtime(x): """Return endtime of intervals x""" if 'endtime' in x.dtype.fields: return lambda x: x['endtime'] else: return lambda x: x['time'] + x['length'] * x['dt'] @export @numba.jit(nopython=True, nogil=True, cache=True) def from_break(x, safe_break, not_before=0, left=True, tolerant=False): """Return records on side of a break at least safe_break long If there is no such break, return the best break found. """ if tolerant: raise NotImplementedError if not len(x): raise NotImplementedError("Cannot find breaks in empty data") if len(x) == 1: raise NoBreakFound() break_i = _find_break_i(x, safe_break=safe_break, not_before=not_before) break_time = x[break_i]['time'] if left: return x[:break_i], break_time else: return x[break_i:], break_time @export class NoBreakFound(Exception): pass @export @numba.jit(nopython=True, nogil=True, cache=True) def _find_break_i(data, safe_break, not_before): """Return first index of element right of the first gap larger than safe_break in data. Assumes all x have the same length and are sorted! :param tolerant: if no break found, yield an as good as possible break anyway. """ assert len(data) >= 2 latest_end_seen = max(not_before, strax.endtime(data[0])) for i, d in enumerate(data): if i == 0: continue if d['time'] >= latest_end_seen + safe_break: return i latest_end_seen = max(latest_end_seen, strax.endtime(d)) raise NoBreakFound @export def fully_contained_in(things, containers): """Return array of len(things) with index of interval in containers for which things are fully contained in a container, or -1 if no such exists. We assume all intervals are sorted by time, and b_intervals nonoverlapping. """ result = np.ones(len(things), dtype=np.int32) * -1 a_starts = things['time'] b_starts = containers['time'] a_ends = strax.endtime(things) b_ends = strax.endtime(containers) _fc_in(a_starts, b_starts, a_ends, b_ends, result) return result @numba.jit(nopython=True, nogil=True, cache=True) def _fc_in(a_starts, b_starts, a_ends, b_ends, result): b_i = 0 for a_i in range(len(a_starts)): # Skip ahead one or more b's if we're beyond them # Note <= in second condition: end is an exclusive bound while b_i < len(b_starts) and b_ends[b_i] <= a_starts[a_i]: b_i += 1 if b_i == len(b_starts): break # Check for containment. We only need to check one b, since bs # are nonoverlapping if b_starts[b_i] <= a_starts[a_i] and a_ends[a_i] <= b_ends[b_i]: result[a_i] = b_i @export def split_by_containment(things, containers): """Return list of thing-arrays contained in each container Assumes everything is sorted, and containers are nonoverlapping """ if not len(containers): return [] # Index of which container each thing belongs to, or -1 which_container = fully_contained_in(things, containers) # Restrict to things in containers mask = which_container != -1 things = things[mask] which_container = which_container[mask] if not len(things): # np.split has confusing behaviour for empty arrays return [things[:0] for _ in range(len(containers))] # Split things up by container split_indices = np.where(np.diff(which_container))[0] + 1 things_split = np.split(things, split_indices) # Insert empty arrays for empty containers empty_containers = np.setdiff1d(np.arange(len(containers)), np.unique(which_container)) for c_i in empty_containers: things_split.insert(c_i, things[:0]) return things_split @export @numba.jit(nopython=True, nogil=True, cache=True) def overlap_indices(a1, n_a, b1, n_b): """Given interval [a1, a1 + n_a), and [b1, b1 + n_b) of integers, return indices [a_start, a_end), [b_start, b_end) of overlapping region. """ if n_a < 0 or n_b < 0: raise ValueError("Negative interval length passed to overlap test") if n_a == 0 or n_b == 0: return (0, 0), (0, 0) # a: p, b: r s = a1 - b1 if s <= -n_a: # B is completely right of a return (0, 0), (0, 0) # Range in b that overlaps with a b_start = max(0, s) b_end = min(n_b, s + n_a) if b_start >= b_end: # B is completely left of a return (0, 0), (0, 0) # Range of a that overlaps with b a_start = max(0, -s) a_end = min(n_a, -s + n_b) return (a_start, a_end), (b_start, b_end) @export def touching_windows(things, containers, window=0): """Return array of (start, exclusive end) indices into things which extend to within window of the container, for each container in containers. :param things: Sorted array of interval-like data :param containers: Sorted array of interval-like data :param window: threshold distance for touching check For example: - window = 0: things must overlap one sample - window = -1: things can start right after container ends (i.e. container endtime equals the thing starttime, since strax endtimes are exclusive) """ return _touching_windows( things['time'], strax.endtime(things), containers['time'], strax.endtime(containers), window=window) @numba.njit(nogil=True, cache=True) def _touching_windows(thing_start, thing_end, container_start, container_end, window=0): result = np.zeros((len(container_start), 2), dtype=np.int32) n = len(thing_start) left_i = right_i = 0 for i, t0 in enumerate(container_start): t1 = container_end[i] while left_i <= n - 1 and thing_end[left_i] <= t0 - window: # left_i ends before the window starts (so it's still outside) left_i += 1 # Now left_i is the first index inside the window # -- unless it is outside the array, in which case right_i # will also be. while right_i <= n - 1 and thing_start[right_i] < t1 + window: # right_i starts before the window ends (so it could be inside) right_i += 1 # Now right_i is the last index inside the window # or outside the array. result[i] = left_i, right_i return result
from .TopDownCrawl import main main()
from collections import namedtuple import logging import os import numpy as onp from numpy.testing import assert_allclose import pytest from jax import device_put, disable_jit, grad, jit, random, tree_map import jax.numpy as np import numpyro.distributions as dist from numpyro.infer.hmc_util import ( AdaptWindow, _is_iterative_turning, _leaf_idx_to_ckpt_idxs, build_adaptation_schedule, build_tree, consensus, dual_averaging, find_reasonable_step_size, parametric_draws, velocity_verlet, warmup_adapter, welford_covariance ) from numpyro.util import control_flow_prims_disabled, fori_loop, optional logger = logging.getLogger(__name__) @pytest.mark.parametrize('jitted', [True, False]) def test_dual_averaging(jitted): def optimize(f): da_init, da_update = dual_averaging(gamma=0.5) da_state = da_init() for i in range(10): x = da_state[0] g = grad(f)(x) da_state = da_update(g, da_state) x_avg = da_state[1] return x_avg f = lambda x: (x + 1) ** 2 # noqa: E731 fn = jit(optimize, static_argnums=(0,)) if jitted else optimize x_opt = fn(f) assert_allclose(x_opt, -1., atol=1e-3) @pytest.mark.parametrize('jitted', [True, False]) @pytest.mark.parametrize('diagonal', [True, False]) @pytest.mark.parametrize('regularize', [True, False]) @pytest.mark.filterwarnings('ignore:numpy.linalg support is experimental:UserWarning') def test_welford_covariance(jitted, diagonal, regularize): with optional(jitted, disable_jit()), optional(jitted, control_flow_prims_disabled()): onp.random.seed(0) loc = onp.random.randn(3) a = onp.random.randn(3, 3) target_cov = onp.matmul(a, a.T) x = onp.random.multivariate_normal(loc, target_cov, size=(2000,)) x = device_put(x) @jit def get_cov(x): wc_init, wc_update, wc_final = welford_covariance(diagonal=diagonal) wc_state = wc_init(3) wc_state = fori_loop(0, 2000, lambda i, val: wc_update(x[i], val), wc_state) cov, cov_inv_sqrt = wc_final(wc_state, regularize=regularize) return cov, cov_inv_sqrt cov, cov_inv_sqrt = get_cov(x) if diagonal: diag_cov = np.diagonal(target_cov) assert_allclose(cov, diag_cov, rtol=0.06) assert_allclose(cov_inv_sqrt, np.sqrt(np.reciprocal(diag_cov)), rtol=0.06) else: assert_allclose(cov, target_cov, rtol=0.06) assert_allclose(cov_inv_sqrt, np.linalg.cholesky(np.linalg.inv(cov)), rtol=0.06) ######################################## # verlocity_verlet Test ######################################## TEST_EXAMPLES = [] EXAMPLE_IDS = [] ModelArgs = namedtuple('model_args', ['step_size', 'num_steps', 'q_i', 'p_i', 'q_f', 'p_f', 'm_inv', 'prec']) Example = namedtuple('test_case', ['model', 'args']) def register_model(init_args): """ Register the model along with each of the model arguments as test examples. """ def register_fn(model): for args in init_args: test_example = Example(model, args) TEST_EXAMPLES.append(test_example) EXAMPLE_IDS.append(model.__name__) return register_fn @register_model([ ModelArgs( step_size=0.01, num_steps=100, q_i={'x': 0.0}, p_i={'x': 1.0}, q_f={'x': np.sin(1.0)}, p_f={'x': np.cos(1.0)}, m_inv=np.array([1.]), prec=1e-4 ) ]) class HarmonicOscillator(object): @staticmethod def kinetic_fn(m_inv, p): return 0.5 * np.sum(m_inv * p['x'] ** 2) @staticmethod def potential_fn(q): return 0.5 * q['x'] ** 2 @register_model([ ModelArgs( step_size=0.01, num_steps=628, q_i={'x': 1.0, 'y': 0.0}, p_i={'x': 0.0, 'y': 1.0}, q_f={'x': 1.0, 'y': 0.0}, p_f={'x': 0.0, 'y': 1.0}, m_inv=np.array([1., 1.]), prec=5.0e-3 ) ]) class CircularPlanetaryMotion(object): @staticmethod def kinetic_fn(m_inv, p): z = np.stack([p['x'], p['y']], axis=-1) return 0.5 * np.dot(m_inv, z**2) @staticmethod def potential_fn(q): return - 1.0 / np.power(q['x'] ** 2 + q['y'] ** 2, 0.5) @register_model([ ModelArgs( step_size=0.1, num_steps=1810, q_i={'x': 0.02}, p_i={'x': 0.0}, q_f={'x': -0.02}, p_f={'x': 0.0}, m_inv=np.array([1.]), prec=1.0e-4 ) ]) class QuarticOscillator(object): @staticmethod def kinetic_fn(m_inv, p): return 0.5 * np.sum(m_inv * p['x'] ** 2) @staticmethod def potential_fn(q): return 0.25 * np.power(q['x'], 4.0) @pytest.mark.parametrize('jitted', [True, False]) @pytest.mark.parametrize('example', TEST_EXAMPLES, ids=EXAMPLE_IDS) def test_velocity_verlet(jitted, example): def get_final_state(model, step_size, num_steps, q_i, p_i): vv_init, vv_update = velocity_verlet(model.potential_fn, model.kinetic_fn) vv_state = vv_init(q_i, p_i) q_f, p_f, _, _ = fori_loop(0, num_steps, lambda i, val: vv_update(step_size, args.m_inv, val), vv_state) return (q_f, p_f) model, args = example fn = jit(get_final_state, static_argnums=(0,)) if jitted else get_final_state q_f, p_f = fn(model, args.step_size, args.num_steps, args.q_i, args.p_i) logger.info('Test trajectory:') logger.info('initial q: {}'.format(args.q_i)) logger.info('final q: {}'.format(q_f)) for node in args.q_f: assert_allclose(q_f[node], args.q_f[node], atol=args.prec) assert_allclose(p_f[node], args.p_f[node], atol=args.prec) logger.info('Test energy conservation:') energy_initial = model.kinetic_fn(args.m_inv, args.p_i) + model.potential_fn(args.q_i) energy_final = model.kinetic_fn(args.m_inv, p_f) + model.potential_fn(q_f) logger.info('initial energy: {}'.format(energy_initial)) logger.info('final energy: {}'.format(energy_final)) assert_allclose(energy_initial, energy_final, atol=1e-5) logger.info('Test time reversibility:') p_reverse = tree_map(lambda x: -x, p_f) q_i, p_i = get_final_state(model, args.step_size, args.num_steps, q_f, p_reverse) for node in args.q_i: assert_allclose(q_i[node], args.q_i[node], atol=1e-4) @pytest.mark.parametrize('jitted', [True, False]) @pytest.mark.parametrize('init_step_size', [0.1, 10.0]) def test_find_reasonable_step_size(jitted, init_step_size): def kinetic_fn(m_inv, p): return 0.5 * np.sum(m_inv * p ** 2) def potential_fn(q): return 0.5 * q ** 2 p_generator = lambda m_inv, rng_key: 1.0 # noqa: E731 q = 0.0 m_inv = np.array([1.]) fn = (jit(find_reasonable_step_size, static_argnums=(0, 1, 2)) if jitted else find_reasonable_step_size) rng_key = random.PRNGKey(0) step_size = fn(potential_fn, kinetic_fn, p_generator, m_inv, q, rng_key, init_step_size) # Apply 1 velocity verlet step with step_size=eps, we have # z_new = eps, r_new = 1 - eps^2 / 2, hence energy_new = 0.5 + eps^4 / 8, # hence delta_energy = energy_new - energy_init = eps^4 / 8. # We want to find a reasonable step_size such that delta_energy ~ -log(0.8), # hence that step_size ~ the following threshold threshold = np.power(-np.log(0.8) * 8, 0.25) # Confirm that given init_step_size, we will doubly increase/decrease it # until it passes threshold. if init_step_size < threshold: assert step_size / 2 < threshold assert step_size > threshold else: assert step_size * 2 > threshold assert step_size < threshold @pytest.mark.parametrize('num_steps, expected', [ (18, [(0, 17)]), (50, [(0, 6), (7, 44), (45, 49)]), (100, [(0, 14), (15, 89), (90, 99)]), (150, [(0, 74), (75, 99), (100, 149)]), (200, [(0, 74), (75, 99), (100, 149), (150, 199)]), (280, [(0, 74), (75, 99), (100, 229), (230, 279)]), ]) def test_build_adaptation_schedule(num_steps, expected): adaptation_schedule = build_adaptation_schedule(num_steps) expected_schedule = [AdaptWindow(i, j) for i, j in expected] assert adaptation_schedule == expected_schedule @pytest.mark.parametrize('jitted', [ True, pytest.param(False, marks=pytest.mark.skipif("CI" in os.environ, reason="slow in Travis")) ]) def test_warmup_adapter(jitted): def find_reasonable_step_size(m_inv, z, rng_key, step_size): return np.where(step_size < 1, step_size * 4, step_size / 4) num_steps = 150 adaptation_schedule = build_adaptation_schedule(num_steps) init_step_size = 1. mass_matrix_size = 3 wa_init, wa_update = warmup_adapter(num_steps, find_reasonable_step_size) wa_update = jit(wa_update) if jitted else wa_update rng_key = random.PRNGKey(0) z = np.ones(3) wa_state = wa_init(z, rng_key, init_step_size, mass_matrix_size=mass_matrix_size) step_size, inverse_mass_matrix, _, _, _, window_idx, _ = wa_state assert step_size == find_reasonable_step_size(inverse_mass_matrix, z, rng_key, init_step_size) assert_allclose(inverse_mass_matrix, np.ones(mass_matrix_size)) assert window_idx == 0 window = adaptation_schedule[0] for t in range(window.start, window.end + 1): wa_state = wa_update(t, 0.7 + 0.1 * t / (window.end - window.start), z, wa_state) last_step_size = step_size step_size, inverse_mass_matrix, _, _, _, window_idx, _ = wa_state assert window_idx == 1 # step_size is decreased because accept_prob < target_accept_prob assert step_size < last_step_size # inverse_mass_matrix does not change at the end of the first window assert_allclose(inverse_mass_matrix, np.ones(mass_matrix_size)) window = adaptation_schedule[1] window_len = window.end - window.start for t in range(window.start, window.end + 1): wa_state = wa_update(t, 0.8 + 0.1 * (t - window.start) / window_len, 2 * z, wa_state) last_step_size = step_size step_size, inverse_mass_matrix, _, _, _, window_idx, _ = wa_state assert window_idx == 2 # step_size is increased because accept_prob > target_accept_prob assert step_size > last_step_size # Verifies that inverse_mass_matrix changes at the end of the second window. # Because z_flat is constant during the second window, covariance will be 0 # and only regularize_term of welford scheme is involved. # This also verifies that z_flat terms in the first window does not affect # the second window. welford_regularize_term = 1e-3 * (5 / (window.end + 1 - window.start + 5)) assert_allclose(inverse_mass_matrix, np.full((mass_matrix_size,), welford_regularize_term), atol=1e-7) window = adaptation_schedule[2] for t in range(window.start, window.end + 1): wa_state = wa_update(t, 0.8, t * z, wa_state) last_step_size = step_size step_size, final_inverse_mass_matrix, _, _, _, window_idx, _ = wa_state assert window_idx == 3 # during the last window, because target_accept_prob=0.8, # log_step_size will be equal to the constant prox_center=log(10*last_step_size) assert_allclose(step_size, last_step_size * 10) # Verifies that inverse_mass_matrix does not change during the last window # despite z_flat changes w.r.t time t, assert_allclose(final_inverse_mass_matrix, inverse_mass_matrix) @pytest.mark.parametrize('leaf_idx, ckpt_idxs', [ (6, (3, 2)), (7, (0, 2)), (13, (2, 2)), (15, (0, 3)), ]) def test_leaf_idx_to_ckpt_idx(leaf_idx, ckpt_idxs): assert _leaf_idx_to_ckpt_idxs(leaf_idx) == ckpt_idxs @pytest.mark.parametrize('ckpt_idxs, expected_turning', [ ((3, 2), False), ((3, 3), True), ((0, 0), False), ((0, 1), True), ((1, 3), True), ]) def test_is_iterative_turning(ckpt_idxs, expected_turning): inverse_mass_matrix = np.ones(1) r = 1. r_sum = 3. r_ckpts = np.array([1., 2., 3., -2.]) r_sum_ckpts = np.array([2., 4., 4., -1.]) actual_turning = _is_iterative_turning(inverse_mass_matrix, r, r_sum, r_ckpts, r_sum_ckpts, *ckpt_idxs) assert expected_turning == actual_turning @pytest.mark.parametrize('step_size', [0.01, 1., 100.]) def test_build_tree(step_size): def kinetic_fn(m_inv, p): return 0.5 * np.sum(m_inv * p ** 2) def potential_fn(q): return 0.5 * q ** 2 vv_init, vv_update = velocity_verlet(potential_fn, kinetic_fn) vv_state = vv_init(0.0, 1.0) inverse_mass_matrix = np.array([1.]) rng_key = random.PRNGKey(0) @jit def fn(vv_state): tree = build_tree(vv_update, kinetic_fn, vv_state, inverse_mass_matrix, step_size, rng_key) return tree tree = fn(vv_state) assert tree.num_proposals >= 2 ** (tree.depth - 1) assert tree.sum_accept_probs <= tree.num_proposals if tree.depth < 10: assert tree.turning | tree.diverging # for large step_size, assert that diverging will happen in 1 step if step_size > 10: assert tree.diverging assert tree.num_proposals == 1 # for small step_size, assert that it should take a while to meet the terminate condition if step_size < 0.1: assert tree.num_proposals > 10 # TODO: raise this warning issue upstream, the issue is at this line # https://github.com/google/jax/blob/master/jax/numpy/lax_numpy.py#L2732 @pytest.mark.filterwarnings('ignore:Explicitly requested dtype float64') @pytest.mark.parametrize('method', [consensus, parametric_draws]) @pytest.mark.parametrize('diagonal', [True, False]) def test_gaussian_subposterior(method, diagonal): D = 10 n_samples = 10000 n_draws = 9000 n_subs = 8 mean = np.arange(D) cov = np.ones((D, D)) * 0.9 + np.identity(D) * 0.1 subcov = n_subs * cov # subposterior's covariance subposteriors = list(dist.MultivariateNormal(mean, subcov).sample( random.PRNGKey(1), (n_subs, n_samples))) draws = method(subposteriors, n_draws, diagonal=diagonal) assert draws.shape == (n_draws, D) assert_allclose(np.mean(draws, axis=0), mean, atol=0.03) if diagonal: assert_allclose(np.var(draws, axis=0), np.diag(cov), atol=0.05) else: assert_allclose(np.cov(draws.T), cov, atol=0.05) @pytest.mark.filterwarnings('ignore:Explicitly requested dtype float64') @pytest.mark.parametrize('method', [consensus, parametric_draws]) def test_subposterior_structure(method): subposteriors = [{'x': np.ones((100, 3)), 'y': np.zeros((100,))} for i in range(10)] draws = method(subposteriors, num_draws=9) assert draws['x'].shape == (9, 3) assert draws['y'].shape == (9,)
from datetime import datetime, timedelta import logging import geopandas import movingpandas import pandas import requests from mesa.datacollection import DataCollector from tqdm import tqdm from pyproj import CRS from dpd.modeling.agents.people import Pedestrian, Cyclist, Driver from dpd.werkzeug import WerkzeugThread from .people_flask_app import people_flask_app from .agent_based_dict import AgentBasedDict from .agent_based_intersections import AgentBasedIntersections from .agent_based_links import AgentBasedLinks from .mode_choice_model import ModeChoiceModel class People(AgentBasedDict): """ A class to hold People. """ def __init__(self, map_, crs=None, *args, **kwargs): super().__init__(crs=crs, *args, **kwargs) self.intersections = AgentBasedIntersections(map_.intersections) self.links = AgentBasedLinks(map_.links) self.links.update_intersections(self.intersections) self.data_collector = DataCollector(agent_reporters={"geometry": "geometry"}) def to_crs(self, crs): """ """ raise NotImplementedError( "I'm not able to change the crs on People. Maybe create a GeoDataFrame and then change the crs." ) def add_person(self, person): self[person.name] = person self.model.schedule.add(person) def create_people_from_od(self, od): mode_choice_model = ModeChoiceModel() mode_choice_model.add_mode(Driver, 0.8) mode_choice_model.add_mode(Cyclist, 0.1) mode_choice_model.add_mode(Pedestrian, 0.1) for _, person in tqdm(od.iterrows(), total=len(od)): route = self.intersections.nodes_to_links( person.routes[0]["legs"][0]["annotation"]["nodes"] ) mode = mode_choice_model.predict() person = mode(self.model, person.home_geometry, route) self.add_person(person) def post_people(self, url): people = self.to_geopandas() people.to_crs("EPSG:4326") return requests.post(url, data={"people": people.to_json()}) def get_agent_vars_geodataframe(self, start_time=datetime(1970, 1, 1, 0, 0, 0)): gdf = geopandas.GeoDataFrame(self.data_collector.get_agent_vars_dataframe()) gdf.crs = self.crs one_day = timedelta(1) index = pandas.date_range(start_time, start_time + one_day, freq="S")[ 0 : len(gdf) ] gdf.index = gdf.index.set_levels(index, level=0) return gdf def get_trajectories(self): gdf = self.get_agent_vars_geodataframe() gdf.reset_index(level="AgentID", inplace=True) return movingpandas.TrajectoryCollection(gdf, "AgentID") def simulate( self, number_of_rounds=10, post_people_url=None, ): aea = CRS.from_string("North America Albers Equal Area Conic") self.intersections.to_crs(aea) self.links.to_crs(aea) self.crs = self.links.crs self.data_collector.collect(self.model) if post_people_url: werkzeug_thread = WerkzeugThread(people_flask_app()) werkzeug_thread.start() self.people.post_people(post_people_url) for round_number in range(number_of_rounds): logging.info("Simulating round %s" % (round_number,)) self.model.step() self.intersections.model.step() self.data_collector.collect(self.model) if post_people_url: self.post_people(post_people_url) if post_people_url: werkzeug_thread.stop()
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, with_statement import os import shutil import kaptan import tempfile from .. import config, cli from ..util import tmux from .helpers import TestCase import logging logger = logging.getLogger(__name__) TMUXP_DIR = os.path.join(os.path.dirname(__file__), '.tmuxp') class StartupTest(TestCase): """test startup_cli().""" def setUp(self): if os.path.isdir(TMUXP_DIR): shutil.rmtree(TMUXP_DIR) def test_creates_config_dir_not_exists(self): """cli.startup() creates config dir if not exists.""" self.assertFalse(os.path.exists(TMUXP_DIR)) cli.startup(TMUXP_DIR) self.assertTrue(os.path.exists(TMUXP_DIR)) @classmethod def tearDownClass(cls): if os.path.isdir(TMUXP_DIR): shutil.rmtree(TMUXP_DIR) logger.debug('wiped %s' % TMUXP_DIR) class FindConfigsTest(TestCase): """test in_dir() test.""" def setUp(self): if os.path.isdir(TMUXP_DIR): shutil.rmtree(TMUXP_DIR) def test_in_dir_from_config_dir(self): """config.in_dir() finds configs config dir.""" cli.startup(TMUXP_DIR) config1 = tempfile.NamedTemporaryFile( dir=TMUXP_DIR, prefix='myconfig', suffix='.yaml' ) config2 = tempfile.NamedTemporaryFile( dir=TMUXP_DIR, prefix='myconfig', suffix='.json' ) configs_found = config.in_dir(TMUXP_DIR) self.assertEqual(len(configs_found), 2) def test_in_dir_from_current_dir(self): """config.in_dir() find configs config dir.""" cli.startup(TMUXP_DIR) config1 = tempfile.NamedTemporaryFile( dir=TMUXP_DIR, prefix='myconfig', suffix='.yaml' ) config2 = tempfile.NamedTemporaryFile( dir=TMUXP_DIR, prefix='myconfig', suffix='.json' ) configs_found = config.in_dir(TMUXP_DIR) self.assertEqual(len(configs_found), 2) def test_ignore_non_configs_from_current_dir(self): """cli.in_dir() ignore non-config from config dir.""" cli.startup(TMUXP_DIR) badconfig = tempfile.NamedTemporaryFile( dir=TMUXP_DIR, prefix='myconfig', suffix='.psd' ) config1 = tempfile.NamedTemporaryFile( dir=TMUXP_DIR, prefix='watmyconfig', suffix='.json' ) configs_found = config.in_dir(TMUXP_DIR) self.assertEqual(len(configs_found), 1) def test_get_configs_cwd(self): """config.in_cwd() find config in shell current working directory.""" current_dir = os.getcwd() configs_found = config.in_cwd() # create a temporary folder and change dir into it tmp_dir = tempfile.mkdtemp(suffix='tmuxp') os.chdir(tmp_dir) try: config1 = open('.tmuxp.json', 'w+b') config1.close() configs_found = config.in_cwd() finally: os.remove(config1.name) self.assertEqual(len(configs_found), 1) self.assertIn('.tmuxp.json', configs_found) # clean up os.chdir(current_dir) if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) @classmethod def tearDownClass(cls): if os.path.isdir(TMUXP_DIR): shutil.rmtree(TMUXP_DIR) logger.debug('wiped %s' % TMUXP_DIR) sampleconfigdict = { 'session_name': 'sampleconfig', 'start_directory': '~', 'windows': [ { 'window_name': 'editor', 'panes': [ { 'start_directory': '~', 'shell_command': ['vim'], }, { 'shell_command': ['cowsay "hey"'] }, ], 'layout': 'main-verticle' }, { 'window_name': 'logging', 'panes': [ { 'shell_command': ['tail -F /var/log/syslog'], 'start_directory':'/var/log' } ] }, { 'options': {'automatic_rename': True, }, 'panes': [ { 'shell_command': ['htop'] } ] } ] }
import socket from krgram.utils.bytes import Bytes from krgram.utils.stream import QueueByteStream, IByteStream _debug= True class TCPByteStream(IByteStream): """ Represents a TCP connection as a bidirectional stream (readable/writable) Example usage:: tcpstream = TCPByteStream(host, port) tcpstream.write("Hi, this a message from client") tcpstream.write("and asterisc close message*") # now the message is in a buffer. We must send it... tcpstream.send() # ... and read server response. Here msg_len = int(tcpstream.read(4)) tcp_stream.read(msg_len) """ _DEF_READ_TIMEOUT = 10 def __init__(self, host, port): super(TCPByteStream, self).__init__() self.host= host self.port= port self.sock= socket.socket( socket.AF_INET, socket.SOCK_STREAM ) self.sock.settimeout(self._DEF_READ_TIMEOUT) # server data buffer self._in = QueueByteStream() # client data buffer self._out = QueueByteStream() def open(self): self.sock.connect( (self.host, self.port) ) def read(self, count=0): """ Read data from buffer (or/and tcp socket if necessary). If count is 0, reading will be only from memory buffer (without reading from socket) and return all buffer content :param count: bytes to read :return: readed bytes """ if count < 0: raise ValueError("count must be an integer >= 0") if count == 0: return self._in.read(0) buff_data_count = len(self._in) if buff_data_count < count: # size is minimum size if count > 4096: size = 4096 << 1 # TODO: size MUST be nearest greater pow of 2 else: size = 4096 self._read_remote_chunk(size) buff_data_count = len(self._in) if buff_data_count < count: self.close() raise Exception("server not sended bytes count requested") data = self._in.read(count) return data def read_all(self, reader): # TODO: implement me raise NotImplementedError() def write(self, data): #self.sock.send( data ) self._out.write(data) print repr(Bytes(data)) def send(self): data = self._out.read() self.sock.sendall(data) print repr(data) def _read_remote_chunk(self, chunk_size): data = Bytes(self.sock.recv(chunk_size)) self._in.write(data) return len(data) '''def write_byte(self, b): self.write(b) def write_int(self, n, size=4, big_endian=False): self.write(Bytes.from_int(n, size, big_endian)) def read_byte(self): return self.read(1) def read_int(self, size=4, big_endian=False, signed=False): d= self.read(size) return Bytes(d).to_int(big_endian, signed)''' def close(self): if self.sock is not None: self.sock.close()
#********************************************************************** # Copyright 2020 Advanced Micro Devices, Inc # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #******************************************************************** import bpy from ..utils import stage_cache from ..utils import logging log = logging.Log('properties') from pxr import UsdImagingLite, Tf def _createGatlingRenderSettingsClass(): renderer = UsdImagingLite.Engine() renderer.SetRendererPlugin('HdGatlingRendererPlugin') props = {} for setting in renderer.GetRendererSettingsList(): name_str = str(setting.name) key_str = str(setting.key) type_str = str(setting.type) value = renderer.GetRendererSetting(Tf.MakeValidIdentifier(name_str)) if value is None: value = setting.defValue if type_str == 'FLAG': props[key_str] = bpy.props.BoolProperty(name=name_str, default=value) elif type_str == 'INT': props[key_str] = bpy.props.IntProperty(name=name_str, default=value) elif type_str == 'FLOAT': props[key_str] = bpy.props.FloatProperty(name=name_str, default=value) elif type_str == 'STRING': props[key_str] = bpy.props.StringProperty(name=name_str, default=value) else: log.warn("Render setting {} of type {} not displayed".format(name_str, type_str)) return type('GatlingRenderSettings', (bpy.types.PropertyGroup,), {'__annotations__': props}) GatlingRenderSettings = _createGatlingRenderSettingsClass() class HdUSDProperties(bpy.types.PropertyGroup): bl_type = None @classmethod def register(cls): cls.bl_type.hdusd = bpy.props.PointerProperty( name="HdUSD properties", description="HdUSD properties", type=cls, ) @classmethod def unregister(cls): del cls.bl_type.hdusd class CachedStageProp(bpy.types.PropertyGroup, stage_cache.CachedStage): id: bpy.props.IntProperty(default=stage_cache.ID_NO_STAGE) is_owner: bpy.props.BoolProperty(default=False) def __del__(self): pass from . import ( scene, object, node, usd_list, material, hdrpr_render, matlib ) register, unregister = bpy.utils.register_classes_factory(( CachedStageProp, hdrpr_render.QualitySettings, hdrpr_render.InteractiveQualitySettings, hdrpr_render.ContourSettings, hdrpr_render.DenoiseSettings, hdrpr_render.RenderSettings, GatlingRenderSettings, usd_list.PrimPropertyItem, usd_list.UsdListItem, usd_list.UsdList, node.NodeProperties, scene.FinalRenderSettings, scene.ViewportRenderSettings, scene.SceneProperties, object.ObjectProperties, material.MaterialProperties, matlib.MatlibProperties, matlib.WindowManagerProperties, ))
from .site_settings import SiteSettingsSerializer
import pygame.mixer from pygame.mixer import Sound from gpiozero import Button from signal import pause pygame.mixer.init() sound_pins = { 2: Sound("test soundeff.wav"), } buttons = [Button(pin) for pin in sound_pins] for button in buttons: sound = sound_pins[button.pin] button.when_pressed = sound.play pause()
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- """ The module provides a means to process Azure Event Hubs events at scale. """ try: from azure.eventprocessorhost.abstract_event_processor import AbstractEventProcessor from azure.eventprocessorhost.azure_storage_checkpoint_manager import AzureStorageCheckpointLeaseManager from azure.eventprocessorhost.azure_blob_lease import AzureBlobLease from azure.eventprocessorhost.checkpoint import Checkpoint from azure.eventprocessorhost.eh_config import EventHubConfig from azure.eventprocessorhost.eh_partition_pump import EventHubPartitionPump, PartitionReceiver from azure.eventprocessorhost.eph import EventProcessorHost, EPHOptions from azure.eventprocessorhost.partition_manager import PartitionManager from azure.eventprocessorhost.partition_context import PartitionContext from azure.eventprocessorhost.partition_pump import PartitionPump except (SyntaxError, ImportError): raise ImportError("EventProcessHost is only compatible with Python 3.5 and above.")
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import math import matplotlib.pyplot as pyplot import myplot import Pmf def NormalPdf(x): """Computes the PDF of x in the standard normal distribution.""" return math.exp(-x**2/2) / math.sqrt(2 * math.pi) def Linspace(start, stop, n): """Makes a list of n floats from start to stop. Similar to numpy.linspace() """ return [start + (stop-start) * float(i)/(n-1) for i in range(n)] def RenderPdf(mu, sigma, n=101): """Makes xs and ys for a normal PDF with (mu, sigma). n: number of places to evaluate the PDF """ xs = Linspace(mu-4*sigma, mu+4*sigma, n) ys = [NormalPdf((x-mu) / sigma) for x in xs] return xs, ys def main(): xs, ys = RenderPdf(100, 15) n = 34 pyplot.fill_between(xs[-n:], ys[-n:], y2=0.0001, color='blue', alpha=0.2) s = 'Congratulations!\nIf you got this far,\nyou must be here.' d = dict(shrink=0.05) pyplot.annotate(s, [127, 0.02], xytext=[80, 0.05], arrowprops=d) myplot.Plot(xs, ys, clf=False, show=True, title='Distribution of IQ', xlabel='IQ', ylabel='PDF', legend=False ) if __name__ == "__main__": main()
# # Copyright (c) 2019 Juniper Networks, Inc. All rights reserved. # from cfgm_common.exceptions import NoIdError from vnc_api.gen.resource_client import RouteTarget from schema_transformer.resources._resource_base import ResourceBaseST class RouteTargetST(ResourceBaseST): _dict = {} obj_type = 'route_target' @classmethod def reinit(cls): asn = ResourceBaseST.get_obj_type_map().get( 'global_system_config').get_autonomous_system() for obj in cls.list_vnc_obj(): try: if (obj.get_routing_instance_back_refs() or obj.get_logical_router_back_refs()): cls.locate(obj.get_fq_name_str(), obj) else: cls.delete_vnc_obj(obj.get_fq_name_str()) except Exception as e: cls._logger.error("Error in reinit for %s %s: %s" % ( cls.obj_type, obj.get_fq_name_str(), str(e))) for ri, val in cls._object_db._rt_cf.get_range(): rt = val['rtgt_num'] rt_key = "target:%s:%s" % (asn, rt) if rt_key not in cls: cls._object_db.free_route_target(ri, asn) # When upgrade happens from earlier releases to a release that # supports 4 byte ASN, we need to take care of changing the # zookeeper path for route-targets # it will now be in /id/bgp/route-targets/type0 old_path = '%s%s' % (cls._object_db._zk_path_pfx, "/id/bgp/route-targets") cls._object_db.populate_route_target_directory(old_path, asn) # This is to handle upgrade scenarios. # In case we upgrade to a release containing support to 4 Byte ASN # Once all the RTs are recreated in ZK in their new path, delete # the old path for RTs in ZK cls._object_db.delete_route_target_directory( '%s%s' % (cls._object_db._zk_path_pfx, "/id/bgp/route-targets")) # end reinit def __init__(self, rt_key, obj=None): self.name = rt_key try: self.obj = obj or self.read_vnc_obj(fq_name=[rt_key]) except NoIdError: self.obj = RouteTarget(rt_key) self._vnc_lib.route_target_create(self.obj) # end __init__ def update(self, obj=None): return False @classmethod def delete_vnc_obj(cls, key): try: cls._vnc_lib.route_target_delete(fq_name=[key]) except NoIdError: pass cls._dict.pop(key, None) # end delete_vnc_obj # end RoutTargetST
import os import shutil import tempfile from pathlib import Path from unittest.mock import patch, MagicMock from pipeline.recon.web import WebanalyzeScan, GatherWebTargets from pipeline.tools import tools webanalyze_results = Path(__file__).parent.parent / "data" / "recon-results" / "webanalyze-results" class TestWebanalyzeScan: def setup_method(self): self.tmp_path = Path(tempfile.mkdtemp()) self.scan = WebanalyzeScan( target_file=__file__, results_dir=str(self.tmp_path), db_location=str(self.tmp_path / "testing.sqlite") ) self.scan.exception = False def teardown_method(self): shutil.rmtree(self.tmp_path) def test_scan_requires(self): with patch("pipeline.recon.web.GatherWebTargets"): with patch("pipeline.recon.web.webanalyze.meets_requirements"): retval = self.scan.requires() assert isinstance(retval, GatherWebTargets) def test_scan_creates_results_dir(self): assert self.scan.results_subfolder == self.tmp_path / "webanalyze-results" def test_scan_creates_database(self): assert self.scan.db_mgr.location.exists() assert self.tmp_path / "testing.sqlite" == self.scan.db_mgr.location def test_scan_creates_results(self): self.scan.results_subfolder = webanalyze_results self.scan.parse_results() assert self.scan.output().exists() def test_scan_run(self): with patch("concurrent.futures.ThreadPoolExecutor.map") as mocked_map, patch( "subprocess.run" ) as mocked_run, patch("pathlib.Path.cwd", return_value="/"): self.scan.parse_results = MagicMock() self.scan.db_mgr.get_all_web_targets = MagicMock() self.scan.db_mgr.get_all_web_targets.return_value = [ "13.56.144.135", "2606:4700:10::6814:3c33", "google.com", ] self.scan.run() assert mocked_map.called assert mocked_run.called assert self.scan.parse_results.called def test_scan_run_with_wrong_threads(self, caplog): self.scan.threads = "a" retval = self.scan.run() assert retval is None assert "The value supplied to --threads must be a non-negative integer" in caplog.text def test_wrapped_subprocess(self): with patch("subprocess.run") as mocked_run: self.scan.results_subfolder.mkdir() os.chdir(self.scan.results_subfolder) assert len([x for x in self.scan.results_subfolder.iterdir()]) == 0 cmd = [tools.get("webanalyze").get("path"), "-host", "https://google.com", "-output", "csv"] self.scan._wrapped_subprocess(cmd) assert len([x for x in self.scan.results_subfolder.iterdir()]) == 1 assert next(self.scan.results_subfolder.iterdir()).name == "webanalyze-https_google.com.csv" assert mocked_run.called
# Signatures from DSGRN import * import sqlite3 def SaveDatabase(filename, data, pg): # print("Save Database") conn = sqlite3.connect(filename) conn.executescript(""" create table if not exists Signatures (ParameterIndex INTEGER PRIMARY KEY, MorseGraphIndex INTEGER); create table if not exists MorseGraphViz (MorseGraphIndex INTEGER PRIMARY KEY, Graphviz TEXT); create table if not exists MorseGraphVertices (MorseGraphIndex INTEGER, Vertex INTEGER); create table if not exists MorseGraphEdges (MorseGraphIndex INTEGER, Source INTEGER, Target INTEGER); create table if not exists MorseGraphAnnotations (MorseGraphIndex INTEGER, Vertex INTEGER, Label TEXT); create table if not exists Network ( Name TEXT, Dimension INTEGER, Specification TEXT, Graphviz TEXT); """) # Postprocessing to give Morse Graphs indices morsegraphs = [] def signatures_table(data): morsegraphindices = {} for (pi, mg) in data: if mg in morsegraphindices: # ideally I'd have a graph isomorphism check mgi = morsegraphindices[mg] else: mgi = len(morsegraphindices) morsegraphindices[mg] = mgi morsegraphs.append(mg) yield (pi,mgi) def MG(mgi): return MorseGraph().parse(morsegraphs[mgi]) name = filename if filename[-3:] == '.db': name = filename[:-3] # print("Inserting Network table into Database", flush=True) conn.execute("insert into Network ( Name, Dimension, Specification, Graphviz) values (?, ?, ?, ?);", (name, pg.network().size(), pg.network().specification(), pg.network().graphviz())) # print("Inserting Signatures table into Database", flush=True) conn.executemany("insert into Signatures (ParameterIndex, MorseGraphIndex) values (?, ?);", signatures_table(data)) # print("Inserting MorseGraphViz table into Database", flush=True) conn.executemany("insert into MorseGraphViz (MorseGraphIndex, Graphviz) values (?, ?);", ( (mgi, MG(mgi).graphviz()) for mgi in range(0, len(morsegraphs))) ) # print("Inserting MorseGraphVertices table into Database", flush=True) conn.executemany("insert into MorseGraphVertices (MorseGraphIndex, Vertex) values (?, ?);", ( (mgi, v) for mgi in range(0, len(morsegraphs)) for v in range(0,MG(mgi).poset().size()) )) # print("Inserting MorseGraphEdges table into Database", flush=True) conn.executemany("insert into MorseGraphEdges (MorseGraphIndex, Source, Target) values (?, ?, ?);", ( (mgi, s, t) for mgi in range(0, len(morsegraphs)) for s in range(0,MG(mgi).poset().size()) for t in MG(mgi).poset().children(s) )) # print("Inserting MorseGraphAnnotations table into Database", flush=True) conn.executemany("insert into MorseGraphAnnotations (MorseGraphIndex, Vertex, Label) values (?, ?, ?);", ( (mgi, v, label) for mgi in range(0, len(morsegraphs)) for v in range(0,MG(mgi).poset().size()) for label in MG(mgi).annotation(v) )) # print("Indexing Database.", flush=True) conn.executescript(""" create index if not exists Signatures2 on Signatures (MorseGraphIndex, ParameterIndex); create index if not exists MorseGraphAnnotations3 on MorseGraphAnnotations (Label, MorseGraphIndex); create index if not exists MorseGraphViz2 on MorseGraphViz (Graphviz, MorseGraphIndex); create index if not exists MorseGraphVertices1 on MorseGraphVertices (MorseGraphIndex, Vertex); create index if not exists MorseGraphVertices2 on MorseGraphVertices (Vertex, MorseGraphIndex); create index if not exists MorseGraphEdges1 on MorseGraphEdges (MorseGraphIndex); create index if not exists MorseGraphAnnotations1 on MorseGraphAnnotations (MorseGraphIndex); """) conn.commit() conn.close() def make_db(specfile, outfile): gpg = ParameterGraph(Network(specfile)) results = [] # print("Computing Morse Graphs") for pi in range(gpg.size()): results.append((pi, MorseGraph(DomainGraph(gpg.parameter(pi))).stringify())) SaveDatabase(outfile, results, gpg)
#!/usr/bin/env python # Use Netmiko to change the logging buffer size and to disable console logging # from a file on both pynet-rtr1 and pynet-rtr2. from netmiko import ConnectHandler def main(): # Definition of rtr2. rtr1 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', } rtr2 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': '88newclass', 'port': 8022, } # Create a list of all the routers. all_routers = [rtr1, rtr2] # Loop through all the routers and show arp. for a_router in all_routers: net_connect = ConnectHandler(**a_router) # Check current logging buffer size. print "\n>>>>>>>>> Device {0} <<<<<<<<<".format(a_router['device_type']) output = net_connect.send_command("show run | inc logging") print "Initial logging config: " print output print # Enter config mode, change logging buffer and console logging from file, # exit config mode. output = net_connect.config_mode() output = net_connect.send_config_from_file(config_file='config_file.txt') output = net_connect.exit_config_mode() # Check logging buffer size again. output = net_connect.send_command("show run | inc logging") print "Final logging config: " print output print ">>>>>>>>> End <<<<<<<<<\n" if __name__ == "__main__": main()
from core import Locust, TaskSet, WebLocust, SubLocust, task from exception import InterruptTaskSet, ResponseError, RescheduleTaskImmediately version = "0.6.2"
import sys import tkinter from PIL import Image, ImageTk import threading import time import urllib.request import io import requests import json def show_image(): global item, canvas root = tkinter.Tk() root.attributes('-fullscreen', True) # root.bind('', lambda e: root.destroy()) root.title('Status') root.geometry("1920x1080") img = Image.open('image/display_locked_qr.jpeg') img = ImageTk.PhotoImage(img) canvas = tkinter.Canvas(bg = "black", width=1920, height=1080) canvas.place(x=0, y=0) item = canvas.create_image(0, 0, image=img, anchor=tkinter.NW) root.mainloop() thread1 = threading.Thread(target=show_image) thread1.start() while(True): url = "http://192.168.10.15:8080/api/products" products_get = requests.get(url) product_dict = products_get.json()[-1] #最新のレコードを辞書型で取得 image_url = product_dict['image'] #imageのURLを取得 img_read = urllib.request.urlopen(image_url).read() img_bin = io.BytesIO(img_read) img2 = Image.open(img_bin) # PILで開く # img2 = Image.open('image/display_unlocked_qr.jpeg') img2 = ImageTk.PhotoImage(img2) time.sleep(3) canvas.itemconfig(item,image=img2) time.sleep(3) img = Image.open('image/display_locked_qr.jpeg') img = ImageTk.PhotoImage(img) canvas.itemconfig(item,image=img)
import pyxel pyxel.init(200, 200) pyxel.cls(7) for i in range(0, 110, 10): pyxel.line(i, 0, 100 + i, 200, 0) pyxel.show()
#!/usr/bin/env python from _menu import *
#!/usr/bin/env python # -*- coding: utf-8 -*- # # @Author: José Sánchez-Gallego ([email protected]) # @Date: 2018-01-16 # @Filename: command.py # @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause) # # @Last modified by: José Sánchez-Gallego ([email protected]) # @Last modified time: 2019-04-27 12:35:22 import asyncio import collections import logging import pathlib import ruamel.yaml from asyncioActor.command import Command from asyncioActor.core import exceptions from asyncioActor.misc import logger from asyncioActor.protocol import TCPStreamPeriodicServer, TCPStreamServer #: The default status delay. DEFAULT_STATUS_DELAY = 1 class Actor(object): """An actor based in asyncio. This class defines a new actor. Normally a new instance is created by passing a configuration file path which defines how the actor must be started. The TCP servers need to be started by awaiting the coroutine `.run`. The following is an example of a basic actor instantiation: :: loop = asyncio.get_event_loop() my_actor = Actor('my_actor', '127.0.0.1', 9999) loop.run_until_complete(my_actor.run()) Parameters ---------- name : str The name of the actor. host : str The host where the TCP server will run. port : int The port of the TCP server. version : str The version of the actor. loop The event loop. If `None`, the current event loop will be used. config : dict or str A configuration dictionary or the path to a YAML configuration file that must contain a section ``'actor'`` (if the section is not present, the whole file is assumed to be the actor configuration). status_port : int If defined, the port on which the status server will run. status_callback : function The function to be called by the status server. status_delay : float The delay, in seconds, between successive calls to ``status_callback``. Defaults to `.DEFAULT_STATUS_DELAY`. log_dir : str The directory where to store the logs. Defaults to ``$HOME/.<name>`` where ``<name>`` is the name of the actor. """ def __init__(self, name=None, host=None, port=None, version=None, loop=None, config=None, status_port=None, status_callback=None, status_delay=None, log_dir=None): self.config = self._parse_config(config) self.name = name or self.config['name'] assert self.name, 'name cannot be empty.' self.log = self._setup_logger(log_dir) self.loop = loop or asyncio.get_event_loop() self.user_dict = dict() self.version = version or self.config['version'] or '?' host = host or self.config['host'] port = port or self.config['port'] self.server = TCPStreamServer(host, port, loop=self.loop, connection_callback=self.new_user, data_received_callback=self.new_command) self.status_server = None status_port = status_port or self.config['status_port'] sleep_time = status_delay or self.config['status_delay'] or DEFAULT_STATUS_DELAY if status_port: self.status_server = TCPStreamPeriodicServer( host, status_port, loop=self.loop, periodic_callback=status_callback, sleep_time=sleep_time) def __repr__(self): if self.server and self.server.server: host, port = self.server.server.sockets[0].getsockname() else: host = port = None return f'<{str(self)} (name={self.name}, host={host!r}, port={port})>' def __str__(self): return self.__class__.__name__ async def run(self): """Starts the servers.""" await self.server.start_server() socket = self.server.server.sockets[0] host, port = socket.getsockname() self.log.info(f'starting TCP server on {host}:{port}') if self.status_server: await self.status_server.start_server() socket_status = self.status_server.server.sockets[0] host, port = socket_status.getsockname() self.log.info(f'starting status server on {host}:{port}') await self.server.server.serve_forever() async def shutdown(self): """Shuts down all the remaining tasks.""" self.log.info('cancelling all pending tasks and shutting down.') tasks = [task for task in asyncio.Task.all_tasks(loop=self.loop) if task is not asyncio.tasks.Task.current_task(loop=self.loop)] list(map(lambda task: task.cancel(), tasks)) await asyncio.gather(*tasks, return_exceptions=True) self.loop.stop() def _parse_config(self, config): """Parses the configuration file.""" if config is None: # Returns a defaultdict that returns None if the key is not present. return collections.defaultdict(lambda: None) if not isinstance(config, dict): assert config.exists(), 'configuration path does not exist.' yaml = ruamel.yaml.add_implicit_resolverYAML(typ='safe') config = yaml.load(open(str(config))) if 'actor' in config: config = config['actor'] return config def _setup_logger(self, log_dir, file_level=10, shell_level=20): """Starts the file logger.""" orig_logger = logging.getLoggerClass() logging.setLoggerClass(logger.MyLogger) log = logging.getLogger(self.name + '_actor') log._set_defaults() # Inits sh handler logging.setLoggerClass(orig_logger) if log_dir is None: if 'logging' in self.config: log_dir = self.config['logging'].get('log_dir', None) if log_dir is None: log_dir = pathlib.Path(f'~/.{self.name}/').expanduser() else: log_dir = pathlib.Path(log_dir) if not log_dir.exists(): log_dir.mkdir(parents=True) log.start_file_logger(log_dir / f'{self.name}.log') if 'logging' in self.config: file_level = self.config['logging'].get('file_level', None) or file_level shell_level = self.config['logging'].get('shell_level', None) or shell_level log.sh.setLevel(shell_level) log.fh.setLevel(file_level) log.info('logging system initiated.') return log def new_user(self, transport): """Assigns userID to new client connection.""" curr_ids = set(self.user_dict.keys()) user_id = 1 if len(curr_ids) == 0 else max(curr_ids) + 1 transport.user_id = user_id self.user_dict[user_id] = transport # report user information and additional info self.show_new_user_info(user_id) return def new_command(self, transport, command_str): """Handles a new command received by the actor.""" command_str = command_str.decode().strip() if not command_str: return user_id = transport.user_id print(user_id) try: command = Command(command_str, user_id=user_id, actor=self, loop=self.loop) except exceptions.CommandError as ee: self.write('f', f'Could not parse the following as a command: {ee!r}') return # try: # self.dispatch(command) # except exceptions.CommandError as ee: # command.set_status(command.status.Failed, # message=f'Command {command.command_body!r} failed: {ee}') return command def show_new_user_info(self, user_id): """Shows information for new users. Called when a new user connects.""" self.show_user_info(user_id) self.show_version(user_id=user_id) def show_user_info(self, user_id): """Shows user information including your user_id.""" num_users = len(self.user_dict) if num_users == 0: return msg_data = [f'yourUserID={user_id}', f'num_users={num_users}'] msg_str = '; '.join(msg_data) self.write('i', msg_str, user_id=user_id) self.show_user_list() def show_user_list(self): """Shows a list of connected users. Broadcast to all users.""" user_id_list = sorted(self.user_dict.keys()) for user_id in user_id_list: transport = self.user_dict[user_id] peername = transport.get_extra_info('peername')[0] msg_str = f'UserInfo={user_id}, {peername}' self.write('i', msg_str) def show_version(self, user_id=None): """Shows actor version.""" msg_str = f'version={self.version!r}' self.write('i', msg_str, user_id=user_id) @staticmethod def get_user_command_id(command=None, user_id=None, command_id=None): """Returns user_id, command_id based on user-supplied information. Parameters ---------- command : Command User command; used as a default for ``user_id`` and ``command_id``. If the command is done, it is ignored. user_id : int If `None` then use ``command.user_id``. command_id : int If `None` then use ``command.command_id``. """ if command is not None and command.is_done: command = None user_id = user_id or (command.user_id if command else 0) command_id = command_id or (command.command_id if command else 0) return (user_id, command_id) @staticmethod def format_user_output(msg_code, msg_str=None, user_id=None, command_id=None): """Formats a string to send to users.""" msg_str = '' if msg_str is None else ' ' + msg_str return f'{command_id:d} {user_id:d} {msg_code:s}{msg_str:s}' def write(self, msg_code, msg_str, command=None, user_id=None, command_id=None): """Writes a message to user(s). Parameters ---------- msg_code : str The message code (e.g., ``'i'`` or ``':'``). msg_str : str The text to be output. If `None`, only the code will be written. command : Command User command; used as a default for ``user_id`` and ``command_id``. If the command is done, it is ignored. user_id : int If `None` then use ``command.user_id``. command_id : int If `None` then use ``command.command_id``. """ user_id, command_id = self.get_user_command_id(command=command, user_id=user_id, command_id=command_id) full_msg_str = self.format_user_output(msg_code, msg_str, user_id=user_id, command_id=command_id) msg = (full_msg_str + '\n').encode() if user_id is None or user_id == 0: for transport in self.user_dict.values(): transport.write(msg) else: transport = self.user_dict[user_id] transport.write(msg)
# The contents of this file are subject to the BitTorrent Open Source License # Version 1.1 (the License). You may not copy or use this file, in either # source code or executable form, except in compliance with the License. You # may obtain a copy of the License at http://www.bittorrent.com/license/. # # Software distributed under the License is distributed on an AS IS basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # magic id to use before we know a peer's id NULL_ID = 20 * '\0' # Kademlia "K" constant, this should be an even number K = 8 # SHA1 is 160 bits long HASH_LENGTH = 160 # checkpoint every this many seconds CHECKPOINT_INTERVAL = 60 * 5 # five minutes # how often to find our own nodes FIND_CLOSE_INTERVAL = 60 * 15 # fifteen minutes ### SEARCHING/STORING # concurrent krpc calls per find node/value request! CONCURRENT_REQS = K # how many hosts to post to STORE_REDUNDANCY = 3 ### ROUTING TABLE STUFF # how many times in a row a node can fail to respond before it's booted from the routing table MAX_FAILURES = 3 # never ping a node more often than this MIN_PING_INTERVAL = 60 * 15 # fifteen minutes # refresh buckets that haven't been touched in this long BUCKET_STALENESS = 60 * 15 # fifteen minutes ### KEY EXPIRER # time before expirer starts running KEINITIAL_DELAY = 15 # 15 seconds - to clean out old stuff in persistent db # time between expirer runs KE_DELAY = 60 * 5 # 5 minutes # expire entries older than this KE_AGE = 60 * 30 # 30 minutes ## krpc errback codes KRPC_TIMEOUT = 20 KRPC_ERROR = 1 KRPC_ERROR_METHOD_UNKNOWN = 2 KRPC_ERROR_RECEIVED_UNKNOWN = 3 KRPC_ERROR_TIMEOUT = 4 KRPC_SOCKET_ERROR = 5 KRPC_CONNECTION_CACHE_TIME = KRPC_TIMEOUT * 2 ## krpc erorr response codes KERR_ERROR = (201, "Generic Error") KERR_SERVER_ERROR = (202, "Server Error") KERR_PROTOCOL_ERROR = (203, "Protocol Error") KERR_METHOD_UNKNOWN = (204, "Method Unknown") KERR_INVALID_ARGS = (205, "Invalid Argements") KERR_INVALID_TOKEN = (206, "Invalid Token")
from decimal import * class DecimalStack(object): def __init__(self, *d): self.data = list(d) def __getitem__(self, id): return self.data[id] def add(self): self.data.append(self.data.pop() + self.data.pop()) def sub(self): self.data.append(0 - (self.data.pop() - self.data.pop())) def mul(self): self.data.append(self.data.pop() * self.data.pop()) def div(self): a, b = self.data.pop(), self.data.pop() self.data.append(b / a) def ceil(self): self.data.append(math.ceil(self.data.pop())) def floor(self): self.data.append(math.floor(self.data.pop())) def eq(self): return 0 - (self.data.pop() == self.data.pop()) def neq(self): return 0 - (self.data.pop() != self.data.pop()) def gt(self): a, b = self.data.pop(), self.data.pop() return 0 - (b > a) def lt(self): a, b = self.data.pop(), self.data.pop() return 0 - (b < a) def depth(self): return len(self.data) def drop(self): self.data.pop() def pop(self): return self.data.pop() def swap(self): a, b = self.data.pop(), self.data.pop() self.data += [a, b] def push(self, n): self.data.append(n) def log(self): a, b = self.data.pop(), self.data.pop() self.data.append(math.log(b, a)) def power(self): a, b = self.data.pop(), self.data.pop() self.data.append(math.pow(a, b)) def sin(self): self.data.append(math.sin(self.data.pop())) def cos(self): self.data.append(math.cos(self.data.pop())) def tan(self): self.data.append(math.tan(self.data.pop())) def asin(self): self.data.append(math.asin(self.data.pop())) def acos(self): self.data.append(math.acos(self.data.pop())) def atan(self): self.data.append(math.atan(self.data.pop()))
import pytest from ctrlibrary.threatresponse.enrich import enrich_observe_observables from ctrlibrary.core.utils import get_observables from tests.functional.tests.constants import ( MODULE_NAME, CTR_ENTITIES_LIMIT ) @pytest.mark.parametrize( 'observable, observable_type', (('a23-38-112-137.deploy.static.akamaitechnologies.com', 'domain'), ('23.38.112.137', 'ip'), ('701fb8ed9d1f72c901e207dd01b481266be8458f6e03750c1a139c901f2995fa', 'sha256'), ('415e5cc23e106483711abe70ad78c8e2', 'md5'), ('MSFTHISTORY!', 'mutex'), (r'C:\Users\User01\Downloads\Malware', 'file_path'), ('buzus.exe', 'file_name')) ) def test_positive_enrich_observe_observables_relationships( module_headers, observable, observable_type): """ Perform testing for enrich observe observables endpoint to get relationships for observable Qualys module ID: CCTRI-798-bcb33509-c153-4436-93c3-7345e7704b9d Steps: 1. Send request to enrich observe observable endpoint Expectedresults: 1. Check that data in response body contains expected information in relationships from Qualys module Importance: Critical """ observables = [{"value": observable, "type": observable_type}] response_from_all_modules = enrich_observe_observables( payload=observables, **{'headers': module_headers} ) response_from_qualys_ioc = get_observables( response_from_all_modules, MODULE_NAME) assert response_from_qualys_ioc['module'] == MODULE_NAME assert response_from_qualys_ioc['module_instance_id'] assert response_from_qualys_ioc['module_type_id'] relationships = response_from_qualys_ioc['data']['relationships'] sightings = response_from_qualys_ioc['data']['sightings'] indicators = response_from_qualys_ioc['data']['indicators'] judgements = response_from_qualys_ioc['data']['judgements'] indicators_ids = frozenset( indicator['id'] for indicator in indicators['docs']) judgements_ids = frozenset( judgement['id'] for judgement in judgements['docs']) sightings_ids = frozenset( sighting['id'] for sighting in sightings['docs']) assert len(relationships['docs']) > 0 for relationship in relationships['docs']: assert relationship['schema_version'] assert relationship['type'] == 'relationship' assert relationship['source'] == MODULE_NAME assert relationship['id'].startswith('transient:relationship-') assert 'external_ids' in relationship assert 'source_uri' in relationship if relationship['relationship_type'] == 'based-on': if relationship['target_ref'].startswith('transient:indicator-'): assert relationship['target_ref'] in indicators_ids assert relationship['source_ref'] in judgements_ids elif relationship['target_ref'].startswith('transient:judgement-'): assert relationship['target_ref'] in judgements_ids assert relationship['source_ref'] in sightings_ids elif relationship['relationship_type'] == 'sighting-of': assert relationship['target_ref'] in indicators_ids assert relationship['source_ref'] in sightings_ids else: raise AssertionError('Unsupported relationship type') assert relationships['count'] == len(relationships['docs']) <= ( CTR_ENTITIES_LIMIT)
from quart import Quart from db import Session from blueprints import auth_blueprint, websockets_blueprint app = Quart(__name__) app.register_blueprint(auth_blueprint) app.register_blueprint(websockets_blueprint) @app.teardown_appcontext async def teardown_db(resp_or_exc): Session.remove() app.run()
def remove_all_occurences(list, remove_value): return None def is_leap(list, remove_value): return None def add(a, b): return None def g(list, remove_value): return None def t(list, remove_value): return None print(2 in [1,2]) def if_funtion(): if 2 in [1,2]: return True print(if_funtion()) if 2 in [1,2]: print(True)
# -*- coding: utf-8 -*- # @Time : 2017/12/17 12:47 # @Author : Xiaofeifei # @File : evaluation.py from sklearn.metrics import roc_auc_score, average_precision_score, roc_curve, confusion_matrix, precision_recall_curve import numpy as np import matplotlib.pyplot as plt import itertools def auc(y_true, y_pred): y_pred = np.squeeze(np.reshape(y_pred, [-1, 1])) y_true = np.squeeze(np.reshape(y_true, [-1, 1])) return roc_auc_score(y_true, y_pred) def plot_roc(y_true, y_pred, title): y_pred = np.squeeze(np.reshape(y_pred, [-1, 1])) y_true = np.squeeze(np.reshape(y_true, [-1, 1])) fpr, tpr, _ = roc_curve(y_true, y_pred) auc = roc_auc_score(y_true, y_pred) plt.figure() plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([-0.01, 1.0]) plt.ylim([-0.01, 1.01]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.title(title) plt.savefig('../pic/' + title + '.png') plt.show() """ def average_precision(y_true, y_pred): y_pred = np.squeeze(np.reshape(y_pred, [-1, 1])) y_true = np.squeeze(np.reshape(y_true, [-1, 1])) average_precision_ = average_precision_score(y_true, y_pred) # 计算平均准确率 return average_precision_ """ def precision_recall(y_true, y_pred): y_pred = np.squeeze(np.reshape(y_pred, [-1, 1])) y_true = np.squeeze(np.reshape(y_true, [-1, 1])) cm = confusion_matrix(y_true, y_pred) recall = cm[1, 1] / (cm[1, 0] + cm[1, 1]) precision = cm[1, 1] / (cm[0, 1] + cm[1, 1]) return precision, recall def plot_prc(y_true, y_pred, title): y_pred = np.squeeze(np.reshape(y_pred, [-1, 1])) y_true = np.squeeze(np.reshape(y_true, [-1, 1])) precision, recall, _ = precision_recall_curve(y_true, y_pred) average_precision = average_precision_score(y_true, y_pred) plt.step(recall, precision, color='b', alpha=0.2, where='post') plt.fill_between(recall, precision, step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title(title + ': AP={0:0.2f}'.format( average_precision)) plt.savefig('../pic/' + title + '.png') plt.show() def plot_confusion_matric(y_true, y_pred, classes, normalize=False, title='Confusion matrix'): y_pred = np.squeeze(np.reshape(y_pred, [-1, 1])) y_true = np.squeeze(np.reshape(y_true, [-1, 1])) cm = confusion_matrix(y_true, y_pred) # 计算混淆矩阵 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) # 伪坐标轴 plt.xticks(tick_marks, classes, rotation=0) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig('../pic/' + title + '.png') plt.show()
def args(method): pass def fred(method): breakpoint() args_ = method() # noqa
#!/usr/bin/env python2 """ This is a template file of abt command """ import argparse import abt.cli as cli import abt.rpc_client as client if __name__ == '__main__': parser = argparse.ArgumentParser(prog=cli.progname, description=__doc__.strip()) parser.add_argument('arg1', action='store', help="balabalah") parser.add_argument('arg2', action='store', help="balabalah") parser.add_argument('--opt1', action='store', help="balabalah") parser.add_argument('--opt2', action='store', help="balabalah") args = parser.parse_args()
from cms.admin.placeholderadmin import PlaceholderAdminMixin from django.contrib import admin from .models import AppTemplate @admin.register(AppTemplate) class AppTemplateAdmin(PlaceholderAdminMixin, admin.ModelAdmin): list_display = ('date', 'title', 'published', ) fieldsets = ( ('', { 'fields': ( 'published', ( 'title', 'seo_title', 'date' ), 'meta_description', # 'preview_text', 'preview_image', ) }), )
#Faça um programa que mostre a tabuada de vários números, um de cada vez, #para cada valor digitado pelo usuário. #O programa será interrompido quando o número solicitado for negativo. cont = 1 c = 1 print('\033[37mCaso digite um número negativo o programa será encerrado.\033[m') while True: num = int(input('\033[1mDigite um número para saber sua tabuada: \033[m')) if num < 0: break print('-' * 12) for c in range(1, 11): multi = num * c print(f'\033[34m{num} x {c} = {multi}\033[m') print('-' * 12) print('\n\033[31mPrograma encerrado.')
############################################################################### # Core Python Wrapper for RP1210 dlls ############################################################################### from struct import pack, unpack from ctypes import windll, byref, c_char_p, c_int, c_short, c_long, c_void_p, create_string_buffer import ConfigParser """ Class: RP1210 """ class RP1210: def __init__(self): """ RP1210 Constructor """ config = ConfigParser.RawConfigParser() # Todo: 1) Determine os 2) Load our own config, 3) determine windows root, 4) open ini config.read('c:\windows\RP121032.ini') # Todo: Select the correct dll and dll config name by matching config or if there is only one dllname = config.get('RP1210Support', 'APIImplementations').split(',')[0] # Todo: Open dll ini file for details of allowed configurations # Load the correct dll self.dll = windll.LoadLibrary(dllname) # Define Function Prototypes for python type checking - otherwise python depends on before and after stack pointer comparisons self.dll.RP1210_ClientConnect.argtypes = [c_long, c_short, c_char_p, c_long, c_long, c_short] self.dll.RP1210_ClientDisconnect.argtypes = [c_short] self.dll.RP1210_SendMessage.argtypes = [c_short, c_char_p, c_short, c_short, c_short] self.dll.RP1210_ReadMessage.argtypes = [c_short, c_char_p, c_short, c_short] self.dll.RP1210_ReadVersion.argtypes = [c_char_p, c_char_p, c_char_p, c_char_p] self.dll.RP1210_ReadDetailedVersion.argtypes = [c_short, c_char_p, c_char_p, c_char_p] self.dll.RP1210_GetErrorMsg.argtypes = [c_short, c_char_p] self.dll.RP1210_GetLastErrorMsg.argtypes = [c_short, c_void_p, c_char_p] self.dll.RP1210_GetHardwareStatus.argtypes = [c_short, c_char_p, c_short, c_short] self.dll.RP1210_SendCommand.argtypes = [c_short, c_short, c_char_p, c_short] def ClientConnect(self, Device, Protocol, TxBufSize, RxBufSize): return self.dll.RP1210_ClientConnect(c_long(0), Device, Protocol, TxBufSize, RxBufSize, 0) def ClientDisconnect(self, ClientId): return self.dll.RP1210_ClientDisconnect(ClientId) def SendMessage(self, ClientId, Message, MessageSize, Block): return self.dll.RP1210_SendMessage(ClientId, Message, MessageSize, 0, Block) def ReadMessage(self, ClientId, Block): p1 = create_string_buffer(100) self.dll.RP1210_ReadMessage(ClientId, p1, len(p1), Block) return p1.value def ReadVersion(self): p1 = create_string_buffer(5) p2 = create_string_buffer(5) p3 = create_string_buffer(5) p4 = create_string_buffer(5) self.dll.RP1210_ReadVersion(p1, p2, p3, p4) return (p1.value, p2.value, p3.value, p4.value) def ReadDetailedVersion(self, ClientId): p1 = create_string_buffer(17) p2 = create_string_buffer(17) p3 = create_string_buffer(17) self.dll.RP1210_ReadDetailedVersion(ClientId, p1, p2, p3) return (p1.value, p2.value, p3.value) def GetErrorMsg(self, ErrorCode): p1 = create_string_buffer(80) self.dll.RP1210_GetErrorMsg(ErrorCode, p1) return p1.value def GetLastErrorMsg(self, ErrorCode): p1 = c_int(0) p2 = create_string_buffer(80) self.dll.RP1210_GetLastErrorMsg(ErrorCode, byref(p1), p2) return (p1, p2.value) def GetHardwareStatus(self, ClientId, Block): p1 = create_string_buffer(18) self.dll.RP1210_GetHardwareStatus(ClientId, p1, 18, Block) return p1.value def SendCommand(self, ClientId, CommandNumber, CommandString, CommandSize): return self.dll.RP1210_SendCommand(CommandNumber, ClientId, CommandString, CommandSize) class j1587Message: def __init__(self, Timestamp, Priority, Mid, Data): """Standard Constructor""" self.Timestamp = Timestamp self.Priority = Priority self.Mid = Mid self.Data = Data def fromString(self, StringForm): fmt = '<IB%ds' % (len(StringForm) - 5) (self.Timestamp, self.Mid, self.Data) = unpack(fmt, StringForm) return self def __str__(self): fmt = '<BB%ds' % len(self.Data) return pack(fmt, self.Priority, self.Mid, self.Data) """Convert the Message to a string RP1210 functions will understand""" class j1939Message: def __init__(self, Timestamp, Pgn, Priority, Source, Destination, Data): """Standard Constructor""" self.TimeStamp = Timestamp self.Pgn = Pgn self.Priority = Priority self.Source= Source self.Destination = Destination self.Data = Data def fromString(self, StringForm): fmt = '<IHBBBB%ds' % (len(StringForm) - 10) (self.TimeStamp, PgnLo, PgnHi, self.Priority, self.Source, self.Destination, self.Data) = unpack(fmt, StringForm) self.Pgn = ((PgnHi << 16) & 0x0F0000) | (PgnLo & 0xFFFF) return self def __str__(self): """Convert the Message to a string RP1210 functions will understand""" PgnLo = self.Pgn & 0xFFFF PgnHi = ((self.Pgn & 0x0F0000) >> 16) fmt = '<HBBBB%ds' % len(self.Data) return pack(fmt, PgnLo, PgnHi, self.Priority, self.Source, self.Destination, self.Data)
# Beautiful Soup 4で「技評ねこ部通信」を取得 import requests from bs4 import BeautifulSoup r = requests.get('http://gihyo.jp/lifestyle/clip/01/everyday-cat') soup = BeautifulSoup(r.content, 'html.parser') title = soup.title # titleタグの情報を取得 print(type(title)) # オブジェクトの型は Tag 型 # <class 'bs4.element.Tag'> print(title) # タイトルの中身を確認 # <title>技評ねこ部通信|gihyo.jp … 技術評論社</title> print(title.text) # タイトルの中のテキストを取得 # 技評ねこ部通信|gihyo.jp … 技術評論社 div = soup.find('div', class_='readingContent01') for li in div.find_all('li'): # divタグの中の全liタグを取得 url = li.a['href'] date, text = li.a.text.split() print('{},{},{}'.format(date, text, url))
import FWCore.ParameterSet.Config as cms # Single muon for Wjets isomuons = cms.EDFilter( "MuonSelector", src = cms.InputTag('muons'), cut = cms.string("(isTrackerMuon) && std::abs(eta) < 2.5 && pt > 9.5"+#17. "+ "&& isPFMuon"+ "&& globalTrack.isNonnull"+ "&& innerTrack.hitPattern.numberOfValidPixelHits > 0"+ "&& innerTrack.normalizedChi2 < 10"+ "&& numberOfMatches > 0"+ "&& innerTrack.hitPattern.numberOfValidTrackerHits>5"+ "&& globalTrack.hitPattern.numberOfValidHits>0"+ "&& (pfIsolationR03.sumChargedHadronPt+pfIsolationR03.sumNeutralHadronEt+pfIsolationR03.sumPhotonEt)/pt < 0.3"+ "&& std::abs(innerTrack().dxy)<2.0" ), filter = cms.bool(False) ) isoelectrons = cms.EDFilter( "GsfElectronSelector", src = cms.InputTag('gsfElectrons'), cut = cms.string("std::abs(eta) < 2.5 && pt > 9.5" + "&& gsfTrack.trackerExpectedHitsInner.numberOfHits == 0" + # "&& (pfIsolationVariables.chargedHadronIso+pfIsolationVariables.neutralHadronIso)/et < 0.3" + "&& (isolationVariables03.tkSumPt)/et < 0.2" + "&& ((std::abs(eta) < 1.4442 " + "&& std::abs(deltaEtaSuperClusterTrackAtVtx) < 0.007"+ "&& std::abs(deltaPhiSuperClusterTrackAtVtx) < 0.8" + "&& sigmaIetaIeta < 0.01" + "&& hcalOverEcal < 0.15" + "&& std::abs(1./superCluster.energy - 1./p) < 0.05)"+ "|| (std::abs(eta) > 1.566 "+ "&& std::abs(deltaEtaSuperClusterTrackAtVtx) < 0.009"+ "&& std::abs(deltaPhiSuperClusterTrackAtVtx) < 0.10" + "&& sigmaIetaIeta < 0.03" + "&& hcalOverEcal < 0.10" + "&& std::abs(1./superCluster.energy - 1./p) < 0.05))" ), filter = cms.bool(False) ) from RecoJets.Configuration.RecoPFJets_cff import kt6PFJets as dummy kt6PFJetsForRhoComputationVoronoiMet = dummy.clone( doRhoFastjet = True, voronoiRfact = 0.9 ) from RecoTauTag.RecoTau.PFRecoTauDiscriminationByHPSSelection_cfi import hpsSelectionDiscriminator hpsPFTauDiscriminationByDecayModeFinding = hpsSelectionDiscriminator.clone( PFTauProducer = 'hpsPFTauProducer' ) from RecoTauTag.RecoTau.TauDiscriminatorTools import requireLeadTrack # Define decay mode prediscriminant requireDecayMode = cms.PSet( BooleanOperator = cms.string("and"), decayMode = cms.PSet( Producer = cms.InputTag('hpsPFTauDiscriminationByDecayModeFinding'), cut = cms.double(0.5) ) ) from RecoTauTag.Configuration.HPSPFTaus_cff import hpsPFTauDiscriminationByLooseCombinedIsolationDBSumPtCorr3Hits import RecoTauTag.RecoTau.pfRecoTauDiscriminationAgainstMuon2_cfi as _mod hpsPFTauDiscriminationAgainstMuon2 = _mod.pfRecoTauDiscriminationAgainstMuon2.clone( PFTauProducer = 'hpsPFTauProducer', Prediscriminants = requireDecayMode.clone(), discriminatorOption = 'loose', # available options are: 'loose', 'medium', 'tight' ) hpsPFTauDiscriminationByMVAIsolation = cms.EDProducer( "PFRecoTauDiscriminationByMVAIsolation", PFTauProducer = cms.InputTag('hpsPFTauProducer'), rhoProducer = cms.InputTag('kt6PFJetsForRhoComputationVoronoiMet','rho'), Prediscriminants = requireDecayMode.clone(), gbrfFilePath = cms.FileInPath('RecoTauTag/RecoTau/data/gbrfTauIso_v2.root'), returnMVA = cms.bool(False), mvaMin = cms.double(0.8), ) isotaus = cms.EDFilter( "PFTauSelector", src = cms.InputTag('hpsPFTauProducer'), BooleanOperator = cms.string("and"), discriminators = cms.VPSet( cms.PSet( discriminator=cms.InputTag("hpsPFTauDiscriminationByDecayModeFinding"), selectionCut=cms.double(0.5)), #cms.PSet( discriminator=cms.InputTag("hpsPFTauDiscriminationByMVAIsolation"), selectionCut=cms.double(0.5)), cms.PSet( discriminator=cms.InputTag("hpsPFTauDiscriminationByLooseCombinedIsolationDBSumPtCorr3Hits"), selectionCut=cms.double(0.5)), cms.PSet( discriminator=cms.InputTag("hpsPFTauDiscriminationByLooseElectronRejection"), selectionCut=cms.double(0.5)), cms.PSet( discriminator=cms.InputTag("hpsPFTauDiscriminationAgainstMuon2"), selectionCut=cms.double(0.5)) ), cut = cms.string("std::abs(eta) < 2.3 && pt > 19.0 "), filter = cms.bool(False) ) isomuonTask = cms.Task(isomuons) isomuonseq = cms.Sequence(isomuonsTask) isoelectronTask = cms.Task(isoelectrons) isoelectronseq = cms.Sequence(isoelectronsTask) isotauTask = cms.Task( hpsPFTauDiscriminationByLooseCombinedIsolationDBSumPtCorr3Hits, #kt6PFJetsForRhoComputationVoronoiMet, #hpsPFTauDiscriminationByMVAIsolation, hpsPFTauDiscriminationAgainstMuon2, isotaus ) isotauseq = cms.Sequence(isotauTask) leptonSelection = cms.PSet( SelectEvents = cms.PSet( SelectEvents = cms.vstring( 'isomuonseq', 'isoelectronseq', 'isotauseq') ) )
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.trial._dist.disttrial}. """ import os import sys from twisted.internet.protocol import Protocol, ProcessProtocol from twisted.internet.defer import fail, gatherResults, maybeDeferred, succeed from twisted.internet.task import Cooperator, deferLater from twisted.internet.main import CONNECTION_DONE from twisted.internet import reactor, interfaces, error from twisted.python.compat import NativeStringIO as StringIO from twisted.python.failure import Failure from twisted.python.lockfile import FilesystemLock from twisted.test.test_cooperator import FakeScheduler from twisted.test.proto_helpers import MemoryReactorClock from twisted.trial.unittest import SynchronousTestCase, TestCase from twisted.trial.reporter import Reporter, TreeReporter from twisted.trial.reporter import UncleanWarningsReporterWrapper from twisted.trial.runner import TrialSuite, ErrorHolder from twisted.trial._dist.disttrial import DistTrialRunner from twisted.trial._dist.distreporter import DistReporter from twisted.trial._dist.worker import LocalWorker from zope.interface import implementer, verify class FakeTransport(object): """ A simple fake process transport. """ def writeToChild(self, fd, data): """ Ignore write calls. """ @implementer(interfaces.IReactorProcess) class CountingReactor(MemoryReactorClock): """ A fake reactor that counts the calls to L{IReactorCore.run}, L{IReactorCore.stop}, and L{IReactorProcess.spawnProcess}. """ spawnCount = 0 stopCount = 0 runCount = 0 def __init__(self, workers): MemoryReactorClock.__init__(self) self._workers = workers def spawnProcess(self, worker, *args, **kwargs): """ See L{IReactorProcess.spawnProcess}. @param worker: See L{IReactorProcess.spawnProcess}. @param args: See L{IReactorProcess.spawnProcess}. @param kwargs: See L{IReactorProcess.spawnProcess}. """ self._workers.append(worker) worker.makeConnection(FakeTransport()) self.spawnCount += 1 def stop(self): """ See L{IReactorCore.stop}. """ MemoryReactorClock.stop(self) self.stopCount += 1 def run(self): """ See L{IReactorCore.run}. """ self.runCount += 1 # The same as IReactorCore.run, except no stop. self.running = True self.hasRun = True for f, args, kwargs in self.whenRunningHooks: f(*args, **kwargs) class CountingReactorTests(SynchronousTestCase): """ Tests for L{CountingReactor}. """ def setUp(self): self.workers = [] self.reactor = CountingReactor(self.workers) def test_providesIReactorProcess(self): """ L{CountingReactor} instances provide L{IReactorProcess}. """ verify.verifyObject(interfaces.IReactorProcess, self.reactor) def test_spawnProcess(self): """ The process protocol for a spawned process is connected to a transport and appended onto the provided C{workers} list, and the reactor's C{spawnCount} increased. """ self.assertFalse(self.reactor.spawnCount) proto = Protocol() for count in [1, 2]: self.reactor.spawnProcess(proto, sys.executable, arg=[sys.executable]) self.assertTrue(proto.transport) self.assertEqual(self.workers, [proto] * count) self.assertEqual(self.reactor.spawnCount, count) def test_stop(self): """ Stopping the reactor increments its C{stopCount} """ self.assertFalse(self.reactor.stopCount) for count in [1, 2]: self.reactor.stop() self.assertEqual(self.reactor.stopCount, count) def test_run(self): """ Running the reactor increments its C{runCount}, does not imply C{stop}, and calls L{IReactorCore.callWhenRunning} hooks. """ self.assertFalse(self.reactor.runCount) whenRunningCalls = [] self.reactor.callWhenRunning(whenRunningCalls.append, None) for count in [1, 2]: self.reactor.run() self.assertEqual(self.reactor.runCount, count) self.assertEqual(self.reactor.stopCount, 0) self.assertEqual(len(whenRunningCalls), count) class EternalTerminationPredicateFactory(object): """ A rigged terminationPredicateFactory for which time never pass. """ def __call__(self): """ See: L{task._Timer} """ return False class DistTrialRunnerTests(TestCase): """ Tests for L{DistTrialRunner}. """ def setUp(self): """ Create a runner for testing. """ self.runner = DistTrialRunner(TreeReporter, 4, [], workingDirectory=self.mktemp()) self.runner._stream = StringIO() def reap(self, workers): """ Reap the workers and trap L{ConnectionDone} failures on their C{endDeferred}s. @param workers: The workers to reap. @type workers: An iterable of L{LocalWorker} """ for worker in workers: worker.endDeferred.addErrback(Failure.trap, error.ConnectionDone) worker.processEnded(Failure(CONNECTION_DONE)) def getFakeSchedulerAndEternalCooperator(self): """ Helper to create fake scheduler and cooperator in tests. The cooperator has a termination timer which will never inform the scheduler that the task needs to be terminated. @return: L{tuple} of (scheduler, cooperator) """ scheduler = FakeScheduler() cooperator = Cooperator( scheduler=scheduler, terminationPredicateFactory=EternalTerminationPredicateFactory, ) return scheduler, cooperator def test_writeResults(self): """ L{DistTrialRunner.writeResults} writes to the stream specified in the init. """ stringIO = StringIO() result = DistReporter(Reporter(stringIO)) self.runner.writeResults(result) self.assertTrue(stringIO.tell() > 0) def test_createLocalWorkers(self): """ C{createLocalWorkers} iterates the list of protocols and create one L{LocalWorker} for each. """ protocols = [object() for x in range(4)] workers = self.runner.createLocalWorkers(protocols, "path") for s in workers: self.assertIsInstance(s, LocalWorker) self.assertEqual(4, len(workers)) def test_launchWorkerProcesses(self): """ Given a C{spawnProcess} function, C{launchWorkerProcess} launches a python process with an existing path as its argument. """ protocols = [ProcessProtocol() for i in range(4)] arguments = [] environment = {} def fakeSpawnProcess(processProtocol, executable, args=(), env={}, path=None, uid=None, gid=None, usePTY=0, childFDs=None): arguments.append(executable) arguments.extend(args) environment.update(env) self.runner.launchWorkerProcesses( fakeSpawnProcess, protocols, ["foo"]) self.assertEqual(arguments[0], arguments[1]) self.assertTrue(os.path.exists(arguments[2])) self.assertEqual("foo", arguments[3]) self.assertEqual(os.pathsep.join(sys.path), environment["TRIAL_PYTHONPATH"]) def test_run(self): """ C{run} starts the reactor exactly once and spawns each of the workers exactly once. """ workers = [] fakeReactor = CountingReactor(workers) self.addCleanup(self.reap, workers) suite = TrialSuite() for i in range(10): suite.addTest(TestCase()) self.runner.run(suite, fakeReactor) self.assertEqual(fakeReactor.runCount, 1) self.assertEqual(fakeReactor.spawnCount, self.runner._workerNumber) def test_runUsedDirectory(self): """ L{DistTrialRunner} checks if the test directory is already locked, and if it is generates a name based on it. """ class CountingReactorWithLock(CountingReactor): def spawnProcess(oself, worker, *args, **kwargs): oself._workers.append(worker) self.assertEqual(os.path.abspath(worker._logDirectory), os.path.abspath( os.path.join(workingDirectory + "-1", str(oself.spawnCount)))) localLock = FilesystemLock(workingDirectory + "-1.lock") self.assertFalse(localLock.lock()) oself.spawnCount += 1 worker.makeConnection(FakeTransport()) worker._ampProtocol.run = lambda *args: succeed(None) newDirectory = self.mktemp() os.mkdir(newDirectory) workingDirectory = os.path.join(newDirectory, "_trial_temp") lock = FilesystemLock(workingDirectory + ".lock") lock.lock() self.addCleanup(lock.unlock) self.runner._workingDirectory = workingDirectory workers = [] fakeReactor = CountingReactorWithLock(workers) self.addCleanup(self.reap, workers) suite = TrialSuite() for i in range(10): suite.addTest(TestCase()) self.runner.run(suite, fakeReactor) def test_minimalWorker(self): """ L{DistTrialRunner} doesn't try to start more workers than the number of tests. """ workers = [] fakeReactor = CountingReactor(workers) self.addCleanup(self.reap, workers) self.runner.run(TestCase(), fakeReactor) self.assertEqual(fakeReactor.runCount, 1) self.assertEqual(fakeReactor.spawnCount, 1) def test_runUncleanWarnings(self): """ Running with the C{unclean-warnings} option makes L{DistTrialRunner} uses the L{UncleanWarningsReporterWrapper}. """ workers = [] fakeReactor = CountingReactor(workers) self.addCleanup(self.reap, workers) self.runner._uncleanWarnings = True result = self.runner.run(TestCase(), fakeReactor) self.assertIsInstance(result, DistReporter) self.assertIsInstance(result.original, UncleanWarningsReporterWrapper) def test_runWithoutTest(self): """ When the suite contains no test, L{DistTrialRunner} takes a shortcut path without launching any process or starting the reactor. """ fakeReactor = object() suite = TrialSuite() result = self.runner.run(suite, fakeReactor) self.assertIsInstance(result, DistReporter) output = self.runner._stream.getvalue() self.assertIn("Running 0 test", output) self.assertIn("PASSED", output) def test_runWithoutTestButWithAnError(self): """ Even if there is no test, the suite can contain an error (most likely, an import error): this should make the run fail, and the error should be printed. """ fakeReactor = object() error = ErrorHolder("an error", Failure(RuntimeError("foo bar"))) result = self.runner.run(error, fakeReactor) self.assertIsInstance(result, DistReporter) output = self.runner._stream.getvalue() self.assertIn("Running 0 test", output) self.assertIn("foo bar", output) self.assertIn("an error", output) self.assertIn("errors=1", output) self.assertIn("FAILED", output) def test_runUnexpectedError(self): """ If for some reasons we can't connect to the worker process, the test suite catches and fails. """ class CountingReactorWithFail(CountingReactor): def spawnProcess(self, worker, *args, **kwargs): self._workers.append(worker) worker.makeConnection(FakeTransport()) self.spawnCount += 1 worker._ampProtocol.run = self.failingRun def failingRun(self, case, result): return fail(RuntimeError("oops")) scheduler, cooperator = self.getFakeSchedulerAndEternalCooperator() workers = [] fakeReactor = CountingReactorWithFail(workers) self.addCleanup(self.reap, workers) result = self.runner.run(TestCase(), fakeReactor, cooperator.cooperate) self.assertEqual(fakeReactor.runCount, 1) self.assertEqual(fakeReactor.spawnCount, 1) scheduler.pump() self.assertEqual(1, len(result.original.failures)) def test_runStopAfterTests(self): """ L{DistTrialRunner} calls C{reactor.stop} and unlocks the test directory once the tests have run. """ class CountingReactorWithSuccess(CountingReactor): def spawnProcess(self, worker, *args, **kwargs): self._workers.append(worker) worker.makeConnection(FakeTransport()) self.spawnCount += 1 worker._ampProtocol.run = self.succeedingRun def succeedingRun(self, case, result): return succeed(None) workingDirectory = self.runner._workingDirectory workers = [] fakeReactor = CountingReactorWithSuccess(workers) self.runner.run(TestCase(), fakeReactor) def check(): localLock = FilesystemLock(workingDirectory + ".lock") self.assertTrue(localLock.lock()) self.assertEqual(1, fakeReactor.stopCount) self.assertEqual(list(fakeReactor.triggers.keys()), ["before"]) self.assertEqual(list(fakeReactor.triggers["before"]), ["shutdown"]) self.reap(workers) return deferLater(reactor, 0, check) def test_runWaitForProcessesDeferreds(self): """ L{DistTrialRunner} waits for the worker processes to stop when the reactor is stopping, and then unlocks the test directory, not trying to stop the reactor again. """ workers = [] workingDirectory = self.runner._workingDirectory fakeReactor = CountingReactor(workers) self.runner.run(TestCase(), fakeReactor) def check(ign): # Let the AMP deferreds fire return deferLater(reactor, 0, realCheck) def realCheck(): localLock = FilesystemLock(workingDirectory + ".lock") self.assertTrue(localLock.lock()) # Stop is not called, as it ought to have been called before self.assertEqual(0, fakeReactor.stopCount) self.assertEqual(list(fakeReactor.triggers.keys()), ["before"]) self.assertEqual(list(fakeReactor.triggers["before"]), ["shutdown"]) self.reap(workers) return gatherResults([ maybeDeferred(f, *a, **kw) for f, a, kw in fakeReactor.triggers["before"]["shutdown"] ]).addCallback(check) def test_runUntilFailure(self): """ L{DistTrialRunner} can run in C{untilFailure} mode where it will run the given tests until they fail. """ called = [] class CountingReactorWithSuccess(CountingReactor): def spawnProcess(self, worker, *args, **kwargs): self._workers.append(worker) worker.makeConnection(FakeTransport()) self.spawnCount += 1 worker._ampProtocol.run = self.succeedingRun def succeedingRun(self, case, result): called.append(None) if len(called) == 5: return fail(RuntimeError("oops")) return succeed(None) workers = [] fakeReactor = CountingReactorWithSuccess(workers) self.addCleanup(self.reap, workers) scheduler, cooperator = self.getFakeSchedulerAndEternalCooperator() result = self.runner.run( TestCase(), fakeReactor, cooperate=cooperator.cooperate, untilFailure=True) scheduler.pump() self.assertEqual(5, len(called)) self.assertFalse(result.wasSuccessful()) output = self.runner._stream.getvalue() self.assertIn("PASSED", output) self.assertIn("FAIL", output)
import numpy as np import tensorflow as tf import keras from keras.datasets import mnist from keras.layers import Dense, Flatten, Dropout from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential import matplotlib.pylab as plt import load_data as ld from keras.callbacks import TensorBoard tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0, write_graph=True, write_images=False) batch_size = 128 epochs = 10 width = 56 height = 56 classes = ['square', 'circle'] num_classes = len(classes) print('Generating training data') (x_train, y_train) = ld.load_data(10000, width, height) (x_test, y_test) = ld.load_data(3000, width, height) input_shape = (width, height, 3) print('Completed generation of training data') print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices - this is for use in the # categorical_crossentropy loss below y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(8, kernel_size=(5, 5), strides=(2, 2), activation='relu', input_shape=input_shape)) model.add(Conv2D(16, (5, 5), strides=(2, 2), activation='relu')) model.add(Flatten()) model.add(Dense(200, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy']) class AccuracyHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.acc = [] def on_epoch_end(self, batch, logs={}): self.acc.append(logs.get('acc')) history = AccuracyHistory() model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test), callbacks=[history, tensorboard]) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) plt.plot(range(1, 11), history.acc) plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.show()
from hashlib import sha256 from chinilla.types.blockchain_format.sized_bytes import bytes32 def std_hash(b, skip_bytes_conversion: bool = False) -> bytes32: """ The standard hash used in many places. """ if skip_bytes_conversion: return bytes32(sha256(b).digest()) else: return bytes32(sha256(bytes(b)).digest())
# -*- coding: utf-8 -*- from gluon.contrib.appconfig import AppConfig myconf = AppConfig(reload=True) db = DAL(myconf.take('db.uri'), pool_size=myconf.take('db.pool_size', cast=int), check_reserved=['all']) dboee = DAL('sqlite://oee.db', pool_size=0, migrate=False) response.generic_patterns = ['*'] if request.is_local else [] ## choose a style for forms response.formstyle = myconf.take('forms.formstyle') # or 'bootstrap3_stacked' or 'bootstrap2' or other response.form_label_separator = myconf.take('forms.separator') from gluon.tools import Auth, Service, PluginManager service = Service() plugins = PluginManager() ## configure email #mail = auth.settings.mailer #mail.settings.server = 'logging' if request.is_local else myconf.take('smtp.server') #mail.settings.sender = myconf.take('smtp.sender') #mail.settings.login = myconf.take('smtp.login') ## Add colorwidget import uuid colorpicker_js = URL(r=request,c='static/mColorPicker', f='mColorPicker.min.js') class ColorPickerWidget(object): """ Colorpicker widget based on http://code.google.com/p/mcolorpicker/ """ def __init__ (self, js = colorpicker_js, button=True, style="", transparency=False): uid = str(uuid.uuid4())[:8] self._class = "_%s" % uid self.style = style if transparency == False: self.transparency = 'false' else: self.transparency = 'true' if button == True: self.data = 'hidden' if self.style == "": self.style = "height:28px;width:28px;" else: self.data = 'display' if not js in response.files: response.files.append(js) def widget(self, f, v): wrapper = DIV() inp = SQLFORM.widgets.string.widget(f,v, _value=v, _type='color',\ _data_text='hidden', _style=self.style, _hex='true', _class=self._class) scr = SCRIPT("$.fn.mColorPicker.init.replace = false; \ $.fn.mColorPicker.init.allowTransparency=%s; \ $('input.%s').mColorPicker({'imageFolder': '/%s/static/mColorPicker/'});"\ % (self.transparency, self._class, request.application)) wrapper.components.append(inp) wrapper.components.append(scr) return wrapper color_widget = ColorPickerWidget() ##Defined OEE tables dboee.define_table('tblOee_Country', \ Field('fldOeeCountryTableKeyID', 'id', readable=False), \ Field('fldOeeCountryNr', 'integer', label='Country nr', readable=True, writable=False), \ Field('fldOeeCountryDescription', 'string', label='Country description'), \ Field('fldOeeCountryInformation', 'string', label='Country information'), \ Field('fldOeeCountryLanguageID', 'integer', label='Language ID', readable=False, writable=False), \ Field('fldOeeCountryHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.define_table('tblOee_Plant', \ Field('fldOeePlantTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantNr', 'integer', label='Plant nr', readable=True, writable=False), \ Field('fldOeePlantDescription', 'string', label='Plant description'), \ Field('fldOeePlantInformation', 'string', label='Plant information'), \ Field('fldOeePlantHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Plant.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.define_table('tblOee_SubPlant', \ Field('fldOeeSubPlantTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantNr', 'integer', label='Sub-Plant nr', readable=True, writable=False), \ Field('fldOeeSubPlantDescription', 'string', label='Sub-Plant description'), \ Field('fldOeeSubPlantInformation', 'string', label='Sub-Plant information'), \ Field('fldOeeSubPlantHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_SubPlant.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_SubPlant.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.define_table('tblOee_Department', \ Field('fldOeeDepartmentTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentNr', 'integer', label='Department nr', readable=True, writable=False), \ Field('fldOeeDepartmentDescription', 'string', label='Department department'), \ Field('fldOeeDepartmentInformation', 'string', label='Department information'), \ Field('fldOeeDepartmentHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Department.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Department.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Department.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.define_table('tblOee_ActivityGroup', \ Field('fldOeeActivityGroupTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeActivityGroupNr', 'integer', label='Activitygroup', readable=True, writable=False), \ Field('fldOeeActivityGroupDescription', 'text', label='Activitygroup description'), \ Field('fldOeeActivityGroupInformation', 'text', label='Activitygroup information'), \ Field('fldOeeActivityGroupColorNr', 'integer', label='Activitygroup color'), \ Field('fldOeeActivityGroupCalcForOee', 'integer', label='Calculate OEE'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_ActivityGroup.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_ActivityGroup.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_ActivityGroup.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_ActivityGroup.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_Activity', \ Field('fldOeeActivityTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeActivityNr', 'integer', label='Activity nr', readable=True, writable=False), \ Field('fldOeeActivityGroupID', 'integer', label='Activitygroup'), \ Field('fldOeeActivityDescription', 'string', label='Activity description'), \ Field('fldOeeActivityInformation', 'string', label='Activity information'), \ Field('fldOeeActivityHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Activity.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Activity.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Activity.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_Activity.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.tblOee_Activity.fldOeeActivityGroupID.requires = IS_IN_DB(dboee(), dboee.tblOee_ActivityGroup.fldOeeActivityGroupNr, '%(fldOeeActivityGroupDescription)s') dboee.define_table('tblOee_ModuleSensorStyle', \ Field('fldOeeModuleSensorStyleTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeeModuleSensorStyleNr', 'integer', label='Sensor-style nr', readable=True, writable=False), \ Field('fldOeeModuleSensorStyleDescription', 'string', label='Sensor-style'), \ Field('fldOeeModuleSensorStyleInformation', 'string', label='Sensor-style information'), \ Field('fldOeeModuleSensorStyleHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.define_table('tblOee_ModuleType', \ Field('fldOeeModuleTypeTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeModuleTypeNr', 'integer', label='Module-type nr'), \ Field('fldOeeModuleTypeConnection', 'string', label='Connection-type'), \ Field('fldOeeModuleTypeDescription', 'string', label='Module-type description'), \ Field('fldOeeModuleTypeInformation', 'string', label='Connection-type information'), \ Field('fldOeeModuleTypeHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.define_table('tblOee_Module', \ Field('fldOeeModuleTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeModuleNr', 'integer', label='Module nr', readable=True, writable=False), \ Field('fldOeeModuleTypeID', 'integer', label='Module-type'), \ Field('fldOeeModuleSensorStyleID', 'integer', label='Sensor-style'), \ Field('fldOeeModuleDescription', 'string', label='Module description'), \ Field('fldOeeModuleInformation', 'string', label='Module information'), \ Field('fldOeeModuleSensorAddress', 'integer', label='Sensor address'), \ Field('fldOeeModuleSensorResetAddress', 'integer', label='Sensor reset address'), \ Field('fldOeeModuleIpAddress', 'string', label='IP address'), \ Field('fldOeeModuleIpAddressPort', 'integer', label='IP Port'), \ Field('fldOeeModuleComPort', 'string', label='Com port'), \ Field('fldOeeModuleBitsPerSecond', 'integer', label='Bits per Second'), \ Field('fldOeeModuleDatabits', 'integer', label='Databits'), \ Field('fldOeeModuleStopBits', 'integer', label='StopBits'), \ Field('fldOeeModuleFlowControl', 'string', label='Flowcontrol'), \ Field('fldOeeModuleParity', 'string', label='Parity'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeModuleHistory', 'boolean', label='History'), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Module.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Module.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Module.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_Module.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.tblOee_Module.fldOeeModuleSensorStyleID.requires = IS_IN_DB(dboee(), dboee.tblOee_ModuleSensorStyle.fldOeeModuleSensorStyleNr, '%(fldOeeModuleSensorStyleDescription)s') dboee.tblOee_Module.fldOeeModuleTypeID.requires = IS_IN_DB(dboee(), dboee.tblOee_ModuleType.fldOeeModuleTypeNr, '%(fldOeeModuleTypeDescription)s') dboee.define_table('tblOee_MachineIOFailure', \ Field('fldOeeMachineIOFailureTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineIOFailureNr', 'integer', label='I/O failure nr'), \ Field('fldOeeMachineIOFailureDescription', 'string', label='I/O failure'), \ Field('fldOeeMachineIOFailureInformation', 'string', label='I/O failure information'), \ Field('fldOeeMachineIOFailureHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineIOFailure.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineIOFailure.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineIOFailure.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineIOFailure.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_MachineShortbreak', \ Field('fldOeeMachineShortBreakTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineShortBreakNr', 'integer', label='Shortbreak nr', readable=True, writable=False), \ Field('fldOeeMachineShortBreakDescription', 'string', label='Shortbreak description'), \ Field('fldOeeMachineShortBreakInformation', 'string', label='Shortbreak information'), \ Field('fldOeeMachineShortBreakHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineShortbreak.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineShortbreak.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineShortbreak.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineShortbreak.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_MachineStatus', \ Field('fldOeeMachineStatusTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineStatusNr', 'integer', label='Machine status nr'), \ Field('fldOeeMachineStatusDescription', 'string', label='Machine status description'), \ Field('fldOeeMachineStatusInformation', 'string', label='Machine status information'), \ Field('fldOeeMachineStatusHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineStatus.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineStatus.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineStatus.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineStatus.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_MachineUndefinedProduction', \ Field('fldOeeMachineUndefinedProductionTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineUndefinedProductionNr', 'integer', label='Undefined Production nr', readable=True, writable=False), \ Field('fldOeeMachineUndefinedProductionDescription', 'string', label='Undefined Production description'), \ Field('fldOeeMachineUndefinedProductionInformation', 'string', label='Undefined Production information'), \ Field('fldOeeMachineUndefinedProductionHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineUndefinedProduction.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineUndefinedProduction.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineUndefinedProduction.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineUndefinedProduction.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_MachineUndefinedStandstill', \ Field('fldOeeMachineUndefinedStandstillTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineUndefinedStandstillNr', 'integer', label='Undefined standstill nr', readable=True, writable=False), \ Field('fldOeeMachineUndefinedStandstillDescription', 'string', label='Undefined standstill description'), \ Field('fldOeeMachineUndefinedStandstillInformation', 'string', label='Undefined standstill information'), \ Field('fldOeeMachineUndefinedStandstillHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineUndefinedStandstill.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineUndefinedStandstill.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineUndefinedStandstill.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineUndefinedStandstill.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_MachineUnscheduled', \ Field('fldOeeMachineUnscheduledTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineUnscheduledNr', 'integer', label='Unscheduled nr', readable=True, writable=False), \ Field('fldOeeMachineUnscheduledDescription', 'string', label='Unscheduled description'), \ Field('fldOeeMachineUnscheduledInformation', 'string', label='Unscheduled information'), \ Field('fldDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeMachineUnscheduledHistory', 'boolean', label='History'), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineUnscheduled.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineUnscheduled.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineUnscheduled.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineUnscheduled.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_MachineUnit', \ Field('fldOeeMachineUnitTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineUnitNr', 'integer', label='Machine-unit nr'), \ Field('fldOeeMachineUnitDescription', 'string', label='Machine-unit description'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeMachineUnitHistory', 'boolean', label='History'), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineUnit.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineUnit.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineUnit.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineUnit.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_Machine', \ Field('fldOeeMachineTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineNr', 'integer', label='Machine nr', readable=True, writable=False), \ Field('fldOeeMachineCode', 'integer', label='Machine code'), \ Field('fldOeeMachineDescription', 'string', label='Machine description'), \ Field('fldOeeMachineInformation', 'string', label='Machine information'), \ Field('fldOeeModuleID', 'integer', label='Module'), \ Field('fldOeeMachineShortBreakID', 'integer', label='Shortbreak'), \ Field('fldOeeMachineUndefinedProdID', 'integer', label='Undefined Production'), \ Field('fldOeeMachineUndefinedStandStillID', 'integer', label='Undefined Standstill'), \ Field('fldOeeMachineUnscheduledID', 'integer', label='Unscheduled'), \ Field('fldOeeMachineIOFailureID', 'integer', label='I/O failure'), \ Field('fldOeeMachineUnitID', 'integer', label='Machine-unit'), \ Field('fldOeeMachineSortOrder', 'integer', label='Machine sort order'), \ Field('fldOeeMachineProductionBoundaryTimer', 'integer', label='Production timer (sec)'), \ Field('fldOeeMachineProductionShortbreakTimer', 'integer', label='Shortbreak timer (sec)'), \ Field('fldOeeMachineStopCodeTimer', 'integer', label='Stopcode timer (sec)'), \ Field('fldOeeMachineSpeed', 'integer', label='Default speed (per min)'), \ Field('fldOeeMachineDevider', 'decimal(2,2)', label='Pulse factor', default=1), \ Field('fldOeeMachineOperatorFactor', 'decimal(2,2)', label='Operator factor', default=1), \ Field('fldOeeMachineTarget1OEE', 'integer', label='OEE target 1'), \ Field('fldOeeMachineTarget2OEE', 'integer', label='OEE target 2'), \ Field('fldOeeMachineWorkstationDescription', 'string', label='Workstation description'), \ Field('fldOeeMachineHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Machine.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Machine.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Machine.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_Machine.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.tblOee_Machine.fldOeeModuleID.requires = IS_IN_DB(dboee(), dboee.tblOee_Module.fldOeeModuleNr, '%(fldOeeModuleDescription)s') dboee.tblOee_Machine.fldOeeMachineShortBreakID.requires = IS_IN_DB(dboee(), dboee.tblOee_MachineShortbreak.fldOeeMachineShortBreakNr, '%(fldOeeMachineShortBreakDescription)s') dboee.tblOee_Machine.fldOeeMachineUndefinedProdID.requires = IS_IN_DB(dboee(), dboee.tblOee_MachineUndefinedProduction.fldOeeMachineUndefinedProductionNr, '%(fldOeeMachineUndefinedProductionDescription)s') dboee.tblOee_Machine.fldOeeMachineUndefinedStandStillID.requires = IS_IN_DB(dboee(), dboee.tblOee_MachineUndefinedStandstill.fldOeeMachineUndefinedStandstillNr, '%(fldOeeMachineUndefinedStandstillDescription)s') dboee.tblOee_Machine.fldOeeMachineUnscheduledID.requires = IS_IN_DB(dboee(), dboee.tblOee_MachineUnscheduled.fldOeeMachineUnscheduledNr, '%(fldOeeMachineUnscheduledDescription)s') dboee.tblOee_Machine.fldOeeMachineIOFailureID.requires = IS_IN_DB(dboee(), dboee.tblOee_MachineIOFailure.fldOeeMachineIOFailureNr, '%(fldOeeMachineIOFailureDescription)s') dboee.tblOee_Machine.fldOeeMachineUnitID.requires = IS_IN_DB(dboee(), dboee.tblOee_MachineUnit.fldOeeMachineUnitNr, '%(fldOeeMachineUnitDescription)s') dboee.define_table('tblOee_MachineActivity', \ Field('fldOeeMachineActivityTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeMachineID', 'integer', label='Machine'), \ Field('fldOeeMachineActivityID', 'integer', label='Activity'), \ Field('fldOeeMachineActivitySortOrder', 'integer', label='Sort order'), \ Field('fldOeeMachineActivityHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_MachineActivity.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_MachineActivity.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_MachineActivity.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_MachineActivity.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.tblOee_MachineActivity.fldOeeMachineActivityID.requires = IS_IN_DB(dboee(), dboee.tblOee_Activity.fldOeeActivityNr, '%(fldOeeActivityDescription)s') dboee.tblOee_MachineActivity.fldOeeMachineID.requires = IS_IN_DB(dboee(), dboee.tblOee_Machine.fldOeeMachineNr, '%(fldOeeMachineDescription)s') dboee.define_table('tblOee_DailySchedule', \ Field('fldOeeDailyScheduleTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeDailyScheduleNr', 'integer', label='Daily schedule nr', readable=True, writable=False), \ Field('fldOeeTeamID', 'integer', label='Team'), \ Field('fldOeeShiftTimeID', 'integer', label='Shifttime'), \ Field('fldOeeDailyScheduleDescription', 'string', label='Daily schedule description'), \ Field('fldOeeDailyScheduleInformation', 'string', label='Daily schedule information'), \ Field('fldOeeDailyScheduleStartDate', 'datetime', label='Starttime'), \ Field('fldOeeDailyScheduleEndDate', 'datetime', label='Endtime'), \ Field('fldOeeDailyScheduleHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_DailySchedule.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.define_table('tblOee_Article', \ Field('fldOeeArticleTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeArticleNr', 'string', label='Article nr'), \ Field('fldOeeArticleDescription', 'string', label='Article description'), \ Field('fldOeeArticleInformation', 'string', label='Article information'), \ Field('fldOeeArticleNormSpeed', 'integer', label='Norm speed'), \ Field('fldOeeArticleHistory', 'boolean', label='History', default = False), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Article.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Article.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Article.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_Article.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_Order', \ Field('fldOeeOrderTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeArticleID', 'string', label='Article'), \ Field('fldOeeOrderNr', 'string', label='Order nr'), \ Field('fldOeeOrderDescription', 'string', label='Order description'), \ Field('fldOeeOrderInformation', 'string', label='Order information'), \ Field('fldOeeOrderHistory', 'boolean', label='History', default = False), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Order.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Order.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Order.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_Order.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.tblOee_Order.fldOeeArticleID.requires = IS_IN_DB(dboee(), dboee.tblOee_Article.fldOeeArticleNr) dboee.define_table('tblOee_ShiftTime', \ Field('fldOeeShiftTimeTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeShiftTimeNr', 'integer', label='Shifttime nr', readable=True, writable=False), \ Field('fldOeeShiftTimeDescription', 'string', label='Shifttime description'), \ Field('fldOeeShiftTimeInformation', 'string', label='Shifttime information'), \ Field('fldOeeShiftTimeStart', 'datetime', label='Starttime'), \ Field('fldOeeShiftTimeEnd', 'datetime', label='Endtime'), \ Field('fldOeeShiftTimeHistory', 'boolean', label='History'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_ShiftTime.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_ShiftTime.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_ShiftTime.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_ShiftTime.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_Team', \ Field('fldOeeTeamTableKeyID', 'id', readable=False), \ Field('fldOeeCountryID', 'integer', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department'), \ Field('fldOeeTeamNr', 'integer', label='Team nr', readable=True, writable=False), \ Field('fldOeeTeamDescription', 'string', label='Team description'), \ Field('fldOeeTeamInformation', 'string', label='Team information'), \ Field('fldOeeTeamColorNr', 'integer', label='Team Color'), \ Field('fldOeeDateModified', 'datetime', label='Date modified', default = request.now), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.tblOee_Team.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') dboee.tblOee_Team.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') dboee.tblOee_Team.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') dboee.tblOee_Team.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') dboee.define_table('tblOee_Reg', \ Field('fldOeeRegTableKeyID', 'id', readable=False), \ Field('fldOeeRegNr', 'integer', label='Reg nr'), \ Field('fldOeeMachineCode', 'integer', label='Machine code'), \ Field('fldOeeMachineID', 'integer', label='Machine ID'), \ Field('fldOeeMachineDescription', 'string', label='Machine'), \ Field('fldOeeMachineStatusID', 'integer', label='Machine status ID'), \ Field('fldOeeMachineStatusDescription', 'string', label='Machine status description'), \ Field('fldOeeCountryID', 'integer', label='Country ID'), \ Field('fldOeeCountryDescription', 'string', label='Country'), \ Field('fldOeePlantID', 'integer', label='Plant ID'), \ Field('fldOeePlantDescription', 'string', label='Plant'), \ Field('fldOeeSubPlantID', 'integer', label='Sub-Plant ID'), \ Field('fldOeeSubPlantDescription', 'string', label='Sub-Plant'), \ Field('fldOeeDepartmentID', 'integer', label='Department ID'), \ Field('fldOeeDepartmentDescription', 'string', label='Department'), \ Field('fldOeeStartDateTime', 'datetime', label='Start date'), \ Field('fldOeeEndDateTime', 'datetime', label='End date'), \ Field('fldOeeActivityDuration', 'integer', label='Duration in sec.'), \ Field('fldOeeTeamID', 'integer', label='Team ID'), \ Field('fldOeeTeamDescription', 'string', label='Team'), \ Field('fldOeeTeamColorID', 'integer', label='Team color ID'), \ Field('fldOeeTeamColorDescription', 'string', label='Team color'), \ Field('fldOeeShiftTimeID', 'integer', label='Shift ID'), \ Field('fldOeeShiftTimeDescription', 'string', label='Shift'), \ Field('fldOeeShiftStartDateTime', 'datetime', label='Shift starttime'), \ Field('fldOeeShiftEndDateTime', 'datetime', label='Shift endtime'), \ Field('fldOeeShiftDuration', 'integer', label='Shift duration'), \ Field('fldOeeAverageSpeed', 'integer', label='Average speed'), \ Field('fldOeeNormSpeed', 'integer', label='Norm speed'), \ Field('fldOeeCounter', 'integer', label='Counter'), \ Field('fldOeeCounterUnitID', 'integer', label='Counter-unit ID'), \ Field('fldOeeCounterUnitDescription', 'string', label='Counter-unit'), \ Field('fldOeeActivityGroupID', 'integer', label='Activitygroup ID'), \ Field('fldOeeActivityGroupDescription', 'string', label='Activitygroup'), \ Field('fldOeeActivityID', 'integer', label='Activity ID'), \ Field('fldOeeActivityDescription', 'string', label='Activity'), \ Field('fldOeeArticleNr', 'string', label='Article nr'), \ Field('fldOeeArticleDescription', 'string', label='Article description'), \ Field('fldOeeOrderNr', 'string', label='Order nr'), \ Field('fldOeeOrderDescription', 'string', label='Order description'), \ Field('fldOeeUserLogInformation', 'string', label='Activity log'), \ Field('fldOeeUserShiftLogInformation', 'string', label='Shift log'), \ Field('fldOeeCurrentPerformance', 'integer', label='Performance'), \ Field('fldOeeCurrentAvailability', 'integer', label='Availability'), \ Field('fldOeeCurrentQuality', 'integer', label='Quality'), \ Field('fldOeeCurrentOee', 'integer', label='OEE'), \ Field('fldOeeActivityGroupCalcForOee', 'integer', label='Calculate for OEE'), \ Field('fldOeeDateModified', 'datetime', label='Date modified'), \ Field('fldOeeSyncDate', 'datetime', label='Sync date'), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.define_table('tblOee_Progress', \ Field('fldOeeProgressTableKeyID', 'id'), \ Field('fldOeeRegID', 'integer'), \ Field('fldOeeStartDateTime', 'datetime'), \ Field('fldOeeActivityDuration', 'integer'), \ Field('fldOeeCounter', 'integer'), \ Field('fldOeeNormSpeed', 'integer'), \ Field('fldOeeCountryID', 'integer'), \ Field('fldOeePlantID', 'integer'), \ Field('fldOeeSubPlantID', 'integer'), \ Field('fldOeeDepartmentID', 'integer'), \ Field('fldOeeCurrentOee', 'integer'), \ Field('fldOeeCurrentAvailability', 'integer'), \ Field('fldOeeCurrentPerformance', 'integer'), \ Field('fldOeeCurrentQuality', 'integer'), \ Field('fldOeeRegHistory', 'boolean'), \ Field('fldOeeDateModified', 'datetime'), \ Field('fldOeeMachineID', 'integer'), \ Field('fldOeeSyncDate', 'datetime'), \ Field('fldOeeSync', 'boolean', label='Sync', default = True)) dboee.define_table('tblOee_UserRight', \ Field('fldOeeUserRightTableKeyID', 'id'), \ Field('fldOeeUserRightNr', 'integer'), \ Field('fldOeeUserRightDescription', 'string'), \ Field('fldDateModified', 'datetime'), \ Field('fldOeeUserRightInformation', 'string'), \ Field('fldOeeUserRightHistory', 'boolean')) ## configure auth policy auth = Auth(dboee) auth.settings.table_user_name = 'tblOee_User' auth.settings.extra_fields['tblOee_User']= [ Field('fldOeeCountryID', 'integer', label='CountryID'), \ Field('fldOeePlantID', 'integer', label='PlantID'), \ Field('fldOeeSubPlantID', 'integer', label='SubPlantID'), \ Field('fldOeeDepartmentID', 'integer', label='DepartmentID'), \ Field('fldOeeUserRightID', 'integer', label='UserRightID'), \ Field('fldOeeUserDescription', 'string', label='User description'), \ Field('fldOeeUserLogin', 'string', label='UserLogin'), \ Field('fldOeeUserDomain', 'string', label='Domain'), \ Field('fldOeeDateModified', 'datetime'), \ Field('fldOeeUserHistory', 'boolean')] auth.define_tables(username=False, signature=False) #auth.settings.actions_disabled.append('register') auth.settings.registration_requires_verification = False auth.settings.registration_requires_approval = False auth.settings.reset_password_requires_verification = True auth.settings.allow_basic_login = True custom_auth_table = dboee[auth.settings.table_user_name] custom_auth_table.fldOeeCountryID.requires = IS_IN_DB(dboee(), dboee.tblOee_Country.fldOeeCountryNr, '%(fldOeeCountryDescription)s') custom_auth_table.fldOeePlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_Plant.fldOeePlantNr, '%(fldOeePlantDescription)s') custom_auth_table.fldOeeSubPlantID.requires = IS_IN_DB(dboee(), dboee.tblOee_SubPlant.fldOeeSubPlantNr, '%(fldOeeSubPlantDescription)s') custom_auth_table.fldOeeDepartmentID.requires = IS_IN_DB(dboee(), dboee.tblOee_Department.fldOeeDepartmentNr, '%(fldOeeDepartmentDescription)s') custom_auth_table.fldOeeUserRightID.requires = IS_IN_DB(dboee(), dboee.tblOee_UserRight.fldOeeUserRightNr, '%(fldOeeUserRightDescription)s')
from unet_stylegan2.unet_stylegan2 import Trainer, StyleGAN2, NanException
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import absolute_import import sys, os from . import common from . import engine from proton import * from .common import pump, Skipped from proton._compat import str2bin def _sslCertpath(file): """ Return the full path to the certificate,keyfile, etc. """ if os.name=="nt": if file.find("private-key")!=-1: # The private key is not in a separate store return None # Substitute pkcs#12 equivalent for the CA/key store if file.endswith(".pem"): file = file[:-4] + ".p12" return os.path.join(os.path.dirname(__file__), "ssl_db/%s" % file) def _testSaslMech(self, mech, clientUser='user@proton', authUser='user@proton', encrypted=False, authenticated=True): self.s1.allowed_mechs(mech) self.c1.open() self.c2.open() pump(self.t1, self.t2, 1024) if encrypted is not None: assert self.t2.encrypted == encrypted, encrypted assert self.t1.encrypted == encrypted, encrypted assert self.t2.authenticated == authenticated, authenticated assert self.t1.authenticated == authenticated, authenticated if authenticated: # Server assert self.t2.user == authUser assert self.s2.user == authUser assert self.s2.mech == mech.strip() assert self.s2.outcome == SASL.OK, self.s2.outcome assert self.c2.state & Endpoint.LOCAL_ACTIVE and self.c2.state & Endpoint.REMOTE_ACTIVE,\ "local_active=%s, remote_active=%s" % (self.c1.state & Endpoint.LOCAL_ACTIVE, self.c1.state & Endpoint.REMOTE_ACTIVE) # Client assert self.t1.user == clientUser assert self.s1.user == clientUser assert self.s1.mech == mech.strip() assert self.s1.outcome == SASL.OK, self.s1.outcome assert self.c1.state & Endpoint.LOCAL_ACTIVE and self.c1.state & Endpoint.REMOTE_ACTIVE,\ "local_active=%s, remote_active=%s" % (self.c1.state & Endpoint.LOCAL_ACTIVE, self.c1.state & Endpoint.REMOTE_ACTIVE) else: # Server assert self.t2.user == None assert self.s2.user == None assert self.s2.outcome != SASL.OK, self.s2.outcome # Client assert self.t1.user == clientUser assert self.s1.user == clientUser assert self.s1.outcome != SASL.OK, self.s1.outcome class Test(common.Test): pass def consumeAllOuput(t): stops = 0 while stops<1: out = t.peek(1024) l = len(out) if out else 0 t.pop(l) if l <= 0: stops += 1 class SaslTest(Test): def setUp(self): self.t1 = Transport() self.s1 = SASL(self.t1) self.t2 = Transport(Transport.SERVER) self.t2.max_frame_size = 65536 self.s2 = SASL(self.t2) def pump(self): pump(self.t1, self.t2, 1024) def testPipelinedClient(self): # TODO: When PROTON-1136 is fixed then remove this test if "java" in sys.platform: raise Skipped("Proton-J does not support pipelined client input") # Server self.s2.allowed_mechs('ANONYMOUS') c2 = Connection() self.t2.bind(c2) assert self.s2.outcome is None # Push client bytes into server self.t2.push(str2bin( # SASL 'AMQP\x03\x01\x00\x00' # @sasl-init(65) [mechanism=:ANONYMOUS, initial-response=b"anonymous@fuschia"] '\x00\x00\x002\x02\x01\x00\x00\x00SA\xd0\x00\x00\x00"\x00\x00\x00\x02\xa3\x09ANONYMOUS\xa0\x11anonymous@fuschia' # AMQP 'AMQP\x00\x01\x00\x00' # @open(16) [container-id="", channel-max=1234] '\x00\x00\x00!\x02\x00\x00\x00\x00S\x10\xd0\x00\x00\x00\x11\x00\x00\x00\x0a\xa1\x00@@`\x04\xd2@@@@@@' )) consumeAllOuput(self.t2) assert not self.t2.condition assert self.s2.outcome == SASL.OK assert c2.state & Endpoint.REMOTE_ACTIVE def testPipelinedServer(self): # Client self.s1.allowed_mechs('ANONYMOUS') c1 = Connection() self.t1.bind(c1) assert self.s1.outcome is None # Push server bytes into client # Commented out lines in this test are where the client input processing doesn't # run after output processing even though there is input waiting self.t1.push(str2bin( # SASL 'AMQP\x03\x01\x00\x00' # @sasl-mechanisms(64) [sasl-server-mechanisms=@PN_SYMBOL[:ANONYMOUS]] '\x00\x00\x00\x1c\x02\x01\x00\x00\x00S@\xc0\x0f\x01\xe0\x0c\x01\xa3\tANONYMOUS' # @sasl-outcome(68) [code=0] '\x00\x00\x00\x10\x02\x01\x00\x00\x00SD\xc0\x03\x01P\x00' # AMQP 'AMQP\x00\x01\x00\x00' # @open(16) [container-id="", channel-max=1234] '\x00\x00\x00!\x02\x00\x00\x00\x00S\x10\xd0\x00\x00\x00\x11\x00\x00\x00\x0a\xa1\x00@@`\x04\xd2@@@@@@' )) consumeAllOuput(self.t1) assert self.s1.outcome == SASL.OK assert c1.state & Endpoint.REMOTE_ACTIVE def testPipelined2(self): if "java" in sys.platform: raise Skipped("Proton-J does not support client pipelining") out1 = self.t1.peek(1024) self.t1.pop(len(out1)) self.t2.push(out1) self.s2.allowed_mechs('ANONYMOUS') c2 = Connection() c2.open() self.t2.bind(c2) out2 = self.t2.peek(1024) self.t2.pop(len(out2)) self.t1.push(out2) out1 = self.t1.peek(1024) assert len(out1) > 0 def testFracturedSASL(self): """ PROTON-235 """ assert self.s1.outcome is None # self.t1.trace(Transport.TRACE_FRM) out = self.t1.peek(1024) self.t1.pop(len(out)) self.t1.push(str2bin("AMQP\x03\x01\x00\x00")) out = self.t1.peek(1024) self.t1.pop(len(out)) self.t1.push(str2bin("\x00\x00\x00")) out = self.t1.peek(1024) self.t1.pop(len(out)) self.t1.push(str2bin("6\x02\x01\x00\x00\x00S@\xc04\x01\xe01\x04\xa3\x05PLAIN\x0aDIGEST-MD5\x09ANONYMOUS\x08CRAM-MD5")) out = self.t1.peek(1024) self.t1.pop(len(out)) self.t1.push(str2bin("\x00\x00\x00\x10\x02\x01\x00\x00\x00SD\xc0\x03\x01P\x00")) out = self.t1.peek(1024) self.t1.pop(len(out)) while out: out = self.t1.peek(1024) self.t1.pop(len(out)) assert self.s1.outcome == SASL.OK, self.s1.outcome def test_singleton(self): """Verify that only a single instance of SASL can exist per Transport""" transport = Transport() attr = object() sasl1 = SASL(transport) sasl1.my_attribute = attr sasl2 = transport.sasl() sasl3 = SASL(transport) assert sasl1 == sasl2 assert sasl1 == sasl3 assert sasl1.my_attribute == attr assert sasl2.my_attribute == attr assert sasl3.my_attribute == attr transport = Transport() sasl1 = transport.sasl() sasl1.my_attribute = attr sasl2 = SASL(transport) assert sasl1 == sasl2 assert sasl1.my_attribute == attr assert sasl2.my_attribute == attr
import numpy as np from sklearn.metrics import ( precision_score, recall_score, accuracy_score, f1_score, roc_auc_score, ) from typing import Dict import tensorflow.keras.metrics as metrics from typing import List def get_metrics(y_pred: np.ndarray, y_actual: np.ndarray) -> Dict[str, float]: metrics = dict() metrics["precision"] = precision_score(y_actual, y_pred) metrics["recall"] = recall_score(y_actual, y_pred) metrics["accuracy"] = accuracy_score(y_actual, y_pred) metrics["f1"] = f1_score(y_actual, y_pred) metrics["auc_roc"] = roc_auc_score(y_actual, y_pred) return metrics def print_metrics(metrics: Dict[str, float]) -> None: print( f"Metrics:\n" f"\tPrecision: {metrics['precision']}\n" f"\tRecall: {metrics['recall']}\n" f"\tAccuracy: {metrics['accuracy']}\n" f"\tF1: {metrics['f1']}\n" f"\tAuc roc: {metrics['auc_roc']}\n" ) def make_keras_model_metrics() -> List[metrics.Metric]: return [ metrics.TruePositives(name="tp"), metrics.FalsePositives(name="fp"), metrics.TrueNegatives(name="tn"), metrics.FalseNegatives(name="fn"), metrics.BinaryAccuracy(name="accuracy"), metrics.Precision(name="precision"), metrics.Recall(name="recall"), metrics.AUC(name="aucpr", curve="PR"), metrics.AUC(name="aucroc", curve="ROC"), ]
from collections import defaultdict from datetime import datetime, timedelta import operator from pathlib import Path from pprint import pprint import sys from types import MappingProxyType from zipfile import ZipFile, ZIP_LZMA import django from django.conf import settings from django.contrib.auth import get_user_model from django.db import transaction import pytz import time from core import __version__ from mission_report.statuses import LifeStatus, SortieStatus from mission_report.report import MissionReport from stats.logger import logger from stats.models import (Object, Mission, Sortie, Profile, Player, PlayerAircraft, PlayerMission, KillboardPvP, Tour, LogEntry, Score, Squad) from stats.online import update_online, cleanup_online from stats.rewards import reward_sortie, reward_tour, reward_mission from users.utils import cleanup_registration User = get_user_model() MISSION_REPORT_BACKUP_PATH = settings.MISSION_REPORT_BACKUP_PATH MISSION_REPORT_BACKUP_DAYS = settings.MISSION_REPORT_BACKUP_DAYS MISSION_REPORT_DELETE = settings.MISSION_REPORT_DELETE MISSION_REPORT_PATH = settings.MISSION_REPORT_PATH NEW_TOUR_BY_MONTH = settings.NEW_TOUR_BY_MONTH TIME_ZONE = pytz.timezone(settings.MISSION_REPORT_TZ) WIN_BY_SCORE = settings.WIN_BY_SCORE WIN_SCORE_MIN = settings.WIN_SCORE_MIN WIN_SCORE_RATIO = settings.WIN_SCORE_RATIO SORTIE_MIN_TIME = settings.SORTIE_MIN_TIME def main(): logger.info('IL2 stats {stats}, Python {python}, Django {django}'.format( stats=__version__, python=sys.version[0:5], django=django.get_version())) # TODO переделать на проверку по времени создания файлов processed_reports = [] waiting_new_report = False online_timestamp = 0 while True: new_reports = [] for m_report_file in MISSION_REPORT_PATH.glob('missionReport*.txt'): if m_report_file.name.endswith('[0].txt') and m_report_file.name not in processed_reports: new_reports.append(m_report_file) if len(new_reports) > 1: waiting_new_report = False # обрабатываем все логи кроме последней миссии for m_report_file in new_reports[:-1]: stats_whore(m_report_file=m_report_file) cleanup(m_report_file=m_report_file) processed_reports.append(m_report_file.name) continue elif len(new_reports) == 1: m_report_file = new_reports[0] m_report_files = collect_mission_reports(m_report_file=m_report_file) online_timestamp = update_online(m_report_files=m_report_files, online_timestamp=online_timestamp) # если последний файл был создан более 2х минут назад - обрабатываем его if time.time() - m_report_files[-1].stat().st_mtime > 120: waiting_new_report = False stats_whore(m_report_file=m_report_file) cleanup(m_report_file=m_report_file) processed_reports.append(m_report_file.name) continue if not waiting_new_report: logger.info('waiting new report...') waiting_new_report = True # удаляем юзеров которые не активировали свои регистрации в течении определенного времени cleanup_registration() # в идеале новые логи появляются как минимум раз в 30 секунд time.sleep(30) def backup_log(name, lines, date): path_dir = MISSION_REPORT_BACKUP_PATH.joinpath(str(date.year), str(date.month), str(date.day)) if not path_dir.exists(): path_dir.mkdir(parents=True) file_path = path_dir.joinpath(name) with file_path.open('w') as f: f.writelines(lines) with ZipFile('%s.zip' % str(file_path), 'w', compression=ZIP_LZMA) as f: f.write(str(file_path), arcname=name) file_path.unlink() def collect_mission_reports(m_report_file): return sorted(MISSION_REPORT_PATH.glob('%s*.txt' % m_report_file.name[:34]), key=lambda x: x.stat().st_mtime) def cleanup(m_report_file=None): cleanup_online() if m_report_file and MISSION_REPORT_DELETE: m_report_files = collect_mission_reports(m_report_file=m_report_file) # удаляем файлы репорты данной миссии for f in m_report_files: f.unlink() for f in MISSION_REPORT_BACKUP_PATH.glob('**/*.zip'): date_creation = datetime.fromtimestamp(f.stat().st_ctime) date_cleanup = datetime.now() - timedelta(days=MISSION_REPORT_BACKUP_DAYS) if date_creation < date_cleanup: f.unlink() def get_dirs(directory): dirs = [] for p in directory.iterdir(): if p.is_dir(): dirs.append(p) dirs.extend(get_dirs(p)) return dirs for d in get_dirs(directory=MISSION_REPORT_BACKUP_PATH): try: d.rmdir() except OSError: pass @transaction.atomic def stats_whore(m_report_file): """ :type m_report_file: Path """ mission_timestamp = int(time.mktime(time.strptime(m_report_file.name[14:-8], '%Y-%m-%d_%H-%M-%S'))) if Mission.objects.filter(timestamp=mission_timestamp).exists(): logger.info('{mission} - exists in the DB'.format(mission=m_report_file.stem)) return logger.info('{mission} - processing new report'.format(mission=m_report_file.stem)) m_report_files = collect_mission_reports(m_report_file=m_report_file) real_date = TIME_ZONE.localize(datetime.fromtimestamp(mission_timestamp)) real_date = real_date.astimezone(pytz.UTC) objects = MappingProxyType({obj['log_name']: obj for obj in Object.objects.values()}) # classes = MappingProxyType({obj['cls']: obj['cls_base'] for obj in objects.values()}) score_dict = MappingProxyType({s.key: s.get_value() for s in Score.objects.all()}) m_report = MissionReport(objects=objects) m_report.processing(files=m_report_files) backup_log(name=m_report_file.name, lines=m_report.lines, date=real_date) if not m_report.is_correctly_completed: logger.info('{mission} - mission has not been completed correctly'.format(mission=m_report_file.stem)) tour = get_tour(date=real_date) mission = Mission.objects.create( tour_id=tour.id, name=m_report.file_path.replace('\\', '/').split('/')[-1].split('.')[0], path=m_report.file_path, date_start=real_date, date_end=real_date + timedelta(seconds=m_report.tik_last // 50), duration=m_report.tik_last // 50, timestamp=mission_timestamp, preset=m_report.preset_id, settings=m_report.settings, is_correctly_completed=m_report.is_correctly_completed, score_dict=dict(score_dict), ) if m_report.winning_coal_id: mission.winning_coalition = m_report.winning_coal_id mission.win_reason = 'task' mission.save() # собираем/создаем профили игроков и сквадов profiles, players_pilots, players_gunners, players_tankmans, squads = create_profiles(tour=tour, sorties=m_report.sorties) players_aircraft = defaultdict(dict) players_mission = {} players_killboard = {} coalition_score = {1: 0, 2: 0} new_sorties = [] for sortie in m_report.sorties: sortie_aircraft_id = objects[sortie.aircraft_name]['id'] profile = profiles[sortie.account_id] if sortie.cls_base == 'aircraft': player = players_pilots[sortie.account_id] elif sortie.cls == 'aircraft_turret': player = players_gunners[sortie.account_id] elif sortie.cls in ('tank_medium', 'tank_turret'): player = players_tankmans[sortie.account_id] else: continue squad = squads[profile.squad_id] if profile.squad else None player.squad = squad new_sortie = create_new_sortie(mission=mission, sortie=sortie, profile=profile, player=player, sortie_aircraft_id=sortie_aircraft_id) update_fairplay(new_sortie=new_sortie) update_bonus_score(new_sortie=new_sortie) # не добавляем очки в сумму если было диско if not new_sortie.is_disco: coalition_score[new_sortie.coalition] += new_sortie.score new_sorties.append(new_sortie) # добавляем ссылку на запись в базе к объекту вылета, чтобы использовать в добавлении событий вылета sortie.sortie_db = new_sortie if not mission.winning_coalition and WIN_BY_SCORE: _coalition = sorted(coalition_score.items(), key=operator.itemgetter(1), reverse=True) max_coal, max_score = _coalition[0] min_coal, min_score = _coalition[1] # минимальное кол-во очков = 1 min_score = min_score or 1 if max_score >= WIN_SCORE_MIN and max_score / min_score >= WIN_SCORE_RATIO: mission.winning_coalition = max_coal mission.win_reason = 'score' mission.save() for new_sortie in new_sorties: player_mission = players_mission.setdefault( new_sortie.player.id, PlayerMission.objects.get_or_create(profile_id=new_sortie.profile.id, player_id=new_sortie.player.id, mission_id=mission.id)[0] ) player_aircraft = players_aircraft[new_sortie.player.id].setdefault( new_sortie.aircraft.id, PlayerAircraft.objects.get_or_create(profile_id=new_sortie.profile.id, player_id=new_sortie.player.id, aircraft_id=new_sortie.aircraft.id)[0] ) # если случилась победа по очкам - требуется обновить бонусы if mission.win_reason == 'score': update_bonus_score(new_sortie=new_sortie) update_sortie(new_sortie=new_sortie, player_mission=player_mission, player_aircraft=player_aircraft) reward_sortie(sortie=new_sortie) new_sortie.save() # =============================================================================== mission.players_total = len(profiles) mission.pilots_total = len(players_pilots) mission.gunners_total = len(players_gunners) mission.save() for p in profiles.values(): p.save() for p in players_pilots.values(): p.save() reward_tour(player=p) for p in players_gunners.values(): p.save() for p in players_tankmans.values(): p.save() for aircrafts in players_aircraft.values(): for a in aircrafts.values(): a.save() for p in players_mission.values(): p.save() reward_mission(player_mission=p) for p in players_killboard.values(): p.save() for s in squads.values(): s.save() tour.save() for event in m_report.log_entries: params = { 'mission_id': mission.id, 'date': real_date + timedelta(seconds=event['tik'] // 50), 'tik': event['tik'], 'extra_data': { 'pos': event.get('pos'), }, } if event['type'] == 'respawn': params['type'] = 'respawn' params['act_object_id'] = event['sortie'].sortie_db.aircraft.id params['act_sortie_id'] = event['sortie'].sortie_db.id elif event['type'] == 'end': params['type'] = 'end' params['act_object_id'] = event['sortie'].sortie_db.aircraft.id params['act_sortie_id'] = event['sortie'].sortie_db.id elif event['type'] == 'takeoff': params['type'] = 'takeoff' params['act_object_id'] = event['aircraft'].sortie.sortie_db.aircraft.id params['act_sortie_id'] = event['aircraft'].sortie.sortie_db.id elif event['type'] == 'landed': params['act_object_id'] = event['aircraft'].sortie.sortie_db.aircraft.id params['act_sortie_id'] = event['aircraft'].sortie.sortie_db.id if event['is_rtb'] and not event['is_killed']: params['type'] = 'landed' else: if event['status'] == LifeStatus.destroyed: params['type'] = 'crashed' else: params['type'] = 'ditched' elif event['type'] == 'bailout': params['type'] = 'bailout' params['act_object_id'] = event['bot'].sortie.sortie_db.aircraft.id params['act_sortie_id'] = event['bot'].sortie.sortie_db.id elif event['type'] == 'damage': params['extra_data']['damage'] = event['damage'] params['extra_data']['is_friendly_fire'] = event['is_friendly_fire'] if event['target'].cls_base == 'crew': params['type'] = 'wounded' else: params['type'] = 'damaged' if event['attacker']: if event['attacker'].sortie: params['act_object_id'] = event['attacker'].sortie.sortie_db.aircraft.id params['act_sortie_id'] = event['attacker'].sortie.sortie_db.id else: params['act_object_id'] = objects[event['attacker'].log_name]['id'] if event['target'].sortie: params['cact_object_id'] = event['target'].sortie.sortie_db.aircraft.id params['cact_sortie_id'] = event['target'].sortie.sortie_db.id else: params['cact_object_id'] = objects[event['target'].log_name]['id'] elif event['type'] == 'kill': params['extra_data']['is_friendly_fire'] = event['is_friendly_fire'] if event['target'].cls_base == 'crew': params['type'] = 'killed' elif event['target'].cls_base == 'aircraft': params['type'] = 'shotdown' else: params['type'] = 'destroyed' if event['attacker']: if event['attacker'].sortie: params['act_object_id'] = event['attacker'].sortie.sortie_db.aircraft.id params['act_sortie_id'] = event['attacker'].sortie.sortie_db.id else: params['act_object_id'] = objects[event['attacker'].log_name]['id'] if event['target'].sortie: params['cact_object_id'] = event['target'].sortie.sortie_db.aircraft.id params['cact_sortie_id'] = event['target'].sortie.sortie_db.id else: params['cact_object_id'] = objects[event['target'].log_name]['id'] LogEntry.objects.create(**params) logger.info('{mission} - processing finished'.format(mission=m_report_file.stem)) def get_tour(date): """ :type date: datetime """ if NEW_TOUR_BY_MONTH: try: tour = Tour.objects.get(date_start__year=date.year, date_start__month=date.month, is_ended=False) except Tour.DoesNotExist: tour = Tour.objects.create(date_start=date) logger.info('started a new tour by month') Tour.objects.exclude(id=tour.id).filter(is_ended=False).update(is_ended=True, date_end=date) else: try: tour = Tour.objects.get(is_ended=False) except Tour.DoesNotExist: tour = Tour.objects.create(title='Tour name') logger.warning('open tour was not found - started a new tour') except Tour.MultipleObjectsReturned: logger.error('multiple not ended tours - should be only one') input() sys.exit() return tour def create_profiles(tour, sorties): profiles = {} players_pilots = {} players_gunners = {} players_tankmans = {} for s in sorties: profile = profiles.setdefault( s.account_id, Profile.objects.get_or_create(uuid=s.account_id, defaults={'nickname': s.nickname})[0]) profile.nickname = s.nickname if s.cls_base == 'aircraft': players_pilots.setdefault( s.account_id, Player.objects.get_or_create(profile_id=profile.id, tour_id=tour.id, type='pilot')[0]) elif s.cls == 'aircraft_turret': players_gunners.setdefault( s.account_id, Player.objects.get_or_create(profile_id=profile.id, tour_id=tour.id, type='gunner')[0]) elif s.cls in ('tank_medium', 'tank_turret'): players_tankmans.setdefault( s.account_id, Player.objects.get_or_create(profile_id=profile.id, tour_id=tour.id, type='tankman')[0]) squads = {} for p in profiles.values(): # если профиль не привязан к юзеру, пробуем найти и привязать if not p.user: try: user = User.objects.get(username=p.nickname, is_active=True) if not hasattr(user, 'profile'): p.connect_with_user(user=user) except User.DoesNotExist: pass if p.squad: squads.setdefault(p.squad_id, Squad.objects.get_or_create(profile_id=p.squad_id, tour_id=tour.id)[0]) return profiles, players_pilots, players_gunners, players_tankmans, squads def create_new_sortie(mission, profile, player, sortie, sortie_aircraft_id): sortie_tik_last = sortie.tik_bailout or sortie.tik_landed or sortie.tik_end or sortie.tik_last sortie_date_start = mission.date_start + timedelta(seconds=sortie.tik_spawn // 50) sortie_date_end = mission.date_start + timedelta(seconds=sortie_tik_last // 50) flight_time = round((sortie_tik_last - (sortie.tik_takeoff or sortie.tik_spawn)) / 50, 0) is_ignored = False # вылет игнорируется если общее время вылета меньше установленного конфигом if SORTIE_MIN_TIME: if (sortie_tik_last // 50) - (sortie.tik_spawn // 50) < SORTIE_MIN_TIME: is_ignored = True killboard_pvp = defaultdict(int) killboard_pve = defaultdict(int) # player_targets = [] ak_total = 0 fak_total = 0 ak_assist = 0 gk_total = 0 fgk_total = 0 score = 0 for targets in sortie.killboard.values(): for target in targets: is_friendly = sortie.coal_id == target.coal_id if not is_friendly: score += mission.score_dict[target.cls] if target.cls_base == 'aircraft': ak_total += 1 elif target.cls_base in ('block', 'vehicle', 'tank'): gk_total += 1 if target.sortie: killboard_pvp[target.cls] += 1 # if sortie.cls_base == 'aircraft' and target.sortie.cls_base == 'aircraft': # opponent = players_pilots[target.sortie.account_id] # player_targets.append(opponent) else: killboard_pve[target.cls] += 1 else: cls_name = 'f_%s' % target.cls if target.cls_base == 'aircraft': fak_total += 1 elif target.cls_base in ('block', 'vehicle', 'tank'): fgk_total += 1 if target.sortie: killboard_pvp[cls_name] += 1 else: killboard_pve[cls_name] += 1 for targets in sortie.assistboard.values(): for target in targets: if target.cls_base == 'aircraft': # френдов не считаем if sortie.coal_id == target.coal_id: continue ak_assist += 1 score += mission.score_dict['ak_assist'] new_sortie = Sortie( profile=profile, player=player, tour=mission.tour, mission=mission, nickname=sortie.nickname, date_start=sortie_date_start, date_end=sortie_date_end, flight_time=flight_time, aircraft_id=sortie_aircraft_id, fuel=sortie.fuel or 0, skin=sortie.skin, payload_id=sortie.payload_id, weapon_mods_id=sortie.weapon_mods_id, ammo={'used_cartridges': sortie.used_cartridges, 'used_bombs': sortie.used_bombs, 'used_rockets': sortie.used_rockets, 'used_shells': sortie.used_shells, 'hit_bullets': sortie.hit_bullets, 'hit_bombs': sortie.hit_bombs, 'hit_rockets': sortie.hit_rockets, 'hit_shells': sortie.hit_shells}, coalition=sortie.coal_id, country=sortie.country_id, is_airstart=sortie.is_airstart, ak_total=ak_total, gk_total=gk_total, fak_total=fak_total, fgk_total=fgk_total, ak_assist=ak_assist, killboard_pvp=killboard_pvp, killboard_pve=killboard_pve, status=sortie.sortie_status.status, aircraft_status=sortie.aircraft_status.status, bot_status=sortie.bot_status.status, is_bailout=sortie.is_bailout, is_captured=sortie.is_captured, is_disco=sortie.is_disco, score=score, score_dict={'basic': score}, ratio=sortie.ratio, damage=round(sortie.aircraft_damage, 2), wound=round(sortie.bot_damage, 2), debug={'aircraft_id': sortie.aircraft_id, 'bot_id': sortie.bot_id}, is_ignored=is_ignored, ) return new_sortie def update_sortie(new_sortie, player_mission, player_aircraft): player = new_sortie.player if not player.date_first_sortie: player.date_first_sortie = new_sortie.date_start player.date_last_combat = new_sortie.date_start player.date_last_sortie = new_sortie.date_start # если вылет был окончен диско - результаты вылета не добавляться к общему профилю if new_sortie.is_disco: player.disco += 1 player_mission.disco += 1 player_aircraft.disco += 1 return # если вылет игнорируется по каким либо причинам elif new_sortie.is_ignored: return # если в вылете было что-то уничтожено - считаем его боевым if new_sortie.score: player.date_last_combat = new_sortie.date_start # TODO проверить как это отработает для вылетов стрелков if not new_sortie.is_not_takeoff: player.sorties_coal[new_sortie.coalition] += 1 player_mission.sorties_coal[new_sortie.coalition] += 1 if player.squad: player.squad.sorties_coal[new_sortie.coalition] += 1 if new_sortie.aircraft.cls_base == 'aircraft': if new_sortie.aircraft.cls in player.sorties_cls: player.sorties_cls[new_sortie.aircraft.cls] += 1 else: player.sorties_cls[new_sortie.aircraft.cls] = 1 if player.squad: if new_sortie.aircraft.cls in player.squad.sorties_cls: player.squad.sorties_cls[new_sortie.aircraft.cls] += 1 else: player.squad.sorties_cls[new_sortie.aircraft.cls] = 1 update_general(player=player, new_sortie=new_sortie) update_general(player=player_mission, new_sortie=new_sortie) update_general(player=player_aircraft, new_sortie=new_sortie) if player.squad: update_general(player=player.squad, new_sortie=new_sortie) update_ammo(sortie=new_sortie, player=player) update_ammo(sortie=new_sortie, player=player_mission) update_ammo(sortie=new_sortie, player=player_aircraft) update_killboard(player=player, killboard_pvp=new_sortie.killboard_pvp, killboard_pve=new_sortie.killboard_pve) update_killboard(player=player_mission, killboard_pvp=new_sortie.killboard_pvp, killboard_pve=new_sortie.killboard_pve) update_killboard(player=player_aircraft, killboard_pvp=new_sortie.killboard_pvp, killboard_pve=new_sortie.killboard_pve) if new_sortie.is_relive: player.streak_current = 0 player.streak_ground_current = 0 player.score_streak_current = 0 player.sorties_streak_current = 0 # elif new_sortie.is_disco: # player.streak_current = 0 else: player.streak_current += new_sortie.ak_total player.streak_max = max(player.streak_max, player.streak_current) player.streak_ground_current += new_sortie.gk_total player.streak_ground_max = max(player.streak_ground_max, player.streak_ground_current) player.score_streak_current += new_sortie.score player.score_streak_max = max(player.score_streak_max, player.score_streak_current) player.sorties_streak_current += 1 player.sorties_streak_max = max(player.sorties_streak_max, player.sorties_streak_current) update_status(new_sortie=new_sortie, player=player) update_status(new_sortie=new_sortie, player=player_mission) update_status(new_sortie=new_sortie, player=player_aircraft) if player.squad: update_status(new_sortie=new_sortie, player=player.squad) # for target in player_targets: # update_killboard_pvp(player=player, opponent=target, players_killboard=players_killboard) # update_elo_rating(winner=player, loser=target) def update_general(player, new_sortie): if not new_sortie.is_not_takeoff: player.sorties_total += 1 player.flight_time += new_sortie.flight_time if new_sortie.is_relive: player.relive += 1 player.ak_total += new_sortie.ak_total player.fak_total += new_sortie.fak_total player.gk_total += new_sortie.gk_total player.fgk_total += new_sortie.fgk_total player.ak_assist += new_sortie.ak_assist player.score += new_sortie.score def update_ammo(sortie, player): # в логах есть баги, по окончание вылета у самолета может быть больше боемкомплекта чем было вначале if sortie.ammo['used_cartridges'] >= sortie.ammo['hit_bullets']: player.ammo['used_cartridges'] += sortie.ammo['used_cartridges'] player.ammo['hit_bullets'] += sortie.ammo['hit_bullets'] if sortie.ammo['used_bombs'] >= sortie.ammo['hit_bombs']: player.ammo['used_bombs'] += sortie.ammo['used_bombs'] player.ammo['hit_bombs'] += sortie.ammo['hit_bombs'] if sortie.ammo['used_rockets'] >= sortie.ammo['hit_rockets']: player.ammo['used_rockets'] += sortie.ammo['used_rockets'] player.ammo['hit_rockets'] += sortie.ammo['hit_rockets'] if sortie.ammo['used_shells'] >= sortie.ammo['hit_shells']: player.ammo['used_shells'] += sortie.ammo['used_shells'] player.ammo['hit_shells'] += sortie.ammo['hit_shells'] def update_status(new_sortie, player): if not new_sortie.is_not_takeoff: player.takeoff += 1 if new_sortie.is_landed: player.landed += 1 elif new_sortie.is_ditched: player.ditched += 1 elif new_sortie.is_crashed: player.crashed += 1 elif new_sortie.is_shotdown: player.shotdown += 1 elif new_sortie.is_in_flight: player.in_flight += 1 if new_sortie.is_dead: player.dead += 1 elif new_sortie.is_wounded: player.wounded += 1 if new_sortie.is_captured and not new_sortie.is_dead: player.captured += 1 if new_sortie.is_bailout: player.bailout += 1 def update_killboard(player, killboard_pvp, killboard_pve): for cls, num in killboard_pvp.items(): player.killboard_pvp.setdefault(cls, 0) player.killboard_pvp[cls] += num for cls, num in killboard_pve.items(): player.killboard_pve.setdefault(cls, 0) player.killboard_pve[cls] += num def update_killboard_pvp(player, opponent, players_killboard): # ключ это tuple из ID'шников двух игроков - отсортированные в порядке возрастания kb_key = tuple(sorted((player.id, opponent.id))) player_killboard = players_killboard.setdefault( kb_key, KillboardPvP.objects.get_or_create(player_1_id=kb_key[0], player_2_id=kb_key[1])[0]) player_killboard.add_won(player=player) def update_elo_rating(winner, loser): if (winner.shotdown + winner.ak_total) <= 30: k_winner = 40 elif winner.elo >= 2400: k_winner = 10 else: k_winner = 20 e_winner = 1 / (1 + 10 ** ((loser.elo - winner.elo) / 400)) diff = round(k_winner * (1 - e_winner), 2) winner.elo += diff loser.elo -= diff def update_fairplay(new_sortie): player = new_sortie.player score_dict = new_sortie.mission.score_dict if new_sortie.is_disco: player.fairplay -= score_dict['fairplay_disco'] if new_sortie.fak_total: player.fairplay -= score_dict['fairplay_fak'] if new_sortie.fgk_total: player.fairplay -= score_dict['fairplay_fgk'] if player.fairplay < 0: player.fairplay = 0 if new_sortie.is_disco or new_sortie.fak_total or new_sortie.fgk_total: player.fairplay_time = 0 elif player.fairplay < 100: player.fairplay_time += new_sortie.flight_time fairplay_hours = player.fairplay_time // 3600 if fairplay_hours > 0: player.fairplay += (score_dict['fairplay_up'] * fairplay_hours) player.fairplay_time -= 3600 * fairplay_hours if player.fairplay > 100: player.fairplay = 100 new_sortie.fairplay = player.fairplay def update_bonus_score(new_sortie): # бонус процент bonus_pct = 0 bonus_dict = {} # бонусы получают только "честные" игроки if new_sortie.fairplay == 100: if new_sortie.is_landed: bonus_pct += 25 bonus_dict['landed'] = 25 if new_sortie.coalition == new_sortie.mission.winning_coalition: bonus_pct += 25 bonus_dict['winning_coalition'] = 25 bonus_dict['total'] = bonus_pct # ставим базовые очки т.к. функция может вызваться несколько раз new_sortie.score = new_sortie.score_dict['basic'] new_sortie.bonus = bonus_dict bonus_score = new_sortie.score * bonus_pct // 100 new_sortie.score_dict['bonus'] = bonus_score new_sortie.score += bonus_score penalty_score = new_sortie.score * (100 - new_sortie.fairplay) // 100 new_sortie.score_dict['penalty'] = penalty_score new_sortie.score -= penalty_score # new_sortie.save()
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np import pandas as pd from tqdm import tqdm import os from io import open import hashlib import argparse from transformers import get_linear_schedule_with_warmup from layers import RNNModel, AWDLSTMEncoder, DropoutLinearDecoder, LSTMEncoder, LinearDecoder from utils import count_parameters, get_loaders, drop_mult from data import Corpus, Dictionary parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, default='../data/wikitext-2', help='location of the data corpus') parser.add_argument('--train', type=str, default='wiki.train.tokens', help='name of the training corpus') parser.add_argument('--valid', type=str, default='wiki.valid.tokens', help='name of the validation corpus') parser.add_argument('--test', type=str, default='wiki.test.tokens', help='name of the testing corpus') parser.add_argument('--output', type=str, default='awd_lstm', help='output name') parser.add_argument('--bs', type=int, default=80, help='batch size') parser.add_argument('--eval_bs', type=int, default=10, help='evaluation batch size') parser.add_argument('--bptt', type=int, default=80, help='bptt length') parser.add_argument('--use_var_bptt', action='store_true', help='use variable length bptt') parser.add_argument('--rebuild_dataset', action='store_true', help='force rebuild the dataset') parser.add_argument('--load_vocab', action='store_true', help='load vocabulary') parser.add_argument('--vocab_file', type=str, default='vocab.pth', help='pretrained vocabulary file') parser.add_argument('--save_vocab', action='store_true', help='load vocabulary') parser.add_argument('--encoder', type=str, default='awd_lstm', choices=['awd_lstm', 'lstm'], help='encoder') parser.add_argument('--decoder', type=str, default='dropoutlinear', choices=['dropoutlinear', 'linear'], help='decoder') parser.add_argument('--emb_dim', type=int, default=400, help='embedding dimensions') parser.add_argument('--hidden_dim', type=int, default=1152, help='hidden dimensions') parser.add_argument('--num_layers', type=int, default=3, help='number of rnn layers') parser.add_argument('--emb_dp', type=float, default=0.1, help='embeddng dropout') parser.add_argument('--hidden_dp', type=float, default=0.3, help='hidden to hidden dropout') parser.add_argument('--input_dp', type=float, default=0.3, help='input dropout') parser.add_argument('--weight_dp', type=float, default=0.5, help='dropconnect dropout') parser.add_argument('--out_dp', type=float, default=0.4, help='output dropout') parser.add_argument('--initrange', type=float, default=0.05, help='initialization range') parser.add_argument('--tie_weights', action='store_true', help='tie embeddings and decoder weights') parser.add_argument('--use_pretrained', action='store_true', help='use pretrained weights') parser.add_argument('--freeze_encoder', action='store_true', help='freezes the encoder') parser.add_argument('--pretrained_file', type=str, default='pretrained_wt103', help='pretrained model file') parser.add_argument('--dm', type=float, default=1.0, help='dropout rate scaling') parser.add_argument('--anneal_factor', type=float, default=4.0, help='learning rate anneal rate') parser.add_argument('--lr', type=float, default=30, help='learning rate') parser.add_argument('--no_lr_scaling', action='store_true', help='no lr scaling with var bptt or no auto anneal otherwise') parser.add_argument('--optimizer', type=str, default='sgd', choices=['sgd', 'adam'], help='Optimzer to use') parser.add_argument('--no_warmup', action='store_true', help='do not use linear warmups when using Adam') parser.add_argument('--warmup_pct', type=float, default=0.1, help='percentage of steps for warmup') parser.add_argument('--disc_rate', type=float, default=1.0, help='Discriminative learning rate scaling') parser.add_argument('--epochs', type=int, default=2, help='epochs to train the network') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--alpha', type=float, default=2.0, help='AR alpha parameter') parser.add_argument('--beta', type=float, default=1.0, help='TAR beta parameter') parser.add_argument('--no_cuda', action='store_true', help='do not use CUDA') parser.add_argument('--save_graphs', action='store_true', help='save the loss curve and final epoch results') parser.add_argument('--gpu', type=int, default=0, help='index of GPU to use') parser.add_argument('--seed', type=int, default=42, help='random seed') args = parser.parse_args() print(args) if args.decoder == 'dropoutlinear': assert args.encoder == 'awd_lstm' # CUDA device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and not args.no_cuda else 'cpu') np.random.seed(args.seed) torch.manual_seed(args.seed); torch.cuda.manual_seed(args.seed); torch.backends.cudnn.deterministic = True print("Using device: {}".format(device)) # Produce or load the dataset path = args.path fn = '{}/corpus.{}.data'.format(path, hashlib.md5(path.encode()).hexdigest()) if os.path.exists(fn) and not args.rebuild_dataset: print('Loading cached dataset...') corpus = torch.load(fn) else: print('Producing dataset...') if args.load_vocab: print('Vocabulary has been loaded from {}'.format(args.vocab_file)) corpus = Corpus(path, args.train, args.valid, args.test, load_vocab=args.load_vocab, vocab_file=args.vocab_file) torch.save(corpus, fn) if args.save_vocab: with open('{}/{}'.format(path, args.vocab_file), 'wb') as f: torch.save([corpus.dictionary.word2idx, corpus.dictionary.idx2word], f) vocab_sz = len(corpus.dictionary) # Produce dataloaders train_loader = get_loaders(corpus.train, args.bs, args.bptt, use_var_bptt=args.use_var_bptt) valid_loader = get_loaders(corpus.valid, args.eval_bs, args.bptt) test_loader = get_loaders(corpus.test, args.eval_bs, args.bptt) # Construct encoder if args.encoder == 'awd_lstm': encoder = AWDLSTMEncoder(vocab_sz=vocab_sz, emb_dim=args.emb_dim, hidden_dim=args.hidden_dim, num_layers=args.num_layers, emb_dp=args.emb_dp, weight_dp=args.weight_dp, input_dp=args.input_dp, hidden_dp=args.hidden_dp, tie_weights=args.tie_weights) elif args.encoder == 'lstm': encoder = LSTMEncoder(vocab_sz=vocab_sz, emb_dim=args.emb_dim, num_layers=args.num_layers, hidden_dim=args.emb_dim if args.tie_weights else args.hidden_dim, dropout=args.weight_dp) # Construct decoder if args.decoder == 'dropoutlinear': decoder = DropoutLinearDecoder(hidden_dim=args.emb_dim if args.tie_weights else args.hidden_dim, vocab_sz=vocab_sz, out_dp=args.out_dp) elif args.decoder == 'linear': decoder = LinearDecoder(hidden_dim=args.emb_dim if args.tie_weights else args.hidden_dim, vocab_sz=vocab_sz) # Produce model model = RNNModel(encoder, decoder, tie_weights=args.tie_weights, initrange=args.initrange) model = drop_mult(model, dm=args.dm) if args.freeze_encoder: model.freeze() model.unfreeze(-1) print(model) # Pretrained if args.use_pretrained: print("Using pretrained model {}".format(args.pretrained_file)) with open('{}/{}'.format(path, args.pretrained_file), 'rb') as f: inc = model.load_state_dict(torch.load(f, map_location=device), strict=False) print(inc) model = model.to(device); # Parameter groups p_groups = [{'name': '0', 'params': []}, {'name': '1', 'params': []}] for n, p in model.named_parameters(): if 'rnn' in n: p_groups[1]['params'].append(p) else: p_groups[0]['params'].append(p) # Optimization setup criterion = nn.CrossEntropyLoss() optimizer, scheduler = None, None if args.optimizer == 'sgd': optimizer = optim.SGD(p_groups, lr=args.lr) elif args.optimizer == 'adam': optimizer = optim.Adam(p_groups, lr=args.lr) steps = len(train_loader) * args.epochs if not args.no_warmup: scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(steps * args.warmup_pct), num_training_steps=steps) print("Optimization settings:") print(optimizer) print("Scheduler: {}".format(scheduler)) print("The model has {:,} trainable parameters".format(count_parameters(model))) # Training setup best_loss = np.inf best_epoch = 0 train_losses = [] valid_losses = [] # Training! print("Beginning training") try: for e in range(1, args.epochs + 1): model.train() model.reset_hidden() train_loss = 0 with tqdm(total=len(train_loader)) as t: for batch in train_loader: x, y = batch # Scale learning rate to sequence length if args.use_var_bptt and not args.no_lr_scaling: seq_len, _ = x.shape optimizer.param_groups[0]['lr'] = args.lr * seq_len / args.bptt # Adjust discriminative learning rates for i in range(len(optimizer.param_groups)): optimizer.param_groups[i]['lr'] /= args.disc_rate ** i x = x.to(device) y = y.to(device) out = model(x, return_states=True) if args.encoder == 'awd_lstm': out, hidden, raw_out, dropped_out = out raw_loss = criterion(out.view(-1, vocab_sz), y) # AR/TAR loss = raw_loss if args.encoder == 'awd_lstm': loss += args.alpha * dropped_out[-1].pow(2).mean() loss += args.beta * (raw_out[-1][1:] - raw_out[-1][:-1]).pow(2).mean() optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() t.set_postfix({'lr{}'.format(i): optimizer.param_groups[i]['lr'] for i in range(len(optimizer.param_groups))}) if scheduler is not None: scheduler.step() # Restore original LR if args.use_var_bptt and not args.no_lr_scaling: optimizer.param_groups[0]['lr'] = args.lr t.update() train_loss += raw_loss.item() train_loss /= len(train_loader) train_losses.append(train_loss) model.eval() model.reset_hidden() valid_loss = 0 for batch in tqdm(valid_loader): with torch.no_grad(): x, y = batch x = x.to(device) y = y.to(device) out = model(x) loss = criterion(out.view(-1, vocab_sz), y) valid_loss += loss.item() valid_loss /= len(valid_loader) valid_losses.append(valid_loss) # Track and anneal LR if valid_loss < best_loss: best_loss = valid_loss best_epoch = e print("Best loss so far. Saving model.") with open('{}/{}.pth'.format(path, args.output), 'wb') as f: torch.save(model.state_dict(), f) else: if not args.use_var_bptt and not args.no_lr_scaling: optimizer.param_groups[0]['lr'] /= args.anneal_factor cur_lr = optimizer.param_groups[0]['lr'] print("Epoch {:3} | Train Loss {:.4f} | Train Ppl {:.4f} | Valid Loss {:.4f} | Valid Ppl {:.4f} | LR {:.4f}".format(e, train_loss, np.exp(train_loss), valid_loss, np.exp(valid_loss), cur_lr)) except KeyboardInterrupt: print("Exiting training early") # Load best saved model print("Loading best model") with open('{}/{}.pth'.format(path, args.output), 'rb') as f: model.load_state_dict(torch.load(f)) # Testing evaluation print("Evaluating model") model.eval() model.reset_hidden() test_loss = 0 for batch in tqdm(test_loader): with torch.no_grad(): x, y = batch x = x.to(device) y = y.to(device) out = model(x) loss = criterion(out.view(-1, vocab_sz), y) test_loss += loss.item() test_loss /= len(test_loader) print("Test Loss {:.4f} | Test Ppl {:.4f}".format(test_loss, np.exp(test_loss))) # Saving graphs if args.save_graphs: print("Saving loss data") pd.DataFrame(data={'train': train_losses, 'valid': valid_losses}).to_csv('{}/{}.csv'.format(path, args.output), index=False) with open('{}/{}.txt'.format(path, args.output), 'w') as f: f.write("Best loss {:.4f} | Best ppl {:.4f} | Epoch {} | Test loss {:.4f} | Test ppl {:.4f}".format(best_loss, np.exp(best_loss), best_epoch, test_loss, np.exp(test_loss)))
import os import sys import shutil import platform print('!!!!!!!!!! WARNING !!!!!!!!!!') print('You should use GenerateADISymlinks instead.') print('To force continue type \'yes\':') if(input() == 'yes'): print('Continuing') else: print('Exiting') sys.exit() env = platform.system() print('OS: ' + env) def create_path(path): path_words = path.split() new_path = os.path.join(*path_words) return new_path def upper_file(filename): split = str.rpartition(filename, '.') uppered = str.upper(split[0]) + split[1] + split[2] #print(' Renaming ' + filename + ' to ' + uppered) return uppered DRIVER_GITIGNORE = "../LTSketchbook/libraries/.gitignore" VALID_ADI_DRIVERS = "./ADIDrivers.txt" ADI_DRIVER_LOCATIONS = [ '../ADIDrivers/no-os/device_drivers', '../ADIDrivers/no-os/drivers' ] LIN_DRIVER_LOCATIONS = '../LTSketchbook/libraries' # Convert paths to OS-specific paths lin_driver_path = create_path(LIN_DRIVER_LOCATIONS) adi_driver_paths = [] for s in ADI_DRIVER_LOCATIONS: adi_driver_paths.append(create_path(s)) # Get list of drivers we want to copy valid_drivers = [] with open(VALID_ADI_DRIVERS) as f: valid_drivers = f.readlines() valid_drivers = [x.strip() for x in valid_drivers] # Create gitignore with open(DRIVER_GITIGNORE, 'w+') as f: print('\n**********************************') print('Creating gitignore at ' + DRIVER_GITIGNORE) f.write('#################################################\n') f.write('# THIS IS GENERATED BY PYTHON SCRIPT, DO NOT EDIT\n') for line in valid_drivers: f.write(line + "/\n") # Iterate through driver folders for adi_path in adi_driver_paths: print('\n**********************************') print('Searching through ' + adi_path) for searchdir, partdirs, filenames in os.walk(adi_path): # Iterate through parts folders in folder for part in partdirs: print(' Found part ' + part) # Check if we want to copy this part if part in valid_drivers: # Create source path adi_part_path = os.path.join(adi_path, part) # Create destination path lin_part_path = os.path.join(lin_driver_path, str.upper(part)) if not os.path.exists(lin_part_path): os.makedirs(lin_part_path) # Iterate through files in source path for partdir, subpartdirs, partfiles in os.walk(adi_part_path): for partfile in partfiles: src_path = os.path.join(adi_part_path, partfile) dst_path = os.path.join(lin_part_path, upper_file(partfile)) shutil.copy2(src_path, dst_path) print(' Copying ' + src_path + ' to ' + dst_path) break else: print(' Part not found in ADIDrivers.txt, skipping') break print('Done!')
""" Render service to render previews of materials """ from __future__ import print_function import sys import socket import time import pickle from threading import Thread from panda3d.core import load_prc_file_data, Vec4, Filename, Mat4, Notify from panda3d.core import CS_zup_right, CS_yup_right, PNMImage, BamCache from direct.showbase.ShowBase import ShowBase sys.path.insert(0, "../../") from rpcore import RenderPipeline, PointLight class Application(ShowBase): ICOMING_PORT = 62360 def __init__(self): load_prc_file_data("", "win-size 512 512") load_prc_file_data("", "window-type offscreen") load_prc_file_data("", "model-cache-dir") load_prc_file_data("", "model-cache-textures #f") load_prc_file_data("", "textures-power-2 none") load_prc_file_data("", "alpha-bits 0") load_prc_file_data("", "print-pipe-types #f") # Construct render pipeline self.render_pipeline = RenderPipeline() self.render_pipeline.mount_mgr.config_dir = "config/" self.render_pipeline.set_empty_loading_screen() self.render_pipeline.create(self) self.setup_scene() # Disable model caching BamCache.get_global_ptr().cache_models = False self.update_queue = [] self.start_listen() # Render initial frames for i in range(10): self.taskMgr.step() last_update = 0.0 self.scene_node = None current_lights = [] current_envprobes = [] # Wait for updates while True: # Update once in a while curr_time = time.time() if curr_time > last_update + 1.0: last_update = curr_time self.taskMgr.step() if self.update_queue: if self.scene_node: self.scene_node.remove_node() # Only take the latest packet payload = self.update_queue.pop(0) print("RENDERING:", payload) scene = loader.loadModel(Filename.from_os_specific(payload["scene"])) for light in scene.find_all_matches("**/+PointLight"): light.remove_node() for light in scene.find_all_matches("**/+Spotlight"): light.remove_node() # Find camera main_cam = scene.find("**/Camera") if main_cam: transform_mat = main_cam.get_transform(render).get_mat() transform_mat = Mat4.convert_mat(CS_zup_right, CS_yup_right) * transform_mat base.camera.set_mat(transform_mat) else: print("WARNING: No camera found") base.camera.set_pos(0, -3.5, 0) base.camera.look_at(0, -2.5, 0) base.camLens.set_fov(64.0) self.scene_node = scene scene.reparent_to(render) # Render scene for i in range(8): self.taskMgr.step() dest_path = Filename.from_os_specific(payload["dest"]) print("Saving screenshot to", dest_path) self.win.save_screenshot(dest_path) self.notify_about_finish(int(payload["pingback_port"])) def start_listen(self): """ Starts the listener thread """ thread = Thread(target=self.listener_thread, args=(), name="ListenerThread") thread.setDaemon(True) thread.start() return thread def listener_thread(self): """ Thread which listens to incoming updates """ sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) print("Listening on 127.0.0.1:" + str(self.ICOMING_PORT)) try: sock.bind(("127.0.0.1", self.ICOMING_PORT)) while True: data, addr = sock.recvfrom(8192) self.handle_data(data) except Exception as msg: print("Failed to bind to address! Reason:", msg) finally: sock.close() def handle_data(self, data): """ Handles a new update """ # print("Got:", data) unpacked_data = pickle.loads(data) # print("Data = ", unpacked_data) self.update_queue.append(unpacked_data) def notify_about_finish(self, port): """ Notifies the caller that the result finished """ print("Sending finish result to localhost:" + str(port)) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) try: sock.connect(("localhost", port)) except Exception as msg: print("Could not send finish result: ", msg) return sock.sendall(b"done") print("Sent done flag.") sock.close() def setup_scene(self): """ Setups the basic scene geometry """ self.disableMouse() self.render2d.hide() self.aspect2d.hide() light = PointLight() light.pos = 20.0, -0.85, -1.31 light.radius = 100.0 light.energy = 2500 light.set_color_from_temperature(8000) # self.render_pipeline.add_light(light) light = PointLight() light.pos = -11.2, -13.84, -9.24 light.radius = 1e20 light.set_color_from_temperature(8000) light.energy = 2500 # self.render_pipeline.add_light(light) # envprobe = self.render_pipeline.add_environment_probe() # envprobe.set_pos(0, -16.2, 4.4) # envprobe.set_scale(40, 40, 40) # envprobe.parallax_correction = False Application()
__all__ = ['itur_test', 'ITU_validation_report_test', 'ITU_validation_test', 'examples_test']
import tensorflow.compat.v1 as tf try: from .tokenizer_utils import get_tokenizer except ImportError: from tokenizer_utils import get_tokenizer import json from pathlib import PurePath, Path import cv2 from tqdm import tqdm import glob import random import os import shutil def dump_jsonl(data, output_path, append=False): """ Write list of objects to a JSON lines file. """ mode = 'a+' if append else 'w' with open(output_path, mode, encoding='utf-8') as f: for line in data: json_record = json.dumps(line, ensure_ascii=False) f.write(json_record + '\n') def load_jsonl(input_path): """ Read list of objects from a JSON lines file. """ data = [] with open(input_path, 'r', encoding='utf-8') as f: for line in f: data.append(json.loads(line.rstrip('\n|\r'))) return data def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def serialize_example(image, caption): feature = { 'image': _bytes_feature(image), 'caption': _int64_feature(caption), } example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() def create_random_dataset(path_to_images, out_dir, max_images_per_folder=1000, words_per_caption=50): """ creates a paired image / text folder with random captions in the correct format to feed to create_paired_tfrecord_dataset (for testing) Args: out_dir: str path_to_images: str glob path to images max_images_per_folder: int words_per_caption: int """ import requests word_site = "https://www.mit.edu/~ecprice/wordlist.10000" response = requests.get(word_site) WORDS = response.content.splitlines() out_dir = Path(out_dir) jsonl_path = out_dir / "captions_data.jsonl" os.makedirs(out_dir, exist_ok=True) images = glob.glob(path_to_images) print(f"{len(images)} images found") pbar = tqdm() folder_count = 0 for i, image in enumerate(images): if i % 100 == 0 or i == 0: pbar.update(100) if i % max_images_per_folder == 0 or i == 0: sub_folder = Path(out_dir) / str(folder_count) os.makedirs(Path(out_dir) / str(folder_count), exist_ok=True) folder_count += 1 data = {} image = Path(image) data["caption"] = " ".join([random.choice(WORDS).decode() for i in range(words_per_caption)]) data["image_path"] = str(sub_folder.relative_to(out_dir) / image.name) shutil.copy(image, sub_folder) dump_jsonl([data], jsonl_path, append=True) def create_paired_dataset(path_to_jsonl, name, out_dir, examples_per_tfrecord=1000, tokenizer=None, reencode=False): """ takes in a jsonl with relative paths to images & captions, and saves tfrecords files with num_examples examples to out_dir. Folder structure: data_folder jsonl_file folder_1 img1 img2 ... folder_2 img1 img2 ... ... Jsonl structure: {"image_path": relative_image_path, "caption": caption} {"image_path": relative_image_path, "caption": caption} ... TODO: multiprocessing Args: path_to_jsonl: str / path / list of str / path path to jsonl file examples_per_tfrecord: int number of examples to write to each tfrecords file name: str name of tfrecords files out_dir: str / path path to folder in which to save tfrecords tokenizer: custom HF tokenizer if None, defaults to GPT2TokenizerFast """ if tokenizer is None: tokenizer = get_tokenizer() if isinstance(out_dir, str): out_dir = Path(out_dir) os.makedirs(out_dir, exist_ok=True) if isinstance(path_to_jsonl, PurePath) or isinstance(path_to_jsonl, str): path_to_jsonl = [path_to_jsonl] if not isinstance(path_to_jsonl, list): raise TypeError(f"path_to_jsonl type not recognized, should be str, path, or list") tfrecord_count = 0 example_count = 0 writer = tf.io.TFRecordWriter(str(out_dir / f"{name}_{tfrecord_count}.tfrecords")) pbar = tqdm() for path in path_to_jsonl: path = Path(path) data = load_jsonl(path) for item in data: if example_count % examples_per_tfrecord == 0 and example_count != 0: writer.close() writer = tf.io.TFRecordWriter(str(out_dir / f"{name}_{tfrecord_count}.tfrecords")) tfrecord_count += 1 image_path = path.parent / item["image_path"] if reencode: img = cv2.imread(str(image_path)) img = cv2.imencode('.jpg', img, (cv2.IMWRITE_JPEG_QUALITY, 94))[1].tostring() # encodes image to string else: img = open(image_path, "rb").read() caption = tokenizer.encode(item["caption"][0]) example = serialize_example(img, caption) writer.write(example) example_count += 1 if example_count % 100 == 0: pbar.set_description(f"{example_count} examples written to {tfrecord_count + 1} files") pbar.update(100) writer.close() if __name__ == "__main__": # creates random test dataset with CIFAR 10 create_paired_dataset("/home/data/coco/coco_captions.jsonl", "COCO", "DALLE-tfrecords", examples_per_tfrecord=1000, tokenizer=None)
#!/usr/bin/env python # coding: utf-8 # # mnist-cnn # Let's build a super basic Convolutional Neural Network(CNN) to classify MNIST handwritten digits! We'll be using pytorch to specify and train our network. # ## Setup # In[ ]: import matplotlib.pyplot as plt import numpy as np # In[ ]: import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # In[ ]: EPOCHS = 2 BATCH_SIZE = 64 NUM_CLASSES = 10 # ## Loading MNIST Dataset # # We'll be using the MNIST dataset to train our CNN. It contains images of handwritten digits. Loading MNIST is trivial using torchvision. # # Before we can use the images to train the network, it's a best practice to normalize the images. The images are black-and-white, represented by values from [0, 1]. The transformation will bring the values in a range of [-1, 1]: # In[ ]: transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5), (0.5)) ]) # In[ ]: trainset = torchvision.datasets.MNIST( root="./data", download=True, train=True, transform=transform ) testset = torchvision.datasets.MNIST( root="./data", download=True, train=False, transform=transform ) # In[ ]: trainloader = torch.utils.data.DataLoader( trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2 ) testloader = torch.utils.data.DataLoader( testset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2 ) # ## Visualizing # # Let's visualize the dataset before actually using it: # In[ ]: def show_img(img): img = img / 2 + 0.5 npimg = img.numpy() plt.imshow(npimg[:, :], cmap='gray_r') plt.show() # In[ ]: dataiter = iter(trainloader) imgs, labels = next(dataiter) show_img(imgs[0].squeeze()) print('Label: %i' % labels[0].item()) # ## Model # # Now we can at last define our CNN. It consists of: # - two convolutional blocks to extract relevant features from the input image # - three fully connected layers to process the extracted features and classify the digit images # In[ ]: class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.model = nn.Sequential( nn.Conv2d(1, 10, 3), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(10, 10, 3), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(250, 120), nn.Linear(120, 60), nn.Linear(60, NUM_CLASSES) ) def forward(self, x): return self.model(x) # ## Training # # First we'll try setting up pytorch to use a CUDA-capable GPU. If no GPU is detected, our CNN will be trained on CPU: # In[ ]: dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device "%s" for training' % dev) # We then create an instance of our network before moving it to our training device using the `.to()` method: # In[ ]: neural_net = Net().to(dev) # Next, we'll define our loss and optimizer: # In[ ]: criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(neural_net.parameters()) # Now, let's train our network! # In[ ]: for epoch in range(EPOCHS): running_loss = 0.0 for i, (imgs, labels) in enumerate(trainloader): imgs = imgs.to(dev) labels = labels.to(dev) # Important! # Clear accumulated gradients from previous iteration # before backpropagating. optimizer.zero_grad() y = neural_net(imgs) loss = criterion(y, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%.3d / %.3d] Loss: %.9f' % (epoch, i, running_loss / 100)) # ## Testing # # Finally, let's test the performance of our network on the testset, containing images of digits the network hasn't seen before: # In[ ]: neural_net.train(False) correct = 0 total = 0 with torch.no_grad(): for i, data in enumerate(testloader, 0): images, labels = data images = images.to(dev) labels = labels.to(dev) outputs = neural_net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % ( 100 * correct / total))
# -*- coding: utf-8 -*- class Node: """ A class to represent the nodes in SCRDR tree """ def __init__(self, condition, conclusion, father = None, exceptChild = None, elseChild = None, cornerstoneCases = [], depth = 0): self.condition = condition self.conclusion = conclusion self.exceptChild = exceptChild self.elseChild = elseChild self.cornerstoneCases = cornerstoneCases self.father = father self.depth = depth def satisfied(self, object): return eval(self.condition) def executeConclusion(self, object): exec(self.conclusion) def appendCornerstoneCase(self, object): self.cornerstoneCases.append(object) def check(self, object): if self.satisfied(object): self.executeConclusion(object) if self.exceptChild != None: self.exceptChild.check(object) else: if self.elseChild != None: self.elseChild.check(object) def checkDepth(self, object, length): if self.depth <= length: if self.satisfied(object): self.executeConclusion(object) if self.exceptChild != None: self.exceptChild.checkDepth(object, length) else: if self.elseChild != None: self.elseChild.checkDepth(object, length) def findRealFather(self): node = self fatherNode = node.father while True and fatherNode != None: if fatherNode.exceptChild == node: break node = fatherNode fatherNode = node.father return fatherNode def addElseChild(self, node): fatherNode = self.findRealFather() for object in fatherNode.cornerstoneCases: if node.satisfied(object): print("The new rule fires the cornerstone cases of its father node!!!") self.findRealFather().cornerstoneCases.remove(object) self.elseChild = node return True def addExceptChild(self, node): for object in self.cornerstoneCases: if node.satisfied(object): print("The new rule fires the cornerstone cases of its father node!!!") self.cornerstoneCases.remove(object) self.exceptChild = node return True def writeToFileWithSeenCases(self, out, depth): space = tabStr(depth) out.write(space + self.condition + " : " + self.conclusion + "\n") for case in self.cornerstoneCases: out.write(" " + space + "cc: " + case.toStr() + "\n") if self.exceptChild != None: self.exceptChild.writeToFile(out, depth + 1) if self.elseChild != None: self.elseChild.writeToFile(out, depth) def writeToFile(self, out, depth): space = tabStr(depth) out.write(space + self.condition + " : " + self.conclusion + "\n") if self.exceptChild != None: self.exceptChild.writeToFile(out, depth + 1) if self.elseChild != None: self.elseChild.writeToFile(out, depth) def tabStr(length): return "".join(["\t"] * length)
import primes import time class Timer(object): def __enter__(self): self.start = time.clock() return self def __exit__(self, exception_type, exception_value, traceback): self.end = time.clock() self.interval = self.end - self.start if __name__ == '__main__': n = 39916801 # We can call pre-existing c++ code from Python # by wrapping it in Cython with Timer() as t: result = primes.is_prime(n) print('{} (s) {}'.format(t.interval, result))
from .AsynchronousStatus import * from .SynchronousStatus import * from .errors import * __name__ = "danbot-status" __version__ = "0.1.1" __author__ = "VineyS" __license__ = "MIT"
import re import requests import json from AnimusExceptions import * class AnimusGenericLog: ################################ # Description: # Initializer for the AnimusGenericLog object. Pass it a fileName and it will handle # reduction for generic logs. # # Params: # logfile - The array of lines in the logfile we are analyzing # port - The port and protocol list to obtain a filter for # apiKey - The api key pulled from the ~/.animus.cfg file # baseUri - The base URI of the animus API, as stored in the ~/.animus.cfg file ################################ def __init__(self, logfile, ports, apiKey, baseUri): self.BASE_URI = baseUri self.API_ENDPOINT = '/va/generic' self.apiKey = apiKey self.unhandledLogs = [] self.features = {} self.features['ips'] = [] self.features['ports'] = [] self.parsedLog = [] self.filter = [] # quietLogs are logs that have had noise removed self.quietLogs = [] # noisyLogs are logs that we think are noise self.noisyLogs = [] # alertLogs are logs where we think a noisy actor managed to do something bad # For example, if someone has a successful auth attempt, but they # are known to be brute forcing ssh servers, they may have successfully broken in self.alertLogs = [] # Get the features from the file self._getFeatures(logfile) # These variables are now set: # self.unhandledLogs # self.features # self.parsedLog # Add port and protocol for port in ports: portsItem = {} (portsItem['port'], portsItem['protocol']) = port.split(':') self.features['ports'].append(portsItem) #Set the filter for the file self._getFilter() # self.filter is now set # Perform the analysis operation self._analyze() # self.noisyLogs and self.quietLogs is now set ################################ # Description: # Print the reduced log file # # Params # showQuietLogs - If this is true, shows the reduced log file. If this is false, it shows the logs that were deleted. # ################################ def reduce(self, showNoisy=False): if not showNoisy: for log in self.quietLogs: yield log['raw'].strip() else: for log in self.noisyLogs: yield log['raw'].strip() ################################ # Description: # Apply the filter to the log file # ################################ def _analyze(self, ): # Go through each line for line in self.parsedLog: if 'ip' in line: if line['ip'] in self.filter['ips']: self.noisyLogs.append(line) continue else: self.quietLogs.append(line) else: self.quietLogs.append(line) ################################ # Description: # Gets the filter for the features in the object ################################ def _getFilter(self, ): self.filter = self._sendAuthFeatureQuery(self.features) ################################ # Description: # Get the feature data from the log file necessary for a reduction # # Params: # logfile - The array of log lines to be analyzed # # Returns: # Nothing. Sets self.parsedLog, self.features, and self.unhandledLogs ################################ def _getFeatures(self, logfile): REGEX_GET_IP = '(?P<ip>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # The dict that holds the features of the log file features = {} #print(type(logfile)) #print(len(logfile)) for line in logfile: # Clear previous results result = {} # Save the raw line result['raw'] = line # Search for an IP in the line m = re.search(REGEX_GET_IP, line) # If we found one, save it if m: result['ip'] = m.group('ip') if result['ip'] not in self.features['ips']: self.features['ips'].append(result['ip']) self.parsedLog.append(result) ################################ # Description: # Send a query to the backend api with a list of observed features in this log file # # Params: # features - The list of features we want to return a filter for # # Returns: # logFilter - A list of features that should be filtered out of the log file ################################ def _sendAuthFeatureQuery(self, features): try: r = requests.post(self.BASE_URI + self.API_ENDPOINT, data = json.dumps(features), headers={'api_key': self.apiKey}) except requests.exceptions.ConnectionError as e: raise AnimusAPIUnavailable("The Animus API appears to be unavailable.") if r.status_code != 200: raise AnimusAPIUnavailable("Request failed and returned a status of: " + str(r.status_code)) return json.loads(r.text)
import base64 import uuid def base64_uuid4(): """ Return a base64 encoded uuid4 """ base64_encoded = base64.urlsafe_b64encode(uuid.uuid4().bytes) base64_encoded = base64_encoded.decode("utf-8") return base64_encoded.rstrip("=")
""" TR 64 specific actions ~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2015 by Benjamin Pannier. :license: Apache 2.0, see LICENSE for more details. """ from .lan import Lan, HostDetails, EthernetInfo, EthernetStatistic from .system import System, SystemInfo, TimeInfo from .wan import Wan, WanLinkInfo, WanLinkProperties, ConnectionInfo, ADSLInfo from .wifi import Wifi, WifiDeviceInfo, WifiBasicInfo from .fritz import Fritz
import numpy as np import gym class DQN: def __init__(self, env_name): self.env = gym.make(env_name) def run(self): play(self.env, zoom=4) test_class = DQN('SpaceInvaders-v0') test_class.run()
''' This agent is a base agent that works under the architecture defined in the documentation. We are using this base agent to implement a lot of different RL algorithms. We will maintain updated this base agent with the goal of keeping the balance between flexibility and comfortability. ''' from .knowledge import Knowledge from .interpreter import Interpreter from .actuator import Actuator from .experiences import Experiences class Agent(): def __init__(self, action_space): self.knowledge = Knowledge(action_space) self.interpreter = Interpreter() self.actuator = Actuator() self.experiences = Experiences() def get_action(self, observation): state = self.interpreter.obs_to_state(observation) agent_action = self.knowledge.get_action( state ) return self.actuator.agent_to_env( agent_action ) def add_experience(self, observation, reward, env_action, next_observation): agent_action = self.actuator.env_to_agent(env_action) state = self.interpreter.obs_to_state(observation) next_state = self.interpreter.obs_to_state(next_observation) self.experiences.add(state, reward, agent_action, next_state) def start_step(self, current_step): pass def end_step(self, current_step): pass def start_episode(self, current_episode): print('episode', current_episode) pass def end_episode(self, current_episode): pass def train(self): self.knowledge.train(self.experiences.get())
import pandas as pd import glob, re, os import click def split_lines(text): text = [' '.join(i.split()) for i in re.split(r'\n{2,}', text)] text = [i for i in text if i] return text def get_num(txt): return int(re.findall(r'\d+', txt)[0]) def get_ref(txt): return int(re.findall(r'\d+', txt)[1]) def merge_and_get_summaries(forecast_path, forecasted_lessons_file): # forecast_path = 'eva_forecast_02_21_2020' # forecasted_lessons_file = '~/notebooks/Cognitive_Search/sash/data/feb_20/ulm_forecasts.csv' steps = 1000 file = f'{forecast_path}.log.{148000+steps}' # path = '/data/home/admin01//notebooks/Jude/Presumm2/PreSumm/logs/' path = 'logs/' path = os.path.join(path, file) results = {} for suffix in ['gold', 'raw_src', 'candidate']: with open(f'{path}.{suffix}', 'r') as f: results[suffix] = f.readlines() df_gen = pd.DataFrame({'human-generated': results['gold'], 'machine-generated': results['candidate']}) df_gen['lesson_num'] = df_gen['human-generated'].apply(get_num) df_gen['ref_id'] = df_gen['human-generated'].apply(get_ref) df = pd.read_csv(forecasted_lessons_file, usecols=[1,2,4,5]) df['reference_id'] = df['reference_id'].apply(lambda x: 0 if x!=x else x).astype(int) df = df.where(df['isLesson']==1).dropna() df.drop('isLesson', axis=1, inplace=True) df['paragraph'] = df['paragraph'].apply(split_lines) df = df.reset_index(drop=True) df['reference_id'] = df['reference_id'].astype(int) df['lesson_num'] = df.index df.rename(columns={'Project Number':'project_number'}, inplace=True) df_merged = df[['paragraph','reference_id','project_number','lesson_num']].merge( df_gen[['machine-generated','lesson_num']], on='lesson_num') df_merged.to_csv(f'{forecast_path}.csv') return @click.group() def cli(): pass @cli.command() @click.argument('forecast_path') @click.argument('forecasted_lessons_file') def get_summaries(forecast_path, forecasted_lessons_file): merge_and_get_summaries(forecast_path, forecasted_lessons_file) return if __name__=='__main__': cli()
# -*- coding: utf-8 -*- """ Created on Thu Dec 17 11:35:43 2020 @author: willi """ import re import time import os import numpy as np from . import CodonDictionaries from . import FileParser from . import poi as POI try: from Bio import SeqIO from Bio import Entrez except: print('BioPython is not installed, polling genbank will not be possible') pass class SequenceManipMethods(): ''' class that handles manipulation methods dealing with sequences ''' def __init__(self, sequence=''): self.sequence = sequence self.codon_dicts = CodonDictionaries.CodonDictionaries() #get the codon dictionaries def optimize_ntseq(self, nt_seq, opt_dict=None): ''' Optimizes a nucleotide sequence Parameters ---------- nt_seq : str nucleotide sequence string opt_dict : dictionary, optional a user defined dictionary to optimize over. The default is None. Returns ------- opt_seq : str Optimized NT sequenced based on a given dictionary of rates ''' if opt_dict is None: opt_dict = self.codon_dicts.human_codon_frequency_bias_nakamura codons = nt_seq.upper() seperated_codons = [codons[i:i+3] for i in range(0, len(codons), 3)] #split codons by 3 aa = [self.codon_dicts.aa_table[x] for x in seperated_codons] opt_seq = '' for i in range(0, len(aa)): ind = np.argmax([opt_dict[x] for x in self.codon_dicts.aa_table_r[aa[i]]]) opt_codon = self.codon_dicts.aa_table_r[aa[i]][ind] opt_seq = opt_seq + opt_codon return opt_seq def deoptimize_ntseq(self, nt_seq, deopt_dict=None): ''' Optimizes a nucleotide sequence Parameters ---------- nt_seq : str nucleotide sequence string deopt_dict : dictionary, optional a user defined dictionary to deoptimize over. The default is None. Returns ------- deopt_seq : str Deoptimized NT sequenced based on a given dictionary of rates ''' if deopt_dict is None: deopt_dict = self.codon_dicts.human_codon_frequency_bias_nakamura codons = nt_seq.upper() seperated_codons = [codons[i:i+3] for i in range(0, len(codons), 3)] #split codons by 3 aa = [self.codon_dicts.aa_table[x] for x in seperated_codons] opt_seq = '' for i in range(0, len(aa)): ind = np.argmin([deopt_dict[x] for x in self.codon_dicts.aa_table_r[aa[i]]]) opt_codon = self.codon_dicts.aa_table_r[aa[i]][ind] opt_seq = opt_seq + opt_codon return opt_seq def nt2aa(self, nt_seq): ''' Parameters ---------- nt_seq : str nucleotide sequence. Returns ------- aa : str amino acid sequence. ''' aa = '' nt_seq = nt_seq.upper() for i in range(0, len(nt_seq), 3): aa += self.codon_dicts.aa_table[nt_seq[i:i+3]] return aa def get_gb_file(self, accession_number, save_dir): ''' A function to poll genbank given an accession number and pull the relevant gb file *args* **accession_number**, the accession number of the sequence to find. http://www.nslc.wustl.edu/elgin/genomics/bio4342/1archives/2006/AccReference.pdf *keyword args* **savetofile**, true or false to save the gb file in the same directory as sms for future use ''' Entrez.email = "[email protected]" Entrez.tool = 'SingleMoleculeSimulator' er = False try: handle = Entrez.efetch(db="nucleotide", rettype="gb", retmode="text", id=accession_number) #using "gb" as an alias for "genbank" gb_record = SeqIO.read(handle, "genbank") handle.close() except: er = True time.sleep(2) if er == True: print('HTTP Error: Could not find specified ascession ID') return gb_rec = gb_record #gb_obj = gb_record #sequence_str = str(gb_record.seq) sequence_name = gb_record.name filename = os.path.join(save_dir, sequence_name, '.gb') f = open(filename, 'w') f.write(gb_rec.format('gb')) f.close() def get_orfs(self, nt_seq='', min_codons=80): ''' Returns open reading frames of the nucleotide sequence given orfs = {'1':[proteins], '2':[proteins], '3':[proteins]} *keyword args* **nt_seq**, nucleotide sequence as a string. If left blank uses the self.sequence_str **min_codons**, minimum amount of codons to be considered a protein in the open reading frame ''' if nt_seq == '': nt_seq = self.sequence.upper() nt_seq = nt_seq.upper() allstarts = np.array([m.start() for m in re.finditer( '(?=A[TU]G((?:.{3})+?)[TU](?:AG|AA|GA))', nt_seq)]) #allsegments = re.findall('(?=A[TU]G((?:.{3})+?)[TU](?:AG|AA|GA))',self.sequence_str) allstops = np.array( [m.start() for m in re.finditer('(?=[TU](?:AG|AA|GA))', nt_seq)]) start_frames = allstarts%3 stop_frames = allstops%3 min_len = min_codons*3 orf1_starts = allstarts[np.where(start_frames == 0)] orf2_starts = allstarts[np.where(start_frames == 1)] orf3_starts = allstarts[np.where(start_frames == 2)] orf1_stops = allstops[np.where(stop_frames == 0)] orf2_stops = allstops[np.where(stop_frames == 1)] orf3_stops = allstops[np.where(stop_frames == 2)] #self.starts = [orf1_starts, orf2_starts, orf3_starts] #self.stops = [orf1_stops, orf2_stops, orf3_stops] orfs = {'1':[], '2':[], '3':[]} orfs = {'1':[], '2':[], '3':[]} laststop = 0 for start in orf1_starts: nextstop = orf1_stops[np.where(orf1_stops > start)[0][0]]+3 if (nextstop - start) > min_len: if nextstop != laststop: orfs['1'].append((start, nextstop)) laststop = nextstop laststop = 0 for start in orf2_starts: nextstop = orf2_stops[np.where(orf2_stops > start)[0][0]]+3 if (nextstop - start) > min_len: if nextstop != laststop: orfs['2'].append((start, nextstop)) laststop = nextstop laststop = 0 for start in orf3_starts: nextstop = orf3_stops[np.where(orf3_stops > start)[0][0]]+3 if (nextstop - start) > min_len: if nextstop != laststop: orfs['3'].append((start, nextstop)) laststop = nextstop return orfs def codon_usage(self, nt_seq, codon_dict=None): ''' Analyzes codon useage from the nucleotide sequence *args* **nt_seq**, nucleotide sequence as a string *returns* **codon_sensitivity**, a list of codon sensitivity for the nucleotide sequence **cai**, cai value ''' if codon_dict == None: codon_dict = self.codon_dicts.human_codon_frequency_bias_nakamura codon_usage = np.zeros((1, 21)) gene_len = len(nt_seq)/3 aa_seq = self.nt2aa(nt_seq) for i in range(len(self.codon_dicts.aa_keys)-1): codon_usage[0, i] = len( re.findall(self.codon_dicts.aa_keys[i], aa_seq)) codon_usage[0, 20] = len(re.findall('\*', aa_seq)) codon_norm = codon_usage/gene_len codon_sensitivity = np.round( codon_norm*self.codon_dicts.sensitivity_fast_slow, 2) cai_codons = [] for i in range(0, len(nt_seq), 3): synonmous_codons = self.codon_dicts.aa_table_r[ self.codon_dicts.aa_table[codon_dict[nt_seq[i:i+3]]]] max_freq = max([codon_dict[x] for x in synonmous_codons]) cai_codons.append(codon_dict[nt_seq[i:i+3]] /max_freq) cai = self.geomean(cai_codons) return codon_sensitivity, cai, cai_codons def get_proteins(self, orfs, seq): ''' Parameters ---------- orfs : dict dictionary of open reading frames. {'1': [[starts],[stops] ],'2': [[starts],[stops] ],'3': [[starts],[stops] ] } seq : str nucleotide sequence. Returns ------- proteins_strs : dict aa strings of all proteins found in the given orfs. protein_objs : dict container objects for proteins found in the given orf. proteins_w_tags : dict conatiner objects for any proteins with detected tags. ''' cd = self.codon_dicts proteins_strs = {'1':[], '2':[], '3':[]} protein_objs = {'1':[], '2':[], '3':[]} proteins_w_tags = {'1':[], '2':[], '3':[]} #tagged_proteins = {a:[] for a in cd.tag_dict.keys()} #tagged_protein_seq = {a:[] for a in cd.tag_dict.keys()} for i in range(len(orfs)): for j in range(len(orfs[str(i+1)])): protein = POI.poi() pro = self.nt2aa(seq[orfs[str(i+1)][j][0]:orfs[str(i+1)][j][1]]) nt_seq = seq[orfs[str(i+1)][j][0]:orfs[str(i+1)][j][1]] # if pro[-1] == '*': # pro = pro[:-1] # nt_seq = nt_seq[:-3] protein.aa_seq = pro protein.nt_seq = nt_seq proteins_strs[str(i+1)].append(pro) protein.gene_length = len(pro) #length of the gene protein.tag_length = 0 #length of the tags protein.total_length = len(pro) #total length of the full amino acid sequence protein.source_seq = seq protein.orf = i protein.loc = (orfs[str(i+1)][j][0], orfs[str(i+1)][j][1]+3) protein.tags = [] protein_objs[str(i+1)].append(protein) for i in range(len(orfs)): for pr in protein_objs[str(i+1)]: tag_detected = False for tag in cd.tag_dict.keys(): if cd.tag_dict[tag] in pr.aa_seq: tag_detected = True if tag_detected: self.analyze_protein_w_tags(pr) pr.tag_added = False proteins_w_tags[str(i+1)].append(pr) else: self.add_tag_to_protein(pr) pr.tag_added = True return proteins_strs, protein_objs, proteins_w_tags def add_tag_to_protein(self, POI, tag_type='T_Flag'): ''' Parameters ---------- POI : poi object protein of interest object. tag_type : str, optional What kind of tag to append onto the protein object. The default is 'T_Flag'. Returns ------- None. ''' cd = self.codon_dicts POI.nt_seq = cd.tag_full[tag_type] + POI.nt_seq POI.aa_seq = self.nt2aa(POI.nt_seq) self.analyze_protein_w_tags(POI) def analyze_protein_w_tags(self, poi_obj, epitope_loc='front'): cd = self.codon_dicts nt_seq = poi_obj.nt_seq aa_seq = poi_obj.aa_seq #self.POI.name = self.sequence_name total_length = len(poi_obj.aa_seq) ''' for key in self.tagged_proteins: if protein in self.tagged_proteins[key]: self.POI.tag_types.append(key) ''' poi_obj.tag_types = [] for tag in cd.tag_dict.keys(): if cd.tag_dict[tag] in aa_seq: poi_obj.tag_types.append(tag) #''.join(sms.poi[0].split('DYKDDDDK') poi_obj.tag_epitopes = {a:[] for a in poi_obj.tag_types} gs = poi_obj.aa_seq for i in range(len(poi_obj.tag_types)): try: nt_tag = cd.tag_full[poi_obj.tag_types[i]] aa_tag = self.nt2aa(nt_tag) except: epi = cd.tag_dict[poi_obj.tag_types[i]] firstep = poi_obj.aa_seq.find(epi) lastep = len(poi_obj.aa_seq) - poi_obj.aa_seq[::-1].find(epi[::-1]) aa_tag = poi_obj.aa_seq[firstep:lastep] nt_tag = poi_obj.nt_seq[3*firstep:3*lastep] if epitope_loc == 'front': offset = 0 if epitope_loc == 'middle': offset = int(len(cd.tag_dict[poi_obj.tag_types[i]])/2) if epitope_loc == 'back': offset = len(cd.tag_dict[poi_obj.tag_types[i]]) poi_obj.tag_epitopes[poi_obj.tag_types[i]] = [ m.start()+1+offset for m in re.finditer( cd.tag_dict[poi_obj.tag_types[i]], poi_obj.aa_seq)] gs = gs.replace(aa_tag, '') poi_obj.gene_seq = gs poi_obj.gene_length = len(gs) poi_obj.total_length = total_length poi_obj.tag_seq = aa_tag poi_obj.tag_length = len(aa_tag) codons = [] for i in range(0, len(nt_seq), 3): codons.append(nt_seq[i:i+3]) #POI.codons = codons #POI.codon_sensitivity, POI.CAI, POI.CAI_codons = self.codon_usage(POI.nt_seq) poi_obj.ki = .03 poi_obj.ke = 10 poi_obj.kt = 10 def seq_to_protein_obj(self, sequence_str, min_codons=80): orfs = self.get_orfs(sequence_str, min_codons=min_codons) _, proteins, _ = self.get_proteins( orfs, sequence_str) return proteins def open_seq_file(self, seqfile, min_codons=80): ''' Reads a sequence file, either a .txt file or a .gb genbank file *args* **seqfile**, sequence file either in txt, gb, gbk format ''' fp = FileParser.FileParser() #TODO expose this to the user: #sequence_name = fp.get_name(seqfile) #sequence_description = fp.get_description(seqfile) sequence_str = fp.get_sequence(seqfile).upper() orfs = self.get_orfs(sequence_str, min_codons=min_codons) protein_strs, proteins, tagged_proteins = self.get_proteins(orfs, sequence_str) return protein_strs, proteins, tagged_proteins, sequence_str def get_tag_loc(self, aa_seq, tag, epitope_loc='front'): cd = self.codon_dicts if epitope_loc == 'front': offset = 0 if epitope_loc == 'middle': offset = int(len(tag)/2) if epitope_loc == 'back': offset = len(tag) return [m.start()+1+offset for m in re.finditer(tag, aa_seq)] @staticmethod def geomean(iterable): '''geometric mean used for codon sensitivity calculations ''' a = np.array(iterable) return a.prod()**(1.0/len(a))
import numpy as np import gc import time import cv2 class database: def __init__(self, params): self.size = params['db_size'] self.img_scale = params['img_scale'] self.states = np.zeros([self.size,84,84],dtype='uint8') #image dimensions self.actions = np.zeros(self.size,dtype='float32') self.terminals = np.zeros(self.size,dtype='float32') self.rewards = np.zeros(self.size,dtype='float32') self.bat_size = params['batch'] self.bat_s = np.zeros([self.bat_size,84,84,4]) self.bat_a = np.zeros([self.bat_size]) self.bat_t = np.zeros([self.bat_size]) self.bat_n = np.zeros([self.bat_size,84,84,4]) self.bat_r = np.zeros([self.bat_size]) self.counter = 0 #keep track of next empty state self.flag = False return def get_batches(self): for i in range(self.bat_size): idx = 0 while idx < 3 or (idx > self.counter-2 and idx < self.counter+3): idx = np.random.randint(3,self.get_size()-1) self.bat_s[i] = np.transpose(self.states[idx-3:idx+1,:,:],(1,2,0))/self.img_scale self.bat_n[i] = np.transpose(self.states[idx-2:idx+2,:,:],(1,2,0))/self.img_scale self.bat_a[i] = self.actions[idx] self.bat_t[i] = self.terminals[idx] self.bat_r[i] = self.rewards[idx] return self.bat_s,self.bat_a,self.bat_t,self.bat_n,self.bat_r def insert(self, prevstate_proc,reward,action,terminal): self.states[self.counter] = prevstate_proc self.rewards[self.counter] = reward self.actions[self.counter] = action self.terminals[self.counter] = terminal #update counter self.counter += 1 if self.counter >= self.size: self.flag = True self.counter = 0 return def get_size(self): if self.flag == False: return self.counter else: return self.size