content
stringlengths
5
1.05M
# This file is part of the GBI project. # Copyright (C) 2013 Omniscale GmbH & Co. KG <http://omniscale.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from werkzeug.exceptions import NotFound from flask import ( render_template, Blueprint, flash, redirect, url_for, request, current_app, session, ) from flask.ext.babel import gettext as _ from flask.ext.login import login_user, logout_user, login_required, current_user from gbi_server.forms.user import ( LoginForm, NewUserForm, RemoveUserForm, RecoverSetForm, EditAddressForm, EditPasswordForm, RecoverRequestForm ) from gbi_server.extensions import db from gbi_server.model import User, WMTS, EmailVerification from gbi_server.lib.helper import send_mail from gbi_server.lib.couchdb import init_user_boxes user = Blueprint("user", __name__, template_folder="../templates") @user.route("/") def home(): if current_user.is_anonymous: layers = WMTS.query.filter_by(is_public=True).all() else: layers = WMTS.query.all() return render_template('index.html', user=current_user, layers=layers,) @user.route("/user", methods=["GET"]) @login_required def index(): return render_template("user/index.html", user=current_user) @user.route("/login", methods=["GET", "POST"]) def login(): form = LoginForm() if form.validate_on_submit(): user = User.by_email(form.data['email']) if not user or not user.check_password(form.data['password']): flash(_("user or passwort is not correct"), 'error') pass # fall through elif user and not user.verified: return redirect(url_for('.verify_wait', id=user.id)) elif user and not user.active: flash(_("account not activated"), 'error') else: login_user(user) session['authproxy_token'] = user.authproxy_token user.update_last_login() db.session.commit() flash(_("Logged in successfully."), 'success') return redirect(request.args.get("next") or url_for(".home")) # else: update form with errors return render_template("user/login.html", form=form) @user.route("/logout") @login_required def logout(): logout_user() return redirect(url_for(".home")) @user.route("/user/new", methods=["GET", "POST"]) def new(): form = NewUserForm() form.federal_state.choices = [] form.federal_state.choices.append(('', _('Please select'))) for state in current_app.config['FEDERAL_STATES']: form.federal_state.choices.append(state) form.title.choices = current_app.config['SALUTATIONS'] form.type.choices = [] # add choice wich account types are possible if current_app.config['FEATURE_CUSTOMER_USERS']: form.type.choices.append((User.Type.CUSTOMER, _('customer'))) if current_app.config['FEATURE_CONSULTANT_USERS']: form.type.choices.append((User.Type.CONSULTANT, _('consultant'))) form.type.choices.append((User.Type.SERVICE_PROVIDER, _('service_provider'))) if form.validate_on_submit(): user = User(form.data['email'], form.data['password']) user.set_user_data(form.data) user.type = form.data.get('type') # no use type will be active automatically all must be activated by an admin user.active = False # send verifycation mail to check user email verify = EmailVerification.verify(user) db.session.add(user) db.session.add(verify) db.session.commit() send_mail( _("Email verification mail subject"), render_template( "user/verify_mail.txt", user=user, verify=verify, _external=True ), [user.email] ) couch_url = current_app.config.get('COUCH_DB_URL') if user.is_service_provider or user.is_customer: # create couch document and area boxes # and initialize security init_user_boxes(user, couch_url) return redirect(url_for(".verify_wait", id=user.id)) return render_template( "user/new.html", form=form, customer_id=User.Type.CUSTOMER, service_provider_id=User.Type.SERVICE_PROVIDER, ) @user.route("/user/remove", methods=["GET", "POST"]) @login_required def remove(): form = RemoveUserForm() if form.validate_on_submit(): user = current_user db.session.delete(user) logout_user() db.session.commit() flash(_("Account removed"), 'success') return redirect(url_for(".home")) return render_template("user/remove.html", form=form) @user.route("/user/<id>/send_verify_mail") def send_verifymail(id): user = User.by_id(id) if not user or user.verified: raise NotFound() verify = EmailVerification.verify(user) db.session.add(verify) db.session.commit() send_mail( _("Email verification mail subject"), render_template("user/verify_mail.txt", user=user, verify=verify, _external=True), [user.email] ) flash(_('email verification was sent successfully'), 'success') return redirect(url_for(".login")) @user.route("/user/<id>/verify_wait") def verify_wait(id): user = User.by_id(id) if not user or user.verified: raise NotFound() return render_template("user/verify_wait.html", user_id=id) @user.route("/user/<uuid>/verify") def verify(uuid): verify = EmailVerification.by_hash(uuid) if not verify or not verify.is_verify: return render_template( "errors/404.html", error_msg=_('infotext verify not possible') ) user = verify.user user.verified = True db.session.delete(verify) db.session.commit() send_mail( _("Activate user subject"), render_template("admin/user_activate_mail.txt", user=user, _external=True), [member.email for member in User.all_admins()] ) flash(_("Email verified"), 'success') return redirect(url_for(".login")) @user.route("/user/recover", methods=["GET", "POST"]) def recover(): form = RecoverRequestForm() if form.validate_on_submit(): user = User.by_email(form.data['email']) recover = EmailVerification.recover(user) db.session.add(recover) db.session.commit() send_mail( _("Password recover mail subject"), render_template("user/recover_mail.txt", user=user, recover=recover), [user.email] ) return redirect(url_for(".recover_sent")) return render_template("user/recover.html", form=form) @user.route("/user/recover_sent") def recover_sent(): return render_template("user/recover_sent.html") @user.route("/user/<uuid>/recover", methods=["GET", "POST"], endpoint='recover_password') @user.route("/user/<uuid>/new", methods=["GET", "POST"], endpoint='new_password') def recover_new_password(uuid): verify = EmailVerification.by_hash(uuid) if not verify or not (verify.is_import or verify.is_recover): return render_template( "errors/404.html", error_msg=_('infotext recover not possible') ) user = verify.user form = RecoverSetForm() if form.validate_on_submit(): user.update_password(form.data['password']) db.session.delete(verify) db.session.commit() login_user(user) return redirect(url_for(".home")) return render_template("user/password_set.html", user=user, form=form, verify=verify) @user.route("/user/edit_address", methods=["GET", "POST"]) @login_required def edit_address(): user = current_user form = EditAddressForm(request.form, user) form.federal_state.choices = current_app.config['FEDERAL_STATES'] form.title.choices = current_app.config['SALUTATIONS'] if form.validate_on_submit(): # save user data to database user.set_user_data(form.data) db.session.commit() flash(_('Address changed'), 'success') return redirect(url_for(".edit_address")) return render_template("user/edit_address.html", form=form) @user.route("/user/edit_password", methods=["GET", "POST"]) @login_required def edit_password(): user = current_user form = EditPasswordForm(request.form) if form.validate_on_submit(): if user.check_password(form.data['old_password']): user.update_password(form.data['password']) db.session.commit() flash(_('Password changed'), 'success') return redirect(url_for(".edit_password")) else: flash(_("Old password is not correct"), 'error') return render_template("user/edit_password.html", user=user, form=form)
#!/usr/bin/python # -*- coding: utf-8 -*- from django.test import TestCase, TransactionTestCase from django.test import Client from django.contrib.auth.models import User from trading.controller import axfd_utils, useraccountinfomanager from trading.models import * from tradeex.controllers.crypto_utils import CryptoUtility #from trading.forms import * from trading.tests.setuptest import * from unittest.mock import Mock, MagicMock, patch import datetime as dt import sys, traceback, time, json, math test_data1 = json.load(open('trading/tests/data/trx_test_data1.json')) test_data2 = json.load(open('trading/tests/data/trx_test_data2.json')) test_data_cny_pass1 = json.load(open('trading/tests/data/trx_test_cny_wallet_1.json')) class AccountCronJobTestCase(TransactionTestCase): fixtures = ['fixture_for_account_cronjob.json'] def setUp(self): try: User.objects.get(username='[email protected]') except User.DoesNotExist: setup_test() @patch.object(CryptoUtility, 'listtransactions_impl') @patch.object(axfd_utils.AXFundUtility, 'listtransactions') def test_update_account_from_trx(self, mock_listtransactions,mock_listtransactions_impl): mock_listtransactions.return_value = test_data1 mock_listtransactions_impl.return_value = test_data_cny_pass1 cnywallet = Wallet.objects.get(cryptocurrency__currency_code='CNY') axfwallet = Wallet.objects.get(cryptocurrency__currency_code='AXFund') operator = User.objects.get(username='admin') # set user's wallet to test address updated = UserWallet.objects.filter(user__username='taozhang', wallet__cryptocurrency__currency_code='AXFund').update( wallet_addr='AGqfmz49fVFpdoKRfaw2zN7CikWAhUsYdE', lastupdated_at = dt.datetime.utcnow()) if not updated: self.fail('Did not find userwallet for taozhang') taozhang = User.objects.get(username='taozhang') print ('taozhang\'s userid is {0}'.format(taozhang.id)) updated = UserWallet.objects.filter(user__username='yingzhou', wallet__cryptocurrency__currency_code='AXFund').update( wallet_addr='AboGeCuvs8U8nGGuoe9awZzhUDHTkuiG4Y', lastupdated_at = dt.datetime.utcnow()) if not updated: self.fail('Did not find userwallet for yingzhou') UserWallet.objects.create( user = taozhang, wallet = cnywallet, wallet_addr = 'PBfMvKuNtJH5yodb13n5FfE7UggNCLh7YP', created_by = operator, lastupdated_by = operator ).save() yingzhou = User.objects.get(username='yingzhou') print ('yingzhou\'s userid is {0}'.format(yingzhou.id)) UserWallet.objects.create( user = yingzhou, wallet = cnywallet, wallet_addr = 'PXZCvnATCuvNcJheKsg9LGe5Asf9a5xeEd', created_by = operator, lastupdated_by = operator ).save() #with patch('controller.axfd_utils.axfd_listtransactions') as mock: # instance = mock.return_value # instance.method.return_value = test_data c = Client() response = c.get('/trading/account/cron/update_receive/') self.assertEqual(200, response.status_code) user1_wallet = UserWallet.objects.get(user__username='taozhang', wallet__cryptocurrency__currency_code = 'AXFund') print ('about to test user_Wallet {0} user {1}'.format( user1_wallet.id, user1_wallet.user.id )) user2_wallet = UserWallet.objects.get(user__username='yingzhou', wallet__cryptocurrency__currency_code = 'AXFund') self.assertEqual(100+1-1.2-0.0001, user1_wallet.balance) self.assertEqual(1.0 + 2.0 + 1.0 + 0.0001 * 3, user1_wallet.locked_balance) self.assertEqual(100+1-1.2-0.0001 - (1.0 + 2.0 + 1.0 + 0.0001 * 3), user1_wallet.available_balance) self.assertEqual(round(1.2 - 1.0 - 0.0001, 8), user2_wallet.balance) self.assertEqual(round(1.0 + 1.0 + 0.0001 * 2, 8), user2_wallet.locked_balance) self.assertEqual(round(1.0 + 1.0 + 0.0001 * 2, 8), user2_wallet.locked_balance) try: trans_receive_1 = UserWalletTransaction.objects.get( reference_wallet_trxId='e8392e991eaa06fc4e37a32c713d69f56b4f14ff823c1adee7b43dc1f98e3b63' ) self.assertEqual(2, trans_receive_1.user_wallet.user.id) self.assertEqual('PROCESSED', trans_receive_1.status) self.assertTrue(math.fabs(trans_receive_1.units - 100.0) < 0.00000001) self.assertTrue(math.fabs(trans_receive_1.balance_end - trans_receive_1.balance_begin - 100.0)<0.00000001) self.assertEqual(trans_receive_1.locked_balance_begin, trans_receive_1.locked_balance_end) self.assertTrue(math.fabs(trans_receive_1.available_to_trade_end - trans_receive_1.available_to_trade_begin - 100.0) < 0.0000001) self.assertEqual('CREDIT', trans_receive_1.balance_update_type) except UserWalletTransaction.DoesNotExist: self.fail('Could not find userwallettransaction for txid e8392e991eaa06fc4e37a32c713d69f56b4f14ff823c1adee7b43dc1f98e3b63') # test pending redeem transaction for user1 try: trans1 = UserWalletTransaction.objects.get( reference_wallet_trxId='cbe71c7c0e27227cb2684d8eefcc8a169145fafe9f1c76a7be79de04b7d0c820', transaction_type = 'REDEEM' ) self.assertEqual(2, trans1.user_wallet.user.id) self.assertEqual('PENDING', trans1.status) self.assertTrue(math.fabs(trans1.units - 1.0) < 0.00000001) self.assertEqual(trans1.balance_begin, trans1.balance_end) self.assertEqual(trans1.locked_balance_begin + 1.0, trans1.locked_balance_end) self.assertEqual(trans1.available_to_trade_begin - 1.0, trans1.available_to_trade_end) self.assertEqual('DEBT', trans1.balance_update_type) except UserWalletTransaction.DoesNotExist: self.fail('Could not find redeem userwallettransaction for txid cbe71c7c0e27227cb2684d8eefcc8a169145fafe9f1c76a7be79de04b7d0c820') # test pending redeem fee transaction try: trans1 = UserWalletTransaction.objects.get( reference_wallet_trxId='cbe71c7c0e27227cb2684d8eefcc8a169145fafe9f1c76a7be79de04b7d0c820', transaction_type = 'REDEEMFEE' ) self.assertEqual(2, trans1.user_wallet.user.id) self.assertEqual('PENDING', trans1.status) self.assertTrue(math.fabs(trans1.units - 0.0001) < 0.00000001) self.assertEqual(trans1.balance_begin, trans1.balance_end) self.assertEqual(trans1.locked_balance_begin + 0.0001, trans1.locked_balance_end) self.assertEqual(trans1.available_to_trade_begin - 0.0001, trans1.available_to_trade_end) self.assertEqual('DEBT', trans1.balance_update_type) except UserWalletTransaction.DoesNotExist: self.fail('Could not find redeem fee userwallettransaction for txid cbe71c7c0e27227cb2684d8eefcc8a169145fafe9f1c76a7be79de04b7d0c820') # test pending redeem transaction for user2 try: trans1 = UserWalletTransaction.objects.get( reference_wallet_trxId='6027fed2199003b34ceb910bd7e1f42914e0c1ea2153d9766e77cfa31cb9255e', transaction_type = 'REDEEM' ) self.assertEqual(3, trans1.user_wallet.user.id) self.assertEqual('PROCESSED', trans1.status) self.assertTrue(math.fabs(trans1.units - 1.0) < 0.00000001) self.assertEqual(trans1.balance_begin - 1.0, trans1.balance_end) self.assertEqual(trans1.locked_balance_begin, trans1.locked_balance_end) self.assertEqual(trans1.available_to_trade_begin - 1.0, trans1.available_to_trade_end) self.assertEqual('DEBT', trans1.balance_update_type) except UserWalletTransaction.DoesNotExist: self.fail('Could not find redeem userwallettransaction for txid 6027fed2199003b34ceb910bd7e1f42914e0c1ea2153d9766e77cfa31cb9255e') # test pending redeem fee transaction try: trans1 = UserWalletTransaction.objects.get( reference_wallet_trxId='6027fed2199003b34ceb910bd7e1f42914e0c1ea2153d9766e77cfa31cb9255e', transaction_type = 'REDEEMFEE' ) self.assertEqual(3, trans1.user_wallet.user.id) self.assertEqual('PROCESSED', trans1.status) self.assertTrue(math.fabs(trans1.units - 0.0001) < 0.00000001) self.assertEqual(trans1.balance_begin - 0.0001, trans1.balance_end) self.assertEqual(trans1.locked_balance_begin, trans1.locked_balance_end) self.assertEqual(trans1.available_to_trade_begin - 0.0001, trans1.available_to_trade_end) self.assertEqual('DEBT', trans1.balance_update_type) except UserWalletTransaction.DoesNotExist: self.fail('Could not find redeem fee userwallettransaction for txid 6027fed2199003b34ceb910bd7e1f42914e0c1ea2153d9766e77cfa31cb9255e') #TODO: should test there are 3 pending redeem 0 pending receive trans for user1 self.assertEqual(3, len(UserWalletTransaction.objects.filter(user_wallet__user__id = 2, user_wallet__wallet__id = axfwallet.id, transaction_type = 'REDEEM', status='PENDING'))) self.assertEqual(0, len(UserWalletTransaction.objects.filter(user_wallet__user__id = 2, user_wallet__wallet__id = axfwallet.id, transaction_type = 'DEPOSITE', status='PENDING'))) #TODO: should test there are 2 pending redeem 0 pending receive trans for user2 self.assertEqual(2, len(UserWalletTransaction.objects.filter(user_wallet__user__id = 3, user_wallet__wallet__id = axfwallet.id, transaction_type = 'REDEEM', status='PENDING'))) self.assertEqual(0, len(UserWalletTransaction.objects.filter(user_wallet__user__id = 2, user_wallet__wallet__id = axfwallet.id, transaction_type = 'DEPOSITE', status='PENDING'))) # validate the cny transaction self.validate_cny_first_run() mock_listtransactions.return_value = test_data2 c = Client() response = c.get('/trading/account/cron/update_receive/') self.assertEqual(200, response.status_code) user1_wallet = UserWallet.objects.get(user__username='taozhang', wallet__cryptocurrency__currency_code = 'AXFund') user2_wallet = UserWallet.objects.get(user__username='yingzhou', wallet__cryptocurrency__currency_code = 'AXFund') self.assertEqual(100 + 1.0 - 5.2 - 0.0001 * 4, user1_wallet.balance) self.assertEqual(0, user1_wallet.locked_balance) self.assertEqual(100 + 1.0 - 5.2 - 0.0001 * 4, user1_wallet.available_balance) self.assertEqual(1.2 - 1 -1 -1 - 0.0001 * 3, user2_wallet.balance) self.assertEqual(0, user2_wallet.locked_balance) self.assertEqual(1.2 - 1 -1 -1 - 0.0001 * 3, user2_wallet.available_balance) try: trans1 = UserWalletTransaction.objects.get( reference_wallet_trxId='e8392e991eaa06fc4e37a32c713d69f56b4f14ff823c1adee7b43dc1f98e3b63' ) # test it is the same as the receive trans we read when scan the first time # so it approve that nothing happened to this committed trans self.assertEqual(trans_receive_1.user_wallet.user.id, trans1.user_wallet.user.id) self.assertEqual(trans_receive_1.status, trans1.status) self.assertTrue(trans_receive_1.units, trans1.units) self.assertTrue(trans_receive_1.balance_end, trans_receive_1.balance_begin) self.assertEqual(trans_receive_1.locked_balance_begin, trans1.locked_balance_end) self.assertTrue(trans_receive_1.available_to_trade_end, trans1.available_to_trade_begin) self.assertEqual(trans_receive_1.balance_update_type, trans1.balance_update_type) self.assertEqual(trans_receive_1.lastupdated_at, trans1.lastupdated_at) self.assertEqual(trans_receive_1.lastupdated_by, trans1.lastupdated_by) except UserWalletTransaction.DoesNotExist: self.fail('Could not find userwallettransaction for txid e8392e991eaa06fc4e37a32c713d69f56b4f14ff823c1adee7b43dc1f98e3b63') #Test there is 0 pending transaction self.assertEqual(0, len(UserWalletTransaction.objects.filter(user_wallet__user__id = 2, user_wallet__wallet__id = axfwallet.id, status='PENDING'))) self.assertEqual(0, len(UserWalletTransaction.objects.filter(user_wallet__user__id = 3, user_wallet__wallet__id = axfwallet.id, status='PENDING'))) # save the trans, prepare to compare it with the trans after another run lookup = {} all_trans = UserWalletTransaction.objects.all() for trans in all_trans: lookup[trans.id] = trans user_wallet_1 = UserWallet.objects.get(user__id=2, wallet__cryptocurrency__currency_code = 'AXFund') user_wallet_2 = UserWallet.objects.get(user__id=3, wallet__cryptocurrency__currency_code = 'AXFund') # rerun should not make any problem mock_listtransactions.return_value = test_data2 c = Client() response = c.get('/trading/account/cron/update_receive/') self.assertEqual(200, response.status_code) user1_wallet = UserWallet.objects.get(user__username='taozhang', wallet__cryptocurrency__currency_code = 'AXFund') user2_wallet = UserWallet.objects.get(user__username='yingzhou', wallet__cryptocurrency__currency_code = 'AXFund') self.assertEqual(user_wallet_1.balance, user1_wallet.balance) self.assertEqual(user_wallet_1.locked_balance, user1_wallet.locked_balance) self.assertEqual(user_wallet_1.available_balance, user1_wallet.available_balance) self.assertEqual(user_wallet_1.lastupdated_by, user1_wallet.lastupdated_by) self.assertEqual(user_wallet_1.lastupdated_at, user1_wallet.lastupdated_at) self.assertEqual(user_wallet_2.balance, user2_wallet.balance) self.assertEqual(user_wallet_2.locked_balance, user2_wallet.locked_balance) self.assertEqual(user_wallet_2.available_balance, user2_wallet.available_balance) self.assertEqual(user_wallet_2.lastupdated_by, user2_wallet.lastupdated_by) self.assertEqual(user_wallet_2.lastupdated_at, user2_wallet.lastupdated_at) wallet_trans = UserWalletTransaction.objects.all() for trans in wallet_trans: old_trans = lookup[trans.id] self.assertEqual(old_trans.user_wallet.user.id, trans.user_wallet.user.id) self.assertEqual(old_trans.lastupdated_at, trans.lastupdated_at) self.assertEqual(old_trans.lastupdated_by, trans.lastupdated_by) self.assertEqual(old_trans.units, trans.units) def validate_cny_first_run(self): cnywallet = Wallet.objects.get(cryptocurrency__currency_code = 'CNY') user1_wallet = UserWallet.objects.get(user__username='taozhang', wallet__cryptocurrency__currency_code = 'CNY') user2_wallet = UserWallet.objects.get(user__username='yingzhou', wallet__cryptocurrency__currency_code = 'CNY') self.assertEqual(100.0, user1_wallet.balance) self.assertEqual(0.02 + 0.01, user1_wallet.locked_balance) self.assertEqual(100.0 - 0.02 - 0.01, user1_wallet.available_balance) user1_wallet_trans = UserWalletTransaction.objects.filter( user_wallet__id = user1_wallet.id).order_by('-lastupdated_at') self.assertEqual(3, len(user1_wallet_trans)) debt_count = 0 for tran in user1_wallet_trans: if tran.balance_update_type == 'CREDIT': self.assertEqual('PROCESSED', tran.status) self.assertEqual('DEPOSIT', tran.transaction_type) self.assertEqual(0, tran.balance_begin) self.assertEqual(100.0, tran.balance_end) self.assertEqual(0, tran.locked_balance_begin) self.assertEqual(0, tran.locked_balance_end) self.assertEqual(0, tran.available_to_trade_begin) self.assertEqual(100.0, tran.available_to_trade_end) elif tran.balance_update_type == 'DEBT': debt_count = debt_count + 1 self.assertEqual('PENDING', tran.status) if tran.transaction_type == 'REDEEM': self.assertEqual(100.0, tran.balance_begin) self.assertEqual(100.0, tran.balance_end) self.assertEqual(0, tran.locked_balance_begin) self.assertEqual(0.02, tran.locked_balance_end) self.assertEqual(100.0, tran.available_to_trade_begin) self.assertEqual(99.98, tran.available_to_trade_end) elif tran.transaction_type == 'REDEEMFEE': self.assertEqual(100.0, tran.balance_begin) self.assertEqual(100.0, tran.balance_end) self.assertEqual(0.02, tran.locked_balance_begin) self.assertEqual(0.03, tran.locked_balance_end) self.assertEqual(99.98, tran.available_to_trade_begin) self.assertEqual(99.97, tran.available_to_trade_end) else: self.fail('Unexpected transaction type {0}'.format(tran.transaction_type)) self.assertEqual(2, debt_count) # varify the user3's transaction, which is just has one confirmed # redeem, and one confirmed deposite, there's no trace of the # first deposite self.assertEqual(-1.0 - 0.01 + 2.0, user2_wallet.balance) self.assertEqual(0, user2_wallet.locked_balance) self.assertEqual(-1.0 - 0.01 + 2.0, user2_wallet.available_balance) user2_wallet_trans = UserWalletTransaction.objects.filter( user_wallet__id = user2_wallet.id).order_by('-lastupdated_at') self.assertEqual(4, len(user2_wallet_trans)) for tran in user2_wallet_trans: print('Tran {0}: type:{1}:{2} balance: {3}-{4} locked: {5}-{6} available: {7}-{8} status: {9}'.format( tran.id, tran.balance_update_type, tran.transaction_type, tran.balance_begin, tran.balance_end, tran.locked_balance_begin, tran.locked_balance_end, tran.available_to_trade_begin, tran.available_to_trade_end, tran.status )) if tran.balance_update_type == 'CREDIT': if tran.status == 'PROCESSED': self.assertEqual('DEPOSIT', tran.transaction_type) self.assertEqual(-1.01, tran.balance_begin) self.assertEqual(0.99, tran.balance_end) self.assertEqual(0, tran.locked_balance_begin) self.assertEqual(0, tran.locked_balance_end) self.assertEqual(-1.01, tran.available_to_trade_begin) self.assertEqual(0.99, tran.available_to_trade_end) # the pending deposite should have everything as 0 elif tran.status == 'PENDING': self.assertEqual('DEPOSIT', tran.transaction_type) self.assertEqual(0, tran.balance_begin) self.assertEqual(0, tran.balance_end) self.assertEqual(0, tran.locked_balance_begin) self.assertEqual(0, tran.locked_balance_end) self.assertEqual(0, tran.available_to_trade_begin) self.assertEqual(0, tran.available_to_trade_end) elif tran.balance_update_type == 'DEBT': self.assertEqual('PROCESSED', tran.status) if tran.transaction_type == 'REDEEM': self.assertEqual(0, tran.balance_begin) self.assertEqual(-1.0, tran.balance_end) self.assertEqual(0, tran.locked_balance_begin) self.assertEqual(0, tran.locked_balance_end) self.assertEqual(0, tran.available_to_trade_begin) self.assertEqual(-1.0, tran.available_to_trade_end) elif tran.transaction_type == 'REDEEMFEE': self.assertEqual(-1.0, tran.balance_begin) self.assertEqual(-1.01, tran.balance_end) self.assertEqual(0, tran.locked_balance_begin) self.assertEqual(0, tran.locked_balance_end) self.assertEqual(-1.0, tran.available_to_trade_begin) self.assertEqual(-1.01, tran.available_to_trade_end) else: self.fail('Unexpected transaction type {0}'.format(tran.transaction_type))
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import dataclasses from logging import Logger from typing import Any, Dict, List, Optional, Tuple, Type import torch from ax.core.search_space import SearchSpaceDigest from ax.core.types import TCandidateMetadata, TConfig from ax.models.model_utils import best_in_sample_point from ax.models.torch.utils import ( _to_inequality_constraints, pick_best_out_of_sample_point_acqf_class, predict_from_model, ) from ax.utils.common.base import Base from ax.utils.common.constants import Keys from ax.utils.common.logger import get_logger from ax.utils.common.typeutils import checked_cast, checked_cast_optional, not_none from botorch.fit import fit_gpytorch_model from botorch.models.model import Model from botorch.utils.containers import TrainingData from gpytorch.kernels import Kernel from gpytorch.likelihoods.likelihood import Likelihood from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood from torch import Tensor NOT_YET_FIT_MSG = ( "Underlying BoTorch `Model` has not yet received its training_data. " "Please fit the model first." ) logger: Logger = get_logger(__name__) class Surrogate(Base): """ **All classes in 'botorch_modular' directory are under construction, incomplete, and should be treated as alpha versions only.** Ax wrapper for BoTorch ``Model``, subcomponent of ``BoTorchModel`` and is not meant to be used outside of it. Args: botorch_model_class: ``Model`` class to be used as the underlying BoTorch model. mll_class: ``MarginalLogLikelihood`` class to use for model-fitting. model_options: Dictionary of options / kwargs for the BoTorch ``Model`` constructed during ``Surrogate.fit``. kernel_class: ``Kernel`` class, not yet used. Will be used to construct custom BoTorch ``Model`` in the future. kernel_options: Kernel kwargs, not yet used. Will be used to construct custom BoTorch ``Model`` in the future. likelihood: ``Likelihood`` class, not yet used. Will be used to construct custom BoTorch ``Model`` in the future. """ botorch_model_class: Type[Model] mll_class: Type[MarginalLogLikelihood] model_options: Dict[str, Any] kernel_class: Optional[Type[Kernel]] = None _training_data: Optional[TrainingData] = None _model: Optional[Model] = None # Special setting for surrogates instantiated via `Surrogate.from_botorch`, # to avoid re-constructing the underlying BoTorch model on `Surrogate.fit` # when set to `False`. _constructed_manually: bool = False def __init__( self, # TODO: make optional when BoTorch model factory is checked in. # Construction will then be possible from likelihood, kernel, etc. botorch_model_class: Type[Model], mll_class: Type[MarginalLogLikelihood] = ExactMarginalLogLikelihood, model_options: Optional[Dict[str, Any]] = None, kernel_class: Optional[Type[Kernel]] = None, # TODO: use. kernel_options: Optional[Dict[str, Any]] = None, # TODO: use. likelihood: Optional[Type[Likelihood]] = None, # TODO: use. ) -> None: self.botorch_model_class = botorch_model_class self.mll_class = mll_class self.model_options = model_options or {} # Temporary validation while we develop these customizations. if likelihood is not None: raise NotImplementedError("Customizing likelihood not yet implemented.") if kernel_class is not None or kernel_options: raise NotImplementedError("Customizing kernel not yet implemented.") @property def model(self) -> Model: if self._model is None: raise ValueError( "BoTorch `Model` has not yet been constructed, please fit the " "surrogate first (done via `BoTorchModel.fit`)." ) return not_none(self._model) @property def training_data(self) -> TrainingData: if self._training_data is None: raise ValueError(NOT_YET_FIT_MSG) return not_none(self._training_data) @property def training_data_per_outcome(self) -> Dict[str, TrainingData]: raise NotImplementedError( # pragma: no cover "`training_data_per_outcome` is only used in `ListSurrogate`." ) @property def dtype(self) -> torch.dtype: return self.training_data.X.dtype @property def device(self) -> torch.device: return self.training_data.X.device @classmethod def from_botorch( cls, model: Model, mll_class: Type[MarginalLogLikelihood] = ExactMarginalLogLikelihood, ) -> Surrogate: """Instantiate a `Surrogate` from a pre-instantiated Botorch `Model`.""" surrogate = cls(botorch_model_class=model.__class__, mll_class=mll_class) surrogate._model = model # Temporarily disallowing `update` for surrogates instantiated from # pre-made BoTorch `Model` instances to avoid reconstructing models # that were likely pre-constructed for a reason (e.g. if this setup # doesn't fully allow to constuct them). surrogate._constructed_manually = True return surrogate def clone_reset(self) -> Surrogate: return self.__class__(**self._serialize_attributes_as_kwargs()) def construct(self, training_data: TrainingData, **kwargs: Any) -> None: """Constructs the underlying BoTorch ``Model`` using the training data. Args: training_data: Training data for the model (for one outcome for the default `Surrogate`, with the exception of batched multi-output case, where training data is formatted with just one X and concatenated Ys). **kwargs: Optional keyword arguments, expects any of: - "fidelity_features": Indices of columns in X that represent fidelity. """ if self._constructed_manually: logger.warning("Reconstructing a manually constructed `Model`.") if not isinstance(training_data, TrainingData): raise ValueError( # pragma: no cover "Base `Surrogate` expects training data for single outcome." ) input_constructor_kwargs = {**self.model_options, **(kwargs or {})} self._training_data = training_data formatted_model_inputs = self.botorch_model_class.construct_inputs( training_data=self.training_data, **input_constructor_kwargs ) # pyre-ignore[45]: Py raises informative msg if `model_cls` abstract. self._model = self.botorch_model_class(**formatted_model_inputs) def fit( self, training_data: TrainingData, search_space_digest: SearchSpaceDigest, metric_names: List[str], candidate_metadata: Optional[List[List[TCandidateMetadata]]] = None, state_dict: Optional[Dict[str, Tensor]] = None, refit: bool = True, ) -> None: """Fits the underlying BoTorch ``Model`` to ``m`` outcomes. NOTE: ``state_dict`` and ``refit`` keyword arguments control how the undelying BoTorch ``Model`` will be fit: whether its parameters will be reoptimized and whether it will be warm-started from a given state. There are three possibilities: * ``fit(state_dict=None)``: fit model from stratch (optimize model parameters and set its training data used for inference), * ``fit(state_dict=some_state_dict, refit=True)``: warm-start refit with a state dict of parameters (still re-optimize model parameters and set the training data), * ``fit(state_dict=some_state_dict, refit=False)``: load model parameters without refitting, but set new training data (used in cross-validation, for example). Args: training data: BoTorch ``TrainingData`` container with Xs, Ys, and possibly Yvars, to be passed to ``Model.construct_inputs`` in BoTorch. search_space_digest: A SearchSpaceDigest object containing metadata on the features in the trainig data. metric_names: Names of each outcome Y in Ys. candidate_metadata: Model-produced metadata for candidates, in the order corresponding to the Xs. state_dict: Optional state dict to load. refit: Whether to re-optimize model parameters. """ if self._constructed_manually: logger.debug( "For manually constructed surrogates (via `Surrogate.from_botorch`), " "`fit` skips setting the training data on model and only reoptimizes " "its parameters if `refit=True`." ) else: self.construct( training_data=training_data, metric_names=metric_names, **dataclasses.asdict(search_space_digest) ) if state_dict: # pyre-fixme[6]: Expected `OrderedDict[typing.Any, typing.Any]` for 1st # param but got `Dict[str, Tensor]`. self.model.load_state_dict(not_none(state_dict)) if state_dict is None or refit: mll = self.mll_class(self.model.likelihood, self.model) fit_gpytorch_model(mll) def predict(self, X: Tensor) -> Tuple[Tensor, Tensor]: """Predicts outcomes given a model and input tensor. Args: model: A botorch Model. X: A ``n x d`` tensor of input parameters. Returns: Tensor: The predicted posterior mean as an ``n x o``-dim tensor. Tensor: The predicted posterior covariance as a ``n x o x o``-dim tensor. """ return predict_from_model(model=self.model, X=X) def best_in_sample_point( self, search_space_digest: SearchSpaceDigest, objective_weights: Optional[Tensor], outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, options: Optional[TConfig] = None, ) -> Tuple[Tensor, float]: """Finds the best observed point and the corresponding observed outcome values. """ best_point_and_observed_value = best_in_sample_point( Xs=[self.training_data.X], # pyre-ignore[6]: `best_in_sample_point` currently expects a `TorchModel` # or a `NumpyModel` as `model` kwarg, but only uses them for `predict` # function, the signature for which is the same on this `Surrogate`. # TODO: When we move `botorch_modular` directory to OSS, we will extend # the annotation for `model` kwarg to accept `Surrogate` too. model=self, bounds=search_space_digest.bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, options=options, ) if best_point_and_observed_value is None: raise ValueError("Could not obtain best in-sample point.") best_point, observed_value = best_point_and_observed_value return checked_cast(Tensor, best_point), observed_value def best_out_of_sample_point( self, search_space_digest: SearchSpaceDigest, objective_weights: Tensor, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, options: Optional[TConfig] = None, ) -> Tuple[Tensor, Tensor]: """Finds the best predicted point and the corresponding value of the appropriate best point acquisition function. """ if fixed_features: # When have fixed features, need `FixedFeatureAcquisitionFunction` # which has peculiar instantiation (wraps another acquisition fn.), # so need to figure out how to handle. # TODO (ref: https://fburl.com/diff/uneqb3n9) raise NotImplementedError("Fixed features not yet supported.") options = options or {} acqf_class, acqf_options = pick_best_out_of_sample_point_acqf_class( outcome_constraints=outcome_constraints, seed_inner=checked_cast_optional(int, options.get(Keys.SEED_INNER, None)), qmc=checked_cast(bool, options.get(Keys.QMC, True)), ) # Avoiding circular import between `Surrogate` and `Acquisition`. from ax.models.torch.botorch_modular.acquisition import Acquisition acqf = Acquisition( # TODO: For multi-fidelity, might need diff. class. surrogate=self, botorch_acqf_class=acqf_class, search_space_digest=search_space_digest, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, options=acqf_options, ) candidates, acqf_values = acqf.optimize( n=1, search_space_digest=search_space_digest, inequality_constraints=_to_inequality_constraints( linear_constraints=linear_constraints ), fixed_features=fixed_features, ) return candidates[0], acqf_values[0] def update( self, training_data: TrainingData, search_space_digest: SearchSpaceDigest, metric_names: List[str], candidate_metadata: Optional[List[List[TCandidateMetadata]]] = None, state_dict: Optional[Dict[str, Tensor]] = None, refit: bool = True, ) -> None: """Updates the surrogate model with new data. In the base ``Surrogate``, just calls ``fit`` after checking that this surrogate was not created via ``Surrogate.from_botorch`` (in which case the ``Model`` comes premade, constructed manually and then supplied to ``Surrogate``). NOTE: Expects `training_data` to be all available data, not just the new data since the last time the model was updated. Args: training_data: Surrogate training_data containing all the data the model should use for inference. search_space_digest: A SearchSpaceDigest object containing metadata on the features in the training data. metric_names: Names of each outcome Y in Ys. candidate_metadata: Model-produced metadata for candidates, in the order corresponding to the Xs. state_dict: Optional state dict to load. refit: Whether to re-optimize model parameters or just set the training data used for interence to new training data. """ # NOTE: In the future, could have `incremental` kwarg, in which case # `training_data` could contain just the new data. if self._constructed_manually: raise NotImplementedError( "`update` not yet implemented for models that are " "constructed manually, but it is possible to create a new " "surrogate in the same way as the current manually constructed one, " "via `Surrogate.from_botorch`." ) self.fit( training_data=training_data, search_space_digest=search_space_digest, metric_names=metric_names, candidate_metadata=candidate_metadata, state_dict=state_dict, refit=refit, ) def pareto_frontier(self) -> Tuple[Tensor, Tensor]: """For multi-objective optimization, retrieve Pareto frontier instead of best point. Returns: A two-tuple of: - tensor of points in the feature space, - tensor of corresponding (multiple) outcomes. """ raise NotImplementedError( "Pareto frontier not yet implemented." ) # pragma: no cover def compute_diagnostics(self) -> Dict[str, Any]: """Computes model diagnostics like cross-validation measure of fit, etc.""" return {} # pragma: no cover def _serialize_attributes_as_kwargs(self) -> Dict[str, Any]: """Serialize attributes of this surrogate, to be passed back to it as kwargs on reinstantiation. """ return { "botorch_model_class": self.botorch_model_class, "mll_class": self.mll_class, "model_options": self.model_options, }
class ProjectLocationSet(APIObject,IDisposable,IEnumerable): """ An set that contains project locations. ProjectLocationSet() """ def Clear(self): """ Clear(self: ProjectLocationSet) Removes every project location from the set,rendering it empty. """ pass def Contains(self,item): """ Contains(self: ProjectLocationSet,item: ProjectLocation) -> bool Tests for the existence of a project location within the set. item: The project location to be searched for. Returns: The Contains method returns True if the project location is within the set, otherwise False. """ pass def Dispose(self): """ Dispose(self: ProjectLocationSet,A_0: bool) """ pass def Erase(self,item): """ Erase(self: ProjectLocationSet,item: ProjectLocation) -> int Removes a specified project location from the set. item: The project location to be erased. Returns: The number of project locations that were erased from the set. """ pass def ForwardIterator(self): """ ForwardIterator(self: ProjectLocationSet) -> ProjectLocationSetIterator Retrieve a forward moving iterator to the set. Returns: Returns a forward moving iterator to the set. """ pass def GetEnumerator(self): """ GetEnumerator(self: ProjectLocationSet) -> IEnumerator Retrieve a forward moving iterator to the set. Returns: Returns a forward moving iterator to the set. """ pass def Insert(self,item): """ Insert(self: ProjectLocationSet,item: ProjectLocation) -> bool Insert the specified project location into the set. item: The project location to be inserted into the set. Returns: Returns whether the project location was inserted into the set. """ pass def ReleaseManagedResources(self,*args): """ ReleaseManagedResources(self: APIObject) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: ProjectLocationSet) """ pass def ReverseIterator(self): """ ReverseIterator(self: ProjectLocationSet) -> ProjectLocationSetIterator Retrieve a backward moving iterator to the set. Returns: Returns a backward moving iterator to the set. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __iter__(self,*args): """ __iter__(self: IEnumerable) -> object """ pass IsEmpty=property(lambda self: object(),lambda self,v: None,lambda self: None) """Test to see if the set is empty. Get: IsEmpty(self: ProjectLocationSet) -> bool """ Size=property(lambda self: object(),lambda self,v: None,lambda self: None) """Returns the number of project locations that are in the set. Get: Size(self: ProjectLocationSet) -> int """
import json import requests from ..settings import Settings class Client: settings = Settings() def __init__(self,session=None): if session is None: self.session = requests.Session() else: self.session = session self.session.headers.update({'apikey':self.settings.Apikey}) def get(self, path, params=None): url = self.settings.getUrl(path) response = self.session.get(url, params=params) return response.json() def post(self, path, data, params=None): url = self.settings.getUrl(path) headers = { 'Content-Type': 'application/json', } data = json.dumps(data) response = self.session.post(url, data=data, headers=headers, params=params) return response.json() def postString(self, path, data, params=None): url = self.settings.getUrl(path) headers = { 'Content-Type': 'text/plain', } response = self.session.post(url, data=data, headers=headers, params=params) try: jdata = response.json() except ValueError, e: return return jdata def put(self, path, data, params=None): url = self.settings.getUrl(path) headers = { 'Content-Type': 'application/json', } data = json.dumps(data) response = self.session.put(url, data=data, headers=headers, params=params) return response.json() def delete(self, path, params=None): url = self.settings.getUrl(path) response = self.session.delete(url, params=params) return response.json()
''' Page Rank Implemented page rank program based on fact that a website is more important if it is linked to by other important websites using recursive mathematical expression and random surfer probability distribution. ''' # Importing Libraries import os import random import re import sys import math # Defining Global Constants DAMPING = 0.85 SAMPLES = 100000 def main(): if len(sys.argv) != 2: sys.exit("Usage: python pagerank.py corpus") corpus = crawl(sys.argv[1]) ranks = sample_pagerank(corpus, DAMPING, SAMPLES) print(f"PageRank Results from Sampling (n = {SAMPLES})") for page in sorted(ranks): print(f" {page}: {ranks[page]:.4f}") ranks = iterate_pagerank(corpus, DAMPING) print(f"PageRank Results from Iteration") for page in sorted(ranks): print(f" {page}: {ranks[page]:.4f}") def crawl(directory): """ Parse a directory of HTML pages and check for links to other pages. Return a dictionary where each key is a page, and values are a list of all other pages in the corpus that are linked to by the page. """ pages = dict() # Extract all links from HTML files for filename in os.listdir(directory): if not filename.endswith(".html"): continue with open(os.path.join(directory, filename)) as f: contents = f.read() links = re.findall(r"<a\s+(?:[^>]*?)href=\"([^\"]*)\"", contents) pages[filename] = set(links) - {filename} # Only include links to other pages in the corpus for filename in pages: pages[filename] = set( link for link in pages[filename] if link in pages ) return pages def transition_model(corpus, page, damping_factor): """ Return a probability distribution over which page to visit next, given a current page. With probability `damping_factor`, choose a link at random linked to by `page`. With probability `1 - damping_factor`, choose a link at random chosen from all pages in the corpus. """ distribution = dict() if corpus[page]: for link in corpus: distribution[link] = (1-damping_factor) / len(corpus) if link in corpus[page]: distribution[link] += damping_factor / len(corpus[page]) else: # If page has no outgoing links then choose randomly among all pages for link in corpus: distribution[link] = 1 / len(corpus) return distribution def sample_pagerank(corpus, damping_factor, n): """ Return PageRank values for each page by sampling `n` pages according to transition model, starting with a page at random. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ pagerank = dict() sample = None random.seed() for page in corpus: pagerank[page] = 0 for step in range(n): if sample is None: # First sample generated by choosing from a page at random sample = random.choices(list(corpus.keys()), k=1)[0] else: # Next sample generated from the previous one based on its transition model model = transition_model(corpus, sample, damping_factor) population, weights = zip(*model.items()) sample = random.choices(population, weights=weights, k=1)[0] pagerank[sample] += 1 # Normalize the results for page in corpus: pagerank[page] /= n return pagerank def iterate_pagerank(corpus, damping_factor): """ Return PageRank values for each page by iteratively updating PageRank values until convergence. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ pagerank = dict() newrank = dict() # Assign initial values for pagerank for page in corpus: pagerank[page] = 1 / len(corpus) repeat = True while repeat: # Calculate new rank values based on all of the current rank values for page in pagerank: total = float(0) for possible_page in corpus: # We consider each possible page that links to current page if page in corpus[possible_page]: total += pagerank[possible_page] / len(corpus[possible_page]) # A page that has no links is interpreted as having one link for every page (including itself) if not corpus[possible_page]: total += pagerank[possible_page] / len(corpus) newrank[page] = (1 - damping_factor) / len(corpus) + damping_factor * total repeat = False # If any of the values changes by more than the threshold, repeat process for page in pagerank: if not math.isclose(newrank[page], pagerank[page], abs_tol=0.001): repeat = True # Assign new values to current values pagerank[page] = newrank[page] return pagerank if __name__ == "__main__": main()
# Author: Kimia Nadjahi # Some parts of this code are taken from https://github.com/skolouri/swgmm import numpy as np import ot # import HilbertCode_caller # import swapsweep def mOT(x, y, k, m): n = x.shape[0] if k < int(n / m): inds1 = np.split(np.random.permutation(n)[: int(n / m) * m], int(n / m)) inds2 = np.split(np.random.permutation(n)[: int(n / m) * m], int(n / m)) inds1 = list(np.array(inds1)[np.random.choice(len(inds1), k, replace=False)]) inds2 = list(np.array(inds2)[np.random.choice(len(inds2), k, replace=False)]) else: num_permute = int(k / int(n / m)) + 1 inds1 = [] inds2 = [] for _ in range(num_permute): inds1_p = np.split(np.random.permutation(n), int(n / m)) inds2_p = np.split(np.random.permutation(n), int(n / m)) inds1 += inds1_p inds2 += inds2_p inds1 = list(np.array(inds1)[np.random.choice(len(inds1), k, replace=False)]) inds2 = list(np.array(inds2)[np.random.choice(len(inds2), k, replace=False)]) # C = ot.dist(x, y) cost = 0 for i in range(k): for j in range(k): M = ot.dist(x[inds1[i]], y[inds2[j]]) C = ot.emd([], [], M) cost += np.sum(C * M) return cost / (k**2) def BoMbOT(x, y, k, m): n = x.shape[0] if k < int(n / m): inds1 = np.split(np.random.permutation(n)[: int(n / m) * m], int(n / m)) inds2 = np.split(np.random.permutation(n)[: int(n / m) * m], int(n / m)) inds1 = list(np.array(inds1)[np.random.choice(len(inds1), k, replace=False)]) inds2 = list(np.array(inds2)[np.random.choice(len(inds2), k, replace=False)]) else: num_permute = int(k / int(n / m)) + 1 inds1 = [] inds2 = [] for _ in range(num_permute): inds1_p = np.split(np.random.permutation(n), int(n / m)) inds2_p = np.split(np.random.permutation(n), int(n / m)) inds1 += inds1_p inds2 += inds2_p inds1 = list(np.array(inds1)[np.random.choice(len(inds1), k, replace=False)]) inds2 = list(np.array(inds2)[np.random.choice(len(inds2), k, replace=False)]) # C = ot.dist(x, y) big_C = np.zeros((k, k)) for i in range(k): for j in range(k): M = ot.dist(x[inds1[i]], y[inds2[j]]) C = ot.emd([], [], M) big_C[i, j] = np.sum(C * M) pi = ot.emd([], [], big_C) return np.sum(pi * big_C)
from unittest import TestCase from apps.algorithms.mean import Mean from apps.algorithms.standart_deviation import StandartDeviation from apps.algorithms.z_value import ZValue __author__ = 'cenk' class ZValueTest(TestCase): def setUp(self): pass def test_algorithm_with_list(self): data_list = [1, 2, 3, 4, 5] standart_deviation = StandartDeviation() standart_deviation_value = standart_deviation.calculate(data_list) mean = Mean() mean_value = mean.calculate(data_list) print standart_deviation_value, mean_value z_value = ZValue() z1 = z_value.calculate(88, mean=100, standart_deviation=10) z2 = z_value.calculate(112, mean=100, standart_deviation=10) z3 = z_value.calculate(5, mean=100, standart_deviation=10) print z1, z2, z3 def test_get_decimals(self): z_value = ZValue() z_value.calculate(88, mean=100, standart_deviation=10) z_value.find_from_table() def test_algorithm_with_tuple(self): mean = Mean() data_list = [("a", 1), ("b", 2), ("c", 3), ( "d", 4), ("e", 5)] self.assertEquals(3, mean.calculate(data_list, is_tuple=True, index=1)) data_list = [("a", "a", 1), ("b", "b", 2), ("c", "c", 3), ("d", "d", 4), ("e", "e", 5)] self.assertEquals(3.0, mean.calculate(data_list, is_tuple=True, index=2))
from regression_tests import * class TestUpxDetectionSegfault(Test): settings = TestSettings( tool='fileinfo', input='sample.ex', args='--json' ) # Ensures that PE files without sections do not crash fileinfo upon # execution. # See https://github.com/avast/retdec/issues/821 def test_file_analysed_correctly(self): self.assertTrue(self.fileinfo.succeeded)
from typing import Callable import numpy as np from pandas import DataFrame from .converter import ConverterAbs, interpret from .utils import INTER_STR_SEP class VarReplace(ConverterAbs): """Replaces the variable with some formula Transform all occurrences of the variable varname in the model with the binary formula, and add extra constraint if required. This is an abstract class which can be used for various integer encodings. If is_regexp is set to True, then all appropriate variables should be replaced. .. note:: Variables varname disappear from the model, including its list of variables. :param varname: variable to be replaced :param is_regexp: flag deciding if varname is regular expression """ def __init__(self, varname: str, is_regexp: bool) -> None: self.varname = varname self.is_regexp = is_regexp super().__init__() class VarOneHot(VarReplace): """Replace integer variables with one-hot encoding Replaces integer variables with one-hot encoding, and add constraint that sum of new added bits is equal to one. For variable lb <= y <= ub the encoding creates ub-lb+1 binary variables. The limits of y needs to be finite integer numbers. If is_regexp is set to True, then all bounded integer variables are replaced. :param varname: the replaced integer variable :param is_regexp: flag deciding if varname is regular expression """ def __init__(self, varname: str, is_regexp: bool) -> None: super().__init__(varname, is_regexp) @interpret.register def interpret_varonehot(samples: DataFrame, converter: VarOneHot) -> DataFrame: for name in converter.data["bounds"].keys(): lb, ub = converter.data["bounds"][name] names = [f"{name}{INTER_STR_SEP}OH_{i}" for i in range(ub - lb + 1)] samples["feasible_tmp"] = samples.apply(lambda row: sum(row[n] for n in names) == 1, axis=1) def set_var_value(row): return lb + [row[n] for n in names].index(1) if row["feasible_tmp"] else np.nan samples[name] = samples.apply( set_var_value, axis=1, ) samples["feasible"] &= samples.pop("feasible_tmp") for n in names: samples.pop(n) return samples class VarBinary(VarReplace): """Replace integer variables with binary encoding Replaces integer variables with binary encoding. For variable lb <= y <= ub the encoding creates approximately log(ub-lb+1) binary variables. The limits of y needs to be finite integer numbers. If is_regexp is set to True, then all bounded integer variables are replaced. :param varname: the replaced integer variable :param is_regexp: flag deciding if varname is a regular expression """ def __init__(self, varname: str, is_regexp: bool) -> None: super().__init__(varname, is_regexp) def _binary_encoding_coeff(lb: int, ub: int): span_size = ub - lb + 1 is_power_of_two = span_size and (not (span_size & (span_size - 1))) if is_power_of_two: bit_no = span_size.bit_length() - 1 vals = [2 ** i for i in range(bit_no)] else: bit_no = span_size.bit_length() vals = [2 ** i for i in range(bit_no - 1)] vals.append(ub - lb - sum(vals)) return vals @interpret.register def interpret_binary(samples: DataFrame, converter: VarBinary) -> DataFrame: for name in converter.data["bounds"].keys(): lb, ub = converter.data["bounds"][name] vals = _binary_encoding_coeff(lb, ub) bnames = [f"{name}{INTER_STR_SEP}BIN_{i}" for i in range(len(vals))] samples[name] = lb + sum(val * samples[bname] for val, bname in zip(vals, bnames)) for n in bnames: samples.pop(n) return samples class VarPracticalBinary(VarReplace): """Replace integer variables with practical binary encoding TODO: fill :param varname: the replaced integer variable :param is_regexp: flag deciding if varname is a regular expression :param ub: allowed upper bound """ def __init__(self, varname: str, is_regexp: bool, ub: int) -> None: assert ub > 1 super().__init__(varname, is_regexp) @interpret.register def interpret_varpracticalbinary(samples: DataFrame, converter: VarPracticalBinary) -> DataFrame: raise NotImplementedError() class TrivialIntToBit(VarReplace): """Replace integer with binary variable Replaces integer variables y with binary variable lb + b, where lb <= y <= lb+1 is assumed. lb should be finite integer number. If is_regexp is set to True, then all integer variables satisfying the constraint above are replaced. :param varname: the replaced integer variable :param is_regexp: flag deciding if varname is regular expression :param optional: if set to True, the converts only integer variables with appropriate bounds """ def __init__(self, varname: str, is_regexp: bool) -> None: super().__init__(varname, is_regexp) @interpret.register def interpret_trivialinttobit(samples: DataFrame, converter: TrivialIntToBit) -> DataFrame: for name, lb in converter.data["lb"].items(): name_new = f"{name}{INTER_STR_SEP}itb" samples.rename(columns={name_new: name}) samples[name] = samples.pop(name_new) + lb return samples class BitToSpin(VarReplace): """Replace binary variable with spin variable Replaces binary variable b with spin variable s. The formula is (1-s)/2 if reversed is set to False, or (1+s)/2 otherwise. If is_regexp is set to True, then all binary variables are replaced. :param varname: the replaced binary variable :param is_regexp: flag deciding if varname is regular expression :param reversed: the flag denoting which formula is used for replacement """ def __init__(self, varname: str, is_regexp: bool, reversed: bool) -> None: super().__init__(varname, is_regexp) self.reversed = reversed @interpret.register def interpret_bittospin(samples: DataFrame, converter: BitToSpin) -> DataFrame: for name in converter.data["varnames"]: name_new = f"{name}{INTER_STR_SEP}bts" samples.rename(columns={name_new: name}) if converter.reversed: samples[name] = (1 - samples.pop(name_new)) / 2 else: samples[name] = (1 + samples.pop(name_new)) / 2 return samples class SpinToBit(VarReplace): """Replace spin variable with bit variable Replaces spin variable s with bit variable b. The formula is 1-2*b if reversed is set to False, or 2*b-1 otherwise. If is_regexp is set to True, then all binary variables are replaced. :param varname: the replaced spin variable :param is_regexp: flag deciding if varname is regular expression :param reversed: the flag denoting which formula is used for replacement """ def __init__(self, varname: str, is_regexp: bool, reversed: bool) -> None: super().__init__(varname, is_regexp) self.reversed = reversed @interpret.register def interpret_spintobit(samples: DataFrame, converter: SpinToBit) -> DataFrame: for name in converter.data["varnames"]: name_new = f"{name}{INTER_STR_SEP}stb" samples.rename(columns={name_new: name}) if converter.reversed: samples[name] = 1 - 2 * samples.pop(name_new) else: samples[name] = 1 + 2 * samples.pop(name_new) return samples class IntSetValue(VarReplace): """Set value to a variable Replaces each occurrence of the variable with the provided value. If is_regexp is set to True, then all binary variables are replaced. The value must be within bounds of the variable. :param varname: the replaced variable :param is_regexp: flag deciding if varname is regular expression :param value: the new value of the integers """ def __init__(self, varname: str, is_regexp: bool, value: int) -> None: super().__init__(varname, is_regexp) self.value = value @interpret.register def interpret_intsetvalue(samples: DataFrame, converter: IntSetValue) -> DataFrame: raise NotImplementedError() class ReplaceVarWithEq(VarReplace): """Replace a variable with expression based on a given constraint Given a equality constraint of the form a*x+P(y) == R(z) and variable x, removes x and replaces each occurrence of x with (R(z)-P(y))/a, provided z, y are sets of variables not including x. This operation is always correct if x is not bounded, otherwise this may lead to nonequivalent model. Constraint is removed after being used. This operation may result in increasing or reducing number of qubits depending on the used scheme. :param varname: the replaced variable :param is_regexp: flag deciding if varname is regular expression :param replace_scheme: a function which provides constraint name to be used for a given variable. """ def __init__(self, varname: str, is_regexp: bool, replace_scheme: Callable) -> None: # theoretically replace_scheme could be a dict, but then it will not be # extendible to larger models self.replace_scheme = replace_scheme super().__init__(varname, is_regexp) @interpret.register def interpret_replacevarwitheq(samples: DataFrame, converter: ReplaceVarWithEq) -> DataFrame: raise NotImplementedError()
import math f = open("input.txt", "r") data = [] pattern = [0, 1, 0, -1] for char in f.read(): data += [int(char)] data *= 10000 outputOffset = "" for i in range(7): outputOffset += str(data[i]) outputOffset = int(outputOffset) for loop in range(100): for i in range(outputOffset + 9): total = 0 for x, dat in enumerate(data): total += dat * pattern[math.floor((x + 1) / (i + 1)) % len(pattern) ] data[i] = int(str(total)[-1]) for i in range(outputOffset, outputOffset + 9): print(data[i])
############################################################################## # # Copyright (c) 2009 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ IOIDAllocator implementations. """ from __future__ import absolute_import import six import abc @six.add_metaclass(abc.ABCMeta) class AbstractOIDAllocator(object): @abc.abstractmethod def set_min_oid(self, cursor, oid): raise NotImplementedError() @abc.abstractmethod def new_oids(self, cursor): raise NotImplementedError() # All of these allocators allocate 16 OIDs at a time. In the sequence # or table, value (n) represents (n * 16 - 15) through (n * 16). So, # value 1 represents OID block 1-16, 2 represents OID block 17-32, # and so on. The _oid_range_around helper method returns a list # around this number sorted in the proper way. # Note than range(n * 16 - 15, n*16+1).sort(reverse=True) # is the same as range(n * 16, n*16 -16, -1) if isinstance(range(1), list): # Py2 def _oid_range_around(self, n): return range(n * 16, n * 16 - 16, -1) else: def _oid_range_around(self, n): l = list(range(n * 16, n * 16 - 16, -1)) l.sort(reverse=True) return l
""" System-level calls to external tools, directory creation, etc. Authors: Thomas A. Hopf """ import os from os import path import tempfile import subprocess import urllib.request import shutil import requests class ResourceError(Exception): """ Exception for missing resources (files, URLs, ...) """ class ExternalToolError(Exception): """ Exception for failing external calculations """ def run(cmd, stdin=None, check_returncode=True, working_dir=None, shell=False, env=None): """ Run external program as subprocess. Parameters ---------- cmd : str or list of str Command (and optional command line arguments) stdin : str or byte sequence, optional (default: None) Input to be sent to STDIN of the process check_returncode : bool, optional (default=True) Verify if call had returncode == 0, otherwise raise ExternalToolError working_dir : str, optional (default: None) Change to this directory before running command shell : bool, optional (default: False) Invoke shell when calling subprocess (default: False) env : dict, optional (default: None) Use this environment for executing the subprocess Returns ------- int Return code of process stdout Byte string with stdout output stderr Byte string of stderr output Raises ------ ExternalToolError """ try: with subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True, cwd=working_dir, shell=shell, env=env ) as proc: (stdout, stderr) = proc.communicate(stdin) return_code = proc.returncode if check_returncode and return_code != 0: raise ExternalToolError( "Call failed:\ncmd={}\nreturncode={}\nstdout={}\nstderr={}".format( cmd, return_code, stdout, stderr ) ) return return_code, stdout, stderr except (OSError, ValueError) as e: raise ExternalToolError( "Call to external tool failed and did not return: {}".format(cmd) ) from e def valid_file(file_path): """ Verify if a file exists and is not empty. Parameters ---------- file_path : str Path to file to check Returns ------- bool True if file exists and is non-zero size, False otherwise. """ try: return os.stat(file_path).st_size > 0 except (OSError, TypeError): # catch TypeError for nonsense paths, e.g. None return False def verify_resources(message, *args): """ Verify if a set of files exists and is not empty. Parameters ---------- message : str Message to display with raised ResourceError *args : List of str Path(s) of file(s) to be checked Raises ------ ResourceError If any of the resources does not exist or is empty """ invalid = [str(f) for f in args if not valid_file(f)] if len(invalid) > 0: raise ResourceError( "{}:\n{}".format(message, ", ".join(invalid)) ) else: return True def create_prefix_folders(prefix): """ Create a directory tree contained in a prefix. prefix : str Prefix containing directory tree """ dirname = path.dirname(prefix) if dirname != "": makedirs(dirname) def makedirs(directories): """ Create directory subtree, some or all of the folders may already exist. Parameters ---------- directories : str Directory subtree to create """ os.makedirs(directories, exist_ok=True) def insert_dir(prefix, *dirs, rootname_subdir=True): """ Create new path by inserting additional directories into the folder tree of prefix (but keeping the filename prefix at the end), Parameters ---------- prefix : str Prefix of path that should be extended *dirs : str Add these directories at the end of path rootname_subdir : bool, optional (default: True) Given /my/path/prefix, * if True, creates structure like /my/path/prefix/*dirs/prefix * if False, creates structure like /my/path/*dirs/prefix Returns ------- str Extended path """ base_dir, rootname = path.split(prefix) if rootname_subdir: return path.join(prefix, *dirs, rootname) else: return path.join(base_dir, *dirs, rootname) def temp(): """ Create a temporary file Returns ------- str Path of temporary file """ handle, name = tempfile.mkstemp() return name def tempdir(): """ Create a temporary directory Returns ------- str Path of temporary directory """ return tempfile.mkdtemp() def write_file(file_path, content): """ Writes content to output file Parameters ---------- file_path : str Path of output file content : str Content to be written to file """ with open(file_path, "w") as f: f.write(content) def get(url, output_path=None, allow_redirects=False): """ Download external resource Parameters ---------- url : str URL of resource that should be downloaded output_path: str, optional Save contents of URL to this file (only for text files) allow_redirects: bool Allow redirects by server or not Returns ------- r : requests.models.Response Response object, use r.text to access text, r.json() to decode json, and r.content for raw bytestring Raises ------ ResourceError """ try: r = requests.get(url, allow_redirects=allow_redirects) if r.status_code != requests.codes.ok: raise ResourceError( "Invalid status code ({}) for URL: {}".format( r.status_code, url ) ) if output_path is not None: try: write_file(output_path, r.text) except IOError as e: raise ResourceError( "Could not save to file: {}".format(output_path) ) from e return r except requests.exceptions.RequestException as e: raise ResourceError() from e def get_urllib(url, output_path): """ Download external resource to file using urllib. This function is intended for cases where get() implemented using requests can not be used, e.g. for download from an FTP server. Parameters ---------- url : str URL of resource that should be downloaded output_path: str, optional Save contents of URL to this file (only for text files) """ with urllib.request.urlopen(url) as r, open(output_path, 'wb') as f: shutil.copyfileobj(r, f)
import pytest from elkconfdparser import errors from elkconfdparser import parser class TestDropStack: @pytest.mark.parametrize( "input_root, input_stack, expected_root, expected_stack", [ ({}, [], {}, []), ({}, [1], {}, [1]), ({}, [2, 1], {1: [2]}, []), ({1: [8]}, [2, 1], {1: [8, 2]}, []), ({1: [8], 3: [9]}, [2, 1], {1: [8, 2], 3: [9]}, []), ], ) def testTwoOperands(self, input_root, input_stack, expected_root, expected_stack): assert parser._drop_stack(input_root, input_stack) is None assert input_root == expected_root assert input_stack == expected_stack @pytest.mark.parametrize( "input_root, input_stack, expected_root, expected_stack", [ ({}, [3, 2, 1], {1: [2]}, [3]), ], ) def testMultipleOperands(self, input_root, input_stack, expected_root, expected_stack): with pytest.raises(errors.StackNotEmptyException, match=r'.*operands left.*'): parser._drop_stack(input_root, input_stack) assert input_root == expected_root assert input_stack == expected_stack class TestParse: @pytest.mark.parametrize( "test_input, expected", [ ("", {}), (" ", {}), (" \n ", {}), ("a{}", {'a': [{}]}), ("aa{}", {'aa': [{}]}), (" a{} ", {'a': [{}]}), (" a { } ", {'a': [{}]}), (" \na\n \n{\n \n}\n ", {'a': [{}]}), ('a{b=>"c"}', {'a': [{'b': ['c']}]}), ('\na\n\n{\nb\n=>\n"c"\n}\n', {'a': [{'b': ['c']}]}), ], ) def testSectionDetected(self, test_input, expected): assert parser.parse(test_input) == expected @pytest.mark.parametrize( "test_input, expected", [ ('b=>"c"', [{'b': ['c']}]), ], ) def testSectionValueDetection(self, test_input, expected): test_input = f"a {{ {test_input} }}" assert parser.parse(test_input)['a'] == expected @pytest.mark.parametrize( "test_input, expected", [ ('"the string"', ['the string']), ('"\\"quoted string\\""', ['"quoted string"']), ('"middle \\"quoted\\" string"', ['middle "quoted" string']), ('"unpair \\"\\"\\" string"', ['unpair """ string']), ], ) def testSectionAttrValue(self, test_input, expected): test_input = f"a {{ b => {test_input} }}" assert parser.parse(test_input)['a'][0]['b'] == expected def testReal(self): test_input = """ aa { bb { cc => "dd" ee => "ff" } gg { hh => "the string 1" jj => "\\"with\\" quotes 1" } gg { hh => "the string 2" jj => "\\"with\\" quotes 2" } } """ expected = { "aa": [ { "bb": [ { "cc": ["dd"], "ee": ["ff"], } ], "gg": [ { "hh": ["the string 1"], "jj": ["\"with\" quotes 1"], }, { "hh": ["the string 2"], "jj": ["\"with\" quotes 2"], } ] } ] } assert parser.parse(test_input) == expected
from itertools import chain, islice, starmap, cycle from operator import add def drop(n,xs): return islice(xs,n,None) def take(n,xs): return list(islice(xs,n)) class iself: def __init__(self, xs_ctor, nvp_max=4): self.xs_ctor=xs_ctor; self.nvp_max=nvp_max def __iter__(self): buf = [] ref_ivp = [0]; n = self.nvp_max xs = self.xs_ctor(iself._vpiter(buf, ref_ivp)) xz = iter(xs) while True: i = ref_ivp[0] for _ in range(n): buf.append(next(xz)) for i1 in range(i, i+n): yield buf[i1] ref_ivp[0] += n @staticmethod def _vpiter(buf, ref_ivp): i = ref_ivp[0] -2 while True: try: yield buf[i]; i += 1 except IndexError: break fibs = iself(lambda fibs: chain([1,1], starmap(add, zip(fibs, drop(1,fibs))))) def on_each(op, xs): for x in xs: op(x); yield x def sdbg(s,xs): return on_each(lambda x: print(s,x), xs) class iself1: def __init__(self,xs_ctor,nvp_max): self.xs_ctor=xs_ctor; self.nvp_max=nvp_max def __iter__(self): n = self.nvp_max buf = [None for _ in range(n)] ri = [0] xz = iter(self.xs_ctor(iself1._vp(buf, ri))) while True: i = ri[0] buf[i] = next(xz) yield buf[i] ri[0] += 1 if ri[0] == n: ri[0] = 0 @staticmethod def _vp(buf, ri): # 到底在 iter 里创建,还是只创建一次? i = ri[0] while True: try: yield buf[i]; i+=1 except IndexError: i=0 # 但即便我懵懵懂懂,还是蒙对了…… 就想着 drop1 是“选择”b 环形缓冲区也行么 fibs = iself1( lambda s: chain([1,1], starmap(add, zip(sdbg("a",s), sdbg("c",drop(1,s)))) ), 2 ) fibns = take(int(input("n?")), fibs) def zip_next(xs): return iself1(lambda s: zip(xs, drop(1, xs)), 1) print(fibns) fibns = fibns[1:] print(list(zip_next(fibns))) if all(starmap(lambda a,b: a<b, zip_next(fibns))): print("是单调递增序列")
def facto_iterative(n): fac = 1 for i in range(n): fac = fac * (i+1) return fac number = int(input("Enter some value\n")) print(facto_iterative(number)) def facto_recursive(n): if n ==1: return 1 else: return n * facto_recursive(n-1) number = int(input("Enter some value\n")) print(facto_recursive(number)) def fibonacci(n): if n==0: return 0 elif n==1: return 1 else: return fibonacci(n-1)+fibonacci(n-2) number = int(input("Enter some value\n")) print(fibonacci(number))
from django.conf.urls import url, include from website.views import index urlpatterns = [ url(r'^$', index, name='index') ]
#!/usr/bin/env python """Pipeline script for data pre-processing.""" import os import glob import numpy as np from ugali.analysis.pipeline import Pipeline import ugali.preprocess.pixelize import ugali.preprocess.maglims from ugali.utils.logger import logger components = ['pixelize','density','maglims','simple','split'] defaults = ['pixelize','density','simple'] def run(self): # The three mask options are (semi-)mutually exclusive if np.in1d(['maglims','simple','split'],self.opts.run).sum() > 1: raise Exception("Too many 'mask' run options.") if 'pixelize' in self.opts.run: # Pixelize the raw catalog data logger.info("Running 'pixelize'...") rawdir = self.config['data']['dirname'] rawfiles = sorted(glob.glob(os.path.join(rawdir,'*.fits'))) x = ugali.preprocess.pixelize.pixelizeCatalog(rawfiles,self.config) if 'density' in self.opts.run: # Calculate magnitude limits logger.info("Running 'density'...") x = ugali.preprocess.pixelize.pixelizeDensity(self.config,nside=512,force=self.opts.force) if 'maglims' in self.opts.run: # Calculate magnitude limits logger.info("Running 'maglims'...") maglims = ugali.preprocess.maglims.Maglims(self.config) x = maglims.run(force=self.opts.force) if 'simple' in self.opts.run: # Calculate simple magnitude limits logger.info("Running 'simple'...") #ugali.preprocess.maglims.simple_maglims(self.config,force=self.opts.force) maglims = ugali.preprocess.maglims.Maglims(self.config) x = maglims.run(simple=True,force=self.opts.force) if 'split' in self.opts.run: # Split up a pre-existing maglim map logger.info("Running 'split'...") ugali.preprocess.maglims.split(self.config,'split',force=self.opts.force) Pipeline.run = run Pipeline.defaults = defaults pipeline = Pipeline(__doc__,components) pipeline.parse_args() pipeline.execute()
#!/usr/bin/env python import logging import warnings import numpy as np from numpy.lib.ufunclike import isposinf from scipy.stats import chi EPS = 1e-8 class MultiVariateNormalDistribution(object): def __init__(self, shift, scale, cov, dim=None): # main components self.shift = shift self.scale = scale self.cov = cov # params self.dim = dim if dim is not None else shift.shape[0] # states self.eigvecs = None self.eigvals = None self.inv_cov = None self.invsqrt_cov = None self.rev = None # decompose cov self.decomposed = False def decompose(self, force_positive=False, shrinkage=0, rescale=None, bound_size=float('inf')): # force symmetric self.cov = (self.cov + self.cov.T) / 2.0 # solve self.eigvals, self.eigvecs = np.linalg.eigh(self.cov) # force positive definite if force_positive: self.eigvals = np.clip(self.eigvals, EPS, None) # shrinkage if shrinkage > 0: trace_cov = np.sum(self.eigvals) self.eigvals = (1 - shrinkage) * self.eigvals + shrinkage * (trace_cov / self.dim) * np.ones(self.dim) # rescale if rescale is not None: ratio = (self.scale / rescale) ** 2 self.cov *= ratio self.eigvals *= ratio self.scale = rescale # restrict max length base_length = chi.mean(self.dim) + 2.0 * chi.std(self.dim) max_eigval = (bound_size / base_length) ** 2 self.eigvals = np.clip(self.eigvals, EPS, max_eigval) # computing with warnings.catch_warnings(record=True) as w: self.cov = np.dot(self.eigvecs, np.diag(self.eigvals)).dot(self.eigvecs.T) #inv cov self.inv_cov = np.dot(self.eigvecs, np.diag(self.eigvals ** -1)).dot(self.eigvecs.T) # inv sqrt cov self.invsqrt_cov = np.dot(self.eigvecs, np.diag(self.eigvals ** -0.5)).dot(self.eigvecs.T) # sqrt cov self.sqrt_cov = np.dot(self.eigvecs, np.diag(self.eigvals ** 0.5)).dot(self.eigvecs.T) # reverse projection matrix self.rev = np.dot(np.diag(self.eigvals ** -0.5), self.eigvecs.T) # handle warnings if len(w) > 0: print("Eigvals: ", self.eigvals) print("Sigma: ", self.scale) raise Exception("Negative eigval") def sample(self, num, remap=None): if not self.decomposed: self.decompose() bias = np.random.normal(size=[num, self.dim]) amp_bias = self.scale * (self.eigvals ** 0.5)[np.newaxis,:] * bias rot_bias = np.dot(amp_bias, self.eigvecs.T) samples = self.shift[np.newaxis,:] + rot_bias if remap is not None: samples = remap(samples) return samples def dispersion(self, X): x = X.reshape(-1, self.dim) y = x - self.shift[np.newaxis, :] z = np.dot(y / self.scale, self.invsqrt_cov) dens = np.sum(z ** 2, axis=1) if len(X.shape) == 1: dens = dens[0] return dens
import mongoengine from .trace import WrappedConnect # Original connect function _connect = mongoengine.connect def patch(): setattr(mongoengine, "connect", WrappedConnect(_connect)) def unpatch(): setattr(mongoengine, "connect", _connect)
from sklearn.cluster import KMeans from collections import Counter import numpy as np import cv2 #for resizing image def get_dominant_color(image, k=4, image_processing_size = None): """ takes an image as input returns the dominant color of the image as a list dominant color is found by running k means on the pixels & returning the centroid of the largest cluster processing time is sped up by working with a smaller image; this resizing can be done with the image_processing_size param which takes a tuple of image dims as input >>> get_dominant_color(my_image, k=4, image_processing_size = (25, 25)) [56.2423442, 34.0834233, 70.1234123] """ #resize image if new dims provided if image_processing_size is not None: image = cv2.resize(image, image_processing_size, interpolation = cv2.INTER_AREA) #reshape the image to be a list of pixels image = image.reshape((image.shape[0] * image.shape[1], 3)) #cluster and assign labels to the pixels clt = KMeans(n_clusters = k) labels = clt.fit_predict(image) #count labels to find most popular label_counts = Counter(labels) #subset out most popular centroid dominant_color = clt.cluster_centers_[label_counts.most_common(1)[0][0]] return list(dominant_color) # By Luke https://stackoverflow.com/a/17507369 def NN(A, start): """Nearest neighbor algorithm. A is an NxN array indicating distance between N locations start is the index of the starting location Returns the path and cost of the found solution """ path = [start] cost = 0 N = A.shape[0] mask = np.ones(N, dtype=bool) # boolean values indicating which # locations have not been visited mask[start] = False for i in range(N-1): last = path[-1] next_ind = np.argmin(A[last][mask]) # find minimum of remaining locations next_loc = np.arange(N)[mask][next_ind] # convert to original location path.append(next_loc) mask[next_loc] = False cost += A[last, next_loc] return path, cost def load_hsv_image(file, width=100, height=None): image = cv2.imread(file) if height==None: h, w, _ = image.shape height = (width*h)/w image = cv2.resize(image, (80,100), interpolation = cv2.INTER_AREA) return cv2.cvtColor(image, cv2.COLOR_BGR2HSV) if __name__=='__main__': bgr_image = cv2.resize(cv2.imread('windy tree.jpg'), (100,125), interpolation = cv2.INTER_AREA) hsv_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2HSV) dom_color = get_dominant_color(hsv_image) #create a square showing dominant color of equal size to input image dom_color_hsv = np.full(bgr_image.shape, dom_color, dtype='uint8') #convert to bgr color space for display dom_color_bgr = cv2.cvtColor(dom_color_hsv, cv2.COLOR_HSV2BGR) #concat input image and dom color square side by side for display output_image = np.hstack((bgr_image, dom_color_bgr)) #show results to screen cv2.imshow('Image Dominant Color', output_image)
#!/usr/bin/env python # Copyright (c) 2015-2021 Vector 35 Inc # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import sys from binaryninja.update import UpdateChannel, are_auto_updates_enabled, set_auto_updates_enabled, is_update_installation_pending, install_pending_update from binaryninja import core_version import datetime from six.moves import input chandefault = UpdateChannel.list[0].name channel = None versions = [] def load_channel(newchannel): global channel global versions if (channel is not None and newchannel == channel.name): print("Same channel, not updating.") else: try: print("Loading channel %s" % newchannel) channel = UpdateChannel[newchannel] print("Loading versions...") versions = channel.versions except Exception: print("%s is not a valid channel name. Defaulting to " % chandefault) channel = UpdateChannel[chandefault] def select(version): done = False date = datetime.datetime.fromtimestamp(version.time).strftime('%c') while not done: print("Version:\t%s" % version.version) print("Updated:\t%s" % date) print("Notes:\n\n-----\n%s" % version.notes) print("-----") print("\t1)\tSwitch to version") print("\t2)\tMain Menu") selection = input('Choice: ') if selection.isdigit(): selection = int(selection) else: selection = 0 if (selection == 2): done = True elif (selection == 1): if (version.version == channel.latest_version.version): print("Requesting update to latest version.") else: print("Requesting update to prior version.") if are_auto_updates_enabled(): print("Disabling automatic updates.") set_auto_updates_enabled(False) if (version.version == core_version()): print("Already running %s" % version.version) else: print("version.version %s" % version.version) print("core_version %s" % core_version()) print("Downloading...") print(version.update()) print("Installing...") if is_update_installation_pending: #note that the GUI will be launched after update but should still do the upgrade headless install_pending_update() # forward updating won't work without reloading sys.exit() else: print("Invalid selection") def list_channels(): done = False print("\tSelect channel:\n") while not done: channel_list = UpdateChannel.list for index, item in enumerate(channel_list): print("\t%d)\t%s" % (index + 1, item.name)) print("\t%d)\t%s" % (len(channel_list) + 1, "Main Menu")) selection = input('Choice: ') if selection.isdigit(): selection = int(selection) else: selection = 0 if (selection <= 0 or selection > len(channel_list) + 1): print("%s is an invalid choice." % selection) else: done = True if (selection != len(channel_list) + 1): load_channel(channel_list[selection - 1].name) def toggle_updates(): set_auto_updates_enabled(not are_auto_updates_enabled()) def main(): global channel done = False load_channel(chandefault) while not done: print("\n\tBinary Ninja Version Switcher") print("\t\tCurrent Channel:\t%s" % channel.name) print("\t\tCurrent Version:\t%s" % core_version()) print("\t\tAuto-Updates On:\t%s\n" % are_auto_updates_enabled()) for index, version in enumerate(versions): date = datetime.datetime.fromtimestamp(version.time).strftime('%c') print("\t%d)\t%s (%s)" % (index + 1, version.version, date)) print("\t%d)\t%s" % (len(versions) + 1, "Switch Channel")) print("\t%d)\t%s" % (len(versions) + 2, "Toggle Auto Updates")) print("\t%d)\t%s" % (len(versions) + 3, "Exit")) selection = input('Choice: ') if selection.isdigit(): selection = int(selection) else: selection = 0 if (selection <= 0 or selection > len(versions) + 3): print("%d is an invalid choice.\n\n" % selection) else: if (selection == len(versions) + 3): done = True elif (selection == len(versions) + 2): toggle_updates() elif (selection == len(versions) + 1): list_channels() else: select(versions[selection - 1]) if __name__ == "__main__": main()
"""Cart-related forms and fields.""" from django import forms from django.conf import settings from django.core.exceptions import NON_FIELD_ERRORS, ObjectDoesNotExist from django.utils.translation import npgettext_lazy, pgettext_lazy from django_countries.fields import LazyTypedChoiceField, countries from ..core.exceptions import InsufficientStock from ..shipping.utils import get_shipment_options class QuantityField(forms.IntegerField): """A specialized integer field with initial quantity and min/max values.""" def __init__(self, **kwargs): super().__init__( min_value=0, max_value=settings.MAX_CART_LINE_QUANTITY, initial=1, **kwargs) class AddToCartForm(forms.Form): """Add-to-cart form. Allows selection of a product variant and quantity. The save method adds it to the cart. """ quantity = QuantityField( label=pgettext_lazy('Add to cart form field label', 'Quantity')) error_messages = { 'not-available': pgettext_lazy( 'Add to cart form error', 'Sorry. This product is currently not available.'), 'empty-stock': pgettext_lazy( 'Add to cart form error', 'Sorry. This product is currently out of stock.'), 'variant-does-not-exists': pgettext_lazy( 'Add to cart form error', 'Oops. We could not find that product.'), 'insufficient-stock': npgettext_lazy( 'Add to cart form error', 'Only %d remaining in stock.', 'Only %d remaining in stock.')} def __init__(self, *args, **kwargs): self.cart = kwargs.pop('cart') self.product = kwargs.pop('product') self.discounts = kwargs.pop('discounts', ()) super().__init__(*args, **kwargs) def clean(self): """Clean the form. Makes sure the total quantity in cart (taking into account what was already there) does not exceed available quantity. """ cleaned_data = super().clean() quantity = cleaned_data.get('quantity') if quantity is None: return cleaned_data try: product_variant = self.get_variant(cleaned_data) except ObjectDoesNotExist: msg = self.error_messages['variant-does-not-exists'] self.add_error(NON_FIELD_ERRORS, msg) else: cart_line = self.cart.get_line(product_variant) used_quantity = cart_line.quantity if cart_line else 0 new_quantity = quantity + used_quantity try: product_variant.check_quantity(new_quantity) except InsufficientStock as e: remaining = e.item.get_stock_quantity() - used_quantity if remaining: msg = self.error_messages['insufficient-stock'] self.add_error('quantity', msg % remaining) else: msg = self.error_messages['empty-stock'] self.add_error('quantity', msg) return cleaned_data def save(self): """Add the selected product variant and quantity to the cart.""" product_variant = self.get_variant(self.cleaned_data) return self.cart.add(variant=product_variant, quantity=self.cleaned_data['quantity']) def get_variant(self, cleaned_data): """Return a product variant that matches submitted values. This allows specialized implementations to select the variant based on multiple fields (like size and color) instead of having a single variant selection widget. """ raise NotImplementedError() class ReplaceCartLineForm(AddToCartForm): """Replace quantity in cart form. Similar to AddToCartForm but its save method replaces the quantity. """ def __init__(self, *args, **kwargs): self.variant = kwargs.pop('variant') kwargs['product'] = self.variant.product super().__init__(*args, **kwargs) self.cart_line = self.cart.get_line(self.variant) self.fields['quantity'].widget.attrs = { 'min': 1, 'max': settings.MAX_CART_LINE_QUANTITY} def clean_quantity(self): """Clean the quantity field. Checks if target quantity does not exceed the currently available quantity. """ quantity = self.cleaned_data['quantity'] try: self.variant.check_quantity(quantity) except InsufficientStock as e: msg = self.error_messages['insufficient-stock'] raise forms.ValidationError( msg % e.item.get_stock_quantity()) return quantity def clean(self): """Clean the form skipping the add-to-form checks.""" # explicitly skip parent's implementation # pylint: disable=E1003 return super(AddToCartForm, self).clean() def get_variant(self, cleaned_data): """Return the matching variant. In this case we explicitly know the variant as we're modifying an existing line in cart. """ return self.variant def save(self): """Replace the selected product's quantity in cart.""" product_variant = self.get_variant(self.cleaned_data) return self.cart.add(product_variant, self.cleaned_data['quantity'], replace=True) class CountryForm(forms.Form): """Country selection form.""" country = LazyTypedChoiceField( label=pgettext_lazy('Country form field label', 'Country'), choices=countries) def get_shipment_options(self): """Return a list of shipping methods for the selected country.""" code = self.cleaned_data['country'] return get_shipment_options(code)
#!/usr/bin/env python # Copyright 2008 by Jonathan Tang # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Python library & command-line tool for documentation and dependency analysis of JavaScript files. Some of the features this offers: List all dependencies of a file or files: >>> CodeBaseDoc(['examples'])['subclass.js'].module.all_dependencies ['module.js', 'module_closure.js', 'class.js', 'subclass.js'] Programmatically access properties of the documentation: >>> CodeBaseDoc(['examples'])['subclass.js']['public_method'].doc 'A public method.' >>> CodeBaseDoc(['examples'])['subclass.js']['public_method'].is_private False Generate documentation for a set of files: >>> CodeBaseDoc(['examples']).save_docs(None, 'js_apidocs') Tag reference is similar to JSDoc: http://jsdoc.sourceforge.net/#tagref. See usage() for command line options. """ import os, re, sys, getopt, cgi try: import cjson encode_json = lambda val: cjson.encode(val) except ImportError: try: import simplejson encode_json = lambda val: simplejson.dumps(val) except ImportError: def encode_json(val): raise ImportError( "Either cjson or simplejson is required for JSON encoding") ##### INPUT/OUTPUT ##### def warn(format, *args): """ Print out a warning on STDERR. """ sys.stderr.write(format % args + '\n') def flatten(iter_of_iters): """ Flatten an iterator of iterators into a single, long iterator, exhausting each subiterator in turn. >>> flatten([[1, 2], [3, 4]]) [1, 2, 3, 4] """ retval = [] for val in iter_of_iters: retval.extend(val) return retval def any(iter): """ For < Python2.5 compatibility. """ for elem in iter: if elem: return True return False def is_js_file(filename): """ Return true if the filename ends in .js and is not a packed or minified file (no '.pack' or '.min' in the filename) >>> is_js_file('jquery.min.js') False >>> is_js_file('foo.json') False >>> is_js_file('ui.combobox.js') True """ return filename.endswith('.js') \ and not '.pack' in filename \ and not '.min' in filename def trim_js_ext(filename): """ If `filename` ends with .js, trims the extension off. >>> trim_js_ext('foo.js') 'foo' >>> trim_js_ext('something_else.html') 'something_else.html' """ if filename.endswith('.js'): return filename[:-3] else: return filename def list_js_files(dir): """ Generator for all JavaScript files in the directory, recursively >>> 'examples/module.js' in list(list_js_files('examples')) True """ for dirpath, dirnames, filenames in os.walk(dir): for filename in filenames: if is_js_file(filename): yield os.path.join(dirpath, filename) def get_file_list(paths): """ Return a list of all JS files, given the root paths. """ return flatten(list_js_files(path) for path in paths) def read_file(path): """ Open a file, reads it into a string, closes the file, and returns the file text. """ fd = open(path) try: return fd.read() finally: fd.close() def save_file(path, text): """ Save a string to a file. If the containing directory(ies) doesn't exist, this creates it. """ dir = os.path.dirname(path) if not os.path.exists(dir): os.makedirs(dir) fd = open(path, 'wb') try: if type(text) == str: text = text.encode('utf-8') fd.write(text) finally: fd.close() ##### Parsing utilities ##### def split_delimited(delimiters, split_by, text): """ Generator that walks the ``text`` and splits it into an array on ``split_by``, being careful not to break inside a delimiter pair. ``delimiters`` should be an even-length string with each pair of matching delimiters listed together, open first. >>> list(split_delimited('{}[]', ',', '')) [''] >>> list(split_delimited('', ',', 'foo,bar')) ['foo', 'bar'] >>> list(split_delimited('[]', ',', 'foo,[bar, baz]')) ['foo', '[bar, baz]'] >>> list(split_delimited('{}', ' ', '{Type Name} name Desc')) ['{Type Name}', 'name', 'Desc'] >>> list(split_delimited('[]{}', ',', '[{foo,[bar, baz]}]')) ['[{foo,[bar, baz]}]'] Two adjacent delimiters result in a zero-length string between them: >>> list(split_delimited('{}', ' ', '{Type Name} Desc')) ['{Type Name}', '', 'Desc'] ``split_by`` may be a predicate function instead of a string, in which case it should return true on a character to split. >>> list(split_delimited('', lambda c: c in '[]{}, ', '[{foo,[bar, baz]}]')) ['', '', 'foo', '', 'bar', '', 'baz', '', '', ''] """ delims = [0] * int(len(delimiters) / 2) actions = {} for i in range(0, len(delimiters), 2): actions[delimiters[i]] = (int(i / 2), 1) actions[delimiters[i + 1]] = (int(i / 2), -1) if isinstance(split_by, str): def split_fn(c): return c == split_by else: split_fn = split_by last = 0 for i in range(len(text)): c = text[i] if split_fn(c) and not any(delims): yield text[last:i] last = i + 1 try: which, dir = actions[c] delims[which] = delims[which] + dir except KeyError: pass # Normal character yield text[last:] def get_doc_comments(text): r""" Return a list of all documentation comments in the file text. Each comment is a pair, with the first element being the comment text and the second element being the line after it, which may be needed to guess function & arguments. >>> get_doc_comments(read_file('examples/module.js'))[0][0][:40] '/**\n * This is the module documentation.' >>> get_doc_comments(read_file('examples/module.js'))[1][0][7:50] 'This is documentation for the first method.' >>> get_doc_comments(read_file('examples/module.js'))[1][1] 'function the_first_function(arg1, arg2) ' >>> get_doc_comments(read_file('examples/module.js'))[2][0] '/** This is the documentation for the second function. */' """ def make_pair(match): comment = match.group() try: end = text.find('\n', match.end(0)) + 1 if '@class' not in comment: next_line = next(split_delimited('()', '\n', text[end:])) else: next_line = text[end:text.find('\n', end)] except StopIteration: next_line = '' return (comment, next_line) return [make_pair(match) for match in re.finditer('/\*\*(.*?)\*/', text, re.DOTALL)] def strip_stars(doc_comment): r""" Strip leading stars from a doc comment. >>> strip_stars('/** This is a comment. */') 'This is a comment.' >>> strip_stars('/**\n * This is a\n * multiline comment. */') 'This is a\n multiline comment.' >>> strip_stars('/** \n\t * This is a\n\t * multiline comment. \n*/') 'This is a\n multiline comment.' """ return re.sub('\n\s*?\*\s*?', '\n', doc_comment[3:-2]).strip() def split_tag(section): """ Split the JSDoc tag text (everything following the @) at the first whitespace. Returns a tuple of (tagname, body). """ splitval = re.split('\s+', section, 1) tag, body = len(splitval) > 1 and splitval or (splitval[0], '') return tag.strip(), body.strip() FUNCTION_REGEXPS = [ 'function (\w+)', '(\w+):\sfunction', '\.(\w+)\s*=\s*function', ] def guess_function_name(next_line, regexps=FUNCTION_REGEXPS): """ Attempt to determine the function name from the first code line following the comment. The patterns recognized are described by `regexps`, which defaults to FUNCTION_REGEXPS. If a match is successful, returns the function name. Otherwise, returns None. """ for regexp in regexps: match = re.search(regexp, next_line) if match: return match.group(1) return None def guess_parameters(next_line): """ Attempt to guess parameters based on the presence of a parenthesized group of identifiers. If successful, returns a list of parameter names; otherwise, returns None. """ match = re.search('\(([\w\s,]+)\)', next_line) if match: return [arg.strip() for arg in match.group(1).split(',')] else: return None def parse_comment(doc_comment, next_line): r""" Split the raw comment text into a dictionary of tags. The main comment body is included as 'doc'. >>> comment = get_doc_comments(read_file('examples/module.js'))[4][0] >>> parse_comment(strip_stars(comment), '')['doc'] 'This is the documentation for the fourth function.\n\n Since the function being documented is itself generated from another\n function, its name needs to be specified explicitly. using the @function tag' >>> parse_comment(strip_stars(comment), '')['function'] 'not_auto_discovered' If there are multiple tags with the same name, they're included as a list: >>> parse_comment(strip_stars(comment), '')['param'] ['{String} arg1 The first argument.', '{Int} arg2 The second argument.'] """ sections = re.split('\n\s*@', doc_comment) tags = { 'doc': sections[0].strip(), 'guessed_function': guess_function_name(next_line), 'guessed_params': guess_parameters(next_line) } for section in sections[1:]: tag, body = split_tag(section) if tag in tags: existing = tags[tag] try: existing.append(body) except AttributeError: tags[tag] = [existing, body] else: tags[tag] = body return tags def parse_comments_for_file(filename): """ Return a list of all parsed comments in a file. Mostly for testing & interactive use. """ return [parse_comment(strip_stars(comment), next_line) for comment, next_line in get_doc_comments(read_file(filename))] #### Classes ##### class CodeBaseDoc(dict): """ Represents the documentation for an entire codebase. This takes a list of root paths. The resulting object acts like a dictionary of FileDoc objects, keyed by the filename of the file (relative to the source root). >>> CodeBaseDoc(['examples'])['class.js'].name 'class.js' It also handles dependency & subclass analysis, setting the appropriate fields on the contained objects. Note that the keys (after prefix chopping) should match the names declared in @dependency or @see tags; otherwise, you may get MissingDependencyErrors. """ def __init__(self, root_paths, include_private=False): """ Create a new `CodeBaseDoc`. `root_paths` is a list of directories where JavaScript files can be found. @see and @dependency tags are relative to these paths. By default, private methods are not included. Pass True to `include_private` to include them. """ self.include_private = include_private self._populate_files(root_paths, root_paths) self._build_dependencies() self._build_superclass_lists() def _populate_files(self, root_paths, prefix): files = get_file_list(root_paths) def key_name(file_name): if prefix is None: return os.path.basename(file_name) for pre in prefix: if not pre.endswith('/'): pre = pre + '/' if file_name.startswith(pre): return file_name[len(pre):] return file_name for file in files: name = key_name(file) self[name] = FileDoc(name, read_file(file)) def _build_dependencies(self): """ >>> CodeBaseDoc(['examples'])['subclass.js'].module.all_dependencies ['module.js', 'module_closure.js', 'class.js', 'subclass.js'] """ for module in list(self.values()): module.set_all_dependencies(find_dependencies([module.name], self)) def _build_superclass_lists(self): """ >>> CodeBaseDoc(['examples']).all_classes['MySubClass'].all_superclasses[0].name 'MyClass' """ cls_dict = self.all_classes for cls in list(cls_dict.values()): cls.all_superclasses = [] superclass = cls.superclass try: while superclass: superclass_obj = cls_dict[superclass] cls.all_superclasses.append(superclass_obj) superclass = superclass_obj.superclass except KeyError: print("Missing superclass: " + superclass) def _module_index(self, attr): return dict((obj.name, obj) for module in list(self.values()) for obj in getattr(module, attr)) @property def all_functions(self): """ Returns a dict of all functions in all modules of the codebase, keyed by their name. """ return self._module_index('functions') @property def all_methods(self): """ Returns a dict of all methods in all modules. """ return self._module_index('methods') @property def all_classes(self): """ Returns a dict of all classes in all modules. """ return self._module_index('classes') def translate_ref_to_url(self, ref, in_comment=None): """ Translates an @see or @link reference to a URL. If the ref is of the form #methodName, it looks for a method of that name on the class `in_comment` or parent class of method `in_comment`. In this case, it returns a local hash URL, since the method is guaranteed to be on the same page: >>> doc = CodeBaseDoc(['examples']) >>> doc.translate_ref_to_url('#public_method', doc.all_methods['private_method']) '#public_method' >>> doc.translate_ref_to_url('#public_method', doc.all_classes['MySubClass']) '#public_method' If it doesn't find it there, it looks for a global function: >>> doc.translate_ref_to_url('#make_class') 'module_closure.html#make_class' A reference of the form ClassName#method_name looks up a specific method: >>> doc.translate_ref_to_url('MyClass#first_method') 'class.html#first_method' Finally, a reference of the form ClassName looks up a specific class: >>> doc.translate_ref_to_url('MyClass') 'class.html#MyClass' """ if ref.startswith('#'): method_name = ref[1:] if isinstance(in_comment, FunctionDoc) and in_comment.member: search_in = self.all_classes[in_comment.member] elif isinstance(in_comment, ClassDoc): search_in = in_comment else: search_in = None try: return search_in.get_method(method_name).url except AttributeError: pass def lookup_ref(file_doc): for fn in file_doc.functions: if fn.name == method_name: return fn.url return None elif '#' in ref: class_name, method_name = ref.split('#') def lookup_ref(file_doc): for cls in file_doc.classes: if cls.name == class_name: try: return cls.get_method(method_name).url except AttributeError: pass return None else: class_name = ref def lookup_ref(file_doc): for cls in file_doc.classes: if cls.name == class_name: return cls.url return None for file_doc in list(self.values()): url = lookup_ref(file_doc) if url: return file_doc.url + url return '' def build_see_html(self, see_tags, header_tag, in_comment=None): def list_tag(see_tag): return '<li><a href = "%s">%s</a></li>' % ( self.translate_ref_to_url(see_tag, in_comment), see_tag) if see_tags: return '<%s>See Also:</%s>\n<ul>\n' % (header_tag, header_tag) + \ '\n'.join(list_tag(tag) for tag in see_tags) + '</ul>' else: return '' def translate_links(self, text, in_comment=None): """ Turn all @link tags in `text` into HTML anchor tags. `in_comment` is the `CommentDoc` that contains the text, for relative method lookups. """ def replace_link(matchobj): ref = matchobj.group(1) return '<a href = "%s">%s</a>' % ( self.translate_ref_to_url(ref, in_comment), ref) return re.sub('{@link ([\w#]+)}', replace_link, text) def to_json(self, files=None): """ Converts the full CodeBaseDoc into JSON text. The optional `files` list lets you restrict the JSON dict to include only specific files. """ return encode_json(self.to_dict(files)) def to_dict(self, files=None): """ Converts the CodeBaseDoc into a dictionary containing the to_dict() representations of each contained file. The optional `files` list lets you restrict the dict to include only specific files. >>> CodeBaseDoc(['examples']).to_dict(['class.js']).get('module.js') >>> CodeBaseDoc(['examples']).to_dict(['class.js'])['class.js'][0]['name'] 'MyClass' """ keys = files or list(self.keys()) return dict((key, self[key].to_dict()) for key in keys) def to_html(self): """ Builds basic HTML for the full module index. """ return '<h1>Module index</h1>\n' + \ make_index('all_modules', list(self.values())) def save_docs(self, files=None, output_dir=None): """ Save documentation files for codebase into `output_dir`. If output dir is None, it'll refrain from building the index page and build the file(s) in the current directory. If `files` is None, it'll build all files in the codebase. """ if output_dir: try: os.mkdir(output_dir) except OSError: pass try: import pkg_resources save_file(os.path.join(output_dir, 'jsdoc.css'), pkg_resources.resource_string(__name__, 'static/jsdoc.css')) except (ImportError, IOError): try: import shutil base_dir = os.path.dirname(os.path.realpath(__file__)) css_file = os.path.join(base_dir, 'jsdoc.css') shutil.copy(css_file, output_dir) except IOError: print('jsdoc.css not found. HTML will not be styled.') save_file('%s/index.html' % output_dir, build_html_page('Module index', self.to_html())) else: output_dir = '.' if files is None: files = list(self.keys()) for filename in files: try: doc = self[filename] save_file('%s/%s.html' % (output_dir, trim_js_ext(doc.name)), build_html_page(doc.name, doc.to_html(self))) except KeyError: warn('File %s does not exist', filename) class FileDoc(object): """ Represents documentaion for an entire file. The constructor takes the source text for file, parses it, then provides a class wrapper around the parsed text. """ def __init__(self, file_name, file_text): """ Construct a FileDoc. `file_name` is the name of the JavaScript file, `file_text` is its text. """ self.name = file_name self.order = [] self.comments = { 'file_overview': ModuleDoc({}) } is_first = True for comment, next_line in get_doc_comments(file_text): raw = parse_comment(strip_stars(comment), next_line) if 'fileoverview' in raw: obj = ModuleDoc(raw) elif raw.get('function') or raw.get('guessed_function'): obj = FunctionDoc(raw) elif raw.get('class'): obj = ClassDoc(raw) elif is_first: obj = ModuleDoc(raw) else: continue self.order.append(obj.name) self.comments[obj.name] = obj is_first = False for method in self.methods: try: self.comments[method.member].add_method(method) except AttributeError: warn('member %s of %s is not a class', method.member, method.name) except KeyError: pass def __str__(self): return "Docs for file " + self.name def keys(self): """ Returns all legal names for doc comments. >>> file = FileDoc('module.js', read_file('examples/module.js')) >>> file.keys()[1] 'the_first_function' >>> file.keys()[4] 'not_auto_discovered' """ return self.order def values(self): """ Same as list(file_doc). >>> file = FileDoc('module.js', read_file('examples/module.js')) >>> file.values()[0].doc[:30] 'This is the module documentati' """ return list(self) def __iter__(self): """ Returns all comments from the file, in the order they appear. """ return (self.comments[name] for name in self.order) def __contains__(self, name): """ Returns True if the specified function or class name is in this file. """ return name in self.comments def __getitem__(self, index): """ If `index` is a string, returns the named method/function/class from the file. >>> file = FileDoc('module.js', read_file('examples/module.js')) >>> file['the_second_function'].doc 'This is the documentation for the second function.' If `index` is an integer, returns the ordered comment from the file. >>> file[0].name 'file_overview' >>> file[0].doc[:30] 'This is the module documentati' """ if isinstance(index, int): return self.comments[self.order[index]] else: return self.comments[index] def set_all_dependencies(self, dependencies): """ Sets the `all_dependencies` property on the module documentation. """ self.comments['file_overview'].all_dependencies = dependencies @property def module(self): """ Return the `ModuleDoc` comment for this file. """ return self.comments['file_overview'] @property def doc(self): """ Shortcut for ``self.module.doc``. """ return self.module.doc @property def url(self): return trim_js_ext(self.name) + '.html' def _filtered_iter(self, pred): return (self.comments[name] for name in self.order if pred(self.comments[name])) @property def functions(self): """ Returns a generator of all standalone functions in the file, in textual order. >>> file = FileDoc('module.js', read_file('examples/module.js')) >>> list(file.functions)[0].name 'the_first_function' >>> list(file.functions)[3].name 'not_auto_discovered' """ def is_function(comment): return isinstance(comment, FunctionDoc) and not comment.member return self._filtered_iter(is_function) @property def methods(self): """ Returns a generator of all member functions in the file, in textual order. >>> file = FileDoc('class.js', read_file('examples/class.js')) >>> file.methods.next().name 'first_method' """ def is_method(comment): return isinstance(comment, FunctionDoc) and comment.member return self._filtered_iter(is_method) @property def classes(self): """ Returns a generator of all classes in the file, in textual order. >>> file = FileDoc('class.js', read_file('examples/class.js')) >>> cls = file.classes.next() >>> cls.name 'MyClass' >>> cls.methods[0].name 'first_method' """ return self._filtered_iter(lambda c: isinstance(c, ClassDoc)) def to_dict(self): return [comment.to_dict() for comment in self] def to_html(self, codebase): if codebase.include_private: def visible(fns): return fns else: def visible(fns): return [fn for fn in fns if not fn.is_private] vars = [ ('module', self.module.to_html(codebase)), ('function_index', make_index('functions', visible(self.functions))), ('class_index', make_index('classes', self.classes)), ('functions', '\n'.join(fn.to_html(codebase) for fn in visible(self.functions))), ('classes', '\n'.join(cls.to_html(codebase) for cls in self.classes)) ] html = '<h1>Module documentation for %s</h1>\n%s' % (self.name, htmlize_paragraphs(codebase.translate_links(self.module.doc))) for key, html_text in vars: if html_text: html += '<h2>%s</h2>\n%s' % (printable(key), html_text) return html class CommentDoc(object): """ Base class for all classes that represent a parsed comment of some sort. """ def __init__(self, parsed_comment): self.parsed = parsed_comment def __str__(self): return "Docs for " + self.name def __repr__(self): return str(self) def __contains__(self, tag_name): return tag_name in self.parsed def __getitem__(self, tag_name): return self.get(tag_name) def get(self, tag_name, default=''): """ Return the value of a particular tag, or None if that tag doesn't exist. Use 'doc' for the comment body itself. """ return self.parsed.get(tag_name, default) def get_as_list(self, tag_name): """ Return the value of a tag, making sure that it's a list. Absent tags are returned as an empty-list; single tags are returned as a one-element list. The returned list is a copy, and modifications do not affect the original object. """ val = self.get(tag_name, []) if isinstance(val, list): return val[:] else: return [val] @property def doc(self): """ Return the comment body. """ return self.get('doc') @property def url(self): """ Return a URL for the comment, within the page. """ return '#' + self.name @property def see(self): """ Return a list of all @see tags on the comment. """ return self.get_as_list('see') def to_json(self): """ Return a JSON representation of the CommentDoc. Keys are as per to_dict. """ return encode_json(self.to_dict()) def to_dict(self): """ Return a dictionary representation of the CommentDoc. The keys of this correspond to the tags in the comment, with the comment body in `doc`. """ return self.parsed.copy() class ModuleDoc(CommentDoc): """ Represents the top-level fileoverview documentation. """ @property def name(self): """ Always return 'file_overview'. """ return 'file_overview' @property def author(self): """ Return the author of this module, as a string. """ return self.get('author') @property def organization(self): """ Return the organization that developed this, as as string. """ return self.get('organization') @property def license(self): """ Return the license of this module, as as string. """ return self.get('license') @property def version(self): """ Return the version of this module, as as string. """ return self.get('version') @property def dependencies(self): """ Returns the immediate dependencies of a module (only those that are explicitly declared). Use the `all_dependencies` field for transitive dependencies - the FileDoc must have been created by a CodeBaseDoc for this field to exist. >>> FileDoc('', read_file('examples/module_closure.js')).module.dependencies ['module.js'] >>> FileDoc('subclass.js', read_file('examples/subclass.js')).module.dependencies ['module_closure.js', 'class.js'] """ return self.get_as_list('dependency') def to_dict(self): """ Return this ModuleDoc as a dict. In addition to `CommentDoc` defaults, this has: - **name**: The module name. - **dependencies**: A list of immediate dependencies. - **all_dependencies**: A list of all dependencies. """ vars = super(ModuleDoc, self).to_dict() vars['dependencies'] = self.dependencies vars['name'] = self.name try: vars['all_dependencies'] = self.all_dependencies[:] except AttributeError: vars['all_dependencies'] = [] return vars def to_html(self, codebase): """ Convert this to HTML. """ html = '' def build_line(key, include_pred, format_fn): val = getattr(self, key) if include_pred(val): return '<dt>%s</dt><dd>%s</dd>\n' % (printable(key), format_fn(val)) else: return '' def build_dependency(val): return ', '.join('<a href = "%s.html">%s</a>' % (trim_js_ext(name), name) for name in val) for key in ('author', 'organization', 'version', 'license'): html += build_line(key, lambda val: val, lambda val: val) html += build_line('dependencies', lambda val: val, build_dependency) html += build_line('all_dependencies', lambda val: len(val) > 1, build_dependency) html += codebase.build_see_html(self.see, 'h3') if html: return '<dl class = "module">\n%s\n</dl>\n' % html else: return '' class FunctionDoc(CommentDoc): r""" Documentation for a single function or method. Takes a parsed comment and provides accessors for accessing the various fields. >>> comments = parse_comments_for_file('examples/module_closure.js') >>> fn1 = FunctionDoc(comments[1]) >>> fn1.name 'the_first_function' >>> fn1.doc 'The auto-naming can pick up functions defined as fields of an object,\n as is common with classes and the module pattern.' """ def __init__(self, parsed_comment): super(FunctionDoc, self).__init__(parsed_comment) @property def name(self): return self.get('guessed_function') or self.get('function') @property def params(self): """ Returns a ParamDoc for each parameter of the function, picking up the order from the actual parameter list. >>> comments = parse_comments_for_file('examples/module_closure.js') >>> fn2 = FunctionDoc(comments[2]) >>> fn2.params[0].name 'elem' >>> fn2.params[1].type 'Function(DOM)' >>> fn2.params[2].doc 'The Options array.' """ tag_texts = self.get_as_list('param') + self.get_as_list('argument') if self.get('guessed_params') is None: return [ParamDoc(text) for text in tag_texts] else: param_dict = {} for text in tag_texts: param = ParamDoc(text) param_dict[param.name] = param return [param_dict.get(name) or ParamDoc('{} ' + name) for name in self.get('guessed_params')] @property def options(self): """ Return the options for this function, as a list of ParamDocs. This is a common pattern for emulating keyword arguments. >>> comments = parse_comments_for_file('examples/module_closure.js') >>> fn2 = FunctionDoc(comments[2]) >>> fn2.options[0].name 'foo' >>> fn2.options[1].type 'Int' >>> fn2.options[1].doc 'Some other option' """ return [ParamDoc(text) for text in self.get_as_list('option')] @property def return_val(self): """ Returns the return value of the function, as a ParamDoc with an empty name: >>> comments = parse_comments_for_file('examples/module_closure.js') >>> fn1 = FunctionDoc(comments[1]) >>> fn1.return_val.name '' >>> fn1.return_val.doc 'Some value' >>> fn1.return_val.type 'String' >>> fn2 = FunctionDoc(comments[2]) >>> fn2.return_val.doc 'Some property of the elements.' >>> fn2.return_val.type 'Array<String>' """ ret = self.get('return') or self.get('returns') type = self.get('type') if '{' in ret and '}' in ret: if not '} ' in ret: # Ensure that name is empty ret = ret.replace('} ', '} ') return ParamDoc(ret) if ret and type: return ParamDoc('{%s} %s' % (type, ret)) return ParamDoc(ret) @property def exceptions(self): """ Returns a list of ParamDoc objects (with empty names) of the exception tags for the function. >>> comments = parse_comments_for_file('examples/module_closure.js') >>> fn1 = FunctionDoc(comments[1]) >>> fn1.exceptions[0].doc 'Another exception' >>> fn1.exceptions[1].doc 'A fake exception' >>> fn1.exceptions[1].type 'String' """ def make_param(text): if '{' in text and '}' in text: # Make sure param name is blank: word_split = list(split_delimited('{}', ' ', text)) if word_split[1] != '': text = ' '.join([word_split[0], ''] + word_split[1:]) else: # Handle old JSDoc format word_split = text.split() text = '{%s} %s' % (word_split[0], ' '.join(word_split[1:])) return ParamDoc(text) return [make_param(text) for text in self.get_as_list('throws') + self.get_as_list('exception')] @property def is_private(self): """ Return True if this is a private function or method. """ return 'private' in self.parsed @property def member(self): """ Return the raw text of the @member tag, a reference to a method's containing class, or None if this is a standalone function. """ return self.get('member') @property def is_constructor(self): """ Return True if this function is a constructor. """ return 'constructor' in self.parsed def to_dict(self): """ Convert this FunctionDoc to a dictionary. In addition to `CommentDoc` keys, this adds: - **name**: The function name - **params**: A list of parameter dictionaries - **options**: A list of option dictionaries - **exceptions**: A list of exception dictionaries - **return_val**: A dictionary describing the return type, as per `ParamDoc` - **is_private**: True if private - **is_constructor**: True if a constructor - **member**: The raw text of the member property. """ vars = super(FunctionDoc, self).to_dict() vars.update({ 'name': self.name, 'params': [param.to_dict() for param in self.params], 'options': [option.to_dict() for option in self.options], 'exceptions': [exc.to_dict() for exc in self.exceptions], 'return_val': self.return_val.to_dict(), 'is_private': self.is_private, 'is_constructor': self.is_constructor, 'member': self.member }) return vars def to_html(self, codebase): """ Convert this `FunctionDoc` to HTML. """ body = '' for section in ('params', 'options', 'exceptions'): val = getattr(self, section) if val: body += '<h5>%s</h5>\n<dl class = "%s">%s</dl>' % ( printable(section), section, '\n'.join(param.to_html() for param in val)) body += codebase.build_see_html(self.see, 'h5', self) return ('<a name = "%s" />\n<div class = "function">\n' + '<h4>%s</h4>\n%s\n%s\n</div>\n') % (self.name, self.name, htmlize_paragraphs(codebase.translate_links(self.doc, self)), body) class ClassDoc(CommentDoc): """ Documentation for a single class. """ def __init__(self, parsed_comment): """ Initialize this object from a parsed comment dictionary. `add_method` must be called later to populate the `methods` property with `FunctionDoc`. """ super(ClassDoc, self).__init__(parsed_comment) self.methods = [] # Methods are added externally with add_method, after construction @property def name(self): return self.get('class') or self.get('constructor') @property def superclass(self): """ Return the immediate superclass name of the class, as a string. For the full inheritance chain, use the `all_superclasses` property, which returns a list of objects and only works if this ClassDoc was created from a `CodeBaseDoc`. """ return self.get('extends') or self.get('base') @property def constructors(self): """ Return all methods labeled with the @constructor tag. """ return [fn for fn in self.methods if fn.is_constructor] def add_method(self, method): """ Add a `FunctionDoc` method to this class. Called automatically if this ClassDoc was constructed from a CodeBaseDoc. """ self.methods.append(method) def has_method(self, method_name): """ Returns True if this class contains the specified method. """ return self.get_method(method_name) is not None def get_method(self, method_name, default=None): """ Returns the contained method of the specified name, or `default` if not found. """ for method in self.methods: if method.name == method_name: return method return default def to_dict(self): """ Convert this ClassDoc to a dict, such as if you want to use it in a template or string interpolation. Aside from the basic `CommentDoc` fields, this also contains: - **name**: The class name - **method**: A list of methods, in their dictionary form. """ vars = super(ClassDoc, self).to_dict() vars.update({ 'name': self.name, 'method': [method.to_dict() for method in self.methods] }) return vars def to_html(self, codebase): """ Convert this ClassDoc to HTML. This returns the default long-form HTML description that's used when the full docs are built. """ return ('<a name = "%s" />\n<div class = "jsclass">\n' + '<h3>%s</h3>\n%s\n<h4>Methods</h4>\n%s</div>') % ( self.name, self.name, htmlize_paragraphs(codebase.translate_links(self.doc, self)) + codebase.build_see_html(self.see, 'h4', self), '\n'.join(method.to_html(codebase) for method in self.methods if codebase.include_private or not method.is_private)) class ParamDoc(object): """ Represents a parameter, option, or parameter-like object, basically anything that has a name, a type, and a description, separated by spaces. This is also used for return types and exceptions, which use an empty string for the name. >>> param = ParamDoc('{Array<DOM>} elems The elements to act upon') >>> param.name 'elems' >>> param.doc 'The elements to act upon' >>> param.type 'Array<DOM>' You can also omit the type: if the first element is not surrounded by curly braces, it's assumed to be the name instead: >>> param2 = ParamDoc('param1 The first param') >>> param2.type '' >>> param2.name 'param1' >>> param2.doc 'The first param' """ def __init__(self, text): parsed = list(split_delimited('{}', ' ', text)) if parsed[0].startswith('{') and parsed[0].endswith('}'): self.type = parsed[0][1:-1] self.name = parsed[1] self.doc = ' '.join(parsed[2:]) else: self.type = '' self.name = parsed[0] self.doc = ' '.join(parsed[1:]) def to_dict(self): """ Convert this to a dict. Keys (all strings) are: - **name**: Parameter name - **type**: Parameter type - **doc**: Parameter description """ return { 'name': self.name, 'type': self.type, 'doc': self.doc } def to_html(self, css_class=''): """ Returns the parameter as a dt/dd pair. """ if self.name and self.type: header_text = '%s (%s)' % (self.name, self.type) elif self.type: header_text = self.type else: header_text = self.name return '<dt>%s</dt><dd>%s</dd>' % (header_text, self.doc) ##### DEPENDENCIES ##### class CyclicDependency(Exception): """ Exception raised if there is a cyclic dependency. """ def __init__(self, remaining_dependencies): self.values = remaining_dependencies def __str__(self): return ('The following dependencies result in a cycle: ' + ', '.join(self.values)) class MissingDependency(Exception): """ Exception raised if a file references a dependency that doesn't exist. """ def __init__(self, file, dependency): self.file = file self.dependency = dependency def __str__(self): return "Couldn't find dependency %s when processing %s" % \ (self.dependency, self.file) def build_dependency_graph(start_nodes, js_doc): """ Build a graph where nodes are filenames and edges are reverse dependencies (so an edge from jquery.js to jquery.dimensions.js indicates that jquery.js must be included before jquery.dimensions.js). The graph is represented as a dictionary from filename to (in-degree, edges) pair, for ease of topological sorting. Also returns a list of nodes of degree zero. """ queue = [] dependencies = {} start_sort = [] def add_vertex(file): in_degree = len(js_doc[file].module.dependencies) dependencies[file] = [in_degree, []] queue.append(file) if in_degree == 0: start_sort.append(file) def add_edge(from_file, to_file): dependencies[from_file][1].append(to_file) def is_in_graph(file): return file in dependencies for file in start_nodes: add_vertex(file) for file in queue: for dependency in js_doc[file].module.dependencies: if dependency not in js_doc: raise MissingDependency(file, dependency) if not is_in_graph(dependency): add_vertex(dependency) add_edge(dependency, file) return dependencies, start_sort def topological_sort(dependencies, start_nodes): """ Perform a topological sort on the dependency graph `dependencies`, starting from list `start_nodes`. """ retval = [] def edges(node): return dependencies[node][1] def in_degree(node): return dependencies[node][0] def remove_incoming(node): dependencies[node][0] = in_degree(node) - 1 while start_nodes: node = start_nodes.pop() retval.append(node) for child in edges(node): remove_incoming(child) if not in_degree(child): start_nodes.append(child) leftover_nodes = [node for node in list(dependencies.keys()) if in_degree(node) > 0] if leftover_nodes: raise CyclicDependency(leftover_nodes) else: return retval def find_dependencies(start_nodes, js_doc): """ Sort the dependency graph, taking in a list of starting module names and a CodeBaseDoc (or equivalent dictionary). Returns an ordered list of transitive dependencies such that no module appears before its dependencies. """ return topological_sort(*build_dependency_graph(start_nodes, js_doc)) ##### HTML utilities ##### def build_html_page(title, body): """ Build the simple tag skeleton for a title and body. """ return """<html> <head> <title>%s</title> <link rel = "stylesheet" type = "text/css" href = "jsdoc.css" /> </head> <body> %s </body> </html>""" % (title, body) def make_index(css_class, entities): """ Generate the HTML index (a short description and a link to the full documentation) for a list of FunctionDocs or ClassDocs. """ def make_entry(entity): return ('<dt><a href = "%(url)s">%(name)s</a></dt>\n' + '<dd>%(doc)s</dd>') % { 'name': entity.name, 'url': entity.url, 'doc': first_sentence(entity.doc) } entry_text = '\n'.join(make_entry(val) for val in entities) if entry_text: return '<dl class = "%s">\n%s\n</dl>' % (css_class, entry_text) else: return '' def first_sentence(str): """ Return the first sentence of a string - everything up to the period, or the whole text if there is no period. >>> first_sentence('') '' >>> first_sentence('Incomplete') '' >>> first_sentence('The first sentence. This is ignored.') 'The first sentence.' """ return str[0:str.find('.') + 1] def htmlize_paragraphs(text): """ Convert paragraphs delimited by blank lines into HTML text enclosed in <p> tags. """ paragraphs = re.split('(\r?\n)\s*(\r?\n)', text) return '\n'.join('<p>%s</p>' % paragraph for paragraph in paragraphs) def printable(id): """ Turn a Python identifier into something fit for human consumption. >>> printable('author') 'Author' >>> printable('all_dependencies') 'All Dependencies' """ return ' '.join(word.capitalize() for word in id.split('_')) ##### Command-line functions ##### def usage(): command_name = sys.argv[0] print(""" Usage: %(name)s [options] file1.js file2.js ... By default, this tool recursively searches the current directory for .js files to build up its dependency database. This can be changed with the --jspath option (see below). It then outputs the JSDoc for the files on the command-line (if no files are listed, it generates the docs for the whole sourcebase). If only a single file is listed and no output directory is specified, the HTML page is placed in the current directory; otherwise, all pages and a module index are placed in the output directory. Available options: -p, --jspath Directory to search for JS libraries (multiple allowed) -o, --output Output directory for building full documentation (default: apidocs) --private Include private functions & methods in output --help Print usage information and exit --test Run PyJSDoc unit tests -j, --json Output doc parse tree in JSON instead of building HTML -d, --dependencies Output dependencies for file(s) only Cookbook of common tasks: Find dependencies of the Dimensions plugin in the jQuery CVS repository, filtering out packed files from the search path: $ %(name)s -d -p trunk/plugins jquery.dimensions.js Concatenate dependent plugins into a single file for web page: $ %(name)s -d rootfile1.js rootfile2.js | xargs cat > scripts.js Read documentation information for form plugin (including full dependencies), and include on a PHP web page using the PHP Services_JSON module: <?php $json = new Services_JSON(); $jsdoc = $json->decode(`%(name)s jquery.form.js -j -p trunk/plugins`); ?> Build documentation for all modules on your system: $ %(name)s -p ~/svn/js -o /var/www/htdocs/jqdocs """ % {'name': os.path.basename(command_name) }) def get_path_list(opts): """ Return a list of all root paths where JS files can be found, given the command line options (in dict form) for this script. """ paths = [] for opt, arg in list(opts.items()): if opt in ('-p', '--jspath'): paths.append(arg) return paths or [os.getcwd()] def run_and_exit_if(opts, action, *names): """ Run the no-arg function `action` if any of `names` appears in the option dict `opts`. """ for name in names: if name in opts: action() sys.exit(0) def run_doctests(): import doctest doctest.testmod() def main(args=sys.argv): """ Main command-line invocation. """ try: opts, args = getopt.gnu_getopt(args[1:], 'p:o:jdt', [ 'jspath=', 'output=', 'private', 'json', 'dependencies', 'test', 'help']) opts = dict(opts) except getopt.GetoptError: usage() sys.exit(2) run_and_exit_if(opts, run_doctests, '--test') run_and_exit_if(opts, usage, '--help') js_paths = get_path_list(opts) docs = CodeBaseDoc(js_paths, '--private' in opts) if args: selected_files = set(docs.keys()) & set(args) else: selected_files = list(docs.keys()) def print_json(): print(docs.to_json(selected_files)) run_and_exit_if(opts, print_json, '--json', '-j') def print_dependencies(): for dependency in find_dependencies(selected_files, docs): print(dependency) run_and_exit_if(opts, print_dependencies, '--dependencies', '-d') output = opts.get('--output') or opts.get('-o') if output is None and len(args) != 1: output = 'apidocs' docs.save_docs(selected_files, output) if __name__ == '__main__': main()
import subprocess import sys import pkg_resources def get_bin_path(package_name: str, name: str) -> str: bin_name = name if sys.platform == "win32": bin_name = bin_name + ".exe" return pkg_resources.resource_filename(package_name, f"bin/{bin_name}") import pkg_resources def multiply_ext(lhs: int, rhs: int) -> int: res = subprocess.run( [ get_bin_path("py_ext_bin_test", "c_test"), str(lhs), str(rhs), ], capture_output=True, text=True, ) if res.returncode != 0: raise ValueError("Problem with args") return int(res.stdout)
""" """ import copy def insert_sort(data): result = copy.deepcopy(data) for i in range(1, len(result)): key = result[i] left = i - 1 while left >= 0 and result[left] > key: result[left + 1] = result[left] left -= 1 result[left + 1] = key return result
import requests, os url = "https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_genomic.fna.gz" r = requests.get(url, allow_redirects=True) open("GRCh38_latest_genomic.fna.gz", "wb").write(r.content) os.system("gzip -d GRCh38_latest_genomic.fna.gz")
from typing import IO, Tuple import cv2 as cv import numpy as np from ..ModelBase import Justify, rgb from ..AbstractPlot import AbstractPlot from ..Typing import * def _pos(pos: POS_T) -> Tuple[int, int]: return (int(pos[0]*10), int(pos[1]*10)) def _pts(pts: PTS_T): res = [] for pos in pts: res.append((int(pos[0]*10), int(pos[1]*10))) return np.array([res], np.int32) def _color(color: rgb) -> List[int]: cols = [int(c * 255) for c in color.get()[:-1]] #cols.append('%') return cols def _align(align: List[Justify]): if Justify.LEFT in align: return 'start' if Justify.CENTER in align: return 'middle' return 'end' def _baseline(align: List[Justify]): if Justify.TOP in align: return 'hanging' if Justify.BOTTOM in align: return 'baseline' return 'middle' class PlotOpenCV(AbstractPlot): def __init__(self, file: IO, width: float, height: float, dpi: int, scale: float = 3.543307): self.file = file self.width = width self.height = height self.dpi = dpi self.scale = scale size = int(width*10), int(height*10), 3 self._image = np.zeros(size, dtype=np.uint8) def polyline(self, pts: PTS_T, width: float, color: rgb, fill: rgb|None = None)-> None: line_type = 8 cv.fillPoly(self._image, _pts(pts), (255, 255, 255), line_type) def rectangle(self, start: POS_T, end: POS_T, width: float, color: rgb, fill: rgb|None=None) -> None: _start = start _end = end if start[0] > end[0]: _tmp = _start[0] _start = (_end[0], _start[1]) _end = (_tmp, _end[1]) if start[1] > end[1]: _tmp = _start[1] _start = (start[0], _end[1]) _end = (end[0], _tmp) line_type = 8 cv.rectangle(self._image, _pos(_start), _pos(_end), (0, 255, 255), -1, 8) def line(self, pts: PTS_T, width: float, color: rgb) -> None: line_type = 8 cv.line(self._image, _pos(pts[0]), _pos(pts[1]), (0, 0, 0), int(width*10), line_type) def circle(self, pos: POS_T, radius: float, width: float, color: rgb, fill: rgb|None=None) -> None: line_type = 8 cv.circle(self._image, _pos(pos), int(radius), (0, 0, 255), int(width*10), line_type) def arc(self, pos: POS_T, radius: float, start: float, end: float, width: float, color: rgb, fill: rgb|None=None) -> None: line_type = 8 cv.circle(self._image, _pos(pos), radius, (0, 0, 255), int(width*10), line_type) def text(self, pos: POS_T, text: str, font_height: float, font_with: float, face: str, rotate: float, style: str, thickness: float, color: rgb, align: List[Justify]) -> None: font = cv.FONT_HERSHEY_SIMPLEX cv.putText(self._image,text, _pos(pos), font, 0.5,(0,0,0),2,cv.LINE_AA) def end(self) -> None: cv.imwrite(self.file, self._image)
import logging from rich.logging import RichHandler FORMAT = "%(message)s" logging.basicConfig(level="INFO", format=FORMAT, datefmt="[%X]", handlers=[RichHandler()]) log = logging.getLogger("rich")
import pandas as pd import h5py from collections import defaultdict from tqdm import tqdm import sys from pathlib import Path import warnings warnings.filterwarnings('ignore') def die(message, status=1): """Print an error message and call sys.exit with the given status, terminating the process""" print(message, file=sys.stderr) sys.exit(status) def get_dtypes(hdf5_path, enum_field): if h5py.check_dtype(enum=hdf5_path.dtype[enum_field]): # data_dtype may lose some dataset dtypes if there are duplicates of 'v' return {v: k for k, v in h5py.check_dtype(enum=hdf5_path.dtype[enum_field]).items()} def get_data(bulkfile_path, seq_sum_path, read_list=None, time=2, name=None, read_pos='end_time'): """ Get classification data from start or end of reads in a bulkfile Parameters ---------- bulkfile_path : str Path to bulk FAST5 file ss : pd.DataFrame Sequencing_summary file as pandas DataFrame read_list : list List of reads to get classifications for time : numeric (int or float) Time surrounding the end of a read to get classifications name : str (Optional) label to add onto returned data, useful for grouping read_pos : str Either 'start_time' or 'end_time' for classifications at start or end of reads Returns ------- list list of lists; with columns ['read_id', 'time', 'label', 'name'] """ ss = pd.read_csv(seq_sum_path, sep='\t', usecols=['run_id', 'read_id', 'channel', 'start_time', 'duration']) bf = h5py.File(bulkfile_path, 'r') sf = int(bf["UniqueGlobalKey"]["context_tags"].attrs["sample_frequency"].decode('utf8')) run_id = bf["UniqueGlobalKey"]["tracking_id"].attrs["run_id"].decode('utf8') ss = ss[ss['run_id'] == run_id] ss['end_time'] = ss['start_time'] + ss['duration'] # ss['end_time'] = ss['end_time'] conv = {'acquisition_raw_index': 'read_start', 'summary_state': 'modal_classification'} if read_list is not None: ss = ss[ss['read_id'].isin(read_list)] channels = ss['channel'].unique() # get label dtypes labels_dt = get_dtypes( bf['IntermediateData']['Channel_' + str(channels[0])]['Reads'], 'modal_classification' ) labels_dt.update( get_dtypes(bf['StateData']['Channel_' + str(channels[0])]['States'], 'summary_state') ) int_data = defaultdict() state_data = defaultdict() b = [] for ch in tqdm(channels): path = bf['IntermediateData']['Channel_' + str(ch)]['Reads'] for f in ['read_id', 'modal_classification', 'read_start']: int_data[f] = path[f] path = bf['StateData']['Channel_' + str(ch)]['States'] for f in ['acquisition_raw_index', 'summary_state']: state_data[conv[f]] = path[f] df = pd.concat([pd.DataFrame(int_data), pd.DataFrame(state_data)], axis=0) df['read_id'] = df['read_id'].str.decode('utf8') df.sort_values(by='read_start', ascending=True, inplace=True) df['read_id'] = df['read_id'].fillna(method='ffill') df['modal_classification'] = df['modal_classification'].map(labels_dt) df['read_start'] = df['read_start'] / sf temp_ss = ss[ss['channel'] == ch] for idx, row in temp_ss.iterrows(): before = df[df['read_start'].between(row[read_pos] - time, row[read_pos], inclusive=False)] after = df[df['read_start'].between(row[read_pos], row[read_pos] + time, inclusive=True)] for i, r in before.iterrows(): b.append([row['read_id'], r['read_start'] - row[read_pos], r['modal_classification'], name ]) for i, r in after.iterrows(): b.append([row['read_id'], r['read_start'] - row[read_pos], r['modal_classification'], name ]) bf.close() return b def main(): if len(sys.argv) < 3: die('Usage: python {s} sequencing_summary.txt <path/to/bulkfile/directory>'.format(s=sys.argv[0])) files = [[p] for p in Path(sys.argv[2]).iterdir() if p.suffix == '.fast5'] if not files: die('No bulk FAST5 files found in {}'.format(sys.argv[2])) for t in files: f = h5py.File(t[0], 'r') t.append(f["UniqueGlobalKey"]["tracking_id"].attrs["run_id"].decode('utf8')) f.close() for file_name, run_id in files: print('{},\t{}'.format(file_name, run_id)) print('Collecting ends:') filename = 'end_events.csv' paginate = False for t in files: end_data = get_data(t[0], sys.argv[1], time=2, name=t[1], read_pos='end_time') df = pd.DataFrame(end_data, columns=['read_id', 'time', 'label', 'comment']) if not df.empty and not paginate: df.to_csv(filename, sep=',', header=True, index=False) paginate = True elif not df.empty and paginate: with open(filename, 'a') as file: df.to_csv(file, sep=',', header=False, index=False) else: print('df is empty') print('Collecting starts:') filename = 'start_events.csv' paginate = True for t in files: end_data = get_data(t[0], sys.argv[1], time=2, name=t[1], read_pos='start_time') df = pd.DataFrame(end_data, columns=['read_id', 'time', 'label', 'comment']) if not df.empty and not paginate: df.to_csv(filename, sep=',', header=True, index=False) paginate = True elif not df.empty and paginate: with open(filename, 'a') as file: df.to_csv(file, sep=',', header=False, index=False) else: print('df is empty') if __name__ == '__main__': main()
from .process import Command as ProcessCommand from .sample_video import Command as SampleCommand class Command: name = "video_process" help = "sample video into images and process the images" def add_basic_arguments(self, parser): SampleCommand().add_basic_arguments(parser) ProcessCommand().add_basic_arguments(parser) def run(self, args: dict): SampleCommand().run(args) ProcessCommand().run(args)
import json import logging import pytest AED_CLOUD_ACTIVITY_EVENT_DICT = json.loads( """{ "url": "https://www.example.com", "syncDestination": "TEST_SYNC_DESTINATION", "sharedWith": [{"cloudUsername": "[email protected]"}, {"cloudUsername": "[email protected]"}], "cloudDriveId": "TEST_CLOUD_DRIVE_ID", "actor": "[email protected]", "tabUrl": "TEST_TAB_URL", "windowTitle": "TEST_WINDOW_TITLE" }""" ) AED_REMOVABLE_MEDIA_EVENT_DICT = json.loads( """{ "removableMediaVendor": "TEST_VENDOR_NAME", "removableMediaName": "TEST_NAME", "removableMediaSerialNumber": "TEST_SERIAL_NUMBER", "removableMediaCapacity": 5000000, "removableMediaBusType": "TEST_BUS_TYPE" }""" ) AED_EMAIL_EVENT_DICT = json.loads( """{ "emailSender": "TEST_EMAIL_SENDER", "emailRecipients": ["[email protected]", "[email protected]"] }""" ) AED_EVENT_DICT = json.loads( """{ "eventId": "0_1d71796f-af5b-4231-9d8e-df6434da4663_912339407325443353_918253081700247636_16", "eventType": "READ_BY_APP", "eventTimestamp": "2019-09-09T02:42:23.851Z", "insertionTimestamp": "2019-09-09T22:47:42.724Z", "filePath": "/Users/testtesterson/Downloads/About Downloads.lpdf/Contents/Resources/English.lproj/", "fileName": "InfoPlist.strings", "fileType": "FILE", "fileCategory": "UNCATEGORIZED", "fileSize": 86, "fileOwner": "testtesterson", "md5Checksum": "19b92e63beb08c27ab4489fcfefbbe44", "sha256Checksum": "2e0677355c37fa18fd20d372c7420b8b34de150c5801910c3bbb1e8e04c727ef", "createTimestamp": "2012-07-22T02:19:29Z", "modifyTimestamp": "2012-12-19T03:00:08Z", "deviceUserName": "[email protected]", "osHostName": "Test's MacBook Air", "domainName": "192.168.0.3", "publicIpAddress": "71.34.4.22", "privateIpAddresses": [ "fe80:0:0:0:f053:a9bd:973:6c8c%utun1", "fe80:0:0:0:a254:cb31:8840:9d6b%utun0", "0:0:0:0:0:0:0:1%lo0", "192.168.0.3", "fe80:0:0:0:0:0:0:1%lo0", "fe80:0:0:0:8c28:1ac9:5745:a6e7%utun3", "fe80:0:0:0:2e4a:351c:bb9b:2f28%utun2", "fe80:0:0:0:6df:855c:9436:37f8%utun4", "fe80:0:0:0:ce:5072:e5f:7155%en0", "fe80:0:0:0:b867:afff:fefc:1a82%awdl0", "127.0.0.1" ], "deviceUid": "912339407325443353", "userUid": "912338501981077099", "actor": null, "directoryId": [], "source": "Endpoint", "url": null, "shared": null, "sharedWith": [], "sharingTypeAdded": [], "cloudDriveId": null, "detectionSourceAlias": null, "fileId": null, "exposure": [ "ApplicationRead" ], "processOwner": "testtesterson", "processName": "/Applications/Google Chrome.app/Contents/MacOS/Google Chrome", "removableMediaVendor": null, "removableMediaName": null, "removableMediaSerialNumber": null, "removableMediaCapacity": null, "removableMediaBusType": null, "syncDestination": null }""" ) @pytest.fixture() def mock_log_record(mocker): return mocker.MagicMock(spec=logging.LogRecord) @pytest.fixture def mock_file_event_log_record(mock_log_record): mock_log_record.msg = AED_EVENT_DICT return mock_log_record @pytest.fixture def mock_file_event_removable_media_event_log_record(mock_log_record): mock_log_record.msg = AED_REMOVABLE_MEDIA_EVENT_DICT return mock_log_record @pytest.fixture def mock_file_event_cloud_activity_event_log_record(mock_log_record): mock_log_record.msg = AED_CLOUD_ACTIVITY_EVENT_DICT return mock_log_record @pytest.fixture def mock_file_event_email_event_log_record(mock_log_record): mock_log_record.msg = AED_EMAIL_EVENT_DICT return mock_log_record
from django.contrib import admin from django.utils.translation import gettext_lazy as _ from playexo.models import Answer, HighestGrade class EvalListFilter(admin.SimpleListFilter): # Human-readable title which will be displayed in the # right admin sidebar just above the filter options. title = _('Eval') # Parameter for the filter that will be used in the URL query. parameter_name = 'grade' def lookups(self, request, model_admin): """ Returns a list of tuples. The first element in each tuple is the coded value for the option that will appear in the URL query. The second element is the human-readable name for the option that will appear in the right sidebar. """ return ( ('100', _('success')), ('0', _('nul')), ('-1', _('Error')), ('-', _('Build')), ) def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. """ # Compare the requested value (either '80s' or '90s') # to decide how to filter the queryset. if self.value() == '100': return queryset.filter(grade=100) if self.value() == '0': return queryset.filter(grade=0) if self.value() == '-': return queryset.filter(grade=None) if self.value() == '-1': return queryset.filter(grade=-1) @admin.register(Answer) class AnswerAdmin(admin.ModelAdmin): list_display = ('user', 'pl', 'grade', 'seed', 'date', 'activity') list_filter = (EvalListFilter, 'date') @admin.register(HighestGrade) class HighestGradeAdmin(admin.ModelAdmin): list_display = ('user', 'pl', 'grade', 'activity')
#!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2021/5/20 下午11:47 # @Author : Joselynzhao # @Email : [email protected] # @File : DataFrame.py # @Software: PyCharm # @Desc :
# libraries import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import os,sys import matplotlib.dates as mdates import matplotlib as mpl from matplotlib.colors import ListedColormap from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.offsetbox import AnchoredText from mpl_toolkits.axisartist.axislines import Axes from mpl_toolkits import axisartist sys.path.append( os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) ) from src.utils.settings import config from src.models.icestupaClass import Icestupa from src.models.methods.metadata import get_parameter_metadata if __name__ == "__main__": locations = ['guttannen21', 'gangles21','guttannen20', 'schwarzsee19'] index = pd.date_range(start ='1-1-2022', end ='1-1-2024', freq ='D', name= "When") df_out = pd.DataFrame(columns=locations,index=index) fig, ax = plt.subplots(4, 1, sharex='col', figsize=(12, 14)) fig.subplots_adjust(hspace=0.4, wspace=0.4) i=0 blue = "#0a4a97" red = "#e23028" purple = "#9673b9" green = "#28a745" orange = "#ffc107" pink = "#ce507a" skyblue = "#9bc4f0" grey = '#ced4da' CB91_Blue = "#2CBDFE" CB91_Green = "#47DBCD" CB91_Pink = "#F3A0F2" CB91_Purple = "#9D2EC5" CB91_Violet = "#661D98" CB91_Amber = "#F5B14C" for location in locations: # Get settings for given location and trigger SITE, FOLDER = config(location) icestupa = Icestupa(location) icestupa.read_output() icestupa.self_attributes() df = icestupa.df[["When","iceV"]] df_c = pd.read_hdf(FOLDER["input"] + "model_input_" + icestupa.trigger + ".h5", "df_c") if icestupa.name in ["guttannen21", "guttannen20"]: df_c = df_c[1:] df_c = df_c.set_index("When").resample("D").mean().reset_index() dfv = df_c[["When", "DroneV", "DroneVError"]] if location == 'schwarzsee19': df['When'] = df['When'].mask(icestupa.df['When'].dt.year == 2019, icestupa.df['When'] + pd.offsets.DateOffset(year=2023)) dfv['When'] = dfv['When'].mask(df_c['When'].dt.year == 2019, df_c['When'] + pd.offsets.DateOffset(year=2023)) if location == 'guttannen20': df['When'] = df['When'].mask(icestupa.df['When'].dt.year == 2019, icestupa.df['When'] + pd.offsets.DateOffset(year=2022)) df['When'] = df['When'].mask(icestupa.df['When'].dt.year == 2020, icestupa.df['When'] + pd.offsets.DateOffset(year=2023)) dfv['When'] = dfv['When'].mask(df_c['When'].dt.year == 2019, df_c['When'] + pd.offsets.DateOffset(year=2022)) dfv['When'] = dfv['When'].mask(df_c['When'].dt.year == 2020, df_c['When'] + pd.offsets.DateOffset(year=2023)) if location == 'guttannen21': df['When'] = df['When'].mask(icestupa.df['When'].dt.year == 2020, icestupa.df['When'] + pd.offsets.DateOffset(year=2022)) dfv['When'] = dfv['When'].mask(df_c['When'].dt.year == 2020, df_c['When'] + pd.offsets.DateOffset(year=2022)) df['When'] = df['When'].mask(icestupa.df['When'].dt.year == 2021, icestupa.df['When'] + pd.offsets.DateOffset(year=2023)) dfv['When'] = dfv['When'].mask(df_c['When'].dt.year == 2021, df_c['When'] + pd.offsets.DateOffset(year=2023)) dfd = df.set_index("When").resample("D").mean().reset_index() dfd = dfd.set_index("When") df_out[location] = dfd["iceV"] df_out = df_out.reset_index() x = df_out.When y1 = df_out[location] x2 = dfv.When y2 = dfv.DroneV ax[i].plot( x, y1, "b-", label="Modelled Volume", linewidth=1, color=CB91_Blue, zorder=1, ) ax[i].scatter(x2, y2, color=CB91_Green, s=5, label="Measured Volume", zorder=2) # ax[i].fill_between(x, y1=icestupa.V_dome, y2=0, color=grey, label = "Dome Volume") ax[i].set_ylim(0, round(df_out[location].max(),0)) if location == "gangles21": ax[i].set_ylim(0, round(y2.max()+1,0)) v = get_parameter_metadata(location) ax[i].title.set_text(v["fullname"]) # ax[i].title(location) # Hide the right and top spines ax[i].spines['right'].set_visible(False) ax[i].spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax[i].yaxis.set_ticks_position('left') ax[i].xaxis.set_ticks_position('bottom') ax[i].yaxis.set_major_locator(plt.LinearLocator(numticks=2)) ax[i].xaxis.set_major_locator(mdates.MonthLocator()) ax[i].xaxis.set_major_formatter(mdates.DateFormatter("%b %d")) fig.autofmt_xdate() df_out = df_out.set_index("When") i+=1 fig.text(0.04, 0.5, 'Ice Volume[$m^3$]', va='center', rotation='vertical') handles, labels = ax[1].get_legend_handles_labels() fig.legend(handles, labels, loc='upper right') fig.suptitle('Artificial Ice Reservoirs', fontsize=16) # plt.legend() plt.savefig("data/paper/try2.jpg", bbox_inches="tight", dpi=300) df_out = df_out.dropna(thresh=1) df_out = df_out.to_csv("data/paper/results.csv")
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2018 Dan Tès <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. import re from struct import unpack # SMP = Supplementary Multilingual Plane: https://en.wikipedia.org/wiki/Plane_(Unicode)#Overview SMP_RE = re.compile(r"[\U00010000-\U0010FFFF]") def add_surrogates(text): # Replace each SMP code point with a surrogate pair return SMP_RE.sub( lambda match: # Split SMP in two surrogates "".join(chr(i) for i in unpack("<HH", match.group().encode("utf-16le"))), text ) def remove_surrogates(text): # Replace each surrogate pair with a SMP code point return text.encode("utf-16", "surrogatepass").decode("utf-16")
from usure.preprocessing.cleaning.twittercorpuscleaner import TwitterCorpusCleaner def can_remove_all_id_test(): cleaner = TwitterCorpusCleaner() text = "\"406449856862232577\",\"\"Las despedidas no deberian existir\"\"" cleaned_text = "\"\"Las despedidas no deberian existir\"\"" procesed_text = cleaner.clean(text) assert procesed_text == cleaned_text
# Exercício Python 067 # Mostre a tabuada de varios números, um de cada vez, para cada valor digitado pelo usuário # Programa interrompido quando N for negativo while True: print('=-=' * 14) n = int(input('Você quer saber a tabuada de qual valor? ')) if n < 0: break contador = 0 while contador < 10: contador = contador + 1 produto = n * contador print(f'{n} x {contador:2} = {produto}') print('FIM!')
# Generated by Django 2.1.1 on 2018-09-19 19:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('custom', '0001_initial'), ] operations = [ migrations.AddField( model_name='riskfield', name='risk_type', field=models.ForeignKey( default=1, on_delete=django.db.models.deletion.CASCADE, related_name='risk_fields', to='custom.RiskType' ), preserve_default=False, ), ]
# AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"say_hello": "00_core.ipynb", "say_bye": "00_core.ipynb", "optimize_bayes_param": "01_bayes_opt.ipynb", "ReadTabBatchIdentity": "02_tab_ae.ipynb", "TabularPandasIdentity": "02_tab_ae.ipynb", "TabDataLoaderIdentity": "02_tab_ae.ipynb", "RecreatedLoss": "02_tab_ae.ipynb", "BatchSwapNoise": "02_tab_ae.ipynb", "TabularAE": "02_tab_ae.ipynb", "HyperparamsGenerator": "03_param_finetune.ipynb", "XgboostParamGenerator": "03_param_finetune.ipynb", "LgbmParamGenerator": "03_param_finetune.ipynb", "CatParamGenerator": "03_param_finetune.ipynb", "RFParamGenerator": "03_param_finetune.ipynb", "ModelIterator": "04_model_zoo.ipynb"} modules = ["core.py", "bayes_opt.py", "tab_ae.py", "params.py", "model_iterator.py"] doc_url = "https://DavidykZhao.github.io/Yikai_helper_funcs/" git_url = "https://github.com/DavidykZhao/Yikai_helper_funcs/tree/master/" def custom_doc_links(name): return None
import tensorflow as tf import numpy as np print(tf.__version__) from tensorflow.contrib.learn.python.learn.datasets import base IRIS_TRAINING="iris_training.csv" IRIS_TEST="iris_test.csv" traning_set=base.load_csv_with_header(filename=IRIS_TRAINING,features_dtype=np.float32,target_dtype=np.int) test_set=base.load_csv_with_header(filename=IRIS_TEST,features_dtype=np.float32,target_dtype=np.int) feature_name="flower_features" feature_columns=[tf.feature_column.numeric_column(feature_name,shape=[4])] classifier=tf.estimator.LinearClassifier(feature_columns=feature_columns,n_classes=3, model_dir="\\tmp\\iris_model") def input_fn(dataset): def _fn(): features={feature_name:tf.constant(dataset.data)} label=tf.constant(dataset.target) return features,label return _fn classifier.train(input_fn=input_fn(traning_set),steps=1000) print("fit done") accuracy_score =classifier.evaluate(input_fn=input_fn(test_set),steps=100)["accuracy"] print("\nAccuracy: {0:f}".format(accuracy_score)) feature_spec={'flower_features':tf.FixedLenFeature(shape=[4],dtype=np.float32)} serving_fn=tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec) classifier.export_savedmodel(export_dir_base="\\tmp\\iris_model"+"\\export",serving_input_receiver_fn=serving_fn)
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- def cf_timeseriesinsights_cl(cli_ctx, *_): from azure.cli.core.commands.client_factory import get_mgmt_service_client from .vendored_sdks.timeseriesinsights import TimeSeriesInsightsClient return get_mgmt_service_client(cli_ctx, TimeSeriesInsightsClient) def cf_environment(cli_ctx, *_): return cf_timeseriesinsights_cl(cli_ctx).environments def cf_event_source(cli_ctx, *_): return cf_timeseriesinsights_cl(cli_ctx).event_sources def cf_reference_data_set(cli_ctx, *_): return cf_timeseriesinsights_cl(cli_ctx).reference_data_sets def cf_access_policy(cli_ctx, *_): return cf_timeseriesinsights_cl(cli_ctx).access_policies
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import logging from collections import namedtuple from flask import Flask from flask_cors import CORS from threading import Thread from builtins import str from gevent.pywsgi import WSGIServer from typing import Text, Optional, Union, List import rasa_core from rasa_core import constants, agent from rasa_core import utils, server from rasa_core.agent import Agent from rasa_core.channels import ( console, RestInput, InputChannel, BUILTIN_CHANNELS) from rasa_core.constants import DOCS_BASE_URL from rasa_core.interpreter import ( NaturalLanguageInterpreter) from rasa_core.utils import read_yaml_file from rasa_core.bot_server_channel import BotServerInputChannel logger = logging.getLogger() # get the root logger AvailableEndpoints = namedtuple('AvailableEndpoints', 'nlg ' 'nlu ' 'action ' 'model') def create_argument_parser(): """Parse all the command line arguments for the run script.""" parser = argparse.ArgumentParser( description='starts the bot') parser.add_argument( '-d', '--core', required=True, type=str, help="core model to run") parser.add_argument( '-u', '--nlu', type=str, help="nlu model to run") parser.add_argument( '-p', '--port', default=constants.DEFAULT_SERVER_PORT, type=int, help="port to run the server at") parser.add_argument( '--auth_token', type=str, help="Enable token based authentication. Requests need to provide " "the token to be accepted.") parser.add_argument( '--cors', nargs='*', type=str, help="enable CORS for the passed origin. " "Use * to whitelist all origins") parser.add_argument( '-o', '--log_file', type=str, default="rasa_core.log", help="store log file in specified file") parser.add_argument( '--credentials', default=None, help="authentication credentials for the connector as a yml file") parser.add_argument( '--endpoints', default=None, help="Configuration file for the connectors as a yml file") parser.add_argument( '-c', '--connector', default="cmdline", choices=["facebook", "slack", "telegram", "mattermost", "cmdline", "twilio", "botframework", "rocketchat","bot"], help="service to connect to") parser.add_argument( '--enable_api', action="store_true", help="Start the web server api in addition to the input channel") utils.add_logging_option_arguments(parser) return parser def read_endpoints(endpoint_file): nlg = utils.read_endpoint_config(endpoint_file, endpoint_type="nlg") nlu = utils.read_endpoint_config(endpoint_file, endpoint_type="nlu") action = utils.read_endpoint_config(endpoint_file, endpoint_type="action_endpoint") model = utils.read_endpoint_config(endpoint_file, endpoint_type="models") return AvailableEndpoints(nlg, nlu, action, model) def _raise_missing_credentials_exception(channel): raise Exception("To use the {} input channel, you need to " "pass a credentials file using '--credentials'. " "The argument should be a file path pointing to" "a yml file containing the {} authentication" "information. Details in the docs: " "{}/connectors/#{}-setup". format(channel, channel, DOCS_BASE_URL, channel)) def _create_external_channels(channel, credentials_file): # type: (Optional[Text], Optional[Text]) -> List[InputChannel] # the commandline input channel is the only one that doesn't need any # credentials print(channel, credentials_file, "external_chanlles son3") if channel == "cmdline": from rasa_core.channels import RestInput return [RestInput()] if channel is None and credentials_file is None: # if there is no configuration at all, we'll run without a channel return [] elif credentials_file is None: # if there is a channel, but no configuration, this can't be right _raise_missing_credentials_exception(channel) all_credentials = read_yaml_file(credentials_file) print(all_credentials) if channel: print("1") return [_create_single_channel(channel, all_credentials)] else: print("2") return [_create_single_channel(c, k) for c, k in all_credentials.items()] def _create_single_channel(channel, credentials): if channel == "facebook": from rasa_core.channels.facebook import FacebookInput return FacebookInput( credentials.get("verify"), credentials.get("secret"), credentials.get("page-access-token")) elif channel == "slack": from rasa_core.channels.slack import SlackInput return SlackInput( credentials.get("slack_token"), credentials.get("slack_channel")) elif channel == "telegram": from rasa_core.channels.telegram import TelegramInput return TelegramInput( credentials.get("access_token"), credentials.get("verify"), credentials.get("webhook_url")) elif channel == "mattermost": from rasa_core.channels.mattermost import MattermostInput return MattermostInput( credentials.get("url"), credentials.get("team"), credentials.get("user"), credentials.get("pw")) elif channel == "twilio": print(credentials) from rasa_core.channels.twilio import TwilioInput return TwilioInput( credentials.get("account_sid"), credentials.get("auth_token"), credentials.get("twilio_number")) elif channel == "botframework": from rasa_core.channels.botframework import BotFrameworkInput return BotFrameworkInput( credentials.get("app_id"), credentials.get("app_password")) elif channel == "rocketchat": from rasa_core.channels.rocketchat import RocketChatInput return RocketChatInput( credentials.get("user"), credentials.get("password"), credentials.get("server_url")) elif channel == "rasa": from rasa_core.channels.rasa_chat import RasaChatInput return RasaChatInput( credentials.get("url"), credentials.get("admin_token")) elif channel == "bot": from rasa_core.bot_server_channel import BotServerInputChannel return BotServerInputChannel() else: raise Exception("This script currently only supports the " "{} connectors." "".format(", ".join(BUILTIN_CHANNELS))) def create_http_input_channels(channel, # type: Union[None, Text, RestInput] credentials_file # type: Optional[Text] ): # type: (...) -> List[InputChannel] """Instantiate the chosen input channel.""" print(channel, credentials_file, "create_http son2") if channel is None or channel in rasa_core.channels.BUILTIN_CHANNELS: return _create_external_channels(channel, credentials_file) else: try: c = utils.class_from_module_path(channel) return [c()] except Exception: raise Exception("Unknown input channel for running main.") def start_cmdline_io(server_url, on_finish, **kwargs): kwargs["server_url"] = server_url kwargs["on_finish"] = on_finish p = Thread(target=console.record_messages, kwargs=kwargs) p.start() def start_server(input_channels, cors, auth_token, port, initial_agent, enable_api=True): """Run the agent.""" if enable_api: app = server.create_app(initial_agent, cors_origins=cors, auth_token=auth_token) else: app = Flask(__name__) CORS(app, resources={r"/*": {"origins": cors or ""}}) if input_channels: rasa_core.channels.channel.register(input_channels, app, initial_agent.handle_message, route="/webhooks/") if logger.isEnabledFor(logging.DEBUG): utils.list_routes(app) http_server = WSGIServer(('0.0.0.0', port), app) logger.info("Rasa Core server is up and running on " "{}".format(constants.DEFAULT_SERVER_URL)) http_server.start() return http_server def serve_application(initial_agent, channel=None, port=constants.DEFAULT_SERVER_PORT, credentials_file=None, cors=None, auth_token=None, enable_api=True ): print(channel, credentials_file, "server_app son") input_channels = create_http_input_channels(channel, credentials_file) http_server = start_server(input_channels, cors, auth_token, port, initial_agent, enable_api) if channel == "cmdline": start_cmdline_io(constants.DEFAULT_SERVER_URL, http_server.stop) try: http_server.serve_forever() except Exception as exc: logger.exception(exc) def load_agent(core_model, interpreter, endpoints, tracker_store=None, wait_time_between_pulls=100): if endpoints.model: return agent.load_from_server( interpreter=interpreter, generator=endpoints.nlg, action_endpoint=endpoints.action, model_server=endpoints.model, tracker_store=tracker_store, wait_time_between_pulls=wait_time_between_pulls ) else: return Agent.load(core_model, interpreter=interpreter, generator=endpoints.nlg, tracker_store=tracker_store, action_endpoint=endpoints.action) if __name__ == '__main__': # Running as standalone python application arg_parser = create_argument_parser() cmdline_args = arg_parser.parse_args() logging.getLogger('werkzeug').setLevel(logging.WARN) logging.getLogger('matplotlib').setLevel(logging.WARN) utils.configure_colored_logging(cmdline_args.loglevel) utils.configure_file_logging(cmdline_args.loglevel, cmdline_args.log_file) logger.info("Rasa process starting") _endpoints = read_endpoints(cmdline_args.endpoints) _interpreter = NaturalLanguageInterpreter.create(cmdline_args.nlu, _endpoints.nlu) _agent = load_agent(cmdline_args.core, interpreter=_interpreter, endpoints=_endpoints) serve_application(_agent, cmdline_args.connector, cmdline_args.port, cmdline_args.credentials, cmdline_args.cors, cmdline_args.auth_token, cmdline_args.enable_api)
import os import tornado.web import tornado.ioloop from tornado.options import define, options, parse_command_line from tornado_face.face.views import RegisterHandler, InitDbHandler, LoginbHandler define('port', default=8090, type=int) def make_app(): return tornado.web.Application(handlers=[ (r'/register/', RegisterHandler), (r'/init_db/', InitDbHandler), (r'/login/', LoginbHandler), ], template_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates'), static_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'static'), ) if __name__ == '__main__': parse_command_line() app = make_app() app.listen(options.port) tornado.ioloop.IOLoop.current().start()
import cv2 import numpy as np import pandas as pd import matplotlib.pyplot as plt import glob from IPython.display import clear_output from numpy import expand_dims from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.preprocessing.image import ImageDataGenerator from matplotlib import pyplot def show_img(img, bigger=False): if bigger: plt.figure(figsize=(10,10)) image_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(image_rgb) plt.show() def sharpen(img, sigma=200): # sigma = 5、15、25 blur_img = cv2.GaussianBlur(img, (0, 0), sigma) usm = cv2.addWeighted(img, 1.5, blur_img, -0.5, 0) return usm # sharpen def img_processing(img): # do something here img = sharpen(img) return img # like sharpen def enhance_details(img): hdr = cv2.detailEnhance(img, sigma_s=12, sigma_r=0.15) return hdr # restoring models def edsr(origin_img): sr = cv2.dnn_superres.DnnSuperResImpl_create() path = "EDSR_x4.pb" sr.readModel(path) sr.setModel("edsr",4) result = sr.upsample(origin_img) return result def espcn(origin_img): sr = cv2.dnn_superres.DnnSuperResImpl_create() path = "ESPCN_x4.pb" sr.readModel(path) sr.setModel("espcn",4) result = sr.upsample(origin_img) return result def fsrcnn(origin_img): sr = cv2.dnn_superres.DnnSuperResImpl_create() path = "FSRCNN_x4.pb" sr.readModel(path) sr.setModel("fsrcnn",4) result = sr.upsample(origin_img) return result def lapsrn(origin_img): sr = cv2.dnn_superres.DnnSuperResImpl_create() path = "LapSRN_x4.pb" sr.readModel(path) sr.setModel("lapsrn",4) result = sr.upsample(origin_img) return result def uint_to_float(img, method='NTSC'): img = img.astype(np.float32) / 255 b,g,r = cv2.split(img) if method == 'average': gray = (r + g + b) / 3 elif method == 'NTSC': gray = 0.2989*r + 0.5870*g + 0.1140*b #gray = (gray*255).astype('uint8') return gray
from typing import Dict, List, Optional, Tuple, Union import numpy as np from key_door import constants, wrapper try: import cv2 import matplotlib from matplotlib import cm from matplotlib import pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable except: raise AssertionError( "To use visualisation wrapper, further package requirements need to be satisfied. Please consult README." ) class VisualisationEnv(wrapper.Wrapper): COLORMAP = cm.get_cmap("plasma") def __init__(self, env): super().__init__(env=env) def render( self, save_path: Optional[str] = None, dpi: Optional[int] = 60, format: str = "state", ) -> None: if format == constants.STATE: assert ( self._env.active ), "To render map with state, environment must be active." "call reset_environment() to reset environment and make it active." "Else render stationary environment skeleton using format='stationary'" if save_path: fig = plt.figure() plt.imshow( self._env._env_skeleton( rewards=format, keys=format, doors=format, agent=format ), origin="lower", ) fig.savefig(save_path, dpi=dpi) else: plt.imshow( self._env.env_skeleton( rewards=format, keys=format, doors=format, agent=format ), origin="lower", ) def visualise_episode_history( self, save_path: str, history: Union[str, List[np.ndarray]] = "train" ) -> None: """Produce video of episode history. Args: save_path: name of file to be saved. history: "train", "test" to plot train or test history, else provide an independent history. """ if isinstance(history, str): if history == constants.TRAIN: history = self._env.train_episode_history elif history == constants.TEST: history = self._env.test_episode_history elif history == constants.TRAIN_PARTIAL: history = self._env.train_episode_partial_history elif history == constants.TEST_PARTIAL: history = self._env.test_episode_partial_history SCALING = 20 FPS = 30 map_shape = history[0].shape frameSize = (SCALING * map_shape[1], SCALING * map_shape[0]) out = cv2.VideoWriter( filename=save_path, fourcc=cv2.VideoWriter_fourcc("m", "p", "4", "v"), fps=FPS, frameSize=frameSize, ) for frame in history: bgr_frame = frame[..., ::-1].copy() flipped_frame = np.flip(bgr_frame, 0) scaled_up_frame = np.kron(flipped_frame, np.ones((SCALING, SCALING, 1))) out.write((scaled_up_frame * 255).astype(np.uint8)) out.release() def plot_heatmap_over_env( self, heatmap: Dict[Tuple[int, int], float], fig: Optional[matplotlib.figure.Figure] = None, ax: Optional[matplotlib.axes.Axes] = None, save_name: Optional[str] = None, ) -> None: assert ( ax is not None and fig is not None ) or save_name is not None, "Either must provide axis to plot heatmap over," "r file name to save separate figure." environment_map = self._env._env_skeleton( rewards=None, keys=None, doors=None, agent=None ) all_values = list(heatmap.values()) current_max_value = np.max(all_values) current_min_value = np.min(all_values) for position, value in heatmap.items(): # remove alpha from rgba in colormap return # normalise value for color mapping environment_map[position[::-1]] = self.COLORMAP( (value - current_min_value) / (current_max_value - current_min_value) )[:-1] fig = plt.figure() if save_name is not None: plt.imshow(environment_map, origin="lower", cmap=self.COLORMAP) plt.colorbar() fig.savefig(save_name, dpi=60) else: divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) im = ax.imshow(environment_map, origin="lower", cmap=self.COLORMAP) fig.colorbar(im, ax=ax, cax=cax, orientation="vertical") plt.close()
# @file: Individual that contains the 'DNA' for each individual in the population # @author: Daniel Yuan from random import randint, uniform class Individual(object): def __init__(self, vector, search_range, dimension=None): # Ensure that Indidual has assert(search_range and (vector or dimension)) self.search_range = search_range if vector: self.vector = vector self.dimension = len(vector) else: self.dimension = dimension self.vector = self._generate_random_vector() def get_vector(self): return self.vector def crossover(self, other_vector, mutation_rate): if self.dimension is not other_vector.dimension: raise Exception('Trying to cross over vectors of different dimensions') cross_index = randint(0, self.dimension - 1) if uniform(0, 1) > 0.5: first_vector = self.vector second_vector = other_vector.vector else: first_vector = other_vector.vector second_vector = self.vector new_vector = [] for i in range(self.dimension): should_mutate = uniform(0, 1) <= mutation_rate value = 0 if should_mutate: value = uniform(self.search_range.get_min(), self.search_range.get_max()) elif i < cross_index: value = first_vector[i] else: value = second_vector[i] new_vector.append(value) return Individual(new_vector, self.search_range) def get_fitness(self, problem): self.fitness = problem.eval(self.vector) return self.fitness def _generate_random_vector(self): vector = [] for _ in range(self.dimension): min_value = self.search_range.get_min() max_value = self.search_range.get_max() vector.append(uniform(min_value, max_value)) return vector
#!/usr/bin/python #coding=utf8 import pandas as pd def readBigData(filePath,delim,header=None): reader = pd.read_csv(filePath,header=None,delimiter=delim, iterator=True) loop = True chunkSize = 100000 chunks = [] while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) except StopIteration: loop = False print "Iteration is stopped." df = pd.concat(chunks, ignore_index=True) return df
#!/usr/bin/env python def gcd_mod(a, b): ''' Divison based version. From: The Art of Computer Programming, Volume 2, pages 319-320 ''' while b > 1: # t holds the value of b while the next remainder b is being calculated. t = b b = a % b a = t return a def gcd_sub(a, b): ''' Subtraction based version. From: The Art of Computer Programming, Volume 2, pages 318-319 ''' while a != b: if a > b: a = a - b else: b = b - a return a def gcd_recursive(a, b): ''' Recursive based version. From: Numbers and Geometry, Stillwell, page 14 ''' if b == 0: return a else: return gcd_recursive(b, a % b)
#!/usr/bin/env python3 ''' This script ... ''' import argparse # https://docs.python.org/3/library/argparse.html import itertools import os import screed import networkx as nx from tqdm import tqdm from panprimer.utils import \ load_graph, \ mask_nodes, \ extract_color, \ neighbors, \ orient_nodes_on_genome from panprimer.wrappers import design_primers parser = argparse.ArgumentParser( description='Find primers in genome graphs') parser.add_argument('--maxlen', default=4000, type=int, help='Maximum len of PCR product') parser.add_argument('--minlen', default=400, type=int, help='Minimum len of PCR product') parser.add_argument('-n', default=10, type=int, help='Number of candidate primer pairs in result (best first)') parser.add_argument('--outfile', default='primers.csv', help='Where to store primers') parser.add_argument('--graph', required=True, help='Genome graph with color annotation [.gfa]') parser.add_argument('--index', required=True, help='Index of the color annotation') parser.add_argument('--pattern', required=True, help='Which genomes to include and which to exclude (0, 1) [.csv]') parser.add_argument('--debug', action='store_true', help='Store some debugging logs') parser.add_argument('--genome', required=True, help='Genome to validate primer positions') parser.add_argument('--maxpairs', required=True, help='Maximum primer site pairs before we stop the recursion madness') args = parser.parse_args() maxlen = args.maxlen minlen = args.minlen limits = [minlen, maxlen] npairs = args.n outfile = args.outfile fp_pattern = args.pattern fp_gfa = args.graph fp_ix = args.index genome = args.genome max_pairs = int(args.maxpairs) ''' Each node in the genome graph has a set of colors, which means that the represented sequence of DNA is present in this subset of organsims. We want to be able to assing genomes into an include and exclude set (0 and 1, respectively). We do this through a pattern (mask) on the color index of the genome graph. E.g. [1, 0, 1, 0] in a genome graph w/ 4 genomes means that we only want to find primers for the 1st and 3rd genome, that are NOT present on the 2nd and 4th. ''' is_included_genome = {} with open(fp_pattern, 'r') as patternfile: for line in patternfile: binary, path = line.strip().split(',') is_included_genome[os.path.basename(path)] = int(binary) with open(fp_ix, 'r') as ixfile: files = [os.path.basename(i) for i in next(ixfile).split(' ')][:-1] # -1 .. last entry is a space so last item is '' (empty) pattern = [is_included_genome[i] for i in files] if args.debug: with open('log', 'w+') as log: log.write(' '.join([str(i) for i in pattern])) # Parse .gfa print('Loading graph ...') G, strands = load_graph(fp_gfa) # Return candidate nodes, defined as nodes through which all genomes in the # "include" set pass, but nodes in the "exclude" set don't. candidates = mask_nodes(G, pattern) # print(f'{len(candidates)} candidate nodes match pattern') d = {} print('Checking candidates against colors ...') ''' This step looks through the candidates and checks whether they are suitable for a PCR. For example: Are two nodes close enough so that a polymerase can span the distance between them for all genomes in the include set? We also make sure that we can traverse the graph from primer 1 to primer 2 using each color, ie that this path exists for all genomes in the include set. ''' for color in tqdm(range(len(pattern))): if pattern[color] != 1: # Discard color bc/ it is not in the "include" set # TODO: We could generalize this to n primer sets, e.g. for 3 species continue # Extract all nodes that are traversed by a single genome # G_ = extract_color(G, i) pairs, singletons = set(), set() # TODO: Stop if a sufficient number of candidates have been found for node in candidates: # If there are few genomes to exclude, most nodes are potential # primer sites. So we cap them here to not search forever. if len(pairs) >= max_pairs: continue seq = G.nodes[node]['sequence'] # If node is of sufficient length save. We can probably find 2 # primers on this segment. If not ... if len(seq) > minlen: # TODO: only include the singleton if found in all colors singletons.add(node) continue # ... traverse its neighborhood to see if any other candidate is # reachible. The polymerase can only span so many nucleotides. for n in neighbors(G, node, color, limits): if (n != node) and (n in candidates): pairs.add(tuple(sorted([node, n]))) # sorted .. (1, 3) is the same as (3, 1) to us # tuple .. hashable, so we can call set() on it d[color] = pairs # Make sure that 0'ed genomes do not appear in results d = {k: v for k, v in d.items() if pattern[k] == 1} # https://stackoverflow.com/questions/30773911/union-of-multiple-sets-in-python valid_pairs = list(set.intersection(*map(set, d.values()))) print(f'Found {len(valid_pairs) + len(singletons)} potential primer region(s)') sequences = [(G.nodes[n]['sequence'], 'singleton', [n]) for n in singletons] # Now we make sure the sequence between valid pairs is not too short and on # the same strand (we'll glue them together later in a synthetic contig to # feed into primer3, see below). for i, j in valid_pairs: ''' See how the path leaving from one primer unitig can be - and +, depending on the path: grep "2428690" pangenome.gfa S 2428690 GGATGTTAA... DA:Z:2 L 1686469 + 2428690 + 30M L 1686484 - 2428690 - 30M L 2428690 - 1686469 - 30M L 2428690 + 1686484 + 30M ''' si = G.nodes[i]['sequence'] sj = G.nodes[j]['sequence'] # For primer3 design we need sequence fragments on the same strand, # see below. with screed.open(genome) as file: for read in file: try: seq = orient_nodes_on_genome(read.sequence, si, sj, minlen) except KeyError: continue # if not oss: # sj = screed.rc(sj) # if invert: # si, sj = sj, si # Create an artificial contig by connecting the two fragments w/ some Ns # TODO: Potential error here! si and sj need to be in the same 5'-3' order # as in the original sequence otherwise we create an artificial inversion # (and the PCR won't work bc/ the primers' 3' ends "point away from one # another"). # seq = si + 'N' * minlen + sj sequences.append((seq, 'pair', [i, j])) # i, j are nodes in the graph # TODO: Check that the primers are unique in the genome. Or make this an option. # TODO: separate script that shows insert size distribution and annotation and # coordinates spanned by the primers. print('Designing primers ...') designs = [] for seq, type_, nodes in tqdm(sequences): singleton = True if type_ == 'singleton' else False try: u = design_primers(seq, singleton, minlen=minlen, maxlen=maxlen) v = '::'.join([str(n) for n in nodes]) _ = [i.append(v) for i in u] designs.append(*u) except (KeyError, OSError) as e: # no valid primers found continue # [['ATCACTGATGGATTTGACGT', 'TACCCCAAAATGGCTAGAAC', 54.76, 55.01, 'NA', 0.251, '4324814::4324817']] # [['AGGTTGTGTGGTTCGAATC', 'AAGCGGAGATCATACCCTTA', 55.45, 55.41, 'NA', 1.8569, '4324789::4324793']] # Sort inplace by penalty value, smallest to largest designs.sort(key=lambda x: x[5]) # print(designs[:10]) ''' The case occurs where a singleton can also be reached from a smaller fragment, ie it ends up in a "valid pair". Then primer3 finds the best primer in the singleton, but bc/ it is part of a pair "NA" is written as the PCR product length. ['GCCTGTT...', 'CCCGAGC...', 54.99, 54.99, 465, 0.0146, '152624'], ['GCCTGTT...', 'CCCGAGC...', 54.99, 54.99, 'NA', 0.0146, '152624,152646'], This can happen multiple times, if a singleton is part of more than one valid pair: ['GCCTGTT...', 'CCCGAGC...', 54.99, 54.99, 'NA', 0.0146, '152624,152646'], ['GCCTGTT...', 'CCCGAGC...', 54.99, 54.99, 'NA', 0.0146, '152624,154425'], ''' # Deduplicate result = {} # Note that the results are sorted by penalty bc/ adding to dict since Python # v3.6 preserves order. for i, j, *rest, nodes in designs: p = tuple(sorted([i, j])) # p .. pair if len(nodes.split('::')) == 1: # singleton result[p] = [i, j, *rest, nodes] else: # If there is no entry for the primer pair from a singleton, then add try: _ = result[p] except KeyError: result[p] = [i, j, *rest, nodes] print(f'Found {len(result)} primer pair(s), will save the best {npairs if npairs < len(result) else len(result)}.') with open(outfile, 'w+') as out: out.write('fwd,rev,Tm fwd,Tm rev,product,penalty,nodes\n') # header for v in itertools.islice(result.values(), npairs): out.write(','.join(str(i) for i in v) + '\n')
class Solution(object): def missingNumber(self, nums): """ :type nums: List[int] :rtype: int """ # 0,1,...,n-1,n,sum of arrary (if no missing number) will be sum = n*(n+1)/2 # delete all existing nums will leave the number that is missing from the array n = len(nums) sum = n*(n+1)/2 for num in nums: sum -= num return sum # Note: This solution has an issue of over flow, if n is very large! # XOR is a better choice
from .tikzeng import * #define new block def block_2ConvPool( name, botton, top, s_filer=256, n_filer=64, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ): return [ to_ConvConvRelu( name="ccr_{}".format( name ), s_filer=str(s_filer), n_filer=(n_filer,n_filer), offset=offset, to="({}-east)".format( botton ), width=(size[2],size[2]), height=size[0], depth=size[1], ), to_Pool( name="{}".format( top ), offset="(0,0,0)", to="(ccr_{}-east)".format( name ), width=1, height=size[0] - int(size[0]/4), depth=size[1] - int(size[0]/4), opacity=opacity, ), to_connection( "{}".format( botton ), "ccr_{}".format( name ) ) ] def block_Unconv( name, botton, top, s_filer=256, n_filer=64, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ): return [ to_UnPool( name='unpool_{}'.format(name), offset=offset, to="({}-east)".format(botton), width=1, height=size[0], depth=size[1], opacity=opacity ), to_ConvRes( name='ccr_res_{}'.format(name), offset="(0,0,0)", to="(unpool_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1], opacity=opacity ), to_Conv( name='ccr_{}'.format(name), offset="(0,0,0)", to="(ccr_res_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1] ), to_ConvRes( name='ccr_res_c_{}'.format(name), offset="(0,0,0)", to="(ccr_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1], opacity=opacity ), to_Conv( name='{}'.format(top), offset="(0,0,0)", to="(ccr_res_c_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1] ), to_connection( "{}".format( botton ), "unpool_{}".format( name ) ) ] def block_Res( num, name, botton, top, s_filer=256, n_filer=64, offset="(0,0,0)", size=(32,32,3.5), opacity=0.5 ): lys = [] layers = [ *[ '{}_{}'.format(name,i) for i in range(num-1) ], top] for name in layers: ly = [ to_Conv( name='{}'.format(name), offset=offset, to="({}-east)".format( botton ), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1] ), to_connection( "{}".format( botton ), "{}".format( name ) ) ] botton = name lys+=ly lys += [ to_skip( of=layers[1], to=layers[-2], pos=1.25), ] return lys
import sys class MyStack: """push-down スタッククラス""" def __init__(self, stacksize): """コンストラクタ(初期化)""" # フィールド self.mystack = [ ' ' for i in range(stacksize) ] self.top = -1; def pushdown(self, data): """プッシュダウン""" self.top += 1 if (self.top > len(self.mystack)): print('stack overflow', file=sys.stderr) sys.exit(0) self.mystack[self.top] = data def popup(self): """ポップアップ""" if (self.top < 0): print('popup from empty stack', file=sys.stderr) sys.exit(0) self.top -= 1 return self.mystack[self.top+1] def isempty(self): """空か否か""" if (self.top < 0): return True else: return False
"""Merkle Tree backed by LevelDB. Operates (and owns) a LevelDB database of leaves which can be updated. """ import plyvel import math import struct import merkle def _down_to_power_of_two(n): """Returns the power-of-2 closest to n.""" if n < 2: raise ValueError("N should be >= 2: %d" % n) log_n = math.log(n, 2) p = int(log_n) # If n is exactly power of 2 then 2**p would be n, decrease p by 1. if p == log_n: p -= 1 return 2**p def encode_int(n): """Encode an integer into a big-endian bytestring.""" return struct.pack(">I", n) def decode_int(n): """Decode a big-endian bytestring into an integer.""" return stuct.unpack(">I", n)[0] class LeveldbMerkleTree(object): """LevelDB Merkle Tree representation.""" def __init__(self, leaves=None, db="./merkle_db", leaves_db_prefix='leaves-', index_db_prefix='index-', stats_db_prefix='stats-'): """Start with the LevelDB database of leaves provided.""" self.__hasher = IncrementalTreeHasher() self.__db = plyvel.DB(db, create_if_missing=True) self.__leaves_db_prefix = leaves_db_prefix self.__index_db_prefix = index_db_prefix self.__stats_db_prefix = stats_db_prefix self.__leaves_db = self.__db.prefixed_db(leaves_db_prefix) self.__index_db = self.__db.prefixed_db(index_db_prefix) self.__stats_db = self.__db.prefixed_db(stats_db_prefix) if leaves is not None: self.extend(leaves) def close(self): self.__db.close() @property def tree_size(self): return int(self.__stats_db.get('tree_size', default='0')) @property def sha256_root_hash(self): return self.get_root_hash() @property def leaves_db_prefix(self): return self.__leaves_db_prefix @property def index_db_prefix(self): return self.__index_db_prefix @property def stats_db_prefix(self): return self.__stats_db_prefix def get_leaf(self, leaf_index): """Get the leaf at leaf_index.""" return self.__leaves_db.get(encode_int(leaf_index)) def get_leaves(self, start=0, stop=None): """Get leaves from the range [start, stop).""" if stop is None: stop = self.tree_size return [l for l in self.__leaves_db.iterator(start=encode_int(start), stop=encode_int(stop), include_key=False)] def add_leaf(self, leaf): """Adds |leaf| to the tree, returning the index of the entry.""" cur_tree_size = self.tree_size leaf_hash = self.__hasher.hash_leaf(leaf) with self.__db.write_batch() as wb: wb.put(self.__leaves_db_prefix + encode_int(cur_tree_size), leaf_hash) wb.put(self.__index_db_prefix + leaf_hash, encode_int(cur_tree_size)) wb.put(self.__stats_db_prefix + 'tree_size', str(cur_tree_size + 1)) return cur_tree_size def extend(self, new_leaves): """Extend this tree with new_leaves on the end.""" cur_tree_size = self.tree_size leaf_hashes = [self.__hasher.hash_leaf(l) for l in new_leaves] with self.__db.write_batch() as wb: for lf in leaf_hashes: wb.put(self.__leaves_db_prefix + encode_int(cur_tree_size), lf) wb.put(self.__index_db_prefix + lf, encode_int(cur_tree_size)) cur_tree_size += 1 wb.put(self.__stats_db_prefix + 'tree_size', str(cur_tree_size)) def get_leaf_index(self, leaf_hash): """Returns the index of the leaf hash, or -1 if not present.""" raw_index = self.__index_db.get(leaf_hash) if raw_index: return decode_int(raw_index) else: return -1 def get_root_hash(self, tree_size=None): """Returns the root hash of the tree denoted by |tree_size|.""" if tree_size is None: tree_size = self.tree_size if tree_size > self.tree_size: raise ValueError("Specified size beyond known tree: %d" % tree_size) return self.__hasher.hash_full_tree(self.get_leaves(stop=tree_size)) def _calculate_subproof(self, m, leaves, complete_subtree): """SUBPROOF, see RFC6962 section 2.1.2.""" n = len(leaves) if m == n or n == 1: if complete_subtree: return [] else: return [self.__hasher.hash_full_tree(leaves)] k = _down_to_power_of_two(n) if m <= k: node = self.__hasher.hash_full_tree(leaves[k:n]) res = self._calculate_subproof(m, leaves[0:k], complete_subtree) else: # m > k node = self.__hasher.hash_full_tree(leaves[0:k]) res = self._calculate_subproof(m - k, leaves[k:n], False) res.append(node) return res def get_consistency_proof(self, tree_size_1, tree_size_2=None): """Returns a consistency proof between two snapshots of the tree.""" if tree_size_2 is None: tree_size_2 = self.tree_size if tree_size_1 > self.tree_size or tree_size_2 > self.tree_size: raise ValueError("Requested proof for sizes beyond current tree:" " current tree: %d tree_size_1 %d tree_size_2 %d" % ( self.tree_size, tree_size_1, tree_size_2)) if tree_size_1 > tree_size_2: raise ValueError("tree_size_1 must be less than tree_size_2") if tree_size_1 == tree_size_2 or tree_size_1 == 0: return [] return self._calculate_subproof( tree_size_1, self.get_leaves(stop=tree_size_2), True) def _calculate_inclusion_proof(self, leaves, leaf_index): """Merkle audit path, RFC6962 Section 2.1.1.""" n = len(leaves) if n == 0 or n == 1: return [] k = _down_to_power_of_two(n) m = leaf_index if m < k: mth_k_to_n = self.__hasher.hash_full_tree(leaves[k:n]) path = self._calculate_inclusion_proof(leaves[0:k], m) path.append(mth_k_to_n) else: mth_0_to_k = self.__hasher.hash_full_tree(leaves[0:k]) path = self._calculate_inclusion_proof(leaves[k:n], m - k) path.append(mth_0_to_k) return path def get_inclusion_proof(self, leaf_index, tree_size=None): """Returns an inclusion proof for leaf at |leaf_index|.""" if tree_size is None: tree_size = self.tree_size if tree_size > self.tree_size: raise ValueError("Specified tree size is beyond known tree: %d" % tree_size) if leaf_index >= self.tree_size: raise ValueError("Requested proof for leaf beyond tree size: %d" % leaf_index) return self._calculate_inclusion_proof( self.get_leaves(stop=tree_size), leaf_index) def __repr__(self): return "%s(%r)" % (self.__class__.__name__, self.__hasher) class IncrementalTreeHasher(merkle.TreeHasher): def _hash_full(self, leaves, l_idx, r_idx): """Hash the leaves between (l_idx, r_idx) as a valid entire tree. Note that this is only valid for certain combinations of indexes, depending on where the leaves are meant to be located in a parent tree. Returns: (root_hash, hashes): where root_hash is that of the entire tree, and hashes are that of the full (i.e. size 2^k) subtrees that form the entire tree, sorted in descending order of size. """ width = r_idx - l_idx if width < 0 or l_idx < 0 or r_idx > len(leaves): raise IndexError("%s,%s not a valid range over [0,%s]" % ( l_idx, r_idx, len(leaves))) elif width == 0: return self.hash_empty(), () elif width == 1: leaf_hash = leaves[l_idx] return leaf_hash, (leaf_hash,) else: # next smallest power of 2 split_width = 2**((width - 1).bit_length() - 1) assert split_width < width <= 2*split_width l_root, l_hashes = self._hash_full(leaves, l_idx, l_idx+split_width) assert len(l_hashes) == 1 # left tree always full r_root, r_hashes = self._hash_full(leaves, l_idx+split_width, r_idx) root_hash = self.hash_children(l_root, r_root) return (root_hash, (root_hash,) if split_width*2 == width else l_hashes + r_hashes)
#!/usr/bin/python # coding=utf-8 print('{0:.3f}'.format(1.0/3)) print('{0:_^11}'.format('kai')) print(r'\'{name}\' wrote\n "{book}"'.format(name='kai', book='good book')) # print('kai', end=' ') //python3 # print('is') # print('good man') s = '''This is Multi Line String Second Line Third Line''' print(s) number = 23 guess = int(input('input a number: ')) if guess == number: print ('you guess it') elif guess < number: print ('oh, small') else: print ("ok great than {}".format(number)) print ('Done.') running = True while running: guess = int(input('input a number: ')) if guess == number: print ('you guess it') running = False; else: print ("error, again.") else: print ('while end') for i in range(1, 9, 2): if i >= 7: print ('i >= 7') break #有break 那么else不会执行了 elif i == 5: print("i==5") continue else: print (i) else: print('for end')
import constants as c import logging import rosbag import os import multiprocessing topics_to_check = set([ '/TactileSensor4/Accelerometer', '/TactileSensor4/Dynamic', '/TactileSensor4/EulerAngle', '/TactileSensor4/Gyroscope', '/TactileSensor4/Magnetometer', '/TactileSensor4/StaticData', '/anomaly_detection_signal', '/robot/limb/right/endpoint_state', '/robotiq_force_torque_wrench']) def check_bag(folder_path): bag_path = os.path.join(folder_path, 'record.bag') if not os.path.isfile(bag_path): return (False, "not os.path.isfile(bag_path)") with open(bag_path, 'rb') as bag_f: bag = rosbag.Bag(bag_f) type_info, topic_info = bag.get_type_and_topic_info() topics_contained = set(topic_info.keys()) if not topics_to_check.issubset(topics_contained): return (False, "not topics_to_check.issubset(topics_contained)") signals = [] for topic_name, msg, gen_time in bag.read_messages(topics=["/anomaly_detection_signal"]): if len(signals) == 0: signals.append(msg) else: time_diff = (msg.stamp-prev_msg.stamp).to_sec() if time_diff > 1: signals.append(msg) elif time_diff < 0: raise Exception("Weird error: messages read from rosbag are not in time-increasing order") prev_msg = msg label_path = os.path.join(folder_path, 'anomaly_labels.txt') if len(signals) == 0: if os.path.isfile(label_path): return (False, "len(signals) == 0 but os.path.isfile(label_path)") else: if not os.path.isfile(label_path): return (False, "not len(signals) == 0 but not os.path.isfile(label_path)") with open(label_path, 'r') as label_f: label_amount = len([i for i in label_f.readlines() if i.strip() != ""]) if label_amount != len(signals): return (False, "label_amount %s != len(signals) %s"%(label_amount, len(signals))) return (True, None) def run(): logger = logging.getLogger("filter_bad_bags") logger.info("Filtering bad bags") pool = multiprocessing.Pool() async_results = [] with open(c.rosbag_folder_names_txt, 'r') as txt: for line in txt: async_result = pool.apply_async(check_bag, args=(line.strip(),)) async_results.append((line.strip(), async_result)) with open(c.good_rosbag_folder_names_txt, 'w') as good_txt,\ open(c.bad_rosbag_folder_names_txt, 'w') as bad_txt: for line, async_result in async_results: is_good, debug_info = async_result.get() if is_good == True: good_txt.write(line) good_txt.write('\n') else: bad_txt.write(line) bad_txt.write(" ") bad_txt.write(debug_info) bad_txt.write('\n') if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') run()
import setuptools __version__ = '1.0' setuptools.setup( name="msfbe", version=__version__, url="https://github-fn.jpl.nasa.gov/methanesourcefinder/msf-be.git", author="Caltech/Jet Propulsion Laboratory", description="MSF-BE API.", long_description=open('README.md').read(), package_dir={'':'src'}, packages=['msfbe', 'msfbe.handlers'], package_data={'msfbe': ['config.ini']}, data_files=[ ], platforms='any', install_requires=[ 'tornado', 'numpy', 'singledispatch', 'pytz', 'requests', 'utm', 'shapely==1.7.1', 'mock', 'backports.functools-lru-cache==1.3', 'boto3==1.15.17', 'pillow==5.0.0', 'psycopg2==2.8.6', 'six', 'psutil' ], classifiers=[ 'Development Status :: 1 - Pre-Alpha', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', ] )
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- # -*- Mode: python -*- from lib.common import * ################################################################ # Code borrowed and adapted from Impacket's rpcdump.py example # ################################################################ class RpcDump(object): def __init__(self): pass def rpcdump(self): logger.info('Retrieving RPC endpoint list') self.__rpc_connect() entries = self.__fetchList() endpoints = {} # Let's groups the UUIDS for entry in entries: binding = epm.PrintStringBinding(entry['tower']['Floors'], self.trans.get_dip()) tmpUUID = str(entry['tower']['Floors'][0]) if endpoints.has_key(tmpUUID) is not True: endpoints[tmpUUID] = {} endpoints[tmpUUID]['Bindings'] = list() if ndrutils.KNOWN_UUIDS.has_key(uuid.uuidtup_to_bin(uuid.string_to_uuidtup(tmpUUID))[:18]): endpoints[tmpUUID]['EXE'] = ndrutils.KNOWN_UUIDS[uuid.uuidtup_to_bin(uuid.string_to_uuidtup(tmpUUID))[:18]] else: endpoints[tmpUUID]['EXE'] = 'N/A' endpoints[tmpUUID]['annotation'] = entry['annotation'][:-1] endpoints[tmpUUID]['Bindings'].append(binding) if epm.KNOWN_PROTOCOLS.has_key(tmpUUID[:36]): endpoints[tmpUUID]['Protocol'] = epm.KNOWN_PROTOCOLS[tmpUUID[:36]] else: endpoints[tmpUUID]['Protocol'] = 'N/A' #print 'Transfer Syntax: %s' % entry['Tower']['Floors'][1] for endpoint in endpoints.keys(): print 'Protocol: %s ' % endpoints[endpoint]['Protocol'] print 'Provider: %s ' % endpoints[endpoint]['EXE'] print 'UUID : %s %s' % (endpoint, endpoints[endpoint]['annotation']) print 'Bindings: ' for binding in endpoints[endpoint]['Bindings']: print ' %s' % binding print if entries: num = len(entries) if 1 == num: logger.info('Received one RPC endpoint') else: logger.info('Received %d endpoints' % num) else: logger.info('No endpoints found') def __rpc_connect(self): ''' Connect to epmapper named pipe ''' logger.debug('Connecting to the epmapper named pipe') self.smb_transport('epmapper') self.__dce = self.trans.get_dce_rpc() self.__dce.connect() #self.__dce.set_auth_level(ntlm.NTLM_AUTH_PKT_PRIVACY) #self.__dce.bind(epm.MSRPC_UUID_PORTMAP) def __rpc_disconnect(self): ''' Disconnect from epmapper named pipe ''' logger.debug('Disconnecting from the epmapper named pipe') self.__dce.disconnect() def __fetchList(self): entries = [] resp = epm.hept_lookup(self.trans.get_dip()) self.__rpc_disconnect() return resp
@Counter def say_hello(): print("hello") say_hello() say_hello() say_hello() say_hello() assert say_hello.count == 4
"""Unit test package for xlavir."""
import numpy as np from pathlib import Path import pandas as pd from tensorflow.keras.models import load_model import sys import inspect cpath = Path(inspect.getfile(sys.modules[__name__])).resolve().parent def transform_features(x, f="cos"): if f == "cos": return np.cos(x) elif f == "sin": return np.sin(x) elif f == "tanh": return np.tanh(x) class QPowerModel: """ Use to evaluate quadrant power splits from control drum configurations. Set up as init, then separately use method call to minimize reading times. """ def __init__(self): #Find and load file model_file = cpath / Path("tools/microreactor_power_model.h5") self.raw_model = load_model(model_file) def eval(self, pert): pert2 = pert.copy() pertn = np.array([pert2, ]) unorm = self.raw_model.predict(pertn).flatten() return unorm/unorm.sum() def qPowerModel(pert): """Wrapper for QPowerModel that initializes and runs""" a = QPowerModel() return a.eval(pert) if __name__ == "__main__": thetas = np.zeros(8) thetas[[6,7]] -= np.pi print(qPowerModel(thetas))
from abc import ABC #Abstract Base Classes from collections.abc import MutableSequence class Playlist(MutableSequence): filmes = Playlist()
import yaml import json import os from autoremovetorrents import logger from autoremovetorrents.task import Task from autoremovetorrents.compatibility.open_ import open_ def test_task(qbittorrent_mocker): # Loggger lg = logger.Logger.register(__name__) # Set root directory root_dir = os.path.join(os.path.realpath(os.path.dirname(__file__))) lg.info('Root directory: %s', root_dir) qbittorrent_mocker() # Load files in directory for file in os.listdir(os.path.join(root_dir, 'cases')): file_path = os.path.join(root_dir, 'cases', file) if os.path.isfile(file_path): lg.info('Loading file: %s', file) with open_(file_path, 'r', encoding='utf-8') as f: conf = yaml.safe_load(f) # Run task instance = Task(file, conf['task'], False) instance.execute() assert len(instance.get_removed_torrents()) == conf['result']['num-of-removed']
a, b, c = list(map(int, input().split())) tot = 0 if abs(a - b) < abs(c - b): tot = abs(c - b) else: tot = abs(a - b) print(tot - 1)
import sys import getopt from jiaowu import JiaoWu if __name__=='__main__': username = input('学号: ') password = input('统一认证密码: ') jiaowu = JiaoWu(username, password) # 登录 if jiaowu.login(): print('登录成功!') else: print('登录失败!请检查用户名和密码') exit() # 查询课表 year = input('学年(例:2021-2022): ') semester = input('学期(例:1|秋、冬): ') if year == '': year = '2021-2022' if semester == '': semester = '1|秋、冬' print('\n您的课表:') course_list = jiaowu.get_course(year, semester) for i in range(len(course_list)): print(course_list[i]) # 查询课程成绩 print('\n您的课程成绩:') course_info_list = jiaowu.get_score() for i in range(len(course_info_list)): print(course_info_list[i]) # 查询所有课程均绩 print('\n您的所有课程均绩为:', jiaowu.get_gpa()) # 查询主修课程成绩 print('\n您的主修课程成绩:') major_course_info_list = jiaowu.get_major_score() for i in range(len(major_course_info_list)): print(major_course_info_list[i]) # 查询主修课程均绩 print('\n您的主修课程均绩为:', jiaowu.get_mgpa()) # 查询成绩更正公示 score_announce_list = jiaowu.get_score_announce() if score_announce_list == 0: print('\n您没有成绩更正公示!') else: print('\n您的成绩更正公示为:') for i in range(len(score_announce_list)): print(score_announce_list[i])
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-16 00:36 from __future__ import unicode_literals import ckeditor.fields from django.db import migrations, models import django.db.models.deletion import school.options.tools class Migration(migrations.Migration): dependencies = [ ('website', '0011_remove_news_relation'), ] operations = [ migrations.CreateModel( name='Collective', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(blank=True, max_length=255, null=True, verbose_name='Ad Soyad')), ('picture', models.ImageField(blank=True, null=True, upload_to=school.options.tools.get_user_profile_photo_file_name)), ('content', ckeditor.fields.RichTextField(blank=True, null=True)), ('status', models.BooleanField(default=True, verbose_name='Sayta görünüşü')), ('date', models.DateTimeField(auto_now_add=True)), ], options={ 'verbose_name': 'Multimediya', 'verbose_name_plural': 'Multimediya', 'ordering': ('-id',), }, ), migrations.CreateModel( name='Contact_us', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(blank=True, max_length=255, null=True, verbose_name='Başlığı')), ('about', models.CharField(blank=True, max_length=255, null=True, verbose_name='Haqqında')), ('phone_1', models.CharField(blank=True, max_length=100, null=True, verbose_name='Telefon nömrəsi 1')), ('phone_2', models.CharField(blank=True, max_length=100, null=True, verbose_name='Telefon nömrəsi 2')), ('phone_3', models.CharField(blank=True, max_length=100, null=True, verbose_name='Telefon nömrəsi 3')), ('email_1', models.EmailField(blank=True, max_length=254, null=True, verbose_name='Email 1')), ('email_2', models.EmailField(blank=True, max_length=254, null=True, verbose_name='Email 2')), ('email_3', models.EmailField(blank=True, max_length=254, null=True, verbose_name='Email 3')), ], options={ 'verbose_name': 'Bizimlə Əlaqə', 'verbose_name_plural': 'Bizimlə Əlaqə', 'ordering': ('-id',), }, ), migrations.CreateModel( name='Events', fields=[ ('news_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='website.News')), ], options={ 'verbose_name': 'Tədbir', 'verbose_name_plural': 'Tədbirlər', 'ordering': ('-id',), }, bases=('website.news',), ), migrations.CreateModel( name='Multimedia', fields=[ ('news_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='website.News')), ('video', models.URLField(blank=True, null=True, verbose_name='Videonun linki')), ], options={ 'verbose_name': 'Multimediya', 'verbose_name_plural': 'Multimediya', 'ordering': ('-id',), }, bases=('website.news',), ), migrations.AlterField( model_name='news', name='cover_picture', field=models.ImageField(blank=True, null=True, upload_to=school.options.tools.get_news_photo_file_name, verbose_name='Örtük şəkli'), ), ]
#!/usr/bin/python import sys import pickle sys.path.append("../tools/") import numpy as np import matplotlib.pyplot as plt from functions import * from feature_format import featureFormat, targetFeatureSplit from tester import dump_classifier_and_data ### Task 1: Select what features you'll use. ### features_list is a list of strings, each of which is a feature name. ### The first feature must be "poi". #features_list = ['poi','salary', 'total_payments', 'total_stock_value', 'exercised_stock_options', 'poi_messages', 'from_poi_fraction', 'to_poi_fraction' ] # You will need to use more features #features_list = ['poi','salary', 'total_payments', 'total_stock_value', 'exercised_stock_options', 'from_poi_to_this_person', 'from_this_person_to_poi' ] # You will need to use more features features_list = (['poi', 'salary', 'deferral_payments', 'total_payments', 'loan_advances', 'bonus', 'restricted_stock_deferred', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock', 'director_fees','to_messages', 'from_poi_to_this_person', 'from_messages', 'from_this_person_to_poi', 'shared_receipt_with_poi', 'poi_messages', 'from_poi_fraction', 'to_poi_fraction']) features_list = (['poi', 'salary', 'deferral_payments', 'total_payments', 'loan_advances', 'bonus', 'restricted_stock_deferred', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock', 'director_fees','to_messages', 'from_poi_to_this_person', 'from_messages', 'from_this_person_to_poi', 'shared_receipt_with_poi']) ### Load the dictionary containing the dataset with open("final_project_dataset.pkl", "r") as data_file: data_dict = pickle.load(data_file) counter = 0 for value in data_dict.values(): if value['poi']: counter += 1 ### Task 2: Remove outliers del data_dict['TOTAL'] del data_dict['THE TRAVEL AGENCY IN THE PARK'] del data_dict['LOCKHART EUGENE E'] # Turn 'NaN' values to 0 salary = [] total_payments = [] # turn NaNs to 0 salary, total_payments = nanToNumber( salary, total_payments, 'salary', 'total_payments', data_dict) # reshape the lists salary, total_payments = reshape(salary, total_payments) # create a regression prediction line predictions = plotWithPrediction(salary, total_payments) # clean the outliers from the lists salary, total_payments, errors = cleanAndPlot( predictions, salary, total_payments) # remove the outliers from the main dictionary removeOutliersFromDict( salary, total_payments, 'salary', 'total_payments', data_dict) # from and to poi email outlier removal from_poi = [] to_poi = [] from_poi, to_poi = nanToNumber( from_poi, to_poi, 'from_poi_to_this_person', 'from_this_person_to_poi', data_dict) from_poi, to_poi = reshape(from_poi, to_poi) predictions = plotWithPrediction(from_poi, to_poi) from_poi, to_poi, errors = cleanAndPlot( predictions, from_poi, to_poi) removeOutliersFromDict(from_poi, to_poi, 'from_poi_to_this_person', 'from_this_person_to_poi', data_dict) # total stock value and exercised stock options outlier removal total_stock_value = [] exercised_stock_options = [] total_stock_value, exercised_stock_options = nanToNumber( total_stock_value, exercised_stock_options, 'total_stock_value', 'exercised_stock_options', data_dict) total_stock_value, exercised_stock_options = reshape( total_stock_value, exercised_stock_options) predictions = plotWithPrediction(total_stock_value, exercised_stock_options) total_stock_value, exercised_stock_options, errors = cleanAndPlot( predictions, total_stock_value, exercised_stock_options) removeOutliersFromDict( total_stock_value, exercised_stock_options, 'total_stock_value', 'exercised_stock_options', data_dict) ### Task 3: Create new feature(s) # create poi_messages, from_poi_fraction, and to_poi_fraction for value in data_dict.values(): if value['from_poi_to_this_person'] == 'NaN': value['from_poi_to_this_person'] = 0 if value['from_this_person_to_poi'] == 'NaN': value['from_this_person_to_poi'] = 0 if value['to_messages'] == 'NaN': value['to_messages'] = 0 if value['from_messages'] == 'NaN': value['from_messages'] = 0 if value['shared_receipt_with_poi'] == 'NaN': value['shared_receipt_with_poi'] = 0 try: value['poi_messages'] = ( float(value['from_poi_to_this_person'] + value['from_this_person_to_poi'])) / ( value['to_messages'] + value['from_messages']) except ZeroDivisionError: value['poi_messages'] = 0 for value in data_dict.values(): try: value['from_poi_fraction'] = float( value['from_poi_to_this_person']) / value['from_messages'] except ZeroDivisionError: value['from_poi_fraction'] = 0 try: value['to_poi_fraction'] = float( value['from_this_person_to_poi']) / value['to_messages'] except ZeroDivisionError: value['to_poi_fraction'] = 0 ### Store to my_dataset for easy export below. my_dataset = data_dict ### Extract features and labels from dataset for local testing data = featureFormat(my_dataset, features_list, sort_keys = True) labels, features = targetFeatureSplit(data) from sklearn.feature_selection import SelectKBest ### Task 4: Try a varity of classifiers ### Please name your classifier clf for easy export below. ### Note that if you want to do PCA or other multi-stage operations, ### you'll need to use Pipelines. For more info: ### http://scikit-learn.org/stable/modules/pipeline.html # Provided to give you a starting point. Try a variety of classifiers. # import and setup from sklearn.naive_bayes import GaussianNB from sklearn import tree from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import precision_score, recall_score from sklearn.model_selection import GridSearchCV, StratifiedShuffleSplit from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler features_train, features_test, labels_train, labels_test = train_test_split( features, labels, test_size=0.3, random_state=42) scaler = MinMaxScaler() select = SelectKBest(k = 5) kfit = select.fit(features_test, labels_test) score = kfit.scores_ NB = GaussianNB() # create pipeline steps steps = [('scaling', scaler), ('selection', select), ('NB' , NB)] # run the pipeline pipeline = Pipeline(steps) # create a list of tuples of the most important features and their scores most_important_features = [] klist = kfit.get_support() for i in range(len(klist)): if klist[i]: t = (features_list[i], kfit.scores_[i]) most_important_features.append(t) most_important_features.sort(key = lambda x: x[1], reverse = True) print most_important_features # fit the pipeline and make test the model clf = pipeline.fit(features_train, labels_train) pred = clf.predict(features_test) print 'NB pipe accuracy:', clf.score(features_test, labels_test) print 'NB pipe precision:', precision_score(labels_test, pred) print 'NB pipe recall:', recall_score(labels_test, pred) ### Task 5: Tune your classifier to achieve better than .3 precision and recall ### using our testing script. Check the tester.py script in the final project ### folder for details on the evaluation method, especially the test_classifier ### function. Because of the small size of the dataset, the script uses ### stratified shuffle split cross validation. For more info: ### http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html # Example starting point. Try investigating other evaluation techniques! ### Task 6: Dump your classifier, dataset, and features_list so anyone can ### check your results. You do not need to change anything below, but make sure ### that the version of poi_id.py that you submit can be run on its own and ### generates the necessary .pkl files for validating your results. dump_classifier_and_data(clf, my_dataset, features_list)
class Solution: def maxNumOfSubstrings(self, s: str) -> List[str]: start, end = {}, {} for i, c in enumerate(s): if c not in start: start[c] = i end[c] = i def checkSubstring(i): curr = i right = end[s[curr]] while curr <= right: if start[s[curr]] < i: return -1 right = max(right, end[s[curr]]) curr += 1 return right result = [] prevRight = -1 for i, c in enumerate(s): if i == start[c]: right = checkSubstring(i) if right != -1: if i > prevRight: result.append(s[i:right + 1]) else: result[-1] = s[i:right + 1] prevRight = right return result
import asyncio import datetime import gettext import math import os import random import pyrogram import speech_recognition import time import youtube_dl from datetime import timedelta from pyrogram.raw import types as raw_types from pyrogram.raw.functions import phone from pyrogram import types from pyrogram.raw import base from plugins.Bots.PyrogramBot.bot import PyrogramBot from pyrogram import errors, ContinuePropagation from plugins.Helpers import youtube_dl, media_convertor from pyrogram.client import Client from plugins.DataBase.mongo import MongoDataBase from plugins.Google.google import Google class PyrogramBotHandler: """ Pyrogram Handler """ def __init__(self, webSerber, pyrogramBot: PyrogramBot, mongoDataBase: MongoDataBase): self.webServer = webSerber self.pyrogramBot = pyrogramBot self.groupCall = pyrogramBot.groupCall self.mongoDataBase = mongoDataBase # # Horoscope # async def horoscope_command(self, client: Client, message: types.Message): # TODO horoscope command return """ Get horoscope data through site (https://ignio.com/r/export/utf/xml/daily/com.xml) [XML document] Return text of horoscope of horo_sign for current day in format: horo_sign: horoscope Return False if request failed async with aiohttp.ClientSession() as session: async with session.get('https://ignio.com/r/export/utf/xml/daily/com.xml') as response: if response.status == 200: string_xml = await response.text() horoscope = xml.etree.ElementTree.fromstring(string_xml) # for sign in horoscope.findall('aries'): text = '' for sign in horoscope: if sign.tag == 'date': continue if sign.tag == horo_sign: # string = '' for day in sign: if day.tag == 'today': # string += day.tag + ':' + day.text return sign.tag + ': ' + day.text else: return False """ async def language_command(self, client: Client, message: types.Message): chat_member = await self.pyrogramBot.bot.get_chat_member(chat_id=message.chat.id, user_id=message.from_user.id) if not chat_member.status == 'creator': # TODO print message return try: language_code = message.text.split(" ", maxsplit=1)[1] except IndexError: # language_code = message.from_user.language_code language_code = 'ru' language = self.webServer.languages.get(language_code) if language: language.install() query = {'language_code': language_code} return self.mongoDataBase.update_field(database_name='tbot', collection_name='init', action='$set', query=query) # ------------------------------------------------------------------------------------------------------------------ # Message ---------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ async def type_command(self, client: Client, msg: types.Message): try: orig_text = msg.text.split(" ", maxsplit=1)[1] except IndexError: return text = orig_text tbp = "" # to be printed typing_symbol = "▒" msg = await self.pyrogramBot.user.send_message(msg.chat.id, text) while (tbp != orig_text): try: await msg.edit(tbp + typing_symbol) time.sleep(0.05) # 50 ms tbp = tbp + text[0] text = text[1:] await msg.edit(tbp) time.sleep(0.05) except errors.FloodWait as e: time.sleep(e.x) # ------------------------------------------------------------------------------------------------------------------ # Player ----------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ async def volume_command(self, client: Client, message: types.Message): volume = message.text.split(" ", maxsplit=1)[1] await self.groupCall.client.set_my_volume(volume=volume) print(f'Volume set to {volume}') async def pause_command(self, client: Client, message: types.Message): if not self.groupCall.client.is_connected: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("I am not in voice channel (/join)")) ) else: if self.groupCall.client.is_audio_running: if self.groupCall.client.is_audio_paused: await self.groupCall.client.set_audio_pause(False, False) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Audio resumed")) ) else: await self.groupCall.client.set_audio_pause(True, False) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Audio paused")) ) else: if self.groupCall.client.is_video_running: if self.groupCall.client.is_video_paused: await self.groupCall.client.set_video_pause(False, False) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Video resumed")) ) else: await self.groupCall.client.set_video_pause(True, False) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Video paused")) ) else: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("Media is not playing")) ) async def skip_command(self, client: Client, message: types.Message): if not self.groupCall.client.is_connected: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("I am not in voice channel (/join)")) ) if not self.groupCall.client.is_audio_running and not self.groupCall.client.is_video_running: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media is not playing")) ) await self.groupCall.client.stop_media() return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Media skip")) ) async def leave_command(self, client: Client, message: types.Message): if not self.groupCall.client.is_connected: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("I am not in voice channel (/join)")) ) await self.groupCall.client.leave() return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Thank you for kicking me out")) ) async def queue_command(self, client: Client, message: types.Message): try: text = message.text.split(" ", maxsplit=1)[1] try: page = int(text) except Exception: # await message.reply_text('Wrong format of command. Use command /queue or /queue [page]') # print('not int in queue [number]') page = 1 except IndexError: # blank command page = 1 query = {'media.queue': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': message.chat.id}, query=query) try: document = document['media']['queue'] except (IndexError, KeyError): return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media queue is empty")) ) queue_count = len(document) document_slice = document[(page - 1) * 10:page * 10 + 1] if not document_slice: page = 1 document_slice = document[:11] texts = [] user_ids = [] for queue in document_slice: texts.append(queue.get('text')) user_ids.append(queue.get('user')) users_objects = await self.pyrogramBot.bot.get_users(user_ids) queries = [] for i, (text, user_id) in enumerate(zip(texts, user_ids)): if i == 10: break for user_object in users_objects: if user_object.id == user_id: user_mention = f"[@{user_object.username}](tg://user?id={user_object.id})" # query = f"({i + 1 + (page - 1) * 10}) `{text}` {_('added by')} {user_mention}" query = "({element}) `{text}` {added_by} {user_mention}".format(element=i + 1 + (page - 1) * 10, text=text, added_by=_("added by"), user_mention=user_mention) queries.append(query) break if queries: queries = '\n'.join(queries) # text_reply = f"{message.chat.title} {_('media queue')} ({queue_count}):\n\n{queries}" text_reply = "{chat_title} {media_queue} ({queue_count}):\n\n{queries}".format( chat_title=message.chat.title, media_queue=_("media queue"), queue_count=queue_count, queries=queries) else: # empy page return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media queue is empty")) ) count_of_buttons = min(10, math.ceil(queue_count / 10)) if count_of_buttons > 1: inlineKeyboardButtons = [types.InlineKeyboardButton(text=f"⏮", callback_data=f'/queue 1'), types.InlineKeyboardButton(text=f"◀", callback_data=f'/queue {page - 1}'), types.InlineKeyboardButton(text=f"▶", callback_data=f'/queue {page + 1}'), types.InlineKeyboardButton(text=f"⏭", callback_data=f'/queue {count_of_buttons}')] # for i in range(count_of_buttons): # inlineKeyboardButtons.append(InlineKeyboardButton(text=f"{i+1}", callback_data=f'/queue {i+1}')) reply_markup = types.InlineKeyboardMarkup([inlineKeyboardButtons]) else: reply_markup = None await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=text_reply, disable_notification=True, disable_web_page_preview=True, reply_markup=reply_markup) async def queue_callback_query(self, client: Client, callback_query: types.CallbackQuery): try: text = callback_query.data.split(" ", maxsplit=1)[1] try: page = int(text) except Exception: # print('not int in queue [number]') page = 1 except IndexError: # print('blank command') page = 1 message = callback_query.message query = {'media.queue': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': message.chat.id}, query=query) try: document = document['media']['queue'] except (IndexError, KeyError): return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media queue is empty")) ) queue_count = len(document) document_slice = document[(page - 1) * 10:page * 10 + 1] if not document_slice: page = 1 document_slice = document[:11] texts = [] user_ids = [] for queue in document_slice: texts.append(queue.get('text')) user_ids.append(queue.get('user')) users_objects = await self.pyrogramBot.bot.get_users(user_ids) queries = [] for i, (text, user_id) in enumerate(zip(texts, user_ids)): if i == 10: break for user_object in users_objects: if user_object.id == user_id: user_mention = f"[@{user_object.username}](tg://user?id={user_object.id})" # query = f"({i + 1 + (page - 1) * 10}) `{text}` {_('added by')} {user_mention}" query = "({element}) `{text}` {added_by} {user_mention}".format(element=i + 1 + (page - 1) * 10, text=text, added_by=_("added by"), user_mention=user_mention) queries.append(query) break if queries: queries = '\n'.join(queries) # text_reply = f"{message.chat.title} {_('media queue')} ({queue_count}):\n\n{queries}" text_reply = "{chat_title} {media_queue} ({queue_count}):\n\n{queries}".format( chat_title=message.chat.title, media_queue=_("media queue"), queue_count=queue_count, queries=queries) else: # text_reply = f"{message.chat.title} {_('media queue')} ({queue_count}):\n\n{_('Empty page')}" text_reply = "{chat_title} {media_queue} ({queue_count}):\n\n{queries}".format( chat_title=message.chat.title, media_queue=_("media queue"), queue_count=queue_count, queries=_("Empty page")) count_of_buttons = min(10, math.ceil(queue_count / 10)) if count_of_buttons > 1: inlineKeyboardButtons = [types.InlineKeyboardButton(text=f"⏮", callback_data=f'/queue 1'), types.InlineKeyboardButton(text=f"◀", callback_data=f'/queue {page - 1}'), types.InlineKeyboardButton(text=f"▶", callback_data=f'/queue {page + 1}'), types.InlineKeyboardButton(text=f"⏭", callback_data=f'/queue {count_of_buttons}')] # for i in range(count_of_buttons): # inlineKeyboardButtons.append(InlineKeyboardButton(text=f"{i+1}", callback_data=f'/queue {i+1}')) reply_markup = types.InlineKeyboardMarkup([inlineKeyboardButtons]) else: reply_markup = None try: await self.pyrogramBot.bot.edit_message_text(chat_id=message.chat.id, message_id=message.message_id, text=text_reply, disable_web_page_preview=True, reply_markup=reply_markup) except errors.MessageNotModified: # print('Same page') await callback_query.answer() # try: # callback_query.answer('button', show_alert=True) # except (IndexError, KeyError): # callback_query.answer(f"callback_query.answer Error", show_alert=True) async def now_command(self, client: Client, message: types.Message): if not self.groupCall.client.is_audio_running and not self.groupCall.client.is_video_running: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media is not playing")) ) query = {'media.now': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': message.chat.id}, query=query) try: document = document['media']['now'] except (IndexError, KeyError): return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media is not playing")) ) now = { 'title': document.get('title'), 'url': document.get('url'), 'webpage_url': document.get('webpage_url'), 'channel_url': document.get('channel_url'), 'thumbnail': document.get('thumbnail'), 'uploader': document.get('uploader'), 'uploader_url': document.get('uploader_url'), # 'thumbnail': document.get('thumbnail'), 'channel': document.get('channel'), 'duration': document.get('duration'), 'protocol': document.get('protocol'), 'user': document.get('user') } user = await self.pyrogramBot.bot.get_users(now['user']) duration = f"({timedelta(seconds=int(now['duration']))})" title = f"[{now['title']}]({now['webpage_url']})" channel = f"[{now['uploader']}]({now['uploader_url']})" user_mention = f"[@{user.username}](tg://user?id={now['user']})" # text_reply = f"{_('Now playing')}\n" \ # f"{_('Title')}: {title}\n" \ # f"{_('Uploader')}: {channel}\n" \ # f"{_('Duration')}: {duration}\n" \ # f"{_('Added by')}{user_mention}\n" text_reply = "{now_playing_text}\n" \ "{title_text}: {title}\n" \ "{uploader_text}: {uploader}\n" \ "{duration_text}: {duration}\n" \ "{added_by_text}: {user_mention}\n".format(now_playing_text=_("Now playing"), title_text=_('Title'), title=title, uploader_text=_('Uploader'), uploader=channel, duration_text=_('Duration'), duration=duration, added_by_text=_('Added by'), user_mention=user_mention) try: await self.pyrogramBot.bot.send_photo(chat_id=message.chat.id, photo=now['thumbnail'], caption=text_reply, disable_notification=True) except errors.WebpageMediaEmpty: await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=text_reply, disable_notification=True, disable_web_page_preview=True) # print('not supported image for send_photo') # print(now['thumbnail']) async def lyrics_command(self, client: Client, message: types.Message): try: text = message.text.split(" ", maxsplit=1)[1] except IndexError: # print('blank command') text = '' if text: # FIXME check if it returns error lyrics = self.webServer.google.lyrics(song_name=text) else: if not self.groupCall.client.is_audio_running and not self.groupCall.client.is_video_running: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}\n{tip}".format( text=_("Media is not playing"), tip=_("Use /lyrics [song title] instead")) ) query = {'media.now': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': message.chat.id}, query=query) try: document = document['media']['now'] except (IndexError, KeyError): return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media is not playing")) ) now = { 'title': document.get('title'), 'url': document.get('url'), 'webpage_url': document.get('webpage_url'), 'channel_url': document.get('channel_url'), 'thumbnail': document.get('thumbnail'), 'uploader': document.get('uploader'), 'uploader_url': document.get('uploader_url'), # 'thumbnail': document.get('thumbnail'), 'channel': document.get('channel'), 'duration': document.get('duration'), 'protocol': document.get('protocol'), 'user': document.get('user') } lyrics = self.webServer.google.lyrics(song_name=now['title']) if not lyrics: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Lyrics not found")) ) text_reply = f"[{lyrics['title']}]({lyrics['link']}):\n{lyrics['lyrics']}" await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=text_reply, disable_notification=True, disable_web_page_preview=True) async def clear_command(self, client: Client, message: types.Message): try: text = message.text.split(" ", maxsplit=1)[1] try: count = int(text) except Exception: return except IndexError: # print('blank command') count = 0 if count == 0: query = {'media.queue': -1} self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$unset', filter={'chat_id': message.chat.id}, query=query) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Media queue cleared")) ) else: # a value of -1 to remove the first element of an array and 1 to remove the last element in an array. query = {'media.queue': int(-1 * math.copysign(1, count))} for i in range(abs(count)): self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$pop', filter={'chat_id': message.chat.id}, query=query) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{count} {tracks_cleared}".format(count=abs(count), tracks_cleared=_( "track(s) cleared")) ) async def join_command(self, client: Client, message: types.Message): if not self.groupCall.client.is_connected: try: await self.groupCall.client.join(group=int(message.chat.id)) # , join_as=-1001571685575) except Exception: peer = await self.pyrogramBot.user.resolve_peer(message.chat.id) startGroupCall = phone.CreateGroupCall(peer=raw_types.InputPeerChannel(channel_id=peer.channel_id, access_hash=peer.access_hash), random_id=int(self.pyrogramBot.bot.rnd_id()) // 9000000000) try: await self.pyrogramBot.user.send(startGroupCall) await self.groupCall.client.join(group=message.chat.id) except errors.ChatAdminRequired: await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("I need manage voice permission")) ) return False return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format( text=_("Successfully connected to voice channel")) ) else: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("I am already in voice channel")) ) async def play_command(self, client: Client, message: types.Message): # TODO autoconnect # print(message.chat.id) # print(self.groupCall.client.is_audio_running, self.groupCall.client.is_video_running) # print(self.groupCall.client.is_audio_paused, self.groupCall.client.is_video_paused) try: text = message.text.split(" ", maxsplit=1)[1] query = {'media.queue': {'text': text, 'user': message.from_user.id}} self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$push', filter={'chat_id': message.chat.id}, query=query) return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✔️{text}".format(text=_("Successfully added to queue")) ) except IndexError: # print('blank command') pass if self.groupCall.client.is_audio_running or self.groupCall.client.is_video_running: # return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, # text="✖️Media currently playing") return if not self.groupCall.client.is_connected: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("I need to be in voice channel (/join)")) ) # await self.join_command(client=client, message=message) while True: while self.groupCall.client.is_audio_running or self.groupCall.client.is_video_running: await asyncio.sleep(1) else: if not self.groupCall.client.is_connected: return query = {'media.queue': -1} document = self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$pop', filter={'chat_id': message.chat.id}, query=query) try: # print(document) text = document['media']['queue'][0]['text'] user = document['media']['queue'][0]['user'] except (IndexError, KeyError): query = {'media.now': 1} self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$unset', filter={'chat_id': message.chat.id}, query=query) return # queue = document['media']['queue'] search_engine = None lip_sync = False ydl_opts = { 'format': 'bestaudio/best[height<=?720][width<=?1280]', 'quiet': True, 'ignoreerrors': True, 'noplaylist': True, } if '@video@' in text: text = text.replace('@video@', '', 1) if '@sync@' in text: text = text.replace('@sync@', '', 1) lip_sync = True ydl_opts['format'] = 'best' if '@yt@' in text: text = text.replace('@yt@', '', 1) search_engine = 'ytsearch' else: if '@sc@' in text: text = text.replace('@sc@', '', 1) search_engine = 'scsearch' text = text.strip() info = youtube_dl.get_best_info_media(title=text, ydl_opts=ydl_opts, search_engine=search_engine) if not info: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Media load failed")) ) # print(info) # 'userID': data['userID'], if isinstance(info, list): # print(len(info)) # print(info) info = info[0] # print(info) filter = {'chat_id': message.chat.id} now = { 'title': info.get('title'), 'url': info.get('url'), 'webpage_url': info.get('webpage_url'), 'channel_url': info.get('channel_url'), 'uploader': info.get('uploader'), 'uploader_url': info.get('uploader_url'), 'thumbnail': info.get('thumbnail'), # 'thumbnail': document['thumbnails'][len(document.get('thumbnails'))], 'channel': info.get('channel'), 'duration': info.get('duration'), 'protocol': info.get('protocol'), 'user': user } query = {'media.now': {'title': now['title'], 'url': now['url'], 'webpage_url': now['webpage_url'], 'channel_url': now['channel_url'], 'uploader': info.get('uploader'), 'uploader_url': info.get('uploader_url'), 'thumbnail': now['thumbnail'], 'channel': now['channel'], 'duration': now['duration'], 'user': now['user']}} self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$set', filter=filter, query=query) # print('start playing') if info.get('ext') in self.groupCall.audio_formats: try: await self.groupCall.client.start_audio(source=info['url'], repeat=False) except Exception: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("Audio playout failed")) ) else: if info.get('ext') in self.groupCall.video_formats: try: await self.groupCall.client.start_video(source=info['url'], repeat=False, enable_experimental_lip_sync=lip_sync) except Exception: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("Video playout failed")) ) else: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("Media playout failed")) ) user = await self.pyrogramBot.bot.get_users(now['user']) duration = f"({timedelta(seconds=int(now['duration']))})" title = f"[{now['title']}]({now['webpage_url']})" channel = f"[{now['uploader']}]({now['uploader_url']})" user_mention = f"[@{user.username}](tg://user?id={now['user']})" # text_reply = f"{_('Playing from queue')}\n" \ # f"{_('Title')}: {title}\n" \ # f"{_('Uploader')}: {channel}\n" \ # f"{_('Duration')}: {duration}\n" \ # f"{_('Added by')} {user_mention}\n" text_reply = "{playing_text}\n" \ "{title_text}: {title}\n" \ "{uploader_text}: {uploader}\n" \ "{duration_text}: {duration}\n" \ "{added_by_text}: {user_mention}\n".format(playing_text=_("Playing from queue"), title_text=_('Title'), title=title, uploader_text=_('Uploader'), uploader=channel, duration_text=_('Duration'), duration=duration, added_by_text=_('Added by'), user_mention=user_mention) try: await self.pyrogramBot.bot.send_photo(chat_id=message.chat.id, photo=now['thumbnail'], caption=text_reply, disable_notification=True) except errors.WebpageMediaEmpty: # print('not supported image for send_photo') # print(now['thumbnail']) await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=text_reply, disable_notification=True, disable_web_page_preview=True) # reply_markup=reply_markup) async def answer_inline_result(self, client: Client, chosen_inline_result: types.ChosenInlineResult): # chosen_inline_result.result_id # inlineQueryResultArticle = InlineQueryResultArticle() # print(chosen_inline_result) print('choosen_inline_result') # result = self.pyrogramBot.user.get_inline_bot_results(bot='@F0S_bot', query=chosen_inline_result.query) # print(result) async def play_inline_query(self, client: Client, inline_query: types.InlineQuery): # query_message = inline_query.query # from_user = inline_query.from_user # print(query_message) try: text = inline_query.query.split(" ", maxsplit=1)[1] # text = inline_query.query except IndexError: return try: ydl_opts = { 'skip_download': True, 'quiet': True, 'ignoreerrors': True, 'noplaylist': True, } search_engine = None video = '' sync = '' if '@video@' in text: text = text.replace('@video@', '', 1) video = '@video@' if '@sync@' in text: text = text.replace('@sync@', '', 1) sync = '@sync@' if '@yt@' in text: text = text.replace('@yt@', '', 1) search_engine = 'ytsearch' else: if '@sc@' in text: text = text.replace('@sc@', '', 1) search_engine = 'scsearch' text = text.strip() info = youtube_dl.get_info_media(title=text, ydl_opts=ydl_opts, search_engine=search_engine, result_count=6) results = [] if not isinstance(info, list): info = [info] for result in info: if not result: # print('AttributeError, no results') return res = { 'title': result.get('title'), 'webpage_url': result.get('webpage_url'), 'thumbnail': result.get('thumbnail'), 'channel': result.get('channel'), 'uploader': result.get('uploader'), 'duration': result.get('duration'), 'protocol': result.get('protocol') } message_text = f"/play {res['webpage_url']} {video} {sync}" # print(f"{input_message_content}") duration = f"({timedelta(seconds=int(res['duration']))})" # print(res) results.append(types.InlineQueryResultArticle( title=f"{duration} {res['title']}", input_message_content=types.InputTextMessageContent(message_text=message_text, parse_mode='markdown', disable_web_page_preview=True), url=res['webpage_url'], description=res['uploader'], thumb_url=res['thumbnail'] # reply_markup=InlineKeyboardMarkup([ # [InlineKeyboardButton(text="Add to queue", callback_data=f'/callback')] # ]) )) # 604800 - 7 days, 21600, 21600 - 6 hours return await inline_query.answer(results=results, cache_time=21600) except errors.QueryIdInvalid: # print(exceptions.QueryIdInvalid) return async def start_command(self, client: Client, message: types.Message): await message.reply('Start message') async def help_command(self, client: Client, message: types.Message): await message.reply('Help message') async def echo_command(self, client: Client, message: types.Message): try: await message.reply(text=message.text.split(" ", maxsplit=1)[1]) except IndexError: return # ------------------------------------------------------------------------------------------------------------------ # SPEECH RECOGNITION ----------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ async def speech_to_text_command(self, client: Client, message: types.Message): try: language = message.text.split(" ", maxsplit=1)[1] except IndexError: language = 'ru-RU' if not message.reply_to_message or not message.reply_to_message.voice: return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format( text=_("Message does not contain voice message")) ) file_id = message.reply_to_message.voice.file_id source = await self.pyrogramBot.bot.download_media(message=file_id, file_name='downloads/') converted_source = media_convertor.convert_audio_file(source) os.remove(source) recognizer = speech_recognition.Recognizer() text = '' if message.reply_to_message.voice.duration < 60: audio_file = speech_recognition.AudioFile(converted_source) with audio_file as source: audio_data = recognizer.record(source) try: text = recognizer.recognize_google(audio_data=audio_data, language=language) except (speech_recognition.UnknownValueError, speech_recognition.RequestError, speech_recognition.WaitTimeoutError): await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text="✖️{text}".format(text=_("Speech Recognition Error")) ) else: # TODO long file recognition text = 'Long voice audio recognition not yet supported.' \ 'You can only use < 60 sec voice audio recognition' """ audio_segment = AudioSegment.from_wav(file=converted_source) chunks = split_on_silence(audio_segment=audio_segment, min_silence_len=1000, silence_thresh=-16) i = 0 # process each chunk for chunk in chunks: # Create 0.5 seconds silence chunk chunk_silent = AudioSegment.silent(duration=10) # add 0.5 sec silence to beginning and # end of audio chunk. This is done so that # it doesn't seem abruptly sliced. audio_chunk = chunk_silent + chunk + chunk_silent # specify the bitrate to be 192 k audio_chunk.export("downloads/chunk{0}.wav".format(i), bitrate='192k', format="wav") # the name of the newly created chunk filename = 'downloads/chunk' + str(i) + '.wav' print("Processing chunk " + str(i)) # get the name of the newly created chunk # in the AUDIO_FILE variable for later use. file = filename # recognize the chunk with speech_recognition.AudioFile(file) as src: # remove this if it is not working # correctly. recognizer.adjust_for_ambient_noise(src) audio_listened = recognizer.listen(src) try: # try converting it to text chunk_text = recognizer.recognize_google(audio_data=audio_listened, language=language) print(chunk_text) text = text + chunk_text except (speech_recognition.UnknownValueError, speech_recognition.RequestError, speech_recognition.WaitTimeoutError): print('speech_recognition.Error') i += 1 """ os.remove(converted_source) if text: if message.chat.type in ('group', 'supergroup', 'channel'): link = message.reply_to_message.link await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=f"[{text}]({link})") else: await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=f"{text}") # https://cloud.google.com/speech-to-text/docs/languages # recognize_bing() # recognize_google() # recognize_google_cloud() # recognize_ibm() # recognize_sphinx() # # XP check # async def stats_command(self, client: Client, message: types.Message): # TODO add addition info and parameters # RANKING message = 50 xp, second in voice = 1 xp message_xp = 100 voice_xp = 50 chat = message.chat try: query = message.text.split(" ", maxsplit=1)[1] if query == 'random': max_value = await self.pyrogramBot.user.search_messages_count(chat_id=chat.id) # random_value = random.random() # min_value + (random_value * (max_value - min_value)) try: # get history onlu for user bots random_message = await self.pyrogramBot.user.get_history( chat_id=chat.id, offset=random.randint(0, max_value), limit=1 ) random_message = random_message[0] random_message: types.Message except ValueError: return await self.pyrogramBot.bot.send_message(chat_id=chat.id, text="✖️{text} {chat_title}".format( text=_("No messages in"), chat_title=chat.title) ) link = random_message.link return await self.pyrogramBot.bot.send_message( chat_id=chat.id, text="✔️{random_text} [{message_text}]({link})".format(random_text=_("Random"), message_text=_("message"), link=link) ) else: user_name = query try: user = await self.pyrogramBot.bot.get_users(user_name) except (errors.UsernameInvalid, errors.PeerIdInvalid): return await self.pyrogramBot.bot.send_message(chat_id=chat.id, text="✖️{text} {user_name}".format( text=_("No stats found about"), user_name=user_name) ) query = {'_id': 0, f'users.{user.id}.stats': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': chat.id}, query=query) try: stats = document['users'][f'{user.id}']['stats'] seconds = 0.0 for voicetime in stats['voicetime']: seconds += voicetime seconds = round(seconds) except(IndexError, KeyError, TypeError): seconds = 0 query = "" query_filter = "empty" # Search only for userbots messages_count = await self.pyrogramBot.user.search_messages_count(chat_id=chat.id, from_user=user.id, query=query, filter=query_filter) user_mention = f"[@{user.username}](tg://user?id={user.id})" date = datetime.timedelta(seconds=seconds) xp = (messages_count * message_xp) + ((seconds // 60) * voice_xp) return await self.pyrogramBot.bot.send_message( chat_id=chat.id, text="{user_mention} {xp_text}: {xp}\n{messages_text}: {messages_count} | {voice_time_text}: {voice_time}\n\n" "{message_xp} {xp_per_messaage_text}\n{voice_xp} {xp_per_voice_second_text}".format( user_mention=user_mention, xp_text=_("xp"), xp=round(xp), messages_text=_("messages"), messages_count=messages_count, voice_time_text=_("voice time"), voice_time=date, message_xp=message_xp, xp_per_messaage_text=_("xp per message"), voice_xp=voice_xp, xp_per_voice_second_text=_("xp per voice minute")) # text=f"{user_mention} {_('xp')}: {round(xp)} {_('messages')}: {messages_count} {_('voice time')}: {date}\n\n" # f"({message_xp}{_('xp per message')} | {voice_xp} {_('xp per voice second')})" ) except IndexError: query = {'_id': 0, f'users.$': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': chat.id}, query=query) query = "" query_filter = "empty" stats = [] async for member in self.pyrogramBot.user.iter_chat_members(chat_id=chat.id): messages_count = await self.pyrogramBot.user.search_messages_count(chat_id=chat.id, from_user=member.user.id, query=query, filter=query_filter) user = member.user try: voice_stats = document['users'][f'{user.id}']['stats'] seconds = 0 for voicetime in voice_stats['voicetime']: seconds += voicetime seconds = round(seconds) # date = datetime.timedelta(seconds=seconds) except(IndexError, KeyError, TypeError): seconds = 0 xp = (messages_count * message_xp) + ((seconds // 60) * voice_xp) stat = (user, messages_count, seconds, xp) stats.append(stat) stats.sort(reverse=True, key=lambda x: x[3]) # [0:10:2] # start 0, stop: 10, step:2 # [0:9] # start 0, stop: 9, step:1 # [9:] # start 9, stop: end of string, step:1 # [9::2] # start 9, stop: end of string, step:2 # [::2] # start 0, stop: end of string, step:2 # top 10 users top_list = "{top_members_text} {chat_title}\n\n".format(top_members_text=_("Top members of"), chat_title=chat.title) i = 0 for user, messages_count, seconds, xp in stats[0:10]: date = datetime.timedelta(seconds=seconds) i += 1 user_mention = f"[@{user.username}](tg://user?id={user.id})" top_list = "{top_list}{i}.{user_mention} {xp_text}: {xp}\n{messages_text}: {messages_count} | {voice_time_text}: {voice_time}\n".format( top_list=top_list, i=i, user_mention=user_mention, xp_text=_("xp"), xp=round(xp), messages_text=_("messages"), messages_count=messages_count, voice_time_text=_("voice time"), voice_time=date) # top_list = f"{top_list}{i}.{user_mention} {_('xp')}: {round(xp)} {_('messages')}: {messages_count} {_('voice time')}: {date}\n" top_list = "{top_list}\n\n{message_xp} {xp_per_messaage_text}\n{voice_xp} {xp_per_voice_second_text}".format( top_list=top_list, message_xp=message_xp, xp_per_messaage_text=_("xp per message"), voice_xp=voice_xp, xp_per_voice_second_text=_("xp per voice minute")) # top_list = f"{top_list}\n\n({message_xp}{_('xp per message')} | {voice_xp} {_('xp per voice second')})" return await self.pyrogramBot.bot.send_message(chat_id=chat.id, text=top_list, disable_notification=True) # query = "" # query_filter = "empty" # Search only for userbots # messages_count = await self.pyrogramBot.user.search_messages_count(chat_id=chat.id, from_user=user.id, # query=query, filter=query_filter) # stat = (user.username, messages_count) # print(user.username, messages_count) # return # print(messages_count) """ query = {'_id': 0, f'users.{user.id}.messages_count': 1, f'users.{user.id}.voice_time': 1} document = self.mongoDataBase.get_document(database_name='tbot', collection_name='chats', filter={'chat_id': message.chat.id}, query=query) try: info = document['users'][f'{user.id}'] except(IndexError, KeyError, TypeError): user_mention = f"[@{user.username}](tg://user?id={user.id})" return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=f"✖️No stats found about {user_mention}") user_mention = f"[@{user.username}](tg://user?id={user.id})" return await self.pyrogramBot.bot.send_message(chat_id=message.chat.id, text=f"{user_mention} stats:\n" f"Messages: {info.get('messages_count')}\n" f"Voice time: {info.get('voice_time')} minutes") """ # ------------------------------------------------------------------------------------------------------------------ # RAW UPDATE HANDLER ----------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ async def raw_update_handler(self, client: Client, update: base.Update, users: dict, chats: dict): """ Raw Updates Handler # MIN_CHANNEL_ID = -1002147483647 # MAX_CHANNEL_ID = -1000000000000 # MIN_CHAT_ID = -2147483647 # MAX_USER_ID_OLD = 2147483647 # MAX_USER_ID = 999999999999 # MAX - ID = NEW ID """ # (client.get_chat_member(userid)).status - member admin permissions # APRIL FOOLS -------------------------------------------------------------------------------------------------- """ if isinstance(update, raw_types.UpdateNewChannelMessage): update: raw_types.UpdateNewChannelMessage # self.pyrogramBot.bot: pyrogram.Client # chat = list(chats.items())[0][1] # chat_id = -1000000000000 - chat.id # user = list(users.items())[0][1] if random.randint(1, 4) == 1: # print(1) chat_id = -1000000000000 - update.message.peer_id.channel_id message_id = update.message.id emoji = "🎉🔥🤮🤯👍👎💩🤩😱😁🤬😢🥰👏❤🤔" # "️" # print(message_id, chat_id, update) # print(message_id, chat_id, update) while True: try: if await self.pyrogramBot.user.send_reaction(chat_id=chat_id, message_id=message_id, emoji=random.choice(emoji)): return except errors.FloodWait as e: await asyncio.sleep(e.x) except Exception as e: return print(e) # chat_member = await self.pyrogramBot.bot.get_chat_member(chat_id=chat_id, user_id='me') """ # -------------------------------------------------------------------------------------------------------------- # TODO add handle of another update types # TODO make log file of the day or after some time if isinstance(update, raw_types.update_group_call.UpdateGroupCall): update: raw_types.update_group_call.UpdateGroupCall # chat = list(chats.items())[0][1] # chat_member = await self.pyrogramBot.bot.get_chat_member(chat_id=-1000000000000 - chat.id, user_id='me') # if chat_member.status != 'administrator': # raise ContinuePropagation try: version = update.call.version if version == 1: query = {f'call_id': update.call.id} return self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$set', filter={'chat_id': -1000000000000 - update.chat_id}, query=query) except AttributeError: query = {f'call_id': 1} return self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$unset', filter={'chat_id': -1000000000000 - update.chat_id}, query=query) # query = {f'call_id': update.call.id} # return self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', # action='$setOnInsert', filter={'chat_id': update.chat_id}, # query=query) if isinstance(update, raw_types.update_group_call_participants.UpdateGroupCallParticipants): update: raw_types.update_group_call_participants.UpdateGroupCallParticipants for participant in update.participants: participant: raw_types.GroupCallParticipant if participant.left: voicetime = time.time() - participant.date user = list(users.items())[0][1] # getGroupCall = phone.GetGroupCall(call=update.call, limit=1) # groupCall = await self.pyrogramBot.user.send(getGroupCall) # groupCall: raw_types.GroupCall # print(groupCall) # chat = await self.pyrogramBot.bot.get_chat(chat_id=groupCall.title) query = {f'users.{user.id}.stats.datetime': datetime.datetime.now(), f'users.{user.id}.stats.voicetime': voicetime} return self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$push', filter={'call_id': update.call.id}, query=query, upsert=False) """ try: # UpdateNewChannelMessage if isinstance(update, raw_types.update_new_channel_message.UpdateNewChannelMessage): update: raw_types.update_new_channel_message.UpdateNewChannelMessage message = update.message if isinstance(message, raw_types.Message): message: raw_types.Message user = list(users.items())[0][1] channel = list(chats.items())[0][1] # chats[id_of_chat] if isinstance(user, raw_types.User): user: raw_types.User else: raise ContinuePropagation if isinstance(channel, raw_types.Channel): channel: raw_types.Channel else: raise ContinuePropagation else: # FIXME raise ContinuePropagation ''' for user_id, user in users.items(): if isinstance(user, raw_types.User): user: raw_types.User for chat_id, chat in chats.items(): if isinstance(chat, raw_types.Channel): chat: raw_types.Channel ''' query = {f'users.{user.id}.messages_count': 1, f'users.{user.id}.voice_time': 0} channel_id = -1000000000000 - channel.id self.mongoDataBase.update_field(database_name='tbot', collection_name='chats', action='$inc', filter={'chat_id': channel_id}, query=query) else: raise ContinuePropagation except Exception: # TODO Exceptions pass # update.continue_propagation() raise ContinuePropagation """ # ------------------------------------------------------------------------------------------------------------------ # Something else --------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ # url = urls.split('&') # for item in url: # print(item) # if info['duration'] >= YoutubeHelper.max_track_duration: # return None # if info['duration'] <= 0.1: # return None # if 'entries' in info: # for video in info['entries']: # url = video['url'] # url = video['formats']['480p']['url'] # else: # url = info['url'] # url = info['formats']['url'] # Source = "https://www.youtube.com/watch?v=A7k2CMRBq4U" # with youtube_dl.YoutubeDL(dict(forceurl=True)) as ydl: # r = ydl.extract_info(Source, download=False) # media_url = r['formats'][-1]['webhook_url'] # print(media_url) # SOURCE = "https://www.youtube.com/watch?v=p0lbm5J0uUs" # video = pafy.new(SOURCE) # source = video.getbest().url # source = "https://cf-media.sndcdn.com/UPc0t917g9OV.128.mp3?Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiKjovL2NmLW1lZGlhLnNuZGNkbi5jb20vVVBjMHQ5MTdnOU9WLjEyOC5tcDMqIiwiQ29uZGl0aW9uIjp7IkRhdGVMZXNzVGhhbiI6eyJBV1M6RXBvY2hUaW1lIjoxNjM1ODIyNDA1fX19XX0_&Signature=FdEBG9g8KB4JCLZmYWbPkCyD-QJJNrae5l4R1iyR6a96iLmBrDafuDKttVUIp0HvH5N5Sj6ez6AsHwfCIH6ZoxdvElrLCGs9YxGYsH8uSLUo7a8r74VbMY9V-XFxRLQCusIhxjrJocwATxhG-brwQELjnuOaNtWZHbEN7RRto9L-99jyVJN-6gDd-oAB5Sh8y3EGunfebhAU1hAqf-YFG1Ue1oSvvKzQEhqjECx3RI0UUvzeyKkSd3srskqh-klzazZ0fcSBzlTvUQlrrHtIistwtgSxWK65WaI4qLluHrg8y8j-K2S6kVUMwBQfTKVrybOLwq5M~R9Qx7TNUjKEaA__&Key-Pair-Id=APKAI6TU7MMXM5DG6EPQ" # @staticmethod # def on_played_data(self, gc, length, fifo=av.AudioFifo(format='s16le')): # data = fifo.read(length / 4) # if data: # data = data.to_ndarray().tobytes() # return data # async def start(self, user_bot, message: Message): # group_call_factory = GroupCallFactory(user_bot, GroupCallFactory.MTPROTO_CLIENT_TYPE.PYROGRAM) # group_call_raw = group_call_factory.get_raw_group_call(on_played_data=self.on_played_data) # group_call_raw.play_on_repeat = False # if not group_call_raw.is_connected: # await group_call_raw.start(message.chat.id) # else: # await message.reply_text(text="I'm already connected")
from django.db import models # Create your models here. class Todo(models.Model): ident = models.CharField(max_length=50, primary_key=True) desc = models.CharField(max_length=500) group = models.IntegerField(default=0) schedule_date = models.DateField(blank=False) finish_date = models.DateField(null=True) remind_type = models.IntegerField(default=0) remind_date = models.DateTimeField(null=True) icon_index = models.IntegerField(default=0) status = models.IntegerField(default=0) user_id = models.IntegerField(blank=False) last_modified = models.DateTimeField(blank=False) def to_dict(self): dict = {} dict["ident"] = self.ident dict["desc"] = self.desc dict["group"] = self.group dict["scheduleDate"] = self.schedule_date dict["finishDate"] = self.finish_date dict["remindType"] = self.remind_type dict["remindDate"] = None if (self.remind_date == None) else self.remind_date.strftime("%Y-%m-%d %H:%M:%S") dict["iconIndex"] = self.icon_index dict["status"] = self.status dict["userId"] = self.user_id dict["lastModified"] = self.last_modified.strftime("%Y-%m-%d %H:%M:%S") return dict class Goal(models.Model): ident = models.CharField(max_length=50, primary_key=True) title = models.CharField(max_length=500) start_date = models.DateField(blank=False) end_date = models.DateField(blank=False) content = models.TextField(null=True) completeness = models.IntegerField(default=0) status = models.IntegerField(default=0) delete_status = models.IntegerField(default=0) user_id = models.IntegerField(blank=False) last_modified = models.DateTimeField(blank=False) def to_dict(self): dict = {} dict["ident"] = self.ident dict["title"] = self.title dict["startDate"] = self.start_date dict["endDate"] = self.end_date dict["content"] = self.content dict["completeness"] = self.completeness dict["status"] = self.status dict["deleteStatus"] = self.delete_status dict["userId"] = self.user_id dict["lastModified"] = self.last_modified.strftime("%Y-%m-%d %H:%M:%S") return dict
import argparse from mmap import * from pathlib import Path from ctypes import * from .common import * class DisplayVariable(BigEndianStructure): _pack_ = 1 _fields_ = [("valid", c_uint8), ("type", c_uint8), ("sp_word", c_uint16), ("desc_len_words", c_uint16), ("vp_word", c_uint16)] type_map = {} def __init_subclass__(cls) -> None: cls.type_map[cls.type_code] = cls def get_subclass(self) -> object: return self.type_map[self.type] def __new__(cls, buf, off): return cls.from_buffer(buf, off) def __init__(self, buf, off) -> None: assert self.valid == 0x5a, f'bad magic: 0x{self.valid:02x} off 0x{off:x}' if self.__class__ is not DisplayVariable: assert sizeof(self) == 0x20, '{} has bad size 0x{:x}'.format(self.__class__.__name__, sizeof(self)) assert self.sp_word == 0xffff, f'SP not supported yet: 0x{self.sp_word:04x} off 0x{off:x}' self.vp = VP(self.vp_word) self.pic = Pic(off // 0x800) def __str__(self) -> str: return '{} {} {:<7} {}'.format(self.pic, self.area, self.__class__.__name__, self.vp) class Icon(DisplayVariable): type_code = 0x00 _pack_ = 1 _fields_ = [("pos", Coord), ("val_min", c_uint16), ("val_max", c_uint16), ("icon_min", c_uint16), ("icon_max", c_uint16), ("icon_lib", c_uint8), ("opaque", Bool), ("_reserved", c_uint8 * 10)] def __init__(self, buf, off) -> None: super().__init__(buf, off) # would need to parse icons to get real area self.area = Area(self.pos, self.pos) self.vp.set_type(VP_Type.WORD) class ImageAnimation(DisplayVariable): type_code = 0x04 _pack_ = 1 _fields_ = [("pic_begin", Pic), ("pic_end", Pic), ("frame_time_8ms", c_uint8), ("_reserved", c_uint8 * 0x13)] def __init__(self, buf, off) -> None: super().__init__(buf, off) self.vp.set_type(VP_Type.NONE) def __str__(self) -> str: return '{} {} {} to {} every {} ms'.format( self.pic, self.__class__.__name__, self.pic_begin, self.pic_end, self.frame_time_8ms * 8) class Slider(DisplayVariable): type_code = 0x02 _pack_ = 1 _fields_ = [("val_min", c_uint16), ("val_max", c_uint16), ("xy_begin", Position), ("xy_end", Position), ("icon", c_uint16), ("yx", Position), ("adj_left_top", c_uint8), ("vertical", Bool), ("icon_lib", c_uint8), ("opaque", Bool), ("vp_format", c_uint16), ("_reserved", c_uint8 * 6)] def __init__(self, buf, off) -> None: super().__init__(buf, off) if self.vertical: self.pos = Coord(self.yx, self.xy_begin) self.end = Coord(self.yx, self.xy_end) else: self.pos = Coord(self.xy_begin, self.yx) self.end = Coord(self.xy_end, self.yx) #TODO: take adj_left_top into account? assert self.adj_left_top == 0 self.area = Area(self.pos, self.end) self.vp.set_from_vp_format_standard(self.vp_format) class BitIcon(DisplayVariable): type_code = 0x06 _pack_ = 1 _fields_ = [("vp_aux_ptr_word", c_uint16), # also called AP, 2 words ("bitmask", c_uint16), ("mode", c_uint8), ("arrangement", c_uint8), ("opaque", Bool), ("icon_lib", c_uint8), ("icon0s", c_uint16), ("icon0e", c_uint16), ("icon1s", c_uint16), ("icon1e", c_uint16), ("pos", Coord), ("spacing", Position), ("_reserved", c_uint8 * 2)] def __init__(self, buf, off) -> None: super().__init__(buf, off) # multiple spaced icons aren't supported yet assert bin(self.bitmask).count('1') == 1 assert int(self.spacing) == 0, self.spacing # would need to parse icons to get real area self.area = Area(self.pos, self.pos) # compute size based on self.bitmask if bin(self.bitmask).count('1') == 1: self.vp.set_type(VP_Type.BIT, bit=self.bitmask.bit_length() - 1) elif self.bitmask & 0xff == 0: self.vp.set_type(VP_Type.BYTE, low_byte=False) elif self.bitmask & 0xff00 == 0: self.vp.set_type(VP_Type.BYTE, low_byte=True) self.ap = VP(self.vp_aux_ptr_word) self.ap.size = 4 #assert self.vp_aux_ptr_word == self.vp_word + 1 #self.vp_size = 6 class Numeric(DisplayVariable): type_code = 0x10 _pack_ = 1 _fields_ = [("text_pos", Coord), ("color", Color), ("font", c_uint8), ("x_px", c_uint8), ("alignment", c_uint8), ("int_digits", c_uint8), ("dec_digits", c_uint8), ("vp_format", c_uint8), ("suffix_len", c_uint8), ("_suffix", c_char * 11)] def num_chars(self): decimalpoint = 1 if self.dec_digits > 0 else 0 return min(self.int_digits, 1) + self.dec_digits + decimalpoint def __init__(self, buf, off) -> None: super().__init__(buf, off) self.suffix = self._suffix[:self.suffix_len].decode('ascii') self.y_px = self.x_px * 2 self.area = Area(self.text_pos, self.text_pos) self.area.end.y += self.y_px self.area.end.x += self.x_px * self.num_chars() self.vp.set_from_vp_format_numeric(self.vp_format) def __str__(self) -> str: return '{} {}.{} digits {}x{}px suffix \'{}\' {}'.format( super().__str__(), self.int_digits, self.dec_digits, self.x_px, self.y_px, self.suffix, self.color) class Text(DisplayVariable): type_code = 0x11 _pack_ = 1 _fields_ = [("text_pos", Coord), ("color", Color), ("area", Area), ("length", c_uint16), ("font_ascii", c_uint8), ("font_nonascii", c_uint8), # documentation is ambiguous ("x_px", c_uint8), ("y_px", c_uint8), ("monospace", Bool, 1), ("encoding", c_uint8, 7), ("x_kerning_px", c_uint8), ("y_tracking_px", c_uint8), ("_reserved", c_uint8)] def __init__(self, buf, off) -> None: super().__init__(buf, off) self.vp.set_type(VP_Type.TEXT, len=self.length) def __str__(self) -> str: return '{} {:2} chars {}x{}px {} {}'.format( super().__str__(), self.vp.size, self.x_px, self.y_px, "monospace" if self.monospace else "variable", self.color) class Curve(DisplayVariable): type_code = 0x20 _pack_ = 1 _fields_ = [("area", Area), ("y_center", Position), ("value_center", c_uint16), ("color", Color), ("_y_scale256th", c_uint16), ("channel", c_uint8), ("x_spacing", c_uint8), ("_reserved", c_uint8 * 6)] def __init__(self, buf, off) -> None: super().__init__(buf, off) self.vp.set_type(VP_Type.NONE) self.y_scale = self._y_scale256th / 256 def __str__(self) -> str: return '{} y_center {}@{} scale {}x{:.03f} channel {} {}'.format( super().__str__(), self.value_center, self.y_center, self.x_spacing, self.y_scale, self.channel, self.color) class Parser: @staticmethod def make_class(mm, off) -> object: touch = DisplayVariable(mm, off) while True: t = touch.get_subclass() if t == touch.__class__: return touch touch = t(mm, off) def __init__(self, dirname): d = Path(dirname) / 'DWIN_SET' filename = next(d.glob('14*.bin')) with open(filename, 'r+b') as f: # cannot be read-only if we want to use the buffer directly #mm = mmap(f.fileno(), 0, access=ACCESS_READ) self.mm = mmap(f.fileno(), 0) # print(filename, 'len', len(self.mm)) def __iter__(self): off = 0 while off < len(self.mm): if 0x00 == self.mm[off]: off += 0x20 continue # print('off: {:04x}'.format(off)) t = self.make_class(self.mm, off) off += sizeof(t) yield t if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('basedir', nargs='?', type=Path, default='../dgusm') args = parser.parse_args() for c in Parser(args.basedir): print(c)
""" Copyright (c) 2016-2020 The scikit-optimize developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NOTE: Changes were made to the scikit-optimize source code included here. For the most recent version of scikit-optimize we refer to: https://github.com/scikit-optimize/scikit-optimize/ Copyright (c) 2019-2020 Alexander Thebelt. """ import numpy as np import pytest from numpy.testing import assert_array_equal from numpy.testing import assert_equal from numpy.testing import assert_raises from entmoot import entmoot_minimize from entmoot.benchmarks import Rosenbrock, SimpleCat from entmoot.learning import EntingRegressor from entmoot.optimizer import Optimizer from scipy.optimize import OptimizeResult ESTIMATOR_STRINGS = ("GBRT", "RF") STD_ESTIMATORS = ("BDD","L1BDD","DDP","L1DDP") ACQ_FUNCS = ["LCB"] ACQ_OPTIMIZER = ["sampling", "global"] @pytest.mark.fast_test def test_multiple_asks(): # calling ask() multiple times without a tell() inbetween should # be a "no op" bench1 = Rosenbrock() opt = Optimizer(bench1.get_bounds(2), "ENTING", n_initial_points=10, acq_optimizer="sampling", base_estimator_kwargs={"min_child_samples":2}) opt.run(bench1, n_iter=13) # ask() computes the next point ready for the next call to ask() # hence there are three after three iterations assert_equal(len(opt.models), 3) assert_equal(len(opt.Xi), 13) opt.ask() # training happens in ask(), that's why there's one more model now assert_equal(len(opt.models), 4) assert_equal(len(opt.Xi), 13) assert_equal(opt.ask(), opt.ask()) opt.update_next() assert_equal(opt.ask(), opt.ask()) @pytest.mark.fast_test def test_model_queue_size(): # Check if model_queue_size limits the model queue size bench1 = Rosenbrock() opt = Optimizer(bench1.get_bounds(2), "ENTING", n_initial_points=10, acq_optimizer="sampling", model_queue_size=2, base_estimator_kwargs={"min_child_samples":2}) opt.run(bench1, n_iter=13) # tell() computes the next point ready for the next call to ask() # hence there are three after three iterations assert_equal(len(opt.models), 2) assert_equal(len(opt.Xi), 13) opt.ask() assert_equal(len(opt.models), 2) assert_equal(len(opt.Xi), 13) assert_equal(opt.ask(), opt.ask()) opt.update_next() assert_equal(opt.ask(), opt.ask()) @pytest.mark.fast_test def test_invalid_tell_arguments(): bench1 = Rosenbrock() opt = Optimizer(bench1.get_bounds(2), "ENTING", n_initial_points=10, acq_optimizer="sampling", model_queue_size=2, base_estimator_kwargs={"min_child_samples":2}) # can't have single point and multiple values for y assert_raises(ValueError, opt.tell, [1.], [1., 1.]) @pytest.mark.fast_test def test_invalid_tell_arguments_list(): bench1 = Rosenbrock() opt = Optimizer(bench1.get_bounds(2), "ENTING", n_initial_points=10, acq_optimizer="sampling", model_queue_size=2, base_estimator_kwargs={"min_child_samples":2}) assert_raises(ValueError, opt.tell, [[1.], [2.]], [1., None]) @pytest.mark.fast_test def test_bounds_checking_1D(): low = -2. high = 2. opt = Optimizer([(low, high)], "ENTING", n_initial_points=1, acq_optimizer="sampling") assert_raises(ValueError, opt.tell, [high + 0.5], 2.) assert_raises(ValueError, opt.tell, [low - 0.5], 2.) # feed two points to tell() at once assert_raises(ValueError, opt.tell, [high + 0.5, high], (2., 3.)) assert_raises(ValueError, opt.tell, [low - 0.5, high], (2., 3.)) @pytest.mark.fast_test def test_bounds_checking_2D(): low = -2. high = 2. opt = Optimizer([(low, high)], "ENTING", n_initial_points=1, acq_optimizer="sampling") assert_raises(ValueError, opt.tell, [high + 0.5, high + 4.5], 2.) assert_raises(ValueError, opt.tell, [low - 0.5, low - 4.5], 2.) # first out, second in assert_raises(ValueError, opt.tell, [high + 0.5, high + 0.5], 2.) assert_raises(ValueError, opt.tell, [low - 0.5, high + 0.5], 2.) @pytest.mark.fast_test def test_bounds_checking_2D_multiple_points(): low = -2. high = 2. opt = Optimizer([(low, high)], "ENTING", n_initial_points=1, acq_optimizer="sampling") # first component out, second in assert_raises(ValueError, opt.tell, [(high + 0.5, high + 0.5), (high + 0.5, high + 0.5)], [2., 3.]) assert_raises(ValueError, opt.tell, [(low - 0.5, high + 0.5), (low - 0.5, high + 0.5)], [2., 3.]) @pytest.mark.fast_test def test_dimension_checking_1D(): low = -2 high = 2 opt = Optimizer([(low, high)], "ENTING", n_initial_points=1, acq_optimizer="sampling") with pytest.raises(ValueError) as e: # within bounds but one dimension too high opt.tell([low+1, low+1], 2.) assert "Dimensions of point " in str(e.value) @pytest.mark.fast_test def test_dimension_checking_2D(): low = -2 high = 2 opt = Optimizer([(low, high), (low, high)], "ENTING", n_initial_points=10, acq_optimizer="sampling") # within bounds but one dimension too little with pytest.raises(ValueError) as e: opt.tell([low+1, ], 2.) assert "Dimensions of point " in str(e.value) # within bounds but one dimension too much with pytest.raises(ValueError) as e: opt.tell([low+1, low+1, low+1], 2.) assert "Dimensions of point " in str(e.value) @pytest.mark.fast_test def test_dimension_checking_2D_multiple_points(): low = -2 high = 2 opt = Optimizer([(low, high), (low, high)]) # within bounds but one dimension too little with pytest.raises(ValueError) as e: opt.tell([[low+1, ], [low+1, low+2], [low+1, low+3]], 2.) assert "dimensions as the space" in str(e.value) # within bounds but one dimension too much with pytest.raises(ValueError) as e: opt.tell([[low + 1, low + 1, low + 1], [low + 1, low + 2], [low + 1, low + 3]], 2.) assert "dimensions as the space" in str(e.value) @pytest.mark.consistent @pytest.mark.parametrize("acq_optimizer", ACQ_OPTIMIZER) def test_result_rosenbrock(acq_optimizer): bench1 = Rosenbrock() opt = Optimizer(bench1.get_bounds(2), "ENTING", n_initial_points=10, acq_optimizer=acq_optimizer, base_estimator_kwargs={"min_child_samples":2}, random_state=100) opt.run(bench1, n_iter=20, no_progress_bar=True) if acq_optimizer == "sampling": res_known = np.array( [[0.701053475292035, -0.36025795213264167], [0.10806258681567815, -1.4393145750513043], [-1.4061114159677395, -1.2842304177627843], [-1.1873986869551771, -0.19357735788859287], [1.5161042350797533, -1.7871624483849504], [0.5091814944214517, 0.09563236039209677], [0.25516550013357264, -2.0241727838227086], [-0.7887945257988347, 1.843954950307714], [-1.5292242379168393, -1.7244656733329853], [-0.7726975624367143, 0.5422431772370664], [-0.26851521090965313, -0.27168208839378893], [0.18559023118643525, -0.30091277104839054], [2.037449372031385, -0.003908949645985427], [0.3618262062035891, -0.886575853445807], [-0.70099499312817, -0.013753379624784401], [0.3074119029928717, 1.3227888228213858], [0.43370695792140035, -0.5401762255031577], [0.060723595879015324, 2.0360116729103517], [-0.8891589013732526, -0.2756841022715071], [-0.5803197996462619, -0.6720516369715639]] ) elif acq_optimizer == "global": res_known = np.array( [[0.701053475292035, -0.36025795213264167], [0.10806258681567815, -1.4393145750513043], [-1.4061114159677395, -1.2842304177627843], [-1.1873986869551771, -0.19357735788859287], [1.5161042350797533, -1.7871624483849504], [0.5091814944214517, 0.09563236039209677], [0.25516550013357264, -2.0241727838227086], [-0.7887945257988347, 1.843954950307714], [-1.5292242379168393, -1.7244656733329853], [-0.7726975624367143, 0.5422431772370664], [-0.27264284694027374, -0.27692000000000005], [0.191375558305514, -0.31858999999999993], [2.048, 0.0], [0.3821699999999999, -0.896229816148446], [-0.7085110933262221, 0.0], [-0.8912055180959243, -0.23524999999999974], [0.0, 1.2022767998385142], [0.31867, 2.048], [0.4353459945606931, -0.5351577612613215], [-0.05614795431522378, 0.4412061957063193]] ) res = opt.get_result() assert_array_equal(res.x_iters, res_known) @pytest.mark.consistent @pytest.mark.parametrize("acq_optimizer", ACQ_OPTIMIZER) def test_result_rosenbrock(acq_optimizer): bench1 = SimpleCat() opt = Optimizer(bench1.get_bounds(), "ENTING", n_initial_points=5, acq_optimizer=acq_optimizer, base_estimator_kwargs={"min_child_samples":2}, random_state=100) opt.run(bench1, n_iter=10, no_progress_bar=True) if acq_optimizer == "sampling": res_known = np.array( [[0.6846225344648778, -0.35181440637953276, 'pow2'], [-1.4055806396985395, -1.3731556796559956, 'mult6'], [-1.159569030229665, -0.18904038856307892, 'pow2'], [-1.7452758285009282, 0.4972475531459488, 'pow2'], [0.24918505872419194, -1.9767312342018637, 'mult6'], [1.9533151312376096, 1.9911019960902978, 'mult6'], [-0.30869536630063044, -0.8116308097286711, 'mult6'], [1.9832830176095446, -1.6137030366593792, 'pow2'], [-0.7534228429864178, -1.9474210829020842, 'mult6'], [-1.9397005641914857, -1.9937770993390025, 'mult6']] ) elif acq_optimizer == "global": res_known = np.array( [[0.6846225344648778, -0.35181440637953276, 'pow2'], [-1.4055806396985395, -1.3731556796559956, 'mult6'], [-1.159569030229665, -0.18904038856307892, 'pow2'], [-1.7452758285009282, 0.4972475531459488, 'pow2'], [0.24918505872419194, -1.9767312342018637, 'mult6'], [2.0, 2.0, 'mult6'], [-0.26728431683174625, -0.8793390813532928, 'mult6'], [2.0, -1.6258926741796051, 'pow2'], [-0.7295094146491492, -2.0, 'mult6'], [-2.0, -2.0, 'mult6']] ) res = opt.get_result() assert_array_equal(res.x_iters, res_known)
_base_ = '../faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py' model = dict( roi_head=dict( bbox_head=dict( num_classes=22 ) ) ) dataset_type = 'CaltechDataset' classes = ('bobcat', 'opossum', 'empty', 'coyote', 'racoon', 'bird', 'dog', 'cat', 'squirrel', 'rabbit', 'skunk', 'lizard', 'rodent', 'badger', 'deer', 'cow', 'car', 'fox', 'pig','mountain_lion', 'bat', 'insect') data = dict( train=dict( type='CaltechDataset', img_prefix='/media/SSD2project/WilLiCam/datasets/caltech/cct_images', #img_prefix='/media/Pool/Thesis/Datensets/cct_images', ann_file='customDataCaltech/caltech_adv/eccv_train_adv.json'), val=dict( type='CaltechDataset', img_prefix='/media/SSD2project/WilLiCam/datasets/caltech/cct_images', #img_prefix='/media/Pool/Thesis/Datensets/cct_images', classes=classes, ann_file='customDataCaltech/caltech_adv/eccv_val_adv.json'), test=dict( type='CaltechDataset', img_prefix='/media/SSD2project/WilLiCam/datasets/caltech/cct_images', #img_prefix='/media/Pool/Thesis/Datensets/cct_images', classes=classes, ann_file='customDataCaltech/caltech_adv/eccv_val_TEST_adv.json')) #http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth load_from = 'checkpoints/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth' work_dir = '/media/SSD2project/WilLiCam/checkpoint_workdir/faster_rcnn_x101_64x4d_fpn_1x_coco_from_coco'
#!/usr/bin/python # -*- coding: utf-8 -*- # # CarMonitor EnviroPHAT Polling Thread and LED Interface # # Author: Patrick Schmidt <[email protected]> # License: Apache License, Version 2.0 # # See: https://shop.pimoroni.de/products/enviro-phat # See: https://learn.pimoroni.com/tutorial/sandyj/getting-started-with-enviro-phat # See: https://learn.pimoroni.com/tutorial/sandyj/getting-started-with-enviro-phat # See: http://docs.pimoroni.com/envirophat/ # from envirophat import weather, leds, motion import threading import time class EnviroPoller(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.stopRequest = threading.Event() self.enviroData = None self.ledStatus = True def run(self): print '[CarMonitor::EnviroPoller] Starting...' try: while not self.stopRequest.isSet(): temperature = weather.temperature() pressure = weather.pressure() accelerometer = motion.accelerometer() magnetometer = motion.magnetometer() heading = motion.heading() self.enviroData = { 'temperature': temperature, 'pressure': pressure, 'accelerometer': {'x': accelerometer.x, 'y': accelerometer.y, 'z': accelerometer.z }, 'magnetometer': {'x': magnetometer.x, 'y': magnetometer.y, 'z': magnetometer.z }, 'heading': heading } time.sleep(.5) except StopIteration: pass def getData(self): return self.enviroData def ledOn(self): self.ledStatus = True leds.on() def ledOff(self): self.ledStatus = False leds.off() def ledToggle(self): if self.ledStatus: self.ledOff() else: self.ledOn() def join(self, timeout=None): self.stopRequest.set() print '[CarMonitor::EnviroPoller] Stopping...' super(EnviroPoller, self).join(10)
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject from facebook_business.adobjects.abstractcrudobject import AbstractCrudObject from facebook_business.adobjects.objectparser import ObjectParser from facebook_business.api import FacebookRequest from facebook_business.typechecker import TypeChecker """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """ class AdContract( AbstractCrudObject, ): def __init__(self, fbid=None, parent_id=None, api=None): self._isAdContract = True super(AdContract, self).__init__(fbid, parent_id, api) class Field(AbstractObject.Field): account_id = 'account_id' account_mgr_fbid = 'account_mgr_fbid' account_mgr_name = 'account_mgr_name' adops_person_name = 'adops_person_name' advertiser_address_fbid = 'advertiser_address_fbid' advertiser_fbid = 'advertiser_fbid' advertiser_name = 'advertiser_name' agency_discount = 'agency_discount' agency_name = 'agency_name' bill_to_address_fbid = 'bill_to_address_fbid' bill_to_fbid = 'bill_to_fbid' campaign_name = 'campaign_name' created_by = 'created_by' created_date = 'created_date' customer_io = 'customer_io' io_number = 'io_number' io_terms = 'io_terms' io_type = 'io_type' last_updated_by = 'last_updated_by' last_updated_date = 'last_updated_date' max_end_date = 'max_end_date' mdc_fbid = 'mdc_fbid' media_plan_number = 'media_plan_number' min_start_date = 'min_start_date' msa_contract = 'msa_contract' payment_terms = 'payment_terms' rev_hold_flag = 'rev_hold_flag' rev_hold_released_by = 'rev_hold_released_by' rev_hold_released_on = 'rev_hold_released_on' salesrep_fbid = 'salesrep_fbid' salesrep_name = 'salesrep_name' sold_to_address_fbid = 'sold_to_address_fbid' sold_to_fbid = 'sold_to_fbid' status = 'status' subvertical = 'subvertical' thirdparty_billed = 'thirdparty_billed' thirdparty_password = 'thirdparty_password' thirdparty_uid = 'thirdparty_uid' thirdparty_url = 'thirdparty_url' vat_country = 'vat_country' version = 'version' vertical = 'vertical' id = 'id' _field_types = { 'account_id': 'string', 'account_mgr_fbid': 'string', 'account_mgr_name': 'string', 'adops_person_name': 'string', 'advertiser_address_fbid': 'string', 'advertiser_fbid': 'string', 'advertiser_name': 'string', 'agency_discount': 'float', 'agency_name': 'string', 'bill_to_address_fbid': 'string', 'bill_to_fbid': 'string', 'campaign_name': 'string', 'created_by': 'string', 'created_date': 'unsigned int', 'customer_io': 'string', 'io_number': 'unsigned int', 'io_terms': 'string', 'io_type': 'string', 'last_updated_by': 'string', 'last_updated_date': 'unsigned int', 'max_end_date': 'unsigned int', 'mdc_fbid': 'string', 'media_plan_number': 'string', 'min_start_date': 'unsigned int', 'msa_contract': 'string', 'payment_terms': 'string', 'rev_hold_flag': 'bool', 'rev_hold_released_by': 'int', 'rev_hold_released_on': 'unsigned int', 'salesrep_fbid': 'string', 'salesrep_name': 'string', 'sold_to_address_fbid': 'string', 'sold_to_fbid': 'string', 'status': 'string', 'subvertical': 'string', 'thirdparty_billed': 'unsigned int', 'thirdparty_password': 'string', 'thirdparty_uid': 'string', 'thirdparty_url': 'string', 'vat_country': 'string', 'version': 'unsigned int', 'vertical': 'string', 'id': 'string', } @classmethod def _get_field_enum_info(cls): field_enum_info = {} return field_enum_info
from twozerofoureight import * game_board = board() game_board.generate_newpiece("start") game_board.generate_newpiece("start") game_board.print_board("normal") def move(direction): original_board = list(game_board.board_list) if direction == "left": game_board.move_left_right("left") elif direction == "right": game_board.move_left_right("right") elif direction == "up": game_board.upkey() elif direction == "down": game_board.downkey() else: pass if original_board == game_board.board_list: game_board.generate_newpiece("checkforloss") else: game_board.generate_newpiece("normal") def play(): key = Arrow.input() while key != Arrow.NONE: # print(key) if key == Arrow.UP: move("up") elif key == Arrow.DOWN: move("down") elif key == Arrow.LEFT: move("left") elif key == Arrow.RIGHT: move("right") key = Arrow.input() print("None of the arrow keys was pressed") if __name__ == "__main__": play()
# -*- coding: utf-8 -*- import unittest import httpreplay class TestHttp(unittest.TestCase): def test_request(self): r = httpreplay.interpret_http("POST / HTTP/1.0\r\nConnection: close\r\n\r\n1234", True) self.assertEqual(r.body, "1234")
import sys import re import random from libs.playerCommandsLib import Commands from libs.playerCommandsLib import playerCommand from libs.decs.itemDecs import * from libs.decs.eventDecs import * from libs.decs.NpcDecs import * from libs.decs.playerDec import * from libs.decs.structureDecs import * from libs.decs.zoneDecs import * ##Done with the includes def stringContains(word, phrase):##this guy finds a word in a phrase, and can be asked in a manner consistent with the rest of python. if(findWord(word)(phrase)): return True else: return False def findWord(w):##This guy finds if a word is in a phrase, intelligently return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def bDeeper(dictValue):##This checks if there i a deeper level of conversation try: x = len(dictValue.keys()) return True except: return False def Conversation(Location, Character, NPC, stage, previousStage):##conversation 'scene'. KISS STRIKES AGAIN, WAIT EVENT NOT WORKING cmd = input(">>Say>>") if(cmd.lower() == "back" or cmd.lower() == "nevermind"): print("<<" + NPC.name + "<<" + previousStage["introtext"]) Conversation(Location, Character, NPC, previousStage, NPC.Convo["intro"]) if("bye" in cmd.lower() or stringContains("leave", cmd) == True or "farewell" in cmd.lower()): print("<<" + NPC.name + "<<" + NPC.Convo["intro"]["goodbye"]) Scene(Location, Character) for i in stage: if(stringContains(i, cmd.lower()) == True): if(bDeeper(stage[i]) == True): print("<<" + NPC.name + "<<" + stage[i]["introtext"]) if(NPC.bEvent == False): Conversation(Location, Character, NPC, stage[i], stage) break else: for e in NPC.Event.keys(): if(i in e): stringToClass(NPC.Event[e]).triggerEvent(Location, Character) break else: Conversation(Location, Character, NPC, stage[i], stage) break else: if(NPC.bEvent == False): print("<<" + NPC.name + "<<" + stage[i]) Conversation(Location, Character, NPC, stage, previousStage) break else: print("<<" + NPC.name + "<<" + stage[i]) for e in NPC.Event: if(i in e):##+++++++++++++++++++++++++++++++++++++++++++CLOSER stringToClass(NPC.Event[e]).triggerEvent(Location, Character) break else: Conversation(Location, Character, NPC, stage, previousStage) break else: print("%s looks confused." % (NPC.name)) print("<<" + NPC.name + "<<" + NPC.Convo["intro"]["none"]) Conversation(Location, Character, NPC, stage, previousStage) def checkForEvent(Location, Character, caller, situation):##Call this to check if an event should be run. if(caller.bEvent == True): if(caller.Trigger == situation): caller.Event.triggerEvent(Location, Character) else: Scene(Location, Character) else: Scene(Location, Character) def ChangeLocation(oldLocation, newLocation, Character):##This moves the player from oldLocation to newLocation. Moves the character class to maintain inventory and stats. print("You step out of the " + oldLocation.name + " and into " + newLocation.name + ", " + newLocation.description) if(newLocation.npcs != []): for c in newLocation.npcs: print("%s is here." % (stringToClass(c).name)) checkForEvent(newLocation, Character, newLocation, "enterZone") def Scene(Location, Character):##====This is the current scene. All commands and events should come back to this. for c in Location.npcs: if stringToClass(c).bAggressive == True: print("Battle because %s wants to fight." % (stringToClass(c).name)) print("----------") Battle(Character, stringToClass(c), Location) break else: print("----------")##clock could go here. cmd = input(">>>") for i in Commands: if(stringContains(i, cmd) == True): stringToClassDef(playerCommand, i)(Location, Character, cmd)## This is where all player input is passed to the relevant command else: print("Command not recognised.") Scene(Location, Character) def stringToClass(s):##This is meant to turn strings into class names. return getattr(sys.modules[__name__], s) def stringToClassDef(className, defName):##This takes strings and makes them a def name within a class. className.defName is the result. can be handed arguments return getattr(className, defName) def enemyAttack(player, enemy, location, bDefend): atk = random.randint(0, 2) if(bDefend == False): if atk == 0: if(player.Body + random.randint(1, 20) < enemy.Body + random.randint(1, 20)): Edmg = int(random.randint(0, enemy.HP) / 2) print(enemy.Attacks["HP"][random.randint(0, len(enemy.Attacks["HP"])-1)]) print("You receive " + str(Edmg) + " HP damage.") player.HP -= Edmg print("----------") if player.HP <= 0: enemy.bAggressive = False BattleComplete("playerHP_Lose", player, enemy, location) else: Battle(player, enemy, location) else: print(enemy.Attacks["HP"][random.randint(0, len(enemy.Attacks["HP"])-1)]) print("You manage to avoid taking damage.") print("----------") Battle(player, enemy, location) if atk == 1: if(player.Spirit + random.randint(1, 20) < enemy.Spirit + random.randint(1, 20)): Edmg = int(random.randint(0, enemy.SP) / 2) print(enemy.Attacks["SP"][random.randint(0, len(enemy.Attacks["SP"])-1)]) print("You receive " + str(Edmg) + " SP damage.") player.SP -= Edmg print("----------") if player.SP <= 0: enemy.bAggressive = False BattleComplete("playerSP_Lose", player, enemy, location) else: Battle(player, enemy, location) else: print(enemy.Attacks["SP"][random.randint(0, len(enemy.Attacks["SP"])-1)]) print("You manage to avoid taking damage.") print("----------") Battle(player, enemy, location) if atk == 2: if(player.Mind + random.randint(1, 20) < enemy.Mind + random.randint(1, 20)): Edmg = int(random.randint(0, enemy.MP) / 2) print(enemy.Attacks["MP"][random.randint(0, len(enemy.Attacks["MP"])-1)]) print("You receive " + str(Edmg) + " MP damage.") player.MP -= Edmg print("----------") if player.MP <= 0: enemy.bAggressive = False BattleComplete("playerMP_Lose", player, enemy, location) else: Battle(player, enemy, location) else: print(enemy.Attacks["MP"][random.randint(0, len(enemy.Attacks["MP"])-1)]) print("You manage to avoid taking damage.") print("----------") Battle(player, enemy, location) else: if atk == 0: if(player.Body + random.randint(10, 30) < enemy.Body + random.randint(1, 20)): Edmg = int(random.randint(0, enemy.HP) / 2) print(enemy.Attacks["HP"][random.randint(0, len(enemy.Attacks["HP"])-1)]) print("You receive " + str(Edmg) + " HP damage.") player.HP -= Edmg print("----------") if player.HP <= 0: enemy.bAggressive = False BattleComplete("playerHP_Lose", player, enemy, location) else: Battle(player, enemy, location) else: print(enemy.Attacks["HP"][random.randint(0, len(enemy.Attacks["HP"])-1)]) print("You manage to avoid taking damage.") print("----------") Battle(player, enemy, location) if atk == 1: if(player.Spirit + random.randint(10, 30) < enemy.Spirit + random.randint(1, 20)): Edmg = int(random.randint(0, enemy.SP) / 2) print(enemy.Attacks["SP"][random.randint(0, len(enemy.Attacks["SP"])-1)]) print("You receive " + str(Edmg) + " SP damage.") player.SP -= Edmg print("----------") if player.SP <= 0: enemy.bAggressive = False BattleComplete("playerSP_Lose", player, enemy, location) else: Battle(player, enemy, location) else: print(enemy.Attacks["SP"][random.randint(0, len(enemy.Attacks["SP"])-1)]) print("You manage to avoid taking damage.") print("----------") Battle(player, enemy, location) if atk == 2: if(player.Mind + random.randint(10, 30) < enemy.Mind + random.randint(1, 20)): Edmg = int(random.randint(0, enemy.MP) / 2) print(enemy.Attacks["MP"][random.randint(0, len(enemy.Attacks["MP"])-1)]) print("You receive " + str(Edmg) + " MP damage.") player.MP -= Edmg print("----------") if player.MP <= 0: enemy.bAggressive = False BattleComplete("playerMP_Lose", player, enemy, location) else: Battle(player, enemy, location) else: print(enemy.Attacks["MP"][random.randint(0, len(enemy.Attacks["MP"])-1)]) print("You manage to avoid taking damage.") print("----------") Battle(player, enemy, location) def BattleComplete(cause, PC, NPC, location):##called when the battle is complete. if(len(NPC.inventory) > 0): print("The %s is defeated, dropping:" % NPC.name) for i in NPC.inventory: location.addItem(i, NPC.inventory[i]) if NPC.inventory[i] > 1: print(str(NPC.inventory[i]) + " " + i + "s") else: print("a %s" % i) else: print("The %s is defeated, dropping no items." % NPC.name) print("----------") stringToClass(NPC.Event[cause]).triggerEvent(location, PC) def Battle(player, enemy, location): print("You are battling a " + enemy.name + ", " + enemy.description) if enemy.HP >= (enemy.Body * 10 / 2): print("It looks in perfect health.") if enemy.HP <= (enemy.Body * 10 / 4): print("It looks a little shaky on its feet.") if enemy.HP <= (enemy.Body): print("It looks near death.") print("----------") print("HP: %s" % (str(player.HP))) print("SP: %s" % (str(player.SP))) print("MP: %s" % (str(player.MP))) print("----------") cmd = input(">>Attack>>") print("----------") if cmd.lower() == "help": print("Available Battle Commands:") print("'Body' - A basic attack.") print("'Spirit' - Perform a spiritual attack on your enemy.") print("'Mind' - Attack your enemy's mind.") print("'Defend' - Ready yourself for any enemy attack.") print("----------") Battle(player, enemy, location) if cmd.lower() == "body": if(player.Body + random.randint(1, 20) > enemy.Body + random.randint(1, 20)): dmg = int(random.randint(0, player.HP) / 2) print(player.Attacks["HP"][random.randint(0, len(player.Attacks["HP"]) -1)] + " causing " + str(dmg) + " HP damage.") enemy.HP -= dmg print("----------") if enemy.HP <= 0: enemy.bAggressive = False BattleComplete("playerHP_Victory", player, enemy, location) else: enemyAttack(player, enemy, location, False) else: print(player.Attacks["HP"][random.randint(0, len(player.Attacks["HP"]) -1)] + " but your attack misses.") print("----------") enemyAttack(player, enemy, location, False) if cmd.lower() == "spirit": if(player.Spirit + random.randint(1, 20) > enemy.Spirit + random.randint(1, 20)): dmg = int(random.randint(0, player.SP) / 2) print(player.Attacks["SP"][random.randint(0, len(player.Attacks["SP"]) -1)] + " causing " + str(dmg) + " SP damage.") enemy.SP -= dmg print("----------") if enemy.SP <= 0: enemy.bAggressive = False BattleComplete("playerSP_Victory", player, enemy, location) else: enemyAttack(player, enemy, location, False) else: print(player.Attacks["SP"][random.randint(0, len(player.Attacks["SP"]) -1)] + " but your attack fails.") print("----------") enemyAttack(player, enemy, location, False) if cmd.lower() == "mind": if(player.Mind + random.randint(1, 20) > enemy.Mind + random.randint(1, 20)): dmg = int(random.randint(0, player.MP) / 2) print(player.Attacks["MP"][random.randint(0, len(player.Attacks["MP"]) -1)] + " causing " + str(dmg) + " MP damage.") enemy.MP -= dmg print("----------") if enemy.MP <= 0: enemy.bAggressive = False BattleComplete("playerMP_Victory", player, enemy, location) else: enemyAttack(player, enemy, location, False) else: print(player.Attacks["MP"][random.randint(0, len(player.Attacks["MP"]) -1)] + " but your attack fails.") print("----------") enemyAttack(player, enemy, location, False) if cmd.lower() == "defend": print("You ready yourself for any attacks that may come.") print("----------") enemyAttack(player, enemy, location, True) else: print("Command not recognized") print("----------") Battle(player, enemy, location)
import os cur_dir = os.path.dirname(os.path.abspath(__file__)) num_questions = 0 with open(f"{cur_dir}/input") as f: cur_group = set() initialized = False for line in f: if line == "\n": num_questions += len(cur_group) cur_group = set() initialized = False else: new_member_in_group = {x for x in line.strip()} if initialized: cur_group = cur_group.intersection(new_member_in_group) else: cur_group = new_member_in_group initialized = True print(f"{num_questions} total questions were asked")
from .multisource_dataset import MultiSourceDataset from .streaming_multisource_dataset import StreamingMultiSourceDataset from .multilingual_translation_task import MultilingualTranslationTask
""" An example of the 'science' theme. """ import numpy as np import matplotlib.pyplot as plt plt.style.use(['science']) x = np.linspace(0.75, 1.25, 201) def model(x, p): return x ** (2 * p + 1) / (1 + x ** (2 * p)) fig, ax = plt.subplots() for p in [10, 15, 20, 30, 50, 100]: ax.plot(x, model(x, p), label=p) ax.legend(title=r'Order') ax.set(xlabel=r'$V_0 / V_\mathrm{{gap}}$') ax.set(ylabel=r'$I_\mathrm{{dc}}^0 / I_\mathrm{{gap}}$') ax.autoscale(tight=True) fig.savefig('figures/fig1.pdf') fig.savefig('figures/fig1.pgf') fig.savefig('figures/fig1.jpg', dpi=300)
from django.shortcuts import render # Create your views here. from rest_framework import viewsets from .serializers import ( TmDataSerializer, CycleSerializer ) from .models import ( Tm, Cycle ) class TmViewSet(viewsets.ModelViewSet): serializer_class = TmDataSerializer queryset = Tm.objects.all() class CycleViewSet(viewsets.ModelViewSet): serializer_class = CycleSerializer queryset = Cycle.objects.all()
import pygame from modules import basic_classes from modules import basic_globals from modules.gamemaker_functions import * from games.grarantanna import grarantanna_gun import os class Player(basic_classes.UpdatableObj): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tag = 'player' # Starting vars self.start_x = self.x self.start_y = self.y for sprite in range(12): surf = pygame.Surface((self.size, self.size)) surf.fill(basic_globals.BG_COLOR) surf.blit(pygame.image.load(os.path.join('resources/plyta', f'plyta{sprite+1}.png')), (0, 0)) self.sprites.append(surf) self.spd = 2.2 self.grv = 0.4 self.hsp = 0 self.vsp = 0 self.on_ground = False self.on_boost = False self.jump = -7 self.power_jump = -11.3 self.drawing_death_animation = False self.is_flying = False self.flying_speed = 3 self.is_kicked_sideways = False self.kick_sideways_speed = 3 self.teleporting = False self.teleporting_prev = False self.teleport_up_speed = -5 self.moving_from_prev = 1 self.collected_strings = [] self.to_collect_string = '' self.to_collect_string_colored = '' self.collect_indicator_offset = 10 self.font = pygame.font.Font('resources/joystix.ttf', 18) self.gun = grarantanna_gun.Gun(owner=self, x=self.x+3, y=self.y+3) def update(self, keys): super().update(keys) if self.to_collect_string == ' ' * len(self.to_collect_string_colored): self.parent.next_level() self.teleporting_prev = self.teleporting self.teleporting = False # If player died if self.drawing_death_animation: self.vsp += self.grv self.y += self.vsp self.animation_speed = 1 if self.y > self.parent.HEIGHT: self.reset_vars() self.parent.reset_level() return # Basic movement self.hsp = (int(keys[pygame.K_d]) - int(keys[pygame.K_a])) * self.spd * self.moving_from_prev if self.hsp == 0: self.moving_from_prev = 1 self.vsp += self.grv # If player is flying if self.is_flying: self.hsp = self.flying_speed self.vsp = 0 self.is_kicked_sideways = False elif self.is_kicked_sideways: self.hsp = self.kick_sideways_speed # Jumping if keys[pygame.K_SPACE] and self.on_ground: if not self.is_flying: self.vsp = self.jump if not self.on_boost else self.power_jump self.is_flying = False self.on_ground = False self.on_boost = False self.parent.channel.play(self.parent.sound_skok) if self.vsp < -15: self.vsp = -15 elif self.vsp > 15: self.vsp = 15 hsp = self.hsp vsp = self.vsp self.animation_speed = 0.6 * sign(self.hsp) # Collision handling for block in self.parent.game_tiles: if block.tag == 'start': continue if self.vsp == 0 and self.hsp == 0: break else: # For every other block if block.tag != 'czesc': if place_meeting(self.x + hsp, self.y, block, self): while not place_meeting(self.x + sign(self.hsp), self.y, block, self): self.x += sign(self.hsp) if not 0 <= self.x <= self.parent.WIDTH: break self.is_flying = False self.hsp = 0 hsp = 0 if place_meeting(self.x, self.y + vsp, block, self): while not place_meeting(self.x, self.y + sign(self.vsp), block, self): self.y += sign(self.vsp) if not 0 <= self.y <= self.parent.HEIGHT: break self.vsp = 0 vsp = 0 self.is_kicked_sideways = False # Test for the right side of the player if place_meeting(self.x + 1, self.y, block, self): if block.tag == 'magnes_lewo' or block.tag == 'magnes_wszystko': self.hsp = 0 hsp = 0 if block.tag == 'zabija_lewo': self.lose_hp() if block.tag == 'trojkat_lewo': self.is_kicked_sideways = True self.kick_sideways_speed = -abs(self.kick_sideways_speed) if block.tag == 'tp': if place_meeting(self.x + 1, self.y - self.size, block, self) and \ place_meeting(self.x + 1, self.y + self.size, block, self): if block.has_portal_on_side('left'): self.teleporting = True b = block.get_opposite() if b is not None and not self.teleporting_prev: self.teleporting_prev = True self.tp_self(b, block, 'left') if block.tag == 'czesc': self.collected_strings.append(block.text) block.letter_collect() continue # Test for the left side of the player if place_meeting(self.x - 1, self.y, block, self): if block.tag == 'magnes_prawo' or block.tag == 'magnes_wszystko': self.hsp = 0 hsp = 0 if block.tag == 'zabija_prawo': self.lose_hp() if block.tag == 'trojkat_prawo': self.is_kicked_sideways = True self.kick_sideways_speed = abs(self.kick_sideways_speed) if block.tag == 'tp': if place_meeting(self.x - 1, self.y - self.size, block, self) and \ place_meeting(self.x - 1, self.y + self.size, block, self): if block.has_portal_on_side('right'): self.teleporting = True b = block.get_opposite() if b is not None and not self.teleporting_prev: self.teleporting_prev = True self.tp_self(b, block, 'right') if block.tag == 'czesc': self.collected_strings.append(block.text) block.letter_collect() continue # Test for player's head if place_meeting(self.x, self.y - 1, block, self): if block.tag == 'magnes_dol' or block.tag == 'magnes_wszystko': self.vsp = 0 vsp = 0 # if keys[pygame.K_SPACE]: # vsp = 0.1 if block.tag == 'tp': if place_meeting(self.x+self.size, self.y - 1, block, self) and \ place_meeting(self.x-self.size, self.y - 1, block, self): if block.has_portal_on_side('bottom'): self.teleporting = True b = block.get_opposite() if b is not None and not self.teleporting_prev: self.teleporting_prev = True self.tp_self(b, block, 'bottom') if block.tag == 'czesc': self.collected_strings.append(block.text) block.letter_collect() continue # Test for player's feet if place_meeting(self.x, self.y + 1, block, self): self.on_ground = True if block.tag == 'magnes_gora' or block.tag == 'magnes_wszystko': self.vsp = 0 vsp = 0 if block.tag == 'kolce': self.lose_hp() elif block.tag == 'trojkat_gora': self.on_boost = True elif block.tag == 'zamiana': block.tag = 'kwadrat' self.spd *= -1 block.rem(delay=500) if block.tag == 'znikajacy_kwadrat': block.rem(delay=200) if block.tag == 'leci_lewo': self.is_flying = True self.flying_speed = -abs(self.flying_speed) self.x = block.x-self.size self.y = block.y + block.size // 2 - self.size // 2 self.gun.x = self.x + self.gun.size//2 self.gun.y = self.y + self.gun.size//2 if block.tag == 'leci_prawo': self.is_flying = True self.flying_speed = abs(self.flying_speed) self.x = block.x + block.size self.y = block.y + block.size // 2 - self.size // 2 if block.tag == 'tp': if place_meeting(self.x+self.size, self.y + 1, block, self) and \ place_meeting(self.x-self.size, self.y + 1, block, self): if block.has_portal_on_side('top'): self.teleporting = True b = block.get_opposite() if b is not None and not self.teleporting_prev: self.on_ground = False self.teleporting_prev = True self.tp_self(b, block, 'top') if block.tag == 'czesc': self.collected_strings.append(block.text) block.letter_collect() continue if self.vsp > 0: # Falling self.on_ground = False self.on_boost = False self.x += hsp self.y += vsp # If on the edge of the screen if not 0 <= self.x <= self.parent.WIDTH or \ not 0 <= self.y <= self.parent.HEIGHT: self.lose_hp() def tp_self(self, block, block_original, current): self.parent.channel.play(self.parent.sound_teleport) dest = 'right' sides = ['right', 'left', 'bottom', 'top'] if block == block_original: sides = [s for s in sides if s != current] for side in sides: if block.has_portal_on_side(side): dest = side break if dest == 'top': self.vsp = min(self.vsp, self.teleport_up_speed) if dest == 'right': self.x = block.x + block.width + 5 self.y = block.y + block.height // 2 - self.height // 2 elif dest == 'left': self.x = block.x - self.width - 5 self.y = block.y + block.height // 2 - self.height // 2 elif dest == 'top': self.x = block.x + block.width // 2 - self.width // 2 self.y = block.y - self.height - 5 elif dest == 'bottom': self.x = block.x + block.width // 2 - self.width // 2 self.y = block.y + block.height + 5 self.moving_from_prev = 1 if (current == 'right' and dest == 'right') or (current == 'left' and dest == 'left'): self.moving_from_prev = -1 self.gun.x = self.x + self.gun.size//2 self.gun.y = self.y + self.gun.size//2 def reset_vars(self): self.x = self.start_x self.y = self.start_y self.vsp = 0 self.hsp = 0 self.gun.x = self.x + self.gun.size//2 self.gun.y = self.y + self.gun.size//2 self.spd = abs(self.spd) self.collected_strings = [] self.is_flying = False self.on_boost = False self.on_ground = False self.drawing_death_animation = False def lose_hp(self): # What happens when dies self.vsp = -7 self.drawing_death_animation = True self.parent.channel.play(self.parent.sound_smierc) def draw(self, surface): super().draw(surface) text1 = self.font.render(self.to_collect_string, True, (20, 20, 20)) # Not collected pygame.draw.rect(surface, (150, 150, 150), (0, 0, text1.get_width() + self.collect_indicator_offset * 2, text1.get_height() + self.collect_indicator_offset * 2)) surface.blit(text1, (self.collect_indicator_offset, self.collect_indicator_offset)) for string in self.collected_strings: for letter in string: if letter == ' ': continue index = self.to_collect_string.find(letter) self.to_collect_string_colored = self.to_collect_string_colored[:index] + letter + self.to_collect_string_colored[index + 1:] self.to_collect_string = self.to_collect_string[:index] + ' ' + self.to_collect_string[index + 1:] self.collected_strings.remove(string) text2 = self.font.render(self.to_collect_string_colored, True, (249, 240, 7)) # Collected surface.blit(text2, (self.collect_indicator_offset, self.collect_indicator_offset))
#!/usr/bin/python # A tool to quickly generate large skip, load, xfail list for Rally in case of customized cloud policies # # How to use: # 1. Prepare a list of testcases you want to include (e.g. rally verify show | grep failed > cases.list) # 2. Prepare a complete list of testcases with ids (cd ~/.rally/verification/verifier-<uuid>; . .venv/bin/activate; cd repo; stestr list > ~/source/cvp-configuration/tempest/stestr.list) # 3. Run this tool, use results. # cases = [] explanation = "Transition from the state Allowed to state Allowed is not allowed" with open("cases.list", "rt") as f: cases = [x.replace("\n", "") for x in f.readlines()] full_list = [] with open("stestr.list", "rt") as f: full_list = [x.replace("\n", "") for x in f.readlines()] results = [] for case in cases: for id in full_list: if case in id: results.append(id + ": " + explanation) break for id in results: print(id)
import neuralnet as n import numpy as np net = n.NeuralNet([2, 4, 1]) net.train(np.array([[0, 1]]), np.array([[1]]))
import collections import functools import typing from hat.event.common.data import EventType class Subscription: """Subscription defined by query event types""" def __init__(self, query_types: typing.Iterable[EventType], cache_maxsize: typing.Optional[int] = 0): self._root = False, {} for query_type in query_types: self._root = _add_query_type(self._root, query_type) if cache_maxsize is None or cache_maxsize > 0: self.matches = functools.lru_cache( maxsize=cache_maxsize)(self.matches) def get_query_types(self) -> typing.Iterable[EventType]: """Calculate sanitized query event types""" yield from _get_query_types(self._root) def matches(self, event_type: EventType) -> bool: """Does `event_type` match subscription""" return _matches(self._root, event_type, 0) def union(self, *others: 'Subscription') -> 'Subscription': """Create new subscription including event types from this and other subscriptions.""" result = Subscription([]) result._root = _union( [self._root, *(other._root for other in others)]) return result def isdisjoint(self, other: 'Subscription') -> bool: """Return ``True`` if this subscription has no event types in common with other subscription.""" return _isdisjoint(self._root, other._root) _Node = typing.Tuple[bool, # is_leaf typing.Dict[str, # subtype '_Node']] # child def _add_query_type(node, query_type): is_leaf, children = node if '*' in children: return node if not query_type: return True, children head, rest = query_type[0], query_type[1:] if head == '*': if rest: raise ValueError('invalid query event type') children.clear() children['*'] = True, {} else: child = children.get(head, (False, {})) child = _add_query_type(child, rest) children[head] = child return node def _get_query_types(node): is_leaf, children = node if is_leaf and '*' not in children: yield () for head, child in children.items(): for rest in _get_query_types(child): yield (head, *rest) def _matches(node, event_type, event_type_index): is_leaf, children = node if '*' in children: return True if event_type_index >= len(event_type): return is_leaf child = children.get(event_type[event_type_index]) if child and _matches(child, event_type, event_type_index + 1): return True child = children.get('?') if child and _matches(child, event_type, event_type_index + 1): return True return False def _union(nodes): if len(nodes) < 2: return nodes[0] is_leaf = any(i for i, _ in nodes) names = {} for _, node_children in nodes: for name, node_child in node_children.items(): if name == '*': return is_leaf, {'*': (True, {})} if name not in names: names[name] = collections.deque() names[name].append(node_child) children = {name: _union(named_children) for name, named_children in names.items()} return is_leaf, children def _isdisjoint(first_node, second_node): first_is_leaf, first_children = first_node second_is_leaf, second_children = second_node if first_is_leaf and second_is_leaf: return False if (('*' in first_children and second_children) or ('*' in second_children and first_children)): return False if '?' in first_children: for child in second_children.values(): if not _isdisjoint(first_children['?'], child): return False if '?' in second_children: for name, child in first_children.items(): if name == '?': continue if not _isdisjoint(second_children['?'], child): return False names = set(first_children.keys()).intersection(second_children.keys()) for name in names: if name == '?': continue if not _isdisjoint(first_children[name], second_children[name]): return False return True
# EPAN_NI.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 """ Projects / FLOWSA / Years = 2012 Eliminated all columns with fraction in the title. """ import io import pandas as pd import xml.etree.ElementTree as ET from esupy.remote import make_url_request def url_file(url): url_array = url.split("get/") url_file = url_array[1] return url_file def column_names(file_name): base_url = 'https://www.sciencebase.gov/catalog/file/get/' pacific_region = ['5d407318e4b01d82ce8d9b3c?f=__disk__22%2F5c%2Fe3%2F225' 'ce31141477eb0904f38f95f1d472bbe2a2a11', '5d407318e4b01d82ce8d9b3c?f=__disk__2b%2F75%2F2b%2F2b7' '52b0c5decf8e83c035d559a2688c481bb0cfe'] midwestern = ['5cbf5150e4b09b8c0b700df3?f=__disk__66%2F4f%2Ff2%2F664ff289' '064560bbce748082f7b34593dad49ca2', '5cbf5150e4b09b8c0b700df3?f=__disk__bf%2F73%2F1f%2Fbf731fdf' '4e984a5cf50c0f1a140cda366cb8c1d3'] northeastern = ['5d4192aee4b01d82ce8da477?f=__disk__c2%2F02%2F06%2Fc202060' '78520c5ec87394a3499eea073f472a27d', '5d4192aee4b01d82ce8da477?f=__disk__b0%2Fb9%2F35%2Fb0b9350' '21a47ccf57f7584cc7f14d82aacc491d1'] southwestern = ['5f8f1f1282ce06b040efc90e?f=__disk__f8%2Fb8%2Ff9%2Ff8b8f9' 'bdc2a07f014ed6dced8feb2dd7bc63e056', '5f8f1f1282ce06b040efc90e?f=__disk__8e%2F8e%2Fb8%2F8e8eb8' '203ea14ab19a45372919a0dbf667d033b2'] southeastern = ['5d6e70e5e4b0c4f70cf635a1?f=__disk__fb%2Fdb%2F92%2Ffbdb928' '1872069b23bcd134a4c5fa1ddc7280b53', '5d6e70e5e4b0c4f70cf635a1?f=__disk__14%2Fc1%2F63%2F14c1636' 'eef91529f548d5fe29ff3f426d3b4b996'] if file_name in pacific_region: legend_name = "5d407318e4b01d82ce8d9b3c?f=__disk__ab%2F27%2F08%2Fab" \ "27083f354bd851ec09bc0f33c2dc130f808bb5" elif file_name in midwestern: legend_name = "5cbf5150e4b09b8c0b700df3?f=__disk__a6%2Ffb%2Fd6%2Fa6f" \ "bd6f6bcce874109d2e989d1d4d5a67c33cd49" elif file_name in northeastern: legend_name = "5d4192aee4b01d82ce8da477?f=__disk__81%2F5d%2F3d%2F815" \ "d3deb08f82c1662ff94eb941074ff99c75088" elif file_name in southwestern: legend_name = "5f8f1f1282ce06b040efc90e?f=__disk__44%2Ff6%2F74%2F44f" \ "674b54b2fa571191a597c8dfae0923893d3d3" elif file_name in southeastern: legend_name = "5d6e70e5e4b0c4f70cf635a1?f=__disk__93%2Fba%2F5c%2F93b" \ "a5c50c58ced4116ad2e5b9783fc7848ab2cb5" contents = make_url_request(base_url + legend_name) xslt_content = contents.content.decode('utf-8') root = ET.fromstring(xslt_content) label = [] name = [] for attr in root.iter('attr'): for child in attr: if str(child.tag) == 'attrlabl': label.append(str(child.text)) if str(child.tag) == 'attrdef': name.append(str(child.text)) legend = pd.DataFrame() legend["label"] = label legend["name"] = name return legend def name_and_unit_split(df_legend): for i in range(len(df_legend)): apb = df_legend.loc[i, "name"] apb_str = str(apb) if ',' in apb_str: apb_split = apb_str.split(',') activity = apb_split[0] unit_str = apb_split[1] unit_list = unit_str.split('/') unit = unit_list[0] df_legend.loc[i, "name"] = activity df_legend.loc[i, "Unit"] = unit else: df_legend.loc[i, "Unit"] = None return df_legend def name_replace(df_legend, df_raw): for col_name in df_raw.columns: for i in range(len(df_legend)): if col_name == df_legend.loc[i, "label"]: if col_name.lower() != "comid": df_raw = df_raw.rename( columns={col_name: df_legend.loc[i, "name"]}) return df_raw def sparrow_url_helper(*, build_url, config, **_): """ This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for data imports that requires parts of the url text string to be replaced with info specific to the data year. This function does not parse the data, only modifies the urls from which data is obtained. :param build_url: string, base url :param config: dictionary, items in FBA method yaml :return: list, urls to call, concat, parse, format into Flow-By-Activity format """ # initiate url list for coa cropland data urls = [] # replace "__xlsx_name__" in build_url to create three urls for x in config['txt']: url = build_url url = url.replace("__txt__", x) urls.append(url) return urls def sparrow_call(*, resp, url, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param url: string, url :return: pandas dataframe of original source data """ text = resp.content ph = ['5cbf5150e4b09b8c0b700df3?f=__disk__bf%2F73%2F1f%2Fbf731fdf4e984' 'a5cf50c0f1a140cda366cb8c1d3', '5d407318e4b01d82ce8d9b3c?f=__disk__2b%2F75%2F2b%2F2b752b0c5decf8e' '83c035d559a2688c481bb0cfe', '5d4192aee4b01d82ce8da477?f=__disk__b0%2Fb9%2F35%2Fb0b935021a47ccf5' '7f7584cc7f14d82aacc491d1', '5f8f1f1282ce06b040efc90e?f=__disk__8e%2F8e%2Fb8%2F8e8eb8203ea14ab1' '9a45372919a0dbf667d033b2', '5d6e70e5e4b0c4f70cf635a1?f=__disk__14%2Fc1%2F63%2F14c1636eef91529f' '548d5fe29ff3f426d3b4b996'] ni = ['5cbf5150e4b09b8c0b700df3?f=__disk__66%2F4f%2Ff2%2F664ff289064560bb' 'ce748082f7b34593dad49ca2', '5d407318e4b01d82ce8d9b3c?f=__disk__22%2F5c%2Fe3%2F225ce31141477eb09' '04f38f95f1d472bbe2a2a11', '5d4192aee4b01d82ce8da477?f=__disk__c2%2F02%2F06%2Fc20206078520c5ec' '87394a3499eea073f472a27d', '5f8f1f1282ce06b040efc90e?f=__disk__f8%2Fb8%2Ff9%2Ff8b8f9bdc2a07f01' '4ed6dced8feb2dd7bc63e056', '5d6e70e5e4b0c4f70cf635a1?f=__disk__fb%2Fdb%2F92%2Ffbdb9281872069b2' '3bcd134a4c5fa1ddc7280b53'] comid_cap = ["5f8f1f1282ce06b040efc90e?f=__disk__8e%2F8e%2Fb8%2F8e8eb8203e" "a14ab19a45372919a0dbf667d033b2", "5f8f1f1282ce06b040efc90e?f=__disk__f8%2Fb8%2Ff9%2Ff8b8f9bdc" "2a07f014ed6dced8feb2dd7bc63e056"] url_file_name = url_file(url) legend = column_names(url_file_name) legend = name_and_unit_split(legend) if url_file_name in ph: chem_type = "Phosphorus" else: chem_type = "Nitrogen" for i in range(len(legend)): if "incremental" in legend.loc[i, "name"].lower(): legend.loc[i, "FlowName"] = chem_type + ' incremental' elif "accumulated" in legend.loc[i, "name"].lower(): legend.loc[i, "FlowName"] = chem_type + ' accumulated' elif "cumulated" in legend.loc[i, "name"].lower(): legend.loc[i, "FlowName"] = chem_type + ' cumulated' elif "mean" in legend.loc[i, "name"].lower(): legend.loc[i, "FlowName"] = chem_type + ' mean' elif "Total upstream watershed area" in legend.loc[i, "name"].lower(): legend.loc[i, "FlowName"] = chem_type + ' total' else: legend.loc[i, "FlowName"] = chem_type if "5d407318e4b01d82ce8d9b3c?f=__disk__2b%2F75%2F2b%2F2b752b0c5decf8e83" \ "c035d559a2688c481bb0cfe" in url: df_raw = pd.read_csv(io.StringIO(text.decode('utf-8')), sep='\t') else: df_raw = pd.read_csv(io.StringIO(text.decode('utf-8'))) df_raw = name_replace(legend, df_raw) legend = legend.drop(columns=['label']) legend = legend.rename(columns={"name": "ActivityProducedBy"}) if url_file_name in comid_cap: df_raw = df_raw.rename(columns={"COMID": "comid"}) df_spread = pd.DataFrame() df_no_spread = pd.DataFrame() for column_name in df_raw.columns: if "fraction" in column_name.lower() or "flux" in column_name.lower(): df_raw = df_raw.drop(columns=[column_name]) elif "standard error" in column_name.lower(): df_spread[column_name] = df_raw[column_name] df_raw = df_raw.drop(columns=[column_name]) spread_coul = [] for cn in df_spread.columns: if "Standard error for " in cn: c_name = cn.split("Standard error for ") df_spread = df_spread.rename(columns={cn: c_name[1].capitalize()}) spread_coul.append(c_name[1].capitalize()) else: c_name = cn.split("standard error") spread_coul.append(c_name[0].capitalize()) for column_name in df_raw.columns: if column_name not in spread_coul and column_name != "comid": df_no_spread[column_name] = df_raw[column_name] df_raw = df_raw.drop(columns=[column_name]) df_no_spread["comid"] = df_raw["comid"] df_spread["comid"] = df_raw["comid"] # use "melt" fxn to convert colummns into rows df = df_raw.melt(id_vars=["comid"], var_name="ActivityProducedBy", value_name="FlowAmount") df = df.rename(columns={"comid": "Location"}) df_spread = df_spread.melt(id_vars=["comid"], var_name="spread_name", value_name="Spread") df_spread = df_spread.rename(columns={"comid": "Location"}) df_spread = df_spread.rename(columns={"spread_name": "ActivityProducedBy"}) df_spread["MeasureofSpread"] = 'SE' df_no_spread = df_no_spread.melt(id_vars=["comid"], var_name="ActivityProducedBy", value_name="FlowAmount") df_no_spread = df_no_spread.rename(columns={"comid": "Location"}) df_no_spread = pd.merge(df_no_spread, legend, on="ActivityProducedBy") df = pd.merge(df, legend, on="ActivityProducedBy") df = pd.merge(df, df_spread, left_on=["ActivityProducedBy", "Location"], right_on=["ActivityProducedBy", "Location"]) dataframes = [df, df_no_spread] df1 = pd.concat(dataframes) df1.reset_index(drop=True) return df1 def sparrow_parse(*, df_list, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ df = pd.DataFrame() dataframe = pd.DataFrame() for df in df_list: df["Compartment "] = "ground" df["Class"] = "Chemicals" df["SourceName"] = "USGS_SPARROW" df["LocationSystem"] = 'HUC' df["Year"] = str(year) df["ActivityConsumedBy"] = None dataframe = pd.concat(df_list, ignore_index=True) return dataframe
from __future__ import division # LIBTBX_SET_DISPATCHER_NAME prime.viewstats ''' Author : Uervirojnangkoorn, M. Created : 9/19/2014 Description : View convergence and other stats for post-refinement. ''' import matplotlib.pyplot as plt import sys import numpy as np if len(sys.argv)==1: print 'Use prime.viewstats to view convergence of post-refined parameters.' print 'Usage: prime.viewstats your_run_no' exit() run_no = sys.argv[1] #read .paramhist files and display refinement results import os cn_file = 0 for file_in in os.listdir(run_no): if file_in.endswith('.paramhist'): cn_file += 1 if cn_file == 0: print 'Cannot find .paramhist file in your ', run_no, '.' print 'To enable viewstats, rerun prime with flag_output_verbose=True in .phil file.' print 'The .paramhist parameters will be recorded during the run.' exit() param_file_list = [] for i in range(cn_file): param_file_list.append(run_no+'/'+str(i)+'.paramhist') data_dict_list = [] for param_file in param_file_list: pf = open(param_file,'r') data = pf.read().split('\n') data_dict = {} n_data = 0 for data_row in data: dc = data_row.split() #use row 1 to set n_col if n_data == 0: n_col = len(dc) if len(dc)==n_col: data_dict[dc[n_col-1]] = np.array([float(dc[i]) for i in range(n_col-1)]) n_data += 1 data_dict_list.append(data_dict) #prepare test key data_dict_0 = data_dict_list[0] data_dict_1 = data_dict_list[1] for i in range(n_data): test_key = data_dict_list[0].keys()[i] if (test_key in data_dict_0) and (test_key in data_dict_1): test_id = i break #Fix Tpr and Txy for first data_dict test_param_0_raw = np.array(data_dict_0[test_key]) test_param_1 = data_dict_1[test_key] for key in data_dict_0.keys(): if key in data_dict_1: data_param_0 = data_dict_0[key] data_param_1 = data_dict_1[key] data_param_0[1] = data_param_1[0] data_param_0[3] = data_param_1[2] data_dict_0[key] = data_param_0 test_param_0_update = data_dict_0[test_key] test_delta_1_calc = np.absolute(test_param_1-test_param_0_update) print 'test id', test_id print 'test key', test_key print '0th cycle (raw):', test_param_0_raw print '0th cycle (updated):', test_param_0_update print '1st cycle:', test_param_1 print 'delta (calc.):', test_delta_1_calc delta_dict_list = [] for i in range(len(data_dict_list)-1): data_dict = data_dict_list[i] data_dict_next = data_dict_list[i+1] delta_dict = {} for key in data_dict.keys(): if (key in data_dict_next): delta_param = np.absolute(data_dict_next[key] - data_dict[key]) else: delta_param = np.zeros(n_col-1) delta_dict[key] = delta_param delta_dict_list.append(delta_dict) delta_dict_0 = delta_dict_list[0] test_delta_1 = delta_dict_0[test_key] print 'delta (prog.):', test_delta_1 print 'delta diff.:', test_delta_1 - test_delta_1_calc print 'sum of delta diff.', np.sum(np.absolute(test_delta_1 - test_delta_1_calc)) x_range = range(1, len(delta_dict_list)+1) x_label = [] for i in range(1, len(delta_dict_list)+1): x_label.append(str(i)) data_title = ['Tpr_i','Tpr','Txy_i','Txy','G','B','RotX','RotY','ry','rz','r0','re','voigt_nu','a','b','c','alpha','beta','gamma','CC1/2'] cn_plot = 1 for i in range(n_col-1): if i not in (0,2): data_series = [] for delta_dict in delta_dict_list: narr = np.array([delta_dict[key][i] for key in delta_dict.keys()]) data_series.append(narr) ax = plt.subplot(3, 6, cn_plot, title=data_title[i]) plt.boxplot(data_series) plt.xticks(x_range, x_label) if data_title[i] in ('ry','rz','r0','re'): plt.ylim([0, 0.01]) plt.grid(True) cn_plot += 1 plt.show()
import os import sys sys.path.append( os.path.normpath( os.path.join(os.path.abspath(__file__), "..", "..", "..", "common") ) ) from env_indigo import * indigo = Indigo() indigo.setOption("timeout", "2000") t = indigo.loadMolecule( "N(C1N=CC=C2C=1C=C(C1C=CC=CC=1)C(C1C=CC(C3(NC(=O)OC(C)(C)C)CC4(OCCO4)C3)=CC=1)=N2)N" ) q = indigo.loadQueryMolecule( "C.C.C.C.C.O.O.CC1(OCCO1)C.C=C(C1C(C2C=CC=CC=2)=CC2C3=NN=C(C4N=CN(C)C=4)N3C=CC=2N=1)C" ) def test(t, q): matcher = indigo.substructureMatcher(t) try: print(matcher.match(q) != None) except IndigoException as e: print(getIndigoExceptionText(e)) # test multiple times test(t, q) test(t, q) test(t, q) t = indigo.loadMolecule("C1N=CC=CC=1C=C(C1C=CC=CC=1)") q = indigo.loadQueryMolecule("C.C.C.C.C.O") test(t, q) test(t, q)
from recoder.embedding import AnnoyEmbeddingsIndex import pytest import numpy as np def test_build_index(): embeddings_mat = np.random.rand(1000, 128) index = AnnoyEmbeddingsIndex(embeddings=embeddings_mat) index.build(index_file='/tmp/test_embeddings') index_loaded = AnnoyEmbeddingsIndex() index_loaded.load(index_file='/tmp/test_embeddings') assert index_loaded.embedding_size == index.embedding_size and index.embedding_size == 128 test_item = np.random.randint(1000) assert index.get_embedding(test_item) == index_loaded.get_embedding(test_item) assert index.get_nns_by_id(test_item, 100) == index_loaded.get_nns_by_id(test_item, 100) test_item_1 = np.random.randint(0, 1000) test_item_2 = np.random.randint(0, 1000) assert index.get_similarity(test_item_1, test_item_2) == \ index_loaded.get_similarity(test_item_1, test_item_2)
#!/usr/bin/env python """ Contains the proxies.BaseProxy class definition for all inherited proxy classes Please note that this module is private. The proxies.BaseProxy class is available in the ``wpipe.proxies`` namespace - use that instead. """ from .core import numbers, datetime, si, in_session, try_scalar __all__ = ['BaseProxy'] class BaseProxy: """ Parent class of all proxy classes Parameters ---------- parents : sqlintf.Base object TODO attr_name : string TODO try_scalar : boolean TODO Attributes ---------- parents : sqlintf.Base object TODO parent_id : int TODO attr_name : string TODO try_scalar : boolean TODO """ def __new__(cls, *args, **kwargs): if cls is BaseProxy: parent = kwargs.pop('parent', None) with si.begin_session() as session: session.add(parent) proxy = getattr(parent, kwargs.pop('attr_name', '')) if kwargs.pop('try_scalar', False): proxy = try_scalar(proxy) if isinstance(proxy, str) or isinstance(proxy, numbers.Number): from . import StrNumProxy cls = StrNumProxy elif isinstance(proxy, datetime.datetime): from . import DatetimeProxy cls = DatetimeProxy else: raise ValueError("Invalid proxy type %s" % type(proxy)) args = [proxy] return cls.__new__(cls, *args, *kwargs) return super().__new__(cls, *args, *kwargs) def __init__(self, *args, **kwargs): self._parent = kwargs.pop('parent', None) self._attr_name = kwargs.pop('attr_name', '') self._try_scalar = kwargs.pop('try_scalar', False) self._session = None self._parent_id = self._get_parent_id() @property def parent(self): """ TODO """ return self._parent @property def parent_id(self): """ TODO """ return self._parent_id @property def attr_name(self): """ TODO """ return self._attr_name @property def try_scalar(self): """ TODO """ return self._try_scalar @in_session('parent') def delete(self): si.delete(self._parent) @in_session('parent') def _get_parent_id(self): return int(self._parent.id) @in_session('parent') def _augmented_assign(self, operator, other): """ TODO """ for retry in self._session.retrying_nested(): with retry: _temp = retry.retry_state.query(self.parent.__class__).with_for_update(). \ filter_by(id=self.parent_id).one() retry.retry_state.refresh(_temp) _result = getattr( [lambda x: x, try_scalar][self._try_scalar](getattr(_temp, self.attr_name)), operator)(other) if _result is not NotImplemented: setattr(_temp, self.attr_name, _result) _temp = BaseProxy(parent=self.parent, attr_name=self.attr_name, try_scalar=self.try_scalar) retry.retry_state.commit() if _result is NotImplemented: raise TypeError("unsupported operand type(s) for augmented assignment") else: return _temp
import json import os import sys #usr_part = "\n".join([e for i,e in enumerate(utterances) if i%2==0])+"\n" global DOT_CHAR DOT_CHAR = "@DOT" def historify_src(utterances, even=True): #helper function to add the entire dialogue history as src parity = 0 if even else 1 assert set([bool(utt.strip()) == True for utt in utterances]) == {True}, utterances usr_part = "" for i, e in enumerate(utterances): if i%2==parity: usr_part += f" {DOT_CHAR} ".join(utterances[:i+1])+"\n" return usr_part def main(args): #defaults: directory = "../kvr/" splitpart = "dev" if args == 0 else args[0] EXT = "FINAL" if args == 0 or len(args) <= 1 else args[1] assert splitpart in ["dev", "train", "test"] filename = f"kvret_{splitpart}_public.json" with open(directory+filename, "r") as f: data= json.load(f) dialogues=[] scenarios=[] for idx, setting in enumerate(data): skip = False dialogue = setting["dialogue"] scenario = setting["scenario"] convo = [] lastspeaker = "assistant" for turn in dialogue: utterance = turn["data"]["utterance"] convo.append(utterance) speaker = turn["turn"] #assert speaker != lastspeaker, utterance lastspeaker = speaker # if "which is cafe ven" in utterance.lower(): # input("error? {} {}".format(convo, scenario)) if not utterance.strip(): input("skip?: {}".format(convo)) skip = True # skip this dialogue; someone didnt answer if not scenario["kb"]["items"] and EXT=="DISCARD": # DISCARD DIALOGUES WITH NO KB TO AVOID JUST TRAINING ON THESE skip = True if not skip: scenarios.append(scenario) dialogues.append(convo) skip = False for convo in dialogues: for utt in convo: assert "i need to locate a shop" not in utt.lower(), convo unanswered = "" scenario_lkp = "" convo_usr, convo_car = "", "" for idx, utterances in enumerate(dialogues): """ if idx == 119: assert False, [utterances, scenarios[idx]] """ if len(utterances)%2==1: # input("unanswered? : {} {}".format(idx, utterances)) unanswered+=utterances[-1]+"\n" utterances = utterances[:-1] if not utterances: # skip empty dialogue continue nturns = len(utterances) assert nturns%2==0 assert nturns, utterances try: usr_part = historify_src(utterances) except Exception as e: # continue assert False, (e, utterances, idx, filename) car_part = "\n".join( [e for i,e in enumerate(utterances) if i % 2 == 1] )+"\n" scenario_part = (str(idx)+"\n")*(nturns//2) """ venetia_debug = list(set(["which is cafe ven" in utt.lower() for utt in utterances])) if len(venetia_debug) == 2: assert False, (utterances, scenario_part, idx, nturns) """ lines = lambda s: len(s.split("\n")) assert lines(usr_part) == lines(car_part) == lines(scenario_part), \ (usr_part, car_part, scenario_part) convo_usr += usr_part convo_car += car_part scenario_lkp += scenario_part assert len(convo_usr.split("\n")) == len(convo_car.split("\n")) train_usr, train_car = splitpart+".usr"+EXT, splitpart+".car"+EXT with open(directory+train_usr, "w") as usr, open(directory+train_car, "w") as car: usr.write(convo_usr) car.write(convo_car) # for normalize scenarios.py scenariofile = "scenarios_"+splitpart+"_"+EXT+".json" with open(directory+scenariofile, "w") as scenes: json.dump(scenarios, scenes, indent=4) # for data.py minibatch scenario_lkp_file = splitpart+".lkp"+EXT with open(directory+scenario_lkp_file, "w") as lkp: lkp.write(scenario_lkp) unanswered_file = splitpart+".noans"+EXT with open(directory+unanswered_file, "w") as unan: unan.write(unanswered) # user thanks etc that were never answered return 0 if __name__ == "__main__": if len(sys.argv) > 1: sys.exit(main(sys.argv[1:])) else: main(0)
from typing import Mapping, Tuple, Union from uqbar.containers import UniqueTreeList from .Attachable import Attachable from .Attributes import Attributes class TableCell(UniqueTreeList, Attachable): """ A Graphviz HTML table. :: >>> import uqbar.graphs >>> table_cell = uqbar.graphs.TableCell() >>> print(format(table_cell, 'graphviz')) <TD></TD> :: >>> table_cell = uqbar.graphs.TableCell( ... attributes={ ... 'border': 5, ... 'bgcolor': 'blue', ... }, ... ) >>> print(format(table_cell, 'graphviz')) <TD BGCOLOR="blue" BORDER="5"></TD> """ ### CLASS VARIABLES ### __documentation_section__ = "HTML Classes" ### INITIALIZER ### def __init__( self, children=None, *, attributes: Union[Mapping[str, object], Attributes] = None, name: str = None, ) -> None: from .Text import Text if isinstance(children, str): children = [Text(children)] UniqueTreeList.__init__(self, children=children, name=name) Attachable.__init__(self) self._attributes = Attributes("table_cell", **(attributes or {})) ### SPECIAL METHODS ### def __format__(self, format_spec: str = None) -> str: # TODO: make the format specification options machine-readable if format_spec == "graphviz": return self.__format_graphviz__() return str(self) def __format_graphviz__(self) -> str: result = [] start, stop = "<TD", "</TD>" if self.edges: start += ' PORT="{}"'.format(self._get_port_name()) attributes = format(self._attributes, "html") if attributes: start += " {}".format(attributes) start += ">" result.append(start) for child in self: result.append(format(child, "graphviz")) result.append(stop) return "".join(result) ### PRIVATE PROPERTIES ### @property def _node_class(self) -> Tuple[type, ...]: import uqbar.graphs return (uqbar.graphs.Table, uqbar.graphs.LineBreak, uqbar.graphs.Text)
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import time import utils import datasets from NetworkLib import GlimpseNet, LocationNet, ContextNet, ClassificationNet, RecurrentNet, BaselineNet from visualizer import * from config import Config class DRAM(object): def __init__(self): self.config = Config() self.gstep = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') self.num_epochs = self.config.num_epochs self.batch_size = self.config.batch_size self.isTraining = self.config.isTraining self.isVisualize = self.config.isVisualize self.isAnimate = self.config.isAnimate self.dataset = datasets.MNIST(self.config) def get_data(self): """ Get dataset and create iterators for test and train. """ with tf.name_scope('data'): train_dataset, test_dataset = self.dataset.get_dataset() iterator = tf.compat.v1.data.Iterator.from_structure(tf.compat.v1.data.get_output_types(train_dataset), tf.compat.v1.data.get_output_shapes(train_dataset)) img, self.label = iterator.get_next() self.img = tf.reshape(img, [-1, self.config.height, self.config.width, self.config.color_channels]) self.train_init = iterator.make_initializer(train_dataset) self.test_init = iterator.make_initializer(test_dataset) def model_init(self): """ Creates instances of each network component in DRAM. Defines LSTM cell for use in RNN """ # Initiate Networks self.gn = GlimpseNet(self.img, self.config) self.ln = LocationNet(self.config) self.class_net = ClassificationNet(self.config) # self.context_net = ContextNet(self.config) self.baseline_net = BaselineNet(self.config) self.rnn = RecurrentNet(self.config, self.ln, self.gn, self.class_net) self.LSTM_cell = tf.nn.rnn_cell.LSTMCell(self.config.cell_size, state_is_tuple=True, activation=tf.nn.tanh, forget_bias=1.) def inference(self): """ Data flow process: 1) Extracts first glimpse through glimpse network. 2) First glimpse is passed through RNN network, which integrates RNN components, location/emission network, and glimpse network. 3) Final output is passed into classification network, where prediction is obtained. Also maintains location tensors for each glimpse to be used by visualizer. """ # self.state_init_input = self.context_net(self.img) # self.init_location, _ = self.ln(self.state_init_input) # gets initial location using context vector self.init_location = tf.zeros([self.batch_size, 2], dtype=tf.float32) self.loc_array = [self.init_location] self.mean_loc_array = [self.init_location] self.init_glimpse = [self.gn(self.init_location)] self.init_glimpse.extend([0] * (self.config.num_glimpses - 1)) self.logits, self.outputs, locations, mean_locations = self.rnn(self.init_glimpse, self.LSTM_cell) self.loc_array += locations self.mean_loc_array += mean_locations with tf.compat.v1.name_scope('make_location_tensors'): self.sampled_locations = tf.concat(self.loc_array, axis=0) self.mean_locations = tf.concat(self.mean_loc_array, axis=0) self.sampled_locations = tf.reshape(self.sampled_locations, (self.config.num_glimpses, self.batch_size, 2)) self.sampled_locations = tf.transpose(self.sampled_locations, [1, 0, 2]) self.mean_locations = tf.reshape(self.mean_locations, (self.config.num_glimpses, self.batch_size, 2)) self.mean_locations = tf.transpose(self.mean_locations, [1, 0, 2]) self.baselines = [] with tf.compat.v1.name_scope('baseline'): for t, output in enumerate(self.outputs): baseline_t = self.baseline_net(output) baseline_t = tf.squeeze(baseline_t) self.baselines.append(baseline_t) self.baselines = tf.stack(self.baselines) self.baselines = tf.transpose(self.baselines) # shape is [batch_size, time_steps] def loglikelihood(self): with tf.name_scope("loglikelihood"): stddev = self.config.stddev mean = tf.stack(self.mean_loc_array) sampled = tf.stack(self.loc_array) gaussian = tf.compat.v1.distributions.Normal(mean, stddev) logll = gaussian.log_prob(sampled) logll = tf.reduce_sum(logll, 2) logll = tf.transpose(logll) return logll def loss(self): with tf.name_scope("loss"): # Cross entropy entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=self.label, logits=self.logits) self.cross_ent = tf.reduce_mean(entropy, name='cross_ent') # Baseline MSE self.preds = tf.nn.softmax(self.logits) correct_preds = tf.equal(tf.argmax(self.preds, 1), tf.argmax(self.label, 1)) self.rewards = tf.cast(correct_preds, tf.float32) # Reshape to match baseline self.rewards = tf.expand_dims(self.rewards, 1) # shape [batch_size, 1] self.rewards = tf.tile(self.rewards, [1, self.config.num_glimpses]) self.baseline_mse = tf.reduce_mean(tf.square(self.rewards - self.baselines), name='baseline_mse') # Loglikelihood self.logll = self.loglikelihood() self.baseline_term = self.rewards - tf.stop_gradient(self.baselines) self.logllratio = tf.reduce_mean(self.logll * self.baseline_term, name='loglikelihood_ratio') # Total Loss self.hybrid_loss = -self.logllratio * self.config.reward_weight + self.cross_ent + self.baseline_mse def optimize(self): with tf.name_scope('optimize'): optimizer = tf.compat.v1.train.AdamOptimizer(self.config.lr) gradients, variables = zip(*optimizer.compute_gradients(self.hybrid_loss)) gradients, _ = tf.clip_by_global_norm(gradients, self.config.max_global_norm) self.opt = optimizer.apply_gradients(zip(gradients, variables), global_step=self.gstep) def build(self): self.get_data() print("\nDataset loaded.\n") self.model_init() self.inference() self.loss() self.optimize() self.eval() self.summaries() print("\nModel built.\n") def eval(self): """ Count number of correct predictions per batch. """ with tf.name_scope("predict"): preds = tf.nn.softmax(self.logits) correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(self.label, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_preds, tf.float32)) def summaries(self): with tf.name_scope("summaries"): tf.compat.v1.summary.scalar('cross_entropy', self.cross_ent) tf.compat.v1.summary.scalar('baseline_mse', self.baseline_mse) tf.compat.v1.summary.scalar('loglikelihood', self.logllratio) tf.compat.v1.summary.scalar('hybrid_loss', self.hybrid_loss) tf.compat.v1.summary.scalar('accuracy', self.accuracy) self.summary_op = tf.compat.v1.summary.merge_all() def train(self, num_epochs, isTraining, isVisualize): """ 1) Make checkpoint folder (using config.checkpoint_path) and saver. 2) Alternate between training and testing for each epoch. """ self.num_epochs = num_epochs self.isVisualize = isVisualize utils.make_dir(self.config.checkpoint_path) writer = tf.compat.v1.summary.FileWriter(self.config.graphs_path, tf.compat.v1.get_default_graph()) with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) saver = tf.compat.v1.train.Saver() ckpt = tf.train.get_checkpoint_state(os.path.dirname(self.config.checkpoint_path)) if ckpt and ckpt.model_checkpoint_path: print("Checkpoint path found, restoring:") saver.restore(sess, ckpt.model_checkpoint_path) step = self.gstep.eval() if isTraining: for epoch in range(num_epochs): step = self.train_one_epoch(sess, saver, self.train_init, writer, step, epoch) self.eval_once(sess, self.test_init, writer, step, epoch) else: self.eval_once(sess, self.test_init, writer, step, epoch) writer.close() def train_one_epoch(self, sess, saver, init, writer, step, epoch): print("Training epoch {0}/{1}".format(epoch, self.num_epochs)) sess.run(init) start = time.time() num_batches = 0 total_loss = 0 try: while True: fetches = [self.cross_ent, self.hybrid_loss, self.logllratio, self.baseline_mse, self.accuracy, self.opt, self.summary_op, self.mean_locations, self.preds, self.label, self.img] cross_ent, hybrid_loss, logllratio, base_mse, accuracy, _, summary, locations, preds, labels, imgs = sess.run(fetches) writer.add_summary(summary, global_step=step) # Report summary data if (step + 1) % self.config.report_step == 0: print("----------------LOSSES----------------") print("Accuracy at step {0}: {1}".format(step, accuracy)) print("Cross entropy loss at step {0}: {1}".format(step, cross_ent)) print("Baseline MSE at step {0}: {1}".format(step, base_mse)) print("Loglikelihood ratio at step {0}: {1}".format(step, logllratio)) print("Total loss at step {0}: {1}".format(step, hybrid_loss)) print("--------------------------------------\n") # Call to visualizer if (step + 1) % self.config.visualize_step == 0 and self.isVisualize: plot_glimpse(self.config, imgs, locations, preds, labels, step, self.isAnimate) num_batches += 1 total_loss += hybrid_loss step += 1 except tf.errors.OutOfRangeError: pass saver.save(sess, self.config.checkpoint_path + self.config.checkpoint_name, global_step=self.gstep) print("Average loss per batch: {0}".format(total_loss / num_batches)) print("Time taken: {}".format(time.time() - start)) return step def eval_once(self, sess, init, writer, step, epoch): sess.run(init) start = time.time() num_batches = 0 total_acc = 0 try: while True: acc, summary = sess.run([self.accuracy, self.summary_op]) writer.add_summary(summary, global_step=step) total_acc += acc num_batches += 1 except tf.errors.OutOfRangeError: pass print("-----------------EVAL----------------") print("Average accuracy: {}".format(total_acc / num_batches)) print("Time taken: {}".format(time.time() - start)) print('\n') if __name__ == "__main__": model = DRAM() model.build() model.train(model.num_epochs, model.isTraining, model.isVisualize)
from collections import OrderedDict TARGETS = OrderedDict([('2.5', (2, 5)), ('2.6', (2, 6)), ('2.7', (2, 7)), ('3.0', (3, 0)), ('3.1', (3, 1)), ('3.2', (3, 2)), ('3.3', (3, 3)), ('3.4', (3, 4)), ('3.5', (3, 5)), ('3.6', (3, 6)), ('3.7', (3, 7)), ('3.8', (3, 8))]) SYNTAX_ERROR_OFFSET = 5 TARGET_ALL = next(reversed(TARGETS.values()))
# Testoob, Python Testing Out Of (The) Box # Copyright (C) 2005-2006 The Testoob Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "Report results in XML format" from base import BaseReporter import time class XMLReporter(BaseReporter): """Reports test results in XML, in a format resembling Ant's JUnit xml formatting output.""" def __init__(self): BaseReporter.__init__(self) from cStringIO import StringIO self._sio = StringIO() try: from elementtree.SimpleXMLWriter import XMLWriter except ImportError: from testoob.compatibility.SimpleXMLWriter import XMLWriter self.writer = XMLWriter(self._sio, "utf-8") self.test_starts = {} def start(self): BaseReporter.start(self) self.writer.start("results") self.writer.start("testsuites") def done(self): BaseReporter.done(self) self.writer.element("total_time", value="%.4f"%self.total_time) self.writer.end("testsuites") if self.cover_amount is not None and self.cover_amount == "xml": self._write_coverage(self.coverage) self.writer.end("results") def get_xml(self): return self._sio.getvalue() def startTest(self, test_info): BaseReporter.startTest(self, test_info) self.test_starts[test_info] = time.time() def addError(self, test_info, err_info): BaseReporter.addError(self, test_info, err_info) self._add_unsuccessful_testcase("error", test_info, err_info) def addFailure(self, test_info, err_info): BaseReporter.addFailure(self, test_info, err_info) self._add_unsuccessful_testcase("failure", test_info, err_info) def _add_testcase_element(self, test_info, result, add_elements = lambda:None): self._start_testcase_tag(test_info) self.writer.element("result", result) add_elements() self.writer.end("testcase") def addSuccess(self, test_info): BaseReporter.addSuccess(self, test_info) self._add_testcase_element(test_info, "success") def addSkip(self, test_info, err_info, isRegistered=True): BaseReporter.addSkip(self, test_info, err_info, isRegistered) def add_elements(): self.writer.element( "reason", err_info.exception_value() ) self._add_testcase_element(test_info, "skip") def _add_unsuccessful_testcase(self, failure_type, test_info, err_info): def add_elements(): "Additional elements specific for failures and errors" self.writer.element(failure_type, str(err_info), type=err_info.exception_type(), message=err_info.exception_value()) self._add_testcase_element(test_info, failure_type, add_elements) def _start_testcase_tag(self, test_info): self.writer.start("testcase", name=str(test_info), time=self._test_time(test_info)) def _test_time(self, test_info): result = time.time() - self.test_starts[test_info] return "%.4f" % result def _write_coverage(self, coverage): self.writer.start("coverage") for filename, stats in coverage.getstatistics().items(): # TODO: can probably extract loop body to a method self.writer.start("sourcefile", name=filename, statements=str(stats["lines"]), executed=str(stats["covered"]), percent=str(stats["percent"])) lines, covered = coverage.coverage[filename].values() missing = [line for line in covered if line not in lines] self.writer.data(str(missing)[1:-1].replace(" ", "")) self.writer.end("sourcefile") self.writer.end("coverage") class XMLFileReporter(XMLReporter): def __init__(self, filename): XMLReporter.__init__(self) self.filename = filename def done(self): XMLReporter.done(self) f = file(self.filename, "w") try: f.write(self.get_xml()) finally: f.close()
#! /usr/bin/env python3 from sim import Simulation if __name__ == "__main__": sim = Simulation(ants=5, x=100, y=100, num_rivers=20) sim.run()
def Golden_eagle(thoughts, eyes, eye, tongue): return f""" {thoughts} ,:=+++++???++?+=+= {thoughts} :+?????\$MUUUUUUUUUMO+??~ {thoughts} :+I??\$UUUUMUMMMMUUMUMUUMUUMM???I+: {thoughts} ,+??+ZOUUMMUMMMUUUUUMUUUMUUUMUMUUMZI+?+: {thoughts} ~I?+MMUMUUUMUUUOOUMMMMMMUUUUUMMMUUUUUUMMUM$??~ I?+7MMMMMUUO7?+?IUMMMMMMMMUUMUUMUUUUUUUUUUMMMUMO?I ~I?+MMMUUUO????+?IOUZ7?,.......,+\$\$OUMUUUUUUMUMUUUMUU+I: =??\$UMUUU7++??????II???????=.....,?OUUMMMUUMUUUUUUUMMUUU+= +??UUMMM7??????+??+?????+??=,...\$MUMUUUUMUUMUUUUUUUUMMUM7II??= ,+?IUMMMI???III?++??+?????+~....... ......MUUMUUUUUUUUUMMU7?~ IIUMMM+?+?IUUUUMUUM7I?????????????I?+=:......MUUMMUMUMMMMUUU+~ :?+UMMU+?+?7UMMUUUZ7\$\$7????+++????????????=.....+UMUUUUMMMMMMUZ? ?+UMUM???+MMMMMU?++???????????++????????++????....OMMMUMMMMUMMUI: +\$MMUM?+?ZMMU:\$MM???OUUU+??+???+????????????????,...UMUMUUUUMMUMM?~ IUUUU?I?OUUU,..UU?IMMUUMUUI???+?????????????????I,..:UUMUUUUMMUMU?+ ?UUUMUM\$UMUU~..UUUUU\$,IUUUMM7+?????????????????+?I~..UUUUUUUMMMUU+? ?OUMUUUUMMUI+.?UUUU=...~UMMUU\$?????+???????????????..MUMUUUUUMUMU?? :??IUUMMUMUMMOMUU7........OUUUMMU?I????????????????I..MUMUUUUMUUMU?+ +IIUMUO.IUUUUUUO..............?UMUMUM7??????????????+?..UUMUUUUMUUMU?= ,IZMMU,.:UU7:..........,UUUMUZ....MUUMMO+???????????????..UUUUUUUUUUU?: IZUUU:..UUUI=....... IUUUUUMMUZ,.MMUMU$?+???????????????.MUUMUUUUMUMUI ,+IUUM..O=..........\$UUMMMUU?~....UMMUUI?????????????????=.UMMUUUUUMMU?+ +?UMU~............OUMMUU~..... .UUMUMM+?????????????????=.UMMUMUMUUMOI= ?\$MU~... ...:MUMU=~........,UUMMMUI+????????????????+IUMMMUUUUMUU?+ +OMU.... ...?UMU=..:~~,.....MMMUUU+?+????????????????~MMUUUUMUMMU?+~ ?OMU~ .. ...?UMUUUMUMUMUMUMUUUMUUMUI???????????????+?+OUUMUUMMMMUIUUUMO, ??UMU~.....\$MUUUOM???UMMUUUMMMUUMM7?++????????????++OMMMUMUUMMUI??UMIU+~ :?7UUU\$...UMMM?I~, +?MMUUMMMMMMUU?????????????+??\$UMMMMUUUMU\$?: ,??I?: ?IMUMUUZMU+?, =?UMMMMMMMMO??????????????+UMUMMUMUMUU?I~ ?+\$MUMUMU?? ?MMMMMMMMU??+???????????IUMMMUUUMUUZ?= ,+???ZUO?~ +ZUMMUMUMU???++??+???IUMMUMUMMUUO??~ ,,:~= ,?UMUMUMU???+??+?+?7UMUMUMUMUI??: ?UMUMMMM?+??++?ZUUMUMUMUZ++?, ?UMMMMMO+???MMUMUMUMUMOII=, ?UUUMUUZOMUUMUMMUMM+??= ?UMMUMMUUUMUMM\$???~ ,?UMUUMUUU\$?+?~: :IUUUM?+?I=: ????~, """
num_rows = int(input()) matrix = [input().split(", ") for _ in range(num_rows)] first_diag = [matrix[i][i] for i in range(len(matrix))] second_diag = [matrix[i][-(i + 1)] for i in range(len(matrix))] print(f"First diagonal: {', '.join(first_diag)}. Sum: {sum(map(int, first_diag))}") print(f"Second diagonal: {', '.join(second_diag)}. Sum: {sum(map(int, second_diag))}")
import random from time import sleep itens = ["Rock", "Paper", "Scissors"] computer = random.choice(itens) print("-"*24) print("Scissors, Paper and Rock") print("-"*24) print("Your Options") print("[1] Rock\n[2] Paper\n[3] Scissors") player = int(input("Choose one option: ")) print("-"*17) print("Scissors") sleep(0.5) print("Paper") sleep(0.5) print("Rock") sleep(0.5) print("-"*16) if computer == "Rock": if player == 1: print("No one won!\nThat's a draw") elif player == 2: print("And the Winner is: Player") elif player == 3: print("And the Winner is: Computer") else: print("Invalid movement") elif computer == "Paper": if player == 1: print("And the Winner is: Computer") elif player == 2: print("No one won!\nThat's a draw") elif player == 3: print("And the Winner is: Player") else: print("Invalid movent") elif computer == "Scissors": if player == 1: print("And the winner is: Player") elif player == 2: print("And the Winner is: Computer") elif player == 3: print("No one won!\nThat's a draw") else: print("Invalid movement") if player == 1: print("Player Choosed: Rock") elif player == 2: print("Player Choosed: Paper") else: print("Player Choosed: Scissors") print("Computer Choosed: {} ".format(computer))