content
stringlengths
5
1.05M
from sqlalchemy.orm import Session import random from . import models, schemas def get_corpse(db: Session, corpse_name: str): return (db.query(models.Corpse) .filter(models.Corpse.corpse_name == corpse_name) .first()) def create_corpse(db: Session, corpse_name: str, img: bytes): db_corpse = models.Corpse(corpse_name=corpse_name, img=img) db.add(db_corpse) db.commit() db.refresh(db_corpse) return db_corpse def update_corpse(db: Session, corpse_name: str, img: bytes): db_corpse = get_corpse(db, corpse_name=corpse_name) if db_corpse and db_corpse.stage < 4: db_corpse.img = img db_corpse.is_open = False db_corpse.stage = db_corpse.stage + 1 # musn't use += db.commit() return (True, db_corpse) return (False, db_corpse) def get_num_corpses(db: Session, complete: bool = False) -> int: if complete: filter_by = models.Corpse.stage == 4 else: filter_by = models.Corpse.stage < 4 return (db.query(models.Corpse) .filter(filter_by) .count()) def close_corpse(db: Session, corpse_name: str): db_corpse = get_corpse(db, corpse_name=corpse_name) if db_corpse: db_corpse.open = False db.commit() return True return False def get_rand_incomplete_corpses(db: Session, n: int): incomplete = (db.query(models.Corpse) .filter(models.Corpse.stage < 4, ~models.Corpse.is_open) .values(models.Corpse.corpse_name, models.Corpse.stage)) incomplete = list(incomplete) if n > len(incomplete): n = len(incomplete) sample = random.sample(list(incomplete), n) return sample def get_rand_complete_corpse(db: Session): complete = (db.query(models.Corpse) .filter(models.Corpse.stage >= 4) .values(models.Corpse.corpse_name)) complete = list(complete) choice = random.choice(list(complete)) return choice.corpse_name def get_stage(db: Session, corpse_name: str): db_corpse = get_corpse(db, corpse_name=corpse_name) return db_corpse.stage if db_corpse else -1
#!python # Author: Thomas Berg <[email protected]> # License: BSD import os import shutil # For this script to run, scons must be installed (http://www.scons.org), # and Microsoft VS2008. # Purpose of this program: Generate all files needed for a C++ build, compile # it with scons, and demonstrate a crash in python.exe on Windows. # For a description of the problem, see: # http://old.nabble.com/SCons-Python-crashing-on-Windows---dereferencing-NULL-td22576049.html # # The crash happens more or less frequently, depending on which machine # you run it on, so it may need to run a few times before you get a crash # (or you may not get it at all). #========================================================================== # Template for the SConscript file sconscript = """ #!python import os import glob tools = ['mslink', 'msvc', 'mslib', 'msvs', 'install'] # We use VS2008 (9.0), but other versions might work too env = Environment(tools = tools, MSVC_VERSION = '9.0') # Enable tempfile munging for CXXCOM: env['CXXCOM'] = '${TEMPFILE("$CXX $_MSVC_OUTPUT_FLAG /c $CHANGED_SOURCES $CXXFLAGS $CCFLAGS $_CCCOMCOM")}' # Lower the threshold for when the tempfile munging is triggered: env['MAXLINELENGTH'] = 5 # Some random C++ compiler flags env.AppendUnique(CCFLAGS = ['/EHsc']) env.AppendUnique(CCFLAGS = ['/Zc:forScope']) env.AppendUnique(CCFLAGS = ['/GR']) env.AppendUnique(CCFLAGS = ['/GF']) env.AppendUnique(CCFLAGS = ['/FC']) env.AppendUnique(CCFLAGS = ['/fp:precise']) env.AppendUnique(CCFLAGS = ['/Oxityb2']) env.AppendUnique(CCFLAGS = ['/MD']) env.AppendUnique(LINKFLAGS = ['/SUBSYSTEM:CONSOLE']) no_programs = %(no_programs)s programs = ['program_%%s_' %% i for i in range(0, no_programs)] abspath = env.Dir('.').srcnode().abspath for p in programs: src = glob.glob(os.path.join(abspath, '%%s*.cpp' %% p)) name = p[:-1] program = env.Program(name, src) env.Default(program) """ #========================================================================== def main(): no_programs = 1000 files_per_program = 15 jobs = 24 # Note from author: I have 6 cores with hyperthreading, so 12 virtual cores. -j24 triggered the crash at least. programs = ['program_%s_' % i for i in range(0, no_programs)] runs = 10 for i in range(0, runs): # Clear generated stuff from previous runs if os.path.exists('sconstestcase'): shutil.rmtree('sconstestcase') os.makedirs('sconstestcase') # Generate a SConstruct file with open('sconstestcase/SConstruct', 'w') as f: f.write(sconscript % dict(no_programs = no_programs)) # Generate a bunch of files to be grouped into programs for program in programs: # A few numbered files specific for each program for i in range(0, files_per_program): with open('sconstestcase/%s%s.cpp' % (program, i), 'w') as f: # Include some C++ headers to slow down the compilation a bit f.write('#include <iostream>\n') f.write('#include <string>\n') f.write('#include <vector>\n') f.write('#include <algorithm>\n') f.write('int test%s() { int a = 0; a += %s; return a;}\n' % (i, i)) # Create the main file for the program with open('sconstestcase/%smain.cpp' % program, 'w') as f: for i in range(0, files_per_program): f.write('int test%s();\n' % i); f.write('int main(int argc, char* argv[]){\n int sum = 0;') for i in range(0, files_per_program): f.write(' sum += test%s();\n' % i) f.write(' return sum;\n}\n') os.system('cd sconstestcase && scons.bat -j%s' % jobs) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- import time def generate_sdp(self, ip, audio_port, rtp_profiles, session_description=" "): sdp = "" #Protocol Version ("v=") https://tools.ietf.org/html/rfc4566#section-5.1 (always 0 for us) sdp += "v=0\r\n" #Origin ("o=") https://tools.ietf.org/html/rfc4566#section-5.2 username = "-" sess_id = int(time.time()) sess_version = 0 nettype = "IN" addrtype = "IP4" sdp += "o=" + username + " " + str(sess_id) + " " + str(sess_version) + " " + nettype + " " + addrtype + " " + ip + "\r\n" #Session Name ("s=") https://tools.ietf.org/html/rfc4566#section-5.3 sdp += "s=" + session_description + "\r\n" #Connection Information ("c=") https://tools.ietf.org/html/rfc4566#section-5.7 sdp += "c=" + nettype + " " + addrtype + " " + ip + "\r\n" #Timing ("t=") https://tools.ietf.org/html/rfc4566#section-5.9 sdp += "t=0 0\r\n" #Media Descriptions ("m=") https://tools.ietf.org/html/rfc4566#section-5.14 sdp += "m=audio " + str(audio_port) + " RTP/AVP" for rtp_profile in rtp_profiles: sdp += " " + str(rtp_profile) sdp += "\r\n" sdp += "a=sendrecv\r\n" return sdp
class CuboidParams(): def __init__(self): # TODO: put all the relevant parameters at this single place here! # PARAMS FOR THE APROACH PRIMITIVE self.approach_grasp_xy = [0.1, 0.1, 0.09, 0.036195386201143265] self.approach_grasp_h = [0.1, 0.0, 0.0, 0.0] self.approach_duration = [500, 1000, 1500, 2000] self.approach_clip_pos = [0.03,0.03,0.03,0.015] # PARAMS FOR THE RESET PRIMITIVE self.reset_grasp_xy = [0.1,0.2] self.reset_grasp_h = [0.0,0.05] self.reset_duration = [200,400] self.reset_clip_pos = [0.03,0.015] # PARAMS FOR THE GRASP FLOOR PRIMITIVE: self.grasp_xy = -0.002748661208897829 self.grasp_h = -0.004752709995955229 self.gain_xy_pre = 431.3075256347656 self.gain_z_pre = 350.3428955078125 self.init_dur = 100 self.gain_xy_final = 952.9378662109375 self.gain_z_final = 1364.1202392578125 self.pos_gain_impedance = 0.06652811169624329 self.force_factor = 0.613079309463501 class CubeLvl1Params(): def __init__(self,env): # TODO: put all the relevant parameters at this single place here! # PARAMS FOR THE APROACH PRIMITIVE self.approach_grasp_xy = [0.1, 0.1, 0.09, 0.036195386201143265] self.approach_grasp_h = [0.1, 0.0, 0.0, 0.0] self.approach_duration = [250, 500, 750, 1000] self.approach_clip_pos = [0.03,0.03,0.03,0.015] # PARAMS FOR THE RESET PRIMITIVE self.reset_grasp_xy = [0.1,0.2] self.reset_grasp_h = [0.0,0.05] self.reset_duration = [200,400] self.reset_clip_pos = [0.03,0.015] # PARAMS FOR THE GRASP FLOOR PRIMITIVE: self.grasp_xy_floor = -0.002748661208897829-0.04 self.grasp_h_floor = 0.0 self.gain_xy_pre_floor = 294.8115234375 self.gain_z_pre_floor = 249.4430389404297 self.init_dur_floor = 100 if (env.simulation): self.gain_xy_final_floor = 693.0245697498322 self.gain_z_final_floor = 744.9281394481659 self.pos_gain_impedance_floor = 0.015 else: self.gain_xy_final_floor = 294.8115234375 self.gain_z_final_floor = 249.4430389404297 self.pos_gain_impedance_floor = 0.032040052115917206 self.force_factor_floor = 0.613079309463501 class CubeLvl2Params(): def __init__(self, env): # TODO: put all the relevant parameters at this single place here! # PARAMS FOR THE APROACH PRIMITIVE self.approach_grasp_xy = [0.15, 0.15, 0.15, 0.09, 0.05, 0.0] #0.036195386201143265 self.approach_grasp_h = [0.15, 0.1 , 0.0, 0.0, 0.0, 0.0] self.approach_duration = [250, 500, 750, 850, 1100, 1250]#[500, 1000, 1500, 2000] self.approach_clip_pos = [0.03,0.03,0.03,0.03,0.015,0.015] # PARAMS FOR THE RESET PRIMITIVE self.reset_grasp_xy = [0.1,0.2] self.reset_grasp_h = [0.0,0.05] self.reset_duration = [200,400] self.reset_clip_pos = [0.03,0.015] # PARAMS FOR THE LIFT PRIMITIVE: if (env.simulation): self.grasp_normal_int_gain = 0.007945765256881714 self.grasp_xy_lift = -0.002748661208897829-0.04+0.0034238076210021985 + 0.019999999999999997#-0.02229524075984955 self.grasp_h_lift = 0.0+0.02 -0.02838870149105787#-0.012001985907554625 else: self.grasp_normal_int_gain = 0.007708187699317932 self.grasp_xy_lift = -0.002748661208897829-0.04 + 0.019999999999999997 self.grasp_h_lift = 0.0 -0.017401267290115353 self.gain_xy_pre_lift = 294.8115234375 self.gain_z_pre_lift = 249.4430389404297 self.init_dur_lift = 100 self.gain_xy_ground_lift = 294.8115234375 self.gain_z_ground_lift = 249.4430389404297 self.pos_gain_impedance_ground_lift = 0.032040052115917206 # TODO: might want to consider changing this also on the real platform,.... self.switch_mode_lift = 0.02 self.clip_height_lift = 0.0881337970495224 if (env.simulation): self.switch_mode_lift = 0.035 self.gain_xy_ground_lift = 693.0245697498322 self.gain_z_ground_lift = 744.9281394481659 self.pos_gain_impedance_ground_lift = 0.032040052115917206 self.gain_xy_lift_lift = 693.0245697498322#906.2994122505188 #400.0 self.gain_z_lift_lift = 744.9281394481659#762.2084140777588 #722.6458370685577 self.pos_gain_impedance_lift_lift = 0.01481801524758339#0.015682869404554364 #0.06 self.force_factor_lift = 0.32288771867752075#0.7260927557945251 #0.7495793342590333 else: self.gain_xy_lift_lift = 752.3177862167358 self.gain_z_lift_lift = 1158.7008893489838 self.pos_gain_impedance_lift_lift = 0.02216305151581764 self.force_factor_lift = 0.6339841365814209 class CubeLvl4Params(): def __init__(self, env): # TODO: put all the relevant parameters at this single place here! # PARAMS FOR THE APROACH PRIMITIVE self.approach_grasp_xy = [0.15, 0.15, 0.15, 0.09, 0.05, 0.0] #0.036195386201143265 self.approach_grasp_h = [0.15, 0.1 , 0.0, 0.0, 0.0, 0.0] self.approach_duration = [150, 300, 450, 600, 750, 900]#[250, 500, 750, 850, 1100, 1250]#[500, 1000, 1500, 2000] self.approach_clip_pos = [0.03,0.03,0.03,0.03,0.015,0.015] # PARAMS FOR THE RESET PRIMITIVE self.reset_grasp_xy = [0.05,0.1, 0.1, 0.1, 0.1, 0.1, 0.15] self.reset_grasp_h = [0.0, 0.0, 0.05,0.1, 0.15,0.2, 0.15] self.reset_duration = [50, 100, 150, 200, 250, 300, 350]#[200,400,600] self.reset_clip_pos = [0.015,0.015,0.015, 0.015,0.015, 0.03, 0.03] # # PARAMS FOR THE RESET PRIMITIVE # self.reset_grasp_xy = [0.1,0.2,0.2] # self.reset_grasp_h = [0.0,0.05,0.2] # self.reset_duration = [100,200,350]#[200,400,600] # self.reset_clip_pos = [0.03,0.015,0.015] # PARAMS FOR THE GRASP FLOOR PRIMITIVE: self.grasp_xy_floor = -0.002748661208897829-0.04 self.grasp_h_floor = 0.0 self.gain_xy_pre_floor = 294.8115234375 self.gain_z_pre_floor = 249.4430389404297 self.init_dur_floor = 100 self.gain_xy_final_floor = 294.8115234375 self.gain_z_final_floor = 249.4430389404297 self.pos_gain_impedance_floor = 0.032040052115917206 self.force_factor_floor = 0.613079309463501 if (env.simulation): self.grasp_xy_floor = -0.002748661208897829-0.04+0.0034238076210021985 + 0.019999999999999997 self.grasp_h_floor = 0.0+0.02 -0.02838870149105787 self.gain_xy_pre_floor = 294.8115234375 self.gain_z_pre_floor = 249.4430389404297 self.init_dur_floor = 100 self.gain_xy_final_floor = 693.0245697498322 self.gain_z_final_floor = 744.9281394481659 self.pos_gain_impedance_floor = 0.015#0.032040052115917206 self.force_factor_floor = 0.613079309463501 # PARAMS FOR THE LIFT PRIMITIVE: self.grasp_xy_lift = -0.002748661208897829-0.04 self.grasp_h_lift = 0.0 self.gain_xy_pre_lift = 294.8115234375 self.gain_z_pre_lift = 249.4430389404297 self.init_dur_lift = 100 self.gain_xy_ground_lift = 294.8115234375 self.gain_z_ground_lift = 249.4430389404297 self.pos_gain_impedance_ground_lift = 0.032040052115917206 self.switch_mode_lift = 0.02 self.gain_xy_lift_lift = 725.27587890625 self.gain_z_lift_lift = 915.2654418945312 self.pos_gain_impedance_lift_lift = 0.024435650557279587 self.clip_height_lift = 0.0881337970495224 self.force_factor_lift = 0.613079309463501 #PARAMS ROTATE GROUND # NOTE: THOSE REAL PARAMS ARE NOT FULLY SET YET,... if (env.simulation): self.grasp_xy_rotate_ground = 0.0022661592811346054 - 0.04 + 0.0012392520904541023#-0.007273907661437987#+ 0.0012835693359374983#+ 0.00017907857894897475 self.grasp_h_rotate_ground = -0.0036394810304045677 + 0.006026389598846434 #0.009729766845703126#0.0013717865943908697#+ 0.006139404773712158 else: self.grasp_xy_rotate_ground = 0.0022661592811346054 - 0.02 -0.004453001022338867#3+ 0.008769088983535766#+ 0.015980666875839232 self.grasp_h_rotate_ground = 0.0#-0.0036394810304045677 + 0.011232354640960694#-0.00455500602722168 self.gain_xy_pre_rotate_ground = 294.8115234375 self.gain_z_pre_rotate_ground = 249.4430389404297 self.init_dur_rotate_ground = 100 if (env.simulation): self.gain_xy_final_rotate_ground = 556.7359089851379#803.606367111206#400.0#562.4382019042969 self.gain_z_final_rotate_ground = 1211.8926048278809#773.1327414512634#1124.0761876106262#1127.987027168274 self.pos_gain_impedance_rotate_ground = 0.0326704466342926#0.03204612851142883#0.03113249659538269#0.03760003924369812 self.force_factor_rotate_ground = 0.9432543694972992#1.11380175948143#0.3808450520038605#0.21552527211606504 # perhaps use 0.6 instead of 1.11 self.force_factor_ground_rot_rotate_ground = 0.2#0.14088733196258546#0.2#0.12187141180038452 self.gain_scheduling = 20.0 else: self.gain_xy_final_rotate_ground = 736.6782665252686#499.13966059684753#605.1593139767647#704.6562671661377#611.3788452148438 self.gain_z_final_rotate_ground = 1000.9935677051544#1197.0452547073364#1243.352460861206#988.0030393600464#600.0 self.pos_gain_impedance_rotate_ground = 0.026462331414222717#0.013593301996588706#0.02067116618156433#0.011825856864452361#0.0#0.024435650557279587 self.force_factor_rotate_ground = 0.6#0.42808679342269895#0.38862146139144893#0.3449445694684983#0.61 self.force_factor_ground_rot_rotate_ground = 0.16#0.13#0.2#0.2#0.163668292760849#0.15#0.07469592690467834#0.05#0.02#0.075 self.gain_scheduling = 20.0 # PARAMS ROTATE LIFT if (env.simulation): self.grasp_xy_rotate_lift = 0.0022661592811346054 - 0.04 + 0.00303934335708618#-0.02 self.grasp_h_rotate_lift = 0.0 -0.017098468542099 #-0.00025067448616027804 else: self.grasp_xy_rotate_lift = 0.0022661592811346054 - 0.04 -0.00622488021850586#+ 0.009622406959533692 self.grasp_h_rotate_lift = 0.0 + 0.014247066974639896#+ 0.005761625766754149 self.gain_xy_pre_rotate_lift = 294.8115234375 self.gain_z_pre_rotate_lift = 249.4430389404297 self.init_dur_rotate_lift = 100 if (env.simulation): self.gain_xy_final_rotate_lift = 1007.8075528144836#1294.4734156131744 self.gain_z_final_rotate_lift = 1220.6658482551575#1028.2374143600464 self.pos_gain_impedance_rotate_lift = 0.02185524344444275#0.01539862297475338 self.force_factor_rotate_lift = 0.6349194526672364#1.0 self.force_factor_center_rotate_lift = 0.6068137288093567 self.force_factor_rot_rotate_lift = 0.02#0.34193327307701116 self.target_height_rot_lift_rotate_lift = 0.09 else: self.gain_xy_final_rotate_lift = 940.2498722076416#820.5114454030991 self.gain_z_final_rotate_lift = 1295.9117591381073#1133.7310016155243 self.pos_gain_impedance_rotate_lift = 0.026721017956733706#0.02095555767416954 self.force_factor_rotate_lift = 0.886374345421791#1.0 self.force_factor_center_rotate_lift = 0.6068137288093567 self.force_factor_rot_rotate_lift = 0.01#0.02 self.target_height_rot_lift_rotate_lift = 0.09 self.clip_height_rotate_lift = 0.0881337970495224 # PARAMS FOR THE LIFT PRIMITIVE UNDER KEEPING ORIENTATION self.orient_int_orient_gain = 0.019696855545043947#0.0 self.orient_int_pos_gain = 0.009067282676696778#0.0 if (env.simulation): self.orient_int_orient_gain = 0.0005 #0.00127358540892601# self.orient_int_pos_gain = 0.0051201748847961425#0.005 self.orient_grasp_xy_lift = -0.002748661208897829-0.04+0.0034238076210021985 + 0.019999999999999997#-0.02229524075984955 self.orient_grasp_h_lift = 0.0+0.02 -0.02838870149105787#-0.012001985907554625 else: self.orient_grasp_xy_lift = -0.002748661208897829-0.04 + 0.012545742988586423 self.orient_grasp_h_lift = 0.0 + 0.002259004116058349 self.orient_gain_xy_pre_lift = 294.8115234375 self.orient_gain_z_pre_lift = 249.4430389404297 self.orient_init_dur_lift = 100 self.orient_gain_xy_ground_lift = 294.8115234375 self.orient_gain_z_ground_lift = 249.4430389404297 self.orient_pos_gain_impedance_ground_lift = 0.032040052115917206 self.orient_switch_mode_lift = 0.035 if (env.simulation): self.orient_pos_gain_impedance_ground_lift = 0.01#0.0125 self.orient_gain_xy_ground_lift = 693.0245697498322 self.orient_gain_z_ground_lift = 744.9281394481659 self.orient_switch_mode_lift = 0.05 self.orient_gain_xy_lift_lift = 700#842.1571612358093#672.3513275384903#829.543000459671 self.orient_gain_z_lift_lift = 750#1378.0078768730164#1425.8808374404907#1101.177817583084 self.orient_pos_gain_impedance_lift_lift = 0.0125#0.01641496576368809#0.015692157968878746#0.0197468575835228#0.015233442336320877 self.orient_clip_height_lift = 0.0881337970495224 self.orient_force_factor_lift = 0.59#0.35#0.5970059156417846#0.4772495344281197#0.5929181218147278 self.orient_force_factor_rot_lift = 0.004292513728141785#0.0001#0.0014684607088565826#0.0005483480170369149#0.004665868282318115 else: self.orient_gain_xy_lift_lift = 600.0 self.orient_gain_z_lift_lift = 900.0 self.orient_pos_gain_impedance_lift_lift = 0.020851443633437158 self.orient_clip_height_lift = 0.0881337970495224 self.orient_force_factor_lift = 0.35 self.orient_force_factor_rot_lift = 0.0017775391042232514#0.0011627759784460067 self.orient_force_factor_rot_ground = 0.0
from collections import defaultdict def profile(count_matrix: Dict) -> Dict: """Generate the profile matrix of the given count matrix Arguments: count_matrix {Dict} -- motif count matrix Returns: Dict -- profile matrix of the counts matrix Example: >>> count_matrix = {'A': [2, 2, 0, 0, 0, 0, 9, 1, 1, 1, 3, 0], ... 'C': [1, 6, 0, 0, 0, 0, 0, 4, 1, 2, 4, 6], ... 'G': [0, 0, 10, 10, 9, 9, 1, 0, 0, 0, 0, 0], ... 'T': [7, 2, 0, 0, 1, 1, 0, 5, 8, 7, 3, 4]} >>> profile_mat = profile(count_matrix) >>> for k, v in profile_mat.items(): ... print(k, v) A [0.2, 0.2, 0.0, 0.0, 0.0, 0.0, 0.9, 0.1, 0.1, 0.1, 0.3, 0.0] C [0.1, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.1, 0.2, 0.4, 0.6] G [0.0, 0.0, 1.0, 1.0, 0.9, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0] T [0.7, 0.2, 0.0, 0.0, 0.1, 0.1, 0.0, 0.5, 0.8, 0.7, 0.3, 0.4] """ # the number of motifs is the sum of all counts in any column - since all columns should be derived # from the same number of motifs, simply sum the first column to get the number of motifs n_motifs = sum([count_matrix['A'][0], count_matrix['C'][0], count_matrix['G'][0], count_matrix['T'][0]]) profile = defaultdict(list) for k, v in count_matrix.items(): profile[k] = list(map(lambda x: x / n_motifs, v)) return dict(profile)
"""Models for ripper app.""" import urllib.parse import urllib.request from bs4 import BeautifulSoup from bs4.dammit import EncodingDetector import requests import re from dateutil.parser import parse from dateutil.tz import gettz from django.db import models from django.urls import reverse as reverse_url from django.core.validators import URLValidator from django.utils import timezone from .rip_tools import adjust_anchors from .rip_tools import remove_tags from .rip_tools import TargetTag from .rip_tools import get_url_domain from .rip_tools import url_is_valid from .exceptions import URLDoesNotExist TZINFOS = { "EST": gettz("US/Eastern"), "est": gettz("US/Eastern"), "ET": gettz("US/Eastern"), "et": gettz("US/Eastern"), } PARAGRAPHS_AND_HEADERS = ["p", "h1", "h2", "h3", "h4", "h5", "h6"] def get_model_for_url(url): DOMAIN_TO_CLASS = { "cnn.com": CNNArticle, "nytimes.com": NYTArticle, "washingtonpost.com": WAPOArticle, "politico.com": PoliticoArticle, "thehill.com": HillArticle, } domain = get_url_domain(url) return DOMAIN_TO_CLASS.get(domain, Article) class ArticleQuerySet(models.QuerySet): """Custom QuerySet for Article model.""" def get_by_url(self, url): """Gets an Article instance using the passed URL.""" try: # Attempt to find the URL with no schema first, which should be more common article = self.get(url_no_schema=url) except self.model.DoesNotExist: # If that doesn't work, try .get with raw URL # If exception raises from here, let the calling method handle it. article = self.get(url=url) return article class ArticleManager(models.Manager): """Custom Manager for Article model.""" def get_queryset(self): return ArticleQuerySet(self.model, using=self._db) def get_by_url(self, url): return self.get_queryset().get_by_url(url) class Article(models.Model): """Content for an Article, including logic to grab its contents via URL and produce output to be displayed within the site. """ objects = ArticleManager() _REMOVE_TAGS_BASE = ["figure", "img", "aside", "script"] REMOVE_TAGS = [] # Article contents title = models.CharField(max_length=255, null=True, blank=True) summary = models.TextField(null=True, blank=True) byline = models.TextField(null=True, blank=True) time_str = models.CharField(max_length=255, null=True, blank=True) body_content = models.TextField(null=True, blank=True) article_time = models.DateTimeField(null=True, blank=True) manual = models.BooleanField(default=False) # URL and Domain details url = models.TextField(null=True, blank=True, validators=[URLValidator()]) url_no_schema = models.TextField(null=True, blank=True) RIP_TYPE_UNKNOWN = "UNKNOWN" RIP_TYPE_CNN = "CNN" RIP_TYPE_NYT = "NYT" RIP_TYPE_WAPO = "WAPO" RIP_TYPE_POLITICO = "POLITICO" RIP_TYPE_HILL = "HILL" RIP_TYPE_CHOICES = ( (RIP_TYPE_UNKNOWN, "<unknown>"), (RIP_TYPE_CNN, "CNN"), (RIP_TYPE_NYT, "New York Times"), (RIP_TYPE_WAPO, "Washington Post"), (RIP_TYPE_POLITICO, "Politico"), (RIP_TYPE_HILL, "The Hill"), ) rip_type = models.CharField( max_length=9, choices=RIP_TYPE_CHOICES, default=RIP_TYPE_UNKNOWN ) # Timing rip_time = models.DateTimeField(auto_now_add=True) def __str__(self): return f"{self.rip_type} - {self.title}" @property def time_str_for_template(self): return f'"{self.time_str}"' def get_absolute_url(self): return reverse_url("ripper:article_detail", args=(self.url_no_schema,)) def parse_url(self): self.url_no_schema = re.sub(r"^https?://", "", self.url) def process(self): """Defines all steps to fully process this article, from the URL to final content. """ self.parse_url() soup = self.get_the_soup() # Remove the base tags all articles should not have... remove_tags(soup, *self._REMOVE_TAGS_BASE) # ...then specific tags defined for an article subclass remove_tags(soup, *self.REMOVE_TAGS) self.extract_content(soup) self.parse_time_str() def parse_time_str(self): """Uses dateutil to attempt to parse the time_str into a datetime object.""" if not self.time_str: # Short circuit return test_str = self.time_str.lower() if "update" in test_str: test_str = re.search(r"updated?(.*)$", test_str).group(1) test_str = test_str.replace(" et", " est").replace(" est", " EST") try: parsed = parse(test_str, tzinfos=TZINFOS) except ValueError as exc: print(exc) return self.article_time = parsed def get_the_soup(self): if self.url is None: # Early exit return resp = requests.get(self.url, proxies=urllib.request.getproxies()) http_encoding = ( resp.encoding if "charset" in resp.headers.get("content-type", "").lower() else None ) html_encoding = EncodingDetector.find_declared_encoding( resp.content, is_html=True ) encoding = html_encoding or http_encoding soup = BeautifulSoup(resp.content, "lxml", from_encoding=encoding) adjust_anchors(soup) return soup def extract_content(self, soup): """Extracts article contents. Method should be overwritten by subclassed proxy models, with a `super()` call to get shared elements. """ self.title = soup.title.text @property def summary_part(self): if self.summary: return self.summary soup = BeautifulSoup(self.body_content, "lxml") return soup.find_all("p")[0].text def copy_article(self, other_article): """Given another Article instance, copy relevant article details to this instance. Useful when re-processing an article: a temporary one is generated, but not saved in the database. """ # List of fields that should be copied from `instance`. COPYABLE_FIELDS = [ "title", "summary", "byline", "time_str", "body_content", "article_time", "rip_type", ] for field in COPYABLE_FIELDS: setattr(self, field, getattr(other_article, field)) self.rip_time = timezone.now() class NYTArticle(Article): """Article from New York Times.""" class Meta: proxy = True def extract_content(self, soup): """Extraction logic for New York Times articles.""" super().extract_content(soup) self.rip_type = self.RIP_TYPE_NYT self.title = soup.find("h1", {"itemprop": "headline"}).text summary_tag = soup.find("p", {"id": "article-summary"}) if summary_tag: self.summary = summary_tag.text # Pick out sections in the body that we want body_section = soup.find("section", {"name": "articleBody"}) body_content = [] for div in body_section.find_all("div", {"class": "StoryBodyCompanionColumn"}): body_content.extend([x for x in div.find_all(PARAGRAPHS_AND_HEADERS)]) self.body_content = "\n".join([str(x) for x in body_content]) # Byline. Reserve the tag in order to find time data relative to it. byline_tag = soup.find("p", {"itemprop": "author"}) self.byline = byline_tag.text # Find the time portions relative to the byline. time_tags = None for parent in byline_tag.parents: time_tags = parent.find_all("time") if time_tags: break if time_tags is not None: self.time_str = " ".join([x.text for x in time_tags]) class WAPOArticle(Article): """Article from the Washington Post.""" class Meta: proxy = True REMOVE_TAGS = [ # These appear to all be wrappers for advertisements, and occasionally for figures. TargetTag("div", {"class": "cb"}), # Interstitials are used for links to other articles, breaking the article flow. TargetTag("p", {"class": "interstitial"}), ] def extract_content(self, soup): """Extraction logic for Washington Post articles.""" super().extract_content(soup) self.rip_type = self.RIP_TYPE_WAPO # Main parts self.title = soup.find("h1", {"class": "font--headline"}).text self.body_content = soup.find("div", {"class": "article-body"}).prettify() # There's a lot of extra text inside the author-names section, mainly tooltip info. # To get the simpler name output, we have to build it manually. authors = soup.find("div", {"class": "author-names"}) byline = "By " author_names = [] for author in authors.find_all("span", {"class": "author-name"}): author_names.append(author.text) self.byline = byline + ( ", ".join(author_names) if author_names else "<Unknown>" ) self.time_str = soup.find("div", {"class": "display-date"}).text class CNNArticle(Article): """Article from CNN.""" class Meta: proxy = True REMOVE_TAGS = [ # Shit-ton of ad embeds. TargetTag("div", {"class": "ad"}), TargetTag("div", {"class": "el__embedded"}), # Instagram shit TargetTag("div", {"class": "el__leafmedia--instagram-aside"}), # "Read more" sections at the end TargetTag("div", {"class": "zn-body__read-more-outbrain"}), TargetTag("div", {"class": "zn-body__read-more"}), # More ad bullshit TargetTag("ul", {"class": "cn-zoneAdContainer"}), ] def extract_content(self, soup): """Extraction logic for CNN articles.""" super().extract_content(soup) self.rip_type = self.RIP_TYPE_CNN # CNN puts all their paragraphs in `div.zn-body__paragraph` tags, which is dumb # Replace each one with a simpler `p` tag, by changing that tag's name # (the class is irrelevant, as we don't make changes based on it) for graf in soup.find_all("div", {"class": "zn-body__paragraph"}): graf.name = "p" # Main parts self.title = soup.find("h1", {"class": "pg-headline"}).text self.summary = "" self.body_content = soup.find("section", {"id": "body-text"}).prettify() # Byline. Reserve the tag in order to find time data relative to it. self.byline = soup.find("span", {"class": "metadata__byline__author"}).text self.time_str = soup.find("p", {"class": "update-time"}).text class PoliticoArticle(Article): """Article from Politico.""" class Meta: proxy = True REMOVE_TAGS = [ # The topbar sits in the middle of stuff for some reason. # Probably not going to end up grabbing it, but just in case. TargetTag("div", {"class": "pop-up-bar"}), # Some sections that look like story content are "below" and "comments" sections. TargetTag("section", {"class": "below-article-section"}), TargetTag("section", {"class": "comments-section"}), # Some "section"s are used for ads. "section[data-ad-section]", # Literally an "ad" div. Good job. TargetTag("div", {"class": "ad"}), ] def extract_content(self, soup): """Extraction logic for Politico articles.""" super().extract_content(soup) self.rip_type = self.RIP_TYPE_POLITICO # Title self.title = ( soup.find("h2", {"class": "headline"}) or soup.find("span", {"itemprop": "headline"}) ).text # Summary summary = soup.find("p", {"class": "dek"}) if summary is not None: self.summary = summary.text # Body body_content = soup.select("p.story-text__paragraph") or soup.select( "p:not(.byline):not(.timestamp)" ) self.body_content = "\n".join([str(x) for x in body_content]) # Byline self.byline = ( soup.find("p", {"class": "story-meta__authors"}) or soup.find("p", {"class": "byline"}) ).text # Time string self.time_str = ( soup.find("p", {"class": "story-meta__timestamp"}) or soup.find("time", {"itemprop": "datePublished"}) ).text class HillArticle(Article): """Article from The Hill.""" REMOVE_TAGS = [TargetTag("span", {"class": "rollover-people-block"})] class Meta: proxy = True def extract_content(self, soup): """Extraction logic for The Hill articles.""" super().extract_content(soup) self.rip_type = self.RIP_TYPE_HILL self.title = soup.find("h1", {"id": "page-title"}).text # Byline and timestr are joined in the same element. # Split out the time_str, then use that to strip it from the byline text byline = soup.find("span", {"class": "submitted-by"}) self.time_str = byline.find("span", {"class": "submitted-date"}).text self.byline = byline.text.replace(self.time_str, "").strip("- ") # Most of the body content can be found in `p` tags, # but a summary may be available in a preceding `div`, # which can mess things up. # Fortunately, it appears to all be wrapped up in some deep-nested # `div.field-item` tag beneath `div.field-name-body`. So we'll look there. body = soup.select("article.node-article div.field-name-body div.field-item")[0] self.summary = body.select("div:first-child")[0].text # body = soup.find("article", {"class": "node-article"}) self.body_content = "\n".join( [str(x) for x in body.find_all(PARAGRAPHS_AND_HEADERS)] )
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test PauliSumOp """ import unittest from itertools import product from test.python.opflow import QiskitOpflowTestCase import numpy as np from scipy.sparse import csr_matrix from qiskit import QuantumCircuit, transpile from qiskit.circuit import Parameter, ParameterVector from qiskit.opflow import ( CX, CircuitStateFn, DictStateFn, H, I, One, OperatorStateFn, PauliSumOp, SummedOp, X, Y, Z, Zero, ) from qiskit.quantum_info import Pauli, PauliTable, SparsePauliOp class TestPauliSumOp(QiskitOpflowTestCase): """PauliSumOp tests.""" def test_construct(self): """constructor test""" sparse_pauli = SparsePauliOp(Pauli("XYZX"), coeffs=[2.0]) coeff = 3.0 pauli_sum = PauliSumOp(sparse_pauli, coeff=coeff) self.assertIsInstance(pauli_sum, PauliSumOp) self.assertEqual(pauli_sum.primitive, sparse_pauli) self.assertEqual(pauli_sum.coeff, coeff) self.assertEqual(pauli_sum.num_qubits, 4) def test_add(self): """add test""" pauli_sum = 3 * X + Y self.assertIsInstance(pauli_sum, PauliSumOp) expected = PauliSumOp(3.0 * SparsePauliOp(Pauli("X")) + SparsePauliOp(Pauli("Y"))) self.assertEqual(pauli_sum, expected) pauli_sum = X + Y summed_op = SummedOp([X, Y]) self.assertEqual(pauli_sum, summed_op) a = Parameter("a") b = Parameter("b") actual = a * PauliSumOp.from_list([("X", 2)]) + b * PauliSumOp.from_list([("Y", 1)]) expected = SummedOp( [PauliSumOp.from_list([("X", 2)], a), PauliSumOp.from_list([("Y", 1)], b)] ) self.assertEqual(actual, expected) def test_mul(self): """multiplication test""" target = 2 * (X + Z) self.assertEqual(target.coeff, 1) self.assertListEqual(target.primitive.to_list(), [("X", (2 + 0j)), ("Z", (2 + 0j))]) target = 0 * (X + Z) self.assertEqual(target.coeff, 0) self.assertListEqual(target.primitive.to_list(), [("X", (1 + 0j)), ("Z", (1 + 0j))]) beta = Parameter("β") target = beta * (X + Z) self.assertEqual(target.coeff, 1.0 * beta) self.assertListEqual(target.primitive.to_list(), [("X", (1 + 0j)), ("Z", (1 + 0j))]) def test_adjoint(self): """adjoint test""" pauli_sum = PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[2]), coeff=3) expected = PauliSumOp(SparsePauliOp(Pauli("XYZX")), coeff=6) self.assertEqual(pauli_sum.adjoint(), expected) pauli_sum = PauliSumOp(SparsePauliOp(Pauli("XYZY"), coeffs=[2]), coeff=3j) expected = PauliSumOp(SparsePauliOp(Pauli("XYZY")), coeff=-6j) self.assertEqual(pauli_sum.adjoint(), expected) pauli_sum = PauliSumOp(SparsePauliOp(Pauli("X"), coeffs=[1])) self.assertEqual(pauli_sum.adjoint(), pauli_sum) pauli_sum = PauliSumOp(SparsePauliOp(Pauli("Y"), coeffs=[1])) self.assertEqual(pauli_sum.adjoint(), pauli_sum) pauli_sum = PauliSumOp(SparsePauliOp(Pauli("Z"), coeffs=[1])) self.assertEqual(pauli_sum.adjoint(), pauli_sum) pauli_sum = (Z ^ Z) + (Y ^ I) self.assertEqual(pauli_sum.adjoint(), pauli_sum) def test_equals(self): """equality test""" self.assertNotEqual((X ^ X) + (Y ^ Y), X + Y) self.assertEqual((X ^ X) + (Y ^ Y), (Y ^ Y) + (X ^ X)) theta = ParameterVector("theta", 2) pauli_sum0 = theta[0] * (X + Z) pauli_sum1 = theta[1] * (X + Z) expected = PauliSumOp( SparsePauliOp(Pauli("X")) + SparsePauliOp(Pauli("Z")), coeff=1.0 * theta[0], ) self.assertEqual(pauli_sum0, expected) self.assertNotEqual(pauli_sum1, expected) def test_tensor(self): """Test for tensor operation""" with self.subTest("Test 1"): pauli_sum = ((I - Z) ^ (I - Z)) + ((X - Y) ^ (X + Y)) expected = (I ^ I) - (I ^ Z) - (Z ^ I) + (Z ^ Z) + (X ^ X) + (X ^ Y) - (Y ^ X) - (Y ^ Y) self.assertEqual(pauli_sum, expected) with self.subTest("Test 2"): pauli_sum = (Z + I) ^ Z expected = (Z ^ Z) + (I ^ Z) self.assertEqual(pauli_sum, expected) with self.subTest("Test 3"): pauli_sum = Z ^ (Z + I) expected = (Z ^ Z) + (Z ^ I) self.assertEqual(pauli_sum, expected) def test_permute(self): """permute test""" pauli_sum = PauliSumOp(SparsePauliOp((X ^ Y ^ Z).primitive)) expected = PauliSumOp(SparsePauliOp((X ^ I ^ Y ^ Z ^ I).primitive)) self.assertEqual(pauli_sum.permute([1, 2, 4]), expected) def test_compose(self): """compose test""" target = (X + Z) @ (Y + Z) expected = 1j * Z - 1j * Y - 1j * X + I self.assertEqual(target, expected) observable = (X ^ X) + (Y ^ Y) + (Z ^ Z) state = CircuitStateFn((CX @ (X ^ H @ X)).to_circuit()) self.assertAlmostEqual((~OperatorStateFn(observable) @ state).eval(), -3) def test_to_matrix(self): """test for to_matrix method""" target = (Z + Y).to_matrix() expected = np.array([[1.0, -1j], [1j, -1]]) np.testing.assert_array_equal(target, expected) def test_str(self): """str test""" target = 3.0 * (X + 2.0 * Y - 4.0 * Z) expected = "3.0 * X\n+ 6.0 * Y\n- 12.0 * Z" self.assertEqual(str(target), expected) alpha = Parameter("α") target = alpha * (X + 2.0 * Y - 4.0 * Z) expected = "1.0*α * (\n 1.0 * X\n + 2.0 * Y\n - 4.0 * Z\n)" self.assertEqual(str(target), expected) def test_eval(self): """eval test""" target0 = (2 * (X ^ Y ^ Z) + 3 * (X ^ X ^ Z)).eval("000") target1 = (2 * (X ^ Y ^ Z) + 3 * (X ^ X ^ Z)).eval(Zero ^ 3) expected = DictStateFn({"110": (3 + 2j)}) self.assertEqual(target0, expected) self.assertEqual(target1, expected) phi = 0.5 * ((One + Zero) ^ 2) zero_op = (Z + I) / 2 one_op = (I - Z) / 2 h1 = one_op ^ I h2 = one_op ^ (one_op + zero_op) h2a = one_op ^ one_op h2b = one_op ^ zero_op self.assertEqual((~OperatorStateFn(h1) @ phi).eval(), 0.5) self.assertEqual((~OperatorStateFn(h2) @ phi).eval(), 0.5) self.assertEqual((~OperatorStateFn(h2a) @ phi).eval(), 0.25) self.assertEqual((~OperatorStateFn(h2b) @ phi).eval(), 0.25) pauli_op = (Z ^ I ^ X) + (I ^ I ^ Y) mat_op = pauli_op.to_matrix_op() full_basis = ["".join(b) for b in product("01", repeat=pauli_op.num_qubits)] for bstr1, bstr2 in product(full_basis, full_basis): self.assertEqual(pauli_op.eval(bstr1).eval(bstr2), mat_op.eval(bstr1).eval(bstr2)) def test_exp_i(self): """exp_i test""" # TODO: add tests when special methods are added pass def test_to_instruction(self): """test for to_instruction""" target = ((X + Z) / np.sqrt(2)).to_instruction() qc = QuantumCircuit(1) qc.u(np.pi / 2, 0, np.pi, 0) qc_out = transpile(target.definition, basis_gates=["u"]) self.assertEqual(qc_out, qc) def test_to_pauli_op(self): """test to_pauli_op method""" target = X + Y self.assertIsInstance(target, PauliSumOp) expected = SummedOp([X, Y]) self.assertEqual(target.to_pauli_op(), expected) def test_getitem(self): """test get item method""" target = X + Z self.assertEqual(target[0], PauliSumOp(SparsePauliOp(X.primitive))) self.assertEqual(target[1], PauliSumOp(SparsePauliOp(Z.primitive))) def test_len(self): """test len""" target = X + Y + Z self.assertEqual(len(target), 3) def test_reduce(self): """test reduce""" target = X + X + Z self.assertEqual(len(target.reduce()), 2) def test_to_spmatrix(self): """test to_spmatrix""" target = X + Y expected = csr_matrix([[0, 1 - 1j], [1 + 1j, 0]]) self.assertEqual((target.to_spmatrix() - expected).nnz, 0) def test_from_list(self): """test from_list""" target = PauliSumOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) expected = ( -1.052373245772859 * (I ^ I) + 0.39793742484318045 * (I ^ Z) - 0.39793742484318045 * (Z ^ I) - 0.01128010425623538 * (Z ^ Z) + 0.18093119978423156 * (X ^ X) ) self.assertEqual(target, expected) def test_matrix_iter(self): """Test PauliSumOp dense matrix_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) table = PauliTable.from_labels(labels) coeff = 10 op = PauliSumOp(SparsePauliOp(table, coeffs), coeff) for idx, i in enumerate(op.matrix_iter()): self.assertTrue(np.array_equal(i, coeff * coeffs[idx] * Pauli(labels[idx]).to_matrix())) def test_matrix_iter_sparse(self): """Test PauliSumOp sparse matrix_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) coeff = 10 table = PauliTable.from_labels(labels) op = PauliSumOp(SparsePauliOp(table, coeffs), coeff) for idx, i in enumerate(op.matrix_iter(sparse=True)): self.assertTrue( np.array_equal(i.toarray(), coeff * coeffs[idx] * Pauli(labels[idx]).to_matrix()) ) if __name__ == "__main__": unittest.main()
from enum import Enum from random import choices import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable class Direction(Enum): Up = 1 Right = 2 Down = 3 Left = 4 class Position(): x = 0 y = 0 direction = Direction.Right def __init__(self, x, y, direction = Direction.Right): self.x = x self.y = y self.direction = direction class Step(): direction = Direction.Right sensedDistance = 0 realPosition = Position(0, 0) def __init__(self, direction, sensedDistance, position): self.direction = direction self.sensedDistance = sensedDistance self.realPosition = position N = 10 map = [] epsilon = 1/(N*N*N*N) # x = row # y = column currentPosition = Position(5, 2) # steps = [Step(direction=Direction.Up, sensedDistance=8, position=Position(5, 5))] # normal # steps = [Step(direction=Direction.Right, sensedDistance=0, position=Position(5, 6)), # Step(direction=Direction.Up, sensedDistance=0, position=Position(0, 6)), # Step(direction=Direction.Left, sensedDistance=0, position=Position(0, 0)), # Step(direction=Direction.Down, sensedDistance=5, position=Position(4, 0)), # robot gets kidnapped here # Step(direction=Direction.Right, sensedDistance=4, position=Position(4, 6)), # Step(direction=Direction.Down, sensedDistance=1, position=Position(8, 5)), # Step(direction=Direction.Right, sensedDistance=0, position=Position(8, 9)), # Step(direction=Direction.Up, sensedDistance=1, position=Position(4, 9))] # kidnapped steps = [Step(direction=Direction.Right, sensedDistance=0, position=Position(5, 6)), Step(direction=Direction.Up, sensedDistance=0, position=Position(0, 6)), Step(direction=Direction.Left, sensedDistance=0, position=Position(0, 0)), # robot gets kidnapped here Step(direction=Direction.Down, sensedDistance=0, position=Position(9, 4)), Step(direction=Direction.Right, sensedDistance=0, position=Position(9, 9)), Step(direction=Direction.Up, sensedDistance=1, position=Position(4, 9)), Step(direction=Direction.Left, sensedDistance=5, position=Position(4, 5)), Step(direction=Direction.Down, sensedDistance=1, position=Position(8, 5))] def normalize(matrix): retVal = matrix.copy() retVal = retVal - retVal.mean() retVal = retVal / np.abs(retVal).max() return retVal def plotData(step, prior, posterior): global epsilon, map, currentPosition fig = plt.figure(dpi=500) # fig.tight_layout() gs = gridspec.GridSpec(1, 3, width_ratios=[1, 1.07, 1.07]) # ======= # Map # ======= ax = fig.add_subplot(gs[0]) ax.matshow(map, vmin=0, vmax=1, cmap='Greys') plt.title('Map', x=0.5, y=1.2) ticks = np.arange(0, N, 1) plt.grid(which='major', axis='both', linestyle=':', color='black') for i in range(len(map)): for j in range(len(map)): if currentPosition.x == i and currentPosition.y == j: ax.text(j, i, "R", ha="center", va="center", color="red", weight='bold') ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(range(0, N)) ax.set_yticklabels(range(0, N)) # ======= # Prior # ======= ax = fig.add_subplot(gs[1]) data = normalize(prior) im = ax.matshow(data, vmin=np.min(data), vmax=np.max(data)) plt.title('Prior', x=0.5, y=1.2) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(im, cax=cax) ticks = np.arange(0, N, 1) plt.grid(which='major', axis='both', linestyle=':', color='black') ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(range(0, N)) ax.set_yticklabels(range(0, N)) # ======= # Posterior # ======= ax = fig.add_subplot(gs[2]) data = normalize(posterior) im = ax.matshow(data, vmin=np.min(data), vmax=np.max(data)) plt.title('Posterior', x=0.5, y=1.2) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(im, cax=cax) ticks = np.arange(0, N, 1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(range(0, N)) ax.set_yticklabels(range(0, N)) # plt.tight_layout() plt.show() fig.savefig(f"step{step}.png") def calcPrior(oldPosterior, direction): global epsilon, map steps = [3, 4, 5, 6, 7] stepProbability = [0, 0, 0, 0.1, 0.2, 0.4, 0.2, 0.1] prior = np.full((N, N), 0.0) # x = row = i # y = column = j # for each row for i in range(0, N): # for each column for j in range(0, N): # horizontal movement if direction == Direction.Right or direction == Direction.Left: # if this row contains a wall if map[i, :].__contains__(1): # if robot moves to the right if direction == Direction.Right: # start from the left side and calc prior up to a wall for stepSize in steps: # wall found, restart right from the wall if map[i, j] == 1: break else: if j - stepSize >= 0: skip = False for t in range(0, stepSize + 1): if j - t >= 0 and map[i, j - t] == 1: skip = True break if not skip: if j - stepSize >= 0: prior[i, j] += oldPosterior[i, j - stepSize] * stepProbability[stepSize] else: break # robot moves to the left else: # start from the left side and calc prior up to a wall for stepSize in steps: # wall found, restart right from the wall if map[i, j] == 1: break else: if j + stepSize < N: skip = False for t in range(0, stepSize + 1): if j + t < N and map[i, j + t] == 1: skip = True break if not skip: if j + stepSize < N: prior[i, j] += oldPosterior[i, j + stepSize] * stepProbability[stepSize] else: break # no wall in this row else: # normal calculation for stepSize in steps: if direction == Direction.Right: if j - stepSize >= 0: prior[i, j] += oldPosterior[i, j - stepSize] * stepProbability[stepSize] if direction == Direction.Left: if j + stepSize < N: prior[i, j] += oldPosterior[i, j + stepSize] * stepProbability[stepSize] # vertical movement elif direction == Direction.Down or direction == Direction.Up: # if this row contains a wall if map[:, j].__contains__(1): # robot moves up if direction == Direction.Up: # start from the left side and calc prior up to a wall for stepSize in steps: # wall found, restart right from the wall if map[i, j] == 1: break else: if i + stepSize < N: skip = False for t in range(0, stepSize + 1): if i + t < N and map[i + t, j] == 1: skip = True break if not skip: if i + stepSize < N: prior[i, j] += oldPosterior[i + stepSize, j] * stepProbability[stepSize] else: break # robot moves down else: # start from the left side and calc prior up to a wall for stepSize in steps: # wall found, restart right from the wall if map[i, j] == 1: break else: if i - stepSize >= 0: skip = False for t in range(0, stepSize + 1): if 0 <= i - t and map[i - t, j] == 1: skip = True break if not skip: if i - stepSize > 0: prior[i, j] += oldPosterior[i - stepSize, j] * stepProbability[ stepSize] else: break # no wall in this row else: # normal calculation for stepSize in steps: if direction == Direction.Up: if i + stepSize < N: prior[i, j] += oldPosterior[i + stepSize, j] * stepProbability[stepSize] if direction == Direction.Down: if i - stepSize >= 0: prior[i, j] += oldPosterior[i - stepSize, j] * stepProbability[stepSize] return prior def calcPosterior(sensorValue, direction, prior): global epsilon, map sensorProbability = { sensorValue - 2: 0.1, sensorValue - 1: 0.2, sensorValue: 0.4, sensorValue + 1: 0.2, sensorValue + 2: 0.1 } posterior = np.full((N, N), 0.0) for i in range(0, N): for j in range(0, N): # horizontal movement if direction == Direction.Right or direction == Direction.Left: # if this row contains a wall if map[i, :].__contains__(1): # if robot moves to the right if direction == Direction.Right: # wall found, restart right from the next field if map[i, j] == 1: continue else: # is there a wall in range? for k in range(max(0, sensorValue - 2), sensorValue + 2 + 1): if j + k + 1 == N or (j + k + 1 < N and map[i, j + k + 1] == 1): posterior[i, j] = prior[i, j] * sensorProbability[k] # left elif direction == Direction.Left: # wall found, restart right from the next field if map[i, j] == 1: continue else: # is there a wall in range? for k in range(max(0, sensorValue - 2), sensorValue + 2 + 1): if j - k - 1 == -1 or (j - k - 1 >= 0 and map[i, j - k - 1] == 1): posterior[i, j] = prior[i, j] * sensorProbability[k] # no wall in this row else: # normal calculation if direction == Direction.Right: for k in range(sensorValue - 2, sensorValue + 2 + 1): if N > N - k - 1 >= 0: posterior[i, N - k - 1] = prior[i, N - k - 1] * sensorProbability[k] if direction == Direction.Left: for k in range(sensorValue - 2, sensorValue + 2 + 1): if 0 <= k < N: posterior[i, k] = prior[i, k] * sensorProbability[k] #vertical movement elif direction == Direction.Down or direction == Direction.Up: # if this column contains a wall if map[:, j].__contains__(1): # robot moves up if direction == Direction.Up: # wall found, restart right from the next field if map[i, j] == 1: continue else: # is there a wall in range? for k in range(max(0, sensorValue - 2), sensorValue + 2 + 1): if i - k - 1 == -1 or (i - k - 1 >= 0 and map[i - k - 1, j] == 1): posterior[i, j] = prior[i, j] * sensorProbability[k] # robot moves down else: # wall found, restart right from the next field if map[i, j] == 1: continue else: # is there a wall in range? for k in range(max(0, sensorValue - 2), sensorValue + 2 + 1): if i + k + 1 == N or (i + k + 1 < N and map[i + k + 1, j] == 1): posterior[i, j] = prior[i, j] * sensorProbability[k] # no wall in this column else: # normal calculation if direction == Direction.Up: for k in range(max(0, sensorValue - 2), sensorValue + 2 + 1): if 0 <= k < N: posterior[k, j] = prior[k, j] * sensorProbability[k] if direction == Direction.Down: for k in range(sensorValue - 2, sensorValue + 2 + 1): if N > N - k - 1 >= 0: posterior[N - k - 1, j] = prior[N - k - 1, j] * sensorProbability[k] posterior[posterior < epsilon] = epsilon posterior = posterior / np.sum(posterior) return posterior def getSensorDerivation(): # z_t population = [-2, -1, 0, 1, 2] weights = [0.1, 0.2, 0.4, 0.2, 0.1] return choices(population, weights)[0] def getStepSize(): # x_t population = [3, 4, 5, 6, 7] weights = [0.1, 0.2, 0.4, 0.2, 0.1] return choices(population, weights)[0] def doStep(direction): global realPos stepSize = getStepSize() print(f'Moving {stepSize} in Direction {direction}') if direction == Direction.Up: if realPos.y - stepSize < 0: stepSize = realPos.y print(f'robot hit upper wall, moved only {stepSize}') realPos.y = realPos.y - stepSize elif direction == Direction.Right: if realPos.x + stepSize > N: stepSize = N - realPos.x print(f'robot hit right wall, moved only {stepSize}') realPos.x = realPos.x + stepSize elif direction == Direction.Down: if realPos.y + stepSize > N: stepSize = N - realPos.y print(f'robot hit lower wall, moved only {stepSize}') realPos.y = realPos.y + stepSize elif direction == Direction.Left: if realPos.x - stepSize < 0: stepSize = realPos.x print(f'robot hit left wall, moved only {stepSize}') realPos.x = realPos.x - stepSize def senseDistance(direction): global realPos distance = 0 if direction == Direction.Up: for i in range(1, realPos.y+1): if realPos.y - i < 0: break if map[realPos.x - i, realPos.y] == 0: distance += 1 else: break elif direction == Direction.Right: for i in range(1, N - realPos.x): if realPos.x + i > N: break if map[realPos.x, realPos.y + i] == 0: distance += 1 else: break elif direction == Direction.Down: for i in range(1, N - realPos.y): if realPos.y + i > N: break if map[realPos.x, realPos.y + i] == 0: distance += 1 else: break elif direction == Direction.Left: for i in range(1, realPos.x + 1): if realPos.x - i < 0: break if map[realPos.x - i, realPos.y] == 0: distance += 1 else: break return distance def main(): global map, currentPosition map = np.empty((N, N)) map[:] = 0 map[1, 1] = 1 map[1, 8] = 1 map[2, 9] = 1 map[3, 4] = 1 map[5, 7] = 1 map[6, 8] = 1 map[7, 2] = 1 map[7, 3] = 1 map[7, 7] = 1 probabilities = np.full((N, N), 1 / (N * N - np.sum(map))) i = 0 plotData(i, probabilities, probabilities) for step in steps: i += 1 # 1. take random step # doStep(step.direction) currentPosition = step.realPosition # 2. calulate prior prior = calcPrior(probabilities, step.direction) # 3. get sensor values # distance = senseDistance(step.direction) + getSensorDerivation() distance = step.sensedDistance # 4. calulate posterior posterior = calcPosterior(distance, step.direction, prior) # probabilities[map == 1] = 0 plotData(i, prior, posterior) probabilities = posterior if __name__ == "__main__": main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 31 21:42:33 2019 @author: george """ import sys import numpy as np from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.neural_network import MLPClassifier from sklearn.cluster import KMeans from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.naive_bayes import BernoulliNB def logisticRegressionCv2(Xtrain = None, ytrain = None, Xtest = None, ytest = None, Cs = [10], penalty = 'l1', solver = 'saga', scoring = 'f1'): model = LogisticRegressionCV(Cs = Cs, penalty = penalty, random_state = 0, solver = solver, scoring = scoring)\ .fit(Xtrain, ytrain) probTrain = model.predict_proba( Xtrain )[:, 1] probTest = model.predict_proba( Xtest )[:, 1] params = {'model': model, 'probTrain': probTrain, 'probTest': probTest} return params, probTest, probTrain def neural_nets(Xtrain = None, ytrain = None, Xtest = None, ytest = None, h_l_s = (5, 3, 2), cv = 2, scoring = 'f1'): sgd = MLPClassifier( hidden_layer_sizes = h_l_s, early_stopping = True, random_state = 0) param_grid = {'alpha' : [0.001, 0.01, 0.1 , 1, 10, 100, 1000, 10000] } model = GridSearchCV( sgd, param_grid = param_grid, n_jobs = -1, scoring = scoring, cv = cv).fit(Xtrain, ytrain) probTrain = model.predict_proba( Xtrain )[:, 1] probTest = model.predict_proba( Xtest )[:, 1] params = {'model': model, 'probTrain': probTrain, 'probTest': probTest} return params, probTest, probTrain def kmeansLogRegr( Xtrain = None, ytrain = None, Xtest = None, ytest = None, Cs = [10], penalty = 'l1', solver = 'saga', scoring = 'f1', n_clusters = 2, adaR = 1): #CLUSTER WITH KMEANS kmeans = KMeans(n_clusters = n_clusters, random_state = 0).\ fit( np.concatenate(( Xtrain, Xtest ), axis = 0) ) #TAKE THE LABELS labelsTrain = kmeans.labels_[0: Xtrain.shape[0]] labelsTest = kmeans.labels_[ Xtrain.shape[0]:] #TRAIN LOGISTIC REGRESSION models = [] probTrain = [] probTest = [] for i in np.arange( n_clusters ): indxTr = np.where(labelsTrain == i)[0] indxTest = np.where( labelsTest == i)[0] if adaR == 1: Csnew = (np.array(Cs)/len(indxTr)).tolist() params, _, _ = logisticRegressionCv2(Xtrain = Xtrain[indxTr], ytrain = ytrain[indxTr], ytest = ytest[indxTest], Xtest = Xtest[indxTest], Cs = Csnew, penalty = penalty, solver = solver, scoring = scoring) models.append( params['model'] ) probTrain.append( params['probTrain'] ) probTest.append( params['probTest'] ) params = {'models': models,'labelsTrain': labelsTrain, 'labelsTest': labelsTest, 'probTrain': probTrain, 'probTest': probTest} return params def randomforests(Xtrain = None, ytrain = None, Xtest = None, ytest = None, cv = 2, scoring = 'f1'): "RANDOM FOREST CLASSIFIER" param_grid = {'n_estimators' : [10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 700, 900] } forest = RandomForestClassifier() model = GridSearchCV( forest, param_grid = param_grid, n_jobs = -1, scoring = scoring, cv = cv).\ fit(Xtrain, ytrain) #fit model probTrain = model.predict_proba( Xtrain )[:, 1] probTest = model.predict_proba( Xtest )[:, 1] params = {'model': model, 'probTrain': probTrain, 'probTest': probTest} return params, probTest, probTrain def xboost(Xtrain = None, ytrain = None, Xtest = None, ytest = None, cv = 2, scoring = 'f1'): param_grid = {'n_estimators' : [10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 700, 900]} ada = AdaBoostClassifier() model = GridSearchCV( ada, param_grid = param_grid, n_jobs = -1, scoring = scoring, cv = cv).\ fit(Xtrain, ytrain) #fit model probTrain = model.predict_proba( Xtrain )[:, 1] probTest = model.predict_proba( Xtest )[:, 1] params = {'model': model, 'probTrain': probTrain, 'probTest': probTest} return params, probTest, probTrain def gradboost(Xtrain = None, ytrain = None, Xtest = None, ytest = None, cv = 2, scoring = 'f1'): "RANDOM FOREST CLASSIFIER" param_grid = {'n_estimators' : [10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 700, 900]} grad = GradientBoostingClassifier(subsample = 0.5, max_features = 'sqrt', learning_rate = 0.01, max_depth = 5) model = GridSearchCV( grad, param_grid = param_grid, n_jobs = -1, scoring = scoring, cv = cv).\ fit(Xtrain, ytrain) #fit model probTrain = model.predict_proba( Xtrain )[:, 1] probTest = model.predict_proba( Xtest )[:, 1] params = {'model': model, 'probTrain': probTrain, 'probTest': probTest} return params, probTest, probTrain def kmeansBNB( Xtrain = None, ytrain = None, Xtest = None, ytest = None, n_clusters = 2): #CLUSTER WITH KMEANS kmeans = KMeans(n_clusters = n_clusters, random_state = 0).\ fit( np.concatenate(( Xtrain, Xtest ), axis = 0) ) #TAKE THE LABELS labelsTrain = kmeans.labels_[0: Xtrain.shape[0]] labelsTest = kmeans.labels_[ Xtrain.shape[0]:] #TRAIN NaiveBNB models = [] probTrain = [] probTest = [] for i in np.arange( n_clusters ): indxTr = np.where(labelsTrain == i)[0] indxTest = np.where( labelsTest == i)[0] bnb =BernoulliNB(alpha=1) bnb.fit(Xtrain[indxTr], ytrain[indxTr]) probTrainNB,probTestNB = bnb.predict_proba(Xtrain[indxTr])[:,1], bnb.predict_proba(Xtest[indxTest])[:,1] models.append( bnb ) probTrain.append( probTrainNB ) probTest.append( probTestNB ) params = {'models': models,'labelsTrain': labelsTrain, 'labelsTest': labelsTest, 'probTrain': probTrain, 'probTest': probTest} return params
# -*- coding: utf-8 -*- from __future__ import unicode_literals import django.contrib.postgres.fields import django.contrib.postgres.fields.hstore from django import VERSION as django_version from django.contrib.postgres.operations import HStoreExtension from django.db import migrations, models try: from django.contrib.gis.geos.libgeos import geos_version_info HAS_GEOS = geos_version_info()["version"] >= "3.3.0" except (ImportError, OSError): HAS_GEOS = False if HAS_GEOS: import django.contrib.gis.db.models.fields class Migration(migrations.Migration): dependencies = [] operations = [HStoreExtension()] operations += [ migrations.CreateModel( name="Chef", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("slug", models.SlugField()), ("first_name", models.CharField(max_length=60)), ("last_name", models.CharField(max_length=60)), ("uuid_id", models.UUIDField()), ("email_address", models.EmailField(max_length=60)), ("twitter_profile", models.URLField(max_length=60)), ], ), migrations.CreateModel( name="Topping", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("name", models.CharField(max_length=60)), ], ), migrations.CreateModel( name="Pizza", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("name", models.CharField(max_length=50)), ( "price", models.DecimalField(null=True, max_digits=4, decimal_places=2), ), ("gluten_free", models.BooleanField(default=False)), ("vegan", models.BooleanField()), ("description", models.TextField(blank=True)), ( "thickness", models.CharField( max_length=50, choices=[(0, b"thin"), (1, b"thick"), (2, b"deep dish")], ), ), ("baked_on", models.DateTimeField()), ("expiration", models.DateField()), ( "chef", models.ForeignKey( to="tests.Chef", on_delete=models.CASCADE, related_name="invented_pizzas", ), ), ( "critic", models.ForeignKey( to="tests.Chef", null=True, on_delete=models.CASCADE, related_name="reviewed_pizzas", ), ), ("toppings", models.ManyToManyField(to="tests.Topping")), ("rating", models.PositiveSmallIntegerField()), ("unique_comment", models.TextField(unique=True)), ], ), ] if HAS_GEOS: pizzeria_fields = [ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("hq", django.contrib.gis.db.models.fields.PointField(srid=4326)), ( "directions", django.contrib.gis.db.models.fields.LineStringField(srid=4326), ), ("floor_plan", django.contrib.gis.db.models.fields.PolygonField(srid=4326)), ( "locations", django.contrib.gis.db.models.fields.MultiPointField(srid=4326), ), ( "routes", django.contrib.gis.db.models.fields.MultiLineStringField(srid=4326), ), ( "delivery_areas", django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326), ), ( "all_the_things", django.contrib.gis.db.models.fields.GeometryCollectionField(srid=4326), ), ] if django_version >= (1, 9, 0): pizzeria_fields.append( ("rast", django.contrib.gis.db.models.fields.RasterField(srid=4326)) ) operations += [migrations.CreateModel(name="Pizzeria", fields=pizzeria_fields)] specialtypizza_fields = [ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True ), ), ("name", models.CharField(max_length=50)), ( "toppings", django.contrib.postgres.fields.ArrayField( base_field=models.CharField(max_length=20), size=4 ), ), ("metadata", django.contrib.postgres.fields.hstore.HStoreField()), ("price_range", django.contrib.postgres.fields.IntegerRangeField()), ("sales", django.contrib.postgres.fields.BigIntegerRangeField()), ("available_on", django.contrib.postgres.fields.DateTimeRangeField()), ("season", django.contrib.postgres.fields.DateRangeField()), ] if django_version >= (1, 9, 0): specialtypizza_fields.append( ("nutritional_values", django.contrib.postgres.fields.JSONField()) ) operations += [ migrations.CreateModel(name="SpecialtyPizza", fields=specialtypizza_fields) ]
"""Tests of session module""" import pytest try: from unittest import mock except ImportError: import mock from rasterio.session import DummySession, AWSSession, Session, OSSSession, GSSession, SwiftSession def test_base_session_hascreds_notimpl(): """Session.hascreds must be overridden""" assert Session.hascreds({}) is NotImplemented def test_base_session_get_credential_options_notimpl(): """Session.get_credential_options must be overridden""" assert Session().get_credential_options() is NotImplemented def test_dummy_session(): """DummySession works""" sesh = DummySession() assert sesh._session is None assert sesh.get_credential_options() == {} def test_aws_session_class(): """AWSSession works""" sesh = AWSSession(aws_access_key_id='foo', aws_secret_access_key='bar') assert sesh._session assert sesh.get_credential_options()['AWS_ACCESS_KEY_ID'] == 'foo' assert sesh.get_credential_options()['AWS_SECRET_ACCESS_KEY'] == 'bar' def test_aws_session_class_session(): """AWSSession works""" boto3 = pytest.importorskip("boto3") sesh = AWSSession(session=boto3.session.Session(aws_access_key_id='foo', aws_secret_access_key='bar')) assert sesh._session assert sesh.get_credential_options()['AWS_ACCESS_KEY_ID'] == 'foo' assert sesh.get_credential_options()['AWS_SECRET_ACCESS_KEY'] == 'bar' def test_aws_session_class_unsigned(): """AWSSession works""" pytest.importorskip("boto3") sesh = AWSSession(aws_unsigned=True, region_name='us-mountain-1') assert sesh.get_credential_options()['AWS_NO_SIGN_REQUEST'] == 'YES' assert sesh.get_credential_options()['AWS_REGION'] == 'us-mountain-1' def test_aws_session_class_profile(tmpdir, monkeypatch): """Confirm that profile_name kwarg works.""" pytest.importorskip("boto3") credentials_file = tmpdir.join('credentials') credentials_file.write("[testing]\n" "aws_access_key_id = foo\n" "aws_secret_access_key = bar\n" "aws_session_token = baz") monkeypatch.setenv('AWS_SHARED_CREDENTIALS_FILE', str(credentials_file)) monkeypatch.setenv('AWS_SESSION_TOKEN', 'ignore_me') sesh = AWSSession(profile_name='testing') assert sesh._session assert sesh.get_credential_options()['AWS_ACCESS_KEY_ID'] == 'foo' assert sesh.get_credential_options()['AWS_SECRET_ACCESS_KEY'] == 'bar' assert sesh.get_credential_options()['AWS_SESSION_TOKEN'] == 'baz' monkeypatch.undo() def test_aws_session_class_endpoint(): """Confirm that endpoint_url kwarg works.""" pytest.importorskip("boto3") sesh = AWSSession(endpoint_url="example.com") assert sesh.get_credential_options()['AWS_S3_ENDPOINT'] == 'example.com' def test_session_factory_unparsed(): """Get a DummySession for unparsed paths""" sesh = Session.from_path("/vsicurl/lolwut") assert isinstance(sesh, DummySession) def test_session_factory_empty(): """Get a DummySession for no path""" sesh = Session.from_path("") assert isinstance(sesh, DummySession) def test_session_factory_local(): """Get a DummySession for local paths""" sesh = Session.from_path("file:///lolwut") assert isinstance(sesh, DummySession) def test_session_factory_unknown(): """Get a DummySession for unknown paths""" sesh = Session.from_path("https://fancy-cloud.com/lolwut") assert isinstance(sesh, DummySession) def test_session_factory_s3(): """Get an AWSSession for s3:// paths""" pytest.importorskip("boto3") sesh = Session.from_path("s3://lol/wut") assert isinstance(sesh, AWSSession) def test_session_factory_s3_no_boto3(monkeypatch): """Get an AWSSession for s3:// paths""" pytest.importorskip("boto3") with monkeypatch.context() as mpctx: mpctx.setattr("rasterio.session.boto3", None) sesh = Session.from_path("s3://lol/wut") assert isinstance(sesh, DummySession) def test_session_factory_s3_kwargs(): """Get an AWSSession for s3:// paths with keywords""" pytest.importorskip("boto3") sesh = Session.from_path("s3://lol/wut", aws_access_key_id='foo', aws_secret_access_key='bar') assert isinstance(sesh, AWSSession) assert sesh._session.get_credentials().access_key == 'foo' assert sesh._session.get_credentials().secret_key == 'bar' def test_foreign_session_factory_dummy(): sesh = Session.from_foreign_session(None) assert isinstance(sesh, DummySession) def test_foreign_session_factory_s3(): boto3 = pytest.importorskip("boto3") aws_session = boto3.Session(aws_access_key_id='foo', aws_secret_access_key='bar') sesh = Session.from_foreign_session(aws_session, cls=AWSSession) assert isinstance(sesh, AWSSession) assert sesh._session.get_credentials().access_key == 'foo' assert sesh._session.get_credentials().secret_key == 'bar' def test_requester_pays(): """GDAL is configured with requester pays""" sesh = AWSSession(aws_access_key_id='foo', aws_secret_access_key='bar', requester_pays=True) assert sesh._session assert sesh.get_credential_options()['AWS_REQUEST_PAYER'] == 'requester' def test_oss_session_class(): """OSSSession works""" oss_session = OSSSession( oss_access_key_id='foo', oss_secret_access_key='bar', oss_endpoint='null-island-1') assert oss_session._creds assert oss_session.get_credential_options()['OSS_ACCESS_KEY_ID'] == 'foo' assert oss_session.get_credential_options()['OSS_SECRET_ACCESS_KEY'] == 'bar' def test_session_factory_oss_kwargs(): """Get an OSSSession for oss:// paths with keywords""" sesh = Session.from_path("oss://lol/wut", oss_access_key_id='foo', oss_secret_access_key='bar') assert isinstance(sesh, OSSSession) assert sesh.get_credential_options()['OSS_ACCESS_KEY_ID'] == 'foo' assert sesh.get_credential_options()['OSS_SECRET_ACCESS_KEY'] == 'bar' def test_google_session_ctor_no_arg(): session = GSSession() assert not session._creds def test_gs_session_class(): """GSSession works""" gs_session = GSSession( google_application_credentials='foo') assert gs_session._creds assert gs_session.get_credential_options()['GOOGLE_APPLICATION_CREDENTIALS'] == 'foo' assert gs_session.hascreds({'GOOGLE_APPLICATION_CREDENTIALS': 'foo'}) def test_swift_session_class(): """SwiftSession works""" swift_session = SwiftSession( swift_storage_url='foo', swift_auth_token='bar',) assert swift_session._creds assert swift_session.get_credential_options()['SWIFT_STORAGE_URL'] == 'foo' assert swift_session.get_credential_options()['SWIFT_AUTH_TOKEN'] == 'bar' def test_swift_session_by_user_key(): def mock_init(self, session=None, swift_storage_url=None, swift_auth_token=None, swift_auth_v1_url=None, swift_user=None, swift_key=None): self._creds = {'SWIFT_STORAGE_URL':'foo', 'SWIFT_AUTH_TOKEN':'bar'} with mock.patch('rasterio.session.SwiftSession.__init__', new=mock_init): swift_session = SwiftSession( swift_auth_v1_url='foo', swift_user='bar', swift_key='key') assert swift_session._creds assert swift_session.get_credential_options()['SWIFT_STORAGE_URL'] == 'foo' assert swift_session.get_credential_options()['SWIFT_AUTH_TOKEN'] == 'bar' def test_session_factory_swift_kwargs(): """Get an SwiftSession for /vsiswift/bucket/key with keywords""" sesh = Session.from_path("/vsiswift/lol/wut", swift_storage_url='foo', swift_auth_token='bar') assert isinstance(sesh, DummySession) def test_session_aws_or_dummy_aws(): """Get an AWSSession when boto3 is available""" boto3 = pytest.importorskip("boto3") assert isinstance(Session.aws_or_dummy(), AWSSession) def test_session_aws_or_dummy_dummy(monkeypatch): """Get a DummySession when boto3 is not available""" boto3 = pytest.importorskip("boto3") with monkeypatch.context() as mpctx: mpctx.setattr("rasterio.session.boto3", None) assert isinstance(Session.aws_or_dummy(), DummySession)
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for tf_agents.bandits.metrics.tf_metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.bandits.metrics import tf_metrics from tf_agents.bandits.policies import constraints from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts from tf_agents.trajectories import trajectory def compute_optimal_reward(unused_observation): return tf.constant(10.0) def compute_optimal_action(unused_observation): return tf.constant(5, dtype=tf.int32) class SimpleThresholdConstraint(constraints.BaseConstraint): def __init__(self, time_step_spec, action_spec, batch_size, threshold, name=None): self.batch_size = batch_size self.threshold = threshold super(SimpleThresholdConstraint, self).__init__( time_step_spec, action_spec, name='SimpleThresholdConstraint') def __call__(self, observation, actions=None): """Returns the probability of input actions being feasible.""" if actions is None: actions = tf.range( self._action_spec.minimum, self._action_spec.maximum + 1) actions = tf.reshape(actions, [1, -1]) actions = tf.tile(actions, [self.batch_size, 1]) feasibility_prob = tf.cast(tf.greater(actions, self.threshold), tf.float32) return feasibility_prob class TFMetricsTest(parameterized.TestCase, tf.test.TestCase): def _create_trajectory(self): return trajectory.Trajectory(observation=(), action=(tf.constant(1)), policy_info=(), reward=tf.constant(1.0), discount=tf.constant(1.0), step_type=ts.StepType.FIRST, next_step_type=ts.StepType.LAST) def _create_batched_trajectory(self, batch_size): return trajectory.Trajectory(observation=(), action=tf.range(batch_size, dtype=tf.int32), policy_info=(), reward=tf.range(batch_size, dtype=tf.float32), discount=tf.ones(batch_size), step_type=ts.StepType.FIRST, next_step_type=ts.StepType.LAST) def _create_test_trajectory(self, batch_size): num_actions = tf.cast(batch_size / 2, dtype=tf.int32) action_tensor = tf.concat([ tf.range(num_actions, dtype=tf.int32), tf.range(num_actions, dtype=tf.int32)], axis=-1) return trajectory.Trajectory(observation=tf.ones(batch_size), action=action_tensor, policy_info=(), reward=tf.range(batch_size, dtype=tf.float32), discount=tf.ones(batch_size), step_type=ts.StepType.FIRST, next_step_type=ts.StepType.LAST) def _create_batched_trajectory_with_reward_dict(self, batch_size): reward_dict = { 'reward': tf.range(batch_size, dtype=tf.float32), 'constraint': tf.range(batch_size, dtype=tf.float32), } return trajectory.Trajectory(observation=(), action=tf.range(batch_size, dtype=tf.int32), policy_info=(), reward=reward_dict, discount=tf.ones(batch_size), step_type=ts.StepType.FIRST, next_step_type=ts.StepType.LAST) @parameterized.named_parameters( ('RegretMetricName', tf_metrics.RegretMetric, compute_optimal_reward, 'RegretMetric'), ('SuboptimalArmsMetricName', tf_metrics.SuboptimalArmsMetric, compute_optimal_action, 'SuboptimalArmsMetric') ) def testName(self, metric_class, fn, expected_name): metric = metric_class(fn) self.assertEqual(expected_name, metric.name) @parameterized.named_parameters([ ('TestRegret', tf_metrics.RegretMetric, compute_optimal_reward, 9), ('TestSuboptimalArms', tf_metrics.SuboptimalArmsMetric, compute_optimal_action, 1), ]) def testRegretMetric(self, metric_class, fn, expected_result): traj = self._create_trajectory() metric = metric_class(fn) self.evaluate(metric.init_variables()) traj_out = metric(traj) deps = tf.nest.flatten(traj_out) with tf.control_dependencies(deps): result = metric.result() result_ = self.evaluate(result) self.assertEqual(result_, expected_result) @parameterized.named_parameters([ ('TestRegretBatched', tf_metrics.RegretMetric, compute_optimal_reward, 8, 6.5), ('TestSuboptimalArmsBatched', tf_metrics.SuboptimalArmsMetric, compute_optimal_action, 8, 7.0 / 8.0), ]) def testRegretMetricBatched(self, metric_class, fn, batch_size, expected_result): traj = self._create_batched_trajectory(batch_size) metric = metric_class(fn) self.evaluate(metric.init_variables()) traj_out = metric(traj) deps = tf.nest.flatten(traj_out) with tf.control_dependencies(deps): result = metric.result() result_ = self.evaluate(result) self.assertEqual(result_, expected_result) def testRegretMetricWithRewardDict( self, metric_class=tf_metrics.RegretMetric, fn=compute_optimal_reward, batch_size=8, expected_result=6.5): traj = self._create_batched_trajectory_with_reward_dict(batch_size) metric = metric_class(fn) self.evaluate(metric.init_variables()) traj_out = metric(traj) deps = tf.nest.flatten(traj_out) with tf.control_dependencies(deps): result = metric.result() result_ = self.evaluate(result) self.assertEqual(result_, expected_result) @parameterized.named_parameters([ ('TestConstraintViolationTh1', 8, 1, 0.5), ('TestConstraintViolationTh2', 8, 2, 0.75), ]) def testConstraintViolationMetric( self, batch_size, threshold, expected_result): traj = self._create_test_trajectory(batch_size) num_actions = batch_size / 2 obs_spec = tensor_spec.TensorSpec([], tf.float32) time_step_spec = ts.time_step_spec(obs_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=num_actions-1) stc = SimpleThresholdConstraint( time_step_spec, action_spec, batch_size=batch_size, threshold=threshold) metric = tf_metrics.ConstraintViolationsMetric(constraint=stc) self.evaluate(metric.init_variables()) traj_out = metric(traj) deps = tf.nest.flatten(traj_out) with tf.control_dependencies(deps): result = metric.result() result_ = self.evaluate(result) self.assertEqual(result_, expected_result) def testDistanceFromGreedyMetric(self): batch_size = 11 num_actions = 12 traj = self._create_batched_trajectory(batch_size) def estimated_reward_fn(unused_observation): return tf.stack([tf.range(num_actions, dtype=tf.float32)] * batch_size) metric = tf_metrics.DistanceFromGreedyMetric(estimated_reward_fn) self.evaluate(metric.init_variables()) traj_out = metric(traj) deps = tf.nest.flatten(traj_out) with tf.control_dependencies(deps): result = metric.result() result_ = self.evaluate(result) self.assertEqual(result_, 6) if __name__ == '__main__': tf.test.main()
# -*- coding: utf-8 -*- import uuid import domain_model from domain_model import DomainModel from domain_model import DomainModelWithUuid from misc_test_utils import copy_dict_with_key_removed from misc_test_utils import domain_model_validate_internals_test from misc_test_utils import domain_model_validation_test from misc_test_utils import misc_test_utils import pytest def test_copy_dict_with_key_removed__creates_copy_of_dict(): test_dict = {"key1": 1, "key2": 2} actual = copy_dict_with_key_removed(test_dict) assert actual == test_dict assert actual is not test_dict def test_copy_dict_with_key_removed__removes_key_if_specified(): test_dict = {"key1": 1, "key2": 2} actual = copy_dict_with_key_removed(test_dict, key_to_remove="key2") assert actual == {"key1": 1} def test_domain_model_validation_test__creates_DomainModel_object(mocker): mocked_init = mocker.patch.object( domain_model.DomainModel, "__init__", autospec=True, return_value=None ) domain_model_validation_test(DomainModel) mocked_init.assert_called_once() def test_domain_model_validation_test__calls_validate_with_no_expected_error(mocker): mocked_validate = mocker.patch.object( domain_model.DomainModelWithUuid, "validate", autospec=True ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validation_test(DomainModelWithUuid, "uuid", test_uuid) mocked_validate.assert_called_once() def test_domain_model_validation_test__calls_validate_with_no_expected_error__and_uuid_passed_as_additional_kwarg( mocker, ): mocked_validate = mocker.patch.object( domain_model.DomainModelWithUuid, "validate", autospec=True ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validation_test( DomainModelWithUuid, additional_kwargs={"uuid": test_uuid} ) mocked_validate.assert_called_once() def test_domain_model_validation_test__catches_error(mocker): spied_raises = mocker.spy(misc_test_utils.pytest, "raises") expected_error = ValueError() mocker.patch.object( domain_model.DomainModelWithUuid, "validate", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validation_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError ) spied_raises.assert_called_once() def test_domain_model_validation_test__catches_error_with_text(mocker): spied_raises = mocker.spy(misc_test_utils.pytest, "raises") expected_text = "test" expected_error = ValueError(expected_text) mocker.patch.object( domain_model.DomainModelWithUuid, "validate", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validation_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError, expected_texts_in_error=expected_text, ) spied_raises.assert_called_once() def test_domain_model_validation_test__raises_assertion_error_if_single_expected_text_is_not_in_expected_error( mocker, ): expected_text = "test" expected_error = ValueError() mocker.patch.object( domain_model.DomainModelWithUuid, "validate", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") with pytest.raises(AssertionError): domain_model_validation_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError, expected_texts_in_error=expected_text, ) def test_domain_model_validation_test__raises_assertion_error_if_one_of_multiple_expected_texts_not_in_expected_error( mocker, ): expected_texts = ["test1", "test2"] expected_error = ValueError("test1") mocker.patch.object( domain_model.DomainModelWithUuid, "validate", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") with pytest.raises(AssertionError): domain_model_validation_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError, expected_texts_in_error=expected_texts, ) def test_domain_model_validate_internals_test__creates_DomainModel_object(mocker): mocked_init = mocker.patch.object( domain_model.DomainModel, "__init__", autospec=True, return_value=None ) domain_model_validate_internals_test(DomainModel) mocked_init.assert_called_once() def test_domain_model_validate_internals_test__calls_validate_with_no_expected_error( mocker, ): mocked_validate = mocker.patch.object( domain_model.DomainModelWithUuid, "validate_internals", autospec=True ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validate_internals_test(DomainModelWithUuid, "uuid", test_uuid) mocked_validate.assert_called_once() def test_domain_model_validate_internals_test__calls_validate_with_no_expected_error__and_uuid_passed_as_additional_kwarg( mocker, ): mocked_validate = mocker.patch.object( domain_model.DomainModelWithUuid, "validate_internals", autospec=True ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validate_internals_test( DomainModelWithUuid, additional_kwargs={"uuid": test_uuid} ) mocked_validate.assert_called_once() def test_domain_model_validate_internals_test__catches_error(mocker): spied_raises = mocker.spy(misc_test_utils.pytest, "raises") expected_error = ValueError() mocker.patch.object( domain_model.DomainModelWithUuid, "validate_internals", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validate_internals_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError ) spied_raises.assert_called_once() def test_domain_model_validate_internals_test__catches_error_with_text(mocker): spied_raises = mocker.spy(misc_test_utils.pytest, "raises") expected_text = "test" expected_error = ValueError(expected_text) mocker.patch.object( domain_model.DomainModelWithUuid, "validate_internals", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") domain_model_validate_internals_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError, expected_texts_in_error=expected_text, ) spied_raises.assert_called_once() def test_domain_model_validate_internals_test__raises_assertion_error_if_single_expected_text_is_not_in_expected_error( mocker, ): expected_text = "test" expected_error = ValueError() mocker.patch.object( domain_model.DomainModelWithUuid, "validate_internals", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") with pytest.raises(AssertionError): domain_model_validate_internals_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError, expected_texts_in_error=expected_text, ) def test_domain_model_validate_internals_test__raises_assertion_error_if_one_of_multiple_expected_texts_not_in_expected_error( mocker, ): expected_texts = ["test1", "test2"] expected_error = ValueError("test1") mocker.patch.object( domain_model.DomainModelWithUuid, "validate_internals", autospec=True, side_effect=expected_error, ) test_uuid = uuid.UUID("abc8a386-b6e0-47ed-a752-f2721545f3c6") with pytest.raises(AssertionError): domain_model_validate_internals_test( DomainModelWithUuid, "uuid", test_uuid, expected_error=ValueError, expected_texts_in_error=expected_texts, )
frase = str(input('Digite uma frase: ')).strip().upper() cont = frase.count('A') pos1 = (frase.find('A')+1) print('A letra A aparece {} vezes na frase.'.format(cont)) print('A primeira letra A apareceu na posição {}.'.format(pos1)) print('A última letra A apareceu na posição {}.'.format(frase.rfind('A')+1))
import torch class OTR(): def __init__(self): self.name = "name" class NormalisedRatio(OTR): def __init__(self): super(NormalisedRatio, self).__init__() def __call__(self, y_1, y_0): ratio = (y_1 - y_0) / y_0 return torch.sigmoid(ratio, 2)
#!/usr/bin/env python """ * ******************************************************* * Copyright (c) VMware, Inc. 2016-2018. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ """ Script that runs through all the setup and samples. """ __author__ = 'VMware, Inc.' import pyVim.connect from vmware.vapi.vsphere.client import create_vsphere_client from samples.vsphere.common import sample_util from samples.vsphere.vcenter.setup import testbed from samples.vsphere.vcenter.setup import setup_cli from samples.vsphere.vcenter.setup.testbed_setup import cleanup as testbed_cleanup from samples.vsphere.vcenter.setup.testbed_setup import setup as testbed_setup from samples.vsphere.vcenter.setup.testbed_setup import validate as testbed_validate from samples.vsphere.vcenter.vm.main import VMSetup from samples.vsphere.common.ssl_helper import get_unverified_context, \ get_unverified_session # Parse command line params for setup script args = setup_cli.build_arg_parser().parse_args() _testbed = testbed.get() # If VC/ESX/NFS Server IPs are passed as arguments, # then override testbed.py values if args.vcenterserver: _testbed.config['SERVER'] = args.vcenterserver if args.vcenterpassword: _testbed.config['PASSWORD'] = args.vcenterpassword if args.esxhost1: _testbed.config['ESX_HOST1'] = args.esxhost1 if args.esxhost2: _testbed.config['ESX_HOST2'] = args.esxhost2 if args.esxpassword: _testbed.config['ESX_PASS'] = args.esxpassword if args.nfsserver: _testbed.config['NFS_HOST'] = args.nfsserver print(_testbed.to_config_string()) # Connect to VIM API Endpoint on vCenter system context = None if args.skipverification: context = get_unverified_context() service_instance = pyVim.connect.SmartConnect(host=_testbed.config['SERVER'], user=_testbed.config['USERNAME'], pwd=_testbed.config['PASSWORD'], sslContext=context) # Connect to vAPI Endpoint on vCenter system session = get_unverified_session() if args.skipverification else None client = create_vsphere_client(server=_testbed.config['SERVER'], username=_testbed.config['USERNAME'], password=_testbed.config['PASSWORD'], session=session) context = sample_util.Context(_testbed, service_instance, client) context.option['DO_TESTBED_SETUP'] = args.testbed_setup context.option['DO_TESTBED_VALIDATE'] = args.testbed_validate context.option['DO_TESTBED_CLEANUP'] = args.testbed_cleanup context.option['DO_TESTBED_ISO_CLEANUP'] = args.iso_cleanup context.option['DO_SAMPLES_SETUP'] = args.samples_setup context.option['DO_SAMPLES'] = args.samples context.option['DO_SAMPLES_INCREMENTAL'] = args.samples_incremental context.option['DO_SAMPLES_CLEANUP'] = args.samples_cleanup context.option['SKIP_VERIFICATION'] = args.skipverification print(context.to_option_string()) ############################################################################### # Testbed Setup ############################################################################### vm_setup = VMSetup(context) # Setup testbed if context.option['DO_TESTBED_SETUP']: # Clean up in case of past failures vm_setup.cleanup() testbed_cleanup(context) testbed_setup(context) # Validate testbed if (context.option['DO_TESTBED_SETUP'] or context.option['DO_TESTBED_VALIDATE'] or context.option['DO_SAMPLES_SETUP'] or context.option['DO_SAMPLES']): if not testbed_validate(context): exit(0) print(context.testbed.to_entities_string()) ############################################################################### # Sample Run and Cleanup ############################################################################### # Run Sample if context.option['DO_SAMPLES']: vm_setup.setup(context) vm_setup.run() # Cleanup after sample run if context.option['DO_SAMPLES_CLEANUP']: vm_setup.cleanup() ############################################################################### # Testbed Cleanup ############################################################################### # Teardown testbed. if context.option['DO_TESTBED_CLEANUP']: vm_setup.cleanup() testbed_cleanup(context)
# cluster from AttentionXML import os import tqdm import joblib import numpy as np from scipy.sparse import csr_matrix, csc_matrix from sklearn.preprocessing import normalize from sklearn.datasets import load_svmlight_file from sklearn.preprocessing import MultiLabelBinarizer def get_sparse_feature(feature_file, label_file): sparse_x, _ = load_svmlight_file(feature_file, multilabel=True) sparse_labels = [i.replace('\n', '').split() for i in open(label_file)] return normalize(sparse_x), np.array(sparse_labels) def build_tree_by_level(sparse_data_x, sparse_data_y, eps: float, max_leaf: int, levels: list, groups_path): print('Clustering') sparse_x, sparse_labels = get_sparse_feature(sparse_data_x, sparse_data_y) mlb = MultiLabelBinarizer() sparse_y = mlb.fit_transform(sparse_labels) joblib.dump(mlb, groups_path+'mlb') print('Getting Labels Feature') labels_f = normalize(csr_matrix(sparse_y.T) @ csc_matrix(sparse_x)) print(F'Start Clustering {levels}') levels, q = [2**x for x in levels], None for i in range(len(levels)-1, -1, -1): if os.path.exists(F'{groups_path}-Level-{i}.npy'): print(F'{groups_path}-Level-{i}.npy') labels_list = np.load(F'{groups_path}-Level-{i}.npy', allow_pickle=True) q = [(labels_i, labels_f[labels_i]) for labels_i in labels_list] break if q is None: q = [(np.arange(labels_f.shape[0]), labels_f)] while q: labels_list = np.asarray([x[0] for x in q]) assert sum(len(labels) for labels in labels_list) == labels_f.shape[0] if len(labels_list) in levels: level = levels.index(len(labels_list)) print(F'Finish Clustering Level-{level}') np.save(F'{groups_path}-Level-{level}.npy', np.asarray(labels_list)) else: print(F'Finish Clustering {len(labels_list)}') next_q = [] for node_i, node_f in q: if len(node_i) > max_leaf: next_q += list(split_node(node_i, node_f, eps)) else: np.save(F'{groups_path}-last.npy', np.asarray(labels_list)) q = next_q print('Finish Clustering') return mlb def split_node(labels_i: np.ndarray, labels_f: csr_matrix, eps: float): n = len(labels_i) c1, c2 = np.random.choice(np.arange(n), 2, replace=False) centers, old_dis, new_dis = labels_f[[c1, c2]].toarray(), -10000.0, -1.0 l_labels_i, r_labels_i = None, None while new_dis - old_dis >= eps: dis = labels_f @ centers.T # N, 2 partition = np.argsort(dis[:, 1] - dis[:, 0]) l_labels_i, r_labels_i = partition[:n//2], partition[n//2:] old_dis, new_dis = new_dis, (dis[l_labels_i, 0].sum() + dis[r_labels_i, 1].sum()) / n centers = normalize(np.asarray([np.squeeze(np.asarray(labels_f[l_labels_i].sum(axis=0))), np.squeeze(np.asarray(labels_f[r_labels_i].sum(axis=0)))])) return (labels_i[l_labels_i], labels_f[l_labels_i]), (labels_i[r_labels_i], labels_f[r_labels_i]) import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, required=False, default='eurlex4k') parser.add_argument('--tree', action='store_true') parser.add_argument('--id', type=str, required=False, default='0') args = parser.parse_args() if __name__ == '__main__': dataset = args.dataset if dataset == '670k': mlb = build_tree_by_level('./data/Amazon-670K/train_v1.txt', './data/Amazon-670K/train_labels.txt', 1e-4, 100, [], './data/Amazon-670K/label_group'+args.id) groups = np.load(f'./data/Amazon-670K/label_group{args.id}-last.npy', allow_pickle=True) new_group = [] for group in groups: new_group.append([mlb.classes_[i] for i in group]) np.save(f'./data/Amazon-670K/label_group{args.id}.npy', np.array(new_group)) elif dataset == '500k': mlb = build_tree_by_level('./data/Wiki-500K/train.txt', './data/Wiki-500K/train_labels.txt', 1e-4, 8, [11, 14, 17], './data/Wiki-500K/groups') groups = np.load(f'./data/Wiki-500K/groups-last{args.id}.npy', allow_pickle=True) new_group = [] for group in groups: new_group.append([mlb.classes_[i] for i in group]) np.save(f'./data/Wiki-500K/label_group{args.id}.npy', np.array(new_group))
"""LogTools Log viewer application By BigBird who like to Code https://github.com/bigbirdcode/logtools """ import argparse import io import os import pathlib import sys from textwrap import dedent from typing import Any, NoReturn import wx # Python has 2 types of calls: # - direct call, like: python main.py # - package call, like: python -m cliptools # Below quite ugly code will handle these if __name__ == "__main__" and __package__ is None: # This was a direct call # package information is missing, and relative imports will fail # this hack imitates the package behavior and add outer dir to the path __package__ = "logtools" # pylint: disable=redefined-builtin logtools_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if logtools_dir not in sys.path: sys.path.insert(0, logtools_dir) del logtools_dir # clean up global name space # Now relative import is ok # pylint: disable=wrong-import-position from logtools.gui_main_frame import MainFrame from logtools.log_data import LogData from logtools.log_patterns import LogPatterns DEFAULT_PATTERNS_YML = "logtools_default_patterns.yml" FOLDER_HELP = """ If pattern_file is not provided then logtools will try to read the file 'logtools_default_patterns.yml' from the following possible locations: 1. actual folder 2. user's home folder 3. user's Documents folder """ def errormessage(msg: str) -> NoReturn: """ Print out error messages either to the console or to a dialog box then exit When there is a problem in argparse parameters or provided files do not exist then we can still show these to the user however the app was started. """ if sys.executable.endswith("pythonw.exe"): app = wx.App() dlg = wx.MessageDialog(None, msg, "LogTools Error", wx.OK | wx.ICON_ERROR) dlg.Center() dlg.ShowModal() dlg.Destroy() app.Destroy() else: print(msg) sys.exit(1) def parse_arguments() -> Any: """ Parse command line arguments and checks for errors Notes: argparse do not handle well non-CLI usage the newly added exit_on_error=False parameter is buggy! it can also throw various types of exceptions... the only option is to redirect output and capture SystemExit ugly as hell, sorry """ parser = argparse.ArgumentParser( description="Log file viewer.", epilog=FOLDER_HELP, ) parser.add_argument("log_files", type=pathlib.Path, nargs="+", help="log files to display") parser.add_argument( "-p", "--pattern_file", type=pathlib.Path, help="pattern file in strict YAML format" ) args = None was_error = False bkp_stdout, bkp_stderr = sys.stdout, sys.stderr output = io.StringIO() sys.stdout, sys.stderr = output, output try: args = parser.parse_args() except (SystemExit, Exception): # pylint: disable=broad-except was_error = True finally: sys.stdout, sys.stderr = bkp_stdout, bkp_stderr if was_error: errormessage(output.getvalue()) return args def check_logfiles(log_files: list[pathlib.Path]) -> None: """ Check the log files """ for log_file in log_files: if not log_file.is_file(): errormessage(f"{log_file} log file not found!") def read_patterns(args: Any) -> LogPatterns: """ Locate and check the pattern file """ pattern_file = pathlib.Path(DEFAULT_PATTERNS_YML) # initial value, it will be overwritten if args.pattern_file: pattern_file = args.pattern_file if not pattern_file.is_file(): errormessage(f"{pattern_file} pattern file not found!") else: default_pattern_file = pattern_file if default_pattern_file.is_file(): pattern_file = default_pattern_file elif (pathlib.Path.home() / default_pattern_file).is_file(): pattern_file = pathlib.Path.home() / default_pattern_file elif (pathlib.Path.home() / "Documents" / default_pattern_file).is_file(): pattern_file = pathlib.Path.home() / "Documents" / default_pattern_file else: errormessage("Pattern file not found!\n" + dedent(FOLDER_HELP)) log_patterns = LogPatterns(pattern_file) return log_patterns def main() -> None: """ Main function, starting point as usual """ args = parse_arguments() check_logfiles(args.log_files) log_patterns = read_patterns(args) log_data = LogData(log_patterns, args.log_files) # Making GUI app = wx.App(0) frame = MainFrame(None, log_data) app.SetTopWindow(frame) frame.Show() app.MainLoop() if __name__ == "__main__": main()
import os import shutil from pathlib import Path from pprint import pprint import csv import time from PIL import Image from datetime import datetime import re import numpy as np from typing import List import cv2 import torch from pytube import YouTube from facenet_pytorch import MTCNN from utils import ( variance_of_laplacian, load_images2, clean_string, read_dict_from_csv, save_dict_to_csv2, ) # cut is per frame def video_to_frames( input_loc: str, output_loc: str, number_of_images_to_log=1000 ) -> List[str]: """ https://stackoverflow.com/questions/33311153/python-extracting-and-saving-video-frames Function to extract frames from input video file and save them as separate frames in an output directory. Args: input_loc: Input video file. output_loc: Output directory to save the frames. Returns: None """ try: os.mkdir(output_loc) except OSError: pass # # Log the time time_start = time.time() # Start capturing the feed cap = cv2.VideoCapture(input_loc) # Find the number of frames video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1 print("Number of frames: ", video_length) count = 0 print("Converting video..\n") # calculate per hom much frames we willo save log_interval = video_length // number_of_images_to_log if log_interval < 1: log_interval = 1 print("log_interval ", log_interval) # Start converting the video images_paths = [] while cap.isOpened(): # Extract the frame ret, frame = cap.read() if not ret: continue if count % log_interval == 0: # Write the results back to output location. image_path = output_loc + "/%#05d.jpg" % (count + 1) cv2.imwrite(image_path, frame) images_paths.append(image_path) count = count + 1 # If there are no more frames left if count > (video_length - 1): # Log the time again time_end = time.time() # Release the feed cap.release() # Print stats print("Done extracting frames.\n%d frames extracted" % count) print("It took %d seconds forconversion." % (time_end - time_start)) break return images_paths # remove blure images def remove_blure_images(dir_path): images_paths = load_images2(dir_path) for image_path in images_paths: image = cv2.imread(image_path) if check_blure_image(image): print(image_path) def check_blure_image(image: np.ndarray) -> bool: blure = False gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) fm = variance_of_laplacian(gray) if fm < 1000: blure = True return blure # find all faces in images def find_faces( dir_path: str, face_dir_path: str, device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu"), ) -> List[str]: mtcnn = MTCNN(keep_all=True, device=device, thresholds=[0.8, 0.85, 0.85]) images_paths = load_images2(dir_path) face_dir_path = Path(face_dir_path) face_dir_path.mkdir(exist_ok=True) faces_images_paths = [] for image_path in images_paths: image_name = Path(image_path).stem image = Image.open(image_path) bboxes, _ = mtcnn.detect(image) if isinstance(bboxes, np.ndarray): for bbox_idx, bbox in enumerate(bboxes): face_bbox = image.crop(bbox) bbox_str = ",".join(["{:.2f}".format(x) for x in bbox]) face_bbox_path = face_dir_path.joinpath( f"image_name_{image_name}_bbox_idx_{bbox_idx}_bboxcord_{bbox_str}.jpg" ) face_bbox.save(face_bbox_path) faces_images_paths.append(face_bbox_path) # brak bd we want only bigest face on image break return faces_images_paths def download_yt_video(yt_video_url: str, yt_video_save_dir: str) -> str: yt_video = YouTube(yt_video_url) max_resolution_tag = 0 max_resolution = 0 yt_video_filename = clean_and_define_video_name( yt_video.streams[0].default_filename ) for stream in yt_video.streams: if stream.resolution: resolution = int(stream.resolution[:-1]) tag = stream.itag if max_resolution < resolution: max_resolution = resolution max_resolution_tag = tag yt_video.streams.get_by_itag(max_resolution_tag).download( yt_video_save_dir, yt_video_filename ) return yt_video_filename def clean_and_define_video_name(start_video_name: str) -> str: start_video_name = clean_string(start_video_name) start_video_name += ".mp4" now = datetime.now() date_time = now.strftime("%d,%m,%Y,,%H,%M,%S") start_video_name = f"date_time_{date_time}_title_{start_video_name}" return start_video_name def full_pipe_line(data_dict: dict) -> None: yt_video_url, class_name = data_dict["url"], data_dict["face"] dataset_dir_path = "face_dataset" frames_base_dir = "frames" yt_video_save_dir = "." # download video yt_video_filename = download_yt_video( yt_video_url=yt_video_url, yt_video_save_dir=yt_video_save_dir, ) # frames frame_dir = Path(frames_base_dir).joinpath(Path(yt_video_filename).stem) Path(frame_dir).mkdir(exist_ok=True, parents=True) frames_paths = video_to_frames(yt_video_filename, str(frame_dir)) # rm video try: os.remove(yt_video_filename) Path(yt_video_filename).unlink() except FileNotFoundError: pass # faces face_dir = Path(dataset_dir_path).joinpath(class_name) face_dir.mkdir(exist_ok=True, parents=True) faces_paths = find_faces(frame_dir, face_dir) # rm frames shutil.rmtree(frame_dir) if __name__ == "__main__": data_dicts = read_dict_from_csv("data.csv") for data_dict in data_dicts: full_pipe_line(data_dict)
from rest_framework import status from lego.apps.notifications import constants from lego.apps.notifications.models import Announcement from lego.apps.users.models import AbakusGroup, User from lego.utils.test_utils import BaseAPITestCase class NotificationSettingsViewSetTestCase(BaseAPITestCase): fixtures = [ "test_abakus_groups.yaml", "test_users.yaml", "test_notification_settings.yaml", ] def setUp(self): self.url = "/api/v1/notification-settings/" self.user = User.objects.get(pk=2) def test_no_auth(self): response = self.client.get(self.url) self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) response = self.client.post( self.url, {"notificationType": "weekly_mail", "enabled": True, "channels": ["email"]}, ) self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_list(self): self.client.force_authenticate(self.user) def test_alternatives(self): self.client.force_authenticate(self.user) response = self.client.get(f"{self.url}alternatives/") self.assertEquals( response.json(), { "notificationTypes": constants.NOTIFICATION_TYPES, "channels": constants.CHANNELS, }, ) def test_change_setting(self): self.client.force_authenticate(self.user) response = self.client.post( self.url, {"notificationType": "weekly_mail", "enabled": True} ) self.assertEquals( response.json(), { "notificationType": "weekly_mail", "enabled": True, "channels": ["email", "push"], }, ) def test_change_setting_defaults(self): """Make sure a new setting is created with correct defaults""" self.client.force_authenticate(self.user) response = self.client.post( self.url, {"notificationType": constants.MEETING_INVITE} ) self.assertEquals( response.json(), { "notificationType": constants.MEETING_INVITE, "enabled": True, "channels": constants.CHANNELS, }, ) class AnnouncementViewSetTestCase(BaseAPITestCase): fixtures = [ "test_abakus_groups.yaml", "test_users.yaml", "test_events.yaml", "test_companies.yaml", "test_announcements.yaml", ] def setUp(self): self.url = "/api/v1/announcements/" admin_group = AbakusGroup.objects.get(name="Webkom") self.authorized_user = User.objects.get(pk=9) self.authorized_user_2 = User.objects.get(pk=3) admin_group.add_user(self.authorized_user) admin_group.add_user(self.authorized_user_2) self.unauthorized_user = User.objects.get(pk=1) self.unsent_announcement = Announcement.objects.get(pk=5) self.unsent_not_own_announcement = Announcement.objects.get(pk=4) def test_unauthorized_create(self): """ An unauthorized user should not be able to create an Announcement """ self.client.force_authenticate(self.unauthorized_user) response = self.client.post( self.url, {"message": "test_message", "groups": [2], "events": [1]} ) self.assertEquals(response.status_code, status.HTTP_403_FORBIDDEN) def test_authorized_create(self): """ An authorized user should be able to create an announcement """ self.client.force_authenticate(self.authorized_user) message = "test message" response = self.client.post( self.url, {"message": message, "groups": [2], "events": [1], "fromGroup": 11}, ) self.assertEquals(response.status_code, status.HTTP_201_CREATED) self.assertEquals(response.data["from_group"]["id"], 11) self.assertEquals(response.data["message"], message) self.assertEquals(len(response.data["groups"]), 1) self.assertEquals(response.data["groups"][0]["id"], 2) self.assertEquals(len(response.data["events"]), 1) self.assertEquals(response.data["events"][0]["id"], 1) def test_authorized_create_from_nonexistent_group(self): """ An authorized user should not be able to create an announcement with sender as nonexisting group """ self.client.force_authenticate(self.authorized_user) response = self.client.post( self.url, {"message": "test_message", "groups": [2], "events": [1], "fromGroup": 29}, ) self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) def test_authorized_create_invalid_recipient_groups(self): """ An authorized user should not be able to create an announcement with recipient as invalid group """ self.client.force_authenticate(self.authorized_user) response = self.client.post( self.url, {"message": "test_message", "groups": [28], "events": [3], "fromGroup": 11}, ) self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) def test_authorized_patch(self): """ It is not possible to patch an announcement """ self.client.force_authenticate(self.authorized_user) response = self.client.patch( self.url, { "id": self.unsent_announcement.id, "message": "test_message", "groups": [3], "events": [1], }, ) self.assertEquals(response.status_code, status.HTTP_403_FORBIDDEN) def test_authorized_list_own(self): """ An authorized user should be able to list announcements created by self """ self.client.force_authenticate(self.authorized_user_2) response = self.client.get(self.url) self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(len(response.data["results"]), 1) self.assertEquals(response.data["results"][0]["id"], 6) def test_authorized_detail_not_own(self): """ An authorized user should not be able to list details about an announcement created by another user. """ self.client.force_authenticate(self.authorized_user) response = self.client.get(f"{self.url}1/") self.assertEquals(response.status_code, status.HTTP_404_NOT_FOUND) def test_authorized_detail_own(self): """ An authorized user should be able to list details about an announcement created by self. """ self.client.force_authenticate(self.authorized_user) response = self.client.get(f"{self.url}5/") self.assertEquals(response.status_code, status.HTTP_200_OK) def test_unauthorized_list(self): """ An unauthorized user should not be able to list announcements """ self.client.force_authenticate(self.unauthorized_user) response = self.client.get(self.url) self.assertEquals(response.status_code, status.HTTP_403_FORBIDDEN) def test_send_own_announcement_authorized(self): """ An authorized user can send an Announcement created by self once """ self.client.force_authenticate(self.authorized_user) response = self.client.post(f"{self.url}{self.unsent_announcement.id}/send/") self.assertEquals(response.status_code, status.HTTP_202_ACCEPTED) self.assertTrue(Announcement.objects.get(pk=self.unsent_announcement.id).sent) def test_send_not_own_announcement_authorized(self): """ An authorized user can not send an Announcement created by another user """ self.client.force_authenticate(self.authorized_user) response = self.client.post( f"{self.url}{self.unsent_not_own_announcement.id}/send/" ) self.assertEquals(response.status_code, status.HTTP_404_NOT_FOUND) def test_send_announcement_unauthorized(self): """ An unauthorized user can not send an Announcement """ self.client.force_authenticate(self.unauthorized_user) response = self.client.post(f"{self.url}{self.unsent_announcement.id}/send/") self.assertEquals(response.status_code, status.HTTP_403_FORBIDDEN)
# This source code is licensed under the license found in the # LICENSE file in the {root}/privgem/tabular/ppgm directory of this source tree. # # This code has been modified from the version at # https://github.com/BorealisAI/private-data-generation/tree/master/models/Private_PGM/mbi # Modifications copyright (C) 2021-present, Kasra Hosseini. # # Copy of the header from https://github.com/BorealisAI/private-data-generation/tree/master/models/Private_PGM/mbi # # This source code is licensed under the license found in the # LICENSE file in the {root}/models/Private_PGM/ directory of this source tree. from .domain import Domain from .dataset import Dataset from .factor import Factor from .graphical_model import GraphicalModel from .inference import FactoredInference
# Demonstrate the use of acceleration test import sys import os import numpy as np from fastsim import simdrive, vehicle, cycle def create_accel_cyc(length_in_seconds=300, spd_mph=89.48, grade=0.0, hz=10): """ Create a synthetic Drive Cycle for acceleration targeting. Defaults to a 15 second acceleration cycle. Should be adjusted based on target acceleration time and initial vehicle acceleration time, so that time isn't wasted on cycles that are needlessly long. spd_mph @ 89.48 FASTSim XL version mph default speed for acceleration cycles grade @ 0 and hz @ 10 also matches XL version settings """ mphPerMps = 2.23694 cycMps = [(1/mphPerMps)*float(spd_mph)]*(length_in_seconds*hz) cycMps[0] = 0. cycMps = np.asarray(cycMps) cycSecs = np.arange(0, length_in_seconds, 1./hz) cycGrade = np.asarray([float(grade)]*(length_in_seconds*hz)) cycRoadType = np.zeros(length_in_seconds*hz) cyc = {'cycMps': cycMps, 'cycSecs': cycSecs, 'cycGrade': cycGrade, 'cycRoadType':cycRoadType} return cyc def main(): # just use first vehicle in default database for i in range(1,27): veh = vehicle.Vehicle(i) accel_cyc = cycle.Cycle(std_cyc_name=None, cyc_dict=create_accel_cyc()) accel_out = simdrive.SimAccelTest(cyc=accel_cyc, veh=veh) accel_out.sim_drive() acvhd_0_to_acc_speed_secs = simdrive.SimDrivePost(accel_out).get_output()['ZeroToSixtyTime_secs'] print('vehicle {}: acceleration [s] {:.3f}'.format(i, acvhd_0_to_acc_speed_secs)) if __name__=='__main__': main()
#!/usr/bin/env python # Wenchang Yang ([email protected]) # Wed Aug 7 12:49:43 EDT 2019 from .accessor import LinearRegressAccessor
# -*- coding: utf-8 -*- """ Anki Add-on: HTML Cleaner Entry point for the add-on into Anki Please don't edit this if you don't know what you're doing. Copyright: (c) Glutanimate 2017 License: GNU AGPL, version 3 or later; http://www.gnu.org/copyleft/gpl.html """ from .html_cleaner import editor, browser
import abc import asyncio import threading __all__ = () class Wait(abc.ABC): __slots__ = () @abc.abstractmethod def _make_event(self): raise NotImplementedError() @abc.abstractmethod def _make(self, event): raise NotImplementedError() def __call__(self, manage, event = None): if not event: event = self._make_event() self._make(manage, event) return event class Asyncio(Wait): __slots__ = () def _make_event(self): return asyncio.Event() def _make(self, manage, event): coroutine = event.wait() loop = asyncio.get_event_loop() task = loop.create_task(coroutine) callback = lambda task: manage() task.add_done_callback(callback) class Threading(Wait): __slots__ = () def _make_event(self): return threading.Event() def _make(self, manage, event): def callback(): event.wait() manage() thread = threading_.Thread(target = callback) thread.start()
import pytest from vidispine.errors import NotFound def test_delete(vidispine, cassette, collection): vidispine.collection.delete(collection) assert cassette.all_played def test_non_existent_collection(vidispine, cassette): with pytest.raises(NotFound) as err: vidispine.collection.delete('VX-1000000') assert cassette.all_played err.match(r'Not Found: DELETE')
import torch from torch_geometric.utils import contains_isolated_nodes def test_contains_isolated_nodes(): row = torch.tensor([0, 1, 0]) col = torch.tensor([1, 0, 0]) assert not contains_isolated_nodes(torch.stack([row, col], dim=0)) assert contains_isolated_nodes(torch.stack([row, col], dim=0), num_nodes=3) row = torch.tensor([0, 1, 2, 0]) col = torch.tensor([1, 0, 2, 0]) assert contains_isolated_nodes(torch.stack([row, col], dim=0))
# -*- coding: utf-8 -*- from twisted.internet import reactor, protocol, ssl from twisted.mail import imap4 # from twisted.internet import defer # from twisted.python import log # log.startLogging(open("/tmp/twisted.log","w")) # defer.setDebugging(True) from . import debug #@UnresolvedImport # pylint: disable-msg=F0401 class SimpleIMAP4Client(imap4.IMAP4Client): greetDeferred = None def serverGreeting(self, caps): debug("[SimpleIMAP4Client] serverGreeting: %s" %caps) self.serverCapabilities = caps if self.greetDeferred is not None: self.greetDeferred(self) class SimpleIMAP4ClientFactory(protocol.ReconnectingClientFactory): protocol = SimpleIMAP4Client def __init__(self, e2session, username, factory): self.maxDelay = 30 self.noisy = True self.ctx = factory self.e2session = e2session self.username = username def buildProtocol(self, addr): debug("[SimpleIMAP4ClientFactory] building protocol: %s" %addr) pr = self.protocol(contextFactory = self.ctx) pr.factory = self pr.greetDeferred = self.e2session.onConnect auth = imap4.CramMD5ClientAuthenticator(self.username) pr.registerAuthenticator(auth) return pr def startedConnecting(self, connector): debug("[SimpleIMAP4ClientFactory] startedConnecting") def clientConnectionFailed(self, connector, reason): # debug("[SimpleIMAP4ClientFactory] clientConnectionFailed: %s" %reason.getErrorMessage()) self.e2session.onConnectionFailed(reason) protocol.ReconnectingClientFactory.clientConnectionFailed(self, connector, reason) def clientConnectionLost(self, connector, reason): # debug("[SimpleIMAP4ClientFactory] clientConnectionLost: %s" %reason.getErrorMessage()) self.e2session.onConnectionLost(reason) protocol.ReconnectingClientFactory.clientConnectionLost(self, connector, reason) def createFactory(e2session, username, hostname, port): debug("createFactory: for %s@%s:%s" %(username, hostname, port)) f2 = ssl.ClientContextFactory() factory = SimpleIMAP4ClientFactory(e2session, username, f2) if port == 993: reactor.connectSSL(hostname, port, factory, f2) #@UndefinedVariable # pylint: disable-msg=E1101 else: reactor.connectTCP(hostname, port, factory) #@UndefinedVariable # pylint: disable-msg=E1101 debug("createFactory: factory started") return factory
# subsystem mem # memory layout: # 0, value0, 0, value1, ..., value(N-1), 0, 0, 0, 0 # init imm # initialize imm bytes of random-access memory. imm <= 256. # memory should be cleared before loading. # clean # works only after init. clean random-access memory area. # clean fast # doesnt clear values. works only when next object does not require clean memory area. # @set imm_value ...addresses # set constant or use command to random-access memory # imm_value: # any digits # set constant # input # set input data. # print # print data. # address: # +address or -address # add or sub. sign can exists only once and works only with digits value. # digits # address # var_name # uses pointer variable # @w_move in_var ...addresses # set value from variable to random-access memory. currently addresses accept only variable. # @w_moveadd in_var ...addresses # @w_movesub in_var ...addresses # @w_copy in_var ...addresses # @w_copyadd in_var ...addresses # @w_copysub in_var ...addresses # @r_move in_var ...addresses # move value from random-access memory to variable. address is the same as @w_move. # @r_moveadd address ...out_vars # @r_movesub address ...out_vars # @r_copy address ...out_vars # @r_copyadd address ...out_vars # @r_copysub address ...out_vars from typing import cast, Union, List, Tuple, Dict, Callable from tobf import Tobf from base import separate_sign, SubsystemBase class Subsystem_Memory(SubsystemBase): """random-access memory area""" def mem2_clean(self, fast=False): # + eos size = self.mem_size_ + 2 if fast: return self._main.put(">" * self.offset()) for i in range(size): self._main.put("[-]>" * 2) self._main.put("<" * self.offset(size * 2)) def __init__(self, tobf: Tobf, _name: str, args: List[Union[str, int]], instantiate: Callable[[int, SubsystemBase], int]): super().__init__(tobf, _name) self._main = cast(Tobf, self._main) if len(args) > 0: _cells = self._main.valueof(args[0]) else: _cells = 16 self.mem_size_ = _cells _size = (_cells + 2) * 2 self.resize(_size) instantiate(self.size(), self) self.def_const("size", self.mem_size_) def array_size(self) -> bool: return self.mem_size_ def is_readable_array(self) -> bool: return True def is_writable_array(self) -> bool: return True def readable_vars(self) -> bool: return ["first", "last"] def writable_vars(self) -> bool: return ["first", "last"] def has_short_move(self, dsts: List[str]) -> bool: if self.array_size() < 2: return False for dst in dsts: sign, dst = separate_sign(dst) if not self._main.is_sub(dst): return False target = cast(SubsystemBase, self._main.get_instance(dst)) if not target.is_writable_array(): return False if self.array_size() < 2 or target.array_size() < 2: return False for i in range(1, min(self.array_size(), target.array_size())): if (self.addressof(str(i)) - self.addressof(str(i - 1)) != target.addressof(str(i)) - target.addressof(str(i - 1))): return False return True def has_short_copy(self, dsts: List[str]) -> bool: return self.has_short_move(dsts) def put_short_array_move(self, dsts: List[str], copy=False): if not self.has_short_move(dsts): raise Exception(f"destination is not compatible") base = self.addressof("0") sizes = set([]) dsts2: Tuple[int, str, SubsystemBase, int] = [] for dst in dsts: sign, dst = separate_sign(dst) sub = cast(SubsystemBase, self._main.get_instance(dst)) size = min(sub.array_size(), self.array_size()) sizes |= set([size]) dsts2.append(( size, sign, sub, sub.addressof("0") - base)) sizes = sorted(list(sizes)) for i, size in enumerate(sizes): base_idx = 0 if i == 0 else sizes[i - 1] size2 = size - base_idx # n = 2 # 0, v0, n -> 1, v1, n-1 -> 1, v2, n-2 -> 0 self._main.put(">" * self.offset(base_idx * 2 + 2)) self._main.put("+" * size2) self._main.put("[-[>>+<<-]<") for dst_size, sign, dst, dst_addr in dsts2: if sign == "": self._main.put_at(dst_addr, "[-]") self._main.put("[") if copy: self._main.put(">+<") for dst_size, sign, dst, dst_addr in dsts2: o = "-" if sign == "-" else "+" self._main.put_at(dst_addr, o) self._main.put("-]") if copy: self._main.put(">[<+>-]<") self._main.put(">+>>]") self._main.put("<<[-<<]") self._main.put("<" * self.offset(base_idx * 2)) def put_short_array_copy(self, dsts: List[str]): self.put_short_array_move(dsts, copy=True) def has_var(self, name: str) -> bool: if self._main.is_val(name): idx = self._main.valueof(name) if idx in range(self.mem_size_): return True return name in ["first", "last"] def addressof(self, value: str) -> int: """direct I/O interface. index as variable""" if self.mem_size_ == 0: raise Exception(f"empty array has no readable address") if value == "first": return self.offset(1) if value == "last": return self.offset(1 + (self.mem_size_ - 1) * 2) if self._main.is_val(value): idx = self._main.valueof(value) if idx in range(self.mem_size_): return self.offset(1 + idx * 2) raise Exception(f"can not get address of {value}") def has_ins(self, name: str, args: list) -> bool: return (name in [ "clean", "@clear"] or len(args) == 1 and name == "init" or len(args) > 1 and name in [ "@set", "@w_copy", "@w_move", "@r_copy", "@r_move", "@w_copy", "@w_copyadd", "@w_copysub", "@w_move", "@w_moveadd", "@w_movesub", "@r_copy", "@r_copyadd", "@r_copysub", "@r_move", "@r_moveadd", "@r_movesub"] or super().has_ins(name, args)) def put_clean(self, args: list): self.mem2_clean("fast" in args) def put(self, ins_name: str, args: list, tmps: List[int]): if ins_name == "init": return if ins_name == "clean": self.put_clean(args) return if ins_name == "@clear": self.mem2_clean(args) return if (len(args) < 2 and ins_name in [ "@set", "@w_copy", "@w_move", "@w_copy", "@w_copyadd", "@w_copysub", "@w_move", "@w_moveadd", "@w_movesub", "@r_copy", "@r_copyadd", "@r_copysub", "@r_move", "@r_moveadd", "@r_movesub" ]): raise Exception(f"error: {ins_name} {args}") # aliases if ins_name in ["@w_copy", "@w_move"]: if self._main.is_val(args[0]): ins_name = "@set" if ins_name in ["@w_copyadd", "@w_copysub"]: sign = "+" if ins_name == "@w_copyadd" else "-" ins_name = "@w_copy" args = [args[0]] + [sign + x for x in args[1:]] if ins_name in ["@w_moveadd", "@w_movesub"]: sign = "+" if ins_name == "@w_moveadd" else "-" ins_name = "@w_move" args = [args[0]] + [sign + x for x in args[1:]] if ins_name in ["@r_copyadd", "@r_copysub"]: sign = "+" if ins_name == "@r_copyadd" else "-" ins_name = "@r_copy" args = [args[0]] + [sign + x for x in args[1:]] if ins_name in ["@r_moveadd", "@r_movesub"]: sign = "+" if ins_name == "@r_moveadd" else "-" ins_name = "@r_move" args = [args[0]] + [sign + x for x in args[1:]] if ins_name == "@set": if self._main.is_var(args[0]): raise Exception("[mem:@set var ...out] is not implemented") value = self._main.valueof(args[0]) for dst in args[1:]: dst_sign, dst = separate_sign(dst) if self._main.is_val(dst): idx = self._main.valueof(dst) dst_addr = self.offset(idx * 2 + 1) self._main.put_set(value, [f"{dst_sign}#{dst_addr}"]) elif self._main.is_var(dst): dst_addr = self._main.addressof(dst) tmp = self._main.get_nearest_tmp(tmps, [self.offset()]) self._main.put_copy(dst_addr, [f"+#{self.offset(2)}"]) self._main.put(">" * self.offset()) self._main.put(""">>[[>>+<<-]+>>-]<""") self._main.put_set(value, f"{dst_sign}#0") self._main.put("""<[-<<]""") self._main.put("<" * self.offset()) return if ins_name in ["@w_move", "@w_copy"]: if not self._main.is_var(args[0]): raise Exception(f"[mem:{ins_name} val ...out] is not implemented") addr = self._main.addressof(args[0]) if ins_name == "@w_copy": self._main.put_copy(addr, [f"+#{self.offset(4)}"]) else: self._main.put_move(addr, [f"+#{self.offset(4)}"]) out_vars = args[1:] tmp = self._main.get_nearest_tmp(tmps, [addr]) for i in range(len(out_vars)): name = out_vars[i] sign, name = separate_sign(name) if self._main.is_var(name): dst_addr = self._main.addressof(name) self._main.put_copy(dst_addr, [f"+#{self.offset(2)}"]) # for next destination if i < len(out_vars) - 1: self._main.put_copy(self.offset(4), [f"+#{self.offset()}"]) self._main.put(">" * self.offset()) self._main.put(""">>[->>[>>+<<-]<<[>>+<<-]+>>]""") if sign == "": self._main.put("""<[-]>""") self._main.put(""">>[<<<""") self._main.put("-" if sign == "-" else "+") self._main.put(""">>>-]<<<<[-<<]""") self._main.put("<" * self.offset()) if i < len(out_vars) - 1: self._main.put_move(tmp, [f"+#{self.offset(4)}"]) continue if self._main.is_val(name): dst_idx = self._main.valueof(name) self._main.put_at(self.offset(4), "[") self._main.put_at(self.offset(1 + dst_idx * 2), "+") if i + 1 < len(out_vars): self._main.put_at(self.offset(2), "+") self._main.put_at(self.offset(4), "-]") if i + 1 < len(out_vars): self._main.put_move(self.offset(2), [f"+#{self.offset(4)}"]) continue return if ins_name in ["@r_move", "@r_copy"]: src = args[0] if len(list(filter(self._main.is_var, args[1:]))) != len(args[1:]): raise Exception(f"unknown instruction: [mem:{ins_name}] with non-variable destinations") # static addressing if self._main.is_val(src): idx = self._main.valueof(src) addr = self.offset(idx * 2 + 1) if ins_name == "@r_copy": self._main.put_copy(addr, args[1:]) else: self._main.put_move(addr, args[1:]) elif self._main.is_var(src): idx_addr = self._main.addressof(src) self._main.put_copy(idx_addr, [f"+#{self.offset(2)}"]) self._main.put(">" * self.offset()) self._main.put(""">>[[>>+<<-]+>>-]""") if ins_name == "@r_copy": self._main.put("""<[>>>+<<<-]>>>[<<+<+>>>-]<<""") else: self._main.put("""<[>+<-]>""") self._main.put("""<<[->>>>[<<+>>-]<<<<<<]>>>>[<<+>>-]<<<<""") self._main.put("<" * self.offset()) self._main.put_move(self.offset(2), args[1:]) return raise Exception(f"error unknown: {ins_name} {args}")
""" Plotting Data Module Contains the general class definition and the subclasses of the Clawpack data objects specific to plotting. """ from __future__ import absolute_import from __future__ import print_function import os import copy import numpy as np import re import logging import clawpack.clawutil.data as clawdata import time import clawpack.pyclaw.controller # ============================================================================ # Subclass ClawPlotData containing data for plotting results # ============================================================================ class ClawPlotData(clawdata.ClawData): """ClawPlotData class Data subclass containing plot data. """ # ========== Initialization routine ====================================== def __init__(self, controller=None): """Initialize a PlotData object """ # Initialize the data object and read the data files super(ClawPlotData,self).__init__() # default values of attributes: if controller: controller.plotdata = self # inherit some values from controller self.add_attribute('rundir',copy.copy(controller.rundir)) self.add_attribute('outdir',copy.copy(controller.outdir)) if len(controller.frames)>0: for i,frame in enumerate(controller.frames): self.framesoln_dict[str(i)] = frame self.add_attribute('format',copy.copy(controller.output_format)) else: self.add_attribute('rundir',os.getcwd()) # uses *.data from rundir self.add_attribute('outdir',os.getcwd()) # where to find fort.* files self.add_attribute('format','ascii') # This should eventually replace all need for recording the above # information self.add_attribute('output_controller', None) self.output_controller = clawpack.pyclaw.controller.OutputController( self.outdir, file_format=self.format) self.add_attribute('plotdir',os.getcwd()) # directory for plots *.png, *.html self.add_attribute('overwrite',True) # ok to overwrite old plotdir? self.add_attribute('plotter','matplotlib') # backend for plots self.add_attribute('msgfile','') # where to write error messages self.add_attribute('verbose',True) # verbose output? self.add_attribute('ion',False) # call ion() or ioff()? self.add_attribute('printfigs',True) self.add_attribute('print_format','png') self.add_attribute('print_framenos','all') # which frames to plot self.add_attribute('print_gaugenos','all') # which gauges to plot self.add_attribute('print_fignos','all') # which figures to plot each frame self.add_attribute('iplotclaw_fignos','all') # which figures to plot interactively self.add_attribute('latex',True) # make latex files for figures self.add_attribute('latex_fname','plots') # name of latex file self.add_attribute('latex_title','Clawpack Results') self.add_attribute('latex_framesperpage','all') # number of frames on each page self.add_attribute('latex_framesperline',2) # number of frames on each line self.add_attribute('latex_figsperline','all') # number of figures on each line self.add_attribute('latex_makepdf',False) # run pdflatex on latex file self.add_attribute('html',True) # make html files for figures self.add_attribute('html_index_fname','_PlotIndex.html') # name of html index file self.add_attribute('html_index_title','Plot Index') # title at top of index page self.add_attribute('html_homelink',None) # link to here from top of _PlotIndex.html self.add_attribute('html_movie','JSAnimation') # make html with java script for movie self.add_attribute('html_movie_width', 500) # width of movie self.add_attribute('html_eagle',False) # use EagleClaw titles on html pages? self.add_attribute('kml',False) # make kml plots and a kml file for figures self.add_attribute('kml_index_fname','_GoogleEarth') # name of html index file self.add_attribute('kml_publish',None) self.add_attribute('kml_name',"GeoClaw") self.add_attribute('kml_starttime',None) self.add_attribute('kml_tz_offset',None) self.add_attribute('kml_time_scale',1.0) # Multiply by factor to get seconds self.add_attribute('kml_map_topo_to_latlong',None) self.add_attribute('kml_user_files',[]) self.add_attribute('gif_movie',False) # make animated gif movie of frames self.add_attribute('setplot',False) # Execute setplot.py in plot routine self.add_attribute('mapc2p',None) # function to map computational # points to physical self.add_attribute('beforeframe',None) # function called before all plots # in each frame are done self.add_attribute('afterframe',None) # function called after all plots # in each frame are done self.add_attribute('plotfigure_dict',{}) try: from collections import OrderedDict # new in Python 2.7 d = OrderedDict() except: d = {} self.add_attribute('otherfigure_dict',d) self.add_attribute('framesoln_dict',{}) # dictionary for holding framesoln # objects associated with plots self.add_attribute('gaugesoln_dict',{}) # dictionary for holding gaugesoln # objects associated with plots self.add_attribute('save_frames',True) # True ==> Keep a copy of any frame # read in. False ==> Clear the frame # solution dictionary before adding # another solution self.add_attribute('save_figures',True) # True ==> Keep a copy of and figure # created. False ==> Clear the # figure dictionary before adding # another solution self.add_attribute('refresh_gauges',False) # False ==> don't re-read gaugesoln if # already in gaugesoln_dict self.add_attribute('timeframes_framenos',None) self.add_attribute('timeframes_frametimes',None) self.add_attribute('timeframes_fignos',None) self.add_attribute('timeframes_fignames',None) self.add_attribute('gauges_gaugenos',None) self.add_attribute('gauges_fignos',None) self.add_attribute('gauges_fignames',None) # Parallel capabilities # Run multiple processess dividing up the frames that need to be plotted self.add_attribute('parallel', False) # Default to OMP_NUM_THREADS available if defined self.add_attribute('num_procs', None) self.add_attribute('proc_frames', None) self.add_attribute('_parallel_todo', None) self._next_FIG = 1000 self._fignames = [] self._fignos = [] self._mode = 'unknown' self._figname_from_num = {} self._otherfignames = [] def new_plotfigure(self, name=None, figno=None, type='each_frame'): """ Create a new figure for Clawpack plots. If type='each_frame' it is a figure that will be plotted for each time frame. If type='multi_frame' it is a figure that will be plotted based on all the frames, such as x-t plots or time series. (Not yet implemented) """ if (self._mode != 'iplotclaw') and (name in self._fignames): print('*** Warning, figure named %s has already been created' % name) if (self._mode != 'iplotclaw') and (figno in self._fignos): print('*** Warning, figure number %s has already been created' % figno) if figno is None: self._next_FIG += 1 figno = self._next_FIG if name is None: name = "FIG%s" % figno if name in self._fignames: print("*** Error in new_plotfigure: Figure name already used... ",name) raise Exception("Figure name already used") elif figno in self._fignos: print("*** Error in new_plotfigure: Figure number already used... ",figno) raise Exception("Figure number already used") self._fignames.append(name) self._fignos.append(figno) plotfigure = ClawPlotFigure(name, figno, type, self) if not self.save_figures: self.plotfigure_dict.clear() self.plotfigure_dict[name] = plotfigure self._figname_from_num[figno] = name return plotfigure def getframe(self,frameno,outdir=None,refresh=False): """ ClawPlotData.getframe: Return an object of class Solution containing the solution for frame number frameno. If refresh == True then this frame is read from the fort files, otherwise it is read from the fort files only if the the dictionary self.framesoln_dict has no key frameno. If it does, the frame has previously been read and the dictionary value is returned. """ from clawpack.pyclaw import solution framesoln_dict = self.framesoln_dict if 0: if outdir: key = (frameno, outdir) else: key = frameno outdir = self.outdir if outdir is None: outdir = self.outdir outdir = os.path.abspath(outdir) key = (frameno, outdir) if refresh or (key not in framesoln_dict): framesoln = solution.Solution(frameno,path=outdir,file_format=self.format) if not self.save_frames: framesoln_dict.clear() framesoln_dict[key] = framesoln if key != frameno: print(' Reading Frame %s at t = %g from outdir = %s' \ % (frameno,framesoln.t,outdir)) else: print(' Reading Frame %s at t = %g ' \ % (frameno,framesoln.t)) else: framesoln = self.framesoln_dict[key] return framesoln def clearfigures(self): """ Clear all plot parameters specifying figures, axes, items. Does not clear the frames of solution data already read in. For that use clearframes. """ self.plotfigure_dict.clear() self._fignames = [] self._fignos = [] self._next_FIG = 1000 self._otherfignames = [] def clearframes(self, framenos='all'): """ Clear one or more frames from self.framesoln_dict. Need to add outdir option! """ if isinstance(framenos, int): framenos = [framenos] # turn into a list if framenos=='all': self.framesoln_dict.clear() print('Cleared all frames') else: for frameno in framenos: xxx = self.plotdata.framesoln_dict.pop(frameno,None) if xxx is None: print('No frame data to clear for frame ',frameno) else: print('Cleared data for frame ',frameno) def getgauge(self, gauge_id, outdir=None, verbose=True): r"""Read in the gauge labeled with `gaugeno` in path `outdir` :Note: The behavior of this function has changed to actually only read in the requested gauge id rather than all of the gauges. The dictionary `gaugesoln_dict` remains the same. :Input: - *gauge_id* - (int) The gauge id of the gauge to be read in. - *outdir* - (path) Path to output directory containing gauge files. Defaults to this data object's `self.outdir`. - *verbose* - (bool) Verbose console output, default is `False`. :Output: - (clawpack.amrclaw.GaugeSolution) The read in gauge solution either from the `gaugeson_dict` or from file. If something went wrong then the routine prints a warning and returns `None`. """ # Construct path to file if outdir is None: outdir = self.outdir outdir = os.path.abspath(outdir) # Reread gauge data file key = (gauge_id, outdir) if self.refresh_gauges or (key not in self.gaugesoln_dict): try: # Read gauge solution: import clawpack.pyclaw.gauges as gauges self.gaugesoln_dict[key] = gauges.GaugeSolution( gauge_id=gauge_id, path=outdir) if verbose: print("Read in gauge %s." % gauge_id) except Exception as e: import warnings warnings.warn(str(e)) return None return self.gaugesoln_dict[key] def plotframe(self, frameno): from clawpack.visclaw import frametools frametools.plotframe(frameno, self) def printframes(self, verbose=True): #from clawpack.visclaw import frametools #frametools.printframes(self, verbose) print("*** printframes is deprecated. Use plotpages.plotclaw_driver") print("*** for added capabilities.") raise DeprecationWarning("The method 'printframes' is deprecated.") def fignos(self): """ Return a list of the figure numbers actually used. Useful in afterframe function for example to loop over all figures and do something. """ return self._fignos def mode(self): """ Return self._mode, which is set internally to 'iplotclaw' if Iplotclaw is in use, 'printframes' if printframes is being used Useful in afterframe function if you want to do different things for interactive or print modes. """ return self._mode def iplotclaw(self): """ Return True if interactive plotting with iplotclaw is being done. """ return (self._mode == 'iplotclaw') def getfigure(self,figname): try: plotfigure = self.plotfigure_dict[figname] except: raise Exception('Error accessing plotfigure_dict[%s]' % figname) return plotfigure def getaxes(self,axesname,figname=None): found = True if not figname: found = False for fig in self._fignames: plotfigure = self.getfigure(fig) if axesname in plotfigure._axesnames: if found == True: # already found! print('*** Ambiguous... must specify figname') print(' try getaxes(axesname, figname)') return None figname = fig found = True if not found: print('*** No axes found with name = ',axesname) return None try: plotfigure = self.getfigure(figname) plotaxes = plotfigure.plotaxes_dict[axesname] except: print('*** Error accessing plotaxes[%s]' % axesname) print('*** figname = %s' % figname) return None return plotaxes def getitem(self,itemname,axesname=None,figname=None): found = True if not figname: # search over all figures looking for the item found = False for fign in self._fignames: plotfigure = self.getfigure(fign) if not axesname: # search over all axes looking for the item for axesn in plotfigure._axesnames: plotaxes = self.getaxes(axesn,fign) if itemname in plotaxes._itemnames: if found == True: # already found! print('*** Ambiguous... must specify figname and/or axesname') print(' try getitem(itemname, axesname, figname)') return None axesname = axesn figname = fign found = True else: # axesname was specified (but not figname) plotaxes = self.getaxes(axesname,fign) if itemname in plotaxes._itemnames: if found == True: # already found! print('*** Ambiguous... must specify figname and/or axesname') print(' try getitem(itemname, axesname, figname)') return None figname = fign found = True elif not axesname: # figname was specified but not axesname. # search over all axes looking for the item found = False plotfigure = self.getfigure(figname) for axesn in plotfigure._axesnames: plotaxes = self.getaxes(axesn,figname) if itemname in plotaxes._itemnames: if found == True: # already found! print('*** Ambiguous... must specify axesname') print(' try getitem(itemname, axesname, figname)') return None axesname = axesn found = True if not found: print('*** No item found with name = ',itemname) return None try: plotaxes = self.getaxes(axesname,figname) plotitem = plotaxes.plotitem_dict[itemname] except: print('*** Error accessing plotitem[%s]' % itemname) print('*** figname = ',figname) print('*** axesname = ',axesname) return None return plotitem def showitems(self): fignames = self._fignames print("\n\nCurrent plot figures, axes, and items:") print("---------------------------------------") for figname in fignames: plotfigure = self.getfigure(figname) s = " figname = %s, figno = %s" % (figname, plotfigure.figno) if not plotfigure._show: s = s + " [Not showing]" print(s) axesnames = plotfigure._axesnames for axesname in axesnames: plotaxes = self.getaxes(axesname,figname) s = " axesname = %s, axescmd = %s" \ % (axesname, plotaxes.axescmd) if not plotaxes._show: s = s + " [Not showing]" print(s) for itemname in plotaxes._itemnames: plotitem = self.getitem(itemname,axesname,figname) plot_type = plotitem.plot_type s = " itemname = %s, plot_type = %s" \ % (itemname,plot_type) if not plotitem._show: s = s + " [Not showing]" print(s) print(" ") def getq(self,frameno): solution = self.getframe(frameno) patches = solution.patches if len(patches) > 1: print('*** Warning: more than 1 patch, q on patch[0] is returned') q = patches[0].q return q def new_otherfigure(self, name=None, fname=None): """ Create a new figure for Clawpack plots. For figures not repeated each frame. """ if (self._mode != 'iplotclaw') and (name in self._fignames): print('*** Warning, figure named %s has already been created' % name) if name is None: if fname is None: raise Exception("Need to provide name in new_otherfigure") else: name = fname if name in self._otherfignames: print("*** Error in new_otherfigure: Figure name already used... ",name) raise Exception("Figure name already used") self._otherfignames.append(name) otherfigure = ClawOtherFigure(name,self) self.otherfigure_dict[name] = otherfigure otherfigure.fname = fname return otherfigure def set_outdirs(self): """ Make a list of all outdir's for all plotitem's in the order they are first used. """ outdir_list = [] for figname in self._fignames: plotfigure = self.plotfigure_dict[figname] if not plotfigure._show: continue # skip to next figure for axesname in plotfigure._axesnames: plotaxes = plotfigure.plotaxes_dict[axesname] if not plotaxes._show: continue # skip to next axes for itemname in plotaxes._itemnames: plotitem = plotaxes.plotitem_dict[itemname] if not plotitem._show: continue # skip to next item if plotitem.outdir is not None: outdir = plotitem.outdir else: outdir = self.outdir if outdir not in outdir_list: outdir_list.append(outdir) self._outdirs = outdir_list return self # ============================================================================ # Subclass ClawPlotFigure containing data for plotting a figure # ============================================================================ class ClawPlotFigure(clawdata.ClawData): """ Data subclass containing plot data needed to plot a single figure. This may consist of several ClawPlotAxes objects. """ # ======================================================================== # Initialization routine # ======================================================================== def __init__(self, name, figno, fig_type, plotdata): """ Initialize a ClawPlotFigure object """ super(ClawPlotFigure, self).__init__() self._plotdata = plotdata # parent ClawPlotData object self.add_attribute('name',name) self.add_attribute('figno',figno) self.add_attribute('kwargs',{}) self.add_attribute('clf_each_frame',True) self.add_attribute('clf_each_gauge',True) self._axesnames = [] self.add_attribute('show',True) self._show = True self.add_attribute('plotaxes_dict', {}) self.add_attribute('type',fig_type) # = 'each_frame' or 'each_run' or 'each_gauge' self.add_attribute('use_for_kml',False) self.add_attribute('kml_gauge_name','Gauge') self.add_attribute('kml_dpi',200) self.add_attribute('kml_xlimits',None) self.add_attribute('kml_ylimits',None) self.add_attribute('kml_use_figure_limits',True) self.add_attribute('kml_tile_images',False) self.add_attribute('kml_colorbar',None) self.add_attribute('kml_use_for_initial_view',False) self.add_attribute('kml_show_figure',False) self.add_attribute('kml_maxlevel',20) self.add_attribute('kml_figsize',None) # Figure size; specify to get rid of aliasing self._next_AXES = 0 def new_plotaxes(self, name=None, type='each_frame'): """ Create a new axes that will be plotted in this figure. If type='each_frame' it is an axes that will be plotted for each time frame. If type='multi_frame' it is an axes that will be plotted based on all the frames, such as x-t plots or time series. (Not yet implemented) If type='empty' it is created without doing any plots using the pyclaw tools. Presumably the user will create a plot within an afteraxes command, for example. """ if name is None: self._next_AXES += 1 name = "AXES%s" % self._next_AXES if name in self._axesnames: print('*** Warning, axes named %s has already been created' % name) if name not in self._axesnames: self._axesnames.append(name) plotaxes = ClawPlotAxes(name, self) self.plotaxes_dict[name] = plotaxes plotaxes.type = type return plotaxes def gethandle(self): _handle = getattr(self,'_handle',None) return _handle # ============================================================================ # Subclass ClawPlotAxes containing data for plotting axes within a figure # ============================================================================ class ClawPlotAxes(clawdata.ClawData): """ Data subclass containing plot data needed to plot a single axes. This may consist of several ClawPlotItem objects. """ # ======================================================================== # Initialization routine # ======================================================================== def __init__(self, name, plotfigure): """ Initialize a ClawPlotAxes object """ super(ClawPlotAxes, self).__init__() self._plotfigure = plotfigure # figure this item is on self._plotdata = plotfigure._plotdata # parent ClawPlotData object self.add_attribute('name',name) self.add_attribute('title',name) self.add_attribute('title_with_t',True) # creates title of form 'title at time t = ...' self.add_attribute('axescmd','subplot(1,1,1)') self.add_attribute('beforeaxes',None) self.add_attribute('afteraxes',None) self.add_attribute('xlimits',None) self.add_attribute('ylimits',None) self.add_attribute('skip_patches_outside_xylimits',None) self.add_attribute('scaled',False) # true so x- and y-axis scaled same self.add_attribute('image',False) # true so x- and y-axis scaled same # and plot bounds tight self.add_attribute('plotitem_dict', {}) self.add_attribute('type','each_frame') self._itemnames = [] self.add_attribute('show',True) self._show = True self._handle = None self._next_ITEM = 0 self.add_attribute('figno', self._plotfigure.figno) # attributes for gauge plots self.add_attribute('time_label', 'time') # for time axis in gauges self.add_attribute('time_label_kwargs', {}) # kwargs for xlabel cmd self.add_attribute('time_scale', 1) # multiplicative factor to rescale t # e.g. 1/3600. from sec to hours def new_plotitem(self, name=None, plot_type=None): # Create a new entry in self.plotitem_dict if name is None: self._next_ITEM += 1 name = "ITEM%s" % self._next_ITEM if name not in self._itemnames: self._itemnames.append(name) plotitem = ClawPlotItem(name, plot_type, plotaxes=self) self.plotitem_dict[name] = plotitem return plotitem def get_plotdata(self): plotdata = getattr(self,'_plotdata',None) return self._plotdata def get_plotfigure(self): plotfigure = getattr(self,'_plotfigure',None) return self._plotfigure def gethandle(self): _handle = getattr(self,'_handle',None) return self._handle # ============================================================================ # Subclass ClawPlotItem containing data for plotting a single object # ============================================================================ class ClawPlotItem(clawdata.ClawData): """ Data subclass containing plot data needed to plot a single object. This may be a single curve, set of points, contour plot, etc. """ # ======================================================================== # Initialization routine # ======================================================================== def __init__(self, name, plot_type, plotaxes): """ Initialize a ClawPlotItem object """ super(ClawPlotItem, self).__init__() self._plotaxes = plotaxes # axes this item is on self._plotfigure = plotaxes._plotfigure # figure this item is on self._plotdata = plotaxes._plotfigure._plotdata # parent ClawPlotData object try: num_dim = int(plot_type[0]) # first character of plot_type should be num_dim except: print('*** Error: could not determine num_dim from plot_type = ',plot_type) self.add_attribute('num_dim',num_dim) self.add_attribute('name',name) self.add_attribute('figno',plotaxes.figno) self.add_attribute('outdir',None) # indicates data comes from # self._plotdata.outdir self.add_attribute('plot_type',plot_type) self.add_attribute('plot_var',0) self.add_attribute('data_show',True) self.add_attribute('MappedGrid',None) # False to plot on comput. patch even # if _plotdata.mapc2p is not None. self.add_attribute('mapc2p',None) # function to map computational # points to physical (over-rides # plotdata.mapc2p if set for item self.add_attribute('afterpatch',None) # function called after each patch is # plotted within each single plotitem. self.add_attribute('afteritem',None) # function called after the item is # plotted for each frame self.add_attribute("show",True) # False => suppress showing this item self._show = True # Internal self._current_pobj = None self.add_attribute('params',{}) # dictionary to hold optional parameters if num_dim == 1: self.add_attribute('plotstyle','-') self.add_attribute('color',None) self.add_attribute('kwargs',{}) amr_attributes = """show color kwargs data_show plotstyle""".split() for a in amr_attributes: self.add_attribute('amr_%s' % a, []) if plot_type == '1d_fill_between': zero_function = lambda current_data: 0. self.add_attribute('plot_var2',zero_function) self.add_attribute('fill_where',None) if plot_type == '1d_from_2d_data': self.add_attribute('map_2d_to_1d',None) self.add_attribute('amr_plotstyle',[]) elif num_dim == 2: # default values specifying this single plot: self.add_attribute('plot_type',plot_type) self.add_attribute('celledges_show',0) self.add_attribute('celledges_color','k') self.add_attribute('patch_bgcolor','w') self.add_attribute('patchedges_show',0) self.add_attribute('patchedges_color','k') self.add_attribute('add_colorbar',False) self.add_attribute('colorbar_shrink',None) self.add_attribute('colorbar_label',None) self.add_attribute('colorbar_ticks', None) self.add_attribute('colorbar_tick_labels',None) self.add_attribute('colorbar_kwargs',{}) self.add_attribute('kwargs',{}) amr_attributes = """celledges_show celledges_color data_show patch_bgcolor patchedges_show patchedges_color kwargs""".split() for a in amr_attributes: self.add_attribute('amr_%s' % a, []) if plot_type == '2d_pcolor': from clawpack.visclaw import colormaps self.add_attribute('pcolor_cmap',colormaps.yellow_red_blue) self.add_attribute('pcolor_cmin',None) self.add_attribute('pcolor_cmax',None) elif plot_type == '2d_imshow': from clawpack.visclaw import colormaps self.add_attribute('imshow_cmap',colormaps.yellow_red_blue) self.add_attribute('imshow_cmin',None) self.add_attribute('imshow_cmax',None) elif plot_type in ['2d_contour', '2d_contourf']: self.add_attribute('contour_nlevels',20) self.add_attribute('contour_levels',None) self.add_attribute('contour_min',None) self.add_attribute('contour_max',None) self.add_attribute('contour_show',1) self.add_attribute('contour_colors','k') self.add_attribute('contour_cmap',None) amr_attributes = """show colors cmap data_show""".split() for a in amr_attributes: self.add_attribute('amr_contour_%s' % a, []) if plot_type == '2d_contourf': self.add_attribute('fill_cmap',None) self.add_attribute('fill_cmin',None) self.add_attribute('fill_cmax',None) self.add_attribute('fill_colors',None) # Note either fill_cmap or fill_colors must be None elif plot_type == '2d_schlieren': from clawpack.visclaw import colormaps self.add_attribute('schlieren_cmap',colormaps.schlieren_grays) self.add_attribute('schlieren_cmin',None) self.add_attribute('schlieren_cmax',None) elif plot_type == '2d_patch': self.add_attribute('max_density',None) self.celledges_show = True self.patchedges_show = True elif plot_type == '2d_quiver': self.add_attribute('quiver_var_x',None) self.add_attribute('quiver_var_y',None) self.add_attribute('quiver_coarsening',1) self.add_attribute('quiver_key_show',False) self.add_attribute('quiver_key_label_x',0.15) self.add_attribute('quiver_key_label_y',0.95) self.add_attribute('quiver_key_units','') self.add_attribute('quiver_key_scale',None) self.add_attribute('quiver_key_kwargs',{}) amr_attributes = """coarsening key_show key_label_x key_label_y key_scale key_kwargs data_show""".split() for a in amr_attributes: self.add_attribute('amr_quiver_%s' % a, []) elif plot_type == '2d_gtiff': pass else: print('*** Warning 2d plot type %s not recognized' % plot_type) elif num_dim == 3: raise NotImplementedError('ClawPlotItem not yet set up for num_dim = 3') else: raise Warning('Unrecognized plot_type in ClawPlotItem') def getframe(self,frameno,refresh=False): """ ClawPlotItem.getframe: Return an object of class Solution containing the solution for frame number frameno. If refresh == True then this frame is read from the fort files, otherwise it is read from the fort files only if the the dictionary self.framesoln_dict has key frameno. If it does, the frame has previously been read and the dictionary value is returned. """ plotdata = self._plotdata outdir = self.outdir framesoln = plotdata.getframe(frameno, outdir,refresh=refresh) return framesoln def getgauge(self,gauge): """ ClawPlotItem.getgauge: Return an object of class GaugeSolution containing the solution for gauge number gaugeno. If self.refresh_gauges == True then this gauge is read from the fort.gauge file, otherwise it is read only if the the dictionary self.gaugesoln_dict has no key gaugeno. If it does, the gauge has previously been read and the dictionary value is returned. """ plotdata = self._plotdata outdir = self.outdir gaugesoln = plotdata.getgauge(gauge, outdir) return gaugesoln # ============================================================================ # Subclass ClawOtherFigure containing data for plotting a figure # ============================================================================ class ClawOtherFigure(clawdata.ClawData): """ Data subclass containing plot data needed to plot a single figure. For figures that are not produced each frame. """ # ======================================================================== # Initialization routine # ======================================================================== def __init__(self, name, plotdata): """ Initialize a ClawOtherFigure object """ super(ClawOtherFigure, self).__init__() self._plotdata = plotdata # parent ClawPlotData object self.add_attribute('name',name) self.add_attribute('fname',None) # name of png file self.add_attribute('makefig',None) # function invoked to create figure
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf.urls import patterns, url urlpatterns = patterns( 'pagseguro.views', url( r'^$', 'receive_notification', name='pagseguro_receive_notification' ), )
from collections import abc from pathlib import Path import time import re from threading import Thread from api import audio from api import gui from init_phase import init_phase from viability_phase import viability_phase from evaluation_phase import create_datetime_subdir, evaluation_phase from evaluation_phase import load_all_learning_profiles from phase_utils import retrieve_best_learning_profiles, EvaluationMode from phase_utils import PresentationMode, get_specific_learning_profiles from phase_utils import sort_by_score from user_phase import user_phase from presentation_phase import presentation_phase def _phase_header(header): n = len(header) print() print("#" * (n + 8)) print(f"# {'=' * (n + 4)} #") print(f"# = {header} = #") print(f"# {'=' * (n + 4)} #") print("#" * (n + 8)) print() def _pick_learning_profiles(learning_profiles: list): # Show info n = len(learning_profiles) print(f"There are {n} Learning Profiles.") # Prompt for starting index start_index = -1 print(f"Pick a starting index between 0 and {n-1}:") while True: try: start_index = int(input("> ")) if start_index >= 0 or start_index < n: break except ValueError: continue # Prompt for stopping index stop_index = -1 print(f"Pick a stopping index between {start_index} and {n-1}:") while True: try: stop_index = int(input("> ")) if stop_index >= start_index or stop_index < n: break except ValueError: continue return learning_profiles[start_index:(stop_index+1)] def _pick_multiple_learning_profiles(learning_profiles: list): # Initial prompt print("Pick what Learning Profiles to evaluate.") indexed_lps = {i: lp for i, lp in enumerate(learning_profiles)} picked_inds = [] while True: # Print unpicked LPs print( "Learning Profiles to pick from: (Train DS, Test DS, AL, ML, " "hyperparameters)") if len(picked_inds) == len(indexed_lps): print("\t-") else: for i, lp in indexed_lps.items(): if i not in picked_inds: print(f"\t{i}: {lp.get_name()}") # Print picked LPs print("Picked Learning Profiles:") if not picked_inds: print("\t-") else: for i in sorted(picked_inds): print(f"\t{i}: {indexed_lps[i].get_id()}") # Input prompt print("Enter indices on format 'i' or 'i-j'.") print("Drop staged Learning Profiles with 'drop i'.") print("Write 'done' when you are done.") # Handle input try: idx = input("> ") if idx == "done": # Check if done break elif bool(re.match("^[0-9]+-[0-9]+$", idx)): # Check if range span_str = idx.split("-") picked_inds += [i for i in range( int(span_str[0]), int(span_str[1]) + 1) if i not in picked_inds] elif bool(re.match("^drop [0-9]+$", idx)): picked_inds.remove(int(idx.split()[1])) elif int(idx) in indexed_lps.keys() \ and int(idx) not in picked_inds: # Check if singular picked_inds.append(int(idx)) except ValueError: continue return [indexed_lps[i] for i in picked_inds] def _nested_dict_ids(nested): for _, value in nested.items(): if isinstance(value, abc.Mapping): yield from _nested_dict_ids(value) elif isinstance(value, abc.Iterable): for lp in value: yield lp.get_id() else: raise ValueError(f"Invalid structure (value was '{value}')") def _best_learning_profiles(input_dir: Path, learning_profiles: list, n_lps_per_cat: int): # Load learning profile descriptions and choose best lp_descs = load_all_learning_profiles(input_dir) lp_descs_best = retrieve_best_learning_profiles(lp_descs, n_lps_per_cat) # Use descriptions to retrieve actual learning profiles return [lp for lp in learning_profiles if lp.get_id() in _nested_dict_ids(lp_descs_best)] def model_selection_process(data_dir: Path, output_dir: Path, sliding_window_length: int, batch_size: int, num_iterations: int, seed_percent: float, n_threads: int): """ Runs the model selection process. Args: data_dir (Path): The directory where all `.csv` and `.npy` files are located. output_dir (Path): A directory where all Learning Profile results will be stored. sliding_window_length (int): The sliding window size to use. batch_size (int): The batch size to use. num_iterations (int): Number of batches to process. seed_percent (float): Percent of initial seed data to use before applying Active Learning. n_threads (int): The number of threads to use. """ ######################## # Initialization Phase # ######################## _phase_header("INIT PHASE") learning_profiles = init_phase( data_dir, sliding_window_length=sliding_window_length, batch_size=batch_size, model_eval=False ) ########## # Filter # ########## _phase_header("LEARNING PROFILE FILTER") filtered_learning_profiles = _pick_learning_profiles(learning_profiles) ################### # Viability Phase # ################### _phase_header("VIABILITY PHASE") viability_phase(filtered_learning_profiles, num_iterations, seed_percent, n_threads) #################### # Evaluation Phase # #################### _phase_header("EVALUATION PHASE") stamped_output_dir = create_datetime_subdir(output_dir) evaluation_phase(stamped_output_dir, filtered_learning_profiles) print("Evaluated successfully!") # Done _phase_header("DONE") def model_evaluation_process(data_dir: Path, input_dir: Path, output_dir: Path, audio_dir: Path, sliding_window_length: int, batch_size: int, num_iterations: int, seed_percent: float, audio_file_ext: str, n_lps_per_category_item: int): """ Runs the model evaluation process. Args: data_dir (Path): The directory where all `.csv` and `.npy` files are located. input_dir (Path): A directory with Learning Profile results from the model_selection process. output_dir (Path): A directory where all Learning Profile results will be stored. audio_dir (Path): A directory where all audio files are located. sliding_window_length (int): The sliding window size to use. batch_size (int): Number of batches to process. num_iterations (int): Number of batches to process. seed_percent (float): Percent of initial seed data to use before applying Active Learning. audio_file_ext (str): File extension of the audio files in `data_dir`. n_lps_per_category_item (int): The number of best-performing-learning-profiles per presentation-mode-category-item (a method/dataset from any of these categories AL,ML,DS) to continue with from the model selection phase. Raises: FileNotFoundError: If `input_dir` is not a valid directory. """ ######################## # Initialization Phase # ######################## _phase_header("INIT PHASE") learning_profiles = init_phase( data_dir, sliding_window_length=sliding_window_length, batch_size=batch_size, model_eval=True ) ########## # Filter # ########## _phase_header("LEARNING PROFILE FILTER") # Validity check if not input_dir.is_dir(): raise FileNotFoundError(f"Not a directory: '{input_dir}'") # Get best learning profiles filtered_learning_profiles = _best_learning_profiles( input_dir, learning_profiles, n_lps_per_category_item) # Pick what learning profiles to evaluate picked_learning_profiles = _pick_multiple_learning_profiles( filtered_learning_profiles) ############## # User Phase # ############## _phase_header("USER PHASE") # Initialize audio audio.init() # User phase wrapper def _user_phase_thread_func(): for _ in user_phase( picked_learning_profiles, audio_dir, num_iterations, seed_percent, audio_file_ext): pass # Start application _app = Thread(target=_user_phase_thread_func) print("Starting User Phase thread...") _app.start() # Drive GUI while _app.is_alive(): time.sleep(.01) # Allow other threads to breathe gui.update_windows() print("The GUI loop on main thread was exited " + "since the User Phase thread was stopped!") # Exit GUI print("Destroying GUI...") gui.destroy() print("The GUI was successfully destroyed!") # Deinitialize audio audio.deinit() #################### # Evaluation Phase # #################### _phase_header("EVALUATION PHASE") stamped_output_dir = create_datetime_subdir(output_dir) evaluation_phase(stamped_output_dir, picked_learning_profiles) print("Evaluated successfully!") # Done _phase_header("DONE") def _get_sorted_specific_learning_profiles(lps, eval_mode, pres_mode, n_lps_per_category_item): sorted_lps = [] # Get all specific learning profiles for spec_lps in get_specific_learning_profiles( lps, pres_mode): # For each attribute, sort learning profiles by score # and choose n_lps_per_category_item nr of models per category item for lp in sort_by_score(spec_lps, eval_mode, n_lps_per_category_item): sorted_lps.append(lp) return sorted_lps def presentation_process(learning_profile_dir: Path, n_lps: int): """ Runs the model evaluation process. Args: learning_profile_dir (Path): A directory with Learning Profile results from either model_selection or model_evaluation. n_lps (int): Max number of Learning Profiles to include in plot, chooses the best performing ones. (-1 all Learning Profiles included). """ # get profiles lps_desc = load_all_learning_profiles(learning_profile_dir) # Copy lps_present = lps_desc ###################### # Presentation Phase # ###################### _phase_header("PRESENTATION PHASE") print(f"In total there are {len(lps_desc)} Learning profiles.") # Setup variables quit = False picked_eval = None eval_modes = [eval_mode for eval_mode in EvaluationMode] pres_modes = [pres_mode for pres_mode in PresentationMode] # Input loop to gather plot settings while True: _phase_header("PLOT SETTINGS") ################### # Evaluation mode # ################### # Input prompt print("Pick evaluation mode by writing the index of the desired" " evaluation mode.") for idx, eval_mode in enumerate(EvaluationMode): print(f"{idx}:\t{eval_mode}") print("Write 'exit' to quit.") # Handle evaluation mode input while True: try: idx = input("> ") if "exit" == idx: quit = True break elif int(idx) >= 0 and int(idx) < len(EvaluationMode): picked_eval = eval_modes[int(idx)] break except ValueError: continue if quit: break ##################### # Presentation mode # ##################### # Input prompt print("Pick presentation mode by writing the index of the wanted" " presentation mode.") print("ML = Machine learning, AL = Active learning," " DS = Dataset.") for idx, pres_mode in enumerate(PresentationMode): print(f"{idx}:\t{pres_mode}") print( f"Write 'all' to present {n_lps if n_lps > -1 else len(lps_desc)}" " learning profiles." " (No presentation-mode-filtering)") print("Write 'exit' to quit.") # Handle presentation mode input while True: try: idx = input("> ") if "exit" == idx: quit = True break elif "all" == idx: lps_present = lps_desc presentation_phase(learning_profiles=lps_present, eval=picked_eval, nr_models=n_lps) break elif int(idx) >= 0 and int(idx) < len(PresentationMode): # Set nr of learning profiles per category item n_lps_per_category_item = None while True: print("Write the number of " "best-performing-learning-profiles" " per presentation-mode-category-item " "(a method/dataset from any of these " "categories AL,ML,DS) " "to apply presentation-mode-filtering" "(-1 means all Learning Profiles included)") n = input("> ") if "exit" == n: quit = True break elif int(n) == -1 or int(n) > 0: n_lps_per_category_item = int(n) break if quit: break # Filter learning profiles given the arguments lps_present = _get_sorted_specific_learning_profiles( lps_desc, picked_eval, pres_modes[int(idx)], n_lps_per_category_item) # Run presentation phase to plot the results presentation_phase(learning_profiles=lps_present, eval=picked_eval, nr_models=n_lps) break except ValueError: continue if quit: break pass
import cv2 import numpy as np from matplotlib import pyplot as plt I = cv2.imread('masoleh.jpg') # notice that OpenCV uses BGR instead of RGB! B = I.copy() B[:, :, 1:] = 0 G = I.copy() G[:, :, ::2] = 0 R = I.copy() R[:, :, :2] = 0 cv2.imshow('win1', I) while 1: k = cv2.waitKey() if k == ord('o'): cv2.imshow('win1', I) elif k == ord('b'): cv2.imshow('win1', B) elif k == ord('g'): cv2.imshow('win1', G) elif k == ord('r'): cv2.imshow('win1', R) elif k == ord('q'): cv2.destroyAllWindows() break
# Standard libraries import os from datetime import datetime as dt from datetime import timedelta # External libraries import pandas as pd class LoadProfileData: def __init__(self,settings, logger): self.logger = logger self.settings = settings # Read all csv files self.read_files() self.group_kw = self.consumer_data.groupby('cust_type').sum()['kw'].to_dict() self.timeseries, self.timeseriesdict = [],{} for group, load in self.group_kw.items(): group_timeseries = [mult*load for mult in self.dataframe_dict[group]] self.timeseriesdict[group] = group_timeseries if self.timeseries == []: self.timeseries = group_timeseries else: self.timeseries = [sum(x) for x in zip(self.timeseries,group_timeseries)] self.logger.info('Profile object instantiated !!') def get_data(self,pv_pen: float, date): self.timeseries_pv, self.timeseriesdict_pv = [],{} self.pvgeneration = [] # find out the peak and peak_index self.peak = max(self.timeseries) self.peak_index = self.timeseries.index(self.peak) for group, load in self.group_kw.items(): load_at_peak = self.dataframe_dict[group][self.peak_index]*load base_load = [el*load for el in self.dataframe_dict[group]] solar_gen = [load_at_peak*pv_pen/100*el for el in self.solar_data] net_load = [x[0] - x[1] for x in zip(base_load,solar_gen)] self.timeseriesdict_pv[group] = net_load if self.timeseries_pv == []: self.timeseries_pv = net_load self.pvgeneration = solar_gen else: self.timeseries_pv = [sum(x) for x in zip(self.timeseries_pv,net_load)] self.pvgeneration = [sum(x) for x in zip(self.pvgeneration,solar_gen)] # Let's arange in descending order to plot load duration curve self.sorted_timeseries_pv, self.ids = zip(*sorted(zip(self.timeseries_pv, \ range(len(self.timeseries_pv))),reverse=True)) self.sorted_timeseriesdict_pv = {} for group, array in self.timeseriesdict_pv.items(): temp_array = [array[index] for index in self.ids] self.sorted_timeseriesdict_pv[group] = temp_array data_len = len(self.sorted_timeseries_pv) self.sorted_timeseriesdict_pv['TimeStamp'] = [index*100/data_len for index in range(data_len)] # Separate load data for a day self.datelist = [dt(self.settings['year'],1,1,0,0,0) \ + timedelta(minutes=self.settings['time_step(min)'])*i \ for i in range(len(self.timeseries_pv))] if ":" in date: self.date = dt.strptime(date,'%Y-%m-%d %H:%M:%S') else: self.date = dt.strptime(date,'%Y-%m-%d') self.daily_data = {'TimeStamp':[el for el in self.datelist if el.day==self.date.day and el.month==self.date.month]} for group, array in self.timeseriesdict_pv.items(): temp_array = [] for date, load in zip(self.datelist,array): if date.day == self.date.day: temp_array.append(load) self.daily_data[group] = temp_array # Sample load duration data self.sorted_sample_dict = {} for group, array in self.sorted_timeseriesdict_pv.items(): chunk_size = int(len(array)/1000) if len(array)>3000 else 1 self.sorted_sample_dict[group] = [array[index] for index in range(0,len(array),chunk_size)] # Get statistics about load profile absolute_load = [abs(value) for value in self.timeseries_pv] max_net_gen = 'NA' if pv_pen==0 else -round(min(self.timeseries_pv)/1000,2) load_factor = round(sum(self.timeseries_pv)/(len(self.timeseries_pv)*max(self.timeseries_pv)),2) col_names = ['Peak load (MW)','Minimum load (MW)', 'Maximum solar generation (MW)', \ 'Maximmum Net Generation (MW)', 'Load factor'] val_list = [round(max(self.timeseries_pv)/1000,2), round(min(absolute_load)/1000,2), round(max(self.pvgeneration)/1000,2), max_net_gen, load_factor] time_list = [self.timeseries_pv.index(max(self.timeseries_pv)), absolute_load.index(min(absolute_load)), self.pvgeneration.index(max(self.pvgeneration)), self.timeseries_pv.index(min(self.timeseries_pv)), 'NA'] if max_net_gen == 'NA': time_list[3] = 'NA' for id, value in enumerate(time_list): if value != 'NA': time_list[id] = self.datelist[value] self.df_stat = pd.DataFrame({'Parameters': col_names,'Value': val_list, 'Time': time_list}) return self.sorted_sample_dict, self.daily_data, self.df_stat def read_files(self): # Make sure all file exists fileslist = ['residential.csv','commercial.csv','industrial.csv', 'agricultural.csv','consumer.csv','solarmult.csv'] file_path = os.path.join(self.settings['project_path'], \ self.settings['active_project'],'Profile') if not set(fileslist).issubset(set(os.listdir(file_path))): raise Exception(f"At least one of the file in list {','.join(fileslist)} \ is missing in folder path {file_path}") file_dict = {'residential':'residential.csv', 'commercial':'commercial.csv', 'industrial':'industrial.csv', 'agricultural':'agricultural.csv'} self.dataframe_dict = {} for consumertype, filename in file_dict.items(): self.dataframe_dict[consumertype] = list(pd.read_csv(os.path.join(file_path, \ filename),header=None)[0]) self.consumer_data = pd.read_csv(os.path.join(file_path,'consumer.csv')) self.solar_data = list(pd.read_csv(os.path.join(file_path,'solarmult.csv'),header=None)[0]) self.logger.info(f'Files read successfully from folder path {file_path}')
from setuptools import setup, find_packages from os.path import join, dirname setup( name='smartRM', version='1.0', author='Andrew Denisevich', author_email='[email protected]', packages=find_packages(), long_description=open(join(dirname(__file__), 'README')).read() } )
import os import time from dataclasses import dataclass from datetime import datetime from typing import Annotated from apischema import deserialize, serialize from apischema.metadata import conversion # Set UTC timezone for example os.environ["TZ"] = "UTC" time.tzset() def datetime_from_timestamp(timestamp: int) -> datetime: return datetime.fromtimestamp(timestamp) date = datetime(2017, 9, 2) assert deserialize(datetime, 1504310400, conversion=datetime_from_timestamp) == date @dataclass class Foo: bar: int baz: int def sum(self) -> int: return self.bar + self.baz @property def diff(self) -> int: return int(self.bar - self.baz) assert serialize(Foo, Foo(0, 1)) == {"bar": 0, "baz": 1} assert serialize(Foo, Foo(0, 1), conversion=Foo.sum) == 1 assert serialize(Foo, Foo(0, 1), conversion=Foo.diff) == -1 # conversions can be specified using Annotated assert serialize(Annotated[Foo, conversion(serialization=Foo.sum)], Foo(0, 1)) == 1
''' This file contains the important function that is imported within the module ''' import numpy as np import matplotlib.pyplot as plt from time import time import os import glob from astropy.io import fits from functools import reduce from scipy.interpolate import LSQUnivariateSpline as spline from scipy.interpolate import UnivariateSpline from scipy.signal import savgol_filter from scipy.signal import gaussian from scipy.stats import binned_statistic from scipy.interpolate import UnivariateSpline from scipy.ndimage import filters def fold_data(Time , Flux, Period): ''' Function to fold the time, and flux for a given period Parameters ---------- Time: numpy array Time series as a numpy array Flux: numpy array Flux series as a numpy array Period: float The value of period to which data is folded Returns ------- array, array Arranged index of ''' FoldedTime = Time%Period ArrangeIndex = np.array(FoldedTime).argsort() ArrangedTime = FoldedTime[ArrangeIndex] ArrangedFlux = Flux[ArrangeIndex] return ArrangedTime, ArrangedFlux def FindLocalMaxima(Data, NData=4): ''' This function finds the value of the local maxima Input Parameter: ---------------- Data: numpy array Data where the local maxima is to be found. NData: integer Number of neighboring data points to be considered. Returns ------- array an array of index for the night ''' Index = np.zeros(len(Data)).astype(np.bool) for counter in range(len(Data)): Data[counter-NData:counter+NData] StartIndex = counter-NData if StartIndex<0: StartIndex = 0 StopIndex = counter+NData+1 if StopIndex>len(Data): StopIndex=len(Data) Index[counter] = Data[counter]>0.999999*max(Data[StartIndex:StopIndex]) return Index def RunningResidual(Time, Flux, NumBins): ''' Function yields the moving average of the data Parameters ---------- Time: array of float array for which the moving average is to be determined Residual: array of float array for which the moving average is to be determined NumBins: integer Number of points for generating the gaussian function Returns ------------- arrays Value of standard deviation ''' NumPoints = int(len(Time)/NumBins) CurrentSTD = [] for i in range(NumBins): Start = i*NumPoints Stop = (i+1)*NumPoints CurrentSTD.append(np.std(Flux[Start:Stop])/(np.sqrt(NumPoints))) CurrentSTD = np.array(CurrentSTD) return CurrentSTD def moving_average(series, sigma=5, NumPoint=75): ''' Function yields the moving average of the data Parameters ------------ series: array of float array for which the moving average is to be determined sigma: float Standard deviation used to construct the normal function NumPoint: integer Number of points for generating the gaussian function Returns ------------- This function returns ''' b = gaussian(NumPoint, sigma) average = filters.convolve1d(series, b/b.sum()) var = filters.convolve1d(np.power(series-average,2), b/b.sum()) return average, var def FindQuality(Time, Data, CutOff=6.0, NIter=2): ''' Function to find quality based on all the data Parameter ---------- Time: array The time series of the data Data: array The data series for finding the outliers CutOff: float The cutoff value for finding the threshold for the cutoff NIter: int The number if interation for finding the outlier Returns ------------ Array of boolean based on ''' NanIndex = np.logical_or(np.isnan(Time),np.isnan(Data)) SelectIndex = ~NanIndex for IterCount in range(NIter): _ , var = moving_average(Data[SelectIndex], ) spl = UnivariateSpline(Time[SelectIndex], Data[SelectIndex], w=1.0/np.sqrt(var)) trend = spl(Time) Residual = Data- trend STD = np.std(Residual[SelectIndex]) Value = np.abs(Residual)/STD SelectIndex = np.logical_and(SelectIndex, Value<CutOff) return SelectIndex def ParseFile(Location): ''' This function parse Search Parameters initialization file Input ##################################### Location of the search initialization file Output ##################################### The parameters in dictionary format ''' with open(Location,'r') as f: Data = f.readlines() ValueDict = {} for Line in Data[1:]: LineItem = Line.split("#")[0] Key, Value = LineItem.split(":") ValueDict[Key] = Value.replace(" ", "") return ValueDict def ReadTxtData(Location, TargetName): ''' This function reads the input file Input ##################################### Location: Path to the folder containing the light curve. TargetName: Name of the target for identifying the files. Output ##################################### Name of the parameters Values of the parameters ''' if len(Location) <1 or len(TargetName)<1: raise NameError("No location or target available") FileList = glob.glob(Location+"/*%s*.txt*" %TargetName) NumFiles = len(FileList) if NumFiles == 0: raise NameError("No Files found") AllData = [] for Counter,FileItem in enumerate(FileList): #Headers if Counter ==0 : Header = open(FileItem,'r').readline().upper() CSVFileFlag = "," in Header if CSVFileFlag: TempParameter = Header.split(",") else: TempParameter = Header.split("\t") ParamName = [] for Param in TempParameter: ParamName.append(Param.replace(" ", "").replace("#","").replace("\n","")) try: Data = np.loadtxt(FileItem,skiprows=1, delimiter=",") except: Data = np.loadtxt(FileItem, skiprows=0) AllData.extend(Data) AllData = np.array(AllData) ParamName = np.array(ParamName) return ParamName, AllData def ReadFitsData(Location, TargetName, version=1): ''' This function reads the input file from Cambridge Pipeline Parameter ------------ Location: string Path to the folder containing the light curve. TargetName: string Name of the target used to identifying the files. Either SpeculoosID or GAIAID is expected version: int Version of the dataproduct being used. Version 1 is different from version 2. Yields --------- Name of the parameters Values of the parameters ''' if len(Location) <1 or len(TargetName)<1: raise NameError("No location or target available") FileList = glob.glob(Location+"/*%s*.fits*" %TargetName) NumFiles = len(FileList) if NumFiles == 0: raise NameError("No Files found") AllData = [] if version==1: ParamName = ["TIME", "FLUX", "AIRMASS", "FWHM", \ "DX", "DY", "FWHM_X", "FWHM_Y", "SKY"] elif version==2: ParamName = ["TIME", "FLUX", "COMP_LC1", \ "COMP_LC2", "COMP_LC3", "AIRMASS", "FWHM", \ "DX", "DY", "FWHM_X", "FWHM_Y"] AllData = [] for Counter,FileItem in enumerate(FileList): FitsFile = fits.open(FileItem, memmap='r') Time = FitsFile[1].data["JD-OBS"] #Generate the array to save the data CurrentData = np.zeros((len(Time), len(ParamName))) if version==1: CurrentData[:,0] = Time CurrentData[:,1] = FitsFile[20].data[0,:] CurrentData[:,2] = FitsFile[1].data['RA_MOVE'] CurrentData[:,3] = FitsFile[1].data['DEC_MOVE'] CurrentData[:,4] = FitsFile[1].data['PSF_A_1'] CurrentData[:,5] = FitsFile[1].data['PSF_B_1'] CurrentData[:,6] = FitsFile[1].data["AIRMASS"] input("Trying to figure out the content of the fits file...") plt.figure() plt.plot(CurrentData[:,0] , CurrentData[:,1], "ko") plt.plot(CurrentData[:,0] , FitsFile[24].data[0,:], "rd") #plt.plot(FitsFile[1].data['TMID'], CurrentData[:,1], "ro") plt.show() elif version ==2: CurrentData[:,0] = Time CurrentData[:,1] = FitsFile[3].data[:,0] CurrentData[:,2] = FitsFile[3].data[:,1] CurrentData[:,3] = FitsFile[3].data[:,2] CurrentData[:,4] = FitsFile[3].data[:,3] CurrentData[:,5] = FitsFile[1].data["AIRMASS"] CurrentData[:,6] = FitsFile[1].data["FWHM"] CurrentData[:,7] = FitsFile[1].data["RA_MOVE"] CurrentData[:,8] = FitsFile[1].data["DEC_MOVE"] CurrentData[:,9] = FitsFile[1].data["PSF_A_5"] CurrentData[:,10] = FitsFile[1].data["PSF_B_5"] AllData.extend(CurrentData) AllData = np.array(AllData) ParamName = np.array(ParamName) return ParamName, AllData def TransitBoxModel(Time, T0=None, TDur=None, Delta=1): ''' This function creates a box shaped transit Parameters: ============ Time: numpy array Array of time vector for which the transit is to be evaluated T0: float The mid point of the transit in unit of Time TDur: float Transit Duration in days Returns ========== A vector of transit the same size as time ''' TransitIndex = np.abs((Time-T0))<TDur/2 TransitModel = np.zeros(len(Time)) TransitModel[TransitIndex]-=Delta return TransitModel def SVDSolver(A, b, T0, TDur, Combination): ''' Returns the least square coefficients based on basis matrix using Singular Value Decomposition Parameters ---------- A: (M,N) sized array which serves as the basis function Flux: N size array Flux series T0: The mid transit time TDur: The transit Duration Combination: The columns used for the getting the combination vector Returns -------- array(M), array(M), float returns T0, TDur, Combination ''' b = b.T N, M = np.shape(A) U,S,V = np.linalg.svd(A, full_matrices=False) S = np.diag(S) S[S==0] = 1.0e10 W = 1./S CalcCoef = reduce(np.matmul,[U.T, b, W, V]) Cov = reduce(np.matmul,[V.T,W*W,V]) Residual = np.sum((np.matmul(A,CalcCoef)-b)**2.0) ChiSquaredReduced = Residual/(N-M) Cov = ChiSquaredReduced*Cov Uncertainty = np.sqrt(np.diag(Cov)) Model = np.dot(A,CalcCoef) DetrendedCoef = np.copy(CalcCoef) DetrendedCoef[-2] = 0.0 DetrendedModel = np.dot(A, DetrendedCoef) return CalcCoef, Uncertainty, Residual, Model, \ DetrendedModel,T0, TDur, Combination def SplineFlattening(Time, Flux, period, NIter = 4, StdCutOff=2.5, poly=3, knot=1): ''' This fit a spline to the data ''' TimeCopy = np.copy(Time)#[~OutliersIndex] FluxCopy = np.copy(Flux)#[~OutliersIndex] KnotSpacing = knot #increase ChunkSize or decrease ChunkSize PolyDeg = int(poly) for i in range(NIter): NumOrbits = int((TimeCopy[-1]-TimeCopy[0])/period) if NumOrbits<1: NumOrbits=1 ChunkSize = KnotSpacing*len(TimeCopy)/NumOrbits N = int(len(Time)/ChunkSize) Location = [int((i+0.5)*ChunkSize) for i in range(0,N)] knots = TimeCopy[Location] spl = spline(TimeCopy, FluxCopy, knots, k=PolyDeg) FluxPred = spl(TimeCopy) Residual = FluxCopy-FluxPred Std = np.std(Residual) GoodIndex = np.abs(Residual)<StdCutOff*Std TimeCopy = TimeCopy[GoodIndex] FluxCopy = FluxCopy[GoodIndex] FluxPred = spl(Time) return FluxPred def GetID(Name, IdType=None): ''' Method to get Speculoos ID/GAIA ID from viceversa ''' #Loading the database Data = np.loadtxt("database/Targets.csv", delimiter=",", skiprows=1, dtype=np.str) SpName = Data[:,0] SpName = np.array([Item.upper() for Item in SpName]) GaiaID = Data[:,2].astype(np.int) if "SPECULOOS" in IdType.upper(): return GaiaID[SpName == Name.upper()][0] elif "GAIA" in IdType.upper(): return SpName[GaiaID==int(Name)][0] else: return "Not Found"
# coding: utf-8 # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. from __future__ import absolute_import import sys import unittest import datadog_api_client.v2 try: from datadog_api_client.v2.model import permission_attributes except ImportError: permission_attributes = sys.modules[ 'datadog_api_client.v2.model.permission_attributes'] try: from datadog_api_client.v2.model import permissions_type except ImportError: permissions_type = sys.modules[ 'datadog_api_client.v2.model.permissions_type'] from datadog_api_client.v2.model.permission import Permission class TestPermission(unittest.TestCase): """Permission unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPermission(self): """Test Permission""" # FIXME: construct object with mandatory attributes with example values # model = Permission() # noqa: E501 pass if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- # pragma pylint: disable=unused-argument, no-self-use """Function implementation""" import logging from resilient_circuits import ResilientComponent, function, handler, StatusMessage, FunctionResult, FunctionError from fn_ldap_multidomain_utilities.util.helper import LDAPUtilitiesHelper from ast import literal_eval from ldap3.extend.microsoft.addMembersToGroups import ad_add_members_to_groups as ad_add_members_to_groups PACKAGE_NAME = "fn_ldap_multidomain_utilities" class FunctionComponent(ResilientComponent): """Component that implements Resilient function 'ldap_md_utilities_add_to_groups''""" def __init__(self, opts): """constructor provides access to the configuration options""" super(FunctionComponent, self).__init__(opts) self.options = opts.get(PACKAGE_NAME, {}) @handler("reload") def _reload(self, event, opts): """Configuration options have changed, save new values""" self.options = opts.get(PACKAGE_NAME, {}) @function("ldap_md_utilities_add_to_groups") def _ldap_md_utilities_add_to_groups_function(self, event, *args, **kwargs): """Function: A function that allows adding multiple users to multiple groups""" try: # Get the wf_instance_id of the workflow this Function was called in wf_instance_id = event.message["workflow_instance"]["workflow_instance_id"] yield StatusMessage("Starting 'ldap_md_utilities_add_to_groups' running in workflow '{0}'".format(wf_instance_id)) # Get the function parameters: ldap_md_domain_name = kwargs.get("ldap_md_domain_name") # text ldap_md_multiple_user_dn = kwargs.get("ldap_md_multiple_user_dn") # text ldap_md_multiple_group_dn = kwargs.get("ldap_md_multiple_group_dn") # text log = logging.getLogger(__name__) log.info("ldap_md_domain_name: %s", ldap_md_domain_name) log.info("ldap_md_multiple_user_dn: %s", ldap_md_multiple_user_dn) log.info("ldap_md_multiple_group_dn: %s", ldap_md_multiple_group_dn) yield StatusMessage("Function Inputs OK") # Instansiate helper (which gets appconfigs from file) helper = LDAPUtilitiesHelper(self.options, ldap_md_domain_name) log.info("[app.config] -ldap_server: %s", helper.LDAP_SERVER) log.info("[app.config] -ldap_user_dn: %s", helper.LDAP_USER_DN) yield StatusMessage("Appconfig Settings OK") ############################################## if not helper.LDAP_IS_ACTIVE_DIRECTORY: raise FunctionError("This function only supports an Active Directory connection. Make sure ldap_is_active_directory is set to True in the app.config file") try: # Try converting input to an array ldap_md_multiple_user_dn = literal_eval(ldap_md_multiple_user_dn) ldap_md_multiple_group_dn = literal_eval(ldap_md_multiple_group_dn) except Exception: raise ValueError("""ldap_md_multiple_user_dn and ldap_md_multiple_group_dn must be a string repersenation of an array e.g. "['dn=Accounts Group,dc=example,dc=com', 'dn=IT Group,dc=example,dc=com']" """) # Instansiate LDAP Server and Connection c = helper.get_ldap_connection() try: # Bind to the connection c.bind() except Exception as err: raise ValueError("Cannot connect to LDAP Server. Ensure credentials are correct\n Error: {0}".format(err)) # Inform user msg = "Connected to {0}".format("Active Directory") yield StatusMessage(msg) res = False try: yield StatusMessage("Attempting to add user(s) to group(s)") # perform the removeMermbersFromGroups operation res = ad_add_members_to_groups(c, ldap_md_multiple_user_dn, ldap_md_multiple_group_dn, True) # Test: res = 'ad_add_members_to_groups(c, ' + str(ldap_md_multiple_user_dn) + ', ' + str(ldap_md_multiple_group_dn) + ', True)' except Exception: raise ValueError("Ensure all user and group DNs exist") finally: # Unbind connection c.unbind() ############################################## results = { "success": res, "domain_name": ldap_md_domain_name, "users_dn": ldap_md_multiple_user_dn, "groups_dn": ldap_md_multiple_group_dn } yield StatusMessage("Finished 'ldap_md_utilities_add_to_groups' that was running in workflow '{0}'".format(wf_instance_id)) # Produce a FunctionResult with the results yield FunctionResult(results) except Exception: yield FunctionError()
strIN = input("String to calculate the lenght: ") print(f'Length: {len(strIN)}')
""" <<<<<<<<<<Base Class Initializers>>>>>>>>>>> -> Unlike C++ and Java, Python doesn't automatically call base class initializers. -> __init__ is treated just like any other method. -> If a subclass defines __init__, it must explicitly call the base class implementation for it to be run. """ """ <<<<<<<<<Type Inspection>>>>>>>>>> isinstance() ------------------ Determines if an object is an instance of type. Takes an object as its first arguments and a type as its second. Returns True of the first arguments is an instance of the second. examples: -> print(isinstance(5, int) -> True -> print(isinstance('Or Hasson!', str) -> True -> print(isinstance(4.999, bytes) -> False <<<<<<<<Checking Multiple Types>>>>>>>>>>>>> isinstance(obj, (type_a, type_b, type_c)) """ """ <<<<<<<<<<Type Checks in Python>>>>>>>>>>>>>> isinstance() can be used for type checking in Python Some people consider type checking a sign of poor design. Sometimes they're the easiest way to solve a problem. """ """ <<<<<<<< issubclass() >>>>>>>>>> Operates on types to check for sub/superclass relationships. Determines if one class is a subclass of another. Takes two arguments, both of which must be types. Returns True if the first argument is a subclass of the second. """
import re import stanza import deplacy config = { 'processors': 'tokenize,pos,lemma,depparse', 'lang': 'en', } nlp = stanza.Pipeline(**config) string = "The Old Kingdom is the period in the third millennium also known as the 'Age of the Pyramids' or 'Age of the Pyramid Builders' as it includes the great 4th Dynasty when King Sneferu perfected the art of pyramid building and the pyramids of Giza were constructed under the kings Khufu, Khafre, and Menkaure. " string = "He doesn't like candy." def preprocess_string(string): try: (start, stop) = (re.search("See also", string)).span() string = string[:start] except AttributeError: pass string = re.sub("\((.*?)\) ", "", string) # Remove Parenthesis Asides return string string = preprocess_string(string) doc = nlp(string) print(nlp(string)) deplacy.render(doc) import spacy nlp_spacy = spacy.load("en_core_web_lg") str1 = nlp_spacy("implies") str2 = nlp_spacy("also known") str3 = nlp_spacy("as it includes") print(str1.similarity(str2)) print(str1.similarity(str3))
# -*- coding: utf-8 -*- """ Created on Sun Jun 10 18:05:15 2018 @author: LocalAdmin """ import numpy as np import cv2 from matplotlib import pyplot as plt def read_stereo_image(im="stereo_image_explorer.bmp"): cv_im = cv2.imread(im); imgL = cv_im[0:96, 126:252, :]; imgR = cv_im[0:96, 0:126, :]; return [imgL, imgR] def simple_stereo(imgL, imgR, max_disparity=30): W = imgL.shape[1]; H = imgL.shape[0]; # create the disparities image: Disparities = np.zeros([H, W]); # loop over the image for x in range(W): # in the left border of the left image, not all disparities can be investigated: max_disp = np.min([x, max_disparity]); disps = np.arange(0, max_disp+1); for y in range(H): # we can determine the differences in one go: differences = np.abs(imgL[y,x,0] - imgR[y, x-max_disp:x+1,0]); # the minimal difference determines the disparity disp_ind = np.argmin(differences); disparity = disps[disp_ind]; Disparities[y, x] = disparity; return Disparities; def get_differences_curve(imgL, imgR, x, y, max_disparity=30): # determine the disparities that will be investigated: max_disp = np.min([x, max_disparity]); disps = np.arange(0, max_disp+1); # we can determine the differences in one go: differences = np.abs(imgL[y,x,0] - imgR[y, x-max_disp:x+1,0]); # the minimal difference determines the disparity disp_ind = np.argmin(differences); disparity = disps[disp_ind]; return [differences, disps, disp_ind]; def windowed_stereo(imgL, imgR, max_disparity=30, window_half_size=3): W = imgL.shape[1]; H = imgL.shape[0]; # create the disparities image: Disparities = np.zeros([H, W]); # loop over the image for x in np.arange(window_half_size, W-window_half_size): # in the left border of the left image, not all disparities can be investigated: max_disp = np.min([x-window_half_size, max_disparity]); if(max_disp >= 0): disps = np.arange(0, max_disp+1); differences = np.zeros([len(disps), 1]); for y in np.arange(window_half_size, H-window_half_size): window_left = imgL[y-window_half_size:y+window_half_size, x-window_half_size:x+window_half_size, 0]; for d in disps: window_right = imgR[y-window_half_size:y+window_half_size, x-d-window_half_size:x-d+window_half_size, 0]; differences[d] = np.sum(np.abs(window_left.astype(float) - window_right.astype(float))); # the minimal difference determines the disparity disp_ind = np.argmin(differences); disparity = disps[disp_ind]; Disparities[y, x] = disparity; return Disparities; def calculate_disparities(imgL, imgR, window_size=7, min_disp=0, num_disp=16): # semi-global matching: stereo = cv2.StereoSGBM_create(numDisparities = num_disp, blockSize = window_size); disp = stereo.compute(imgL, imgR).astype(np.float32) / 16.0; return disp; def plot_relation_disparity_depth(f = 300, T_X = 0.10, max_disp = 64): """ Focal length f is in pixels, T_X is in meters. """ disparities = np.arange(1, max_disp+1, 1); depths = np.zeros(max_disp); for disp in disparities: depths[disp-1] = f * (T_X / disp); plt.figure(); plt.plot(disparities, depths, 'o'); plt.xlabel('Disparity [px]') plt.ylabel('Depth Z [m]') plot_relation_disparity_depth(f = 140, T_X = 0.06, max_disp = 32) #[imgL, imgR] = read_stereo_image(); # #plt.figure(); #plt.subplot(121) #plt.imshow(imgL); #plt.title('Left'); # #plt.subplot(122) #plt.imshow(imgR); #plt.title('Right'); #D = simple_stereo(imgL, imgR); #plt.figure(); #plt.imshow(D, cmap='hot'); #plt.colorbar(); #plt.draw() # #print('Image size, width = {}, height = {}'.format(imgL.shape[1], imgL.shape[0])) #[differences, disps, disp_ind] = get_differences_curve(imgL, imgR, 48, 64); #plt.figure(); #plt.plot(disps, differences); #plt.plot(disps[disp_ind], differences[disp_ind], 'x', markersize=10); #plt.draw(); # #D = windowed_stereo(imgL, imgR, max_disparity=30, window_half_size=3); #plt.figure(); #plt.imshow(D, cmap='hot'); #plt.colorbar(); #plt.draw() # #D = calculate_disparities(imgL, imgR, window_size=7, min_disp=0, num_disp=16) #plt.figure(); #plt.imshow(D, cmap='hot'); #plt.colorbar(); #plt.draw()
""" Networks used in the main paper """ from mixmo.utils.logger import get_logger from mixmo.networks import resnet, wrn LOGGER = get_logger(__name__, level="DEBUG") def get_network(config_network, config_args): """ Return a new instance of network """ # Available networks for tiny if config_args["data"]["dataset"].startswith('tinyimagenet'): network_factory = resnet.resnet_network_factory elif config_args["data"]["dataset"].startswith('cifar'): network_factory = wrn.wrn_network_factory else: raise NotImplementedError LOGGER.warning(f"Loading network: {config_network['name']}") return network_factory[config_network["name"]]( config_network=config_network, config_args=config_args)
""" Application module does all REST API operations on application endpoint """ import random import urllib from common import assert_status_code, assert_content_type_json, \ load_json_schema, assert_valid_schema, assert_valid_schema_error from httpstatus import HTTP_OK, HTTP_NOT_FOUND, HTTP_CREATED, HTTP_BAD_REQUEST, HTTP_NO_CONTENT class Application: """ Application does all REST API functions on application endpoint """ def __init__(self, config, session, developer_email): self.config = config self.session = session self.global_application_url = self.config['api_url'] + '/apps' if developer_email is not None: self.application_url = config['api_url'] + '/developers/' + urllib.parse.quote(developer_email) + '/apps' self.schemas = { 'application': load_json_schema('application.json'), 'applications': load_json_schema('applications.json'), 'applications-uuid': load_json_schema('applications-uuids.json'), 'error': load_json_schema('error.json'), } def generate_app_name(self, number): """ Returns generated test application name """ return f"testsuite-app{number}" def _create(self, success_expected, new_application=None): """ Create new application to be used as test subject. If no app data provided generate application with random data """ if new_application is None: random_int = random.randint(0,99999) new_application = { "name" : self.generate_app_name(random_int), # "displayName": "Testsuite app", "callbackUrl": "1", "attributes" : [ { "name" : f"name{random_int}", "value" : f"value{random_int}", } ], } response = self.session.post(self.application_url, json=new_application) if success_expected: assert_status_code(response, HTTP_CREATED) assert_content_type_json(response) # Check if just created application matches with what we requested assert_valid_schema(response.json(), self.schemas['application']) self.assert_compare(response.json(), new_application) else: assert_status_code(response, HTTP_BAD_REQUEST) assert_content_type_json(response) assert_valid_schema(response.json(), self.schemas['error']) return response.json() def create_new(self, new_application=None): """ Create new application, if no app data provided generate application with random data """ return self._create(True, new_application) def create_negative(self, application): """ Attempt to create new application which already exists, should fail """ return self._create(False, application) def create_key_positive(self, app_name, api_product_name): """ Create new key with assigned api product """ new_key = { "apiProducts": [ api_product_name ], "status": "approved" } headers = self.session.headers headers['content-type'] = 'application/json' application_url = self.application_url + '/' + urllib.parse.quote(app_name) response = self.session.put(application_url, headers=headers, json=new_key) assert_status_code(response, HTTP_OK) assert_content_type_json(response) assert_valid_schema(response.json(), self.schemas['application']) return response.json() def get_all_global(self): """ Get global list of all application uuids """ response = self.session.get(self.global_application_url) assert_status_code(response, HTTP_OK) assert_content_type_json(response) assert_valid_schema(response.json(), self.schemas['applications-uuid']) return response.json() def get_all_global_detailed(self): """ Get global list of all application names """ response = self.session.get(self.global_application_url + '?expand=true') assert_status_code(response, HTTP_OK) assert_content_type_json(response) assert_valid_schema(response.json(), self.schemas['applications']) # TODO testing of paginating response # TODO filtering of apptype, expand, rows, startKey, status queryparameters to filter def get_all(self): """ Get all application names of one developer """ response = self.session.get(self.application_url) assert_status_code(response, HTTP_OK) assert_content_type_json(response) assert_valid_schema(response.json(), self.schemas['applications']) return response.json() def get_positive(self, app_name): """ Get existing application """ application_url = self.application_url + '/' + urllib.parse.quote(app_name) response = self.session.get(application_url) assert_status_code(response, HTTP_OK) assert_content_type_json(response) retrieved_application = response.json() assert_valid_schema(retrieved_application, self.schemas['application']) return retrieved_application def get_by_uuid_positive(self, app_uuid): """ Get existing application by uuid """ application_url = self.global_application_url + '/' + urllib.parse.quote(app_uuid) response = self.session.get(application_url) assert_status_code(response, HTTP_OK) assert_content_type_json(response) retrieved_application = response.json() assert_valid_schema(retrieved_application, self.schemas['application']) return retrieved_application def update_positive(self, application): """ Update existing application """ application_url = self.application_url + '/' + urllib.parse.quote(application['name']) response = self.session.post(application_url, json=application) assert_status_code(response, HTTP_OK) assert_content_type_json(response) updated_application = response.json() assert_valid_schema(updated_application, self.schemas['application']) return updated_application def _change_status(self, app_name, status, expect_success): """ Update status of application """ headers = self.session.headers headers['content-type'] = 'application/octet-stream' application_url = (self.application_url + '/' + urllib.parse.quote(app_name) + '?action=' + status) response = self.session.post(application_url, headers=headers) if expect_success: assert_status_code(response, HTTP_NO_CONTENT) assert response.content == b'' else: assert_status_code(response, HTTP_BAD_REQUEST) assert_valid_schema_error(response.json()) def change_status_approve_positive(self, app_name): """ Update status of developer to inactive """ self._change_status(app_name, 'approve', True) def change_status_revoke_positive(self, app_name): """ Update status of developer to active """ self._change_status(app_name, 'revoke', True) def _delete(self, app_name, expected_success): """ Delete existing application """ response = self.session.delete(self.application_url + '/' + urllib.parse.quote(app_name)) if expected_success: assert_status_code(response, HTTP_OK) assert_content_type_json(response) assert_valid_schema(response.json(), self.schemas['application']) else: assert_status_code(response, HTTP_NOT_FOUND) assert_content_type_json(response) return response.json() def delete_positive(self, app_name): """ Delete existing application """ return self._delete(app_name, True) def delete_negative(self, app_name): """ Attempt to delete application, which should fail """ return self._delete(app_name, False) def delete_all_test_developer(self): """ Delete all application created by test suite """ for i in range(self.config['entity_count']): app_name = self.generate_app_name(i) application_url = self.application_url + '/' + urllib.parse.quote(app_name) self.session.delete(application_url) def assert_compare(self, application_a, application_b): """ Compares minimum required fields that can be freely, as is, on applications """ assert application_a['name'] == application_b['name'] # assert application_a['displayName'] == application_b['displayName'] assert application_a['callbackUrl'] == application_b['callbackUrl'] assert (application_a['attributes'].sort(key=lambda x: x['name']) == application_b['attributes'].sort(key=lambda x: x['name']))
import logging import time as timer import angr lw = logging.getLogger("CustomSimProcedureWindows") class GetTempFileNameA(angr.SimProcedure): def decodeString(self, ptr): fileName = self.state.mem[ptr].string.concrete return fileName def run(self, lpPathName, lpPrefixString, uUnique, lpTempFileName): self.state.project # import pdb; pdb.set_trace() dirname = self.decodeString(lpPathName) name = self.decodeString(lpPrefixString)[:3] uid = self.state.solver.eval(uUnique) if uid == 0: uid = int(timer.time()) hexnum = "{0:0{1}x}".format(uid, 2) if hasattr(dirname, "decode"): try: dirname = dirname.decode("utf-8") except: dirname = dirname.decode("utf-8",errors="ignore") if hasattr(name, "decode"): try: name = name.decode("utf-8") except: name = name.decode("utf-8",errors="ignore") fd = self.state.posix.open( dirname + name + hexnum + ".TMP\0", self.state.solver.BVV(2, self.arch.bits) ) newName = dirname + name + hexnum + ".TMP\0" newName = self.state.solver.BVV(newName) self.state.memory.store(lpTempFileName, newName) # import pdb; pdb.set_trace() return int(hexnum, 16)
#!/usr/bin/env python import rospy from std_msgs.msg import UInt16, String from sensor_msgs.msg import Joy from math import atan2 import numpy as np import time class RobotArmControl(object): def __init__(self): self.msg = Joy() self.torso_pos = 90 self.shoulder_pos = 45 self.elbow_pos = 15 self.wristrot_pos = 90 self.wristbend_pos = 10 self.claw_pos = 180 self.torso_state = 0 self.shoulder_state = 0 self.elbow_state = 0 self.wristrot_state = 0 self.wristbend_state = 0 self.claw_state = 0 self.demo_button = 0 self.all_buttons = [] self.threshold = 0.5 self.arduino_connected = 0 self.joy_sub = rospy.Subscriber("/joy",Joy, self.joy_callback) self.chat_pub = rospy.Publisher("chatter", String, queue_size=1000) self.torso_pub = rospy.Publisher("torso_servo", UInt16, queue_size=10) self.shoulder_pub = rospy.Publisher("shoulder_servo", UInt16, queue_size=10) self.elbow_pub = rospy.Publisher("elbow_servo", UInt16, queue_size=10) self.wristrot_pub = rospy.Publisher("wristrot_servo", UInt16, queue_size=10) self.wristbend_pub = rospy.Publisher("wristbend_servo", UInt16, queue_size=10) self.claw_pub = rospy.Publisher("claw_servo", UInt16, queue_size=10) self.raspi_connect_pub = rospy.Publisher("raspi_connect", UInt16, queue_size=10) #self.arduino_connect_sub = rospy.Subscriber("arduino_connect", UInt16, self.arduino_callback) #def arduino_callback(self,msg): # if (msg.data) def move_servos(self): self.torso_pub.publish(self.torso_pos) self.shoulder_pub.publish(self.shoulder_pos) self.elbow_pub.publish(self.elbow_pos) self.wristrot_pub.publish(self.wristrot_pos) self.wristbend_pub.publish(self.wristbend_pos) self.claw_pub.publish(self.claw_pos) def joy_callback(self,msg): self.msg = msg self.update_buttons(msg) self.update_servos(msg) def update_buttons(self, msg): self.demo_button = msg.buttons[0] self.all_buttons = msg.buttons #self.chat_pub.publish(str("Demo Button="+str(self.demo_button))) def update_servos(self, msg): # Update Torso if (msg.axes[0] > self.threshold and self.torso_pos <=180): self.torso_state = 1 elif (msg.axes[0] < -(self.threshold) and self.torso_pos >=0): self.torso_state = -1 else: self.torso_state = 0 # Update shoulder if (msg.axes[7] > self.threshold and self.shoulder_pos <= 180): self.shoulder_state = 1 elif (msg.axes[7] < -(self.threshold) and self.shoulder_pos >= 0): self.shoulder_state = -1 else: self.shoulder_state = 0 # Update elbow if (msg.axes[1] > self.threshold and self.elbow_pos<=180): self.elbow_state = 1 elif (msg.axes[1] < -(self.threshold) and self.elbow_pos>=0): self.elbow_state = -1 else: self.elbow_state = 0 # Update wristrot if (msg.axes[3] > self.threshold and self.wristrot_pos<=180): self.wristrot_state = 1*(-1) # invert rotation direction for this servo elif (msg.axes[3] < -(self.threshold) and self.wristrot_pos>=0): self.wristrot_state = -1*(-1) else: self.wristrot_state = 0 # Update wristbend if (msg.axes[4] > self.threshold and self.wristbend_pos<=180): self.wristbend_state = 1 elif (msg.axes[4] < -(self.threshold) and self.wristbend_pos>=0): self.wristbend_state = -1 else: self.wristbend_state = 0 # Update claw trig = self.msg.axes[5] if trig > self.threshold: self.claw_pos=180 else: self.claw_pos=30 def move_torso(self): new_pos = UInt16() new_pos = self.torso_pos + self.torso_state self.torso_pos = new_pos self.torso_pub.publish(self.torso_pos) self.chat_pub.publish(str("Torso Angle="+str(self.torso_pos))) def move_shoulder(self): new_pos = UInt16() new_pos = self.shoulder_pos + self.shoulder_state self.shoulder_pos = new_pos self.shoulder_pub.publish(self.shoulder_pos) self.chat_pub.publish(str("Shoulder Angle="+str(self.shoulder_pos))) def move_elbow(self): new_pos = UInt16() new_pos = self.elbow_pos + self.elbow_state self.elbow_pos = new_pos self.elbow_pub.publish(self.elbow_pos) self.chat_pub.publish(str("Elbow Angle="+str(self.elbow_pos))) def move_wristrot(self): new_pos = UInt16() new_pos = self.wristrot_pos + self.wristrot_state self.wristrot_pos = new_pos self.wristrot_pub.publish(self.wristrot_pos) self.chat_pub.publish(str("WristRot Angle="+str(self.wristrot_pos))) def move_wristbend(self): new_pos = UInt16() new_pos = self.wristbend_pos + self.wristbend_state self.wristbend_pos = new_pos self.wristbend_pub.publish(self.wristbend_pos) self.chat_pub.publish(str("WristBend Angle="+str(self.wristbend_pos))) def move_claw(self): self.claw_pub.publish(self.claw_pos) self.chat_pub.publish(str("Claw Angle="+str(self.claw_pos))) def run_robot(self): # Should constantly be updating joint positions based on teleop control states mesg = str("===================== Running Arm ======================") self.chat_pub.publish(mesg) self.chat_pub.publish(str("Demo Button="+str(self.demo_button))) self.move_torso() self.move_shoulder() self.move_elbow() self.move_wristrot() self.move_wristbend() self.move_claw() if self.demo_button==1: self.run_demo() def run_demo(self): mesg = str("=================== Running Arm Demo ====================") self.chat_pub.publish(mesg) # Set up arm self.torso_pos=90 self.shoulder_pos=100 self.elbow_pos=65 self.wristrot_pos=90 self.move_servos() time.sleep(1) # Adjust grabber above printing bed self.torso_pos=180 self.wristbend_pos=90 self.claw_pos=180 self.move_servos() time.sleep(0.5) # Lower grabber to printing bed self.shoulder_pos=140 self.elbow_pos=70 self.move_servos() time.sleep(0.5) # Grab object self.claw_state=30 self.move_servos() time.sleep(0.5) # Move grabber above trash can self.torso_state=100 self.shoulder_state=100 self.elbow_state=35 self.wristbend_state=125 self.move_servos() time.sleep(1) # Let go self.claw_state=180 self.move_servos def main(): rospy.init_node('desktop_teleop_arm') r = rospy.Rate(10) robotarm = RobotArmControl() # Wait for connection status from arduino #while robotarm.arduino_connected==0: # pass robotarm.move_servos() while not rospy.is_shutdown(): # Send connect status to arduino raspi_connect_msg = UInt16() raspi_connect_msg.data = 1; robotarm.raspi_connect_pub.publish(raspi_connect_msg) robotarm.run_robot() r.sleep() if __name__ == '__main__': try: main() except rospy.ROSInterruptException: pass
import datetime from docx.shared import Cm from docxtpl import DocxTemplate, InlineImage """"" Работа с текстами """"" def get_context(company, result_sku_list): # возвращает словарь аргуменов return { 'retailer': company, 'sku_list': result_sku_list, } def from_template(company, result_sku_list, template, signature): template = DocxTemplate(template) context = get_context(company, result_sku_list) # gets the context used to render the document img_size = Cm(15) # sets the size of the image acc = InlineImage(template, signature, img_size) context['acc'] = acc # adds the InlineImage object to the context template.render(context) template.save(company + '_' + str(datetime.datetime.now().date()) + '_report.docx') def generate_report(company, result_sku_list): template = 'report.docx' signature = 'Major.png' from_template(company, result_sku_list, template, signature) def toFixed(numObj, digits=0): return f"{numObj:.{digits}f}" car_data = (""" brand price year Volvo 1.5 2017 Lada 0.5 2018 Audi 2.0 2018 """) with open('data_text', 'w') as f: f.write(car_data.strip()) # Считывание файла построчно f = open('data_text') data = '' for line in f: data += line + '\n' f.close() generate_report('MAJOR', data)
import os from werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError from werkzeug.security import check_password_hash, generate_password_hash import time import datetime as dt import secrets import random ## TODO check in requirements from flask import Flask, flash, jsonify, redirect, render_template, request, session from flask_session import Session from tempfile import mkdtemp ## TODO cs50.sql -> lib from cs50 import SQL import json import bcrypt import jinja2 import dateutil.parser import requests ## BEGIN SETUP ## Repalce this with the base URL of your instance baseurl = "https://calliapp.dev" app = Flask(__name__) app.config["SESSION_FILE_DIR"] = mkdtemp() app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) ## Replace this with your database db = SQL("sqlite:///calli.db") ## Gives Jinja the datetime module app.add_template_filter(dt.datetime) ## BEGIN FLASK ## Landing page ## @app.route("/") def root(): return render_template("homenew.html") ## Docs ## @app.route("/docs") def docs(): return render_template("docs.html") @app.route("/docs/cli") def docs_cli(): return render_template("docs_cli.html") @app.route("/docs/api") def docs_api(): return render_template("docs_api.html") @app.route("/docs/server") def docs_server(): return render_template("docs_server.html") @app.route("/docs/install-cli") def docs_install(): return render_template("docs_install.html") ## WEBAPP ## ## TODO accept redirects from /register @app.route("/dash", methods=["GET"]) def web_dash(): if request.method == "GET": ## If user logged in ## try: session['user_id'] except KeyError: return redirect('/login') else: ## Today ## now = dt.datetime.utcnow().strftime('%s') today_start = dt.datetime.now().strftime('%s') today_end = (dt.datetime.combine((dt.datetime.today()+dt.timedelta(days=1)), dt.time(0))+dt.timedelta(hours=(-1*int(session['offset'])))).strftime("%s") today_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND start BETWEEN (:start) AND (:end) ORDER BY start", userid=session['user_id'], start=today_start, end=str(int(today_end)-1)) for event in today_calendar: event['start'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) event['end'] = (((dt.datetime.utcfromtimestamp(int(event['end'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) ## Tomorrow ## tomorrow_start = (dt.datetime.combine((dt.datetime.today()+dt.timedelta(days=1)), dt.time(0))+dt.timedelta(hours=(-1*int(session['offset'])))).strftime("%s") tomorrow_end = (dt.datetime.combine((dt.datetime.today()+dt.timedelta(days=2)), dt.time(0))+dt.timedelta(hours=(-1*int(session['offset'])))).strftime("%s") tomorrow_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND start BETWEEN (:start) AND (:end) ORDER BY start", userid=session['user_id'], start=tomorrow_start, end=str(int(tomorrow_end)-1)) for event in tomorrow_calendar: event['start'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) event['end'] = (((dt.datetime.utcfromtimestamp(int(event['end'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) ## Rest of the week ## rest_start = (dt.datetime.combine((dt.datetime.today()+dt.timedelta(days=2)), dt.time(0))+dt.timedelta(hours=(-1*int(session['offset'])))).strftime("%s") reset_end = (dt.datetime.combine((dt.datetime.today()+dt.timedelta(days=7)), dt.time(0))+dt.timedelta(hours=(-1*int(session['offset'])))).strftime("%s") rest_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND start BETWEEN (:start) AND (:end) ORDER BY start", userid=session['user_id'], start=rest_start, end=str(int(reset_end)-1)) ## Timezone deltas ## for event in rest_calendar: event['day'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%a %d %b %y")) event['start'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) event['end'] = (((dt.datetime.utcfromtimestamp(int(event['end'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) return render_template("dash.html", userid=session['user_id'], username=session['username'], today_calendar=today_calendar, tomorrow_calendar=tomorrow_calendar, rest_calendar=rest_calendar, offset=session['offset'], token=session['token'], url=baseurl) ## TODO ## else: return "only get" ## TODO create @app.route("/dash/create", methods=["GET", "POST"]) def dash_create(): if request.method == "GET": try: session['user_id'] except KeyError: return redirect('/login') else: today_default = dt.datetime.now().date().strftime("%a %d %b %y") time_default = dt.time(12).strftime("%I:%M %P") duration_default = str(60) return render_template("dash_create.html", today_default=today_default, time_default=time_default, duration_default=duration_default, userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token']) elif request.method == "POST": print(request.form.get('name')) print(request.form.get('day')) print(request.form.get('start')) print(request.form.get('duration')) print(request.form.get('info')) ## Start parsing the new event event = {} event['info'] = request.form.get('info') event['name'] = request.form.get('name') if request.form.get('day'): try: date = dateutil.parser.parse(request.form.get('day'), dayfirst=True) except ValueError: render_template("dash_create.html", show_error="please enter a valid date for the event", userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token']) else: date = dt.datetime.now() if request.form.get('start'): try: time = dateutil.parser.parse(request.form.get('start'), dayfirst=True) except ValueError: render_template("dash_create.html", show_error="please enter a valid time for the event", userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token']) else: time = dt.datetime.combine(dt.datetime.now().date(), dt.time(12)) if request.form.get('duration'): try: duration = int(request.form.get('duration')) except ValueError: return render_template("dash_create.html", show_error="please enter an integer duration for the event, or select reminder", userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token']) else: duration = 60 start = ((dt.datetime.combine(date.date(), time.time()).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=(-1*int(session['offset'])))) event['start'] = start.strftime("%s") if request.form.get('type') == "event": end = (start + dt.timedelta(minutes=duration)) event['end'] = end.strftime("%s") else: event['end'] = str(0) if request.form.get('type') == "event": event['type'] = "E" elif request.form.get('type') == 'reminder': event['type'] = "R" else: event['type'] = "?" r = lambda: random.randint(0,255) existing = db.execute("SELECT eventhex FROM calendar WHERE userid=(:userid)", userid=session['user_id']) eventhex = '@%02X%02X%02X' % (r(),r(),r()) ## Check for eventhex collission ## while any(d['eventhex'] == eventhex for d in existing): eventhex = '@%02X%02X%02X' % (r(),r(),r()) ## Create event ## pending = db.execute("INSERT INTO calendar (userid, eventhex, type, name, start, end, info) VALUES (:userid, :eventhex, :etype, :name, :start, :end, :info)", userid=session['user_id'], eventhex=eventhex, etype=event['type'], name=event['name'], start=event['start'], end=event['end'], info=event['info']) if pending == None: return render_template("dash_create.html", show_error="event creation failed. please try again.", userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token']) else: return redirect("/dash") @app.route("/dash/edit", methods=["GET", "POST"]) def dash_edit(): ## If logged in if request.method == "GET": try: session['user_id'] except KeyError: return redirect('/login') else: ## query event arg eventhex = '@' + request.args.get('event').upper() event = db.execute("SELECT * FROM calendar WHERE eventhex=:eventhex AND userid=:userid", eventhex=eventhex, userid=session['user_id'])[0] ## Convert to dt object and add user timezone offset event['day'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%a %d %b %y")) event['duration'] = (int(event['end']) - int(event['start']))/60 event['start'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) return render_template("dash_edit.html", event=event, userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token'], eventhex=request.args.get('event').lower()) elif request.method == "POST": ## get old event for error redirect ## TODO some new info isnt sent eventhex = '@' + request.args.get('event').upper() event = db.execute("SELECT * FROM calendar WHERE eventhex=:eventhex AND userid=:userid", eventhex=eventhex, userid=session['user_id'])[0] old_start = ((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))) old_end = ((dt.datetime.utcfromtimestamp(int(event['end'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))) event['day'] = old_start.strftime("%a %d %b %y") event['duration'] = (int(event['end']) - int(event['start']))/60 event['start'] = old_start.strftime("%I:%M%p") ## Start parsing new fields if request.form.get("info"): new_info = request.form.get('info') else: new_info = event['info'] ## Duration if request.form.get("duration"): if event['type'] == "E": try: new_duration = int(request.form.get('duration')) except ValueError: return render_template("dash_edit.html", show_error="please enter an integer number of minutes for event duration", event=event, userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token'], eventhex=request.args.get('event').lower()) else: ## default to old offset new_duration = int(event['duration']) ## Date if request.form.get("day"): try: new_date = dateutil.parser.parse(request.form.get('day'), dayfirst=True) except ValueError: return render_template("dash_edit.html", show_error="please enter a valid date", event=event, userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token'], eventhex=request.args.get('event').lower()) else: new_date = old_start ## Start if request.form.get("start"): try: new_time = dateutil.parser.parse(request.form.get('start'), dayfirst=True) except ValueError: return render_template("dash_edit.html", show_error="please enter a valid start time", event=event, userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token'], eventhex=request.args.get('event').lower()) else: new_time = old_start ## Combine new date and time to start ## new_start = (dt.datetime.combine(new_date.date(), new_time.time())+dt.timedelta(hours=(-1*int(session['offset'])))) ## If event, calculate end 33 if event['type'] == "E": new_end = (new_start + dt.timedelta(minutes=int(new_duration))).strftime('%s') else: ## Else its a remind ## new_end = str(0) updated_event = db.execute("UPDATE calendar SET start=:start, end=:end, info=:info WHERE eventhex=(:eventhex) AND userid=(:userid)", userid=session['user_id'], eventhex=eventhex, start=new_start.strftime('%s'), end=new_end, info=new_info) ## If DB updated one event ## if updated_event == 1: return redirect('/dash') else: return render_template("dash_edit.html", show_error="edit unsuccessful. please try again", event=event, userid=session['user_id'], username=session['username'], offset=session['offset'], token=session['token'], eventhex=request.args.get('event').lower()) @app.route("/dash/events") def dash_events(): if request.method == "GET": ## If user logged in ## try: session['user_id'] except KeyError: return redirect('/login') else: ## get events until the end of time ## today_start = dt.datetime.now().strftime('%s') events_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND type='E' AND start>=(:start) ORDER BY start", userid=session['user_id'], start=today_start) for event in events_calendar: event['day'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%a %d %b %y")) event['start'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) event['end'] = (((dt.datetime.utcfromtimestamp(int(event['end'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) return render_template("dash_events.html", userid=session['user_id'], username=session['username'], events_calendar=events_calendar, offset=session['offset']) ## TODO else: return "no" @app.route("/dash/reminders") def dash_remind(): if request.method == "GET": try: session['user_id'] except KeyError: return redirect('/login') else: ## get reminds from now to the end of time ## today_start = dt.datetime.now().strftime('%s') reminds_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND type='R' AND start>=(:start) ORDER BY start", userid=session['user_id'], start=today_start) for event in reminds_calendar: event['day'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%a %d %b %y")) event['start'] = (((dt.datetime.utcfromtimestamp(int(event['start'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) event['end'] = (((dt.datetime.utcfromtimestamp(int(event['end'])).replace(tzinfo=dt.timezone.utc)) + dt.timedelta(hours=int(session['offset']))).strftime("%I:%M%p")) return render_template("dash_reminds.html", userid=session['user_id'], username=session['username'], reminds_calendar=reminds_calendar, offset=session['offset']) ## TODO else: return "no" @app.route("/logout") def logout(): """Log user out""" # Forget any user_id session.clear() # Redirect user to login form return redirect("/") @app.route("/login", methods=["GET", "POST"]) def web_login(): if request.method == "GET": return render_template("login.html") elif request.method == "POST": ## Clear session session.clear() session['offset'] = request.form.get('timeoffset') ## If username andor password arent supplied if not request.form.get("username"): return render_template("login.html", show_error="please provide a username") elif not request.form.get("password"): return render_template("login.html", show_error="please provide a password") ## Get the user users = db.execute("SELECT * FROM users WHERE username = :username", username=request.form.get("username")) ## If the username exists if users: ## If the hash is right if bcrypt.checkpw(request.form.get("password").encode('utf-8'), users[0]['hash']): session["user_id"] = users[0]["userid"] session["token"] = users[0]["token"] session["username"] = users[0]["username"] return redirect('/dash') else: return render_template("login.html", show_error="invalid username or password") else: return render_template("login.html", show_error="invalid username or password") else: return jsonify("method not allowed"), 405, {'ContentType':'application/json'} @app.route("/register", methods=["GET", "POST"]) def web_register(): if request.method == "GET": return render_template("register.html") elif request.method == "POST": ## Clientside checks should prevent empty form submission username = request.form.get("username") password = request.form.get("password") confirmation = request.form.get("confirmation") if password != confirmation: return render_template("register.html", show_error="passwords must match") if not username or not password: return render_template("register.html", show_error="enter a username and a password") else: ## This is not guaranteed to be unique - just extremely unlikely (one in ~2^2600 before a collision) token = secrets.token_urlsafe(42) db.execute("INSERT INTO users (username, hash, token) VALUES (:username, :hash, :token)", username=username, hash=bcrypt.hashpw(password.encode("utf-8"), bcrypt.gensalt(5)), token=token) ## TODO redirect to dashboard return redirect("/") else: return jsonify("method not allowed"), 405, {'ContentType':'application/json'} ## API ## @app.route("/api/events", methods=["POST", "GET", "DELETE", "PATCH"]) def new_event(): auth = db.execute("SELECT * FROM users WHERE token=(:token)", token=request.headers['token']) if auth: ## TODO move auth to before request.method if request.method == "GET": ## If GET by start and end time if request.args.get('start') and request.args.get('end'): start = request.args.get('start') end = request.args.get('end') today_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND start BETWEEN (:start) AND (:end) ORDER BY start", userid=auth[0]['userid'], start=start, end=end) return jsonify(today_calendar) ## If GET by event id elif request.args.get('eventhex'): print(request.args.get('eventhex')) today_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND eventhex=(:eventhex)", userid=auth[0]['userid'], eventhex="@"+request.args.get('eventhex').upper()) return jsonify(today_calendar) ## TODO If GET by start time onwards elif request.args.get('start'): start = request.args.get('start') today_calendar = db.execute("SELECT * FROM calendar WHERE userid=(:userid) AND start>=(:start) ORDER BY start", userid=auth[0]['userid'], start=start) return jsonify(today_calendar) ## else... elif request.method == "POST": ## Load content ## content = request.json ## Random hex lambda ## r = lambda: random.randint(0,255) existing = db.execute("SELECT eventhex FROM calendar WHERE userid=(:userid)", userid=auth[0]['userid']) eventhex = '@%02X%02X%02X' % (r(),r(),r()) ## Check for eventhex collission ## while any(d['eventhex'] == eventhex for d in existing): eventhex = '@%02X%02X%02X' % (r(),r(),r()) ## If there is no end time ## try: content['end'] ## End defaults to 0 (reminds) ## except KeyError: content['end'] = str(0) ## Create event ## db.execute("INSERT INTO calendar (userid, eventhex, type, name, start, end, info) VALUES (:userid, :eventhex, :etype, :name, :start, :end, :info)", userid=auth[0]['userid'], eventhex=eventhex, etype=content['type'], name=content['name'], start=content['start'], end=content['end'], info=content['info']) ## Return the chosen eventhex ## return json.dumps({'eventhex':eventhex}), 200, {'ContentType':'application/json'} elif request.method == "DELETE": content = request.json ## Set a counter for number of events deleted ## deleted = 0 ## Start deleting ## for eventhex in content['hex']: deleted += db.execute("DELETE FROM calendar WHERE userid=(:userid) AND eventhex=(:eventhex)", userid=auth[0]['userid'], eventhex=eventhex.upper()) ## If all the events got deleted ## if deleted == len(content['hex']): ## Return the successfully deleted events ## return json.dumps({'eventhex':eventhex}), 200, {'ContentType':'application/json'} else: ## Else you fucked up ## return jsonify("failed"), 401, {'ContentType':'application/json'} elif request.method == "PATCH": ## re-create the eventhex string eventid = "@" + request.args.get('eventhex') content = request.json ## Timestamp generation is all clientside updated_event = db.execute("UPDATE calendar SET start=:start, end=:end, info=:info WHERE eventhex=(:eventid) AND userid=(:userid)", userid=auth[0]['userid'], eventid=eventid.upper(), start=content['start'], end=content['end'], info=content['info']) if updated_event == 1: return jsonify("success"), 204, {'ContentType':'application/json'} else: return jsonify("failed"), 404, {'ContentType':'application/json'} else: return jsonify("method not allowed"), 405, {'ContentType':'application/json'} else: return jsonify("unauthorized"), 401, {'ContentType':'application/json'} @app.route("/api/login", methods=["POST"]) def login(): ## Same as /login if request.method == "POST": content = request.json users = db.execute("SELECT * FROM users WHERE username=(:username)", username=content['username']) if users: if bcrypt.checkpw(content['password'].encode('utf-8'), users[0]['hash']): return jsonify(users[0]['token']), 200, {'ContentType':'application/json'} else: return jsonify("unauthorized"), 401, {'ContentType':'application/json'} else: return jsonify("method not allowed"), 405, {'ContentType':'application/json'} if __name__ == "__main__": app.run(host='0.0.0.0')
# Copyright 2018 Luddite Labs Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class BaseBlock: def __init__(self, indent=0, first_offset=None, child_indent=0, parent_width=None, top_margin=0, bottom_margin=0): """Construct a block. Args: indent: Block indent. first_offset: Extra limit for the first line (will be subtracted from the width). child_indent: Extra indent for the nested blocks. parent_width: Width of the parent block. This block width will be calculated as ``parent_width - indent``. top_margin: Number of blank lines before the block's content. bottom_margin: Number of blank lines after the block's content. """ self.indent = indent self.first_offset = first_offset self.child_indent = child_indent self.width = parent_width - indent if parent_width else None self.top_margin = top_margin self.bottom_margin = bottom_margin self.merge_to_new_line = False def is_empty(self): return True def clear(self): pass def start_box(self): pass def end_box(self): pass def is_box_started(self): return False def add_boxed(self, text): raise NotImplementedError def add_text(self, text): raise NotImplementedError def reopen_box(self): raise NotImplementedError def get_lines(self): raise NotImplementedError class LineBlock(BaseBlock): """Text paragraph with indentation.""" def __init__(self, indent=0, first_offset=None, child_indent=0, parent_width=None, top_margin=0, bottom_margin=0): super(LineBlock, self).__init__(indent, first_offset, child_indent, parent_width, top_margin, bottom_margin) self.clear() def clear(self): self.lines = [] super(LineBlock, self).clear() def is_empty(self): return len(self.lines) == 0 def add_boxed(self, text): self.add_text(text) def add_text(self, text): lines = text.split('\n') if self.lines: self.lines[-1] += lines[0] del lines[0] self.lines.extend(lines) def reopen_box(self): pass def get_lines(self): return iter(self.lines) class WrapBlock(BaseBlock): """Text paragraph with wrapping and indentation features.""" #: Enclosing leading (open) chars. enclose_start = """([{"'""" #: Trailing punctuation chars. punctuation_end = """,.:)];!?"'}""" def __init__(self, indent=0, first_offset=None, child_indent=0, parent_width=None, top_margin=0, bottom_margin=0): super(WrapBlock, self).__init__(indent, first_offset, child_indent, parent_width, top_margin, bottom_margin) self.words = [] self._box = None def clear(self): """Clear block.""" self.words = [] self._box = None super(WrapBlock, self).clear() def is_empty(self): return len(self.words) == 0 def start_box(self): """Start block of words with disabled wrapping. All content added after calling the method will not be split to fit to the :attr:`width`. """ if not self.is_box_started(): self._box = [] self.words.append(self._box) def end_box(self): """Close block of words with disabled wrapping.""" if self._box: self._handle_enclose() self._box = None def is_box_started(self): return self._box is not None def add_boxed(self, text): """Add text with protecting from wrapping. Args: text: Text to add. Notes: Don't add multi line text! """ if text == '\n': self.words.append('\n') else: self.words.append([text]) self._handle_enclose() def reopen_box(self): """Reopen last box.""" if self._box is None: self._box = self.words[-1] assert isinstance(self._box, list) def _handle_enclose(self): """Helper method to handle enclose chars before last box. It called after non-empty box is added. """ # If there are at least two words and word before last is not a box # we check for punctuation. if len(self.words) > 1 and not isinstance(self.words[-2], list): c = self.words[-2][-1] if c in self.enclose_start: merge = True if c in ('"', "'"): # If enclosing char occurs an even number of times in prev # words then don't merge with last box. # # Example: # # Code extracted "from pytest/setup.py" bla. # # Code extracted from pytest/setup.py" bla. count = 0 stop = len(self.words) - 2 for i, w in enumerate(self.words): if i > stop: break if not isinstance(w, list): count += w.count(c) if count % 2 == 0: merge = False if merge: self.words[-1].insert(0, self.words[-2]) del self.words[-2] def add_text(self, text): """Add text to the block. Args: text: String which may contain line breaks. Notes: If :meth:`start_box` was called then text will be protected from the wrapping, so don't add multi line text in suc case. """ # Add word to box. # Note: text must be without line breaks! if self._box is not None: self._box.append(text) return if not text or text == '\n': return elif text.startswith('\n'): text = text[1:] is_first_line = True for line in text.splitlines(): if not line: words = [u'\n', u'\n'] else: words = [x for x in line.strip().split(' ') if x] # Handle punctuation chars if prev word is boxed and given text # start with punctuation. Check only for very first line and word. # # It handles the following cases: # # <boxed>,text # <boxed>, text # <boxed>) text # <boxed>), text # <boxed>),text <- in this case whole [,text] will be 'boxed'. # etc. # # In above cases we need to prevent spaces and line breaks # between boxed word and punctuation. For that we move # word with punctuation inside the boxed word. if (self.words and isinstance(self.words[-1], list) and is_first_line and words): # Is first word in the text has leading space. # If line is empty then we force True to skip extra processing. leading_space = text[0].isspace() if line else True # If there is a space then we do nothing - in this case # this word will be separated by space as expected. # Otherwise check if word starts with punctuation char # add it to the boxed word. # NOTE: we add whole word not only punctuation chars, # this allows to keep original formatting. if not leading_space and words[0][0] in self.punctuation_end: self.words[-1].append(words[0]) del words[0] self.words.extend(words) is_first_line = False def get_lines(self): """Get result text lines. Yields: Text lines. """ # Do nothing for empty content. if not self.words: return line = [] line_sz = 0 first_word = True first_line = True for word in self.words: # Skip empty words and boxed lists. if not word: continue if first_line: if self.first_offset is None: width = self.width else: width = self.width - self.first_offset else: width = self.width # It's a protected from wrapping box of words, build result 'word'. if isinstance(word, list): word = ''.join(word) if word == '\n': word_sz = width + 1 # force new line else: word_sz = len(word) + (0 if first_word else 1) # 1 for space if line_sz + word_sz <= width: line_sz += word_sz line.append(word) first_word = False else: # Yield empty line if it contains only offset. # If it's a first line and it's empty then skip it # (because in such case the line is not filled yet). if not first_line or line: yield _join(line) if word == '\n': line = [] line_sz = 0 first_word = True first_line = False else: # Recalc to have no +1 for possible space # since we at line start. word_sz = len(word) line = [word] line_sz = word_sz first_line = False yield _join(line) def _join(words): """Join words into single line. Args: words: List of words. Returns: String with space separated words. """ return u' '.join(words) if words else u'' class BlockManager: """Blocks manager. It manages blocks options, indentation, merging and constructs result content lines. """ def __init__(self, indent=0, width=None): """Construct manager. Args: indent: Initial indent. width: Content width. """ self.indent = indent self.width = width self.lines = [] self._blocks = [] self._block_params = None self._last_block = None def clear(self): self._blocks = [] self.lines = [] self._last_block = None self._block_params = None @property def block(self): return self._blocks[-1] if self._blocks else None @property def last_width(self): """Last available width.""" if self._blocks: return self._blocks[-1].width return self.width # NOTE: self._blocks must be non-empty def _dump_current_lines(self): block = self._blocks[-1] if block.is_empty(): return prev_block = self._last_block merge = ( (prev_block is not None and prev_block.bottom_margin is None) or block.top_margin is None ) # Auto calculate first line offset if not specified. if merge and self.lines and block.first_offset is None: # first_offset = len(last line) + 1 for space - indent block.first_offset = len(self.lines[-1]) + 1 - block.indent lines = block.get_lines() # Merge with last line if prev block has None bottom margin # or this block has None top margin. # # There are two ways to merge starting from new line. # 1. Set block's merge_to_new_line=True. # 2. Add empty line to the top of the block content. # In this case the line will be skipped on merging and # remaining lines will be appended from the new line: # # if block.width: # block.add_text('\n\n') # else: # block.add_text('\n') # if merge and self.lines: # If merging is required from the new line then do nothing. if block.top_margin is None and block.merge_to_new_line: pass else: # Merge only non-empty lines. line = next(lines).lstrip() if line: self.lines[-1] += u' ' + line # Add top margin only if there are lines. elif self.lines and prev_block and not block.is_empty(): # At first make sure we have margin between blocks. # Choose biggest one. margin = max(block.top_margin, prev_block.bottom_margin) # Add margin between prev content and this block. self.lines.extend([u''] * margin) offset = u' ' * block.indent self.lines.extend(offset + x for x in lines) block.clear() self._last_block = block def open_block(self, indent=0, first_offset=None, child_indent=0, top_margin=0, bottom_margin=0, no_wrap=False, next=None): """Open new block. If previous block is not closed then: * its content will be saved and block will be cleared. * new block inherits indentation of the previous one. Args: indent: Block indent. first_offset: Offset for the first line. child_indent: Nested blocks extra indentation. top_margin: Top margin (blank lines). If ``None`` then the block will be merged with the previous block. bottom_margin: Bottom margin, If ``None`` then next block will be merged with this one. no_wrap: Don't wrap content even if ``width`` is set. next: Arguments for the next block. Keys are the same as for this method. They will override parameters of the next :meth:`open_block` call. """ if no_wrap: cls = LineBlock else: cls = LineBlock if self.width is None else WrapBlock # Add parent indent or initial one if there is no parent. if self._blocks: extra_indent = self.block.indent + self.block.child_indent # If existing block has content then dump it. self._dump_current_lines() else: extra_indent = self.indent if self._block_params is None: indent += extra_indent block = cls(indent=indent, first_offset=first_offset, child_indent=child_indent, parent_width=self.width, top_margin=top_margin, bottom_margin=bottom_margin) else: kwargs = self._block_params indent = kwargs.get('indent', indent) + extra_indent kwargs['indent'] = indent kwargs.setdefault('first_offset', first_offset) kwargs.setdefault('child_indent', child_indent) kwargs.setdefault('top_margin', top_margin) kwargs.setdefault('bottom_margin', bottom_margin) kwargs.setdefault('parent_width', self.width) block = cls(**kwargs) # Save next block params. self._block_params = next self._blocks.append(block) def close_block(self): """Close block.""" if self._blocks: self._dump_current_lines() self._blocks.pop() def close_all(self): """Close all remaining blocks.""" while self._blocks: self.close_block()
#!/usr/bin/env python """ Load API client for a Tool Registry Service (TRS) endpoint based either on the GA4GH specification or an existing client library. """ import logging from bravado.requests_client import RequestsClient from ga4ghtest.core.config import trs_config from .client import TRSClient logger = logging.getLogger(__name__) def _get_trs_opts(service_id): """ Look up stored parameters for tool registry services. """ return trs_config()[service_id] def _init_http_client(service_id=None, opts=None): """ Initialize and configure HTTP requests client for selected service. """ if service_id: opts = _get_trs_opts(service_id) http_client = RequestsClient() http_client.set_api_key(host=opts['host'], api_key=opts['auth'], param_in='header') return http_client class TRSInterface: def toolsGet(self): raise NotImplementedError def metadataGet(self): raise NotImplementedError def toolsIdGet(self, tool_id): raise NotImplementedError def toolsIdVersionGet(self, tool_id, tool_version): raise NotImplementedError def toolsIdVersionsGet(self, tool_id): raise NotImplementedError def toolsIdVersionsVersionIdTypeDescriptorGet(self, tool_id, tool_version, descriptor_type): raise NotImplementedError def toolsIdVersionsVersionIdTypeDescriptorRelativePathGet(self, tool_id, tool_version, descriptor_type, rel_path): raise NotImplementedError def toolsIdVersionsVersionIdTypeTestsGet(self, tool_id, tool_version, descriptor_type, rel_path): raise NotImplementedError def toolsIdVersionsVersionIdTypeFilesGet(self, tool_id, tool_version, descriptor_type): raise NotImplementedError def toolsIdVersionsContainerGet(self, tool_id, tool_version): raise NotImplementedError class TRSAdapter(TRSInterface): """ Adapter class for TRS client functionality. Args: trs_client: ... """ def __init__(self, trs_client): self.trs_client = trs_client def toolsGet(self): return self.trs_client.get_tools() def metadataGet(self): raise self.trs_client.get_tool_types() def toolsIdGet(self, tool_id): return self.trs_client.get_tool(tool_id) def toolsIdVersionGet(self, tool_id, tool_version): return self.trs_client.get_tool_version(tool_id, tool_version) def toolsIdVersionsGet(self, tool_id): return self.trs_client.get_tool_versions(tool_id) def toolsIdVersionsVersionIdTypeDescriptorGet(self, tool_id, tool_version, descriptor_type): return self.trs_client.get_tool_descriptor(tool_id, tool_version, descriptor_type) def toolsIdVersionsVersionIdTypeDescriptorRelativePathGet(self, tool_id, tool_version, descriptor_type, rel_path): return self.trs_client.get_relative_tool_descriptor(tool_id, tool_version, descriptor_type, rel_path) def toolsIdVersionsVersionIdTypeTestsGet(self, tool_id, tool_version, descriptor_type, rel_path): return self.trs_client.get_tool_tests(tool_id, tool_version, descriptor_type, rel_path) def toolsIdVersionsVersionIdTypeFilesGet(self, tool_id, tool_version, descriptor_type): return self.trs_client.get_tools_with_relative_path(tool_id, tool_version, descriptor_type) def toolsIdVersionsContainerGet(self, tool_id, tool_version): return self.trs_client.get_tool_container_specs(tool_id, tool_version) def load_trs_client(service_id, http_client=None): """Return an API client for the selected workflow execution service.""" trs_client = TRSClient(service=_get_trs_opts(service_id)) return TRSAdapter(trs_client)
# Copyright 2019 The PlaNet Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow_probability import distributions as tfd import tensorflow as tf from planet.control import discounted_return from planet import tools, PLANNING, STATES def delta_degree(x): return tf.where(tf.abs(x) < 180, x, x - tf.sign(x) * 360) # compute angular clue costn0 = lambda: tf.constant(0.0) # [throttle, steer(l-,r+)] costn1 = lambda: tf.constant(1.0) def cross_entropy_method( cell, objective_fn, state, info_cmd, obs_shape, action_shape, horizon, amount=1000, topk=100, iterations=10, discount=0.99, min_action=-1, max_action=1): # state,info_cmd: shape(num_envs,4): next_command_id, goal_heading_degree, current_heading_degree,dist_to_intersection obs_shape, action_shape = tuple(obs_shape), tuple(action_shape) original_batch = tools.shape(tools.nested.flatten(state)[0])[0] # original_batch: num_envs initial_state = tools.nested.map(lambda tensor: tf.tile( tensor, [amount] + [1] * (tensor.shape.ndims - 1)), state) extended_batch = tools.shape(tools.nested.flatten(initial_state)[0])[0] use_obs = tf.zeros([extended_batch, horizon, 1], tf.bool) obs = tf.zeros((extended_batch, horizon) + obs_shape) length = tf.ones([extended_batch], dtype=tf.int32) * horizon # info_cmd components info_cmd = tf.squeeze(info_cmd) # shape(3,) cmd_id, goal_heading_degree, current_heading_degree, dist_to_intersection = info_cmd[0], info_cmd[1], info_cmd[2], \ info_cmd[3] def iteration(mean_and_stddev, _): mean, stddev = mean_and_stddev # Sample action proposals from belief. normal = tf.random_normal((original_batch, amount, horizon) + action_shape) action = normal * stddev[:, None] + mean[:, None] action = tf.clip_by_value(action, min_action, max_action) # Evaluate proposal actions. action = tf.reshape( action, (extended_batch, horizon) + action_shape) (_, state), _ = tf.nn.dynamic_rnn( cell, (0 * obs, action, use_obs), initial_state=initial_state) # objectives objectives = objective_fn(state) # shape: ['reward':shape(1000,12), 'angular_speed_degree':shape(1000,12), ...] if not PLANNING: reward = objectives['reward'] angular_speed = objectives['angular_speed_degree'] if PLANNING: reward = objectives['reward'] angular_speed = objectives['angular_speed_degree'] forward_speed = objectives['forward_speed'] # m/s collided = objectives['collided'] intersection_offroad = objectives['intersection_offroad'] intersection_otherlane = objectives['intersection_otherlane'] # ################# #1. define reward for planning # return_ = discounted_return.discounted_return( # reward, length, discount)[:, 0] # total_return = tf.reshape(return_, (original_batch, amount)) if not PLANNING: ################## #2. define reward for planning return_ = discounted_return.discounted_return(reward, length, discount)[:, 0] # shape: (1000,) return_ = tf.reshape(return_, (original_batch, amount)) # shape: (1, 1000) # threshold_degree = tf.where(dist_to_intersection<10, 9.0*(10 - dist_to_intersection), 0) threshold_degree = tf.where(dist_to_intersection < 9, 9 * (9 - dist_to_intersection), 0) angular_turn_ = discounted_return.discounted_return(angular_speed, length, 1.0)[:, 0] # shape: (1000,) # angular_turn_abs = discounted_return.discounted_return(-tf.abs(angular_speed), length, 1.0)[:, 0] # angular_turn_relative = tf.reduce_sum(-tf.abs(angular_speed[...,1:]-angular_speed[...,:-1]),axis=-1) heading_loss = - tf.abs(delta_degree(goal_heading_degree - (current_heading_degree + angular_turn_))) * \ tf.case( {tf.equal(cmd_id, 3): costn1, tf.equal(cmd_id, 2): costn1, tf.equal(cmd_id, 1): costn1}, default=costn0) heading_loss_weighted = heading_loss * tf.where(heading_loss > threshold_degree - 90, tf.ones((amount,)) * 0.3, tf.ones( (amount,)) * 100.0) # + 0.3*angular_turn_relative # + 0.1*angular_turn_abs return_heading = tf.reshape(heading_loss_weighted, (original_batch, amount)) total_return = return_ + return_heading # /90.0*12*4 if PLANNING: ################## #3. define reward for planning rewards = forward_speed / 10.0 - 300.0 * tf.where(collided > 0.3, collided, tf.ones_like( collided) * 0.0) - 20.0 * intersection_offroad - 10.0 * intersection_otherlane return_ = discounted_return.discounted_return(rewards, length, discount)[:, 0] # shape: (1000,) return_ = tf.reshape(return_, (original_batch, amount)) # shape: (1, 1000) # threshold_degree = tf.where(dist_to_intersection<10, 9.0*(10 - dist_to_intersection), 0) threshold_degree = tf.where(dist_to_intersection < 9, 9 * (9 - dist_to_intersection), 0) angular_turn_ = discounted_return.discounted_return(angular_speed, length, 1.0)[:, 0] # shape: (1000,) # angular_turn_abs = discounted_return.discounted_return(-tf.abs(angular_speed), length, 1.0)[:, 0] # angular_turn_relative = tf.reduce_sum(-tf.abs(angular_speed[...,1:]-angular_speed[...,:-1]),axis=-1) heading_loss = - tf.abs(delta_degree(goal_heading_degree - (current_heading_degree + angular_turn_))) * \ tf.case( {tf.equal(cmd_id, 3): costn1, tf.equal(cmd_id, 2): costn1, tf.equal(cmd_id, 1): costn1}, default=costn0) heading_loss_weighted = heading_loss * tf.where(heading_loss > threshold_degree - 90, tf.ones((amount,)) * 0.3, tf.ones( (amount,)) * 1000.0) # + 0.3*angular_turn_relative # + 0.1*angular_turn_abs return_heading = tf.reshape(heading_loss_weighted, (original_batch, amount)) total_return = return_ + return_heading # /90.0*12*4 # Re-fit belief to the best ones. _, indices = tf.nn.top_k(total_return, topk, sorted=False) indices += tf.range(original_batch)[:, None] * amount best_actions = tf.gather(action, indices) mean, variance = tf.nn.moments(best_actions, 1) stddev = tf.sqrt(variance + 1e-6) return mean, stddev '''COMMAND_ORDINAL = { "REACH_GOAL": 0, "GO_STRAIGHT": 1, "TURN_RIGHT": 2, "TURN_LEFT": 3, "LANE_FOLLOW": 4 } ''' # compute action_bias f_0 = lambda: tf.constant([1.0, 0.0]) # [throttle, steer(l-,r+)] f_1eft = lambda: tf.constant([1.0, -0.5]) f_right = lambda: tf.constant([1.0, 0.5]) pred_func = {tf.equal(cmd_id, 3): f_1eft, tf.equal(cmd_id, 2): f_right} action_bias = tf.case(pred_func, default=f_0) mean_acion = tf.broadcast_to(action_bias, (original_batch, horizon) + action_shape) # # compute angular clue # angular_f_0 = lambda: tf.constant(0.0) # [throttle, steer(l-,r+)] # angular_f_1eft = lambda: tf.constant(-3.0) # angular_f_right = lambda: tf.constant(3.0) # # angular_pred_func = { tf.equal(cmd_id,3):angular_f_1eft, tf.equal(cmd_id,2):angular_f_right, tf.equal(cmd_id,1):angular_f_0 } # angular_clue = tf.case(angular_pred_func, default=angular_f_0) mean = tf.zeros((original_batch, horizon) + action_shape) # + action_bias stddev = tf.ones((original_batch, horizon) + action_shape) mean, stddev = tf.scan( iteration, tf.range(iterations), (mean, stddev), back_prop=False) mean, stddev = mean[-1], stddev[-1] # Select belief at last iterations. # # some propability for using expert action instead of planned action # mean = tf.where(1<1,mean,expert_action) # mean = mean_acion return mean
from typing import List, Optional, Tuple from pydantic import BaseModel class DMInputParams(BaseModel): scale: float size: Tuple[int, int] mean: Optional[Tuple[float, ...]] swapRB: Optional[bool] crop: Optional[bool] class Config: allow_population_by_field_name = True fields = {"swapRB": "swap_rb"} class DetectDefaults(BaseModel): confThreshold: Optional[float] = 0.5 nmsThreshold: Optional[float] = 0.5 class Config: allow_population_by_field_name = True fields = { "confThreshold": "confidence_threshold", "nmsThreshold": "nms_threshold", } class DrawDefaults(BaseModel): color: Optional[Tuple[int, int, int]] = (255, 0, 0) label_format: Optional[str] = "{} | {:.1%}" offset: Optional[Tuple[int, int]] = (30, 30) font_const: Optional[int] = 3 thickness: Optional[int] = 2 class DetectionModelConfig(BaseModel): name: str description: Optional[str] weights_path: str config_path: str classes_path: str input_params: DMInputParams detect_defaults: Optional[DetectDefaults] = DetectDefaults() draw_defaults: Optional[DrawDefaults] = DrawDefaults() class_offset: Optional[int] = 0 class YasodConfig(BaseModel): version: int detection_models: List[DetectionModelConfig]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_mldmp ---------------------------------- Tests for `maximum likelihood MDP` module. """ import random import unittest2 from tests.test_learner import TestLearner from rltools.learners import MLMDP from rltools.strategies import Strategy from rltools.domains import randomwalk class TestMLMDP(TestLearner): # pylint: disable=protected-access, invalid-name def setUp(self): self.cls = MLMDP def tearDown(self): pass def test_000_deterministic(self): learner = MLMDP(discount_factor=0.75, learning_rate=1, normalize_count=0) learner.init_episode() learner.fit((0, 0, 0)) for _ in range(1000): learner.fit((1, 1, 10)) learner.fit((0, 0, 0)) learner.fit((2, 2, -10)) learner.fit((0, 0, 0)) learner.converge() self.assertEqual(learner.val(0, 0), 0) self.assertEqual(learner.val(1, 0), 0) self.assertEqual(learner.val(2, 0), 0) self.assertEqual(learner.val(0, 1), -learner.val(0, 2)) self.assertEqual(learner.val(1, 1), -learner.val(1, 2)) self.assertEqual(learner.val(2, 1), -learner.val(2, 2)) def test_001_biased(self): learner = MLMDP(discount_factor=0.75, learning_rate=1, normalize_count=0) learner.init_episode() learner.fit((0, 0, 0)) for _ in range(1000): learner.fit((1, 1, 10 - random.random())) learner.fit((0, 0, 0)) learner.fit((2, 2, -10)) learner.fit((0, 0, 0)) learner.converge() self.assertEqual(learner.val(0, 0), 0) self.assertEqual(learner.val(1, 0), 0) self.assertEqual(learner.val(2, 0), 0) self.assertLess(learner.val(0, 1), -learner.val(0, 2)) self.assertLess(learner.val(1, 1), -learner.val(1, 2)) self.assertLess(learner.val(2, 1), -learner.val(2, 2)) def test_004_play_random_walk(self): agent = Strategy(MLMDP()) rmse = randomwalk.play(agent, converge=True) self.assertLess(rmse, 0.1) if __name__ == '__main__': import sys sys.exit(unittest2.main())
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : dimension.py # Author : Honghua Dong # Email : [email protected] # Date : 04/20/2018 # # This file is part of TextualReasoning-PyTorch. # Distributed under terms of the MIT license. import itertools import torch import torch.nn as nn from jactorch.functional import broadcast from ._utils import exclude_mask, mask_value __all__ = ['Expander', 'Reducer', 'Permutation'] class Expander(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, input, n=None): if self.dim == 0: assert n is not None elif n is None: n = input.size(self.dim) dim = self.dim + 1 return broadcast(input.unsqueeze(dim), dim, n) def get_output_dim(self, input_dim): return input_dim class Reducer(nn.Module): def __init__(self, dim, exclude_self=True, exists=True, min_val=0., max_val=0.): super().__init__() self.dim = dim self.exclude_self = exclude_self self.exists = exists self.min_val = min_val self.max_val = max_val def forward(self, input, mask=None): shape = input.size() inp0, inp1 = input, input if self.exclude_self: mask_self = exclude_mask(input, cnt=self.dim, dim=-1 - self.dim) if mask is not None: mask = mask.unsqueeze(-1) * mask_self else: mask = mask_self if mask is not None: inp0 = mask_value(input, mask, self.min_val) inp1 = mask_value(input, mask, self.max_val) if self.exists: shape = shape[:-2] + (shape[-1] * 2, ) exists = torch.max(inp0, dim=-2)[0] forall = torch.min(inp1, dim=-2)[0] return torch.stack((exists, forall), dim=-1).view(shape) shape = shape[:-2] + (shape[-1], ) return torch.max(inp0, dim=-2)[0].view(shape) def get_output_dim(self, input_dim): if self.exists: return input_dim * 2 return input_dim class Permutation(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, input): if self.dim <= 1: return input nr_dims = len(input.size()) # Assume the last dim is channel. index = tuple(range(nr_dims - 1)) start_dim = nr_dims - 1 - self.dim assert start_dim > 0 res = [] for i in itertools.permutations(index[start_dim:]): p = index[:start_dim] + i + (nr_dims - 1,) res.append(input.permute(p)) return torch.cat(res, dim=-1) def get_output_dim(self, input_dim): mul = 1 for i in range(self.dim): mul *= i + 1 return input_dim * mul
import logging import utils import constants logging.basicConfig( level=logging.DEBUG, format=constants.logfmt, handlers=[logging.StreamHandler(), logging.FileHandler('../../data/logs/make_station_tree.log', 'w')], ) logging.debug("started") stations = utils.load_stations() tree, node_station = utils.make_station_tree(stations) tree.to_csv('../../data/station/tree.csv', index=False) node_station.to_csv('../../data/station/node_station.csv', index=False) logging.debug("completed")
# Copyright (C) 2020 NTT DATA # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_utils import timeutils from oslo_utils import uuidutils from oslo_versionedobjects import base as ovoo_base from tacker._i18n import _ from tacker.common import exceptions from tacker.db import api as db_api from tacker.db.db_sqlalchemy import api from tacker.db.db_sqlalchemy import models from tacker.objects import base from tacker.objects import fields @db_api.context_manager.writer def _vnf_resource_create(context, values): vnf_resource = models.VnfResource() vnf_resource.update(values) vnf_resource.save(context.session) return vnf_resource @db_api.context_manager.reader def _vnf_resource_get_by_id(context, id): query = api.model_query(context, models.VnfResource, read_deleted="no", project_only=True). \ filter_by(id=id) result = query.first() if not result: raise exceptions.VnfResourceNotFound(id=id) return result @db_api.context_manager.writer def _vnf_resource_update(context, id, values): vnf_resource = _vnf_resource_get_by_id(context, id) vnf_resource.update(values) vnf_resource.save(session=context.session) return vnf_resource @db_api.context_manager.writer def _destroy_vnf_resource(context, id): now = timeutils.utcnow() updated_values = {'deleted': True, 'deleted_at': now } api.model_query(context, models.VnfResource).\ filter_by(id=id). \ update(updated_values, synchronize_session=False) @db_api.context_manager.reader def _vnf_resource_list(context, vnf_instance_id): query = api.model_query(context, models.VnfResource, read_deleted="no", project_only=True).\ filter_by(vnf_instance_id=vnf_instance_id) return query.all() def _make_vnf_resources_list(context, vnf_resource_list, db_vnf_resource_list): vnf_resource_cls = VnfResource vnf_resource_list.objects = [] for db_vnf_resource in db_vnf_resource_list: vnf_resource_obj = vnf_resource_cls._from_db_object( context, vnf_resource_cls(context), db_vnf_resource) vnf_resource_list.objects.append(vnf_resource_obj) vnf_resource_list.obj_reset_changes() return vnf_resource_list @base.TackerObjectRegistry.register class VnfResource(base.TackerObject, base.TackerPersistentObject): # Version 1.0: Initial version VERSION = '1.0' fields = { 'id': fields.UUIDField(nullable=False), 'vnf_instance_id': fields.StringField(nullable=False), 'resource_name': fields.StringField(nullable=True), 'resource_type': fields.StringField(nullable=False), 'resource_identifier': fields.StringField(nullable=False), 'resource_status': fields.StringField(nullable=True, default='status') } def __init__(self, context=None, **kwargs): super(VnfResource, self).__init__(context, **kwargs) self.obj_set_defaults() @staticmethod def _from_db_object(context, vnf_resource, db_vnf_resource): for key in vnf_resource.fields: if db_vnf_resource[key]: setattr(vnf_resource, key, db_vnf_resource[key]) vnf_resource._context = context vnf_resource.obj_reset_changes() return vnf_resource @base.remotable def create(self): if self.obj_attr_is_set('id'): raise exceptions.ObjectActionError(action='create', reason=_('already created')) updates = self.obj_get_changes() if 'id' not in updates: updates['id'] = uuidutils.generate_uuid() self.id = updates['id'] db_vnf_resource = _vnf_resource_create(self._context, updates) self._from_db_object(self._context, self, db_vnf_resource) @base.remotable def save(self): updates = self.tacker_obj_get_changes() db_vnf_resource = _vnf_resource_update(self._context, self.id, updates) self._from_db_object(self._context, self, db_vnf_resource) @base.remotable def destroy(self, context): if not self.obj_attr_is_set('id'): raise exceptions.ObjectActionError(action='destroy', reason='no uuid') _destroy_vnf_resource(context, self.id) @base.remotable_classmethod def get_by_id(cls, context, id): db_vnf_package = _vnf_resource_get_by_id(context, id) return cls._from_db_object(context, cls(), db_vnf_package) @base.TackerObjectRegistry.register class VnfResourceList(ovoo_base.ObjectListBase, base.TackerObject): VERSION = '1.0' fields = { 'objects': fields.ListOfObjectsField('VnfResource') } @base.remotable_classmethod def get_by_vnf_instance_id(cls, context, vnf_instance_id): db_vnf_resources = _vnf_resource_list(context, vnf_instance_id) return _make_vnf_resources_list(context, cls(), db_vnf_resources)
""" This package contains support code to package Salt with PyInstaller. """
from django import http from django.shortcuts import render from django.views import View from address.models import Area from utils.response_code import RET class Areas(View): # get /api/v1.0/areas/ def get(self, request): """展示区域数据""" try: areas = Area.objects.all() except Exception as e: return http.JsonResponse({ 'errno': RET.DBERR, 'errmsg': '数据库查询错误' }) area_list = [] for area in areas: area_dict = {} area_dict['aid'] = area.id area_dict['aname'] = area.name area_list.append(area_dict) response = { 'errmsg': 'ok', 'errno': RET.OK, 'data': area_list } return http.JsonResponse(response)
import os import requests with open('raw.csv') as f: lis=[line.split(',') for line in f] for i, person in enumerate(lis): person[0] = person[0].replace(' ', '_') person[1] = person[1].strip('\n') print("Will create dir {0}, and store image from {1}".format(person[0], person[1])) if not os.path.exists('raw/'+person[0]): os.makedirs('raw/'+person[0]) with open('raw/{0}/{1}'.format(person[0], person[1].split('/')[-1]), 'wb') as handle: response = requests.get(person[1], stream=True) if not response.ok: print(response) for block in response.iter_content(1024): if not block: break handle.write(block)
from . import BaseHandler, apply_request_schema, apply_response_schema from .exceptions import NotFoundError, ValidationError from ..aliases import AliasNotFound, AliasStoreType from ..aliases.manager import redact, reveal from ..schemas.aliases import ( AliasResponseSchema, AliasesResponseSchema, RedactRequestSchema, ) STORAGE_TYPE = AliasStoreType.PERSISTENT class AliasesHandler(BaseHandler): @apply_request_schema(RedactRequestSchema) @apply_response_schema(AliasResponseSchema) def post(self, validated_data: dict): """ --- description: Perform redact-operation for given values requestBody: content: application/json: schema: RedactRequestSchema responses: 200: content: application/json: schema: AliasResponseSchema """ results = [] for item in validated_data['data']: value, format = item['value'], item['format'] alias = redact(value, format, STORAGE_TYPE) results.append( { 'aliases': [{'alias': alias.public_alias, 'format': format}], 'created_at': alias.created_at, 'value': item['value'], } ) return {'data': results} @apply_response_schema(AliasesResponseSchema) def get(self): """ --- description: Perform reveal-operation for given aliases parameters: - name: q in: query description: Coma-separated aliases required: true schema: type: string responses: 200: content: application/json: schema: AliasesResponseSchema """ aliases = self.get_query_argument('q', default=None) if not aliases: raise ValidationError('Missing required parameter: "q"') reveal_data = {} errors = [] for public_alias in set(aliases.split(',')): try: reveal_result = _reveal(public_alias) except AliasNotFound: errors.append({'message': f'Unknown alias: {public_alias}'}) else: reveal_data[public_alias] = reveal_result result = {} if reveal_data: result['data'] = reveal_data if errors: result['errors'] = errors return result class AliasHandler(BaseHandler): @apply_response_schema(AliasResponseSchema) def get(self, public_alias: str): """ --- description: Perform reveal-operation for a single alias parameters: - name: public_alias in: path description: Public alias required: true schema: type: string responses: 200: content: application/json: schema: AliasResponseSchema 404: content: application/json: schema: ErrorResponseSchema """ try: reveal_result = _reveal(public_alias) except AliasNotFound: raise NotFoundError(f'Unknown alias: {public_alias}') return {'data': [reveal_result]} def _reveal(public_alias: str) -> str: alias = reveal(public_alias, STORAGE_TYPE) return { 'aliases': [ { 'alias': alias.public_alias, 'format': alias.alias_generator, } ], 'created_at': alias.created_at, 'value': alias.value, }
#! /usr/bin/env python # -*- coding: iso-8859-15 -*- ############################################################################## # Copyright 2003 & onward LASMEA UMR 6602 CNRS/Univ. Clermont II # Copyright 2009 & onward LRI UMR 8623 CNRS/Univ Paris Sud XI # # Distributed under the Boost Software License, Version 1.0 # See accompanying file LICENSE.txt or copy at # http://www.boost.org/LICENSE_1_0.txt ############################################################################## """Utilities to get toolboxes informations """ __author__ = "Lapreste Jean-thierry ([email protected])" __version__ = "$Revision: 1.0 $" __date__ = "$Date: 2010 $" __copyright__ = """ Copyright 2003 & onward LASMEA UMR 6602 CNRS/Univ. Clermont II Copyright 2009 & onward LRI UMR 8623 CNRS/Univ Paris Sud XI""" __license__ = "Boost Software License, Version 1.0" import sys import os import re from files_utils import read, exist from nt2_fundamentals import Nt2_base_infos class Toolbox_infos : def __init__(self, tb_name) : self.nbi = Nt2_base_infos() self.__tb_name = tb_name self.__tb_path = os.path.join(self.nbi.get_nt2_path(),'nt2/toolbox',tb_name) self.__tb_style = self. __read_style() def get_tb_path(self) : return self.__tb_path def get_tb_name(self) : return self.__tb_name def get_tb_style( self) : return self.__tb_style def get_def_path(self) : return os.path.join(self.__tb_path,'function') def get_bench_path(self) : return os.path.join(self.__tb_path,'bench') def get_unit_path(self) : return os.path.join(self.__tb_path,'unit') def get_doc_path(self) : return os.path.join(self.__tb_path,'doc') def get_fctors_list(self) : l = [] for name in os.listdir(self.get_def_path()) : if name[-4:]=='.hpp' : h = name[:-4] l.append(h) return l def __read_style(self) : dirname = self.get_tb_path() filename = dirname+'.hpp' if exist(filename) : s = read(filename) pattern = re.compile("^// This toolbox is of (.*) type") for l in s : d1 = re.match(pattern,l) if d1 : return d1.groups()[0] filename = os.path.join(dirname,'py_data.py') if exist(filename) : if re.search("'usr'",' '.join(read(filename))) : return 'usr' else : return 'sys' self.__tb_style = 'usr' return 'usr' def __str__(self) : r = "tbi.get_tb_path(): %s" % tbi.get_tb_path () r += "\ntbi.get_tb_name(): %s" % tbi.get_tb_name () r += "\ntbi.get_tb_style(): %s" % tbi.get_tb_style () r += "\ntbi.get_def_path(): %s" % tbi.get_def_path () r += "\ntbi.get_bench_path(): %s" % tbi.get_bench_path () r += "\ntbi.get_unit_path(): %s" % tbi.get_unit_path () r += "\ntbi.get_doc_path(): %s" % tbi.get_doc_path () r += "\ntbi.get_fctors_list(): %s" % tbi.get_fctors_list() r += "\n" return r if __name__ == "__main__" : tbi = Toolbox_infos("arithmetic") print tbi tbi = Toolbox_infos("cephes") print tbi
# coding=utf-8 # Licensed Materials - Property of IBM # Copyright IBM Corp. 2020 from streamsx.topology.schema import StreamSchema # # Defines Message types with default attribute names and types. _SPL_SCHEMA_ACCESS_TOKEN = 'tuple<rstring access_token, rstring refresh_token, rstring scope, int64 expiration, rstring token_type, int64 expires_in>' _SPL_SCHEMA_STT_RESULT = 'tuple<rstring conversationId, boolean transcriptionCompleted, rstring sttErrorMessage, float64 utteranceStartTime, float64 utteranceEndTime, rstring utterance>' _SPL_SCHEMA_STT_RESULT_PARTIAL = 'tuple<boolean finalizedUtterance, float64 confidence>' _SPL_SCHEMA_STT_INPUT = 'tuple<rstring conversationId, blob speech>' _SPL_SCHEMA_STT_RESULT_KEYWORD_SPOTTING = 'tuple<map<rstring, list<tuple<float64 startTime, float64 endTime, float64 confidence>>> keywordsSpottingResults>' class GatewaySchema: """ Structured stream schemas for :py:meth:`~streamsx.sttgateway.WatsonSTT` """ STTResult = StreamSchema (_SPL_SCHEMA_STT_RESULT) """ This schema is used as output in :py:meth:`~streamsx.sttgateway.WatsonSTT` The schema defines following attributes * conversationId(rstring) - identifier, for example file name * transcriptionCompleted(boolean) - boolean value to indicate whether the full transcription/conversation is completed * sttErrorMessage(rstring) - Watson STT error message if any. * utteranceStartTime(float64) - start time of an utterance relative to the start of the audio * utteranceEndTime(float64) - end time of an utterance relative to the start of the audio * utterance(rstring) - the transcription of audio in the form of a single utterance """ pass STTResultPartialExtension = StreamSchema (_SPL_SCHEMA_STT_RESULT_PARTIAL) """ This schema is added to STTResult schema when result mode is partial in :py:meth:`~streamsx.sttgateway.WatsonSTT` The schema defines following attributes * finalizedUtterance(boolean) - boolean value to indicate if this is an interim partial utterance or a finalized utterance. * confidence(float64) - confidence value for an interim partial utterance or for a finalized utterance or for the full text. """ pass STTResultKeywordExtension = StreamSchema (_SPL_SCHEMA_STT_RESULT_KEYWORD_SPOTTING) """ This schema is added to STTResult schema when keywords_to_be_spotted is set in :py:meth:`~streamsx.sttgateway.WatsonSTT` The schema defines following attributes * keywordsSpottingResults(map<rstring, list<tuple<float64 startTime, float64 endTime, float64 confidence>>>) - The keys of the map are the spotted keywords. """ pass STTInput = StreamSchema (_SPL_SCHEMA_STT_INPUT) """ Use this schema as input for :py:meth:`~streamsx.sttgateway.WatsonSTT` The schema defines following attributes * conversationId(rstring) - identifier, for example file name * speech(blob) - audio data """ pass AccessToken = StreamSchema (_SPL_SCHEMA_ACCESS_TOKEN) """ This schema is used internally in :py:meth:`~streamsx.sttgateway.WatsonSTT` by the access token generator. """ pass
# Copyright 2013 Rackspace, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from oslo_config import cfg from oslo_log import log from oslo_utils import strutils from ironic_python_agent import agent from ironic_python_agent import config CONF = cfg.CONF def run(): """Entrypoint for IronicPythonAgent.""" log.register_options(CONF) CONF(args=sys.argv[1:]) # Debug option comes from oslo.log, allow overriding it via kernel cmdline ipa_debug = config.APARAMS.get('ipa-debug') if ipa_debug is not None: ipa_debug = strutils.bool_from_string(ipa_debug) CONF.set_override('debug', ipa_debug) log.setup(CONF, 'ironic-python-agent') agent.IronicPythonAgent(CONF.api_url, agent.Host(hostname=CONF.advertise_host, port=CONF.advertise_port), agent.Host(hostname=CONF.listen_host, port=CONF.listen_port), CONF.ip_lookup_attempts, CONF.ip_lookup_sleep, CONF.network_interface, CONF.lookup_timeout, CONF.lookup_interval, CONF.standalone, CONF.agent_token, CONF.hardware_initialization_delay, CONF.advertise_protocol).run()
from flask_sqlalchemy import SQLAlchemy import json db = SQLAlchemy() class Interface(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, unique=True) url = db.Column(db.String) query_string = db.Column(db.String) active = db.Column(db.Boolean, index=True) default = db.Column(db.Boolean, index=True) body = db.Column(db.Binary) mock_prefix = db.Column(db.String) def __init__(self, name, url, active=True, default=True, body=None, mock_prefix=None, query_string=None): self.name = name self.url = url self.active = active self.default = default if body: self.body = body if mock_prefix: self.mock_prefix = mock_prefix self.query_string = query_string def get_json_body(self): return json.dumps(json.loads(self.body.decode()), ensure_ascii=False, indent=4) def to_dict(self): return { 'name': self.name, 'url': self.url, 'default': self.default, 'active': self.active, 'mock_prefix': self.mock_prefix, 'body': self.body.decode(), 'query_string': self.query_string } @classmethod def from_dict(cls, interface_dict): return cls(interface_dict['name'], interface_dict['url'], default=interface_dict['default'], active=interface_dict['active'], body=interface_dict['body'].encode(), mock_prefix=interface_dict['mock_prefix'], query_string=interface_dict['query_string'])
# -*- coding: utf-8 -*- """ Created on Tue Oct 28 15:08:20 2014 @author: aitor """ import datetime import json import gzip import time import sys import tweepy from tweepy import StreamListener, Stream credentials = json.load(open('credentials.json', 'r')) CONSUMER_KEY = credentials['consumer_key'] CONSUMER_SECRET = credentials['consumer_secret'] OAUTH_TOKEN = credentials['oauth_token'] OAUTH_TOKEN_SECRET = credentials['oauth_secret'] tweets = [] initial_time = time.time() class StdOutListener(StreamListener): def on_data(self, raw_data): global tweets, initial_time elapsed_time = time.time () - initial_time #elapsed secons #save the status every 30 mins if elapsed_time >= 60 * 30: now = datetime.datetime.now() file_name = './tweets/tweets-%s-%s-%s-%s-%s.txt.gz' % (now.month, now.day, now.hour, now.minute, now.second) print '(%s-%s %s:%s:%s) %s' % (now.month, now.day, now.hour, now.minute, now.second, 'Saving file') with gzip.open(file_name, 'w') as f: for tweet in tweets: f.write(json.dumps(tweet) + '\n') tweets = [] initial_time = time.time() try: data = json.loads(raw_data) tweets.append(data) except: now = datetime.datetime.now() print '(%s-%s %s:%s:%s) Invalid JSON Data %s' % (now.month, now.day, now.hour, now.minute, now.second, raw_data) sys.stdout.flush() return True def on_error(self, status_code): now = datetime.datetime.now() print '(%s-%s %s:%s:%s)Got an error with status code: %s' % (now.month, now.day, now.hour, now.minute, now.second, status_code) sys.stdout.flush() #sleep 5 mins if an error occurs time.sleep(5 * 60) return True # To continue listening def on_timeout(self): now = datetime.datetime.now() print '(%s-%s %s:%s:%s) %s' % (now.month, now.day, now.hour, now.minute, now.second, 'Timeout') sys.stdout.flush() return True # To continue listening if __name__ == '__main__': now = datetime.datetime.now() print '(%s-%s %s:%s:%s) %s' % (now.month, now.day, now.hour, now.minute, now.second, 'Starting') sys.stdout.flush() keywords = json.load(open('keywords.json', 'r')) auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(OAUTH_TOKEN, OAUTH_TOKEN_SECRET) listener = StdOutListener() stream = Stream(auth, listener) while True: try: # https://dev.twitter.com/streaming/reference/post/statuses/filter stream.filter(track=keywords) # With stream.filter(follow=IDs) to follow accounts except Exception as e: print '(%s-%s %s:%s:%s) %s' % (now.month, now.day, now.hour, now.minute, now.second, "Error streaming") print '(%s-%s %s:%s:%s) %s' % (now.month, now.day, now.hour, now.minute, now.second, e.message) sys.stdout.flush() time.sleep(1 * 60) now = datetime.datetime.now() print '(%s-%s %s:%s:%s) %s' % (now.month, now.day, now.hour, now.minute, now.second, 'Done')
"""Copyright © 2020-present, Swisscom (Schweiz) AG. All rights reserved. AnalyticalSolver, used to solve the Quadratic Constrained Optimization Problem for 2 gradients analytically. The AnalyticalSolver class contains the implementation of the analytical QCOP Solver for 2 gradients. """ from copsolver.copsolver import COPSolver class AnalyticalSolver(COPSolver): """AnalyticalSolver class. Inherits the COPSolver class. AnalyticalSolver is used to calculate the alphas for the QCOP for 2 gradients. """ def solve(self, gradients): """Solves the Constrained Optimization Problem for 2 gradients Given the gradients, compute analytically the alphas for the COP and returns them in a list of size 2. Args: gradients: numpy array of gradients of size 2 from the models each gradient is a numpy array of float of the same size. Gradients cannot be the same.Im Returns: A numpy array of floats in [0,1] of size 2 representing the coefficients associated to the gradients Raise: ValueError: An error occured while checking the dimensions of gradients TypeError: An error occured while accessing the argument - one of the arguments is NoneType """ if gradients is None: raise TypeError('Argument: gradients type cannot be None') if (len(gradients) != 2): raise ValueError('Argument: The number of gradients must be equal to 2') if (len(gradients[0]) != len(gradients[1])): raise ValueError('Argument: The gradients must have the same length') if (gradients[0] == gradients[1]).all(): return [0.5,0.5] r""" .. math:: \alpha = \frac{(\nabla_{w}L_{2}(w) - \nabla_{w}L_{1})^{T} \star \nabla_{w}L_{2}(w)} {\|\nabla_{w}L_{1} - \nabla_{w}L_{2}\|^{2}} Source: Multi-Gradient Descent For Multi-Objective Recommender Systems """ alpha = ((gradients[1] - gradients[0]) @ gradients[1]) \ / ((gradients[0] - gradients[1]) @ (gradients[0] - gradients[1])) if alpha < 0: alpha = 0 if alpha > 1: alpha = 1 return [alpha, 1-alpha]
# !/usr/bin/env python3 # -*-coding:utf-8-*- # @file: attenStereoNet_embed_sga_11.py # @brief: # @author: Changjiang Cai, [email protected], [email protected] # @version: 0.0.1 # @creation date: 16-10-2019 # @last modified: Mon 11 May 2020 01:02:03 AM EDT import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from ..baselines.GANet.libs.GANet.modules.GANet import SGA #from .embednetwork import embed_net #from .bilateral import bilateralFilter from ..baselines.GANet.libs.sync_bn.modules.sync_bn import BatchNorm2d, BatchNorm3d from ..baselines.GANet.libs.GANet.modules.GANet import DisparityRegression #from ..baselines.GANet.libs.GANet.modules.GANet import GetCostVolume from ..baselines.GANet.libs.GANet.modules.GANet import LGA, LGA2, LGA3 ############################################ """ adapted from GANet paper code """ ############################################ class BasicConv(nn.Module): def __init__(self, in_channels, out_channels, deconv=False, is_3d=False, bn=True, relu=True, **kwargs): super(BasicConv, self).__init__() # print(in_channels, out_channels, deconv, is_3d, bn, relu, kwargs) self.relu = relu self.use_bn = bn if is_3d: if deconv: self.conv = nn.ConvTranspose3d(in_channels, out_channels, bias=False, **kwargs) else: self.conv = nn.Conv3d(in_channels, out_channels, bias=False, **kwargs) self.bn = BatchNorm3d(out_channels) else: if deconv: self.conv = nn.ConvTranspose2d(in_channels, out_channels, bias=False, **kwargs) else: self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) if self.relu: x = F.relu(x, inplace=True) return x class Conv2x(nn.Module): def __init__(self, in_channels, out_channels, deconv=False, is_3d=False, concat=True, bn=True, relu=True): super(Conv2x, self).__init__() self.concat = concat kernel = 3 if deconv and is_3d: #kernel = (3, 4, 4) #updated by CCJ: kwargs = { 'stride': 2, 'padding': 1, 'output_padding':1 } elif deconv: #kernel = 4 kwargs = { 'stride': 2, 'padding': 1, 'output_padding':1 } else: kwargs = { 'stride': 2, 'padding': 1, } #self.conv1 = BasicConv(in_channels, out_channels, deconv, is_3d, bn=True, relu=True, kernel_size=kernel, stride=2, padding=1) self.conv1 = BasicConv(in_channels, out_channels, deconv, is_3d, bn=True, relu=True, kernel_size=kernel, **kwargs) if self.concat: self.conv2 = BasicConv(out_channels*2, out_channels, False, is_3d, bn, relu, kernel_size=3, stride=1, padding=1) else: self.conv2 = BasicConv(out_channels, out_channels, False, is_3d, bn, relu, kernel_size=3, stride=1, padding=1) def forward(self, x, rem): x = self.conv1(x) #print ("[???] x size = ", x.size()) #print ("[???] rem size = ", rem.size()) assert(x.size() == rem.size()) if self.concat: x = torch.cat((x, rem), 1) else: x = x + rem x = self.conv2(x) return x class Feature(nn.Module): def __init__(self, #is_quarter_size = True downsample_scale = 3 ): super(Feature, self).__init__() #if not is_quarter_size: assert downsample_scale in [2, 3, 4], "downsample_scale should be 2, 3, or 4!!!" if downsample_scale == 3: print ("[***] Feature() to 1/3 image size for original GANet !!!") self.conv_start = nn.Sequential( # Added by CCJ: # Convolution In/Out Size: O = floor{(W - F + 2P)/S + 1} BasicConv(3, 32, kernel_size=3, padding=1), BasicConv(32, 32, kernel_size=5, stride=3, padding=2), #in size [H/3, W/3] BasicConv(32, 32, kernel_size=3, padding=1)) elif downsample_scale == 4: print ("[***] Feature() to 1/4 image size for PSMNet etc !!!") self.conv_start = nn.Sequential( # Added by CCJ: # Convolution In/Out Size: O = floor{(W - F + 2P)/S + 1} BasicConv(3, 32, kernel_size=3, padding=1), BasicConv(32, 32, kernel_size=3, stride=2, padding=1), #in size [H/2, W/2] BasicConv(32, 32, kernel_size=3, stride=2, padding=1), #in size [H/4, W/4] BasicConv(32, 32, kernel_size=3, padding=1)) elif downsample_scale == 2: print ("[***] Feature() to 1/2 image size for GCNet etc !!!") self.conv_start = nn.Sequential( # Added by CCJ: # Convolution In/Out Size: O = floor{(W - F + 2P)/S + 1} BasicConv(3, 32, kernel_size=3, padding=1), BasicConv(32, 32, kernel_size=3, stride=2, padding=1), #in size [H/2, W/2] BasicConv(32, 32, kernel_size=3, padding=1)) #else: # raise Exception("No suitable downsample_scale value found ...") self.conv1a = BasicConv(32, 48, kernel_size=3, stride=2, padding=1) self.conv2a = BasicConv(48, 64, kernel_size=3, stride=2, padding=1) self.conv3a = BasicConv(64, 96, kernel_size=3, stride=2, padding=1) self.conv4a = BasicConv(96, 128, kernel_size=3, stride=2, padding=1) self.deconv4a = Conv2x(128, 96, deconv=True) self.deconv3a = Conv2x(96, 64, deconv=True) self.deconv2a = Conv2x(64, 48, deconv=True) self.deconv1a = Conv2x(48, 32, deconv=True) self.conv1b = Conv2x(32, 48) # default: k=3,s=2,p=1 self.conv2b = Conv2x(48, 64) self.conv3b = Conv2x(64, 96) self.conv4b = Conv2x(96, 128) self.deconv4b = Conv2x(128, 96, deconv=True) self.deconv3b = Conv2x(96, 64, deconv=True) self.deconv2b = Conv2x(64, 48, deconv=True) self.deconv1b = Conv2x(48, 32, deconv=True) def forward(self, x): x = self.conv_start(x) rem0 = x x = self.conv1a(x) rem1 = x x = self.conv2a(x) rem2 = x x = self.conv3a(x) rem3 = x x = self.conv4a(x) rem4 = x x = self.deconv4a(x, rem3) rem3 = x x = self.deconv3a(x, rem2) rem2 = x x = self.deconv2a(x, rem1) rem1 = x x = self.deconv1a(x, rem0) rem0 = x x = self.conv1b(x, rem1) rem1 = x x = self.conv2b(x, rem2) rem2 = x x = self.conv3b(x, rem3) rem3 = x x = self.conv4b(x, rem4) x = self.deconv4b(x, rem3) x = self.deconv3b(x, rem2) x = self.deconv2b(x, rem1) x = self.deconv1b(x, rem0) return x class Guidance_11(nn.Module): def __init__( self, #is_quarter_size = True, # could be: # 2: Half size, i.e., [H/2, W/2] # 3: 1/3 size, i.e., [H/3, W/3] # 4: quarter size, i.e., [H/4, W/4] downsample_scale = 3, is_lga = False): super(Guidance_11, self).__init__() #self.is_quarter_size = is_quarter_size assert downsample_scale in [2, 3, 4], "downsample_scale should be 2, 3, or 4!!!" self.is_lga = is_lga self.conv0 = BasicConv(64, 16, kernel_size=3, padding=1) #if not is_quarter_size: if downsample_scale == 3: print ("[***] Guidance_11() module to 1/3 image size for original GANet !!!") self.conv1 = nn.Sequential( BasicConv(16, 32, kernel_size=5, stride=3, padding=2),#in size [H/3, W/3] BasicConv(32, 32, kernel_size=3, padding=1)) elif downsample_scale == 4: print ("[***] Guidance_11() module to 1/4 image size for PSMNet etc !!!") self.conv1 = nn.Sequential( BasicConv(16, 32, kernel_size=3, stride=2, padding=1),#in size [H/2, W/2] BasicConv(32, 32, kernel_size=3, stride=2, padding=1))#in size [H/4, W/4] elif downsample_scale == 2: print ("[***] Guidance_11() module to 1/2 image size for GCNet etc !!!") self.conv1 = nn.Sequential( BasicConv(16, 32, kernel_size=3, stride=2, padding=1),#in size [H/2, W/2] BasicConv(32, 32, kernel_size=3, stride=1, padding=1))#in size [H/2, W/2] #else: # raise Exception("No suitable downsample_scale value found ...") self.conv2 = BasicConv(32, 32, kernel_size=3, padding=1) self.conv3 = BasicConv(32, 32, kernel_size=3, padding=1) # self.conv11 = Conv2x(32, 48) self.conv11 = nn.Sequential(BasicConv(32, 48, kernel_size=3, stride=2, padding=1), BasicConv(48, 48, kernel_size=3, padding=1)) self.conv12 = BasicConv(48, 48, kernel_size=3, padding=1) self.conv13 = BasicConv(48, 48, kernel_size=3, padding=1) self.conv14 = BasicConv(48, 48, kernel_size=3, padding=1) self.weight_sg1 = nn.Conv2d(32, 640, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg2 = nn.Conv2d(32, 640, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg3 = nn.Conv2d(32, 640, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg11 = nn.Conv2d(48, 960, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg12 = nn.Conv2d(48, 960, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg13 = nn.Conv2d(48, 960, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg14 = nn.Conv2d(48, 960, (3, 3), (1, 1), (1, 1), bias=False) if self.is_lga: self.weight_lg1 = nn.Sequential(BasicConv(16, 16, kernel_size=3, padding=1), nn.Conv2d(16, 75, (3, 3), (1, 1), (1, 1) ,bias=False)) self.weight_lg2 = nn.Sequential(BasicConv(16, 16, kernel_size=3, padding=1), nn.Conv2d(16, 75, (3, 3), (1, 1), (1, 1) ,bias=False)) def forward(self, x): x = self.conv0(x) rem = x x = self.conv1(x) sg1 = self.weight_sg1(x) x = self.conv2(x) sg2 = self.weight_sg2(x) x = self.conv3(x) sg3 = self.weight_sg3(x) x = self.conv11(x) sg11 = self.weight_sg11(x) x = self.conv12(x) sg12 = self.weight_sg12(x) x = self.conv13(x) sg13 = self.weight_sg13(x) x = self.conv14(x) sg14 = self.weight_sg14(x) if self.is_lga: lg1 = self.weight_lg1(rem) lg2 = self.weight_lg2(rem) else: lg1 = None lg2 = None return dict([ ('sg1', sg1), ('sg2', sg2), ('sg3', sg3), ('sg11', sg11), ('sg12', sg12), ('sg13', sg13), ('sg14', sg14), ('lg1', lg1), ('lg2', lg2)]) class Disp(nn.Module): def __init__(self, maxdisp=192): super(Disp, self).__init__() self.maxdisp = maxdisp self.softmax = nn.Softmin(dim=1) self.disparity = DisparityRegression(maxdisp=self.maxdisp) # self.conv32x1 = BasicConv(32, 1, kernel_size=3) self.conv32x1 = nn.Conv3d(32, 1, (3, 3, 3), (1, 1, 1), (1, 1, 1), bias=False) def forward(self, x): x = F.interpolate(self.conv32x1(x), [self.maxdisp+1, x.size()[3]*3, x.size()[4]*3], mode='trilinear', align_corners=False) x = torch.squeeze(x, 1) x = self.softmax(x) return self.disparity(x) class DispAgg(nn.Module): def __init__(self, maxdisp=192): super(DispAgg, self).__init__() self.maxdisp = maxdisp self.LGA3 = LGA3(radius=2) self.LGA2 = LGA2(radius=2) self.LGA = LGA(radius=2) self.softmax = nn.Softmin(dim=1) self.disparity = DisparityRegression(maxdisp=self.maxdisp) # self.conv32x1 = BasicConv(32, 1, kernel_size=3) self.conv32x1=nn.Conv3d(32, 1, (3, 3, 3), (1, 1, 1), (1, 1, 1), bias=False) def lga(self, x, g): g = F.normalize(g, p=1, dim=1) x = self.LGA2(x, g) return x def forward(self, x, lg1, lg2): x = F.interpolate(self.conv32x1(x), [self.maxdisp+1, x.size()[3]*3, x.size()[4]*3], mode='trilinear', align_corners=False) x = torch.squeeze(x, 1) assert(lg1.size() == lg2.size()) x = self.lga(x, lg1) x = self.softmax(x) x = self.lga(x, lg2) x = F.normalize(x, p=1, dim=1) return self.disparity(x) class SGABlock(nn.Module): def __init__(self, channels=32, refine=False): super(SGABlock, self).__init__() self.refine = refine if self.refine: self.bn_relu = nn.Sequential(BatchNorm3d(channels), nn.ReLU(inplace=True)) self.conv_refine = BasicConv(channels, channels, is_3d=True, kernel_size=3, padding=1, relu=False) # self.conv_refine1 = BasicConv(8, 8, is_3d=True, kernel_size=1, padding=1) else: self.bn = BatchNorm3d(channels) self.SGA=SGA() self.relu = nn.ReLU(inplace=True) def forward(self, x, g): rem = x #NOTE: #Comments added by CCJ: # split g channel C (e.g., C= 640) to 4 parts, corresponding to four directions (left, right, up and down), # each with C/4 ( e.g., = 640/4=160) size along channel dim, i.e., dim=1; # each C/4=160-dim vector is further divided into 32 x 5, where 32 is the same as input x channel, # and 5 means w0, w1, ..., w4 in Eq (5) in GANet CVPR paper, s.t. w0 + w1 + ... + w4 = 1.0, # this why F.normalize() is applied along dim=5, that is normalize those five values, s.t. w0 + w1 + ... + w4 = 1.0 !!! k1, k2, k3, k4 = torch.split(g, (x.size()[1]*5, x.size()[1]*5, x.size()[1]*5, x.size()[1]*5), 1) k1 = F.normalize(k1.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k2 = F.normalize(k2.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k3 = F.normalize(k3.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k4 = F.normalize(k4.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) x = self.SGA(x, k1, k2, k3, k4) if self.refine: x = self.bn_relu(x) x = self.conv_refine(x) else: x = self.bn(x) assert(x.size() == rem.size()) x += rem return self.relu(x) # return self.bn_relu(x) class CostAggregation_11(nn.Module): def __init__(self, cost_volume_in_channels = 64, # for DispNetC channels = 1, for PSMNet channels = 64; ): super(CostAggregation_11, self).__init__() print ("[***] cost_volume_in_channels = ", cost_volume_in_channels) self.conv_start = BasicConv(cost_volume_in_channels, 32, is_3d=True, kernel_size=3, padding=1, relu=False) self.conv_end = BasicConv(32, cost_volume_in_channels, is_3d=True, kernel_size=3, padding=1, relu=True, bn=False) self.conv1a = BasicConv(32, 48, is_3d=True, kernel_size=3, stride=2, padding=1) self.conv2a = BasicConv(48, 64, is_3d=True, kernel_size=3, stride=2, padding=1) self.deconv1a = Conv2x(48, 32, deconv=True, is_3d=True, relu=False) self.deconv2a = Conv2x(64, 48, deconv=True, is_3d=True) self.sga1 = SGABlock(refine=True) self.sga2 = SGABlock(refine=True) self.sga11 = SGABlock(channels=48, refine=True) self.sga12 = SGABlock(channels=48, refine=True) def forward(self, x, g): """ args: x: cost volume, in size [N,C,D,H,W]; g : guidance, in size [N, C2, H, W], where C2 = 20*C=20*32=640; return """ x = self.conv_start(x) # C=32 x = self.sga1(x, g['sg1']) rem0 = x x = self.conv1a(x) x = self.sga11(x, g['sg11']) rem1 = x #print ("[???] rem1 size:", rem1.size()) x = self.conv2a(x) #print ("[???] after conv2a(x) size:", x.size()) x = self.deconv2a(x, rem1) #??? x = self.sga12(x, g['sg12']) x = self.deconv1a(x, rem0) x = self.sga2(x, g['sg2']) #added by CCJ: x = self.conv_end(x) return x """ generate input signal g, which is fed into the Guidance() block, in order to generate the weights (in 4 directions in total) for SGA Block; """ class GetInput4Guidance(nn.Module): def __init__(self, #is_quarter_size = True downsample_scale = 3 ): super(GetInput4Guidance, self).__init__() assert downsample_scale in [2, 3, 4], "downsample_scale should be 2, 3, or 4!!!" self.conv_start = nn.Sequential(BasicConv(3, 16, kernel_size=3, padding=1), BasicConv(16, 32, kernel_size=3, padding=1)) self.conv_refine = nn.Conv2d(32, 32, (3, 3), (1,1), (1,1), bias=False) #just convolution, no bn and relu self.feature = Feature(downsample_scale) #self.inter_C = 4 if is_quarter_size else 3 self.inter_C = downsample_scale self.bn_relu = nn.Sequential(BatchNorm2d(32), nn.ReLU(inplace=True)) def forward(self, x): """ args: x: input image, in size [N,3,H,W]; return: g : signal for Guidance() module, in size [N, C=64, H, W]; """ g = self.conv_start(x) x = self.feature(x) # in size [N, C=32, H/3, W/3] x = self.conv_refine(x) x = F.interpolate(x, [x.size()[2] * self.inter_C, x.size()[3] * self.inter_C], mode='bilinear', align_corners=False) x = self.bn_relu(x) g = torch.cat((g, x), 1) return g """ SGA module, adapted from GANet_11 code; """ class SGA_CostAggregation(nn.Module): def __init__(self, is_guide_from_img, #is_quarter_size, # feature in 1/4 image size (i.e., H/4 x W/4) or 1/3 size (i.e., H/3 x W/3) downsample_scale, # feature in 1/2, 1/3, or 1/2 image size (i.e., H/4 x W/4, H/3 x W/3, or H/2 x W/2) is_lga, # generate LGA(Local Guided Aggregation) weights or not cost_volume_in_channels # input cost volume feature channels ): super(SGA_CostAggregation, self).__init__() self.is_guide_from_img = is_guide_from_img if is_guide_from_img: #self.get_g_from_img = GetInput4Guidance(is_quarter_size) self.get_g_from_img = GetInput4Guidance(downsample_scale) else: self.get_g_from_img = None self.guidance = Guidance_11(downsample_scale, is_lga) self.cost_agg = CostAggregation_11(cost_volume_in_channels) for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Conv3d)): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (BatchNorm2d, BatchNorm3d)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, cv, g_in = None, img_for_g = None): """ args: cv: cost volume, in size [N,C1,D,H,W] g_in : input for guidance module, in size [N, C2=64, H, W] img_for_g: input image for generating guide input g_in; in size [N,3,H,W] """ #-------------- # guidance #-------------- if g_in is None: assert self.is_guide_from_img, 'No g provided!!!' g_in = self.get_g_from_img(img_for_g) # in size [N, 64, H, W] #print("[???] g_in shape", g_in.size()) g_out = self.guidance(g_in) #for k,v in g_out.items(): # if v is not None: #print("[???] g_out[%s] has shape" %k, v.size()) # after the guidance(), g_out in size [N, 4*C3=640, H, W], # with C3=640/4=160=5*32; # Note: 640/4=160=5*32, and 32 corresponds the convolved # cost volume (for changing its C=64 to C=32); assert cv.ndim == 5, "Should be a 5D tenor!!!" return self.cost_agg(cv, g_out).contiguous()
""" Receives a command with search table results from search engine and calls filer and utils modules to handle the command. """ class CommandHandler: """ Handles commands from searchengine. """ pass
from output.models.nist_data.atomic.non_negative_integer.schema_instance.nistschema_sv_iv_atomic_non_negative_integer_min_inclusive_2_xsd.nistschema_sv_iv_atomic_non_negative_integer_min_inclusive_2 import NistschemaSvIvAtomicNonNegativeIntegerMinInclusive2 __all__ = [ "NistschemaSvIvAtomicNonNegativeIntegerMinInclusive2", ]
""" This packages implements tomography algorithms and utilities in python. It is made of several modules, as follows: - siddon: The core of the package, with a fast C/OpenMP implementation of the Siddon algorithm. See: http://adsabs.harvard.edu/abs/1985MedPh..12..252S - simu: Implements some utilities to perform simulations. - solar: A module to load Solar physics data with appropriate metadata. - models: Defines linear model linking the data with the parameters to estimate (emission maps, density maps). * srt: Solar rotational tomography * stsrt: Smooth temporal solar rotational tomography * thomson: srt with Thomson scattering model (e.g. for white light data) - phantom: To generate phantoms (Shepp-Logan, Modified Shepp Logan, and Yu Ye Wang phantoms). Along with these modules, a convenient way to call inversion routines is provided in the command-line through the srt command. In order to use srt, you need to have the srt file in your $PATH along with siddon, lo and fitsarray in your $PYTHONPATH. For usage information, type "srt -h". """ from siddon import * import simu import solar import phantom import models import display import srt as srt_cli try: import lo except ImportError: pass if 'lo' in locals(): from lo_wrapper import * version = "0.3.0"
"""Defines various distribution models.""" import numpy as np import numpy.random as rnd import scipy.stats as stats from warnings import warn import serums.enums as enums class BaseSingleModel: """Generic base class for distribution models. This defines the required functions and provides their recommended function signature for inherited classes. It also defines base attributes for the distribution. Attributes ---------- location : N x 1 numpy array location parameter of the distribution scale : N x N numpy array scale parameter of the distribution """ def __init__(self, loc=None, scale=None): super().__init__() self.location = loc self.scale = scale def sample(self, rng=None): """Draw a sample from the distribution. This should be implemented by the child class. Parameters ---------- rng : numpy random generator, optional random number generator to use. The default is None. Returns ------- None. """ warn('sample not implemented by class {}'.format(type(self).__name__)) def pdf(self, x): """Calculate the PDF value at the given point. This should be implemented by the child class. Parameters ---------- x : N x 1 numpy array Point to evaluate the PDF. Returns ------- float PDF value. """ warn('pdf not implemented by class {}'.format(type(self).__name__)) return np.nan class Gaussian(BaseSingleModel): """Represents a Gaussian distribution object.""" def __init__(self, mean=None, covariance=None): """Initialize an object. Parameters ---------- mean : N x 1 numpy array, optional Mean of the distribution. The default is None. covariance : N x N numpy array, optional Covariance of the distribution. The default is None. Returns ------- None. """ super().__init__(loc=mean, scale=covariance) @property def mean(self): """Mean of the distribution. Returns ------- N x 1 nmpy array. """ return self.location @mean.setter def mean(self, val): self.location = val @property def covariance(self): """Covariance of the distribution. Returns ------- N x N nmpy array. """ return self.scale @covariance.setter def covariance(self, val): self.scale = val def sample(self, rng=None): """Draw a sample from the current mixture model. Parameters ---------- rng : numpy random generator, optional Random number generator to use. If none is given then the numpy default is used. The default is None. Returns ------- numpy array randomly sampled numpy array of the same shape as the mean. """ if rng is None: rng = rnd.default_rng() return rng.multivariate_normal(self.mean.flatten(), self.covariance) def pdf(self, x): """Multi-variate probability density function for this distribution. Returns ------- float PDF value of the state `x`. """ rv = stats.multivariate_normal return rv.pdf(x.flatten(), mean=self.mean.flatten(), cov=self.covariance) class StudentsT(BaseSingleModel): """Represents a Student's t-distribution.""" def __init__(self, mean=None, scale=None, dof=None): super().__init__(loc=mean, scale=scale) self._dof = dof @property def mean(self): """Mean of the distribution. Returns ------- N x 1 nmpy array. """ return self.location @mean.setter def mean(self, val): self.location = val @property def degrees_of_freedom(self): """Degrees of freedom of the distribution, must be greater than 0.""" return self._dof @degrees_of_freedom.setter def degrees_of_freedom(self, value): self._dof = value @property def covariance(self): """Read only covariance of the distribution (if defined). Returns ------- N x N nmpy array. """ if self._dof <= 2: msg = 'Degrees of freedom is {} and must be > 2' raise RuntimeError(msg.format(self._dof)) return self._dof / (self._dof - 2) * self.scale @covariance.setter def covariance(self, val): warn('Covariance is read only.') def pdf(self, x): """Multi-variate probability density function for this distribution. Parameters ---------- x : N x 1 numpy array Value to evaluate the pdf at. Returns ------- float PDF value of the state `x`. """ rv = stats.multivariate_t return rv.pdf(x.flatten(), loc=self.location.flatten(), shape=self.scale, df=self.degrees_of_freedom) def sample(self, rng=None): """Multi-variate probability density function for this distribution. Parameters ---------- rng : numpy random generator, optional Random number generator to use. If none is given then the numpy default is used. The default is None. Returns ------- float PDF value of the state `x`. """ if rng is None: rng = rnd.default_rng() rv = stats.multivariate_t rv.random_state = rng x = rv.rvs(loc=self.location.flatten(), shape=self.scale, df=self.degrees_of_freedom) return x.reshape((x.size, 1)) class ChiSquared(BaseSingleModel): """Represents a Chi Squared distribution.""" def __init__(self, mean=None, scale=None, dof=None): super().__init__(loc=mean, scale=scale) self._dof = dof @property def mean(self): """Mean of the distribution. Returns ------- N x 1 nmpy array. """ return self.location @mean.setter def mean(self, val): self.location = val @property def degrees_of_freedom(self): """Degrees of freedom of the distribution, must be greater than 0.""" return self._dof @degrees_of_freedom.setter def degrees_of_freedom(self, value): self._dof = value @property def covariance(self): """Read only covariance of the distribution (if defined). Returns ------- N x N nmpy array. """ if self._dof < 0: msg = 'Degrees of freedom is {} and must be > 0' raise RuntimeError(msg.format(self._dof)) return (self._dof * 2) * (self.scale**2) @covariance.setter def covariance(self, val): warn('Covariance is read only.') def pdf(self, x): """Multi-variate probability density function for this distribution. Parameters ---------- x : N x 1 numpy array Value to evaluate the pdf at. Returns ------- float PDF value of the state `x`. """ rv = stats.chi2 return rv.pdf(x.flatten(), self._dof, loc=self.location.flatten(), shape=self.scale) def sample(self, rng=None): """Multi-variate probability density function for this distribution. Parameters ---------- rng : numpy random generator, optional Random number generator to use. If none is given then the numpy default is used. The default is None. Returns ------- float PDF value of the state `x`. """ if rng is None: rng = rnd.default_rng() rv = stats.chi2 rv.random_state = rng x = rv.rvs(self._dof, loc=self.location.flatten(), scale=self.scale) return x.reshape((x.size, 1)) class Cauchy(StudentsT): """Represents a Cauchy distribution. This is a special case of the Student's t-distribution with the degrees of freedom fixed at 1. However, the mean and covariance do not exist for this distribution. """ def __init__(self, location=None, scale=None): super().__init__(scale=scale, dof=1) self.location = location @property def mean(self): """Mean of the distribution.""" warn('Mean does not exist for a Cauchy') @mean.setter def mean(self, val): warn('Mean does not exist for a Cauchy') @property def degrees_of_freedom(self): """Degrees of freedom of the distribution, fixed at 1.""" return super().degrees_of_freedom @degrees_of_freedom.setter def degrees_of_freedom(self, value): warn('Degrees of freedom is 1 for a Cauchy') @property def covariance(self): """Read only covariance of the distribution (if defined).""" warn('Covariance is does not exist.') @covariance.setter def covariance(self, val): warn('Covariance is does not exist.') class GaussianScaleMixture(BaseSingleModel): r"""Helper class for defining Gaussian Scale Mixture objects. Note ---- This is an alternative method for representing heavy-tailed distributions by modeling them as a combination of a standard Gaussian, :math:`v`, and another positive random variable known as the generating variate, :math:`z` .. math:: x \overset{d}{=} \sqrt{z} v where :math:`\overset{d}{=}` means equal in distribution and :math:`x` follows a GSM distribution (in general, a heavy tailed distribution). This formulation is based on :cite:`VilaValls2012_NonlinearBayesianFilteringintheGaussianScaleMixtureContext`, :cite:`Wainwright1999_ScaleMixturesofGaussiansandtheStatisticsofNaturalImages`, and :cite:`Kuruoglu1998_ApproximationofAStableProbabilityDensitiesUsingFiniteGaussianMixtures`. Attributes ---------- type : :class:`serums.enums.GSMTypes` Type of the distribution to represent as a GSM. location_range : tuple Minimum and maximum values for the location parameter. Useful if being fed to a filter for estimating the location parameter. Each element must match the type of the :attr:`.location` attribute. scale_range : tuple Minimum and maximum values for the scale parameter. Useful if being fed to a filter for estimating the scale parameter. Each element must match the type of the :attr:`.scale` attribute. The default is None. df_range : tuple Minimum and maximum values for the degree of freedom parameter. Useful if being fed to a filter for estimating the degree of freedom parameter. Each element must be a float. The default is None. """ __df_types = (enums.GSMTypes.STUDENTS_T, enums.GSMTypes.CAUCHY) def __init__(self, gsm_type, location=None, location_range=None, scale=None, scale_range=None, degrees_of_freedom=None, df_range=None): """Initialize a GSM Object. Parameters ---------- gsm_type : :class:`serums.enums.GSMTypes` Type of the distribution to represent as a GSM. location : N x 1 numpy array, optional location parameter of the distribution. The default is None. location_range : tuple, optional Minimum and maximum values for the location parameter. Useful if being fed to a filter for estimating the location parameter. Each element must match the type of the :attr:`.location` attribute. The default is None scale : N x N numpy array, optional Scale parameter of the distribution being represented as a GSM. The default is None. scale_range : tuple, optional Minimum and maximum values for the scale parameter. Useful if being fed to a filter for estimating the scale parameter. Each element must match the type of the :attr:`.scale` attribute. The default is None. degrees_of_freedom : float, optional Degrees of freedom parameter of the distribution being represented as a GSM. This is not needed by all types. The default is None. df_range : tuple, optional Minimum and maximum values for the degree of freedom parameter. Useful if being fed to a filter for estimating the degree of freedom parameter. Each element must be a float. The default is None. Raises ------ RuntimeError If a `gsm_type` is given that is of the incorrect data type. """ super().__init__(loc=location, scale=scale) if not isinstance(gsm_type, enums.GSMTypes): raise RuntimeError('Type ({}) must be a GSMType'.format(gsm_type)) self.type = gsm_type self._df = None self.location_range = location_range self.scale_range = scale_range self.df_range = df_range if degrees_of_freedom is not None: self.degrees_of_freedom = degrees_of_freedom if self.type is enums.GSMTypes.CAUCHY: self._df = 1 @property def degrees_of_freedom(self): """Degrees of freedom parameter of the distribution being represented as a GSM. Returns ------- float, optional """ if self.type in self.__df_types: return self._df else: msg = 'GSM type {:s} does not have a degree of freedom.'.format(self.type) warn(msg) return None @degrees_of_freedom.setter def degrees_of_freedom(self, val): if self.type in self.__df_types: if self.type is enums.GSMTypes.CAUCHY: warn('GSM type {:s} requires degree of freedom = 1'.format(self.type)) return self._df = val else: msg = ('GSM type {:s} does not have a degree of freedom. ' + 'Skipping').format(self.type) warn(msg) def sample(self, rng=None): """Draw a sample from the specified GSM type. Parameters ---------- rng : numpy random generator, optional Random number generator to use. If none is given then the numpy default is used. The default is None. Returns ------- float randomly sampled value from the GSM. """ if rng is None: rng = rnd.default_rng() if self.type in [enums.GSMTypes.STUDENTS_T, enums.GSMTypes.CAUCHY]: return self._sample_student_t(rng) elif self.type is enums.GSMTypes.SYMMETRIC_A_STABLE: return self._sample_SaS(rng) else: raise RuntimeError('GSM type: {} is not supported'.format(self.type)) def _sample_student_t(self, rng): return stats.t.rvs(self.degrees_of_freedom, scale=self.scale, random_state=rng) def _sample_SaS(self, rng): raise RuntimeError('sampling SaS distribution not implemented') class BaseMixtureModel: """Generic base class for mixture distribution models. This defines the required functions and provides their recommended function signature for inherited classes. It also defines base attributes for the mixture model. Attributes ---------- weights : list weight of each distribution """ def __init__(self, distributions=None, weights=None): """Initialize a mixture model object. Parameters ---------- distributions : list, optional Each element is a :class:`.BaseSingleModel`. The default is None. weights : list, optional Weight of each distribution. The default is None. Returns ------- None. """ if distributions is None: distributions = [] if weights is None: weights = [] self._distributions = distributions self.weights = weights def sample(self, rng=None): """Draw a sample from the current mixture model. Parameters ---------- rng : numpy random generator, optional Random number generator to use. If none is given then the numpy default is used. The default is None. Returns ------- numpy array randomly sampled numpy array of the same shape as the mean. """ if rng is None: rng = rnd.default_rng() mix_ind = rng.choice(np.arange(len(self.weights), dtype=int), p=self.weights) x = self._distributions[mix_ind].sample(rng=rng) return x.reshape((x.size, 1)) def pdf(self, x): """Multi-variate probability density function for this mixture. Returns ------- float PDF value of the state `x`. """ p = 0 for w, dist in zip(self.weights, self._distributions): p += w * dist.pdf(x) return p def remove_components(self, indices): """Remove component distributions from the mixture by index. Parameters ---------- indices : list indices of distributions to remove. Returns ------- None. """ if not isinstance(indices, list): indices = list(indices) for index in sorted(indices, reverse=True): del self._distributions[index] del self.weights[index] def add_component(self, *args): """Add a component distribution to the mixture. This should be implemented by the child class. Parameters ---------- *args : tuple Additional arguments specific to the child distribution. Returns ------- None. """ warn('add_component not implemented by {}'.format(type(self).__name__)) class _DistListWrapper(list): """Helper class for wrapping lists of BaseSingleModel to get a list of a single parameter.""" def __init__(self, dist_lst, attr): """Give list of distributions and the attribute to access.""" self.dist_lst = dist_lst self.attr = attr def __getitem__(self, index): """Get the attribute of the item at the index in the list.""" if isinstance(index, slice): step = 1 if index.step is not None: step = index.step return [getattr(self.dist_lst[ii], self.attr) for ii in range(index.start, index.stop, step)] elif isinstance(index, int): return getattr(self.dist_lst[index], self.attr) else: fmt = 'Index must be a integer or slice not {}' raise RuntimeError(fmt.format(type(index))) def __setitem__(self, index, val): """Set the attribute of the item at the index to the value.""" if isinstance(index, slice): step = 1 if index.step is not None: step = index.step for ii in range(index.start, index.stop, step): setattr(self.dist_lst[ii], self.attr, val) elif isinstance(index, int): setattr(self.dist_lst[index], self.attr, val) else: fmt = 'Index must be a integer or slice not {}' raise RuntimeError(fmt.format(type(index))) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < len(self.dist_lst): self.n += 1 return getattr(self.dist_lst[self.n - 1], self.attr) else: raise StopIteration def __repr__(self): return str([getattr(d, self.attr) for d in self.dist_lst]) def __len__(self): return len(self.dist_lst) def append(self, *args): raise RuntimeError('Cannot append, use add_component function instead.') def extend(self, *args): raise RuntimeError('Cannot extend, use add_component function instead.') class GaussianMixture(BaseMixtureModel): """Gaussian Mixture object.""" def __init__(self, means=None, covariances=None, **kwargs): """Initialize an object. Parameters ---------- means : list, optional Each element is a N x 1 numpy array. Will be used in place of supplied distributions but requires covariances to also be given. The default is None. covariances : list, optional Each element is an N x N numpy array. Will be used in place of supplied distributions but requires means to be given. The default is None. **kwargs : dict, optional See the base class for details. Returns ------- None. """ if means is not None and covariances is not None: kwargs['distributions'] = [Gaussian(mean=m, covariance=c) for m, c in zip(means, covariances)] super().__init__(**kwargs) @property def means(self): """List of Gaussian means, each is a N x 1 numpy array. Recommended to be read only.""" return _DistListWrapper(self._distributions, 'location') @means.setter def means(self, val): if not isinstance(val, list): warn('Must set means to a list') return if len(val) != len(self._distributions): self.weights = [1 / len(val) for ii in range(len(val))] self._distributions = [Gaussian() for ii in range(len(val))] for ii, v in enumerate(val): self._distributions[ii].mean = v @property def covariances(self): """List of Gaussian covariances, each is a N x N numpy array. Recommended to be read only.""" return _DistListWrapper(self._distributions, 'scale') @covariances.setter def covariances(self, val): if not isinstance(val, list): warn('Must set covariances to a list') return if len(val) != len(self._distributions): self.weights = [1 / len(val) for ii in range(len(val))] self._distributions = [Gaussian() for ii in range(len(val))] for ii, v in enumerate(val): self._distributions[ii].covariance = v def add_components(self, means, covariances, weights): """Add Gaussian distributions to the mixture. Parameters ---------- means : list Each is a N x 1 numpy array of the mean of the distributions to add. covariances : list Each is a N x N numpy array of the covariance of the distributions to add. weights : list Each is a float for the weight of the distributions to add. No normalization is done. Returns ------- None. """ if not isinstance(means, list): means = [means, ] if not isinstance(covariances, list): covariances = [covariances, ] if not isinstance(weights, list): weights = [weights, ] self._distributions.extend([Gaussian(mean=m, covariance=c) for m, c in zip(means, covariances)]) self.weights.extend(weights) class StudentsTMixture(BaseMixtureModel): """Students T mixture object.""" def __init__(self, means=None, scalings=None, dof=None, **kwargs): if means is not None and scalings is not None and dof is not None: if isinstance(dof, list): dists = [StudentsT(mean=m, scale=s, dof=df) for m, s, df in zip(means, scalings, dof)] else: dists = [StudentsT(mean=m, scale=s, dof=dof) for m, s in zip(means, scalings)] kwargs['distributions'] = dists super().__init__(**kwargs) @property def means(self): """List of Gaussian means, each is a N x 1 numpy array. Recommended to be read only.""" return _DistListWrapper(self._distributions, 'location') @means.setter def means(self, val): if not isinstance(val, list): warn('Must set means to a list') return if len(val) != len(self._distributions): self.weights = [1 / len(val) for ii in range(len(val))] self._distributions = [StudentsT() for ii in range(len(val))] for ii, v in enumerate(val): self._distributions[ii].mean = v @property def covariances(self): """Read only list of covariances, each is a N x N numpy array.""" return _DistListWrapper(self._distributions, 'covariance') @property def scalings(self): """List of scalings, each is a N x N numpy array. Recommended to be read only.""" return _DistListWrapper(self._distributions, 'scale') @scalings.setter def scalings(self, val): if not isinstance(val, list): warn('Must set scalings to a list') return if len(val) != len(self._distributions): self.weights = [1 / len(val) for ii in range(len(val))] self._distributions = [StudentsT() for ii in range(len(val))] for ii, v in enumerate(val): self._distributions[ii].scale = v @property def dof(self): """Most common degree of freedom for the mixture. Deprecated but kept for compatability, new code should use degrees_of_freedom.""" vals, counts = np.unique([d.degrees_of_freedom for d in self._distributions], return_counts=True) inds = np.argwhere(counts == np.max(counts)) return vals[inds[0]].item() @dof.setter def dof(self, val): for d in self._distributions: d.degrees_of_freedom = val @property def degrees_of_freedom(self): """List of degrees of freedom, each is a float. Recommended to be read only.""" return _DistListWrapper(self._distributions, 'degrees_of_freedom') @degrees_of_freedom.setter def degrees_of_freedom(self, val): if not isinstance(val, list): warn('Must set degrees of freedom to a list') return if len(val) != len(self._distributions): self.weights = [1 / len(val) for ii in range(len(val))] self._distributions = [StudentsT() for ii in range(len(val))] for ii, v in enumerate(val): self._distributions[ii].degrees_of_freedom = v def add_components(self, means, scalings, dof_lst, weights): """Add Student's t-distributions to the mixture. Parameters ---------- means : list Each is a N x 1 numpy array of the mean of the distributions to add. scalings : list Each is a N x N numpy array of the scale of the distributions to add. dof_lst : list Each is a float representing the degrees of freedom of the distribution to add. weights : list Each is a float for the weight of the distributions to add. No normalization is done. Returns ------- None. """ if not isinstance(means, list): means = [means, ] if not isinstance(scalings, list): scalings = [scalings, ] if not isinstance(dof_lst, list): dof_lst = [dof_lst, ] if not isinstance(weights, list): weights = [weights, ] self._distributions.extend([StudentsT(mean=m, scale=s, dof=df) for m, s, df in zip(means, scalings, dof_lst)]) self.weights.extend(weights)
import time import usb.core, usb.util # generateWords from random import choice from wordlist import wordlist # detectHuman import pygame def generateWords(): return " ".join([choice(wordlist) for x in range(4)]) def detectHuman(): pygame.init() pygame.event.set_grab(True) screen = pygame.display.set_mode((700, 90)) screen.fill((50,50,50)) words = generateWords() font = pygame.font.SysFont("monospace", 25) label = font.render(words, 1, (255,255,255)) screen.blit(label, (10, 10)) newText = "" while True: pygame.display.flip() events = pygame.event.get() for event in events: if event.type != pygame.KEYDOWN: pass elif event.key == pygame.K_RETURN and newText == words: pygame.quit() return True elif event.key == pygame.K_BACKSPACE: newText = "" elif event.type == pygame.KEYDOWN and event.key < 256: newText += chr(event.key) font = pygame.font.SysFont("monospace", 25) if words[:len(newText)] != newText: color = (255,100,100) else: color = (100,255,100) input = font.render(newText + "|", 1, color, (50,50,50)) screen.blit(input, (10, 50)) devices = [x for x in usb.core.find(find_all=True, bDeviceClass=0)] deviceCount = len(devices) print("The DuckyKiller is now watching for Rubber Ducks.") while True: devices = [x for x in usb.core.find(find_all=True, bDeviceClass=0)] time.sleep(.25) if len(devices) > deviceCount: detectHuman() deviceCount = len(devices)
# Copyright 2020 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import ddt from rally import exceptions from rally_openstack.task.scenarios.octavia import loadbalancers from tests.unit import test OCTAVIA_LB = "rally_openstack.task.scenarios.octavia.loadbalancers." @ddt.ddt class LoadbalancersTestCase(test.ScenarioTestCase): def setUp(self): super(LoadbalancersTestCase, self).setUp() self.context.update({ "user": {"keypair": {"name": "foo_keypair_name"}, "credential": mock.MagicMock()}, "tenant": {"id": "foo_tenant_id", "networks": [{ "name": "foo_net", "subnets": ["foo_subnet0"] }]} }) cinder_patcher = mock.patch( "rally_openstack.common.services.storage.block.BlockStorage") self.cinder = cinder_patcher.start().return_value self.cinder.create_volume.return_value = mock.Mock(id="foo_volume") self.addCleanup(cinder_patcher.stop) def create_env(self, scenario): self.ip = {"id": "foo_id", "ip": "foo_ip", "is_floating": True} scenario.generate_random_name = mock.Mock( return_value="random_name") scenario.octavia.load_balancer_create = mock.Mock( return_value={"id": "foo_lb_id", "vip_port_id": 1234} ) scenario.octavia.wait_for_loadbalancer_prov_status = mock.Mock( return_value=True ) scenario.octavia.listener_create = mock.Mock( return_value={"listener": {"id": "listener_id"}} ) scenario.octavia.wait_for_listener_prov_status = mock.Mock() scenario.octavia.pool_create = mock.Mock( return_value={"id": "pool_id"} ) scenario.server = mock.Mock( networks={"foo_net": {"subnets": "foo_subnet"}}, addresses={"foo_net": [{"addr": "foo_ip"}]}, tenant_id="foo_tenant" ) scenario._boot_server_with_fip = mock.Mock( return_value=(scenario.server, self.ip)) scenario.octavia.member_create = mock.Mock() scenario._add_server_secgroups = mock.Mock() # wait_for_status and get_from_manager are mocked in the base class as # self.mock_wait_for_status and self.mock_get_from_manager scenario._run_command = mock.MagicMock( return_value=(0, "{\"foo\": 42}", "foo_err")) return scenario @ddt.data({ "image": "foo_image", "flavor": "foo_flavor", "username": "foo_user", "password": "foo_password", "floating_net": "foo_floating_net", "port": "foo_port", "use_floating_ip": "foo_use_floating_ip", "description": "foo_description", "admin_state": "foo_admin_state", "listeners": "foo_listeners", "flavor_id": "foo_flavor_id", "provider": "foo_provider", "vip_qos_policy_id": "foo_vip_qos_policy_id", }) @mock.patch(OCTAVIA_LB + "urlopen") @mock.patch(OCTAVIA_LB + "network_wrapper.wrap") def test_create_and_balance_http_vms(self, params, mock_wrap, mock_urlopen): scenario = self.create_env( loadbalancers.CreateAndBalanceHttpVms(self.context)) # Mock a successful response from urlopen. mock_response = mock.MagicMock() mock_response.getcode.side_effect = [200] mock_urlopen.return_value = mock_response # self.clients is mocked in the base class # Set a return value for self.clients("neutron").create_security_group sec_grp = {"security_group": {"id": "sec_grp_id"}} self.clients( "neutron").create_security_group.return_value = sec_grp netwrap = mock_wrap.return_value fip = {"id": "foo_id", "ip": "foo_ip"} netwrap.create_floating_ip.return_value = fip scenario._run_command = mock.MagicMock( return_value=(0, "{\"foo\": 42}", "foo_err")) scenario.run(**params) # Check load_balancer_createte_security_group_rule is called with # expected args. expected_security_group_rule_args = { "security_group_id": "sec_grp_id", "direction": "ingress", "port_range_max": 80, "port_range_min": 80, "protocol": "tcp", "remote_ip_prefix": "0.0.0.0/0", } self.clients( "neutron").create_security_group_rule.assert_called_once_with( {"security_group_rule": expected_security_group_rule_args}) # create_floating_ip # Check load_balancer_create is called with expected args. expected_lb_create_args = { "subnet_id": "foo_subnet0", "description": "foo_description", "admin_state": "foo_admin_state", "project_id": "foo_tenant_id", "listeners": "foo_listeners", "flavor_id": "foo_flavor_id", "provider": "foo_provider", "vip_qos_policy_id": "foo_vip_qos_policy_id", } scenario.octavia.load_balancer_create.assert_called_once_with( **expected_lb_create_args) # Check listener_create is called with expected args. expected_listener_create_args = { "json": { "listener": { "protocol": "HTTP", "protocol_port": 80, "loadbalancer_id": "foo_lb_id", } } } scenario.octavia.listener_create.assert_called_once_with( **expected_listener_create_args) # Check wait_for_listener_prov_status is called with expected args. (scenario.octavia.wait_for_loadbalancer_prov_status. assert_called_once_with({"id": "foo_lb_id", "vip_port_id": 1234})) # Check pool_create is called with expected args. expected_pool_create_args = { "lb_id": "foo_lb_id", "protocol": "HTTP", "lb_algorithm": "ROUND_ROBIN", "listener_id": "listener_id", "project_id": "foo_tenant_id", } scenario.octavia.pool_create.assert_called_once_with( **expected_pool_create_args) # Check update_floatingip is called with expected args. self.clients( "neutron").update_floatingip.assert_called_once_with( "foo_id", {"floatingip": {"port_id": 1234}}) # Checks for two servers added as members to the load balancer group. # Check _boot_server_with_fip is called with expected args. expected_boot_server_args = [ mock.call("foo_image", "foo_flavor", use_floating_ip="foo_use_floating_ip", floating_net="foo_floating_net", key_name="foo_keypair_name", userdata="#cloud-config\npackages:\n - apache2"), mock.call("foo_image", "foo_flavor", use_floating_ip="foo_use_floating_ip", floating_net="foo_floating_net", key_name="foo_keypair_name", userdata="#cloud-config\npackages:\n - apache2"), ] self.assertEqual( scenario._boot_server_with_fip.call_args_list, expected_boot_server_args) # Check member_create is called with expected args. expected_member_args = { "member": {"address": "foo_ip", "protocol_port": 80} } expected_member_args = { "member": {"address": "foo_ip", "protocol_port": 80} } expected_pool_create_args = [ mock.call("pool_id", json=expected_member_args), mock.call("pool_id", json=expected_member_args), ] self.assertEqual(scenario.octavia.member_create.call_args_list, expected_pool_create_args) # Check _add_server_secgroups is called with expected args. expected_member_args = { "member": {"address": "foo_ip", "protocol_port": 80} } expected_add_server_secgroups_args = [ mock.call(scenario.server, "sec_grp_id"), mock.call(scenario.server, "sec_grp_id"), ] self.assertEqual(scenario._add_server_secgroups.call_args_list, expected_add_server_secgroups_args) # Check that _run_command is called for both servers with the script # to wait for cloud-init to complete. expected_command = { "script_inline": "cloud-init status -w || exit 1", "interpreter": "/bin/bash" } expected_run_command_call_args = [ mock.call("foo_ip", "foo_port", "foo_user", "foo_password", command=expected_command), mock.call("foo_ip", "foo_port", "foo_user", "foo_password", command=expected_command)] self.assertEqual(scenario._run_command.call_args_list, expected_run_command_call_args) # Check urlopen is called with expected args. mock_urlopen.assert_called_once_with("http://foo_ip/") # Check response.getcode was called. mock_response.getcode.assert_called_once_with() @ddt.data( {"image": "some_image", "flavor": "m1.small", "username": "test_user"} ) @mock.patch(OCTAVIA_LB + "urlopen") @mock.patch(OCTAVIA_LB + "network_wrapper.wrap") def test_create_and_balance_http_vms_raises_ScriptError( self, params, mock_wrap, mock_urlopen): scenario = self.create_env( loadbalancers.CreateAndBalanceHttpVms(self.context)) mock_response = mock.MagicMock() mock_response.getcode.side_effect = [200] mock_urlopen.return_value = mock_response sec_grp = {"security_group": {"id": "sec_grp_id"}} self.clients( "neutron").create_security_group.return_value = sec_grp netwrap = mock_wrap.return_value fip = {"id": "foo_id", "ip": "foo_ip"} netwrap.create_floating_ip.return_value = fip scenario._run_command.return_value = (-1, "out", "err") self.assertRaises(exceptions.ScriptError, scenario.run, **params, ) @ddt.data( {"image": "some_image", "flavor": "m1.small", "username": "test_user"} ) @mock.patch(OCTAVIA_LB + "urlopen") @mock.patch(OCTAVIA_LB + "network_wrapper.wrap") def test_create_and_balance_http_vms_raises_RallyException( self, params, mock_wrap, mock_urlopen): scenario = self.create_env( loadbalancers.CreateAndBalanceHttpVms(self.context)) mock_response = mock.MagicMock() mock_response.getcode.side_effect = [400] mock_urlopen.return_value = mock_response sec_grp = {"security_group": {"id": "sec_grp_id"}} self.clients( "neutron").create_security_group.return_value = sec_grp netwrap = mock_wrap.return_value fip = {"id": "foo_id", "ip": "foo_ip"} netwrap.create_floating_ip.return_value = fip scenario._run_command = mock.MagicMock( return_value=(0, "{\"foo\": 42}", "foo_err")) self.assertRaises(exceptions.RallyException, scenario.run, **params, )
import sys import pytest @pytest.mark.parametrize("mode", ["normal", "xdist"]) class TestFixture: """ Tests for ``subtests`` fixture. """ @pytest.fixture def simple_script(self, testdir): testdir.makepyfile( """ def test_foo(subtests): for i in range(5): with subtests.test(msg="custom", i=i): assert i % 2 == 0 """ ) def test_simple_terminal_normal(self, simple_script, testdir, mode): if mode == "normal": result = testdir.runpytest() expected_lines = ["collected 1 item"] else: pytest.importorskip("xdist") result = testdir.runpytest("-n1") expected_lines = ["gw0 [1]"] expected_lines += [ "* test_foo [[]custom[]] (i=1) *", "* test_foo [[]custom[]] (i=3) *", "* 2 failed, 1 passed in *", ] result.stdout.fnmatch_lines(expected_lines) def test_simple_terminal_verbose(self, simple_script, testdir, mode): if mode == "normal": result = testdir.runpytest("-v") expected_lines = [ "*collected 1 item", "test_simple_terminal_verbose.py::test_foo PASSED *100%*", "test_simple_terminal_verbose.py::test_foo FAILED *100%*", "test_simple_terminal_verbose.py::test_foo PASSED *100%*", "test_simple_terminal_verbose.py::test_foo FAILED *100%*", "test_simple_terminal_verbose.py::test_foo PASSED *100%*", "test_simple_terminal_verbose.py::test_foo PASSED *100%*", ] else: pytest.importorskip("xdist") result = testdir.runpytest("-n1", "-v") expected_lines = [ "gw0 [1]", "*gw0*100%* test_simple_terminal_verbose.py::test_foo*", "*gw0*100%* test_simple_terminal_verbose.py::test_foo*", "*gw0*100%* test_simple_terminal_verbose.py::test_foo*", "*gw0*100%* test_simple_terminal_verbose.py::test_foo*", "*gw0*100%* test_simple_terminal_verbose.py::test_foo*", "*gw0*100%* test_simple_terminal_verbose.py::test_foo*", ] expected_lines += [ "* test_foo [[]custom[]] (i=1) *", "* test_foo [[]custom[]] (i=3) *", "* 2 failed, 1 passed in *", ] result.stdout.fnmatch_lines(expected_lines) def test_skip(self, testdir, mode): testdir.makepyfile( """ import pytest def test_foo(subtests): for i in range(5): with subtests.test(msg="custom", i=i): if i % 2 == 0: pytest.skip('even number') """ ) if mode == "normal": result = testdir.runpytest() expected_lines = ["collected 1 item"] else: pytest.importorskip("xdist") result = testdir.runpytest("-n1") expected_lines = ["gw0 [1]"] expected_lines += ["* 1 passed, 3 skipped in *"] result.stdout.fnmatch_lines(expected_lines) class TestSubTest: """ Test Test.subTest functionality. """ @pytest.fixture def simple_script(self, testdir): return testdir.makepyfile( """ from unittest import TestCase, main class T(TestCase): def test_foo(self): for i in range(5): with self.subTest(msg="custom", i=i): self.assertEqual(i % 2, 0) if __name__ == '__main__': main() """ ) @pytest.mark.parametrize("runner", ["unittest", "pytest-normal", "pytest-xdist"]) def test_simple_terminal_normal(self, simple_script, testdir, runner): if runner == "unittest": result = testdir.run(sys.executable, simple_script) result.stderr.fnmatch_lines( [ "FAIL: test_foo (__main__.T) [custom] (i=1)", "AssertionError: 1 != 0", "FAIL: test_foo (__main__.T) [custom] (i=3)", "AssertionError: 1 != 0", "Ran 1 test in *", "FAILED (failures=2)", ] ) else: if runner == "pytest-normal": result = testdir.runpytest(simple_script) expected_lines = ["collected 1 item"] else: pytest.importorskip("xdist") result = testdir.runpytest(simple_script, "-n1") expected_lines = ["gw0 [1]"] result.stdout.fnmatch_lines( expected_lines + [ "* T.test_foo [[]custom[]] (i=1) *", "E * AssertionError: 1 != 0", "* T.test_foo [[]custom[]] (i=3) *", "E * AssertionError: 1 != 0", "* 2 failed, 1 passed in *", ] ) @pytest.mark.parametrize("runner", ["unittest", "pytest-normal", "pytest-xdist"]) def test_simple_terminal_verbose(self, simple_script, testdir, runner): if runner == "unittest": result = testdir.run(sys.executable, simple_script, "-v") result.stderr.fnmatch_lines( [ "test_foo (__main__.T) ... ", "FAIL: test_foo (__main__.T) [custom] (i=1)", "AssertionError: 1 != 0", "FAIL: test_foo (__main__.T) [custom] (i=3)", "AssertionError: 1 != 0", "Ran 1 test in *", "FAILED (failures=2)", ] ) else: if runner == "pytest-normal": result = testdir.runpytest(simple_script, "-v") expected_lines = [ "*collected 1 item", "test_simple_terminal_verbose.py::T::test_foo FAILED *100%*", "test_simple_terminal_verbose.py::T::test_foo FAILED *100%*", "test_simple_terminal_verbose.py::T::test_foo PASSED *100%*", ] else: pytest.importorskip("xdist") result = testdir.runpytest(simple_script, "-n1", "-v") expected_lines = [ "gw0 [1]", "*gw0*100%* FAILED test_simple_terminal_verbose.py::T::test_foo*", "*gw0*100%* FAILED test_simple_terminal_verbose.py::T::test_foo*", "*gw0*100%* PASSED test_simple_terminal_verbose.py::T::test_foo*", ] result.stdout.fnmatch_lines( expected_lines + [ "* T.test_foo [[]custom[]] (i=1) *", "E * AssertionError: 1 != 0", "* T.test_foo [[]custom[]] (i=3) *", "E * AssertionError: 1 != 0", "* 2 failed, 1 passed in *", ] ) @pytest.mark.parametrize("runner", ["unittest", "pytest-normal", "pytest-xdist"]) def test_skip(self, testdir, runner): p = testdir.makepyfile( """ from unittest import TestCase, main class T(TestCase): def test_foo(self): for i in range(5): with self.subTest(msg="custom", i=i): if i % 2 == 0: self.skipTest('even number') if __name__ == '__main__': main() """ ) if runner == "unittest": result = testdir.runpython(p) result.stderr.fnmatch_lines(["Ran 1 test in *", "OK (skipped=3)"]) else: pytest.xfail("Not producing the expected results (#5)") result = testdir.runpytest(p) result.stdout.fnmatch_lines( ["collected 1 item", "* 3 skipped, 1 passed in *"] ) class TestCapture: def create_file(self, testdir): testdir.makepyfile( """ import sys def test(subtests): print() print('start test') with subtests.test(i='A'): print("hello stdout A") print("hello stderr A", file=sys.stderr) assert 0 with subtests.test(i='B'): print("hello stdout B") print("hello stderr B", file=sys.stderr) assert 0 print('end test') assert 0 """ ) def test_capturing(self, testdir): self.create_file(testdir) result = testdir.runpytest() result.stdout.fnmatch_lines( [ "*__ test (i='A') __*", "*Captured stdout call*", "hello stdout A", "*Captured stderr call*", "hello stderr A", "*__ test (i='B') __*", "*Captured stdout call*", "hello stdout B", "*Captured stderr call*", "hello stderr B", "*__ test __*", "*Captured stdout call*", "start test", "end test", ] ) def test_no_capture(self, testdir): self.create_file(testdir) result = testdir.runpytest("-s") result.stdout.fnmatch_lines( [ "start test", "hello stdout A", "Fhello stdout B", "Fend test", "*__ test (i='A') __*", "*__ test (i='B') __*", "*__ test __*", ] ) result.stderr.fnmatch_lines(["hello stderr A", "hello stderr B"]) @pytest.mark.parametrize("fixture", ["capsys", "capfd"]) def test_capture_with_fixture(self, testdir, fixture): testdir.makepyfile( r""" import sys def test(subtests, {fixture}): print('start test') with subtests.test(i='A'): print("hello stdout A") print("hello stderr A", file=sys.stderr) out, err = {fixture}.readouterr() assert out == 'start test\nhello stdout A\n' assert err == 'hello stderr A\n' """.format( fixture=fixture ) ) result = testdir.runpytest() result.stdout.fnmatch_lines( ["*1 passed*",] )
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('api', '0084_auto_20151125_2051'), ] operations = [ migrations.AddField( model_name='activity', name='account_link', field=models.CharField(default='/user/db0/#1', max_length=200), preserve_default=False, ), migrations.AddField( model_name='activity', name='account_name', field=models.CharField(default='Deby JP', max_length=100), preserve_default=False, ), migrations.AddField( model_name='activity', name='account_picture', field=models.CharField(default='http://www.gravatar.com/avatar/8e731f8661ed8a4549e5445ccffe388a?s=100&d=http%3A%2F%2Fschoolido.lu%2Favatar%2Ftwitter%2Fdbschoolidol', max_length=500), preserve_default=False, ), ]
import glob import os import random import re import cv2 import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from .data_generator import DataGenerator from .losses import focal_tversky, tversky from .resunet import resunet data = pd.read_csv("./lgg-mri-segmentation/kaggle_3m/data.csv") data_map = [] for sub_dir_path in glob.glob("./lgg-mri-segmentation/kaggle_3m/" + "*"): try: dir_name = sub_dir_path.split("/")[-1] for filename in os.listdir(sub_dir_path): image_path = sub_dir_path + "/" + filename data_map.extend([dir_name, image_path]) except Exception as e: print(e) df = pd.DataFrame({"patient_id": data_map[::2], "path": data_map[1::2]}) df_imgs = df[~df["path"].str.contains("mask")] df_masks = df[df["path"].str.contains("mask")] # Data sorting imgs = sorted( df_imgs["path"].values, key=lambda x: int(re.search(r"\d+", x[-7:]).group()) ) masks = sorted( df_masks["path"].values, key=lambda x: int(re.search(r"\d+", x[-12:]).group()) ) # Sorting check idx = random.randint(0, len(imgs) - 1) print("Path to the Image:", imgs[idx], "\nPath to the Mask:", masks[idx]) # Final dataframe brain_df = pd.DataFrame( {"patient_id": df_imgs.patient_id.values, "image_path": imgs, "mask_path": masks} ) def pos_neg_diagnosis(mask_path): value = np.max(cv2.imread(mask_path)) if value > 0: return 1 else: return 0 brain_df["mask"] = brain_df["mask_path"].apply(lambda x: pos_neg_diagnosis(x)) brain_df_train = brain_df.drop(columns=["patient_id"]) # Convert the data in mask column to string format, to use categorical mode in flow_from_dataframe brain_df_train["mask"] = brain_df_train["mask"].apply(lambda x: str(x)) train, test = train_test_split(brain_df_train, test_size=0.15) brain_df_mask = brain_df[brain_df["mask"] == 1] print(brain_df_mask.shape) # creating test, train and val sets X_train, X_val = train_test_split(brain_df_mask, test_size=0.15) X_test, X_val = train_test_split(X_val, test_size=0.5) print( "Train size is {}, valid size is {} & test size is {}".format( len(X_train), len(X_val), len(X_test) ) ) train_ids = list(X_train.image_path) train_mask = list(X_train.mask_path) val_ids = list(X_val.image_path) val_mask = list(X_val.mask_path) train_data = DataGenerator(train_ids, train_mask) val_data = DataGenerator(val_ids, val_mask) seg_model = resunet(input_shape=(256, 256, 3)) adam = tf.keras.optimizers.Adam(learning_rate=0.05, epsilon=0.1) earlystopping = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=20) # save the best model with lower validation loss checkpointer = ModelCheckpoint( filepath="./models/ResUNet-segModel-weights.hdf5", verbose=1, save_best_only=True, ) reduce_lr = ReduceLROnPlateau( monitor="val_loss", mode="min", verbose=1, patience=10, min_delta=0.0001, factor=0.2 ) seg_model.compile(optimizer=adam, loss=focal_tversky, metrics=[tversky]) history = seg_model.fit( train_data, epochs=60, validation_data=val_data, callbacks=[checkpointer, earlystopping, reduce_lr], )
# -*- coding: utf-8 -*- import mysql.connector def store_mysql(filepath): conn = mysql.connector.connect(user = 'root', password = '1207', database = 'ShowMeTheCode') cursor = conn.cursor() # 判断表是否已经存在 cursor.execute('show tables in ShowMeTheCode;') tables = cursor.fetchall() findtables = False for table in tables: if 'code' in table: findtables = True if not findtables: cursor.execute(''' CREATE TABLE `ShowMeTheCode`.`code` ( `id` INT NOT NULL AUTO_INCREMENT, `code` VARCHAR(10) NOT NULL, PRIMARY KEY (`id`)); ''') f = open(filepath, 'rb') for line in f.readlines(): code = line.strip() cursor.execute("insert into ShowMeTheCode.code (code) values(%s);", [code]) conn.commit() cursor.close() conn.close() if __name__ == '__main__': store_mysql('Activation_code.txt')
from api import app from api import database from flask import jsonify from flask import request @app.route('/companies', methods=['POST']) def create_company(): company = request.get_json() db = database() db.update(company) return jsonify(company), 201
import unittest from Familytree.individual import Person from Familytree.relations import Relations from Familytree import variables from unittest.mock import patch, Mock from tests import mock_member_creation class MyTestCase(unittest.TestCase): def setUp(self): self.member = Person(1, "Hubby", "Male") def test_get_paternal_grandmother(self): member = Person(7, "alpha", "Male") father = Person(8, "beta", "Male") grandmother = Person(9, "charlie", "Female") # error cases self.assertEqual(Relations().get_paternal_grandmother(member), None) member.father = father self.assertEqual(Relations().get_paternal_grandmother(member), None) member.father.mother = grandmother self.assertEqual(Relations().get_paternal_grandmother(member), grandmother) def test_get_maternal_grandmother(self): member = Person(7, "alpha", "Male") mother = Person(8, "beta", "Female") grandmother = Person(9, "charlie", "Female") # error cases self.assertEqual(Relations().get_paternal_grandmother(member), None) member.mother = mother self.assertEqual(Relations().get_paternal_grandmother(member), None) member.mother.mother = grandmother self.assertEqual(Relations().get_maternal_grandmother(member), grandmother) def test_get_spouse_mother(self): member = Person(7, "alpha", "Male") spouse = Person(8, "alpha_spouse", "Female") spouse_mother = Person(9, "alpha_spousemother", "Female") # error cases self.assertEqual(Relations().get_spouse_mother(member), None) member.spouse = spouse self.assertEqual(Relations().get_spouse_mother(member), None) member.spouse.mother = spouse_mother self.assertEqual(Relations().get_spouse_mother(member), spouse_mother) @patch('Familytree.relations.Relations.get_paternal_grandmother', side_effect=[ None, mock_member_creation(), mock_member_creation(children=[Person(3, "Father", "Male")]), mock_member_creation(children=[ Person(3, "Father", "Male"), Person(4, "Uncle", "Male") ]), mock_member_creation(children=[ Person(3, "Father", "Male"), Person(4, "Uncle", "Male"), Person(5, "Aunt", "Female") ]) ]) def test_get_paternal_aunt(self, mock_get_paternal_grandmother): # check if get_paternal_grandmother has been replaced by a mock self.assertEqual( isinstance(Relations.get_paternal_grandmother, Mock), True ) self.assertEqual(Relations().get_paternal_aunt(self.member), []) self.assertEqual(Relations().get_paternal_aunt(self.member), []) self.assertEqual(Relations().get_paternal_aunt(self.member), []) self.assertEqual(Relations().get_paternal_aunt(self.member), []) paternal_aunts = Relations().get_paternal_aunt(self.member) self.assertEqual(len(paternal_aunts), 1) self.assertEqual(paternal_aunts[0].name, "Aunt") self.assertTrue(paternal_aunts[0].gender in variables.Gender[variables.female]) # to check that the mock_get_paternal_grandmother was called instead # of self.member.get_paternal_grandmother mock_get_paternal_grandmother.assert_called_with(self.member) @patch('Familytree.relations.Relations.get_paternal_grandmother', side_effect=[ None, mock_member_creation(), mock_member_creation(children=[Person(3, "Father", "Male")]), mock_member_creation(children=[ Person(3, "Aunt", "Female"), Person(4, "Father", "Male") ]), mock_member_creation(children=[ Person(3, "Father", "Male"), Person(4, "Uncle", "Male"), Person(5, "Aunt", "Female") ]) ]) def test_get_paternal_uncle(self, mock_get_paternal_grandmother): self.member.father = Person(3, "Father", "Male") # check if get_paternal_grandmother has been replaced by a mock self.assertEqual(isinstance( Relations().get_paternal_grandmother, Mock), True ) self.assertEqual(Relations().get_paternal_uncle(self.member), []) self.assertEqual(Relations().get_paternal_uncle(self.member), []) self.assertEqual(Relations().get_paternal_uncle(self.member), []) self.assertEqual(Relations().get_paternal_uncle(self.member), []) paternal_uncle = Relations().get_paternal_uncle(self.member) self.assertEqual(len(paternal_uncle), 1) self.assertEqual(paternal_uncle[0].name, "Uncle") self.assertTrue(paternal_uncle[0].gender in variables.Gender[variables.male]) # to check that the mock_get_paternal_grandmother was called instead # of self.member.get_paternal_grandmother mock_get_paternal_grandmother.assert_called_with(self.member) @patch('Familytree.relations.Relations.get_maternal_grandmother', side_effect=[ None, mock_member_creation(), mock_member_creation(children=[Person(3, "Mother", "Female")]), mock_member_creation(children=[ Person(3, "Mother", "Female"), Person(4, "Uncle", "Male") ]), mock_member_creation(children=[ Person(3, "Mother", "Female"), Person(4, "Uncle", "Male"), Person(5, "Aunt", "Female") ]) ]) def test_get_maternal_aunt(self, mock_get_maternal_grandmother): self.member.mother = Person(3, "Mother", "Female") # check if get_paternal_grandmother has been replaced by a mock self.assertEqual(isinstance( Relations.get_maternal_grandmother, Mock), True ) self.assertEqual(Relations().get_maternal_aunt(self.member), []) self.assertEqual(Relations().get_maternal_aunt(self.member), []) self.assertEqual(Relations().get_maternal_aunt(self.member), []) self.assertEqual(Relations().get_maternal_aunt(self.member), []) maternal_aunts = Relations().get_maternal_aunt(self.member) self.assertEqual(len(maternal_aunts), 1) self.assertEqual(maternal_aunts[0].name, "Aunt") self.assertTrue(maternal_aunts[0].gender in variables.Gender[variables.female]) # to check that the mock_get_paternal_grandmother was called instead of # self.member.get_paternal_grandmother mock_get_maternal_grandmother.assert_called_with(self.member) @patch('Familytree.relations.Relations.get_maternal_grandmother', side_effect=[ None, mock_member_creation(), mock_member_creation(children=[Person(3, "Mother", "Female")]), mock_member_creation(children=[ Person(3, "Aunt", "Female"), Person(4, "Mother", "Female") ]), mock_member_creation(children=[ Person(3, "Mother", "Female"), Person(4, "Uncle", "Male"), Person(5, "Aunt", "Female") ]) ]) def test_get_maternal_uncle(self, mock_get_maternal_grandmother): # check if get_paternal_grandmother has been replaced by a mock self.assertEqual( isinstance(Relations.get_maternal_grandmother, Mock), True ) self.assertEqual(Relations().get_maternal_uncle(self.member), []) self.assertEqual(Relations().get_maternal_uncle(self.member), []) self.assertEqual(Relations().get_maternal_uncle(self.member), []) self.assertEqual(Relations().get_maternal_uncle(self.member), []) maternal_uncle = Relations().get_maternal_uncle(self.member) self.assertEqual(len(maternal_uncle), 1) self.assertEqual(maternal_uncle[0].name, "Uncle") self.assertTrue(maternal_uncle[0].gender in variables.Gender[variables.male]) # to check that the mock_get_paternal_grandmother was called # instead of self.member.get_paternal_grandmother mock_get_maternal_grandmother.assert_called_with(self.member) @patch('Familytree.relations.Relations.get_siblings', return_value=[ mock_member_creation( name="Alpha", gender='Male', spouse=mock_member_creation( name="Beta", gender='Female', spouse=mock_member_creation( name="Alpha") ) ), mock_member_creation( name="Charlie", gender='Female', spouse=mock_member_creation( name="Delta", gender='Male', spouse=mock_member_creation( name="Charlie") ) ), mock_member_creation( name="Charlie", gender='Female' ) ]) def test_get_sibling_spouses(self, mock_get_siblings): self.assertEqual(len(Relations().get_sibling_spouses(self.member)), 2) def test_get_spouse_siblings(self): self.assertEqual(len(Relations().get_spouse_siblings(self.member)), 0) self.member.spouse = mock_member_creation(name="Wife") # spouse_siblings = Relations().get_siblings(self.member.spouse) spouse_siblings = [ mock_member_creation(name="Alpha"), mock_member_creation(name="Beta") ] self.assertEqual(len(spouse_siblings), 2) @patch('Familytree.relations.Relations.get_spouse_siblings', return_value=[ mock_member_creation(name="Alpha", gender='Male'), mock_member_creation(name="Beta", gender='Female') ]) @patch('Familytree.relations.Relations.get_sibling_spouses', return_value=[ mock_member_creation(name="Charlie", gender='Male'), mock_member_creation(name="Delta", gender='Female') ]) def test_get_brother_in_law(self, mock_get_sibling_spouses, mock_get_spouse_siblings): self.assertEqual(len(Relations().get_brother_in_law(self.member)), 2) @patch('Familytree.relations.Relations.get_spouse_siblings', return_value=[ mock_member_creation(name="Alpha", gender='Male'), mock_member_creation(name="Beta", gender='Female') ]) @patch('Familytree.relations.Relations.get_sibling_spouses', return_value=[ mock_member_creation(name="Charlie", gender='Male'), mock_member_creation(name="Delta", gender='Female') ]) def test_get_sister_in_law(self, mock_get_sibling_spouses, mock_get_spouse_siblings): self.assertEqual(len(Relations().get_sister_in_law(self.member)), 2) def test_get_son(self): member = Person(5, "Dummy", "Male") son = Person(7, "Son", "Male") daughter = Person(7, "Daughter", "Female") self.assertEqual(Relations().get_son(member), []) member.children.append(daughter) self.assertEqual(Relations().get_son(member), []) member.children.append(son) sons = Relations().get_son(member) self.assertEqual(len(sons), 1) self.assertEqual(sons[0].name, "Son") self.assertTrue(sons[0].gender in variables.Gender[variables.male]) def test_get_daughter(self): member = Person(5, "Dummy", "Male") son = Person(7, "Son", "Male") daughter = Person(7, "Daughter", "Female") self.assertEqual(Relations().get_daughter(member), []) member.children.append(son) self.assertEqual(Relations().get_daughter(member), []) member.children.append(daughter) daughters = Relations().get_daughter(member) self.assertEqual(len(daughters), 1) self.assertEqual(daughters[0].name, "Daughter") self.assertTrue(daughters[0].gender in variables.Gender[variables.female]) def test_get_siblings(self): member = Person(5, "Dummy", "Male") mother = Person(9, "Mother", "Female") son = Person(7, "Son", "Male") daughter = Person(7, "Daughter", "Female") self.assertEqual(Relations().get_siblings(member), []) member.mother = mother self.assertEqual(Relations().get_siblings(member), []) mother.children.extend([member, son, daughter]) member.mother = mother siblings = Relations().get_siblings(member) self.assertEqual(len(siblings), 2) @patch('Familytree.relations.Relations.get_siblings') @patch('Familytree.relations.Relations.get_daughter') @patch('Familytree.relations.Relations.get_son') @patch('Familytree.relations.Relations.get_sister_in_law') @patch('Familytree.relations.Relations.get_brother_in_law') @patch('Familytree.relations.Relations.get_maternal_uncle') @patch('Familytree.relations.Relations.get_maternal_aunt') @patch('Familytree.relations.Relations.get_paternal_uncle') @patch('Familytree.relations.Relations.get_paternal_aunt') def test_get_relationship(self, mock_get_paternal_aunt, mock_get_paternal_uncle, mock_get_maternal_aunt, mock_get_maternal_uncle, mock_get_brother_in_law, mock_get_sister_in_law, mock_get_son, mock_get_daughter, mock_get_siblings): self.assertEqual(Relations().get_relation(self.member, 'invalid_relation'), None) Relations().get_relation(self.member, 'Paternal-Aunt') mock_get_paternal_aunt.assert_called_with(self.member) Relations().get_relation(self.member, 'Paternal-Uncle') mock_get_paternal_uncle.assert_called_with(self.member) Relations().get_relation(self.member, 'Maternal-Aunt') mock_get_maternal_aunt.assert_called_with(self.member) Relations().get_relation(self.member, 'Maternal-Uncle') mock_get_maternal_uncle.assert_called_with(self.member) Relations().get_relation(self.member, 'Brother-In-Law') mock_get_brother_in_law.assert_called_with(self.member) Relations().get_relation(self.member, 'Sister-In-Law') mock_get_sister_in_law.assert_called_with(self.member) Relations().get_relation(self.member, 'Son') mock_get_son.assert_called_with(self.member) Relations().get_relation(self.member, 'Daughter') mock_get_daughter.assert_called_with(self.member) Relations().get_relation(self.member, 'Siblings') mock_get_siblings.assert_called_with(self.member) if __name__ == '__main__': unittest.main()
name = 'stemplar' __version__ = '0.0.1'
from __future__ import unicode_literals from redis.exceptions import DataError, ResponseError from limpyd import fields from limpyd.exceptions import UniquenessError from ..base import LimpydBaseTest from ..model import TestRedisModel class HMTest(LimpydBaseTest): """ Test behavior of hmset and hmget """ class HMTestModel(TestRedisModel): foo = fields.InstanceHashField() bar = fields.InstanceHashField(indexable=True) baz = fields.InstanceHashField(unique=True) def test_hmset_should_set_values(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') self.assertEqual(obj.foo.hget(), 'FOO') self.assertEqual(obj.bar.hget(), 'BAR') self.assertEqual(obj.baz.hget(), 'BAZ') def test_hmget_should_get_values(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') data = obj.hmget('foo', 'bar', 'baz') self.assertEqual(data, ['FOO', 'BAR', 'BAZ']) obj.hmset(baz='QUX') data = obj.hmget('bar', 'baz') self.assertEqual(data, ['BAR', 'QUX']) def test_hdel_should_delete_values(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') count = obj.hdel('bar', 'baz') self.assertEqual(count, 2) self.assertEqual(obj.hmget('foo', 'bar', 'baz'), ['FOO', None, None]) obj.hmset(baz='QUX') self.assertEqual(obj.hmget('foo', 'bar', 'baz'), ['FOO', None, 'QUX']) count = obj.hdel('bar', 'baz') self.assertEqual(count, 1) # 'bar' was already deleted self.assertEqual(obj.hmget('foo', 'bar', 'baz'), ['FOO', None, None]) def test_empty_hmset_call_should_fail(self): obj = self.HMTestModel(foo='FOO', bar='BAR', baz='BAZ') with self.assertRaises(DataError): obj.hmset() # nothing modified... data = obj.hmget('foo', 'bar', 'baz') self.assertEqual(data, ['FOO', 'BAR', 'BAZ']) def test_empty_hmget_call_should_fail(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') with self.assertRaises(ResponseError): obj.hmget() def test_empty_hdel_call_should_fail(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') with self.assertRaises(ResponseError): obj.hdel() def test_hmset_should_index_values(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') self.assertSetEqual(set(self.HMTestModel.collection(bar='BAR')), {obj._pk}) self.assertSetEqual(set(self.HMTestModel.collection(baz='BAZ')), {obj._pk}) def test_hdel_should_deindex_values(self): obj = self.HMTestModel() obj.hmset(foo='FOO', bar='BAR', baz='BAZ') obj.hdel('foo', 'bar') self.assertSetEqual(set(self.HMTestModel.collection(bar='BAR')), set([])) self.assertSetEqual(set(self.HMTestModel.collection(baz='BAZ')), {obj._pk}) def test_hmset_should_not_index_if_an_error_occurs(self): self.HMTestModel(baz="BAZ") test_obj = self.HMTestModel() with self.assertRaises(UniquenessError): # The order of parameters below is important. Yes all are passed via # the kwargs dict, but order is not random, it's consistent, and # here i have to be sure that "bar" is managed first in hmset, so i # do some tests to always have the wanted order. # So bar will be indexed, then baz will raise because we already # set the "BAZ" value for this field. test_obj.hmset(baz='BAZ', foo='FOO', bar='BAR') # We must not have an entry in the bar index with the BAR value because # the hmset must have raise an exception and revert index already set. self.assertSetEqual(set(self.HMTestModel.collection(bar='BAR')), set()) def test_hgetall_should_return_all_set_fields(self): obj = self.HMTestModel(foo='FOO', bar='BAR') data = obj.hgetall() self.assertEqual(data, dict(foo='FOO', bar='BAR')) obj.foo.hdel() data = obj.hgetall() self.assertEqual(data, dict(bar='BAR',)) def test_hkeys_should_return_all_set_fieldnames(self): obj = self.HMTestModel(foo='FOO', bar='BAR') data = obj.hkeys() self.assertSetEqual(set(data), {'foo', 'bar'}) obj.foo.hdel() data = obj.hkeys() self.assertSetEqual(set(data), {'bar'}) def test_hvals_should_return_all_set_values(self): obj = self.HMTestModel(foo='FOO', bar='BAR') data = obj.hvals() self.assertSetEqual(set(data), {'FOO', 'BAR'}) obj.foo.hdel() data = obj.hvals() self.assertSetEqual(set(data), {'BAR'}) def test_hlen_should_return_number_of_set_fields(self): obj = self.HMTestModel(foo='FOO', bar='BAR') self.assertEqual(obj.hlen(), 2) obj.foo.hdel() self.assertEqual(obj.hlen(), 1) def test_delete_is_an_alias_for_hdel(self): obj = self.HMTestModel(foo='FOO', bar='BAR') obj.foo.delete() self.assertEqual(obj.hgetall(), {'bar': 'BAR'})
''' Faça um Programa que pergunte em que turno você estuda. Peça para digitar M-matutino ou V-Vespertino ou N- Noturno. Imprima a mensagem "Bom Dia!", "Boa Tarde!" ou "Boa Noite!" ou "Valor Inválido!", conforme o caso. ''' print('Em que turno voce estuda:') turno = str(input(''' M-matutino V-vesperino N-noturno ''')).upper() if turno == 'M': print('Bom dia!') elif turno == 'V': print('Boa tarde!') elif turno == 'N': print('Boa noite!') else: print('Horario Invalido!')
import socket import struct def quad2int(ip): return struct.unpack("!L", socket.inet_aton(ip))[0] def int2quad(ip): return socket.inet_ntoa(struct.pack('!L', ip))
import logging from bson.errors import InvalidId from django.http import JsonResponse, HttpResponseNotFound, HttpResponseBadRequest, HttpResponse from django.views.decorators.csrf import csrf_exempt from api.models import db_model from bson import ObjectId from api.models.auth import RequireLogin from api.models import rule_model import json from datetime import datetime logger = logging.getLogger(__name__) @csrf_exempt def rest(request, *pargs, **kwargs): """ Calls python function corresponding with HTTP METHOD name. Calls with incomplete arguments will return HTTP 400 """ if request.method == 'GET': rest_function = get elif request.method == 'POST': rest_function = post elif request.method == 'PUT': rest_function = put elif request.method == 'DELETE': rest_function = delete else: return JsonResponse({"error": "HTTP METHOD UNKNOWN"}) try: return rest_function(request, *pargs, **kwargs) except TypeError: return HttpResponseBadRequest("argument mismatch") @RequireLogin() def get(request, rule_id=None): """ Retrieve rule based on rule_id. """ if rule_id is None: return get_all_rules() dbc = db_model.connect() try: rule = dbc.rule.find_one({"_id": ObjectId(rule_id)}) except InvalidId: return HttpResponseNotFound() if rule is None: return HttpResponseNotFound() else: rule['id'] = str(rule.pop('_id')) return JsonResponse(rule) def get_all_rules(): """ Retrieve all rules. """ dbc = db_model.connect() rules = [r for r in dbc.rule.find()] for rule in rules: rule['id'] = str(rule.pop('_id')) return JsonResponse({"rules": rules}) @RequireLogin() def post(request): """ Create new rule. """ try: new = json.loads(request.body) except ValueError: return HttpResponseBadRequest("invalid JSON") rule = rule_model.validate(new) if rule is None: return HttpResponseBadRequest("invalid rule") else: dbc = db_model.connect() rule['createdAt'] = datetime.isoformat(datetime.now()) rule['updatedAt'] = datetime.isoformat(datetime.now()) rule_id = str(dbc.rule.save(rule)) r = JsonResponse({"id": rule_id}) r['location'] = "/api/rule/%s" % rule_id logger.info("rule '%s' created by '%s'" % (rule_id, request.user['username'])) return r @RequireLogin() def put(request, rule_id): """ Update existing rule based on rule_id. """ try: in_json = json.loads(request.body) except ValueError: return HttpResponseBadRequest("invalid JSON") dbc = db_model.connect() try: rule = dbc.rule.find_one({"_id": ObjectId(rule_id)}) except InvalidId: return HttpResponseNotFound() if rule is None: return HttpResponseNotFound() else: in_json['createdAt'] = rule['createdAt'] rule = rule_model.validate(in_json) if rule is None: return HttpResponseBadRequest("invalid rule") else: rule['_id'] = ObjectId(rule_id) rule['updatedAt'] = datetime.isoformat(datetime.now()) dbc.rule.save(rule) r = JsonResponse({"id": rule_id}) r['location'] = "/api/rule/%s" % rule_id logger.info("rule '%s' updated by '%s'" % (rule_id, request.user['username'])) return r @RequireLogin() def delete(request, rule_id): """ Delete rule based on rule_id. """ dbc = db_model.connect() try: rule = dbc.rule.find_one({'_id': ObjectId(rule_id)}) except InvalidId: return HttpResponseNotFound() if rule is None: return HttpResponseNotFound() else: dbc.rule.remove({"_id": ObjectId(rule_id)}) logger.info("rule '%s' deleted by '%s'" % (rule_id, request.user['username'])) return HttpResponse()
from .__about__ import __version__ from .riak_repl import RiakReplCheck __all__ = ['__version__', 'RiakReplCheck']
""" @Author: huuuuusy @GitHub: https://github.com/huuuuusy 系统: Ubuntu 18.04 IDE: VS Code 1.36 工具: python == 3.7.3 """ """ 思路: 类似斐波那契数列,动态规划 结果: 执行用时 : 48 ms, 在所有 Python3 提交中击败了68.02%的用户 内存消耗 : 13.8 MB, 在所有 Python3 提交中击败了5.22%的用户 """ class Solution: def climbStairs(self, n): # 类似斐波那契数列的解法 # 如果只有1个台阶,则返回1 if n == 1: return 1 dp = [1,2] # 初始状态是两个台阶,一阶有1种爬法(1),二阶有2种爬法(1+1或者2) # 对于高阶,分别是上一阶和上上阶的爬法总和 for i in range(2,n): dp.append(dp[i-1]+dp[i-2]) return dp[n-1] if __name__ == "__main__": n = 3 answer = Solution().climbStairs(n) print(answer)
# The MIT License (MIT) # # Copyright (c) 2019 Scott Shawcroft for Adafruit Industries LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `adafruit_ili9341` ==================================================== Display driver for ILI9341 * Author(s): Scott Shawcroft Implementation Notes -------------------- **Hardware:** * 2.2" 18-bit color TFT LCD display with microSD card breakout <https://www.adafruit.com/product/1480> * 2.4" TFT LCD with Touchscreen Breakout Board w/MicroSD Socket <https://www.adafruit.com/product/2478> * 2.8" TFT LCD with Touchscreen Breakout Board w/MicroSD Socket <https://www.adafruit.com/product/1770> * 3.2" TFT LCD with Touchscreen Breakout Board w/MicroSD Socket <https://www.adafruit.com/product/1743> * TFT FeatherWing - 2.4" 320x240 Touchscreen For All Feathers <https://www.adafruit.com/product/3315> **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases """ import displayio __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_ILI9341.git" _INIT_SEQUENCE = ( b"\x01\x80\x80" # Software reset then delay 0x80 (128ms) b"\xEF\x03\x03\x80\x02" b"\xCF\x03\x00\xC1\x30" b"\xED\x04\x64\x03\x12\x81" b"\xE8\x03\x85\x00\x78" b"\xCB\x05\x39\x2C\x00\x34\x02" b"\xF7\x01\x20" b"\xEA\x02\x00\x00" b"\xc0\x01\x23" # Power control VRH[5:0] b"\xc1\x01\x10" # Power control SAP[2:0];BT[3:0] b"\xc5\x02\x3e\x28" # VCM control b"\xc7\x01\x86" # VCM control2 b"\x36\x01\x38" # Memory Access Control b"\x37\x01\x00" # Vertical scroll zero b"\x3a\x01\x55" # COLMOD: Pixel Format Set b"\xb1\x02\x00\x18" # Frame Rate Control (In Normal Mode/Full Colors) b"\xb6\x03\x08\x82\x27" # Display Function Control b"\xF2\x01\x00" # 3Gamma Function Disable b"\x26\x01\x01" # Gamma curve selected b"\xe0\x0f\x0F\x31\x2B\x0C\x0E\x08\x4E\xF1\x37\x07\x10\x03\x0E\x09\x00" # Set Gamma b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\x0F" # Set Gamma b"\x11\x80\x78" # Exit Sleep then delay 0x78 (120ms) b"\x29\x80\x78" # Display on then delay 0x78 (120ms) ) # pylint: disable=too-few-public-methods class ILI9341(displayio.Display): """ILI9341 display driver""" def __init__(self, bus, hardware_rotation=0, **kwargs): init_seq = _INIT_SEQUENCE init_seq += (b"\x36\x01\x58", b"\x36\x01\x38", b"\x36\x01\xD8", b"\x36\x01\xF8")[hardware_rotation%4] if hardware_rotation%2: # if odd kwargs['width'], kwargs['height'] = kwargs['height'], kwargs['width'] super().__init__(bus, init_seq, **kwargs)
import pandas as pd import pytest from pyspark.sql import DataFrame from sparkypandy import Columny, DataFramy from sparkypandy.testing import assert_series_equal from tests.conftest import ALL_COLUMN_NAMES, NUMERIC_COLUMN_NAMES class TestColumny: @pytest.mark.parametrize("col_name", ALL_COLUMN_NAMES) # type: ignore def test_under_name(self, df_sparky: DataFramy, col_name: str) -> None: assert df_sparky[col_name]._name == col_name @pytest.mark.parametrize("col_name", ALL_COLUMN_NAMES) # type: ignore def test_from_spark(self, df_spark: DataFrame, df_sparky: DataFramy, col_name: str) -> None: # TODO: Not sure how to test this class method. Also not sure how to # test equality for a Column instance. For now, I am simply # asserting that both instance dicts are equal. # Maybe compare result from `.to_pandas()` here too? col_spark = df_spark[col_name] actual = Columny.from_spark(col=col_spark, df_sparky=df_sparky).__dict__ expected = Columny(jc=col_spark._jc, df_sparky=df_sparky).__dict__ assert actual == expected @pytest.mark.parametrize("col_name", ALL_COLUMN_NAMES) # type: ignore def test_to_pandas(self, df_sparky: DataFramy, df_pandas: pd.DataFrame, col_name: str) -> None: col_sparky = df_sparky[col_name] col_pandas = df_pandas[col_name] assert_series_equal(col_sparky.to_pandas(), col_pandas) # ================================================================== # test aggregations # ================================================================== # test: mean() @pytest.mark.parametrize("col_name", NUMERIC_COLUMN_NAMES) # type: ignore def test_mean(self, df_sparky: DataFramy, df_pandas: pd.DataFrame, col_name: str) -> None: mean_df_sparky = df_sparky[col_name].mean().to_pandas() mean_pandas = df_pandas[col_name].mean() assert mean_df_sparky.iloc[0] == mean_pandas pd.testing.assert_series_equal(mean_df_sparky, pd.Series(mean_pandas, name=f"mean({col_name})")) @pytest.mark.parametrize("col_name", NUMERIC_COLUMN_NAMES) # type: ignore def test_mean_with_alias(self, df_sparky: DataFramy, df_pandas: pd.DataFrame, col_name: str) -> None: target_alias_str = "target_alias_str" mean_df_sparky = df_sparky[col_name].mean(alias=target_alias_str).to_pandas() mean_pandas = df_pandas[col_name].mean() assert mean_df_sparky.iloc[0] == mean_pandas pd.testing.assert_series_equal(mean_df_sparky, pd.Series(mean_pandas, name=target_alias_str)) @pytest.mark.parametrize("col_name", NUMERIC_COLUMN_NAMES) # type: ignore def test_mean_with_collect(self, df_sparky: DataFramy, df_pandas: pd.DataFrame, col_name: str) -> None: mean_sparky = df_sparky[col_name].mean(collect=True) mean_pandas = df_pandas[col_name].mean() assert mean_sparky == mean_pandas
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import astor from paddle.utils import gast from paddle.fluid.dygraph.dygraph_to_static.static_analysis import AstNodeWrapper from paddle.fluid.dygraph.dygraph_to_static import utils class BasicApiTransformer(gast.NodeTransformer): """ Class to transform basic API from dygraph to static graph. """ def __init__(self, wrapper_root): assert isinstance( wrapper_root, AstNodeWrapper ), "Input non-AstNodeWrapper node for the initialization of BasicApiTransformer." self.wrapper_root = wrapper_root self.root = wrapper_root.node self.class_node_dict = {} def transform(self): to_tensor_transformer = ToTensorTransformer(self.root) to_tensor_transformer.transform() self.visit(self.root) return self.wrapper_root def visit_Assign(self, node): if self._update_class_node_dict(node): return None for child_node in gast.walk(node.value): if isinstance(child_node, gast.Call): self._visit_Call(child_node) return node def visit_Expr(self, node): value_node = node.value for child_node in gast.walk(value_node): if isinstance(child_node, gast.Call): # TODO(liym27): # Considers that a dygraph api which modifies the input or has a output. if utils.is_dygraph_api(child_node): return else: self._visit_Call(child_node) return node def _visit_Call(self, node): assert isinstance(node, gast.Call) func_name = astor.to_source(gast.gast_to_ast(node.func)) if self._is_dygraph_forward(func_name): class_node = self._get_class_node(func_name) static_node = utils.to_static_ast(node, class_node) return static_node else: return node def _is_dygraph_forward(self, func_id): return func_id in self.class_node_dict def _get_class_node(self, func_id): return self.class_node_dict[func_id] def _update_class_node_dict(self, node): assert isinstance(node, gast.Assign) node_value = node.value if isinstance(node_value, gast.Call): if is_to_variable(node_value): return False if utils.is_dygraph_api(node_value): dygraph_api = node_value.func.attr if not utils.dygraph_class_to_static_api.get(dygraph_api): return False utils.update_args_of_func(node_value, node_value, "__init__") target_str = astor.to_source(gast.gast_to_ast(node.targets[0])) self.class_node_dict[target_str] = node_value return True # TODO: node.value is not dygraph class return False class ToTensorTransformer(gast.NodeTransformer): """ Class to transform paddle.to_tensor and paddle.to_variable to paddle.assign """ def __init__(self, node): assert isinstance( node, gast.AST ), "Input non-gast.AST node for the initialization of ToTensorTransformer." self.root = node def transform(self): self.visit(self.root) return self.root def visit_Call(self, node): assert isinstance(node, gast.Call) if is_to_variable(node): node = to_assign_node(node) self.generic_visit(node) return node def is_to_variable(node): assert isinstance(node, gast.Call) api_name = utils.ast_to_source_code(node.func).strip() if utils.is_dygraph_api(node): return api_name.endswith("to_variable") if utils.is_paddle_api(node): return api_name.endswith("to_tensor") return False def to_assign_node(node): # Transform dygraph api `fluid.dygraph.to_variable` alias `paddle.to_tensor` to static api `paddle.assign`. # NOTE: # 1. Api `to_variable` supports data type {float16, float32, float64, int16, int32, int64, uint8, uint16}, # but api `assign` only supports {float32, float64, int32, int64, bool}; # 2. If the input of api `assign` is numpy.ndarray, its size cannot be greater than 1024 * 1024. assert isinstance(node, gast.Call) assign_api = gast.parse('paddle.assign').body[0].value node.func = assign_api if node.args: node.args = [node.args[0]] node.keywords = [] else: for idx, kw in enumerate(node.keywords): if kw.arg == 'value' or kw.arg == 'data': node.keywords[idx].arg = 'x' node.keywords = [node.keywords[idx]] node.args = [] break return node
from __future__ import print_function from __future__ import absolute_import from argparse import ArgumentParser import datetime import os import pkg_resources import sphinx.cmd.quickstart as sphinx_quickstart from sphinx.util.console import bold from hieroglyph import version def ask_user(d): """Wrap sphinx.cmd.quickstart.ask_user, and add additional questions.""" # Print welcome message msg = bold('Welcome to the Hieroglyph %s quickstart utility.') % ( version(), ) print(msg) msg = """ This will ask questions for creating a Hieroglyph project, and then ask some basic Sphinx questions. """ print(msg) # set a few defaults that we don't usually care about for Hieroglyph d.update({ 'version': datetime.date.today().strftime('%Y.%m.%d'), 'release': datetime.date.today().strftime('%Y.%m.%d'), 'make_mode': True, }) if 'project' not in d: print(''' The presentation title will be included on the title slide.''') d['project'] = sphinx_quickstart.do_prompt('Presentation title') if 'author' not in d: d['author'] = sphinx_quickstart.do_prompt('Author name(s)') # slide_theme theme_entrypoints = pkg_resources.iter_entry_points('hieroglyph.theme') themes = [ t.load() for t in theme_entrypoints ] msg = """ Available themes: """ for theme in themes: msg += '\n'.join([ bold(theme['name']), theme['desc'], '', '', ]) msg += """Which theme would you like to use?""" print(msg) d['slide_theme'] = sphinx_quickstart.do_prompt( 'Slide Theme', themes[0]['name'], sphinx_quickstart.choice( *[t['name'] for t in themes] ), ) # Ask original questions print("") sphinx_quickstart.ask_user(d) def quickstart(path=None): templatedir = os.path.join(os.path.dirname(__file__), 'templates') d = sphinx_quickstart.DEFAULTS.copy() d['extensions'] = ['hieroglyph'] d.update(dict(("ext_" + ext, False) for ext in sphinx_quickstart.EXTENSIONS)) if path: d['path'] = path ask_user(d) sphinx_quickstart.generate(d, templatedir=templatedir) def main(): parser = ArgumentParser( description='Run hieroglyph -q to start a presentation', ) parser.add_argument('-v', '--version', action='store_true', help="Print current version of hieroglyph") parser.add_argument('-q', '--quickstart', action='store_true', help="Start a hieroglyph project") parser.add_argument('path', nargs='?', default=None, help='Output directory for new presentation.') args = vars(parser.parse_args()) if (args['version']): print(version()) elif (args['quickstart']): quickstart(args['path'])
#!/usr/bin/env python3 import os from setuptools import setup about = {} # type: ignore here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, "url_hostname", "__version__.py")) as f: exec(f.read(), about) setup( name=about["__title__"], description=about["__description__"], version=about["__version__"], author=about["__author__"], author_email=about["__author_email__"], url=about["__url__"], packages=["url_hostname"], include_package_data=True, license=about["__license__"], zip_safe=False, keywords="", )
from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * import time class Worker(QRunnable): ''' Worker thread ''' @pyqtSlot() def run(self): ''' Your code goes in this function ''' print("Thread start") time.sleep(5) print("Thread complete") class MainWindow(QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.counter = 0 layout = QVBoxLayout() self.l = QLabel("Start") b = QPushButton("DANGER!") b.pressed.connect(self.oh_no) layout.addWidget(self.l) layout.addWidget(b) w = QWidget() w.setLayout(layout) self.setCentralWidget(w) self.show() self.timer = QTimer() self.timer.setInterval(1000) self.timer.timeout.connect(self.recurring_timer) self.timer.start() self.threadpool = QThreadPool() print("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount()) def oh_no(self): worker = Worker() self.threadpool.start(worker) def recurring_timer(self): self.counter += 1 self.l.setText("Counter: %d" % self.counter) app = QApplication([]) window = MainWindow() app.exec_()
from codewars.decode_morse_adv import decode_bits, decode_morse def test_simple_messages() -> None: assert decode_bits('111') == '.' assert decode_bits('111000111') == '..' assert decode_bits('111000111000111') == '...' assert decode_bits('10001') == '. .' assert decode_bits('111000000000111') == '. .' assert decode_bits('111110000011111') == '..' def test_leading_and_trailing_zeros() -> None: assert decode_bits('01110') == '.' assert decode_bits('000000011100000') == '.' def test_example_input() -> None: bits = ( '110011001100110000001100000011111100110011111100111111' '000000000000001100111111001111110011111100000011001100' '1111110000001111110011001100000011' ) assert decode_bits(bits) == '.... . -.-- .--- ..- -.. .' assert decode_morse('.... . -.-- .--- ..- -.. .') == 'HEY JUDE'
from django.contrib import admin from profiles_api import models ## Models need to be defined to be later used for Admin. admin.site.register(models.UserProfile) admin.site.register(models.ProfileFeedItem)
from django.urls import path, include from rest_framework.routers import DefaultRouter from .views import ( UserRegisterAPIView, UserLoginAPIView, UserLogoutAPIView, PasswordChangeAPIView, DepartamentViewSet, UserViewSet) app_name = 'accounts' router = DefaultRouter() router.register(r'departaments', DepartamentViewSet) router.register(r'workers', UserViewSet) urlpatterns = [ path('workers/change-password/', PasswordChangeAPIView.as_view(), name='password_change'), path('', include(router.urls)), path('login/', UserLoginAPIView.as_view(), name='login'), path('logout/', UserLogoutAPIView.as_view(), name='logout'), path('register/', UserRegisterAPIView.as_view(), name='register'), ]
import twitter import mysql.connector import json import os def collect_data_about(name, twitter_api, cursor): MAX_ENTRY_PER_PERSON = 1000 print(f'Quering twitter API for: {name}') search_results = twitter_api.search.tweets(q=name, count=100, lang='en') processStatusCounter = 0 while True: try: statuses = search_results['statuses'] except KeyError: return for status in statuses: tweet = status['text'] username = status['user']['screen_name'] created_at = status['created_at'] retweet_count = status['retweet_count'] country = status['user']['location'] tweet_id = status['id_str'] query = ''' INSERT INTO tweets (character_id, `name`, tweet, tweet_id, username, created_at, retweet_count, country) VALUES ( (SELECT id from characters WHERE %s = hero OR %s = alterego OR %s = actor), %s, %s, %s, %s, %s, %s, %s ) ''' cursor.execute(query, (name, name, name, name, tweet, tweet_id, username, created_at, retweet_count, country)) processStatusCounter += 1 if processStatusCounter >= MAX_ENTRY_PER_PERSON: print(f'Received tweets for {name}: {processStatusCounter}') return try: next_results = search_results['search_metadata']['next_results'] except KeyError: print(f'Received tweets for {name}: {processStatusCounter}') return kwargs = dict([ kv.split('=') for kv in next_results[1:].split("&") ]) search_results = twitter_api.search.tweets(**kwargs) def init_db(cursor): characters = [ { 'hero': 'Iron Man', 'alterego': 'Tony Stark', 'actor': 'Robert Downey Jr.' }, { 'hero': 'Hulk', 'alterego': 'Bruce Banner', 'actor': 'Mark Ruffalo' }, { 'hero': 'Spider-Man', 'alterego': 'Peter Parker', 'actor': 'Tom Holland' }, { 'hero': 'Thor', 'actor': 'Tom Hemsworth' }, { 'hero': 'Loki', 'actor': 'Tom Hiddleston' }, { 'hero': 'Captain America', 'alterego': 'Steve Rogers', 'actor': 'Chris Evans' }, { 'hero': 'Deadpool', 'alterego': 'Wade Wilson', 'actor': 'Ryan Reynolds' }, { 'hero': 'Winter Soldier', 'alterego': 'Bucky Barnes', 'actor': 'Sebastian Stan' }, { 'hero': 'Doctor Strange', 'alterego': 'Doctor Strange', 'actor': 'Benedict Cumberbatch' }, { 'hero': 'Black Panther', 'alterego': "T'Challa", 'actor': 'Chadwick Boseman' }, { 'hero': 'Hawkeye', 'alterego': 'Clint Barton', 'actor': 'Jeremy Renner' }, { 'hero': 'Captain Marvel', 'alterego': 'Carol Danvers', 'actor': 'Brie Larson' }, { 'hero': 'Vision', 'alterego': 'Jarvis', 'actor': 'Paul Bettany' }, { 'hero': 'Ant-Man', 'alterego': 'Scott Lang', 'actor': 'Paul Rudd' }, { 'hero': 'Thanos', 'actor': 'Josh Brolin' }, { 'hero': 'Star Lord', 'alterego': 'Peter Quill', 'actor': 'Chris Pratt' }, { 'hero': 'Groot', 'actor': 'Vin Diesel' }, { 'hero': 'Rocket Raccoon', 'actor': 'Bradley Cooper' }, { 'hero': 'Gamora', 'actor': 'Zoe Saldana' }, { 'hero': 'Nebula', 'actor': 'Karen Gillan' } ] cursor.execute('DROP TABLE IF EXISTS tweets') cursor.execute('DROP TABLE IF EXISTS characters') cursor.execute(''' CREATE TABLE characters ( id INT AUTO_INCREMENT PRIMARY KEY, hero VARCHAR(255), alterego VARCHAR(255), actor VARCHAR(255) ) ''') for character in characters: query = 'INSERT INTO characters (hero, alterego, actor) VALUES (%s, %s, %s)' cursor.execute(query, (character.get('hero', ''), character.get('alterego', ''), character.get('actor', ''))) cursor.execute(''' CREATE TABLE tweets ( id INT AUTO_INCREMENT PRIMARY KEY, character_id INT NOT NULL, name VARCHAR(255), tweet VARCHAR(255), tweet_id VARCHAR(255), username VARCHAR(255), created_at VARCHAR(255), retweet_count INT, country VARCHAR(255) CHARACTER SET utf8mb4, FOREIGN KEY (character_id) REFERENCES characters(id) ) ''') def fill_db(twitter_api, cursor): cursor.execute('SELECT hero, alterego, actor FROM characters') rows = cursor.fetchall() for row in rows: for col in row: if col != '': collect_data_about(col, twitter_api, cursor) def get_stats(cursor): stats = {} cursor.execute(''' SELECT characters.hero AS hero, COUNT(DISTINCT tweets.tweet_id) AS tweet_count FROM characters INNER JOIN tweets ON characters.id = tweets.character_id GROUP BY hero ''') rows = cursor.fetchall() for row in rows: stats[row[0]] = row[1] return stats if __name__ == "__main__": marvelDB = mysql.connector.connect( host = "localhost", user = "marietamarvel", passwd = "4516", database = "marvelDB" ) cursor = marvelDB.cursor() CONSUMER_KEY = 'aaaaaaaaaa' CONSUMER_SECRET = 'bbbbbbbbbbbbb' OAUTH_TOKEN = 'ccccccccccccccc' OAUTH_TOKEN_SECRET = 'dddddddddddddd' twitter_auth = twitter.oauth.OAuth( OAUTH_TOKEN, OAUTH_TOKEN_SECRET, CONSUMER_KEY, CONSUMER_SECRET ) twitter_api = twitter.Twitter(auth = twitter_auth) init_db(cursor) marvelDB.commit() fill_db(twitter_api, cursor) marvelDB.commit() stats = get_stats(cursor) print(f'Total unique tweets for each hero (and their alter ego or actor) in last week:') for name in stats: print(f'{name}: {stats[name]}')
from argparse import ArgumentParser class ModelTrainingArgs(ArgumentParser): def __init__(self): super().__init__() self.add_argument("-d", "--dataset", help="Dataset name") self.add_argument("-c", "--config", help="Config file path") self.add_argument( "--debug", action="store_true", help="Enable debugging information." ) self.add_argument( "-p", "--pretrained-model", help="Path to the pretrained model." )
from sklearn import tree from dataset import TransDataset import numpy as np trans_dataset = TransDataset() X, y = trans_dataset.get_x_y() print(np.array(X).shape) print(np.array(y).shape) regressor = tree.DecisionTreeRegressor() regressor = regressor.fit(X, y) test_dataset = TransDataset("test") test_x, test_y = test_dataset.get_x_y() total_count, count, total_loss = 0, 0, 0 for x, y in zip(test_x, test_y): loss = abs(regressor.predict([x]) - y[0]) total_loss += loss total_count += 1 if loss > 50: count += 1 print("total count", total_count) print("cross the boundary count", count) print("cross rate", count/total_count) print("average lss", total_loss/total_count)
URL = "https://www.omdbapi.com/"