content
stringlengths
5
1.05M
from export import ShpResponder from upload import upload
""" Get/Watch all information of a single key in the Configuration Database. Usage: ska-sdp (get|watch) [options] <key> ska-sdp (get|watch) [options] pb <pb_id> ska-sdp (get|watch) (-h|--help) Arguments: <key> Key within the Config DB. To get the list of all keys: ska-sdp list -a <pb_id> Processing block id to list all entries and their values for. Else, use key to get the value of a specific pb. Options: -h, --help Show this screen -q, --quiet Cut back on unnecessary output """ import logging from docopt import docopt LOG = logging.getLogger("ska-sdp") def cmd_get(txn, key, quiet=False): """ Get raw value from database. :param txn: Config object transaction :param key: Key within the Config DB to get the values of :param quiet: quiet logging """ val = txn.raw.get(key) if quiet: LOG.info(val) else: LOG.info("%s = %s", key, val) def main(argv, config): """Run ska-sdp get.""" args = docopt(__doc__, argv=argv) try: if args["<key>"]: key = args["<key>"] if key == "pb": LOG.error( "Cannot 'get' processing block without its ID. Run 'ska-sdp get pb <pb_id>'" ) return for txn in config.txn(): try: cmd_get(txn, key, args["--quiet"]) except ValueError: # when not the full key/path is given, Config returns a ValueError LOG.error( "'%s' is not a valid key in the Config DB. " "Run 'ska-sdp list -a' to list all valid keys.", key, ) return if args["watch"]: txn.loop(wait=True) elif args["pb"]: for txn in config.txn(): keys = txn.raw.list_keys("/pb", recurse=8) for k in keys: if args["<pb_id>"] in k: cmd_get(txn, k, args["--quiet"]) if args["watch"]: txn.loop(wait=True) except KeyboardInterrupt: if not args["watch"]: raise
# -*- coding: utf-8 -*- import sys from cx_Freeze import setup, Executable # Dependencies are automatically detected, but it might need fine tuning. build_exe_options = {"packages": ["os"], "excludes": ["tkinter"]}#, include_files": ['player.png'] setup( name = "CSCI-413-Project-Version-1.0", version = "1.0", description = "A maze-based game written in Python using Pygame.", options = {"build_exe": build_exe_options}, executables = [Executable("Main.py", base=None)])
from radical.entk.utils.init_transition import transition import pika from radical.entk import Task, Stage, Pipeline import radical.utils as ru import os from threading import Thread import json from radical.entk import states MLAB = 'mongodb://entk:[email protected]:43511/entk_0_7_4_release' def func(obj, obj_type, new_state, queue1, logger, profiler): hostname = os.environ.get('RMQ_HOSTNAME', 'localhost') port = int(os.environ.get('RMQ_PORT', 5672)) mq_connection = pika.BlockingConnection(pika.ConnectionParameters(host=hostname, port=port)) mq_channel = mq_connection.channel() transition( obj, obj_type, new_state, mq_channel, queue1, profiler, logger) mq_connection.close() def master(obj, obj_type, new_state): hostname = os.environ.get('RMQ_HOSTNAME', 'localhost') port = int(os.environ.get('RMQ_PORT', 5672)) mq_connection = pika.BlockingConnection(pika.ConnectionParameters(host=hostname, port=port)) mq_channel = mq_connection.channel() queue1 = 'test-1-2-3' # Expected queue name structure 'X-A-B-C' queue2 = 'test-3-2-1' # Expected queue name structure 'X-C-B-A' mq_channel.queue_declare(queue=queue1) mq_channel.queue_declare(queue=queue2) logger = ru.Logger('radical.entk.test') profiler = ru.Profiler('radical.entk.test') thread1 = Thread(target=func, args=(obj, obj_type, new_state, queue1, logger, profiler)) thread1.start() while True: method_frame, props, body = mq_channel.basic_get(queue=queue1) if body: msg = json.loads(body) assert msg['object']['state'] == new_state mq_channel.basic_publish(exchange='', routing_key=queue2, properties=pika.BasicProperties(correlation_id=props.correlation_id), body='ack') mq_channel.basic_ack(delivery_tag=method_frame.delivery_tag) break mq_channel.queue_delete(queue=queue1) mq_channel.queue_delete(queue=queue2) mq_connection.close() thread1.join() def test_utils_sync_with_master(): obj = Task() obj_type = 'Task' master(obj, obj_type, states.DONE) obj = Stage() obj_type = 'Stage' master(obj, obj_type, states.DONE) obj = Pipeline() obj_type = 'Pipeline' master(obj, obj_type, states.DONE)
import uvicorn from src.web.app.factory import create_app main_app = create_app() if __name__ in "__main__": uvicorn.run(main_app, host="0.0.0.0", port=8080)
import argparse import sys import pycopier def coerceArgsToArgparseCompatible(args): ''' Turns /MT:<num> into /MT <num> ... without the user knowing. This is to keep compatibility with robocopy ''' args = list(args) for idx, arg in enumerate(args): if arg.startswith('/MT:') and arg.count(':') == 1: args[idx] = '/MT' args.insert(idx + 1, arg.split(':')[-1]) elif arg.startswith('--'): # coerce to // prefix args[idx]= arg.replace('-', '/', 2) elif arg.startswith('-'): # coerce to / prefix args[idx]= arg.replace('-', '/', 1) return args def main(): parser = argparse.ArgumentParser(prefix_chars='/', usage="\n" + pycopier.ASCII_ART + "\n ... a Python 3 replacement for Robocopy, including multithreaded copy.") arg_group_robocopy = parser.add_argument_group("Robocopy Arguments", "Arguments that more/less match Robocopy") arg_group_robocopy.add_argument('Source', type=str, nargs=1, help='Specifies the path to the source directory.') arg_group_robocopy.add_argument('Destination', type=str, nargs=1, help='Specifies the path to the destination directory.') arg_group_robocopy.add_argument('/MT', type=int, help='Creates multi-threaded copies with N threads. The default value for N is 8', default=8) arg_group_robocopy.add_argument('/create', action='store_true', help='Creates a directory tree and zero-length files only.') arg_group_robocopy.add_argument('/quit', action='store_true', help='Quits after processing command line (to view parameters).') arg_group_robocopy.add_argument('/purge', action='store_true', help='Deletes destination files and directories that no longer exist in the source.') arg_group_robocopy.add_argument('/move', action='store_true', help='Moves files and directories, and deletes them from the source after they are copied.') arg_group_robocopy.add_argument('/copyall', action='store_true', help='Copies all file information.') arg_group_robocopy.add_argument('/s', action='store_true', help='Copies subdirectories. Note that this option excludes empty directories. (robocopy\'s /e option for subdirectories including empties is default for pycopier)') # options specific to pycopier (and not in robocopy) arg_group_robocopy = parser.add_argument_group("PyCopier Arguments", "Arguments that are specific to PyCopier") arg_group_robocopy.add_argument('/quiet', action='store_true', help='If set, be completely quiet during execution.') argv = coerceArgsToArgparseCompatible(sys.argv) args = parser.parse_args(argv[1:]) p = pycopier.PyCopier(source=args.Source[0], destination=args.Destination[0], numWorkers=args.MT, zeroLengthFiles=args.create, purgeDestination=args.purge, move=args.move, copyPermissions=args.copyall, ignoreEmptyDirectories=args.s, quiet=args.quiet, skipSameLookingFiles=True, # not sure if this matches robocopy or not ) if args.quit: print(p) sys.exit(0) p.execute() # assume success at this point. # todo: need to check for errors and keep track of them in PyCopier object # based off that change the error code to 8 sys.exit(1) if __name__ == '__main__': main()
import psutil import re #User inputs name of process they want to try and use. #checks that string against a list of processes running. #If theres a match return it. PROCESS_LIST = [] PPID_LIST = [] PROCESSES_REMAINING_STR = input("Enter how many processes you want to monitor? (1-4): ") while int(PROCESSES_REMAINING_STR) >= 4: print("Pick a number from 1 to 4.") PROCESSES_REMAINING_STR = input("Enter how many processes you want to monitor? (1-4): ") PROCESSES_REMAINING = int(PROCESSES_REMAINING_STR) while PROCESSES_REMAINING != 0: PROCESS_NAME = input("Enter a program name: ") for ACTIVE_PROCESS in psutil.process_iter(): try: SET_NAME = ACTIVE_PROCESS.name() SET_PPID = ACTIVE_PROCESS.pid except psutil.NoSuchProcess: print("PROCESS DOES NOT EXIST") continue if re.search(PROCESS_NAME, SET_NAME, re.IGNORECASE): if SET_NAME not in PROCESS_LIST: PROCESS_LIST.append(SET_NAME) PPID_LIST.append(SET_PPID) if PROCESS_NAME.lower() in str(PROCESS_LIST).lower(): (PROCESSES_REMAINING) = (PROCESSES_REMAINING) - 1 print("ADDED TO THE LIST! REMAINING: ", PROCESSES_REMAINING, "\n") else: print("COULD NOT ADD. TRY AGAIN. ", PROCESSES_REMAINING, " PROCESSES LEFT. \n") for PROCESS_PPID_PAIRS in range(len(PROCESS_LIST)): print("Process: ", PROCESS_LIST[PROCESS_PPID_PAIRS], " | PID: ", PPID_LIST[PROCESS_PPID_PAIRS])
# Copyright 2019 the ProGraML authors. # # Contact Chris Cummins <[email protected]>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run the device mapping models. Usage: $ bazel run //deeplearning/ml4pl/experiments/devmap:run_models -- \ --db_stem='sqlite:////tmp/programl/db/' --dataset=amd,nvidia \ --model=zero_r,lstm_opencl,lstm_ir,lstm_inst2vec,ggnn \ --tag_suffix=v1 """ import time from deeplearning.ml4pl.graphs.labelled import graph_tuple_database from deeplearning.ml4pl.ir import ir_database from deeplearning.ml4pl.models import log_database from deeplearning.ml4pl.models import run from deeplearning.ml4pl.models.ggnn import ggnn from deeplearning.ml4pl.models.lstm import lstm from deeplearning.ml4pl.models.zero_r import zero_r from labm8.py import app from labm8.py.internal import flags_parsers FLAGS = app.FLAGS app.DEFINE_list( "dataset", ["amd", "nvidia"], "The name of the dataset to evaluate. One of {amd,nvidia}.", ) app.DEFINE_list( "model", ["zero_r", "lstm_opencl", "lstm_ir", "lstm_inst2vec", "ggnn"], "The names of the models to evaluate.", ) app.DEFINE_string( "tag_suffix", f"v{time.strftime('%y-%m-%dT%H:%M:%S')}", "The tag suffix to use for runs.", ) app.DEFINE_string( "db_stem", "file:///var/phd/db/cc1.mysql?programl", "The stem for database names.", ) def Main(): """Main entry point.""" db_stem = FLAGS.db_stem models = FLAGS.model tag_suffix = FLAGS.tag_suffix datasets = FLAGS.dataset # Set model and dataset-invariant flags. FLAGS.log_db = flags_parsers.DatabaseFlag( log_database.Database, f"{db_stem}_devmap_logs", must_exist=True ) FLAGS.ir_db = flags_parsers.DatabaseFlag( ir_database.Database, f"{db_stem}_ir", must_exist=True ) FLAGS.k_fold = True FLAGS.test_on = "improvement_and_last" for dataset in datasets: # Set model-invariant flags. FLAGS.graph_db = flags_parsers.DatabaseFlag( graph_tuple_database.Database, f"{db_stem}_devmap_{dataset}", must_exist=True, ) for model in models: FLAGS.tag = f"devmap_{dataset}_{model}_{tag_suffix}" if model == "zero_r": FLAGS.epoch_count = 1 run.Run(zero_r.ZeroR) elif model == "lstm_opencl": FLAGS.epoch_count = 50 FLAGS.ir2seq = flags_parsers.EnumFlag( lstm.Ir2SeqType, lstm.Ir2SeqType.OPENCL ) FLAGS.padded_sequence_length = 1024 FLAGS.batch_size = 64 run.Run(lstm.GraphLstm) elif model == "lstm_ir": FLAGS.epoch_count = 50 FLAGS.ir2seq = flags_parsers.EnumFlag( lstm.Ir2SeqType, lstm.Ir2SeqType.LLVM ) FLAGS.padded_sequence_length = 15000 FLAGS.batch_size = 64 run.Run(lstm.GraphLstm) elif model == "lstm_inst2vec": FLAGS.epoch_count = 50 FLAGS.ir2seq = flags_parsers.EnumFlag( lstm.Ir2SeqType, lstm.Ir2SeqType.INST2VEC ) FLAGS.padded_sequence_length = 15000 FLAGS.batch_size = 64 run.Run(lstm.GraphLstm) elif model == "ggnn": # Reduced batch size because OOM errors with larger batches on my # NVIDIA GTX 1080 GPU. FLAGS.graph_batch_size = 32 FLAGS.epoch_count = 100 run.Run(ggnn.Ggnn) else: raise app.UsageError(f"Unknown model: {model}") if __name__ == "__main__": app.Run(Main)
from pathlib import Path import pytest from pipeline.recon import tool_paths, defaults, web_ports, top_tcp_ports, top_udp_ports def test_tool_paths_absolute(): for path in tool_paths.values(): assert Path(path).is_absolute() @pytest.mark.parametrize("test_input", ["database-dir", "tools-dir", "gobuster-wordlist"]) def test_defaults_dirs_absolute(test_input): assert Path(defaults.get(test_input)).is_absolute() @pytest.mark.parametrize("test_input", ["threads", "masscan-rate", "aquatone-scan-timeout"]) def test_defaults_are_numeric(test_input): assert defaults.get(test_input).isnumeric() def test_webports_exist(): assert web_ports is not None def test_webports_numeric(): for port in web_ports: assert port.isnumeric() def test_top_tcp_ports_exist(): assert top_tcp_ports is not None assert len(top_tcp_ports) >= 1 def test_top_udp_ports_exist(): assert top_udp_ports is not None assert len(top_udp_ports) >= 1
"""Throttling serializers Serializers convert data models to Python datatypes. However, Django REST Framework cannot handle relations between fields automatically. 'SlugRelatedField' objects are needed to serialize the relations. The UWKGM project :copyright: (c) 2020 Ichise Laboratory at NII & AIST :author: Rungsiman Nararatwong """ from rest_framework import serializers from accounts.models import CustomUser, ThrottleBurstPermit, ThrottleBurstRequest class BurstRequestSerializer(serializers.ModelSerializer): user = serializers.SlugRelatedField(queryset=CustomUser.objects.all(), slug_field='username') class Meta: model = ThrottleBurstRequest fields = '__all__' class BurstPermitSerializer(serializers.ModelSerializer): granter = serializers.SlugRelatedField(queryset=CustomUser.objects.all(), slug_field='username') request = serializers.SlugRelatedField(queryset=ThrottleBurstRequest.objects.all(), slug_field='id', required=False) user = serializers.SlugRelatedField(queryset=CustomUser.objects.all(), slug_field='username') class Meta: model = ThrottleBurstPermit fields = '__all__' class BurstPermitLimitedSerializer(BurstPermitSerializer): """An additional burst permit serializer that removes confidential data when users with no administrative or burst-granting privilege request the detail of any permits they were granted """ granter = None user = None class Meta(BurstPermitSerializer.Meta): fields = None exclude = ['granter', 'user']
# price-saving-block # Out of stock # class="product-sub-title-block product-out-of-stock" # href="/ip/LEGO-Star-Wars-Imperial-Trooper-Battle-Pack-75165/55126217" import re from urllib.request import urlopen from bs4 import BeautifulSoup file_name = "scrapedata\legofromwalmart.csv" f = open(file_name, "w") headers = "Product_name,Link,Sale price" f.write(headers + '\n') #get pages from page1 to page i for i in range(1, 5): print("*************************************************************") print("This is page {}.".format(i)) my_url = "https://www.walmart.com/search/?cat_id=0&facet=retailer%3AWalmart.com&grid=true&page="+str(i)+"&query=star+wars+lego+sets+clearance&typeahead=star+wars+lego+sets&vertical_whitelist=home%2C#searchProductResult" u_client = urlopen(my_url) page_html = u_client.read() u_client.close() page_soup = BeautifulSoup(page_html, "html.parser") match = page_soup.find_all("ul", {"class": "search-result-gridview-items"}) for i in match: for l in i.find_all("li"): save_price = l.find("span", {"class": "display-inline-block arrange-fit Price u-textColor price-saving"}) final_price = l.find("div", {"class": "price-main-block"}) # print("final price ",final_price) get_link = l.find("a") print("*************************************************************") #only get data if price is onsale if save_price is not None: #get name name = l.div.div.span.text.strip() print("Name :", name) #get price price_list = str(final_price) get_price = re.findall(r"(?s)title=\"(\$\d+.\d+)\s?", price_list) price = get_price[0].strip() print("get price:", price) #get link link_list = str(get_link) match_link = re.findall(r"(?s)href=\"(.*?)\"", link_list) final_link = "https://www.walmart.com" + match_link[0] link=final_link.replace("amp;", "") print("link: ", link) f.write(name + ',' + link + ',' + price + '\n') f.close()
""" Unrolled Compressed Sensing (3D) by Christopher M. Sandino ([email protected]), 2020. """ import os, sys import torch from torch import nn import sigpy.plot as pl import utils.complex_utils as cplx from utils.transforms import SenseModel from utils.layers3D import ResNet from unet.unet_model import UNet from utils.flare_utils import ConjGrad import matplotlib # matplotlib.use('TkAgg') class Operator(torch.nn.Module): def __init__(self, A): super(Operator, self).__init__() self.operator = A def forward(self, x): return self.operator(x) def adjoint(self, x): return self.operator(x, adjoint=True) def normal(self, x): out = self.adjoint(self.forward(x)) return out class CG_module(nn.Module): def __init__(self, A=None, adjoint=None, verbose=False, lam_l2=0, cg_max=10): super(CG_module, self).__init__() self.A = None self.adj = None self.lam = lam_l2 self.cg = cg_max self.verbose = verbose def initiate(self, A, adjoint): self.A = A self.adj = adjoint def forward(self, x): rhs = self.adj + self.lam * x out = ConjGrad( Aop_fun=self.A.normal, b=rhs, verbose=self.verbose, l2lam=self.lam, max_iter=self.cg, ).forward(rhs) return out def reverse(self, x): out = (1 / self.lam) * ((self.A.normal(x) + self.lam * x) - self.adj) return out class UnrolledModel(nn.Module): """ PyTorch implementation of Unrolled Compressed Sensing. Implementation is based on: CM Sandino, et al. "DL-ESPIRiT: Accelerating 2D cardiac cine beyond compressed sensing" arXiv:1911.05845 [eess.SP] """ def __init__(self, params): """ Args: params (dict): Dictionary containing network parameters """ super().__init__() # Extract network parameters self.num_grad_steps = params.num_grad_steps # num_resblocks = params.num_resblocks # num_features = params.num_features # kernel_size = params.kernel_size # drop_prob = params.drop_prob # circular_pad = params.circular_pad # fix_step_size = params.fix_step_size share_weights = params.share_weights self.num_cg_steps = params.num_cg_steps self.modl_lamda = params.modl_lamda # print(self.modl_lamda) # sys.exit() self.cp = params.meld_cp self.device = params.device # Data dimensions # self.num_emaps = params.num_emaps # convtype = params.conv_type # # ResNet parameters # resnet_params = dict(num_resblocks=num_resblocks, # in_chans=2 * self.num_emaps, # chans=num_features, # kernel_size=kernel_size, # drop_prob=drop_prob, # circular_pad=circular_pad, # conv_type=convtype # ) self.CGM = CG_module(False, False, False, self.modl_lamda, self.num_cg_steps) # Declare ResNets and RNNs for each unrolled iteration if share_weights: print("shared weights") self.unets = nn.ModuleList( [nn.ModuleList([UNet(2, 2), self.CGM])] * self.num_grad_steps ) else: print("No shared weights") self.unets = nn.ModuleList( [ nn.ModuleList([UNet(2, 2), self.CGM]) for i in range(self.num_grad_steps) ] ) # Declare step sizes for each iteration # init_step_size = torch.tensor([-2.0], dtype=torch.float32).to(params.device) # if fix_step_size: # self.step_sizes = [init_step_size] * num_grad_steps # else: # self.step_sizes = [torch.nn.Parameter(init_step_size) for i in range(num_grad_steps)] def complex2real(self, image): """ Convert complex torch image to two-channels image (real, imag) Args: image (torch.Tensor, dtype=torch.complex64): complex image of size [N, height, weight] Returns: image (torch.Tensor, dtype=torch.float32): real image of size [N, 2, height, weight] """ return torch.cat((image.real[:, None, ...], image.imag[:, None, ...]), 1) def real2complex(self, image): """ Convert real torch image to complex image. Args: image (torch.Tensor, dtype=torch.float32): real image of size [N, 2, height, weight] Returns: image (torch.Tensor, dtype=torch.complex64): complex image of size [N, height, weight] """ return image[:, 0, ...] + 1j * image[:, 1, ...] def initiate(self, kspace, maps, mask=None): # if self.num_emaps != maps.size()[-2]: # raise ValueError('Incorrect number of ESPIRiT maps! Re-prep data...') """ From pytorch 1.8, it supports natural complex data, this branch uses torch.fft instead of the old version of two seperate channels. """ # print(kspace.shape) # sys.exit() if mask is None: mask = abs(kspace) > 0 kspace *= mask # Get data dimensions self.dims = tuple(kspace.size()) # Declare signal model A = SenseModel(maps, weights=mask) self.Sense = Operator(A) # Compute zero-filled image reconstruction self.zf_image = self.Sense.adjoint(kspace) # pl.ImagePlot(self.zf_image.detach().cpu().numpy()) self.CGM.initiate(self.Sense, self.zf_image) def evaluate(self): with torch.no_grad(): if self.cp: size = [len(self.resnets)] + [a for a in self.zf_image.shape] self.Xcp = torch.zeros(size, device=self.device) else: self.Xcp = None self.dims = None self.num_emaps = None image = self.zf_image.clone() # Begin unrolled proximal gradient descent cpp = 0 for resnet in self.resnets: if self.cp: self.Xcp[cpp, ...] = image cpp += 1 # dc update # pl.ImagePlot(image.detach().cpu()) image = image.reshape(self.dims[0:4] + (self.num_emaps * 2,)).permute( 0, 4, 3, 2, 1 ) image = resnet[0](image) image = image.permute(0, 4, 3, 2, 1).reshape( self.dims[0:4] + (self.num_emaps, 2) ) image = resnet[1](image) # print("I Love you") return image, self.Xcp, self.dims, self.num_emaps def forward(self): """ Args: kspace (torch.Tensor): Input tensor of shape [batch_size, height, width, time, num_coils, 2] maps (torch.Tensor): Input tensor of shape [batch_size, height, width, 1, num_coils, num_emaps, 2] mask (torch.Tensor): Input tensor of shape [batch_size, height, width, time, 1, 1] Returns: (torch.Tensor): Output tensor of shape [batch_size, height, width, time, num_emaps, 2] """ # if self.num_emaps != maps.size()[-2]: # raise ValueError('Incorrect number of ESPIRiT maps! Re-prep data...') # CG_alg = ConjGrad(Aop_fun=Sense.normal,b=zf_image,verbose=False,l2lam=0.05,max_iter=self.c) # cg_image = CG_alg.forward(zf_image) # pl.ImagePlot(zf_image.detach().cpu()) # sys.exit() image = self.zf_image.clone() # Begin unrolled proximal gradient descent for unet in self.unets: # dc update # pl.ImagePlot(image.detach().cpu()) image = self.complex2real(image) image = unet[0](image) image = self.real2complex(image) image = unet[1](image) # pl.ImagePlot(image.detach().cpu().numpy()) image = self.complex2real(image) # print("I Love you") return image
import FWCore.ParameterSet.Config as cms pfClustersFromL1EGClusters = cms.EDProducer("PFClusterProducerFromL1EGClusters", src = cms.InputTag("L1EGammaClusterEmuProducer","L1EGXtalClusterEmulator"), etMin = cms.double(0.5), corrector = cms.string("L1Trigger/Phase2L1ParticleFlow/data/emcorr_barrel.root"), resol = cms.PSet( etaBins = cms.vdouble( 0.700, 1.200, 1.600), offset = cms.vdouble( 0.873, 1.081, 1.563), scale = cms.vdouble( 0.011, 0.015, 0.012), kind = cms.string('calo'), ) ) # use phase2_hgcalV10 to customize for 106X L1TDR MC even in the barrel, since there's no other modifier for it from Configuration.Eras.Modifier_phase2_hgcalV10_cff import phase2_hgcalV10 phase2_hgcalV10.toModify(pfClustersFromL1EGClusters, corrector = "L1Trigger/Phase2L1ParticleFlow/data/emcorr_barrel_106X.root", resol = cms.PSet( etaBins = cms.vdouble( 0.700, 1.200, 1.600), offset = cms.vdouble( 1.047, 1.096, 1.633), scale = cms.vdouble( 0.014, 0.031, 0.019), kind = cms.string('calo') ) )
from ThesisAnalysis.plotting.setup import ThesisPlotter from ThesisAnalysis import get_data, get_plot, ThesisHDF5Reader import numpy as np import os class TFPlotter(ThesisPlotter): def plot(self, x, y): ymax = np.max(y, 0) ymin = np.min(y, 0) color = next(self.ax._get_lines.prop_cycler)['color'] self.ax.fill_between(x, ymin, ymax, facecolor='black', edgecolor='black', label="Range Across Cells") self.ax.plot(x, y[0], color=color, lw=1, label="Single Cell") self.ax.set_xlabel("Sample (ADC)") self.ax.set_ylabel("Calibrated Sample (mV)") self.add_legend(2) class TFComparison(ThesisPlotter): def plot(self, x, y, label): color = next(self.ax._get_lines.prop_cycler)['color'] self.ax.plot(x, y[0], color=color, lw=1, label=label) def process(input_path, output_path): with ThesisHDF5Reader(input_path) as reader: x = reader.read("x")['x'].values y_flat = reader.read("y")['y'].values metadata = reader.read_metadata() n_cells = metadata['n_cells'] n_pnts = metadata['n_pnts'] y = y_flat.reshape((n_cells, n_pnts)) p_tf = TFPlotter(sidebyside=True) p_tf.plot(x, y) p_tf.save(output_path) def process_comparison(input_path1, input_path2, output_path): with ThesisHDF5Reader(input_path1) as reader: x1 = reader.read("x")['x'].values y_flat = reader.read("y")['y'].values metadata = reader.read_metadata() n_cells = metadata['n_cells'] n_pnts = metadata['n_pnts'] y1 = y_flat.reshape((n_cells, n_pnts)) with ThesisHDF5Reader(input_path2) as reader: x2 = reader.read("x")['x'].values y_flat = reader.read("y")['y'].values metadata = reader.read_metadata() n_cells = metadata['n_cells'] n_pnts = metadata['n_pnts'] y2 = y_flat.reshape((n_cells, n_pnts)) base = os.path.splitext(output_path)[0] p_tf = TFComparison() p_tf.plot(x1, y1, "Direct") p_tf.plot(x2, y2, "Poly") p_tf.ax.set_xlabel("Sample (ADC)") p_tf.ax.set_ylabel("Calibrated Sample (mV)") p_tf.add_legend(2) p_tf.save(base + ".pdf") p_tf = TFComparison(sidebyside=True) p_tf.plot(x1, y1, "Direct") p_tf.plot(x2, y2, "Poly") p_tf.ax.set_xlim(-50, 50) p_tf.ax.set_ylim(-50, 50) p_tf.save(base + "_zoom.pdf") def main(): input_path = get_data("tf/t5_lookup.h5") output_path = get_plot("tf/lookup_t5.pdf") process(input_path, output_path) input_path = get_data("tf/tc_lookup.h5") output_path = get_plot("tf/lookup_tc.pdf") process(input_path, output_path) input_path1 = get_data("tf/tc_direct_lookup.h5") input_path2 = get_data("tf/tc_lookup.h5") output_path = get_plot("tf/lookup_comparison.pdf") process_comparison(input_path1, input_path2, output_path) if __name__ == '__main__': main()
from ...strategies.coordinator.scorer import TableScorer, PossibilityScorer, OpeningScorer, WinLoseScorer, NumberScorer, EdgeScorer, CornerScorer, BlankScorer, EdgeCornerScorer # noqa: E501 from ...strategies.coordinator.selector import Selector, Selector_W from ...strategies.coordinator.orderer import Orderer, Orderer_B, Orderer_C, Orderer_P, Orderer_BC, Orderer_CB, Orderer_PCB from ...strategies.coordinator.evaluator import Evaluator, Evaluator_T, Evaluator_P, Evaluator_O, Evaluator_W, Evaluator_N, Evaluator_N_Fast, Evaluator_E, Evaluator_C, Evaluator_B, Evaluator_Ec, Evaluator_TP, Evaluator_TPO, Evaluator_NW, Evaluator_PW, Evaluator_TPW, Evaluator_TPW_Fast, Evaluator_TPOW, Evaluator_TPWE, Evaluator_TPWE_Fast, Evaluator_TPWEC, Evaluator_PWE, Evaluator_BW, Evaluator_EcW, Evaluator_BWEc, Evaluator_PBWEc, Evaluator_TPWEB # noqa: E501 __all__ = [ 'TableScorer', 'PossibilityScorer', 'OpeningScorer', 'WinLoseScorer', 'NumberScorer', 'EdgeScorer', 'CornerScorer', 'BlankScorer', 'EdgeCornerScorer', 'Selector', 'Selector_W', 'Orderer', 'Orderer_B', 'Orderer_C', 'Orderer_P', 'Orderer_BC', 'Orderer_CB', 'Orderer_PCB', 'Evaluator', 'Evaluator_T', 'Evaluator_P', 'Evaluator_O', 'Evaluator_W', 'Evaluator_N', 'Evaluator_N_Fast', 'Evaluator_E', 'Evaluator_C', 'Evaluator_B', 'Evaluator_Ec', 'Evaluator_TP', 'Evaluator_TPO', 'Evaluator_NW', 'Evaluator_PW', 'Evaluator_TPW', 'Evaluator_TPW_Fast', 'Evaluator_TPOW', 'Evaluator_TPWE', 'Evaluator_TPWE_Fast', 'Evaluator_TPWEC', 'Evaluator_PWE', 'Evaluator_BW', 'Evaluator_EcW', 'Evaluator_BWEc', 'Evaluator_PBWEc', 'Evaluator_TPWEB', ]
#! python2.7 ## -*- coding: utf-8 -*- ## kun for Apk View Tracking ## ViewTree.py import copy from TreeType import CRect,CTreeNode,CPoint from ParseElement import ParseElement from ViewState import ViewState class ViewTree(): ''' View Tree ''' def __init__(self, logger): self.m_logger = logger def getStructure(self, dump_data): list_data = dump_data.split("\n") print "length of list: %s" %len(list_data) # pop the last element "DONE" list_data.remove("DONE") print "length of list: %s" %len(list_data) elements_list=[] blanks_list=[] for element in list_data: index = 0 count = 0 while " " == element[index]: index = index + 1 count = count + 1 #=================================================================== # # another method which can get blanks count in head of element # tag_list = element.split(" ") # head_tag = tag_list[0] # while (0 == len(head_tag)): # count += 1 #=================================================================== blanks_list.append(count) elements_list.append(element) return elements_list,blanks_list def buildTree(self, elements_list, blanks_list): tree_nodes_list=[] root_node= CTreeNode() root_node.mParentNode=None total_count = len(blanks_list) depth = 0 pre_depth = depth-1 for x in range(total_count): index = x blanks_count = blanks_list[index] depth = blanks_count node = CTreeNode() ## set node depth in this tree node.mTreeDepth = blanks_count if 0 == blanks_count: root_node.mElement = elements_list[index] root_node.mDepth = 0 tree_nodes_list.append(root_node) else: pre_index = x-1 pre_depth = blanks_list[pre_index] pre_depth = tree_nodes_list[pre_index].mDepth node.mElement = elements_list[index] node.mDepth = blanks_count delta_depth = (depth - pre_depth) if (1 == delta_depth): ## 本节点是上一个节点的子节点 ## current node is a child node of last node node.mParentNode = tree_nodes_list[pre_index] tree_nodes_list.append(node) elif (0 == delta_depth): ## 等深度, 取上一个的父节点作为自己的父节点 ## these two nodes have same depth, so that they have same parent node node.mParentNode = tree_nodes_list[pre_index].mParentNode tree_nodes_list.append(node) elif (0 > delta_depth): ## 向上递归寻找和自己等深度的节点 ## Recurse down to up, seek the node which has same depth new_delta_depth = delta_depth new_pre_depth = pre_depth new_pre_index = pre_index while True: if 0==new_delta_depth: node.mParentNode = tree_nodes_list[new_pre_index].mParentNode tree_nodes_list.append(node) break else: new_pre_index -= 1 new_pre_depth = tree_nodes_list[new_pre_index].mDepth new_delta_depth = depth - new_pre_depth else: raise Exception, "Raise an Exception when Build Elements Tree!" break return tree_nodes_list ## Left: newLeft = (Root Node)->mLeft + (ParentNode)->mLeft + ... + self->mLeft ## Right: newRight = newLeft + (self->mRight - self->mLeft) ## Top : newTop = (Root Node)->mTop + (ParentNode)->mTop + ... + self->mTop ## Bottom: newBottom = newTop + (self->mBottom - self->mTop) def getAbsoluteRect(self, node): absoluteRect = CRect() temp_rect = CRect() current_node = CTreeNode() current_node = copy.deepcopy(node) temp_rect=current_node.mRect ## print "/////////////////begin trace ////////////////////////////////" ## print node.mRect.mTop, node.mRect.mBottom, node.mRect.mLeft, node.mRect.mRight while True: parent_node = CTreeNode() if None == current_node.mParentNode: break else: ## print "before [Top] %s [Left] %s" %(str(temp_rect.mTop),str(temp_rect.mLeft)) parent_node = current_node.mParentNode temp_rect.mLeft+=parent_node.mRect.mLeft temp_rect.mTop+=parent_node.mRect.mTop current_node = parent_node ## print "after [Top] %s [Left] %s" %(str(temp_rect.mTop),str(temp_rect.mLeft)) temp_rect.mRight=temp_rect.mLeft+(node.mRect.mRight-node.mRect.mLeft) temp_rect.mBottom=temp_rect.mTop+(node.mRect.mBottom-node.mRect.mTop) absoluteRect=temp_rect ## print node.mRect.mTop, node.mRect.mBottom, node.mRect.mLeft, node.mRect.mRight ## print "///////////////// end trace ///////////////////////////////" return absoluteRect def getViewCenterPoint(self, node): width = node.mAbsoluteRect.mRight - node.mAbsoluteRect.mLeft height = node.mAbsoluteRect.mBottom - node.mAbsoluteRect.mTop location = CPoint() location.x = node.mAbsoluteRect.mLeft + width/2 location.y = node.mAbsoluteRect.mTop + height/2 return location def getChildNodesList(self, tree_nodes_list, tree_node): child_nodes_list = [] start_flag = False end_flag = False for node in tree_nodes_list: if end_flag: break if node.mHashCode == tree_node.mHashCode: start_flag = True if (node.mDepth == (tree_node.mDepth+1)) and start_flag: child_nodes_list.append(node) if (node.mDepth == tree_node.mDepth) and start_flag and (node.mHashCode!=tree_node.mHashCode): end_flag = True # print tree_node.mClassName # print len(child_nodes_list) return child_nodes_list def setNodeValue(self, node): element = node.mElement if None == element: print "Failed to set Node Value because Error in Node!" return False element_parser = ParseElement(node.mElement) element_parser.parseElmentData() node.mClassName = element_parser.getClassName() node.mHashCode = element_parser.getHashCode() node.mId = element_parser.getID() node.mText = element_parser.getText() node.mRect = element_parser.getRectArea() active_state = ViewState(node) node.mActive = active_state.getActiveState() node.mAbsoluteRect = self.getAbsoluteRect(node) node.mLocation = self.getViewCenterPoint(node) node.mVisible = element_parser.getVisible() def build(self, data): elements_list, blanks_list = self.getStructure(data) tree_nodes_list = self.buildTree(elements_list, blanks_list) for node in tree_nodes_list: ## set node value from root node to child node self.setNodeValue(node) node.mChildNodes = self.getChildNodesList(tree_nodes_list, node) self.m_logger.info("*************************************************************************") self.m_logger.info("mClassName: %s" %node.mClassName) self.m_logger.info("mTreeDepth: %s" %node.mTreeDepth) self.m_logger.info("mId: %s " %node.mId) self.m_logger.info("mText: %s" %node.mText) self.m_logger.info("mActive: %s" %node.mActive) self.m_logger.info("mRect.(mTop, mBottom, mLeft, mRight): %s %s %s %s" %(node.mRect.mTop, node.mRect.mBottom, node.mRect.mLeft, node.mRect.mRight)) self.m_logger.info("mAbsoluteRect: %s %s %s %s" %(node.mAbsoluteRect.mTop, node.mAbsoluteRect.mBottom, node.mAbsoluteRect.mLeft, node.mAbsoluteRect.mRight)) self.m_logger.info("*************************************************************************") return tree_nodes_list if __name__=="__main__": vt = ViewTree()
from sumpy.annotators._annotator_base import _AnnotatorBase from sumpy.annotators import SentenceTokenizerMixin, WordTokenizerMixin from sumpy.document import Summary from abc import ABCMeta, abstractmethod import pandas as pd import numpy as np import networkx as nx class _SystemBase(object): """Abstract base class for summarizer systems.""" __metaclass__ = ABCMeta def __init__(self, verbose=False): self.verbose = verbose self._dependency_graph = None self._annotators = None self._pipeline = None @abstractmethod def build_summary(self, input_df, ndarray_data): pass def summarize(self, inputs): if not hasattr(self, "_pipeline") or self._pipeline is None: self.build_pipeline() input_df, ndarray_data = self.prepare_inputs(inputs) processed_df, processed_ndarray_data = self.process_input( input_df, ndarray_data) return self.build_summary(processed_df, processed_ndarray_data) def build_pipeline(self): self.build_dependency_graph() self._pipeline = [] for node in nx.topological_sort(self._dependency_graph): if node in self._annotators: self._pipeline.append(self._annotators[node]) if self.verbose: print("{} ({}) build".format(self.__class__.__name__, self._annotators[node].name(self))) self._annotators[node].build(self) def prepare_inputs(self, inputs, ndarray_data=None): requires = set() returns = set() ndarray_requires = set() ndarray_returns = set() for ann in self._pipeline: requires.update(ann.requires(self)) returns.update(ann.returns(self)) ndarray_requires.update(ann.ndarray_requires(self)) ndarray_returns.update(ann.ndarray_returns(self)) # Allocate keys for ndarray dependencies. if ndarray_data is None: ndarray_data = {} for key in ndarray_requires.union(ndarray_returns): if key not in ndarray_data: ndarray_data[key] = None # Allocate columns for dataframe data dependencies. all_cols = list(requires.union(returns)) if isinstance(inputs, list) or isinstance(inputs, tuple): df = pd.DataFrame([{"doc id": doc_id, "doc text": doc_text} for doc_id, doc_text in enumerate(inputs)], columns=["doc id"] + all_cols) return df, ndarray_data elif isinstance(inputs, pd.DataFrame): if "doc id" not in inputs: raise Exception("input DataFrame must have column 'doc id'") cols = list(set(inputs.columns.tolist() + all_cols)) df = pd.DataFrame(inputs.to_dict(), columns=cols) df.reset_index(inplace=True) return df, ndarray_data else: raise Exception("Bad input: list of strings or dataframe only.") def process_input(self, input_df, ndarray_data): cols = set(input_df.columns.tolist()) for ann in self._pipeline: for rtype in ann.returns(self): assert rtype in cols for req in ann.requires(self): assert req in cols run_stage = input_df[ann.returns(self)].isnull().any().any() \ or np.any([ndarray_data[rtype] is None for rtype in ann.ndarray_returns(self)]) if run_stage: if self.verbose: print("{} ({}) process".format( self.__class__.__name__, ann.name(self))) input_df, ndarray_data = ann.process( self, input_df, ndarray_data) return input_df, ndarray_data def build_dependency_graph(self): G = nx.DiGraph() self._annotators = {} def check_mixins(clazz, visited=set()): if not issubclass(clazz, _SystemBase): if issubclass(clazz, _AnnotatorBase): name = clazz.name(self) self._annotators[name] = clazz for req in clazz.requires(self): G.add_edge(req, name) for req in clazz.ndarray_requires(self): G.add_edge(req, name) for rtype in clazz.returns(self): G.add_edge(name, rtype) for rtype in clazz.ndarray_returns(self): G.add_edge(name, rtype) visited.add(clazz) for base in clazz.__bases__: if base in visited: continue if not issubclass(base, _AnnotatorBase): continue if base == _AnnotatorBase: continue check_mixins(base, visited) check_mixins(self.__class__) self._dependency_graph = G def print_dependency_graph(self, filename=None, to_iPython=True): import pygraphviz as pgv if not hasattr(self, "_dependency_graph") or \ self._dependency_graph is None: self.build_dependency_graph() if filename is None: filename = "sumpy.tmp.png" G = pgv.AGraph(strict=False, directed=True) for node in self._dependency_graph: if node in self._annotators: G.add_node(node) G.get_node(node).attr["shape"] ="rectangle" elif node.startswith("f:"): G.add_node(node) G.get_node(node).attr["shape"] ="parallelogram" for edge in self._dependency_graph.in_edges(node): G.add_edge(edge[0], edge[1], color="green") else: for in_edge in self._dependency_graph.in_edges(node): for out_edge in self._dependency_graph.out_edges(node): G.add_edge(in_edge[0], out_edge[1], label=node, key=node) G.layout("dot") G.draw(filename) if to_iPython is True: from IPython.display import Image return Image(filename=filename) class AverageFeatureRankerBase( WordTokenizerMixin, _SystemBase): def build_summary(self, input_df, ndarray_data): cols = [f for f in input_df.columns.tolist() if f.startswith("f:")] X = input_df[cols].values input_df["rank"] = (X / X.max(axis=0)).mean(axis=1) output_df = input_df.sort_values(["rank"], ascending=False) return Summary(output_df)
import time import sys from typing import Iterable, Any, Mapping, Union, Iterator, Sequence from elasticsearch import ElasticsearchException, NotFoundError from elasticsearch.helpers import streaming_bulk, bulk from . import connections from .search import Search class Exporter: """ Base class helper to export stuff to elasticsearch. Derive from class and define class attributes: - ``INDEX_NAME``: ``str`` Name of index, might contain a wildcard `*` - ``MAPPINGS``: ``dict`` The `mapping <https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html>`__ definition for the index. And optionally override methods: - :meth:`.transform_document` Convert a document to elasticsearch. - :meth:`.get_document_id` Return a unique id for the elasticsearch document. - :meth:`.get_document_index` Return an alternative index name for the document. """ # Name of the elasticsearch index where things are exported INDEX_NAME: str = None # dict with mapping parameters MAPPINGS: dict = None def __init__( self, client=None, index_prefix: str = None, index_postfix: str = None, update_index: bool = True, ): """ Create a new instance of the exporter. :param client: An optional instance of an elasticsearch.Elasticsearch compatible object If omitted elastipy.connections.get("default") will be used :param index_prefix: ``str`` Optional string that is put before the class-attribute ``INDEX_NAME`` :param index_postfix: ``str`` Optional string that is put after the class-attribute ``INDEX_NAME`` :param update_index: ``bool`` If ``True``, the elasticsearch index will be created or updated with the current ``MAPPINGS`` before the first export of a document. """ for required_attribute in ("INDEX_NAME", "MAPPINGS"): if not getattr(self, required_attribute, None): raise ValueError(f"Need to define class attribute {self.__class__.__name__}.{required_attribute}") self._client = client self.index_prefix = index_prefix self.index_postfix = index_postfix self._do_update_index = update_index self._index_updated = dict() @property def client(self): """ Access to the elasticsearch client. If none was defined in constructor then ``elastipy.connections.get("default")`` is returned. """ if self._client is None: self._client = connections.get() return self._client def index_name(self) -> str: """ Returns the configured ``index_prefix - INDEX_NAME - index_suffix`` :return: str """ name = self.INDEX_NAME if self.index_prefix: name = f"{self.index_prefix}-{name}" if self.index_postfix: name = f"{name}-{self.index_postfix}" return name def search(self, **kwargs) -> Search: """ Return a new ``Search`` object for this index and client. :return: Search instance """ from .search import Search return Search(index=self.index_name(), client=self._client, **kwargs) def get_document_id(self, es_data: Mapping): """ Override this to return a single elasticsearch object's id. :param es_data: ``dict`` Single object as returned by transform_document() :return: str, int etc.. """ return None def get_document_index(self, es_data: Mapping) -> str: """ Override to define an index per document. The default function returns the result from ``index_name()`` but it's possible to put objects into separate indices. For example you might define ``INDEX_NAME = "documents-*"`` and ``get_document_index`` might return .. CODE:: self.index_name().replace("*", es_data["type"] :param es_data: ``dict`` Single document as returned by transform_document() :return: str """ return self.index_name() def transform_document(self, data: Mapping) -> Union[Mapping, Iterator[Mapping]]: """ Override this to transform each documents's data into an elasticsearch document. It's possible to return a **list** or **yield** multiple elasticsearch documents. :param data: dict :return: dict or iterable of dict """ return data def update_index(self) -> None: """ Create the index or update changes to the mapping. Can only be called if ``INDEX_NAME`` does not contain a ``'*'`` :return: None """ if "*" in self.index_name(): raise ValueError(f"update_index() can not be called for wildcard indices like '{self.index_name()}'") self._update_index(self.index_name()) def delete_index(self) -> bool: """ Try to delete the index. Ignore if not found. :return: ``bool`` True if deleted, False otherwise. If the index name contains a wildcard ``*``, True is always returned. """ from .aggregation.helper import wildcard_match name = self.index_name() try: self.client.indices.delete(index=name) self._index_updated.pop(self.index_name(), None) if "*" in name: for key in list(self._index_updated): if wildcard_match(key, name): self._index_updated.pop(key) return True except NotFoundError: return False def export_list( self, object_list: Iterable[Any], chunk_size: int = 500, refresh: bool = False, verbose: bool = False, verbose_total: int = None, file=None, **kwargs ): """ Export a list of objects. :param object_list: ``sequence of dict`` This can be a list or generator of dictionaries, containing the objects that should be exported. :param chunk_size: ``int`` Number of objects per bulk request. :param refresh: ``bool`` if ``True`` require the immediate refresh of the index when finished exporting. :param verbose: ``bool`` If True print some progress to stderr (using `tqdm <https://pypi.org/project/tqdm/>`__ if present) :param verbose_total: ``int`` Provide the number of objects for the **verbosity** if ``object_list`` is a generator. :param file: Optional string stream to output verbose info, default is ``stderr``. All other parameters are passed to `elasticsearch.helpers.bulk <https://elasticsearch-py.readthedocs.io/en/v7.10.1/helpers.html#elasticsearch.helpers.bulk>`__ :return: ``dict`` Response of elasticsearch bulk call. """ def bulk_actions(): for object_data in self._verbose_iter(object_list, verbose, verbose_total, file): es_data_iter = self.transform_document(object_data) if isinstance(es_data_iter, Mapping): es_data_iter = [es_data_iter] for es_data in es_data_iter: object_id = self.get_document_id(es_data) index_name = self.get_document_index(es_data) if index_name not in self._index_updated: self._update_index(index_name) action = { "_index": self.get_document_index(es_data), "_source": es_data, } if object_id is not None: action["_id"] = object_id yield action response = bulk( client=self.client, actions=bulk_actions(), chunk_size=chunk_size, refresh=refresh, **kwargs, ) if verbose: # TODO: print error status print(f"{self.__class__.__name__}: exported {response[0]} objects", file=file) return response def get_index_params(self) -> dict: """ Returns the complete index parameters. Override if you need to specialize things. :return: dict """ return { "mappings": self.MAPPINGS } def _update_index(self, name): try: self.client.indices.get_mapping(index=name) self.client.indices.put_mapping(index=name, body=self.MAPPINGS) self._index_updated[name] = True return except NotFoundError: pass self.client.indices.create(index=name, body=self.get_index_params()) @classmethod def _verbose_iter(cls, iter, verbose: bool, count=None, file=None): if not verbose: yield from iter return if file is None: file = sys.stderr # this is just a unittest switch if verbose != "simple": try: import tqdm yield from tqdm.tqdm(iter, total=count, file=file) return except ImportError: pass if count is None: try: count = len(iter) except (TypeError, ): pass last_time = None for i, item in enumerate(iter): ti = time.time() if last_time is None or ti - last_time >= 1.: last_time = ti if count: print(f"{cls.__name__} {i}/{count}", file=file) else: print(f"{cls.__name__} {i}", file=file) yield item
from ._venv import is_venv from ._check import install_packages, check_module, require_module, check_fun, require_fun, check_attr, require_attr, check_class, require_class
n, q = map(int, input().split()) G = [[] for _ in range(n)] for _ in range(n - 1): a, b = map(lambda x: int(x) - 1, input().split()) G[a].append(b) G[b].append(a) from collections import deque P = [0] * n dq = deque([0]) while dq: v = dq.popleft() for u in G[v]: if P[u] > 0: continue P[u] = P[v] + 1 dq.append(u) for _ in range(q): c, d = map(lambda x: int(x) - 1, input().split()) if (P[c] + P[d]) % 2: print('Road') else: print('Town')
import os from warnings import warn from flask import current_app from .core import Config, lazy from . import default_config from flex.utils.local import LocalProxy from flex.utils.lazy import LazyObject, empty from flex.core.exc import ImproperlyConfigured ENVIRONMENT_VARIABLE = 'FLEX_CONFIG_PATH' ROOT_PATH_ENVAR = 'FLEX_ROOT_DIR' class LazyConfig(LazyObject): """ A lazy proxy for either global Django settings or a custom settings object. The user can manually configure settings prior to using them. Otherwise, Django uses the settings module pointed to by DJANGO_SETTINGS_MODULE. """ __slots__ = () def _setup(self, name=None): """Load the config path pointed to by the environment variable. """ config_path = os.environ.get(ENVIRONMENT_VARIABLE) if not config_path: desc = ("config %s" % name) if name else "config" raise ImproperlyConfigured( "Requested %s, but configuration has not been initialized. " "You must either define the environment variable %s " "or call config.initialize() before accessing configurations." % (desc, ENVIRONMENT_VARIABLE)) root_path = os.environ.get(ROOT_PATH_ENVAR) if not root_path: root_path = os.getcwd() warn( 'Environment variable %s for config root path not defined. ' 'The current working directory %s will be used instead.' % (ROOT_PATH_ENVAR, root_path), RuntimeWarning ) self._wrapped = Config(root_path) self._wrapped.from_object(default_config) self._wrapped.from_envvar(ENVIRONMENT_VARIABLE) def __repr__(self): if self._wrapped is empty: return '<LazyConfig [Unevaluated]>' return '<LazyConfig %s>' % str(self._wrapped) @property def top(self): """Returns configuration for the current_app if any.""" if current_app: return current_app.config return self @property def _config(self): if self._wrapped is empty: self._setup() return self._wrapped @property def has_init(self): """Returns True if the configuration has already been initialized.""" return self._wrapped is not empty config = LazyConfig()
import sys import io from twisted.logger import ( eventsFromJSONLogFile, textFileLogObserver ) output = textFileLogObserver(sys.stdout) for event in eventsFromJSONLogFile(io.open("log.json")): output(event)
CELEBA_PATH = "/home/aixile/Workspace/dataset/celeba/" GAME_FACE_PATH = "/home/aixile/Workspace/dataset/game_face_170701/"
#!/usr/bin/env python3 import unittest from util import connect, load_data LISTINGS_DATA = "YVR_Airbnb_listings_summary.csv" REVIEWS_DATA = "YVR_Airbnb_reviews.csv" CREATE_LISTINGS_TABLE = ''' CREATE TABLE listings ( id INTEGER, -- ID of the listing name TEXT, -- Title of the listing host_id INTEGER, -- ID of the host for the listing host_name TEXT, -- Name of the host neighbourhood TEXT, -- Location of the listing room_type TEXT, -- The type of the room offered price INTEGER, -- The price of the listing minimum_nights INTEGER, -- The minimum nights the listing can be booked availability_365 INTEGER, -- The availability of the listing in a year PRIMARY KEY(id) ); ''' CREATE_REVIEWS_TABLE = ''' CREATE TABLE reviews ( listing_id INTEGER, id INTEGER, date TEXT, reviewer_id INTEGER, reviewer_name TEXT, comments TEXT, PRIMARY KEY(id) ); ''' def main() -> None: listings_data = load_data(LISTINGS_DATA) review_data = load_data(REVIEWS_DATA) make_main() populate_listings_table(listings_data) populate_review_table(review_data) def make_main() -> None: connection = connect() delete_listings_table = ''' DROP TABLE IF EXISTS listings; ''' delete_reviews_table = ''' DROP TABLE IF EXISTS reviews; ''' connection.cursor().execute(delete_listings_table) connection.cursor().execute(delete_reviews_table) connection.cursor().execute(CREATE_LISTINGS_TABLE) connection.cursor().execute(CREATE_REVIEWS_TABLE) connection.close() def populate_review_table(review_data) -> None: connection = connect() query = ''' INSERT INTO reviews VALUES( :listing_id, :id, :date, :reviewer_id, :reviewer_name, :comments ); ''' insertions = [] for i in range(0, len(review_data)): insertions.append({ "listing_id": review_data[i][0], "id": review_data[i][1], "date": review_data[i][2], "reviewer_id": review_data[i][3], "reviewer_name": review_data[i][4], "comments": review_data[i][5] }) connection.executemany(query, insertions) connection.commit() connection.close() def populate_listings_table(listings_data) -> None: connection = connect() query = ''' INSERT INTO listings VALUES( :id, :name, :host_id, :host_name, :neighbourhood, :room_type, :price, :minimum_nights, :availability_365 ); ''' insertions = [] for i in range(0, len(listings_data)): pass_val = False for j in range(0, len(listings_data[i])): if listings_data[i][j] is None: pass_val = True if pass_val is not True: insertions.append({ "id": listings_data[i][0], "name": listings_data[i][1], "host_id": listings_data[i][2], "host_name": listings_data[i][3], "neighbourhood": listings_data[i][4], "room_type": listings_data[i][5], "price": listings_data[i][6], "minimum_nights": listings_data[i][7], "availability_365": listings_data[i][8] }) connection.executemany(query, insertions) connection.commit() connection.close() class DatabaseTest(unittest.TestCase): # Checksum verification def test_listings_table(self): connection = connect() test_query = ''' SELECT MIN(host_id), MAX(host_id), AVG(host_id), COUNT(host_id) FROM listings; ''' data = connection.cursor().execute(test_query).fetchone() print(data) connection.close() self.assertTupleEqual( data, (6033, 387534175, 115176061.85829493, 4340)) def test_reviews_table(self): connection = connect() test_query = ''' SELECT MIN(id), MAX(id), AVG(id), COUNT(id) FROM reviews; ''' data = connection.cursor().execute(test_query).fetchone() print(data) connection.close() self.assertTupleEqual( data, (26444, 730124064, 370354766.84915775, 147936)) if __name__ == "__main__": main() unittest.main()
import os import logging import pathlib import random import numbers from tqdm import tqdm import numpy as np import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms import torchvision.datasets as datasets import torchvision.transforms.functional as TF import torch.nn.functional as F from PIL import Image try: import accimage except ImportError: accimage = None from os.path import splitext from os import listdir from glob import glob def _is_pil_image(img): if accimage is not None: return isinstance(img, (Image.Image, accimage.Image)) else: return isinstance(img, Image.Image) def _is_numpy(img): return isinstance(img, np.ndarray) def _is_numpy_image(img): return img.ndim in {2, 3} class BasicDataset(Dataset): def __init__(self, imgs_dir, masks_dir, scale=1): self.imgs_dir = imgs_dir self.imgs_path = pathlib.Path(imgs_dir) self.masks_dir = masks_dir self.masks_path = pathlib.Path(masks_path) self.scale = scale assert 0 < scale <= 1, 'Scale must be between 0 and 1' self.ids = [p.stem for p in self.imgs_path.iterdir() if not p.startswith('.')] logging.info(f'Creating dataset with {len(self.ids)} examples') def __len__(self): return len(self.ids) @classmethod def preprocess(cls, pil_img, scale): w, h = pil_img.size newW, newH = int(scale * w), int(scale * h) assert newW > 0 and newH > 0, 'Scale is too small' pil_img = pil_img.resize((newW, newH)) img_nd = np.array(pil_img) if len(img_nd.shape) == 2: img_nd = np.expand_dims(img_nd, axis=2) # HWC to CHW img_trans = img_nd.transpose((2, 0, 1)) if img_trans.max() > 1: img_trans = img_trans / 255 return img_trans def __getitem__(self, i): idx = self.ids[i] mask_file = glob(self.masks_dir + idx + '*') img_file = glob(self.imgs_dir + idx + '*') assert len(mask_file) == 1, \ f'Either no mask or multiple masks found for the ID {idx}: {mask_file}' assert len(img_file) == 1, \ f'Either no image or multiple images found for the ID {idx}: {img_file}' mask = Image.open(mask_file[0]) img = Image.open(img_file[0]) assert img.size == mask.size, \ f'Image and mask {idx} should be the same size, but are {img.size} and {mask.size}' img = self.preprocess(img, self.scale) mask = self.preprocess(mask, self.scale) return {'image': torch.from_numpy(img), 'mask': torch.from_numpy(mask)} #################################################################################################################### ########### C E L E B A #############------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ # CelebA face image dataset, only returns images and not metadata # ------------------------------------------------------------------------------------------------------------------ class CelebA(Dataset): def __init__(self, path='/root/data/CelebA/img_align_celeba/', part='train'): if part=='train': self.data = [os.path.join(path, file) for file in os.listdir(path)][:182637] else: self.data = [os.path.join(path, file) for file in os.listdir(path)][182637:] def __len__(self): return len(self.data) def __getitem__(self, idx): return self.transform(Image.open(self.data[idx])) def make_celeba_dataloader(dataset, batch_size, image_size=4): dataset.transform = transforms.Compose([ transforms.Resize((image_size, image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)]) return DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=4, drop_last=True) #################################################################################################################### ########### F R A C T A L #############------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------ # Custom Fractal Images dataset with high resolution images. Must apply crop to use. # ------------------------------------------------------------------------------------------------------------------ class Fractal(Dataset): def __init__(self, path='/content/all/', part='all', cache='memory'): self.all_data = [str(p.absolute()) for p in pathlib.Path(path).glob("*")] self.total = len(self.all_data) if part == 'all': self.data = self.all_data elif part=='train': self.data = self.all_data[:int(self.total*0.9)] else: self.data = self.all_data[int(self.total*0.9):] self.cache = cache if self.cache == 'memory': logging.info(f"Using in memory cache for {self.total} images") cache_temp = [] for p in tqdm(self.data): try: cache_temp.append(Image.open(p).convert('RGB')) except Exception as e: logging.error(f"Failed loading image in dataset:\n{e}") self.data = cache_temp del cache_temp def __len__(self): return len(self.data) def __getitem__(self, idx): return self.transform(Image.open(self.data[idx]).convert('RGB')) # ------------------------------------------------------------------------------------------------------------------ # Prepares a set of transformations that crops a certain scale square area randomly from each images # in a batch, effectively making a much larger dataset than individual image count suggests. # ------------------------------------------------------------------------------------------------------------------ def make_fractal_alae_dataloader(dataset, batch_size, image_size=4, crop_size=512, num_workers=3, crop_mode='random', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), jitter_settings={"brightness": 0.1, "contrast": 0.3, "saturation": 0.3, "hue": 0.3}): transform_list = [] if isinstance(crop_mode, str): if crop_mode == 'random': transform_list.append(transforms.RandomCrop(crop_size, pad_if_needed=True, padding_mode='symmetric')) elif crop_mode == 'center': transform_list.append(transforms.CenterCrop(crop_size)) transform_list.append(transforms.Resize((image_size, image_size))) transform_list.append(transforms.RandomHorizontalFlip(p=0.5)) transform_list.append(transforms.RandomVerticalFlip(p=0.5)) transform_list.append(transforms.ColorJitter(**jitter_settings)) #transform_list.append(transforms.RandomGrayscale(p=0.1)) transform_list.append(transforms.ToTensor()) transform_list.append(transforms.Normalize(mean, std, inplace=True)) dataset.transform = transforms.Compose(transform_list) return DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers, drop_last=True) # ------------------------------------------------------------------------------------------------------------------ # Custom Fractal Images dataset with high resolution images. Must apply crop and also return the coordinates of # of the crop in the form of the upper left and lower right points (bounding box - [x1,y1,x2,y2]). Supports the concept # of multiple crops from each image so that Contrastive Learning can be used with each crop from the same image has a label # applied in this class based on the index # ------------------------------------------------------------------------------------------------------------------ class FractalLabel(Dataset): def __init__(self, path='/content/all/', part='train'): self.all_data = all_paths = [str(p.absolute()) for p in pathlib.Path(path).glob("*")] self.total = len(self.all_data) if part=='train': self.data = self.all_data[:int(self.total*0.9)] else: self.data = self.all_data[int(self.total*0.9):] def __len__(self): return len(self.data) def __getitem__(self, idx): result, coords = self.transform(Image.open(self.data[idx]).convert('RGB')) label = torch.full((result.shape[0],), fill_value=idx, dtype=torch.int) return (result, label, coords) # ------------------------------------------------------------------------------------------------------------------ # Prepares a set of transformations that makes many crops of a certain scale square area randomly from each image # in a batch, effectively making a much larger dataset than individual image count suggests. Also returns the coordinates # of each crop. Results in a 4-d tensor [N, C, H, W] with N being number of crops # ------------------------------------------------------------------------------------------------------------------ def make_fractal_clr_dataloader(dataset, batch_size, image_size=4, crop_size=512, num_workers=3, crop_mode=5, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)): transform_list = [] transform_list.append(transforms.RandomHorizontalFlip(p=0.5)) transform_list.append(transforms.RandomVerticalFlip(p=0.5)) transform_list.append(transforms.ColorJitter(brightness=0.1, contrast=0.3, saturation=0.3, hue=0.2)) #transform_list.append(transforms.RandomGrayscale(p=0.1)) transform_list.append(MultiCropCoordV2(crop_size, image_size, count=crop_mode)) transform_list.append(BuildOutput(mean, std)) dataset.transform = transforms.Compose(transform_list) return DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers, drop_last=True) def _get_image_size(img): if _is_pil_image(img): return img.size elif isinstance(img, torch.Tensor) and img.dim() > 2: return img.shape[-2:][::-1] else: raise TypeError("Unexpected type {}".format(type(img))) class MultiCropCoord: def __init__(self, crop_size, resize_size, count=5, crop_pad=0., use_pad=False, seed=42): self.crop_size = crop_size self.resize_size = resize_size self.count = count self.crop_pad = crop_pad self.use_pad = use_pad self.seed = seed def __call__(self, x): x = self._check_size(x) results = [] coords = [] for i in range(self.count): data, coord = self._random_crop(x) results.append(data) coords.append(coord) return (self._resize_img(results), self._resize_coords(coords)) def _check_size(self, x): """ Ensures the image is big enough to """ self.h, self.w = _get_image_size(x) # if not using padding boundary for valid crop area, then total size is just crop size # if use pad is enforced, there is an extra amount of padding that is not valid, so the resulting image is larger total_h = self.crop_size + (self.h * self.crop_pad) if self.use_pad else self.crop_size total_w = self.crop_size + (self.w * self.crop_pad) if self.use_pad else self.crop_size if self.h < total_h or self.w < total_w: pad_amount = int(self.crop_size * self.crop_pad) # calculate image size ratio to preserve preportions after resize if self.h < self.w: # smaller side will be equal to crop size + pad amount ratio_h = 1 # larger side will be scaled up so that it stays larger ratio_w = self.w / self.h # unified ratio to increase size by based on smaller side ratio_r = self.crop_size / self.h else: ratio_h = self.h / self.w ratio_w = 1 ratio_r = self.crop_size / self.w # do resize based on if either PIL or Tensor if _is_pil_image(x): x = x.resize(int(int(self.w * ratio_r) + pad_amount * ratio_w), int(int(self.h * ratio_r) + pad_amount * ratio_h) ) # get new size self.h, self.w = _get_image_size(x) return x elif isinstance(img, torch.Tensor) and img.dim() > 2: x = x.resize(int(int(self.w * ratio_r) + pad_amount * ratio_w), int(int(self.h * ratio_r) + pad_amount * ratio_h) ) # get new size self.h, self.w = _get_image_size(x) return x else: # Numpy? shouldn't happen... return x else: # image is large enough already return x def _random_crop(self, x): # get total height and width of crop if isinstance(self.crop_size, int): th, tw = self.crop_size, self.crop_size elif isinstance(self.crop_size, float): th, tw = int(self.crop_size), int(self.crop_size) else: th, tw = int(self.crop_size[0]), int(self.crop_size[1]) if self.use_pad: # calculate ratio to modify padding by to make it balanced on rectangles if self.h < self.w: ratio_h = self.h / self.w ratio_w = 1. else: ratio_w = self.w / self.h ratio_h = 1. # calculate padding to ensure no overlap with corners ph = int(self.h * self.crop_pad * ratio_h) pw = int(self.w * self.crop_pad * ratio_w) else: ph = pw = 0 # calculate available space left over after crop and padding (max x/y) available_h = self.h - th - ph available_w = self.w - tw - pw padding_h = padding_w = 0 if available_h < 0: # this much extra room needed in height padding_h = abs(available_h) if available_w < 0: # this many extra pixels needed in width padding_w = abs(available_w) available_h += padding_h available_w += padding_w if available_h > 0 and available_h > pw: mod_h = random.randint(pw, available_h) else: diff = pw - available_h mod_h = random.randint(available_h-diff, available_h) if available_w > 0 and available_w > ph: mod_w = random.randint(ph, available_w) else: diff = ph - available_w mod_w = random.randint(available_w-diff, available_w) x1, y1, x2, y2 = mod_h, mod_w, mod_h + th - padding_h, mod_w + tw - padding_w # torchvision.transforms.functional.crop(img, top, left, height, width) #return TF.crop(x, y1, x1, abs(y2-y1), abs(x2-x1)), (x1, y1, x2, y2, self.h, self.w) return transforms.RandomResizedCrop( self.crop_size, scale=(self.resize_size, self.resize_size), )(x) def _resize_img(self, results): resized = [] for result in results: resized.append(result.resize((self.resize_size, self.resize_size))) return resized def _resize_coords(self, coords): """ Scale the coordinates by the amount the crop was resized """ resized = [] for coord in coords: ratio = self.resize_size / self.crop_size x1 = int(coord[0] * ratio) y1 = int(coord[1] * ratio) x2 = int(coord[2] * ratio) y2 = int(coord[3] * ratio) h = int(coord[4] * ratio) w = int(coord[5] * ratio) resized.append((x1, y1, x2, y2, h, w)) return resized class MultiCropCoordV2(object): def __init__(self, crop_size, resize_size, count=5, padding=None, pad_if_needed=False, fill=0, padding_mode='constant', interpolation=Image.BILINEAR): if isinstance(crop_size, numbers.Number): self.crop_size = (int(crop_size), int(crop_size)) else: self.crop_size = crop_size self.count = count self.padding = padding self.pad_if_needed = pad_if_needed self.fill = fill self.padding_mode = padding_mode if isinstance(resize_size, numbers.Number): self.resize_size = (int(resize_size), int(resize_size)) else: self.resize_size = resize_size self.interp = interpolation self.resizecrop = transforms.Resize(self.resize_size, interpolation=self.interp) @staticmethod def get_params(img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (PIL Image): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ w, h = _get_image_size(img) th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def __call__(self, img): img = self._check_size(img) results = [] coords = [] for i in range(self.count): data, coord = self._random_crop(img) data = self.resizecrop(data) results.append(data) coords.append(self._resize_coord(coord)) return (results, coords) def _check_size(self, x): """ Ensures the image is big enough to """ self.h, self.w = _get_image_size(x) # if not using padding boundary for valid crop area, then total size is just crop size # if use pad is enforced, there is an extra amount of padding that is not valid, so the resulting image is larger total_h = self.crop_size[0] total_w = self.crop_size[1] if self.h < total_h or self.w < total_w: pad_amount = 0 # calculate image size ratio to preserve preportions after resize if self.h < self.w: # smaller side will be equal to crop size + pad amount ratio_h = 1 # larger side will be scaled up so that it stays larger ratio_w = self.w / self.h # unified ratio to increase size by based on smaller side ratio_r = total_w / self.h else: ratio_h = self.h / self.w ratio_w = 1 ratio_r = total_h / self.w # do resize based on if either PIL or Tensor if _is_pil_image(x): x = x.resize(int(int(self.w * ratio_r) + pad_amount * ratio_w), int(int(self.h * ratio_r) + pad_amount * ratio_h) ) # get new size self.h, self.w = _get_image_size(x) return x elif isinstance(img, torch.Tensor) and img.dim() > 2: x = x.resize(int(int(self.w * ratio_r) + pad_amount * ratio_w), int(int(self.h * ratio_r) + pad_amount * ratio_h) ) # get new size self.h, self.w = _get_image_size(x) return x else: # Numpy? shouldn't happen... return x else: # image is large enough already return x def _random_crop(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if self.padding is not None: img = F.pad(img, self.padding, self.fill, self.padding_mode) # pad the width if needed if self.pad_if_needed and img.size[0] < self.crop_size[1]: img = F.pad(img, (self.crop_size[1] - img.size[0], 0), self.fill, self.padding_mode) # pad the height if needed if self.pad_if_needed and img.size[1] < self.crop_size[0]: img = F.pad(img, (0, self.crop_size[0] - img.size[1]), self.fill, self.padding_mode) i, j, h, w = self.get_params(img, self.crop_size) x1 = i y1 = j x2 = x1 + h y2 = y1 + w return TF.crop(img, i, j, h, w), (x1, y1, x2, y2, h, w) def _resize_coord(self, coord): """ Scale the coordinates by the amount the crop was resized """ ratio_x = self.resize_size[0] / self.crop_size[1] ratio_y = self.resize_size[0] / self.crop_size[1] x1 = int(coord[0] * ratio_x) y1 = int(coord[1] * ratio_y) x2 = int(coord[2] * ratio_x) y2 = int(coord[3] * ratio_y) h = int(coord[4] * ratio_x) w = int(coord[5] * ratio_y) return (x1, y1, x2, y2, h, w) class BuildOutput: def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, x): y = x[1] x = x[0] data = torch.stack([transforms.Normalize(self.mean, self.std, inplace=True)( torch.from_numpy(np.array(crop, np.float32, copy=False).transpose((2, 0, 1))).contiguous()) for crop in x]) label = torch.Tensor(y) return data, label # ------------------------------------------------------------------------------------------------------------------ # MultiCropDataset from SWAV that makes multiple crops of various sizes - close, but we want all the same size # ------------------------------------------------------------------------------------------------------------------ class MultiCropDataset(datasets.ImageFolder): def __init__( self, data_path, size_crops, nmb_crops, min_scale_crops, max_scale_crops, size_dataset=-1, return_index=False, mean=[0.485, 0.456, 0.406], std=[0.228, 0.224, 0.225] ): super().__init__(data_path) assert len(size_crops) == len(nmb_crops) assert len(min_scale_crops) == len(nmb_crops) assert len(max_scale_crops) == len(nmb_crops) if size_dataset >= 0: self.samples = self.samples[:size_dataset] self.return_index = return_index trans = [] color_transform = transforms.Compose([get_color_distortion(), RandomGaussianBlur()]) for i in range(len(size_crops)): randomresizedcrop = transforms.RandomResizedCrop( size_crops[i], scale=(min_scale_crops[i], max_scale_crops[i]), ) trans.extend([transforms.Compose([ randomresizedcrop, transforms.RandomHorizontalFlip(p=0.5), color_transform, transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) ] * nmb_crops[i]) self.trans = trans def __getitem__(self, index): path, _ = self.samples[index] image = self.loader(path) multi_crops = list(map(lambda trans: trans(image), self.trans)) if self.return_index: return index, multi_crops return multi_crops class RandomGaussianBlur(object): def __call__(self, img): do_it = np.random.rand() > 0.5 if not do_it: return img sigma = np.random.rand() * 1.9 + 0.1 return cv2.GaussianBlur(np.asarray(img), (23, 23), sigma) def get_color_distortion(s=1.0): # s is the strength of color distortion. color_jitter = transforms.ColorJitter(0.8*s, 0.8*s, 0.8*s, 0.2*s) rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.2) color_distort = transforms.Compose([rnd_color_jitter, rnd_gray]) return color_distort
'''https://leetcode.com/problems/same-tree/''' # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def isSameTree(self, p: TreeNode, q: TreeNode) -> bool: def check(p, q): if p is None and q is None: return True if p is None or q is None: return False if p.val==q.val: return True else: return False l = list() l.append([p,q]) while l: p, q = l.pop(0) if not check(p,q): return False if p: l.append([p.left, q.left]) l.append([p.right, q.right]) return True
_C='ALTER TABLE ' _B='SELECT {} FROM {}' _A=',' import mysql.connector def table(x):global table;table=str(x) def connect(*A): if len(A)==3:B=mysql.connector.connect(host=A[0],user=A[1],password=A[2]) else:B=mysql.connector.connect(host=A[0],user=A[1],password=A[2],database=A[3]) return B def query(x,y):A=x.cursor();A.execute(y);x.commit() def createDb(x,y):A=x.cursor();A.execute('CREATE DATABASE '+y+'');x.commit() def select(x,y): B=[] for D in y:B.append(D) E=_A.join(B);C=x[0].cursor();A=_B;A=A.format(E,x[1]);C.execute(A);return C.fetchall() def selectAll(x):B=x[0].cursor();A=_B;A=A.format('*',x[1]);B.execute(A);return B.fetchall() def selectWhere(x,y,z): B=[] for D in y:B.append(D) E=_A.join(B);C=x[0].cursor() if type(z[1])==str:A="SELECT {} FROM {} WHERE {}='{}'" else:A='SELECT {} FROM {} WHERE {}={}' A=A.format(E,x[1],z[0],z[1]);C.execute(A);return C.fetchall() def dropTable(x):A=x[0].cursor();B='DROP TABLE {}';A.execute(B.format(x[1]));x[0].commit() def dropDb(x):A=x[0].cursor();B='DROP DATABASE {}';A.execute(B.format(x[1]));x[0].commit() def createTable(db,data): A=[] for B in data:A.append(B+' '+data[B]) C=_A.join(A);D='CREATE TABLE '+db[1]+' ({})';E=D.format(C);F=db[0].cursor();F.execute(E);db[0].commit() def addColumn(db,data): A=[] for B in data:A.append(B);A.append(data[B]) C=_C+db[1]+' ADD {} {}';D=C.format(A[0],A[1]);E=db[0].cursor();E.execute(D);db[0].commit() def modifyColumn(db,data): A=[] for B in data:A.append(B);A.append(data[B]) C=_C+db[1]+' MODIFY {} {}';D=C.format(A[0],A[1]);E=db[0].cursor();E.execute(D);db[0].commit() def dropColumn(db,data):A='ALTER TABLE {} DROP COLUMN {}';A=A.format(db[1],data);B=db[0].cursor();B.execute(A);db[0].commit() def insert(db,data): J='"';A=[];B=[];C=[] for D in data:A.append(D);B.append(str(J+data[D]+J));C.append(str('%s')) E=_A.join(A);F=_A.join(B);K=_A.join(C);G='INSERT INTO '+db[1]+' ({}) VALUES ({})';H=G.format(E,F);I=db[0].cursor();I.execute(H);db[0].commit() def updateAll(x,d): B=x[0].cursor() if type(d[1])==str:A="UPDATE {} SET {}='{}'" else:A='UPDATE {} SET {}={}' B.execute(A.format(x[1],d[0],d[1]));x[0].commit() def update(x,d,c): B=x[0].cursor() if type(d[1])==str: if type(c[1])==str:A="UPDATE {} SET {}='{}' WHERE {}='{}'" else:A="UPDATE {} SET {}='{}' WHERE {}={}" elif type(c[1])==str:A="UPDATE {} SET {}={} WHERE {}='{}'" else:A='UPDATE {} SET {}={} WHERE {}={}' B.execute(A.format(x[1],d[0],d[1],c[0],c[1]));x[0].commit() def delete(x,d): B=x[0].cursor() if type(d[1])==str:A="DELETE FROM {} WHERE {}='{}'" else:A='DELETE FROM {} WHERE {}={}' B.execute(A.format(x[1],d[0],d[1]));x[0].commit() def deleteAll(x):A=x[0].cursor();B='DELETE FROM {}';A.execute(B.format(x[1]));x[0].commit()
import time def isholiday(date): singeday = ["01-01","01-02","01-03","01-04","01-05","01-06","01-07","01-08","01-11","01-12","01-13","01-14","01-15","01-16","01-17","06-18","07-08","07-09","07-10","07-11","07-12","08-01","08-02","08-03","08-04","08-05","08-06","08-07","08-08","08-09","08-10","10-03","10-04","10-05","10-27","10-28","10-29","11-11","12-12"] # allday = ["02","03","04","05","06","09"] # bb = now.split("-") # if bb[0] in allday: # return True # elif now in singeday: # return True # else: # return False if date in singeday: return 1 else: return 0
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from __future__ import print_function """ Created on Fri Feb 17 12:38:44 2017 @author: ahefny, zmarinho """ from collections import defaultdict import numpy as np import theano import theano.printing import theano.tensor as T import theano.tensor.slinalg from theano.tensor.nlinalg import matrix_inverse import rpsp.rpspnets.psr_lite.psr_base as psr_base import rpsp.rpspnets.psr_lite.rnn_filter as rnn_filter import rpsp.rpspnets.psr_lite.utils.nn as nn from rpsp.rpspnets.psr_lite.utils.nn import cg_solve, cg_solve_batch, neumann_inv, neumann_inv_batch, \ batched_matrix_inverse from rpsp.rpspnets.psr_lite.utils.nn import reshape_mat_f class RFFPSR_RNN(rnn_filter.BaseRNNFilter): ''' Theano wrapper of RFFPSR. ''' def __init__(self, psr, optimizer='sgd', optimizer_step=1.0, optimizer_iterations=0, val_trajs=0, optimizer_min_step=1e-5, rng=None, opt_h0=False, psr_norm='I', psr_cond='kbr', psr_iter=0, psr_smooth='I'): rnn_filter.BaseRNNFilter.__init__(self, psr.state_dimension, psr.horizon_length, optimizer, optimizer_step, optimizer_iterations, optimizer_min_step, val_trajs, rng=rng, opt_h0=opt_h0) self._psr_iter = psr_iter self._psr_cond = psr_cond self._state_norm = psr_norm smooth_toks = psr_smooth.split('_') self._state_smooth = smooth_toks[0] if len(smooth_toks)>1: self._state_smooth_coeff = float(smooth_toks[1]) self._f_obs = None self._f_act = None self._f_fut_act = None self._reset_psr(psr) self._obs_dim = 0 solve_dict = defaultdict(lambda: self._tf_solve_inverse, {'kbrcg': self._tf_solve_cg, 'kbrMIA': self._tf_solve_mia, 'I': self._tf_solve_ignore}) solve_dict_batch = defaultdict(lambda: self._tf_solve_inverse_batch, {'kbrcg': self._tf_solve_cg_batch, 'kbrMIA': self._tf_solve_mia_batch, 'I': self._tf_solve_ignore}) self._solve = solve_dict[self._psr_cond] self._solve_batch = solve_dict_batch[self._psr_cond] self._norm_method = defaultdict(lambda: self._t_state_noop , {'l2': self._t_state_l2norm, 'l2clamp': self._t_clamp_state_l2norm, 'coord':self._t_clamp_state_coord})[self._state_norm] self._smooth = defaultdict(lambda: self._t_state_noop, {'interp': self._t_state_interpolate})[self._state_smooth] self._max_state_norm2 = 100.0 self._max_state_norm = 10.0 self._max_state_coord = 10.0 self._min_state_coord = 1e-6 def _t_rff(self, x, V): y = T.dot(x, V) return T.concatenate([T.sin(y), T.cos(y)], axis=y.ndim-1) / T.sqrt(V.shape[1].astype(theano.config.floatX)) def _t_rffpca(self, fext, name): ''' Given an RFFPCA feature extractor return: - A handle to an equivalent symbolic function.for vectors - A shared variable storing projection matrix. - A shared variable storing RFF matrix. ''' U = theano.shared(name='U_%s' % name, value=fext._U.astype(theano.config.floatX)) V = theano.shared(name='V_%s' % name, value=fext._base_extractor._V.astype(theano.config.floatX)) f = lambda x: T.dot(self._t_rff(x, V), U) return f, U, V def set_psr(self, rff_psr): self._rffpsr = rff_psr self._fut = self._rffpsr._fut self._feat_dim = self._rffpsr._feat_dim self._state_dim = self._rffpsr.state_dimension self._fext_fut_act = self._rffpsr._fext_fut_act self._fext_act = self._rffpsr._fext_act self._fext_obs = self._rffpsr._fext_obs self._feat_dim = self._rffpsr._feat_dim return #overrides def _load(self, params): print('load rffpsr rnn') self._rffpsr._load(params['rffpsr']) self._reset_psr(self._rffpsr) return #overrides def _save(self): params={} params['rffpsr'] = self._rffpsr._save() return params def _reset_psr(self, psr): self.set_psr(psr) self._f_obs = lambda x: x self._f_act = lambda x: x self._f_fut_act = lambda x: x return def train(self, traj_obs, traj_act, traj_act_probs=None, on_unused_input='raise'): self._reset_psr(self._rffpsr) return rnn_filter.BaseRNNFilter.train(self, traj_obs, traj_act, traj_act_probs=traj_act_probs, on_unused_input=on_unused_input) def _process_traj(self, traj_obs, traj_act): if traj_obs.shape[0] <= self._fut + 3: return None else: data = psr_base.extract_timewins([traj_obs], [traj_act], self._fut, 1)[0] return self._process_obs(data.obs), \ self._process_act(data.act), \ self._process_fut_act(data.fut_act), \ data.fut_obs def _process_obs(self, obs): ofeat = self._fext_obs.process(obs) assert not np.isnan(ofeat).any(), 'obsfeat is not nan' assert not np.isinf(ofeat).any(), 'obsfeat is not inf' return ofeat def _process_act(self, act): afeat = self._fext_act.process(act) assert not np.isnan(afeat).any(), 'actfeat is not nan' assert not np.isinf(afeat).any(), 'actfeat is not inf' return afeat def _process_fut_act(self, fut_act): futafeat = self._fext_fut_act.process(fut_act) assert not np.isnan(futafeat).any(), 'futafeat is not nan' assert not np.isinf(futafeat).any(), 'futafeat is not inf' return futafeat def _init_params(self, traj_obs, traj_act): psr = self._rffpsr self._lambda = psr._lambda self._feat_dim = psr._feat_dim self._t_W_s2ex = theano.shared(name='W_s2ex', value=psr._W_s2ex.astype(theano.config.floatX)) self._t_W_s2oo = theano.shared(name='W_s2oo', value=psr._W_s2oo.astype(theano.config.floatX)) self._t_W_h = theano.shared(name='W_h', value=psr._W_h.astype(theano.config.floatX)) self._t_W_1s = theano.shared(name='W_1s', value=psr._W_1s.astype(theano.config.floatX)) K = self._feat_dim self._t_UU_efa = theano.shared(name='UU_efa', value=psr._U_efa.T.reshape((-1, K.act), order='F').astype(theano.config.floatX)) self._t_UU_efo = theano.shared(name='UU_efo', value=psr._U_efo.reshape((K.obs,-1), order='F').astype(theano.config.floatX)) self._t_U_oo = theano.shared(name='U_oo', value=psr._U_oo.astype(theano.config.floatX)) self._t_UT_st = theano.shared(name='U_st', value=psr._U_st.T.astype(theano.config.floatX)) s0 = psr.initial_state self._t_state0 = theano.shared(name='state0',value=s0.astype(theano.config.floatX)) self._params_state = [self._t_W_s2ex,self._t_W_s2oo] self._params_obs = [self._t_W_1s] self._params_guide = [self._t_W_h] t_prestates_mat = T.matrix() t_fa_mat = T.matrix() self._pred_horizon = theano.function(inputs=[t_prestates_mat,t_fa_mat], outputs=self.tf_predict_guide(t_prestates_mat,t_fa_mat)) return def get_projs(self): projs = self._rffpsr.get_projs() return projs def predict_horizon(self, state, fut_act): fafeat = self._process_fut_act(fut_act.reshape(-1)).reshape(1,-1) o = self._pred_horizon(state.reshape((1,-1)), fafeat) assert not np.isnan(o).any(), 'predict horizon is not nan' assert not np.isinf(o).any(), 'predict horizon is not inf' return o.reshape((self._fut, -1)) def get_params(self): return np.hstack([p.get_value().ravel() for p in self.params]) def set_params(self, param_vec, check_before_update=False): i = 0 if np.isnan(param_vec).any() or np.isinf(param_vec).any(): print ('param is nan rffpsr policy! not updated') return if check_before_update: params_before = np.copy(self.get_params()) for p in self.params: x = p.get_value(borrow=True) s = x.shape n = np.size(x) p.set_value(param_vec[i:i+n].reshape(s)) i += n return def _tf_solve_inverse(self, A, b, reg): ''' solve via pseudo inverse Ax=b return x= inv(A).b''' A2 = T.dot(A.T, A) A2reg = A2 + T.eye(A.shape[1]) * reg vv = T.dot(b, A) v = T.dot(vv, matrix_inverse(A2reg)) return v def _tf_solve_ignore(self, A, b, reg): return b def _tf_solve_cg(self, A, b, reg): A2 = T.dot(A.T, A) vv = T.dot(b, A) v = cg_solve(A2, vv, iter=self._psr_iter, reg=reg) return v def _tf_solve_mia(self, A, b, reg): A2 = T.dot(A.T, A) vv = T.dot(b, A) B = neumann_inv(A2, it=self._psr_iter, reg=reg) return T.dot(B, vv) def _tf_solve_batch_invalid(self, AA, B, reg): raise NotImplementedError def _tf_solve_inverse_batch(self, AA, B, reg): ''' solve via pseudo inverse Ax=b return x= inv(A).b''' N,d = B.shape AA2 = T.batched_dot(AA.transpose(0,2,1), AA) R = T.repeat(T.reshape(T.eye(d) * reg, (1,d,d)), N, axis=0) AA2reg = AA2 + R VV = T.batched_dot(B, AA) AAi = batched_matrix_inverse(AA2reg) V = T.batched_dot(VV, AAi) return V def _tf_solve_cg_batch(self, AA, B, reg): A2 = T.batched_dot(AA.transpose(0,2,1), AA) VV = T.batched_dot(B, AA) V = cg_solve_batch(A2, VV, iter=self._psr_iter, reg=reg) return V def _tf_solve_mia_batch(self, AA, B, reg): A2 = T.batched_dot(AA.transpose(0,2,1), AA) V = T.batched_dot(B, AA) B = neumann_inv_batch(A2, iter=self._psr_iter, reg=reg) return T.batched_dot(B, V) def tf_update_state(self, t_state, t_obs, t_act): t_ofeat = self._f_obs(t_obs) t_afeat = self._f_act(t_act) K = self._feat_dim # Obtain extended state UU_efa = self._t_UU_efa dot1 = T.dot(t_state, self._t_W_s2ex) dot1.name='tf_update_state::dot1' C_ex = T.reshape(dot1,(K.exfut_obs, K.exfut_act)) C_ex.name='tf_update_state::C_ex' # Condition on action B = reshape_mat_f(T.dot(UU_efa, t_afeat), (K.exfut_act, K.fut_act)) B.name='tf_update_state::B' C_efo_fa = T.dot(C_ex, B) C_efo_fa.name='tf_update_state::C_efo_fa' # Obtain v = C_oo \ o_feat C_oo_prj = T.dot(T.reshape(T.dot(t_state,self._t_W_s2oo), (K.oo, K.act)), t_afeat) C_oo_prj.name = 'tf_update_state::Cooprj' C_oo = reshape_mat_f(T.dot(self._t_U_oo, C_oo_prj), (K.obs, K.obs)) C_oo.name='tf_update_state::C_oo' v = self._solve(C_oo,t_ofeat, self._lambda['filter']) v.name = 'tf_update_state::v' # Multply by v to condition on observation UU = self._t_UU_efo A = reshape_mat_f(T.dot(v, UU), (K.fut_obs, K.exfut_obs)) A.name = 'tf_update_state::A' ss = T.reshape(T.dot(A, C_efo_fa), [-1]) ss.name = 'tf_update_state::ss_Cefodot' ss = T.dot(self._t_UT_st, ss) ss.name = 'tf_update_state::Uss_dot' ss = self._norm_method(ss) ss = self._smooth(ss, t_state) self._dbg = lambda : None self._dbg.out = C_ex, C_oo, B, A, ss # Adding the sum of parameters fixes a Theano bug. return ss + sum(T.sum(p)*1e-30 for p in self.params) def _t_state_noop(self, state, *args): return state def _t_state_l2norm(self, state): ss_norm2 = T.sum(state**2) state = T.switch(T.lt(ss_norm2 ,self._max_state_norm2), state*(self._max_state_norm / T.sqrt(ss_norm2)), state / T.sqrt(ss_norm2)) return state def _t_clamp_state_l2norm(self, state): ss_norm2 = T.sum(state**2) state = T.switch(T.lt(ss_norm2 ,self._max_state_norm2), state*(self._max_state_norm / T.sqrt(ss_norm2)), state) return state def _t_clamp_state_coord(self, state): return T.minimum(self._max_state_coord, T.maximum(self._min_state_coord, state)) def _t_state_interpolate(self, state, prev_state): ''' convex interpolation with previous state to ensure smoothness''' interp = self._state_smooth_coeff #TODO: implement search direction and normalize state = (1.0-interp)*state + interp* prev_state return state def tf_update_state_batch(self, t_state_mat, t_obs_mat, t_act_mat): t_ofeat_mat = self._f_obs(t_obs_mat) t_afeat_mat = self._f_act(t_act_mat) K = self._feat_dim N = t_state_mat.shape[0] # Obtain extended state UU_efa = self._t_UU_efa C_ex = T.reshape(T.dot(t_state_mat, self._t_W_s2ex),(N, K.exfut_obs, K.exfut_act)) C_ex.name='tf_update_state::C_ex' # Condition on action B = T.reshape(T.dot(t_afeat_mat, UU_efa.T), (N, K.fut_act, K.exfut_act)).transpose(0,2,1) B.name = 'tf_update_state::B' #import pdb; pdb.set_trace() C_efo_fa = T.batched_dot(C_ex, B) C_efo_fa.name='tf_update_state::C_efo_fa' # Obtain v = C_oo\o_feat C_oo_prj = T.batched_dot(T.reshape(T.dot(t_state_mat,self._t_W_s2oo), (N, K.oo, K.act)), t_afeat_mat) C_oo_prj.name = 'tf_update_state::Cooprj' C_oo = T.reshape(T.dot(C_oo_prj, self._t_U_oo.T), (N, K.obs, K.obs)) C_oo.name='tf_update_state::C_oo' v = self._solve_batch(C_oo, t_ofeat_mat, self._lambda['filter']) v.name = 'tf_update_state::v' # Multply by v to condition on observation UU = self._t_UU_efo vproj = T.dot(v, UU) vproj.name ='tf_update_state::vproj' A = T.reshape(vproj,(N, K.exfut_obs, K.fut_obs)).transpose(0,2,1) A.name = 'tf_update_state::A' ss = T.batched_dot(A, C_efo_fa).reshape([N,-1]) ss.name = 'tf_update_state::ss_Cefodot' ss = T.dot(ss, self._t_UT_st.T) ss.name = 'tf_update_state::Uss_dot' ss = self._norm_method(ss) ss = self._smooth(ss, t_state_mat) self._dbg_batch = lambda : None self._dbg_batch.out = C_ex, C_oo, B, A, ss # Adding the sum of parameters fixes a Theano bug. return ss + sum(T.sum(p)*1e-30 for p in self.params) def tf_predict_obs(self, t_state, t_act): is_vec = False if t_state.ndim == 1: is_vec = True t_state = t_state.reshape((1,-1)) t_act = t_act.reshape((1,-1)) t_obs = self._tf_predict_obs(t_state, t_act) if is_vec: t_obs = t_obs.reshape((1,-1)) return t_obs def _tf_predict_obs(self, t_prestates_mat, t_act_mat): t_afeat_mat = self._f_act(t_act_mat) t_in = nn.row_kr_product(t_prestates_mat, t_afeat_mat, name='_tf_predict_obs::t_in') t_out = T.dot(t_in, self._t_W_1s) t_out.name = '_tf_predict_obs::t_out' return t_out def tf_predict_guide(self, t_prestates_mat, t_fa_mat): t_fafeat_mat = self._f_fut_act(t_fa_mat) t_in = nn.row_kr_product(t_prestates_mat, t_fafeat_mat) t_out = T.dot(t_in, self._t_W_h) return t_out class Extended_RFFPSR_RNN(RFFPSR_RNN): def __init__(self, *args, **kwargs): obs_dim = kwargs.pop('x_dim') win = kwargs.pop('win') super(Extended_RFFPSR_RNN, self).__init__(*args, **kwargs) self._obs_dim = obs_dim self._win = win self._win_dim = self._obs_dim * self._win def _process_obs(self, obs): if obs.ndim == 1: obs = obs.reshape(1, -1) last_obs = obs[:, -self._obs_dim:] ofeat = self._fext_obs.process(last_obs) assert not np.isnan(ofeat).any(), 'obsfeat is not nan' assert not np.isinf(ofeat).any(), 'obsfeat is not inf' new_obs = np.concatenate([ofeat.T, obs.T], axis=0).T return new_obs def tf_extract_obs(self, obs): if obs.ndim == 2: last_obs = obs[:, -self._obs_dim:] else: last_obs = obs[-self._obs_dim:] return last_obs def _process_traj(self, traj_obs, traj_act): if traj_obs.shape[0] <= self._fut + 3: return None else: data = psr_base.extract_timewins([traj_obs], [traj_act], self._fut, 1)[0] return self._fext_obs.process(data.obs), \ self._process_act(data.act), \ self._process_fut_act(data.fut_act), \ data.fut_obs @property def state_dimension(self): return self._state_dim + self._win_dim @property def extended_dimension(self): return self._win_dim @property def initial_state(self): # return np.concatenate([self._t_state0.get_value(), np.zeros(self._win_dim)]) return self.t_initial_state.eval() @property def t_initial_state(self): # return theano.shared(name='initstate0',value=self.initial_state.astype(theano.config.floatX)) return T.concatenate([self._t_state0, T.zeros(self._win_dim)], axis=0) def tf_update_state(self, t_state, t_ofeat, t_afeat): t_obswin = t_ofeat[-self._win_dim:] t_state = super(Extended_RFFPSR_RNN, self).tf_update_state(t_state[:-self._win_dim], t_ofeat[:-self._win_dim], t_afeat) es = T.concatenate([t_state, t_obswin], axis=0) return es + sum(T.sum(p) * 1e-30 for p in (self.params + self._params_proj)) def tf_update_state_batch(self, t_state_mat, t_ofeat_mat, t_afeat_mat): t_obswin_mat = t_ofeat_mat[:, -self._win_dim:] t_state_mat = super(Extended_RFFPSR_RNN, self).tf_update_state_batch(t_state_mat[:, :-self._win_dim], t_ofeat_mat[:, :-self._win_dim], t_afeat_mat) es = T.concatenate([t_state_mat, t_obswin_mat], axis=1) return es def tf_compute_post_states(self, t_ofeat_mat, t_afeat_mat): # Use scan function state_0 = self.t_initial_state hs, _ = theano.scan(fn=lambda fo, fa, h: self.tf_update_state(h, fo, fa), outputs_info=state_0, sequences=[t_ofeat_mat, t_afeat_mat]) return hs def tf_compute_pre_states(self, t_ofeat_mat, t_afeat_mat): state_0 = self.t_initial_state # initial_state hs = self.tf_compute_post_states(t_ofeat_mat[:-1], t_afeat_mat[:-1]) return T.concatenate([T.reshape(state_0, (1, -1)), hs], axis=0) def _tf_predict_obs(self, t_extprestates_mat, t_act_mat): t_prestates_mat = t_extprestates_mat[:, :-self._win_dim] return super(Extended_RFFPSR_RNN, self)._tf_predict_obs(t_prestates_mat, t_act_mat) def tf_predict_guide(self, t_extprestates_mat, t_fa_mat): t_prestates_mat = t_extprestates_mat[:, :-self._win_dim] return super(Extended_RFFPSR_RNN, self).tf_predict_guide(t_prestates_mat, t_fa_mat)
from __future__ import print_function, absolute_import, division import KratosMultiphysics import KratosMultiphysics.EmpireApplication import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics.kratos_utilities as kratos_utils from compare_two_files_check_process import CompareTwoFilesCheckProcess import os import co_simulation_test_case try: import scipy import sympy scipy_and_sympy_available = True except ImportError: scipy_and_sympy_available = False try: import numpy numpy_available = True except ImportError: numpy_available = False def compareResults(reference_file, results_file): settings_check_process = KratosMultiphysics.Parameters(""" { "reference_file_name" : "", "output_file_name" : "", "comparison_type" : "dat_file", "remove_output_file" : true, "tolerance" : 1e-6 } """) settings_check_process["reference_file_name"].SetString(reference_file) settings_check_process["output_file_name"].SetString(results_file) # creating a dummy model check_process = CompareTwoFilesCheckProcess(settings_check_process) check_process.ExecuteInitialize() check_process.ExecuteBeforeSolutionLoop() check_process.ExecuteInitializeSolutionStep() check_process.ExecuteFinalizeSolutionStep() check_process.ExecuteBeforeOutputStep() check_process.ExecuteAfterOutputStep() check_process.ExecuteFinalize() class TestKratosSolver(co_simulation_test_case.CoSimulationTestCase): def test_KratosStructuralMechanicsSolver(self): with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): # self.createTest('test_structural_mesh_motion_2d/rectangle_2D3N_test') # self.runTest() kratos_utils.DeleteFileIfExisting("./test_mdpa_files/rectangle_2D3N_test.time") def test_KratosFluidDynamicsSolver(self): with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): # self.createTest('test_structural_mesh_motion_2d/rectangle_2D3N_test') # self.runTest() kratos_utils.DeleteFileIfExisting("./test_mdpa_files/rectangle_2D3N_test.time") class TestSDoFSolver(co_simulation_test_case.CoSimulationTestCase): def test_SDoFSolver(self): if not numpy_available: self.skipTest("Numpy not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): folder_name = "sdof_solver" self.createTest("sdof_solver", "cosim_sdof") self.runTest() reference_file = os.path.join(folder_name,"results_sdof_ref.dat") result_file = os.path.join(folder_name,"results_sdof.dat") compareResults(reference_file, result_file) class TestSDoFStaticSolver(co_simulation_test_case.CoSimulationTestCase): def test_SDoFStaticSolver(self): if not numpy_available: self.skipTest("Numpy not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): folder_name = "sdof_static_solver" self.createTest("sdof_static_solver", "cosim_static_sdof") self.runTestSteady() reference_file = os.path.join(folder_name,"results_sdof_static_ref.dat") result_file = os.path.join(folder_name,"results_sdof_static.dat") compareResults(reference_file, result_file) class TestMDoFSolver(co_simulation_test_case.CoSimulationTestCase): def test_MDoFSDoFModel(self): if not numpy_available: self.skipTest("Numpy not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): folder_name = "mdof_solver" self.createTest(folder_name, "cosim_mdof_sdof") self.runTest() reference_file = os.path.join(folder_name,"results_mdof_sdof_ref.dat") result_file = os.path.join(folder_name,"results_mdof_sdof.dat") compareResults(reference_file, result_file) def test_MDoFGenericModel(self): if not numpy_available: self.skipTest("Numpy not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): folder_name = "mdof_solver" self.createTest(folder_name, "cosim_mdof_generic") self.runTest() reference_file = os.path.join(folder_name,"results_mdof_generic_ref.dat") result_file = os.path.join(folder_name,"results_mdof_generic.dat") compareResults(reference_file, result_file) def test_MDoFCantileverShear2DModel(self): if not numpy_available: self.skipTest("Numpy not available") if not scipy_and_sympy_available: self.skipTest("Scipy/Sympy not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): folder_name = "mdof_solver" self.createTest(folder_name, "cosim_mdof_cantilever_shear_2d") self.runTest() reference_file = os.path.join(folder_name,"results_mdof_cantilever_shear_2d_ref.dat") result_file = os.path.join(folder_name,"results_mdof_cantilever_shear_2d.dat") compareResults(reference_file, result_file) def test_MDoFBridge2DoFModel(self): if not numpy_available: self.skipTest("Numpy not available") if not scipy_and_sympy_available: self.skipTest("Scipy/Sympy not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): folder_name = "mdof_solver" self.createTest(folder_name, "cosim_mdof_bridge_2dof") self.runTest() reference_file = os.path.join(folder_name,"results_mdof_bridge_2dof_ref.dat") result_file = os.path.join(folder_name,"results_mdof_bridge_2dof.dat") compareResults(reference_file, result_file) class TestEmpireSolver(co_simulation_test_case.CoSimulationTestCase): def test_EmpireSolverWrapper(self): if "EMPIRE_API_LIBSO_ON_MACHINE" not in os.environ: self.skipTest("EMPIRE is not available") with co_simulation_test_case.ControlledExecutionScope(os.path.dirname(os.path.realpath(__file__))): # self.createTest('test_structural_mesh_motion_2d/rectangle_2D3N_test') # self.runTest() kratos_utils.DeleteFileIfExisting("./test_mdpa_files/rectangle_2D3N_test.time") if __name__ == '__main__': KratosUnittest.main()
# -*- coding: utf-8 -*- #$HeadURL: https://rst2pdf.googlecode.com/svn/trunk/rst2pdf/tests/test_rst2pdf.py $ #$LastChangedDate: 2008-08-29 16:09:08 +0200 (Fri, 29 Aug 2008) $ #$LastChangedRevision: 160 $ from unittest import TestCase from os.path import join, abspath, dirname, basename PREFIX = abspath(dirname(__file__)) from rst2pdf.createpdf import RstToPdf def input_file_path(file): return join(PREFIX, 'input', file) class rst2pdfTests(TestCase): def setUp(self): self.converter=RstToPdf()
import io import os import sys from abc import ABC, abstractmethod from typing import Optional from demisto_sdk.commands.common.constants import (DIR_TO_PREFIX, INTEGRATIONS_DIR, SCRIPTS_DIR) from demisto_sdk.commands.common.errors import Errors from demisto_sdk.commands.common.handlers import YAML_Handler from demisto_sdk.commands.common.tools import get_yml_paths_in_dir, print_error UNSUPPORTED_INPUT_ERR_MSG = '''Unsupported input. Please provide either: 1. a directory of an integration or a script. 2. a path of a GenericModule file.''' class YAMLUnifier(ABC): """Interface to YAML objects that need to be unified Attributes: package_path (str): The directory path to the files to unify. dest_path (str, optional): The output dir to write the unified YAML to. use_force(bool): Forcefully overwrites the preexisting yml if one exists. yaml(YAML_Handler): Wrapper object to handle YAML files. yml_path(str): The YAML file path. yml_data(dict): The YAML doucment Python object. """ def __init__( self, input: str, output: Optional[str] = None, force: bool = False, ): directory_name = '' # Changing relative path to current abspath fixed problem with default output file name. input = os.path.abspath(input) if not os.path.isdir(input): print_error(UNSUPPORTED_INPUT_ERR_MSG) sys.exit(1) for optional_dir_name in DIR_TO_PREFIX: if optional_dir_name in input: directory_name = optional_dir_name if not directory_name: print_error(UNSUPPORTED_INPUT_ERR_MSG) self.package_path = input self.package_path = self.package_path.rstrip(os.sep) self.use_force = force self.dest_path = output yml_paths, self.yml_path = get_yml_paths_in_dir(self.package_path, Errors.no_yml_file(self.package_path)) for path in yml_paths: # The plugin creates a unified YML file for the package. # In case this script runs locally and there is a unified YML file in the package we need to ignore it. # Also, # we don't take the unified file by default because # there might be packages that were not created by the plugin. if 'unified' not in path and os.path.basename(os.path.dirname(path)) not in [SCRIPTS_DIR, INTEGRATIONS_DIR]: self.yml_path = path break self.yaml = YAML_Handler(width=50000) # make sure long lines will not break (relevant for code section) if self.yml_path: with io.open(self.yml_path, 'r', encoding='utf8') as yml_file: self.yml_data = self.yaml.load(yml_file) else: self.yml_data = {} print_error(f'No yml found in path: {self.package_path}') @abstractmethod def unify(self): """Merges the various components to create an output yml file.""" ...
# Generated by Django 2.2.10 on 2020-03-08 18:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('team_fundraising', '0020_auto_20200308_1152'), ] operations = [ migrations.AlterField( model_name='campaign', name='campaign_message', field=models.TextField(), ), ]
# Imports from flask import Blueprint # SetUp api = Blueprint('api', __name__) # Routes @api.route('/') def index(): return 'urls index route'
import base64 import csv import os from zipfile import ZipFile import openpyxl from main import app from core import action_hub, get_output_file_name, get_temp_file_name, get_temp_dir, send_email from api_types import ActionDefinition, ActionList, ActionFormField, ActionRequest slug = 'tabbed_spreadsheet' icon_data_uri = '' definition = ActionDefinition( name= slug, url= f'{action_hub}/actions/{slug}/action', label= 'Excel (tabbed)', icon_data_uri= icon_data_uri, form_url= f'{action_hub}/actions/{slug}/form', supported_action_types= ['dashboard'], description= 'This action will generate an Excel spreadsheet containing all the datasets in the dashboard', params= [], supported_formats= ['csv_zip'], supported_formattings= ["unformatted"], supported_visualization_formattings= ["apply", "noapply"], ) @app.post(f'/actions/{slug}/form') def form(): """Form for the Tabbed Spreadsheet action: email details and file name for the spreadsheet.""" return [ ActionFormField( name='email_address', label='Email Address', description='Email address to send spreadsheet', required=True, ), ActionFormField( name='email_subject', label='Subject', description='Email subject line', required=True, ), ActionFormField( name='email_body', label='Body', description='Email body text', required=True, type='textarea' ), ActionFormField( name='file_name', label='Filename', description='Filename for the generated spreadsheet', required=True, ), ] @app.post(f'/actions/{slug}/action') def action(payload: ActionRequest): """Endpoint for the Tabbed Spreadsheet action: converts the zipped csv file of data into a multi-tabbed Excel spreadsheet.""" attachment_binary = payload.attachment.data.encode('utf-8') attachment_binary = base64.decodestring(attachment_binary) attachment_file = get_temp_file_name(slug, 'csv_files.zip') with open(attachment_file, 'wb') as file: file.write(attachment_binary) csv_files = [] temp_dir = get_temp_dir('tabbed_spreadsheet') with ZipFile(attachment_file, 'r') as zip_file: # Extract all the contents of zip file in different directory zip_file.extractall(temp_dir) csv_files = zip_file.namelist() workbook = openpyxl.Workbook() for csv_file_name in csv_files: worksheet = workbook.create_sheet() with open(os.path.join(temp_dir, csv_file_name)) as file: reader = csv.reader(file) for row in reader: worksheet.append(row) if payload.form_params['file_name']: file_name = get_output_file_name(slug, payload.form_params['file_name'], timestamp=True) else: file_name = get_output_file_name(slug, 'tabbed_spreadsheet.xlsx', timestamp=True) workbook.save(file_name) response = send_email( to_emails= payload.form_params['email_address'], subject=payload.form_params['email_subject'], body=payload.form_params['email_body'], file_name=file_name, file_type='xlsx' ) return {'response': 'response'}
"""Classes for describing work and results. """ import enum import json import pathlib class StrEnum(str, enum.Enum): "An Enum subclass with str values." class WorkerOutcome(StrEnum): """Possible outcomes for a worker. """ NORMAL = 'normal' # The worker exited normally, producing valid output EXCEPTION = 'exception' # The worker exited with an exception ABNORMAL = 'abnormal' # The worker did not exit normally or with an exception (e.g. a segfault) NO_TEST = 'no-test' # The worker had no test to run SKIPPED = 'skipped' # The job was skipped (worker was not executed) class TestOutcome(StrEnum): """A enum of the possible outcomes for any mutant test run. """ SURVIVED = 'survived' KILLED = 'killed' INCOMPETENT = 'incompetent' class WorkResult: """The result of a single mutation and test run. """ def __init__(self, worker_outcome, output=None, test_outcome=None, diff=None): if worker_outcome is None: raise ValueError('Worker outcome must always have a value.') self._output = output self._test_outcome = test_outcome self._worker_outcome = worker_outcome self._diff = diff @property def worker_outcome(self): "A `WorkerOutcome` indicating how the worker finished." return self._worker_outcome @property def test_outcome(self): "A `TestOutcome` indicating how the test runner finished. Possibly `None`." return self._test_outcome @property def output(self): "Any output returned by the test command. Possibly `None`." return self._output @property def diff(self): "A sequence of strings containing the diff generated by the mutation. Possibly `None`." return self._diff def as_dict(self): "Get the WorkResult as a dict." return { 'output': self.output, 'test_outcome': self.test_outcome, 'worker_outcome': self.worker_outcome, 'diff': self.diff, } @property def is_killed(self): "Whether the mutation should be considered 'killed'" return self.test_outcome != TestOutcome.SURVIVED def __eq__(self, rhs): return self.as_dict() == rhs.as_dict() def __neq__(self, rhs): return not self == rhs class WorkItem: """Description of the work for a single mutation and test run. """ # pylint: disable=R0913 def __init__(self, module_path=None, operator_name=None, occurrence=None, start_pos=None, end_pos=None, job_id=None): if start_pos[0] > end_pos[0]: raise ValueError('Start line must not be after end line') if start_pos[0] == end_pos[0]: if start_pos[1] >= end_pos[1]: raise ValueError( 'End position must come after start position.') self._module_path = pathlib.Path(module_path) self._operator_name = operator_name self.occurrence = occurrence self._start_pos = start_pos self._end_pos = end_pos self._job_id = job_id @property def module_path(self): "pathlib.Path to module being mutated." return self._module_path @property def operator_name(self): "The name of the operator (i.e. as defined by the provider)" return self._operator_name @property def start_pos(self): "Start of the mutation location as a `(line, column)` tuple." return self._start_pos @property def end_pos(self): """End of the mutation location as a `(line, column)` tuple. Note that this represents the offset *one past* the end of the mutated segment. If the mutated segment is at the end of a file, this offset will be past the end of the file. """ return self._end_pos @property def job_id(self): "The unique ID of the job" return self._job_id def as_dict(self): """Get fields as a dict. """ return { 'module_path': str(self.module_path), 'operator_name': self.operator_name, 'occurrence': self.occurrence, 'start_pos': self.start_pos, 'end_pos': self.end_pos, 'job_id': self.job_id, } def __eq__(self, rhs): return self.as_dict() == rhs.as_dict() def __neq__(self, rhs): return not self == rhs class WorkItemJsonEncoder(json.JSONEncoder): "Custom JSON encoder for workitems and workresults." def default(self, o): # pylint: disable=E0202 if isinstance(o, WorkItem): return {"_type": "WorkItem", "values": o.as_dict()} if isinstance(o, WorkResult): return {"_type": "WorkResult", "values": o.as_dict()} return super().default(o) class WorkItemJsonDecoder(json.JSONDecoder): "Custom JSON decoder for WorkItems and WorkResults." def __init__(self): json.JSONDecoder.__init__(self, object_hook=self._decode_work_items) @staticmethod def _decode_work_items(obj): if (obj.get('_type') == 'WorkItem') and ('values' in obj): values = obj['values'] return WorkItem(**values) if (obj.get('_type') == 'WorkResult') and ('values' in obj): values = obj['values'] return WorkResult(**values) return obj
""" _InsertCMSSWVersion_ Oracle implementation of InsertCMSSWVersion """ from WMCore.Database.DBFormatter import DBFormatter class InsertCMSSWVersion(DBFormatter): def execute(self, binds, conn = None, transaction = False): sql = """DECLARE cnt NUMBER(1); BEGIN SELECT COUNT(*) INTO cnt FROM cmssw_version WHERE name = :VERSION ; IF (cnt = 0) THEN INSERT INTO cmssw_version (ID, NAME) VALUES(cmssw_version_SEQ.nextval, :VERSION) ; END IF; EXCEPTION WHEN DUP_VAL_ON_INDEX THEN NULL; END; """ self.dbi.processData(sql, binds, conn = conn, transaction = transaction) return
import datetime as dt from dataclasses import dataclass, field from typing import Any, ClassVar, Dict, List, Optional, cast from ..types import VerificationDocument, VerificationDocumentStep from .base import Resource @dataclass class Verification(Resource): _endpoint: ClassVar[str] = '/v2/verifications' id: str expired: bool steps: list documents: List[VerificationDocument] metadata: Dict[str, Dict[str, str]] identity: Dict[str, str] = field(default_factory=dict) hasProblem: Optional[bool] = None computed: Optional[Dict[str, Any]] = None obfuscatedAt: Optional[dt.datetime] = None flow: Optional[Dict[str, Any]] = None @classmethod def retrieve(cls, verification_id: str, client=None) -> 'Verification': client = client or cls._client endpoint = f'{cls._endpoint}/{verification_id}' resp = client.get(endpoint) docs = [] for doc in resp['documents']: doc['steps'] = [ VerificationDocumentStep(**step) for step in doc['steps'] ] docs.append(VerificationDocument(**doc)) resp['documents'] = docs return cast('Verification', cls._from_dict(resp))
# A mocked event controller to check whether our routines # into the starting and restarting are touched correctly from ev_core.config import Config class EventControllerMock: def __init__(self, config: Config): self.started = True self.restarted_cnt = 0 self.config = config def start(self): self.restarted_cnt += 1 self.started = True def stop(self): self.started = False def reload(self): self.stop() self.start()
# See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from django.contrib.auth import get_user_model from django.urls import reverse from django.core.exceptions import ValidationError from rest_framework import status from rest_framework.test import APITestCase from ensembl.production.dbcopy.models import RequestJob User = get_user_model() class RequestJobTest(APITestCase): """ Test module for RequestJob model """ fixtures = ['ensembl_dbcopy'] # Test requestjob endpoint def testRequestJobGetAll(self): response = self.client.get(reverse('dbcopy_api:requestjob-list')) self.assertEqual(response.status_code, status.HTTP_200_OK) def testCreateRequestJob(self): response = self.client.post(reverse('dbcopy_api:requestjob-list'), {'src_host': 'mysql-ens-sta-1:4519', 'src_incl_db': 'homo_sapiens_core_99_38', 'tgt_host': 'mysql-ens-general-dev-1:4484', 'user': 'testuser'}) self.assertEqual(response.status_code, status.HTTP_201_CREATED) las_rq_job = RequestJob.objects.all().order_by('-request_date').first() self.assertEqual("mysql-ens-sta-1:4519", las_rq_job.src_host) self.assertEqual("mysql-ens-general-dev-1:4484", las_rq_job.tgt_host) self.assertIn('job_id', response.data) # Test user email set default self.assertEqual("[email protected]", las_rq_job.email_list) self.assertEqual("testuser", las_rq_job.user.username) def testCreateRequestJobBadRequest(self): response = self.client.post(reverse('dbcopy_api:requestjob-list'), {'src_host': '', 'src_incl_db': 'homo_sapiens_core_99_38', 'tgt_host': 'mysql-ens-general-dev-1:3306'}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertIn('src_host', response.data) self.assertIn('user', response.data) self.assertEqual('blank', response.data['src_host'][0].code) self.assertEqual('required', response.data['user'][0].code) def testSaveRequestJobEquivalentAdding(self): job = RequestJob.objects.get(job_id='ddbdc15a-07af-11ea-bdcd-9801a79243a5') job.status = 'Processing Requests' job.save() eq_job = RequestJob() eq_job.src_host = job.src_host eq_job.src_incl_db = job.src_incl_db eq_job.tgt_host = job.tgt_host eq_job.tgt_db_name = job.tgt_db_name eq_job.username = job.username with self.assertRaises(ValidationError): eq_job.save() def testSaveRequestJobEquivalentFromDB(self): job = RequestJob.objects.get(job_id='ddbdc15a-07af-11ea-bdcd-9801a79243a5') job.status = 'Processing Requests' job.save() eq_job = RequestJob.objects.get(job_id="8f084180-07ae-11ea-ace0-9801a79243a5") eq_job.src_host = job.src_host eq_job.src_incl_db = job.src_incl_db eq_job.tgt_host = job.tgt_host eq_job.tgt_db_name = job.tgt_db_name eq_job.username = job.username eq_job.save() def testCreateRequestJobBadRequestEquivalentRunning(self): job = RequestJob.objects.get(job_id='ddbdc15a-07af-11ea-bdcd-9801a79243a5') job.status = 'Processing Requests' job.save() params = { "src_host": job.src_host, "src_incl_db": job.src_incl_db, "tgt_host": job.tgt_host, "tgt_db_name": job.tgt_db_name, } active_equivalent_jobs = list(filter(lambda x: x.is_active, RequestJob.objects.equivalent_jobs(**params))) self.assertEqual(len(active_equivalent_jobs), 1) response = self.client.post(reverse('dbcopy_api:requestjob-list'), {**params, "user": "testuser"}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) error = response.json()["error"][0] job_id = response.json()["job_id"][0] self.assertRegex(error, r"^A job with the same parameters") self.assertEqual(job_id, job.job_id) def testCreateRequestJobEquivalentNotRunning(self): job = RequestJob.objects.get(job_id='ddbdc15a-07af-11ea-bdcd-9801a79243a5') job.status = 'Transfer Ended' job.save() params = { "src_host": job.src_host, "src_incl_db": job.src_incl_db, "tgt_host": job.tgt_host, "tgt_db_name": job.tgt_db_name, } active_equivalent_jobs = list(filter(lambda x: x.is_active, RequestJob.objects.equivalent_jobs(**params))) self.assertEqual(len(active_equivalent_jobs), 0) response = self.client.post(reverse('dbcopy_api:requestjob-list'), {**params, "user": "testuser"}) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def testCreateRequestJobEquivalentThreeParamsRunning(self): job = RequestJob.objects.get(job_id='ddbdc15a-07af-11ea-bdcd-9801a79243a5') job.status = 'Processing Requests' job.save() params = { "src_host": job.src_host, "src_incl_db": job.src_incl_db, "tgt_host": job.tgt_host, } active_equivalent_jobs = list(filter(lambda x: x.is_active, RequestJob.objects.equivalent_jobs(**params))) self.assertEqual(len(active_equivalent_jobs), 0) response = self.client.post(reverse('dbcopy_api:requestjob-list'), {**params, "user": "testuser"}) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def testCreateRequestJobUser(self): response = self.client.post(reverse('dbcopy_api:requestjob-list'), {'src_host': 'mysql-ens-sta-1:4519', 'src_incl_db': 'homo_sapiens_core_99_38', 'tgt_host': 'mysql-ens-general-dev-1:4484', 'user': 'testuser'}) self.assertEqual(response.status_code, status.HTTP_201_CREATED) las_rq_job = RequestJob.objects.all().order_by('-request_date').first() self.assertEqual("testuser", las_rq_job.user.username) def testCreateRequestJobWrongUser(self): response = self.client.post(reverse('dbcopy_api:requestjob-list'), {'src_host': 'mysql-ens-sta-1:4519', 'src_incl_db': 'homo_sapiens_core_99_38', 'tgt_host': 'mysql-ens-general-dev-1:4484', 'user': 'inexistantuser'}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual('invalid', response.data['user'][0].code) def testGetRequestJob(self): response = self.client.get( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': '8f084180-07ae-11ea-ace0-9801a79243a5'})) self.assertEqual(response.status_code, status.HTTP_200_OK) def testGetRequestJobNotFound(self): response = self.client.get( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': 'd662656c-0a18-11ea-ab6c-9801a79243a5'})) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def testGetRequestJobDetail(self): response = self.client.get( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': 'ddbdc15a-07af-11ea-bdcd-9801a79243a5'})) response_dict = json.loads(response.content.decode('utf-8')) self.assertIn('transfer_logs', response_dict) def testPutRequestJob(self): response = self.client.put( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': '8f084180-07ae-11ea-ace0-9801a79243a5'}), {'src_host': 'mysql-ens-sta-1:4519', 'src_incl_db': 'homo_sapiens_core_99_38', 'tgt_host': 'mysql-ens-general-dev-2:4586,mysql-ens-general-dev-1:4484,', 'user': 'testuser'}) self.assertEqual(response.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def testPatchRequestJob(self): response = self.client.patch( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': '8f084180-07ae-11ea-ace0-9801a79243a5'}), {'src_incl_db': 'homo_sapiens_funcgen_99_38'}) self.assertEqual(response.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def testDeleteRequestJob(self): response = self.client.delete( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': '8f084180-07ae-11ea-ace0-9801a79243a5'})) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) job = RequestJob.objects.filter(job_id='8f084180-07ae-11ea-ace0-9801a79243a5').count() # job has actually been deleted from DB self.assertEqual(0, job) def testDeleteRequestJobNotFound(self): response = self.client.delete( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': '673f3b10-09e6-11ea-9206-9801a79243a5'})) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def testDeleteRequestJobNotAcceptable(self): req = RequestJob.objects.get(job_id='ddbdc15a-07af-11ea-bdcd-9801a79243a5') req.status = 'Processing Requests' req.save() response = self.client.delete( reverse('dbcopy_api:requestjob-detail', kwargs={'job_id': 'ddbdc15a-07af-11ea-bdcd-9801a79243a5'})) self.assertEqual(response.status_code, status.HTTP_406_NOT_ACCEPTABLE) # Test Source host endpoint def testSourceHostGet(self): response = self.client.get(reverse('dbcopy_api:srchost-detail', kwargs={'name': 'mysql-ens-sta-1'})) self.assertEqual(response.status_code, status.HTTP_200_OK) def testSourceHostGetNotFound(self): response = self.client.get(reverse('dbcopy_api:srchost-detail', kwargs={'name': 'mysql-ens-compara-2'})) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def testSourceHostGetMultiple(self): # Test getting 2 mysql-ens-sta-2 servers response = self.client.get(reverse('dbcopy_api:srchost-list'), {'name': 'mysql-ens-sta'}) self.assertEqual(len(response.data), 2) # Test getting mysql-ens-general-dev-1 server response = self.client.get(reverse('dbcopy_api:srchost-list'), {'name': 'mysql-ens-general'}) self.assertIsInstance(json.loads(response.content.decode('utf-8')), list) self.assertEqual(len(response.data), 2) # Test Target host endpoint def testTargetHostGet(self): logged = self.client.login(username='testuser', password='testgroup123') self.assertTrue(logged) response = self.client.get(reverse('dbcopy_api:tgthost-detail', kwargs={'name': 'mysql-ens-sta-1'})) self.assertEqual(response.status_code, status.HTTP_200_OK) def testTargetHostGetNotFound(self): logged = self.client.login(username='testuser', password='testgroup123') self.assertTrue(logged) response = self.client.get(reverse('dbcopy_api:tgthost-detail', kwargs={'name': 'mysql-ens-compara-2'})) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def testTargetHostGetMultipleWithAllowedUser(self): logged = self.client.login(username='testuser', password='testgroup123') self.assertTrue(logged) # Test getting 2 mysql-ens-sta servers with allowed user response = self.client.get(reverse('dbcopy_api:tgthost-list'), {'name': 'mysql-ens-sta'}) self.assertEqual(len(response.data), 2) def testTargetHostGetMultipleWithNonAllowedUser(self): # Test getting 2 mysql-ens-sta servers with non-allowed user User.objects.get(username='testuser2') self.client.login(username='testuser2', password='testgroup1234') response = self.client.get(reverse('dbcopy_api:tgthost-list'), {'name': 'mysql-ens-sta'}) self.assertEqual(len(response.data), 1) def testTargetHostGetMultipleServers(self): # Test getting mysql-ens-general-dev-1 server response = self.client.get(reverse('dbcopy_api:tgthost-list'), {'name': 'mysql-ens-general'}) self.assertEqual(len(response.data), 2) def testRequestModelCleanRaises(self): with self.assertRaises(ValidationError): # test db_name repeated on same target RequestJob.objects.create(src_host="host1:3306", tgt_host="host4:3306,host1:3306", src_incl_db="db1,db4", tgt_db_name="db5,db1", username='testuser') with self.assertRaises(ValidationError): # test target db name not set at all 9same target dn names RequestJob.objects.create(src_host="host1:3306", tgt_host="host1:3306,host3:3306", src_incl_db="db1", username='testuser') with self.assertRaises(ValidationError): # test target host contains src host and all db selected RequestJob.objects.create(src_host="host1:3306", tgt_host="host2:3306,host1:3306", username='testuser') with self.assertRaises(ValidationError): # test target host contains src host and all db selected RequestJob.objects.create(tgt_db_name="new_db_name", tgt_host="host2:3306,host1:3306", username='testuser') def testRequestModelCleanSuccess(self): # Test a normal job would pass. job = RequestJob.objects.create(src_host="host2:3306", tgt_host="host4:3306,host3:3306", src_incl_db="db1,db4", tgt_db_name="db5,db1", username='testuser') self.assertIsNotNone(job) # test a job with same target but different db name would pass job = RequestJob.objects.create(src_host="host2:3306", tgt_host="host2:3306", src_incl_db="db1", tgt_db_name="db5", username='testuser') self.assertIsNotNone(job) class LookupsTest(APITestCase): fixtures = ('host_group',) def testHostLookup(self): response = self.client.get(reverse('ensembl_dbcopy:src-host-autocomplete')) self.assertEqual(response.status_code, status.HTTP_302_FOUND) self.client.login(username='testusergroup', password='testgroup123') response = self.client.get(reverse('ensembl_dbcopy:src-host-autocomplete')) # retrieve all data = json.loads(response.content) self.assertEqual(len(data['results']), 10) # filter query response = self.client.get(reverse('ensembl_dbcopy:src-host-autocomplete') + '?q=sta-3') data = json.loads(response.content) self.assertEqual(len(data['results']), 2) self.client.login(username='testusergroup2', password='testgroup1234') response = self.client.get(reverse('ensembl_dbcopy:tgt-host-autocomplete')) self.assertEqual(response.status_code, status.HTTP_200_OK) # retrieve all data = json.loads(response.content) self.assertEqual(len(data['results']), 40) # filter query permission should not allow sta as target response = self.client.get(reverse('ensembl_dbcopy:tgt-host-autocomplete') + '?q=sta-3') self.assertEqual(response.status_code, status.HTTP_200_OK) data = json.loads(response.content) self.assertEqual(len(data['results']), 0) class DBIntrospectTest(APITestCase): databases = {'default', 'homo_sapiens'} fixtures = ('introspect.homo_sapiens.json',) def testDatabaseList(self): # Test getting test Production dbs args = {'host': 'localhost', 'port': 3306} response = self.client.get(reverse('dbcopy_api:databaselist', kwargs=args), {'search': 'test_homo'}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertGreaterEqual(len(response.data), 1) self.assertEqual(response.data[0], 'test_homo_sapiens') response = self.client.get(reverse('dbcopy_api:databaselist', kwargs={**args, 'host': 'bad-host'}), {'search': 'test_production_services'}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) response = self.client.get(reverse('dbcopy_api:databaselist', kwargs=args), {'search': 'no_result_search'}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 0) response = self.client.get(reverse('dbcopy_api:databaselist', kwargs=args), {'matches[]': ['test_homo_sapiens']}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) response = self.client.get(reverse('dbcopy_api:databaselist', kwargs=args), {'matches[]': ['no_match']}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 0) def testTableList(self): args = {'host': 'localhost', 'port': 3306, 'database': 'test_homo_sapiens'} # Test getting meta_key table for Production dbs response = self.client.get(reverse('dbcopy_api:tablelist', kwargs=args), {'search': 'ass'}) response_list = json.loads(response.content.decode('utf-8')) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response_list), 2) args['host'] = 'badhost-name' response = self.client.get(reverse('dbcopy_api:tablelist', kwargs=args), {'search': 'meta'}) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) args['host'] = 'localhost' response = self.client.get(reverse('dbcopy_api:tablelist', kwargs=args), {'search': 'unknown'}) response_list = json.loads(response.content.decode('utf-8')) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response_list), 0)
"""SCOPE: 1: Read the input given by the user """ print("Enter the number") input_number=input() print("The number is",input_number) print(type(input_number)) input_number=int(input_number) if(input_number>10): print("It is greater than 10") else: print("It is less than 10")
from django.conf import settings from disturbance import helpers def disturbance_url(request): template_group = 'disturbance' TERMS = "/know/online-disturbance-apiary-terms-and-conditions" is_officer = False is_admin = False is_customer = False if request.user.is_authenticated: is_admin = helpers.is_disturbance_admin(request) is_apiary_admin = helpers.is_disturbance_admin(request) is_customer = helpers.is_customer(request) return { 'APIARY_SEARCH': '/external/payment', 'APIARY_CONTACT': '/contact-us', 'APIARY_TERMS': TERMS, 'DEV_STATIC': settings.DEV_STATIC, 'DEV_STATIC_URL': settings.DEV_STATIC_URL, 'TEMPLATE_GROUP': template_group, 'SYSTEM_NAME': settings.SYSTEM_NAME, 'IS_OFFICER': is_officer, 'IS_ADMIN': is_admin, 'IS_APIARY_ADMIN': is_apiary_admin, 'IS_CUSTOMER': is_customer, 'PUBLIC_URL': settings.PUBLIC_URL } def template_context(request): """Pass extra context variables to every template. """ context = disturbance_url(request) return context
from setuptools import setup, find_packages import archapp setup( name='archapp', version=archapp.__version__, #packages=['archapp'], packages=find_packages(), description='Archiver Appliance Python Interface', author='Zachary Lentz', author_email='[email protected]' )
#!/home/bernard/acenv/bin/python3 import os, threading, sys, hashlib, uuid, pathlib from indi_mr import mqtttoredis, mqtt_server, redis_server, tools from indiredis import make_wsgi_app from skipole import WSGIApplication, FailPage, GoTo, ValidateError, ServerError, use_submit_list, skis from waitress import serve mqtt_host = mqtt_server(host='localhost', port=1883) redis_host = redis_server(host='localhost', port=6379) # This service needs a redis connection to store cookies rconn = tools.open_redis(redis_host) PROJ_DATA={"rconn":rconn, # redis connection "username":"localcontrol", # the username which must be used to log in "password": "6f852ab4bb9e13ac5095377eddb251a09afd27dbb95c788e075ca63860f9ce8cac75fa9165bb739c0e629f2be201ddf57f261ab982cfd7f88687412ff0d1ea64" } # The password above is an hashed password, being the result of running # python3 hashpassword.py, and copying the result here, currently password is 'remscope' # Set a directory of your choice where blobs will be stored BLOBS = '/home/bernard/indiblobs' PROJECTFILES = os.path.dirname(os.path.realpath(__file__)) PROJECT = "indiclient" def _is_user_logged_in(skicall): received_cookies = skicall.received_cookies if PROJECT not in received_cookies: return False # get cookie rconn = skicall.proj_data["rconn"] # the current cookiestring is stored in redis at key 'cookiestring' cookievalue = rconn.get('cookiestring') if not cookievalue: return False cookiestring = cookievalue.decode('utf-8') if received_cookies[PROJECT] != cookiestring: return False return True def _hash_password(username, password): "Return hashed password, as a string, on failure return None" seed_password = username + password hashed_password = hashlib.sha512( seed_password.encode('utf-8') ).hexdigest() return hashed_password def _create_cookie(skicall): "Generates a random cookie, store it in redis, and return the cookie" rconn = skicall.proj_data["rconn"] # generate a cookie string cookiestring = uuid.uuid4().hex rconn.set('cookiestring', cookiestring, ex=3600) # expire after one hour return cookiestring def start_call(called_ident, skicall): "When a call is initially received this function is called." # to serve static files, you can map a url to a server static directory # the user does not have to be logged in to access these servedfile = skicall.map_url_to_server("images", "/home/bernard/indiblobs") if servedfile: return servedfile if _is_user_logged_in(skicall): # The user is logged in, so do not show the index page, or check login page if (called_ident == (PROJECT, 1)) or (called_ident == (PROJECT, 10)): # instead jump straight to indi client return ('indiredis', 1) # any other page, such as css or image files are ok return called_ident # You may wish to apply the decorator '@use_submit_list' to the submit_data # function below. See the skipole documentation for details. def submit_data(skicall): "This function is called when a Responder wishes to submit data for processing in some manner" if skicall.ident_list[-1] == (PROJECT, 10): # this call is to checklogin from the login page skicall.call_data['authenticate'] = False username = skicall.proj_data["username"] if (("login", "input_text1") in skicall.call_data) and (skicall.call_data["login", "input_text1"] == username): if ("login", "input_text2") in skicall.call_data: password = skicall.call_data["login", "input_text2"] hashed = _hash_password(username, password) if hashed == skicall.proj_data["password"]: skicall.call_data['authenticate'] = True if skicall.call_data['authenticate']: return else: raise FailPage("Invalid input") if skicall.ident_list[-1] == (PROJECT, 20): # this call is to populate the showfiles page serverpath = pathlib.Path(BLOBS) serverfiles = [f.name for f in serverpath.iterdir() if f.is_file()] if not serverfiles: skicall.page_data['nothingfound', 'show'] = True skicall.page_data['filelinks', 'show'] = False return skicall.page_data['nothingfound', 'show'] = False skicall.page_data['filelinks', 'show'] = True # The widget has links formed from a list of lists # 0 : The url, label or ident of the target page of the link # 1 : The displayed text of the link # 2 : If True, ident is appended to link even if there is no get field # 3 : The get field data to send with the link serverfiles.sort(reverse=True) filelinks = [] for sf in serverfiles: # create a link to urlfolder/sf filelinks.append([ "images/" + sf, sf, False, ""]) skicall.page_data['filelinks', 'nav_links'] = filelinks return if skicall.ident_list[-1] == (PROJECT, 30): # this call is to log out skicall.call_data['logout'] = True return def end_call(page_ident, page_type, skicall): """This function is called at the end of a call prior to filling the returned page with skicall.page_data, it can also return an optional session cookie string.""" if ('authenticate' in skicall.call_data) and skicall.call_data['authenticate']: # a user has logged in, set a cookie return _create_cookie(skicall) if ('logout' in skicall.call_data) and skicall.call_data['logout']: # a user has been logged out, set a new random cookie in redis, and an invalid cookie in the client _create_cookie(skicall) return "xxxxxxxx" return def check_cookies_function(received_cookies, proj_data): """Returns None if call can proceed to sub project""" if PROJECT not in received_cookies: # no cookie, must go to top login page return (PROJECT, 1) # get cookie rconn = proj_data["rconn"] # the current cookiestring is stored in redis at key 'cookiestring' cookievalue = rconn.get('cookiestring') if not cookievalue: return (PROJECT, 1) cookiestring = cookievalue.decode('utf-8') if received_cookies[PROJECT] != cookiestring: # invalid cookie, return to top page return (PROJECT, 1) return # The above functions are required as arguments to the skipole.WSGIApplication object # and will be called as required. # create the wsgi application application = WSGIApplication(project=PROJECT, projectfiles=PROJECTFILES, proj_data=PROJ_DATA, start_call=start_call, submit_data=submit_data, end_call=end_call, url="/") skis_application = skis.makeapp() application.add_project(skis_application, url='/lib') indi_application = make_wsgi_app(redis_host, blob_folder=BLOBS) application.add_project(indi_application, url='/indi', check_cookies=check_cookies_function) from skipole import skiadmin, set_debug set_debug(True) skiadmin_application = skiadmin.makeapp(editedprojname=PROJECT) application.add_project(skiadmin_application, url='/skiadmin') # serve the application with the python waitress web server in its own thread webapp = threading.Thread(target=serve, args=(application,), kwargs={'host':'0.0.0.0', 'port':8000}) # and start it webapp.start() # and start mqtttoredis mqtttoredis('indi_localclient', mqtt_host, redis_host, blob_folder=BLOBS)
#!/usr/bin/env python3 import os, sys import multiprocessing import subprocess as sp import shutil import shlex import time import csv import json sys.path.append('/home/jrchang/workspace/gym-OptClang/gym_OptClang/envs/') import RemoteWorker as rwork def getMultiAppsTargets(path): """ path: the root path for "test-suite" to search ".test" file """ prog = rwork.Programs() AllTargetsDict = prog.getAvailablePrograms() ListOfAvailableTarget = list(AllTargetsDict.keys()) # search all test target in Apps AppTargets = {} test_pattern = '.test' for root, dirs, files in os.walk(path): for file in files: if file.endswith(test_pattern): # remove .test in the file name file = file[:-5] # filter out those are not in our consideration. if file in ListOfAvailableTarget: AppTargets[file] = root return AppTargets def Eval(TargetDict, threadNum): """ TargetDict = {"target": "target root path"} threadNum: make -j[threadNum] return BuildTimeDict = {"target": build-time} """ BuildTimeDict = {} prevCwd = os.getcwd() lit = os.getenv('LLVM_THESIS_lit', "Error") CpuNum = multiprocessing.cpu_count() for target, targetRoot in TargetDict.items(): isBuilt = False measuredTime = 0 try: os.chdir(targetRoot) # make clean os.system("make clean") # build try: cmd = "taskset -c 0-{} make -j{}".format(threadNum-1, threadNum) print('------------------------------------') print("build cmd={}".format(cmd)) startTime = time.perf_counter() p = sp.Popen(shlex.split(cmd), stdout=sp.PIPE, stderr= sp.PIPE) out, err = p.communicate() p.wait() endTime = time.perf_counter() if err.decode('utf-8').strip() is "": isBuilt = True measuredTime = endTime - startTime except Exception as e: print("{} build failed: {}".format(target, e)) if isBuilt: # verify try: cmd = "{} -j{} -q {}.test".format(lit, CpuNum, target) print("verify cmd={}".format(cmd)) p = sp.Popen(shlex.split(cmd), stdout=sp.PIPE, stderr= sp.PIPE) out, err = p.communicate() p.wait() if out.decode('utf-8').strip() is "" and err.decode('utf-8').strip() is "": print("Verify successfully.") print('------------------------------------') print("{} use {} secs".format(target, measuredTime)) BuildTimeDict[target] = measuredTime else: BuildTimeDict[target] = 'Failed' except Exception as e: print("{} verified failed: {}".format(target, e)) except Exception as e: print("{} unexpected failed: {}".format(target, e)) os.chdir(prevCwd) return BuildTimeDict def runEval(TargetRoot, key_1, key_2, jsonPath): """ TargetRoot: the root path in your test-suite/build return {"target": {key_1: first_time, key_2: second_time}} """ # get all .test target in MultiSource/Application Targets = getMultiAppsTargets(TargetRoot) # Build, verify and log time # 1 thread BuildTimeDict_1 = Eval(Targets, 1) with open(key_1 + ".json", 'w') as js: json.dump(BuildTimeDict_1, js) # 12 thread BuildTimeDict_12 = Eval(Targets, 12) with open(key_2 + ".json", 'w') as js: json.dump(BuildTimeDict_12, js) # combine the results retDict = {} for target, _time in BuildTimeDict_1.items(): retDict[target] = {} retDict[target][key_1] = _time for target, _time in BuildTimeDict_12.items(): if retDict.get(target) is None: retDict[target] = {} retDict[target][key_2] = _time with open(jsonPath, 'w') as js: json.dump(retDict, js) return retDict def WriteToCsv(writePath, Dict1, Dict2, keys_1, keys_2): """ Dict1 must contains all the "keys" """ ResultDict = dict.fromkeys(list(Dict1.keys()), {}) # write csv header fieldnames = ['target', keys_1[0], keys_2[0], keys_1[1], keys_2[1]] with open(writePath, 'w', newline='') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for key, _time in Dict1.items(): if Dict1.get(key) is not None: if Dict1[key].get(keys_1[0]) is not None: ResultDict[key][keys_1[0]] = Dict1[key][keys_1[0]] else: print("target: {} missing {}".format(key, keys_1[0])) ResultDict[key][keys_1[0]] = -1 if Dict1[key].get(keys_1[1]) is not None: ResultDict[key][keys_1[1]] = Dict1[key][keys_1[1]] else: print("target: {} missing {}".format(key, keys_1[1])) ResultDict[key][keys_1[1]] = -1 else: print("target: {} missing {} and {}".format(key, keys_1[0],keys_1[1])) ResultDict[key][keys_1[0]] = -1 ResultDict[key][keys_1[1]] = -1 if Dict2.get(key) is not None: if Dict2[key].get(keys_2[0]) is not None: ResultDict[key][keys_2[0]] = Dict2[key][keys_2[0]] else: print("target: {} missing {}".format(key, keys_2[0])) ResultDict[key][keys_2[0]] = -1 if Dict2[key].get(keys_2[1]) is not None: ResultDict[key][keys_2[1]] = Dict2[key][keys_2[1]] else: print("target: {} missing {}".format(key, keys_2[1])) ResultDict[key][keys_2[1]] = -1 else: print("target: {} missing {} and {}".format(key, keys_2[0],keys_2[1])) ResultDict[key][keys_2[0]] = -1 ResultDict[key][keys_2[1]] = -1 # write ResultDict to csv with open(writePath, 'a', newline='') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=fieldnames) tmp = ResultDict[key] tmp['target'] = key writer.writerow(tmp) if __name__ == '__main__': for i in range(10): startTime = time.perf_counter() ''' Measure the build time for original clang ''' key_1 = "Original-1-thread" key_2 = "Original-12-threads" Orig_results = runEval("/home/jrchang/workspace/llvm-official/test-suite/build/MultiSource/Applications", key_1, key_2, "Original.json") ''' Measure the build time for ABC ''' key_3 = "ABC-1-thread" key_4 = "ABC-12-threads" ABC_results = runEval("/home/jrchang/workspace/llvm-thesis-inference/test-suite/build-worker-6/MultiSource/Applications", key_3, key_4, "ABC.json") ''' If you already ran, just read the data. ''' #Orig_results = json.load(open("Original.json")) #ABC_results = json.load(open("ABC.json")) # Merge all results into csv-format file WriteToCsv("./raw-data/BuildTime/buildEval_" + str(i) + ".csv", Orig_results, ABC_results, [key_1, key_2], [key_3, key_4]) endTime = time.perf_counter() print("The evaluation procedure takse:{} mins".format((endTime - startTime)/60))
#!/usr/bin/env python3 # # ===============LICENSE_START======================================================= # Acumos # =================================================================================== # Copyright (C) 2018 AT&T Intellectual Property. All rights reserved. # =================================================================================== # This Acumos software file is distributed by AT&T # under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ===============LICENSE_END========================================================= from flask_restplus import Resource from modelbuilder.api.namespaces import model_builder_namespace as api from modelbuilder.api.v2.serializers import builder_fields from modelbuilder.api.v2.parsers import error_response_body, error_response_body_500 from modelbuilder.api.business import get_algorithms, create_builder, get_builder_status, export_model @api.route('/algorithms') class AlgorithmsResource(Resource): @api.response(200, 'OK') @api.response(400, 'Bad Request', error_response_body) @api.response(404, 'Not Found') @api.response(500, 'Internal Server Error', error_response_body_500) def get(self): """Get the list of supported algorithms""" return get_algorithms() @api.route('/builders') class BuildersResource(Resource): @api.response(202, 'Accepted') @api.response(400, 'Bad Request', error_response_body) @api.response(404, 'Not Found') @api.response(500, 'Internal Server Error', error_response_body_500) @api.expect(builder_fields) def post(self): """Create a model builder resource""" return create_builder() @api.route('/builders/<string:key>/status') class BuildersStatusResource(Resource): @api.response(200, 'Ok') @api.response(404, 'Not Found') @api.response(500, 'Internal Server Error', error_response_body_500) def get(self, key): """Get the status for the builder""" return get_builder_status(key) @api.route('/builders/<string:key>/exporter') class BuilderSaveResource(Resource): @api.response(201, 'Ok') @api.response(404, 'Not Found') @api.response(500, 'Internal Server Error', error_response_body_500) def post(self, key): """Export this model to the model manager service""" return export_model(key)
import paho.mqtt.client as mqtt import os import serial import time import random from time import strftime from datetime import datetime import requests import json import schedule import numpy as np import tensorflow as tf import random import time model2 = tf.keras.models.load_model('./my_model') def on_message(client, obj, msg): print(msg.topic + " " + str(msg.qos) + " " + str(msg.payload)) def on_publish(client, obj, mid): print("mid: " + str(mid)) # gettiing dict with temperature, date and icon for forecast def day_forecast(): temp_day = [] for i in forecast_response['list']: foo = '12:00:00' if foo in i['dt_txt']: dictor = { 'date': i['dt'], 'temp': i['main']['temp'], 'icon': i['weather'][0]['icon'], 'date_txt': i['dt_txt'] } temp_day.append(dictor) # This for loop is selecting all DT from respoonse and making list of it temport = [] for d in temp_day: temport.append(d['date']) # This loop converting timestamp DT format to week days names and making list of it dates_formated = [] for value in temport: dates_formated.append( datetime.utcfromtimestamp(value).strftime('%A')) return [temp_day, dates_formated] def night_forecast(): temp_night = [] for i in forecast_response['list']: foo = '03:00:00' if foo in i['dt_txt']: dictor = { 'date': i['dt_txt'], 'temp': i['main']['temp'], } temp_night.append(dictor) return temp_night def send_mail(city, temperature, humidity, pressure, wind, description): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText mail= MIMEMultipart() sender_email = "[email protected]" # replace with sender mail rec_email = "[email protected]" # replace with reciver mail password = "Passwd" # replace with sender mail password server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(sender_email, password) mail['From']='Weather Notification System' mail['To'] = rec_email mail['Subject']='Weather App – Alert' city = city temperature = str(temperature)+ " C" humidity = str(humidity) + " %" pressure = str(pressure) + " hPa" wind = str(wind) + " m/s" description = description body=" City: "+str(city)+"\n Temperature: "+str(temperature)+"\n Humidity: "+str(humidity)+"\n Pressure: "+str(pressure)+"\n Wind: "+str(wind)+"\n Description: "+ str(description) mail.attach(MIMEText(body,'plain')) msg=mail.as_string() server.sendmail(sender_email, rec_email, msg) print('Mail Sent') email = "Email Will Send Your Mail." def email12(): global email email = "Email Send At 12PM. Please Check Your Mail." def email06(): global email email = "Email Send At 06PM. Please Check Your Mail." schedule.every().day.at("00:00").do(lambda: send_mail(city_float, temp_float, hum_float, pre_float, wind_float, des_float)) schedule.every().day.at("18:00").do(lambda: send_mail(city_float, temp_float, hum_float, pre_float, wind_float, des_float)) schedule.every().day.at("00:00").do(email12) schedule.every().day.at("18:00").do(email06) def generate_sensor_data(): global temp, hum, pre temp = random.randint(20, 30) hum = random.randint(60, 90) pre = random.randint(1000, 1120) def predict(temp_float, hum_float, pre_float): input = np.array([[temp_float, hum_float, pre_float]]) pred = model2.predict_classes(input) suggestion = 0 if pred == [1]: suggestion = "Most Probably Today Will Rain. So, Don't Miss Your Jacket." if pred == [2]: suggestion = "Most Probably Today Will Snow." else: suggestion = "I Cannot Predict Whether Rain or Snow." return suggestion def check_temp(temp_float, temp): instuction = 0 if temp_float > temp: instuction = "Outside Temperature Higher Than Inside." else: instuction = "Inside Temperature Higher Than Outside." return instuction try: mqttc = mqtt.Client() mqttc.on_message = on_message mqttc.on_publish = on_publish # Connect mqttc.username_pw_set("mqtt_username", "mqtt_passwd") # Replace with mqtt username and passwd mqttc.connect('AWS_E2C_IP_address', 1883, 60) # Replace your AWS E2C IP_address # Continue the network loop, exit when an error occurs while True : global temp_float, hum_float, pre_float, wind_float, city_float, des_float generate_sensor_data() API_KEY = '30ad27b312182fa9f7569003a337536b' # Replace your city name city = 'Dambulla' # getting api url = f'http://api.openweathermap.org/data/2.5/weather?q={city}&units=metric&appid={API_KEY}' response = requests.get(url).json() # If name of city is wrong spell or unknown if response.get('cod') != 200: message = response.get('message', '') weather = { 'city': city, 'temperature': response['main']['temp'], 'humidity': response['main']['humidity'], 'pressure': response['main']['pressure'], 'wind': response['wind']['speed'], 'description': response['weather'][0]['description'], 'icon': response['weather'][0]['icon'], } temp_float = weather.get('temperature') hum_float = weather.get('humidity') pre_float = weather.get('pressure') wind_float = weather.get('wind') city_float = weather.get('city') des_float = weather.get('description') temp_int = round(temp_float) # This api is showing forecast for five days with days/nights url_forecast = f'http://api.openweathermap.org/data/2.5/forecast?q={city}&units=metric&appid={API_KEY}' forecast_response = requests.get(url_forecast).json() day = day_forecast() night = night_forecast() prediction = predict(temp_float, hum_float, pre_float) instuction = check_temp(temp_float, temp) # print(prediction) sensor = { "temp": temp, "hum": hum, "pre": pre } api = { "temperature": temp_int, "humidity": weather.get('humidity'), "pressure": weather.get('pressure'), "wind": weather.get('wind'), "city" :weather.get('city'), "description": weather.get('description'), "icon": weather.get('icon'), "prediction": prediction, "instuction": instuction, "email": email } forecast = { "day": day, "night": night } mqttc.publish("sensor", (json.dumps(sensor))) mqttc.publish("api", (json.dumps(api))) mqttc.publish("forecast", (json.dumps(forecast))) print('published') schedule.run_pending() time.sleep(1) except: exit
import numpy as np from Puzzle.Enums import directions, Directions, TypeEdge, TypePiece, rotate_direction class PuzzlePiece(): """ Wrapper used to store informations about pieces of the puzzle. Contains the position of the piece in the puzzle graph, a list of edges, the list of pixels composing the piece, the number of borders and the type of the piece. """ def __init__(self, edges, img_piece): self.position = (0, 0) self.edges_ = edges self.img_piece_ = img_piece # List of Pixels self.nBorders_ = self.number_of_border() self.type = TypePiece(self.nBorders_) def number_of_border(self): """ Fast computations of the nunmber of borders """ return len(list(filter(lambda x: x.type == TypeEdge.BORDER, self.edges_))) def rotate_edges(self, r): """ Rotate the edges """ for e in self.edges_: e.direction = rotate_direction(e.direction, r) def edge_in_direction(self, dir): """ Return the edge in the `dir` direction """ for e in self.edges_: if e.direction == dir: return e def is_border_aligned(self, p2): """ Find if a border of the piece is aligned with a border of `p2` """ for e in self.edges_: if e.type == TypeEdge.BORDER and p2.edge_in_direction(e.direction).type == TypeEdge.BORDER: return True return False
# -*- coding: utf-8 -*- from django.shortcuts import render, render_to_response, get_object_or_404 from django.http import HttpResponseRedirect from django.views.generic.edit import FormView, CreateView, UpdateView, DeleteView from django.core.urlresolvers import reverse_lazy from django.contrib.auth.decorators import login_required # Create your views here. from kurs import models from kurs import forms @login_required def show_ctrls(request): ctrls_view = models.CtrlBase.objects.all() current_user = request.user return render(request, 'show_ctrls.html', locals()) @login_required def show_elements(request): elements_view = models.ElementsBase.objects.all() current_user = request.user return render(request, 'show_elements.html', locals()) @login_required def show_bom(request): bom_view = models.CtrlBom.objects.all() ctrls_view = models.CtrlBase.objects.all() elements_view = models.ElementsBase.objects.all() current_user = request.user return render_to_response('show_boms.html', locals()) @login_required def show_orders(request): orders_view = models.Order.objects.all() ctrls_view = models.CtrlBase.objects.all() customer_view = models.SuppliersCustomersBase.objects.all() current_user = request.user return render_to_response('show_orders.html', locals()) @login_required def show_suppliers(request): suppliers_view = models.SuppliersCustomersBase.objects.filter(supplier_customer_identify=1) current_user = request.user return render_to_response('show_suppliers.html', locals()) @login_required def show_clients(request): clients_view = models.SuppliersCustomersBase.objects.filter(supplier_customer_identify=0) current_user = request.user return render_to_response('show_clients.html', locals()) @login_required def show_purchases(request): purchases_view = models.PurchasesConsumption.objects.filter(p_c=1) elements_view = models.ElementsBase.objects.all() invoices_view = models.Invoices.objects.all() suppliers_view = models.SuppliersCustomersBase.objects.all() current_user = request.user return render_to_response("show_purchases.html", locals()) @login_required def show_consumptions(request): consumptions_view = models.PurchasesConsumption.objects.filter(p_c=0) elements_view = models.ElementsBase.objects.all() invoices_view = models.Invoices.objects.all() suppliers_view = models.SuppliersCustomersBase.objects.all() current_user = request.user return render_to_response("show_consumptions.html", locals()) @login_required def show_stock(request): elements_view = models.ElementsBase.objects.all() current_user = request.user return render_to_response("show_stock.html", locals()) class NewCtrl(CreateView): model = models.CtrlBase form_class = forms.CtrlForm success_url = '/added/' class NewElement(CreateView): model = models.ElementsBase form_class = forms.ElementForm success_url = '/added/' class NewBom(CreateView): model = models.CtrlBom form_class = forms.CtrlBomForm success_url = '/added/' class NewOrder(CreateView): model = models.Order form_class = forms.OrderForm success_url = '/added/' class NewConsumption(CreateView): model = models.PurchasesConsumption form_class = forms.ConsumpForm success_url = '/added/' class NewPurchase(CreateView): model = models.PurchasesConsumption form_class = forms.PurchForm success_url = '/added/' class NewSupplier(CreateView): model = models.SuppliersCustomersBase form_class = forms.SuppForm success_url = '/added/' class NewCustomer(CreateView): model = models.SuppliersCustomersBase form_class = forms.CustomForm success_url = '/added/'
PUPPETDB_HOST = 'localhost' PUPPETDB_PORT = 8080 PUPPETDB_SSL_VERIFY = True PUPPETDB_KEY = None PUPPETDB_CERT = None PUPPETDB_TIMEOUT = 20 DEV_LISTEN_HOST = '127.0.0.1' DEV_LISTEN_PORT = 5000 UNRESPONSIVE_HOURS = 2 ENABLE_QUERY = True LOCALISE_TIMESTAMP = True LOGLEVEL = 'info' REPORTS_COUNT = 10 OFFLINE_MODE = False
from collections import namedtuple Position = namedtuple('Position', ['line', 'column']) class JavaToken(): def __init__(self, value, position=None): self.value, self.position = value, position def __str__(self): if not self.position: return '%s "%s"' % (self.__class__.__name__, self.value) return '%s "%s" line %d, column %d' % ( self.__class__.__name__, self.value, self.position[0], self.position[1]) def __eq__(self, other): raise NotImplementedError class Keyword(JavaToken): VALUES_SET = {'abstract', 'assert', 'boolean', 'break', 'byte', 'case', 'catch', 'char', 'class', 'const', 'continue', 'default', 'do', 'double', 'else', 'enum', 'extends', 'final', 'finally', 'float', 'for', 'goto', 'if', 'implements', 'import', 'instanceof', 'int', 'interface', 'long', 'native', 'new', 'package', 'private', 'protected', 'public', 'return', 'short', 'static', 'strictfp', 'super', 'switch', 'synchronized', 'this', 'throw', 'throws', 'transient', 'try', 'void', 'volatile', 'while'} class SimpleType(Keyword): VALUES_SET = {'boolean', 'byte', 'char', 'double', 'float', 'int', 'long', 'short'} class Literal(JavaToken): pass # Literal includes integers, strings, bool, and so on # For the moment it doesn't matter class Comment(JavaToken): pass class Separator(JavaToken): VALUES_SET = {'(', ')', '{', '}', '[', ']', ';', ',', '.'} class Operator(JavaToken): MAX_LEN = 4 VALUES_SET = {'>>>=', '>>=', '<<=', '%=', '^=', '|=', '&=', '/=', '*=', '-=', '+=', '<<', '--', '++', '||', '&&', '!=', '>=', '<=', '==', '%', '^', '|', '&', '/', '*', '-', '+', ':', '?', '~', '!', '<', '>', '=', '...', '->', '::'} PREFIX_SET = {'++', '--', '!', '~', '+', '-'} ASSIGNMENT_SET = {'=', '+=', '-=', '*=', '/=', '&=', '|=', '^=', '%=', '<<=', '>>=', '>>>='} def is_prefix(self): return self.value in self.PREFIX_SET def is_assignment(self): return self.value in self.ASSIGNMENT_SET class Annotation(JavaToken): pass class Identifier(JavaToken): pass
"""Freeze metadata from Python index server to test locally. Inspired by index_from_rubygems.rb from CocoaPods/Resolver-Integration-Specs. This only reads metadata from wheels compatible with the given platform, and does not cover sdists at all. """ from __future__ import annotations import argparse import collections import dataclasses import email.parser import itertools import json import logging import os import pathlib import re import sys import urllib.parse import zipfile from typing import ( IO, BinaryIO, Dict, FrozenSet, Iterable, Iterator, List, NamedTuple, Optional, Set, Tuple, Union, cast, ) import html5lib import packaging.requirements import packaging.tags import packaging.utils import packaging.version import requests logger = logging.getLogger() PythonVersion = Union[Tuple[int], Tuple[int, int]] def _parse_python_version(s: str) -> PythonVersion: match = re.match(r"^(\d+)(?:\.(\d+))?$", s) if not match: raise ValueError(s) major, *more = match.groups() if more: return (int(major), int(more[0])) return (int(major),) def _parse_output_path(s: str) -> Optional[pathlib.Path]: if s == "-": return None if os.sep in s or (os.altsep and os.altsep in s): return pathlib.Path(s) return pathlib.Path(__file__).with_name("inputs").joinpath("index", s) def parse_args(args: Optional[List[str]]) -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument( "package_names", metavar="PACKAGE", nargs="+", type=packaging.utils.canonicalize_name, ) parser.add_argument( "--python-version", dest="python_version", type=_parse_python_version, default=".".join(str(v) for v in sys.version_info[:2]), ) parser.add_argument( "--interpreter", default=None, ) parser.add_argument( "--platform", dest="platforms", action="append", default=None, ) parser.add_argument( "--output", type=_parse_output_path, required=True, ) parser.add_argument( "--overwrite", action="store_true", default=False, ) return parser.parse_args(args) def get_output_path(path: pathlib.Path, overwrite: bool) -> pathlib.Path: if path.suffix != ".json": path = path.with_name(path.name + ".json") if path.is_file() and not overwrite: raise FileExistsError(os.fspath(path)) path.parent.mkdir(parents=True, exist_ok=True) return path def _parse_tag(s: str) -> FrozenSet[packaging.tags.Tag]: try: return packaging.tags.parse_tag(s) except ValueError: raise ValueError(f"invalid tag {s!r}") @dataclasses.dataclass() class WheelMatcher: required_python: packaging.version.Version tags: Dict[packaging.tags.Tag, int] @classmethod def compatible_with( cls, python_version: PythonVersion, impl: Optional[str], plats: Optional[List[str]], ) -> WheelMatcher: required_python = packaging.version.Version( ".".join(str(v) for v in python_version) ) # TODO: Add ABI customization. tag_it = itertools.chain( packaging.tags.compatible_tags(python_version, impl, plats), packaging.tags.cpython_tags(python_version, None, plats), ) tags = {t: i for i, t in enumerate(tag_it)} return cls(required_python, tags) def rank(self, tag: str, requires_python: Optional[str]) -> Optional[int]: if requires_python: spec = packaging.specifiers.SpecifierSet(requires_python) if self.required_python not in spec: return None ranks = [self.tags[t] for t in _parse_tag(tag) if t in self.tags] if not ranks: return None return min(ranks) @dataclasses.dataclass() class HttpFile: url: str session: requests.Session def __post_init__(self): self._offset = 0 self._size = int(self.session.head(self.url).headers["Content-Length"]) def read(self, n=None): if n is None: end = self._size else: end = self._offset + n headers = {"Range": f"bytes={self._offset}-{end - 1}"} res = self.session.get(self.url, headers=headers) data = res.content self._offset += len(data) return data def seek(self, offset, whence=0): if whence == 0: self._offset = offset elif whence == 1: self._offset += offset elif whence == 2: self._offset = self._size + offset else: err = f"ValueError: invalid whence ({whence}, should be 0, 1 or 2)" raise ValueError(err) def seekable(self): return True def tell(self): return self._offset def _parse_wheel_name(rest: str) -> Tuple[str, str, str]: name, rest = rest.split("-", 1) version, x, y, z = rest.rsplit("-", 3) return name, version, f"{x}-{y}-{z}" def _open_metadata(zf: zipfile.ZipFile, prefix: str) -> IO[bytes]: for fn in zf.namelist(): if not fn.endswith(".dist-info/METADATA"): continue if packaging.utils.canonicalize_name(fn).startswith(prefix): return zf.open(fn) raise ValueError("Can't find metadata") class PackageEntry(NamedTuple): version: str dependencies: List[str] DistListMapping = Dict[str, List[Tuple[int, str]]] @dataclasses.dataclass() class Finder: index_urls: List[str] matcher: WheelMatcher session: requests.Session def collect_best_dist_urls(self, name: str) -> Dict[str, str]: all_dists: DistListMapping = collections.defaultdict(list) for index_url in self.index_urls: res = requests.get(f"{index_url}/{name}") res.raise_for_status() doc = html5lib.parse(res.content, namespaceHTMLElements=False) for el in doc.findall(".//a"): url = el.attrib["href"] filename = urllib.parse.urlsplit(url).path.rsplit("/", 1)[-1] wheel_name, ext = filename.rsplit(".", 1) if ext != "whl": continue requires_python = el.attrib.get("data-requires-python") name, version, tag = _parse_wheel_name(wheel_name) try: rank = self.matcher.rank(tag, requires_python) except packaging.specifiers.InvalidSpecifier: logger.critical( "Dropping %s==%s; invalid Requires-Python %r", name, version, requires_python, ) continue if rank is None: continue all_dists[version].append((rank, url)) urls = {version: min(dists)[1] for version, dists in all_dists.items()} logger.info("%d URLs found for %s", len(urls), name) return urls def iter_package_entries(self, name: str) -> Iterator[PackageEntry]: for version, url in self.collect_best_dist_urls(name).items(): http_file = cast(IO[bytes], HttpFile(url, self.session)) with zipfile.ZipFile(http_file) as zf: with _open_metadata(zf, name) as f: parser = email.parser.BytesParser() data = parser.parse(cast(BinaryIO, f), headersonly=True) dependencies: List[str] = data.get_all("Requires-Dist", []) yield PackageEntry(version, dependencies) def process_package_entry( self, name: str, entry: PackageEntry ) -> Optional[Set[str]]: more = set() for dep in entry.dependencies: try: req = packaging.requirements.Requirement(dep) except packaging.requirements.InvalidRequirement: logger.critical( "Dropping %s==%s; invalid dependency %r", name, entry.version, dep, ) return None more.add(str(packaging.utils.canonicalize_name(req.name))) return more def find(self, package_names: Iterable[str]) -> dict: data = {} while package_names: more: Set[str] = set() logger.info("Discovering %s", ", ".join(package_names)) for name in package_names: entries: Dict[str, dict] = {} for e in self.iter_package_entries(name): result = self.process_package_entry(name, e) if result is None: continue more |= result entries[e.version] = {"dependencies": e.dependencies} data[name] = entries package_names = {n for n in more if n not in data} return data def main(args: Optional[List[str]]) -> int: options = parse_args(args) if not options.output: output_path: Optional[pathlib.Path] = None else: output_path = get_output_path(options.output, options.overwrite) matcher = WheelMatcher.compatible_with( options.python_version, options.interpreter, options.platforms ) finder = Finder(["https://pypi.org/simple"], matcher, requests.Session()) data = finder.find(options.package_names) if output_path is None: json.dump(data, sys.stdout, indent=2) print() else: with output_path.open("w") as f: json.dump(data, f, indent="\t") logger.info("Written: %s", os.fspath(output_path)) return 0 if __name__ == "__main__": logging.basicConfig(stream=sys.stderr, level=logging.INFO) sys.exit(main(None))
from numpy.lib.npyio import load import torch import torch.nn.functional as F from utility_functions import AvgPool3D import h5py import imageio import numpy as np import matplotlib.pyplot as plt from utility_functions import AvgPool2D import os import h5py from netCDF4 import Dataset FlowSTSR_folder_path = os.path.dirname(os.path.abspath(__file__)) ''' load_folder = os.path.join(FlowSTSR_folder_path, "TrainingData", "Supernova", "0.h5") f = h5py.File(load_folder, 'r') rootgrp = Dataset("supernova.nc", "w", format="NETCDF4") rootgrp.createDimension("x") rootgrp.createDimension("y") rootgrp.createDimension("z") dim_0 = rootgrp.createVariable("supernova", np.float32, ("x","y","z")) dim_0[:] = f['data'][0] ''' ''' load_folder = os.path.join(FlowSTSR_folder_path, "TrainingData", "Supernova_raw") save_folder = os.path.join(FlowSTSR_folder_path, "TrainingData", "Supernova") i = 0 for filename in os.listdir(load_folder): print(filename) data = np.fromfile(os.path.join(load_folder, filename), dtype=np.float32) data = data.reshape([432, 432, 432]) print(data.min()) print(data.max()) print(data.mean()) #data = np.log10(1+data) data -= data.mean() data *= ( 1 / (max(data.max(), abs(data.min()))+1e-6)) data = torch.tensor(data).unsqueeze(0).unsqueeze(0) data = F.interpolate(data, mode="trilinear", size=[448, 448, 448]).numpy()[0,0] f = h5py.File(os.path.join(save_folder, str(i)+".h5"), 'w') #f_data = np.array(f['data']) #oct_no = 0 #f_data -= f_data.mean() #f_data *= (1 / (max(f_data.max(), abs(f_data.min()))+ 1e-6)) #del f['data'] f.create_dataset("data", data=np.expand_dims(data, 0)) for z in range(0, f_data.shape[1], 128): for y in range(0, f_data.shape[2], 128): for x in range(0, f_data.shape[3], 128): d = f_data[:,z:z+128,y:y+128,x:x+128] f_h5_oct = h5py.File(os.path.join(save_folder, str(oct_no)+"_"+filename), 'w') f_h5_oct.create_dataset("data", data=d) f_h5_oct.close() oct_no += 1 f.close() i += 1 ''' ''' load_folder = os.path.join(FlowSTSR_folder_path, "TrainingData", "Combustion_raw") save_folder = os.path.join(FlowSTSR_folder_path, "TrainingData", "Combustion_vort") imgs = [] for i in range(1, 123): i_format = "%04d" % i folder = os.path.join(load_folder, "jet_"+i_format) load_name = "jet_vort_"+i_format+".dat" save_name = "%04d.h5" % (i-1) print("loading " + load_name) data = np.fromfile(os.path.join(load_folder, folder, load_name), dtype=np.float32) data = data.reshape([120, 720, 480]) print(data.min()) print(data.max()) print(data.mean()) data -= data.min() #data = np.log10(1+data) data = data / data.max() print(data.shape) data = torch.tensor(data).unsqueeze(0).unsqueeze(0) data = F.interpolate(data, mode='trilinear', size=[128, 768, 512]) data = data[0].cpu().numpy() print(data.shape) imgs.append(data[0,64]) print("saving " + save_name) f_h5 = h5py.File(os.path.join(save_folder, save_name), 'w') f_h5.create_dataset("data", data=data) f_h5.close() print("Saving gif") imageio.mimwrite("Combustion_vort.gif", imgs) ''' ''' name = "dark_matter_density" data = np.fromfile(os.path.join(FlowSTSR_folder_path, "InputData", "Nyx", name+".dat"), dtype=np.float32) data = data.reshape([512, 512, 512]) print(data.min()) print(data.max()) print(data.mean()) data -= data.min() data = np.log10(1+data) data = data / data.max() data -= data.mean() data *= ( 1 / (max(data.max(), abs(data.min()))+1e-6)) print(data.shape) rootgrp = Dataset(name+".nc", "w", format="NETCDF4") rootgrp.createDimension("x") rootgrp.createDimension("y") rootgrp.createDimension("z") dim_0 = rootgrp.createVariable(name, np.float32, ("x","y","z")) dim_0[:] = data ''' ''' results_powerspectrum = { "xs" : [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0, 101.0, 102.0, 103.0, 104.0, 105.0, 106.0, 107.0, 108.0, 109.0, 110.0, 111.0, 112.0, 113.0, 114.0, 115.0, 116.0, 117.0, 118.0, 119.0, 120.0, 121.0, 122.0, 123.0, 124.0, 125.0, 126.0, 127.0, 128.0, 129.0, 130.0, 131.0, 132.0, 133.0, 134.0, 135.0, 136.0, 137.0, 138.0, 139.0, 140.0, 141.0, 142.0, 143.0, 144.0, 145.0, 146.0, 147.0, 148.0, 149.0, 150.0, 151.0, 152.0, 153.0, 154.0, 155.0, 156.0, 157.0, 158.0, 159.0, 160.0, 161.0, 162.0, 163.0, 164.0, 165.0, 166.0, 167.0, 168.0, 169.0, 170.0, 171.0, 172.0, 173.0, 174.0, 175.0, 176.0, 177.0, 178.0, 179.0, 180.0, 181.0, 182.0, 183.0, 184.0, 185.0, 186.0, 187.0, 188.0, 189.0, 190.0, 191.0, 192.0, 193.0, 194.0, 195.0, 196.0, 197.0, 198.0, 199.0, 200.0, 201.0, 202.0, 203.0, 204.0, 205.0, 206.0, 207.0, 208.0, 209.0, 210.0, 211.0, 212.0, 213.0, 214.0, 215.0, 216.0, 217.0, 218.0, 219.0, 220.0, 221.0, 222.0, 223.0, 224.0, 225.0, 226.0, 227.0, 228.0, 229.0, 230.0, 231.0, 232.0, 233.0, 234.0, 235.0, 236.0, 237.0, 238.0, 239.0, 240.0, 241.0, 242.0, 243.0, 244.0, 245.0, 246.0, 247.0, 248.0, 249.0, 250.0, 251.0, 252.0, 253.0, 254.0, 255.0, 256.0, 257.0, 258.0, 259.0, 260.0, 261.0, 262.0, 263.0, 264.0, 265.0, 266.0, 267.0, 268.0, 269.0, 270.0, 271.0, 272.0, 273.0, 274.0, 275.0, 276.0, 277.0, 278.0, 279.0, 280.0, 281.0, 282.0, 283.0, 284.0, 285.0, 286.0, 287.0, 288.0, 289.0, 290.0, 291.0, 292.0, 293.0, 294.0, 295.0, 296.0, 297.0, 298.0, 299.0, 300.0, 301.0, 302.0, 303.0, 304.0, 305.0, 306.0, 307.0, 308.0, 309.0, 310.0, 311.0, 312.0, 313.0, 314.0, 315.0, 316.0, 317.0, 318.0, 319.0, 320.0, 321.0, 322.0, 323.0, 324.0, 325.0, 326.0, 327.0, 328.0, 329.0, 330.0, 331.0, 332.0, 333.0, 334.0, 335.0, 336.0, 337.0, 338.0, 339.0, 340.0, 341.0, 342.0, 343.0, 344.0, 345.0, 346.0, 347.0, 348.0, 349.0, 350.0, 351.0, 352.0, 353.0, 354.0, 355.0, 356.0, 357.0, 358.0, 359.0, 360.0, 361.0, 362.0, 363.0, 364.0, 365.0, 366.0, 367.0, 368.0, 369.0, 370.0, 371.0, 372.0, 373.0, 374.0, 375.0, 376.0, 377.0, 378.0, 379.0, 380.0, 381.0, 382.0, 383.0, 384.0, 385.0, 386.0, 387.0, 388.0, 389.0, 390.0, 391.0, 392.0, 393.0, 394.0, 395.0, 396.0, 397.0, 398.0, 399.0, 400.0, 401.0, 402.0, 403.0, 404.0, 405.0, 406.0, 407.0, 408.0, 409.0, 410.0, 411.0, 412.0, 413.0, 414.0, 415.0, 416.0, 417.0, 418.0, 419.0, 420.0, 421.0, 422.0, 423.0, 424.0, 425.0, 426.0, 427.0, 428.0, 429.0, 430.0, 431.0, 432.0, 433.0, 434.0, 435.0, 436.0, 437.0, 438.0, 439.0, 440.0, 441.0, 442.0, 443.0, 444.0, 445.0, 446.0, 447.0, 448.0, 449.0, 450.0, 451.0, 452.0, 453.0, 454.0, 455.0, 456.0, 457.0, 458.0, 459.0, 460.0, 461.0, 462.0, 463.0, 464.0, 465.0, 466.0, 467.0, 468.0, 469.0, 470.0, 471.0, 472.0, 473.0, 474.0, 475.0, 476.0, 477.0, 478.0, 479.0, 480.0, 481.0, 482.0, 483.0, 484.0, 485.0, 486.0, 487.0, 488.0, 489.0, 490.0, 491.0, 492.0, 493.0, 494.0, 495.0, 496.0, 497.0, 498.0, 499.0, 500.0, 501.0, 502.0, 503.0, 504.0, 505.0, 506.0, 507.0, 508.0, 509.0, 510.0, 511.0], "Ground truth": [1.1190683841705322, 0.3420126140117645, 0.9333255887031555, 1.5620728731155396, 1.6811823844909668, 2.0471885204315186, 2.0127644538879395, 2.205718517303467, 2.3285107612609863, 2.538517951965332, 2.5047643184661865, 2.498236656188965, 2.514432907104492, 2.6636266708374023, 2.662963390350342, 2.8065056800842285, 2.864065647125244, 2.9518051147460938, 3.0031092166900635, 3.0606651306152344, 3.1099603176116943, 3.1896238327026367, 3.196472406387329, 3.265127182006836, 3.221163749694824, 3.3132147789001465, 3.384387493133545, 3.4574427604675293, 3.376142740249634, 3.4250850677490234, 3.466907024383545, 3.5291590690612793, 3.601930618286133, 3.6391797065734863, 3.601001739501953, 3.6566579341888428, 3.6933250427246094, 3.736211061477661, 3.7532618045806885, 3.854665756225586, 3.8566954135894775, 3.90645694732666, 3.891075611114502, 3.910860061645508, 3.9208781719207764, 3.9504170417785645, 3.9425199031829834, 3.991117238998413, 4.017868518829346, 4.0647430419921875, 4.067299842834473, 4.077878475189209, 4.05474328994751, 4.081634521484375, 4.050901889801025, 4.0634846687316895, 4.095348834991455, 4.094532012939453, 4.0956525802612305, 4.124024868011475, 4.126298904418945, 4.132656097412109, 4.0990495681762695, 4.15346097946167, 4.089120864868164, 4.131629943847656, 4.105545997619629, 4.0649189949035645, 4.097238540649414, 4.112988471984863, 4.083864212036133, 4.0850653648376465, 4.084239959716797, 4.14586877822876, 4.110552787780762, 4.0778398513793945, 4.0708417892456055, 4.077771186828613, 4.0268754959106445, 4.011659622192383, 4.011858940124512, 4.018866062164307, 4.013390064239502, 4.033783912658691, 3.999823808670044, 4.001452445983887, 3.9851107597351074, 3.9653677940368652, 3.925686836242676, 3.9554500579833984, 3.961393117904663, 3.916207790374756, 3.8985559940338135, 3.8903772830963135, 3.852931261062622, 3.8683061599731445, 3.854796886444092, 3.8557546138763428, 3.835136651992798, 3.811753988265991, 3.7835757732391357, 3.807292938232422, 3.7804579734802246, 3.7565386295318604, 3.749875068664551, 3.7290899753570557, 3.692688465118408, 3.7154173851013184, 3.68202805519104, 3.6697309017181396, 3.654149055480957, 3.6538758277893066, 3.6413869857788086, 3.6132185459136963, 3.5981738567352295, 3.591278314590454, 3.5696606636047363, 3.552767038345337, 3.524082660675049, 3.5163803100585938, 3.5020384788513184, 3.4951729774475098, 3.4604597091674805, 3.4652695655822754, 3.442308187484741, 3.431004524230957, 3.4016897678375244, 3.374783515930176, 3.372143507003784, 3.372366189956665, 3.34720778465271, 3.3294551372528076, 3.3186697959899902, 3.3201980590820312, 3.2724483013153076, 3.250406265258789, 3.2459616661071777, 3.2337632179260254, 3.210862159729004, 3.1972506046295166, 3.185260772705078, 3.178865432739258, 3.1517069339752197, 3.1460461616516113, 3.12481689453125, 3.1197800636291504, 3.093331813812256, 3.0784103870391846, 3.056544303894043, 3.0535006523132324, 3.031879186630249, 3.0087976455688477, 2.9976024627685547, 2.9956202507019043, 2.9708242416381836, 2.948726177215576, 2.9309027194976807, 2.9230315685272217, 2.917128801345825, 2.901489496231079, 2.872803211212158, 2.8735508918762207, 2.857450485229492, 2.830136299133301, 2.8179712295532227, 2.814012050628662, 2.7855384349823, 2.7807164192199707, 2.7613062858581543, 2.751081943511963, 2.741682291030884, 2.726741313934326, 2.704336643218994, 2.6901416778564453, 2.6726255416870117, 2.662313461303711, 2.641780376434326, 2.628110647201538, 2.6177759170532227, 2.6156134605407715, 2.5985188484191895, 2.578557252883911, 2.5638628005981445, 2.5618531703948975, 2.5376439094543457, 2.5236611366271973, 2.5087203979492188, 2.5025901794433594, 2.483574867248535, 2.4718785285949707, 2.455981731414795, 2.4522318840026855, 2.432283878326416, 2.418727397918701, 2.4100472927093506, 2.3955516815185547, 2.37978458404541, 2.3629322052001953, 2.3499863147735596, 2.346564292907715, 2.3332254886627197, 2.324185609817505, 2.3017940521240234, 2.293722152709961, 2.2805330753326416, 2.275031566619873, 2.266355037689209, 2.2468535900115967, 2.228368043899536, 2.22149658203125, 2.2054643630981445, 2.193699359893799, 2.18642520904541, 2.180067539215088, 2.1603341102600098, 2.1440157890319824, 2.1316323280334473, 2.124614715576172, 2.1163768768310547, 2.105872869491577, 2.089383363723755, 2.0855250358581543, 2.068859815597534, 2.057668447494507, 2.0414881706237793, 2.032466411590576, 2.020662307739258, 2.013077735900879, 2.0018367767333984, 1.993006944656372, 1.9785138368606567, 1.969189167022705, 1.95833420753479, 1.9510802030563354, 1.9384760856628418, 1.9260565042495728, 1.9182871580123901, 1.9099781513214111, 1.8929193019866943, 1.8888294696807861, 1.8793785572052002, 1.8702912330627441, 1.8617284297943115, 1.8521543741226196, 1.8379478454589844, 1.8265902996063232, 1.8141100406646729, 1.8109724521636963, 1.7976315021514893, 1.7858699560165405, 1.77964448928833, 1.7742376327514648, 1.7610981464385986, 1.7476470470428467, 1.7410534620285034, 1.733888030052185, 1.7177059650421143, 1.711566686630249, 1.7022755146026611, 1.6938519477844238, 1.683475375175476, 1.6756837368011475, 1.66288423538208, 1.658718466758728, 1.6499748229980469, 1.6431115865707397, 1.6306805610656738, 1.6191924810409546, 1.6145540475845337, 1.6099400520324707, 1.595442771911621, 1.5885342359542847, 1.5823520421981812, 1.5738065242767334, 1.5614428520202637, 1.5527968406677246, 1.5471256971359253, 1.537325143814087, 1.5250238180160522, 1.5206549167633057, 1.5111960172653198, 1.5057361125946045, 1.4965167045593262, 1.490788459777832, 1.4815080165863037, 1.4746391773223877, 1.4640076160430908, 1.457160234451294, 1.448843002319336, 1.4422194957733154, 1.434809684753418, 1.4261173009872437, 1.4200022220611572, 1.4154033660888672, 1.4036798477172852, 1.393580675125122, 1.3865587711334229, 1.3800013065338135, 1.3716802597045898, 1.3671883344650269, 1.3590185642242432, 1.3514574766159058, 1.3467581272125244, 1.3412702083587646, 1.3284497261047363, 1.325471043586731, 1.3168408870697021, 1.3105382919311523, 1.3025895357131958, 1.2964926958084106, 1.2893784046173096, 1.2835643291473389, 1.276824712753296, 1.2680318355560303, 1.263905644416809, 1.258460521697998, 1.2467734813690186, 1.2420029640197754, 1.234485149383545, 1.2292991876602173, 1.2234277725219727, 1.2177150249481201, 1.2119454145431519, 1.2068240642547607, 1.197357416152954, 1.1922489404678345, 1.1870543956756592, 1.1797062158584595, 1.171940803527832, 1.1681784391403198, 1.161798119544983, 1.15366530418396, 1.146681547164917, 1.1455373764038086, 1.1367378234863281, 1.1318409442901611, 1.1273504495620728, 1.1197967529296875, 1.1149868965148926, 1.1098885536193848, 1.1020715236663818, 1.0972886085510254, 1.0892186164855957, 1.0862195491790771, 1.0812530517578125, 1.0765764713287354, 1.0699241161346436, 1.0631858110427856, 1.0596129894256592, 1.0557236671447754, 1.0486197471618652, 1.042668342590332, 1.0372450351715088, 1.0340666770935059, 1.026733636856079, 1.023666262626648, 1.0181037187576294, 1.0113698244094849, 1.0057456493377686, 1.001365065574646, 0.9977527856826782, 0.9932143092155457, 0.988821804523468, 0.9849964380264282, 0.9771963357925415, 0.97525954246521, 0.9684959650039673, 0.9636805057525635, 0.9594756960868835, 0.9553160667419434, 0.9498395919799805, 0.9436156749725342, 0.9402933120727539, 0.9379162788391113, 0.9327365159988403, 0.9280365705490112, 0.9213746786117554, 0.9198072552680969, 0.9153320789337158, 0.909796953201294, 0.9058825969696045, 0.9016543030738831, 0.8976033329963684, 0.8946702480316162, 0.8910138607025146, 0.8878934383392334, 0.8817130327224731, 0.8781323432922363, 0.8737807273864746, 0.8715190887451172, 0.866780161857605, 0.8626649379730225, 0.860140860080719, 0.8559972643852234, 0.8512244820594788, 0.8483637571334839, 0.8452695608139038, 0.8412681818008423, 0.8377372026443481, 0.8345264196395874, 0.8293238878250122, 0.8290265798568726, 0.8246049284934998, 0.8204882144927979, 0.8184759616851807, 0.8162283897399902, 0.8110785484313965, 0.8082807064056396, 0.8076949119567871, 0.8048509359359741, 0.7995688915252686, 0.7971093654632568, 0.7940529584884644, 0.7921943664550781, 0.7880988121032715, 0.7861512899398804, 0.7832455635070801, 0.7797336578369141, 0.7787905335426331, 0.7774345874786377, 0.7742193341255188, 0.77223140001297, 0.7704635858535767, 0.7684988379478455, 0.7648189663887024, 0.7648065090179443, 0.7629718780517578, 0.7606545686721802, 0.7585764527320862, 0.7572806477546692, 0.7546086311340332, 0.7538478374481201, 0.7529914975166321, 0.7520278692245483, 0.7515685558319092, 0.7493504285812378, 0.7462525367736816, 0.7479411363601685, 0.7471016049385071, 0.7466188669204712, 0.7458482980728149, 0.7455189228057861, 0.7447053790092468, 0.7445083856582642, 0.7447601556777954, 0.7460190057754517, 0.7449151277542114, 0.7455974221229553, 0.7451785206794739, 0.7469951510429382, 0.7494481801986694, 0.7494547367095947, 0.7504644989967346, 0.7523459792137146, 0.7533676028251648, 0.7557471990585327, 0.7569328546524048, 0.7594692707061768, 0.7615477442741394, 0.7657470107078552, 0.7682344913482666, 0.7709678411483765, 0.7746517062187195, 0.7800387740135193, 0.7848511934280396, 0.7890198230743408, 0.7936344146728516, 0.7995954155921936, 0.8055813908576965, 0.8128366470336914, 0.8191878795623779, 0.8277574777603149, 0.8362009525299072, 0.8454173803329468, 0.8551415205001831, 0.8661440014839172, 0.8768675327301025, 0.8884624242782593, 0.9010363221168518, 0.918041467666626, 0.9367120265960693, 0.9509989023208618, 0.9254101514816284, 0.8328577280044556, 0.6971551179885864, 0.59366774559021, 0.5412344932556152, 0.5084195733070374, 0.4840403199195862, 0.46631577610969543, 0.45144525170326233, 0.4398314654827118, 0.43015772104263306, 0.42178037762641907, 0.4137604534626007, 0.4069886803627014, 0.40074673295021057, 0.395257830619812, 0.38960590958595276, 0.38429105281829834, 0.3801017105579376, 0.3757082223892212, 0.37125539779663086, 0.3681381642818451, 0.3640318214893341, 0.36089059710502625, 0.3572271466255188, 0.35398179292678833, 0.35095149278640747, 0.3481188416481018, 0.34498322010040283, 0.3427697420120239], "Ours": [1.1153228282928467, 0.34090104699134827, 0.9304943680763245, 1.5573272705078125, 1.6758836507797241, 2.0408053398132324, 2.006425142288208, 2.1985116004943848, 2.320852756500244, 2.5305397510528564, 2.496875047683716, 2.4901957511901855, 2.506537675857544, 2.655010938644409, 2.6539340019226074, 2.7967591285705566, 2.854279041290283, 2.9418861865997314, 2.9931249618530273, 3.0504517555236816, 3.0996084213256836, 3.178816795349121, 3.1851437091827393, 3.2540173530578613, 3.210718870162964, 3.3019816875457764, 3.373905658721924, 3.4469873905181885, 3.365607261657715, 3.414923667907715, 3.456472635269165, 3.5185256004333496, 3.5911662578582764, 3.6282572746276855, 3.59013032913208, 3.6463606357574463, 3.683981418609619, 3.7290332317352295, 3.7451581954956055, 3.8440325260162354, 3.847442626953125, 3.897752046585083, 3.883057117462158, 3.906029224395752, 3.9152119159698486, 3.9427499771118164, 3.936728000640869, 3.9846973419189453, 4.010962963104248, 4.057991981506348, 4.0607829093933105, 4.071920394897461, 4.047878265380859, 4.076672554016113, 4.046592712402344, 4.058632850646973, 4.090663909912109, 4.090540885925293, 4.090915203094482, 4.118472099304199, 4.120879173278809, 4.12725830078125, 4.096337795257568, 4.151799201965332, 4.08836555480957, 4.13215446472168, 4.10634708404541, 4.064346790313721, 4.095883369445801, 4.112642288208008, 4.084968566894531, 4.086372375488281, 4.085682392120361, 4.147841453552246, 4.11374044418335, 4.08182954788208, 4.079225540161133, 4.088042736053467, 4.035247802734375, 4.021348476409912, 4.022994518280029, 4.02926778793335, 4.022043228149414, 4.0482635498046875, 4.017740249633789, 4.017524242401123, 4.002788543701172, 3.9826741218566895, 3.9433817863464355, 3.981473445892334, 3.9912376403808594, 3.944359302520752, 3.9277195930480957, 3.923551559448242, 3.888425350189209, 3.9035427570343018, 3.891080141067505, 3.8936822414398193, 3.8742923736572266, 3.8523356914520264, 3.8271563053131104, 3.849806308746338, 3.8199501037597656, 3.795869827270508, 3.7883427143096924, 3.770404100418091, 3.732848644256592, 3.754577159881592, 3.7169692516326904, 3.7038183212280273, 3.6884007453918457, 3.6786253452301025, 3.659703016281128, 3.6306939125061035, 3.6139280796051025, 3.5972037315368652, 3.5640182495117188, 3.5416903495788574, 3.507223606109619, 3.499530792236328, 3.48062801361084, 3.4627771377563477, 3.4176933765411377, 3.408714532852173, 3.3786826133728027, 3.355195999145508, 3.3076860904693604, 3.2773783206939697, 3.269092559814453, 3.2521603107452393, 3.214777946472168, 3.18684720993042, 3.15631103515625, 3.1373634338378906, 3.0841126441955566, 3.047171115875244, 3.0256576538085938, 3.001328468322754, 2.9589123725891113, 2.9159340858459473, 2.8838462829589844, 2.8604300022125244, 2.8156261444091797, 2.7942371368408203, 2.747051239013672, 2.7138137817382812, 2.670997381210327, 2.6312925815582275, 2.590864896774292, 2.564603567123413, 2.521679162979126, 2.47790789604187, 2.4420883655548096, 2.416328191757202, 2.368852138519287, 2.3216724395751953, 2.2812752723693848, 2.2469561100006104, 2.2083239555358887, 2.1667633056640625, 2.118393659591675, 2.0920870304107666, 2.0534658432006836, 2.0046892166137695, 1.9649662971496582, 1.9365615844726562, 1.888371467590332, 1.8534724712371826, 1.813797950744629, 1.7801812887191772, 1.7457194328308105, 1.70719313621521, 1.671086072921753, 1.638359546661377, 1.60001802444458, 1.5695774555206299, 1.533945083618164, 1.5016539096832275, 1.4650049209594727, 1.4411805868148804, 1.410683035850525, 1.376370906829834, 1.3433935642242432, 1.3191940784454346, 1.2900049686431885, 1.2610714435577393, 1.2302417755126953, 1.2054611444473267, 1.1760773658752441, 1.1485674381256104, 1.1211044788360596, 1.1028622388839722, 1.0798556804656982, 1.0536324977874756, 1.0297801494598389, 1.00953209400177, 0.9869029521942139, 0.9602900147438049, 0.9374580383300781, 0.9174153208732605, 0.8955039381980896, 0.8792177438735962, 0.8594746589660645, 0.8422635793685913, 0.8203250169754028, 0.8051974773406982, 0.7877455949783325, 0.7678631544113159, 0.749730110168457, 0.7361254692077637, 0.7218165397644043, 0.7057351469993591, 0.6909279227256775, 0.679057776927948, 0.6636543273925781, 0.6493905782699585, 0.6355352401733398, 0.6247724294662476, 0.6135773062705994, 0.6006838083267212, 0.5882638096809387, 0.5807201862335205, 0.5683357119560242, 0.5572512149810791, 0.5483596920967102, 0.5400669574737549, 0.5283457040786743, 0.5201305150985718, 0.5123773813247681, 0.5048538446426392, 0.4954215884208679, 0.48746538162231445, 0.4800589978694916, 0.4743598699569702, 0.46617409586906433, 0.4590623080730438, 0.4532712697982788, 0.44650328159332275, 0.43933895230293274, 0.43494218587875366, 0.4298359453678131, 0.4246175289154053, 0.4195297658443451, 0.415266752243042, 0.40991103649139404, 0.40447118878364563, 0.39901694655418396, 0.3962525725364685, 0.39106887578964233, 0.386704683303833, 0.3837285041809082, 0.3807882070541382, 0.3760018050670624, 0.3721970319747925, 0.3696250021457672, 0.36673808097839355, 0.3622777462005615, 0.35973986983299255, 0.3576853275299072, 0.35531824827194214, 0.352448046207428, 0.35022327303886414, 0.3471429944038391, 0.3462942838668823, 0.3442196846008301, 0.3433523178100586, 0.34128111600875854, 0.3384576439857483, 0.3376944959163666, 0.33681434392929077, 0.3337528705596924, 0.33340197801589966, 0.33275824785232544, 0.33121222257614136, 0.32958775758743286, 0.32840844988822937, 0.3276406526565552, 0.32626813650131226, 0.3249896168708801, 0.32487475872039795, 0.32280296087265015, 0.32224124670028687, 0.3210645914077759, 0.32047122716903687, 0.3192417621612549, 0.3181474804878235, 0.3160315155982971, 0.3153911828994751, 0.3146517276763916, 0.3135589063167572, 0.3125459849834442, 0.31119486689567566, 0.30966514348983765, 0.3093380928039551, 0.30769842863082886, 0.3065149784088135, 0.3054748475551605, 0.3045114576816559, 0.3031247854232788, 0.30188876390457153, 0.30010342597961426, 0.2989503741264343, 0.2982436418533325, 0.2971932888031006, 0.29501110315322876, 0.29465359449386597, 0.29316025972366333, 0.29215922951698303, 0.29055124521255493, 0.28896310925483704, 0.28788793087005615, 0.28697723150253296, 0.2854756712913513, 0.28388339281082153, 0.28250908851623535, 0.2812078893184662, 0.27883782982826233, 0.277726411819458, 0.2758181691169739, 0.2740240693092346, 0.2723538875579834, 0.2712932825088501, 0.2695227563381195, 0.2675762474536896, 0.265394926071167, 0.2640475332736969, 0.26242145895957947, 0.2606334090232849, 0.25847649574279785, 0.2570120692253113, 0.2550842761993408, 0.25285786390304565, 0.2507804036140442, 0.2497207671403885, 0.24733400344848633, 0.24500975012779236, 0.2432435154914856, 0.24159389734268188, 0.23940923810005188, 0.23743754625320435, 0.23546430468559265, 0.23370173573493958, 0.23107978701591492, 0.2296576350927353, 0.22751715779304504, 0.22556769847869873, 0.22350920736789703, 0.2212245762348175, 0.2196393758058548, 0.21803191304206848, 0.21571755409240723, 0.213881254196167, 0.21181795001029968, 0.21047206223011017, 0.2082580029964447, 0.20665214955806732, 0.20481657981872559, 0.202865332365036, 0.20101895928382874, 0.19924373924732208, 0.19771181046962738, 0.19587865471839905, 0.19445990025997162, 0.1931648701429367, 0.19073542952537537, 0.18941225111484528, 0.1872359812259674, 0.1856788992881775, 0.18424083292484283, 0.18266473710536957, 0.18082359433174133, 0.17901328206062317, 0.17771995067596436, 0.1763811707496643, 0.17479191720485687, 0.17346076667308807, 0.17155960202217102, 0.17053812742233276, 0.16937805712223053, 0.1678336262702942, 0.16652624309062958, 0.1652628630399704, 0.16423648595809937, 0.16327372193336487, 0.16181880235671997, 0.16084891557693481, 0.15929532051086426, 0.1581839919090271, 0.15716151893138885, 0.1565023809671402, 0.1552121490240097, 0.154057577252388, 0.15326741337776184, 0.15239381790161133, 0.15136146545410156, 0.15054181218147278, 0.1497347503900528, 0.14888013899326324, 0.14802473783493042, 0.14726915955543518, 0.14606109261512756, 0.14556919038295746, 0.14463719725608826, 0.14386232197284698, 0.14328238368034363, 0.14262837171554565, 0.14163267612457275, 0.14101764559745789, 0.14057859778404236, 0.13993299007415771, 0.1391335427761078, 0.13869091868400574, 0.13792432844638824, 0.1372213065624237, 0.13645437359809875, 0.13610398769378662, 0.13545837998390198, 0.13474208116531372, 0.13437873125076294, 0.1339283585548401, 0.13320046663284302, 0.132838636636734, 0.13239337503910065, 0.13194067776203156, 0.13123728334903717, 0.1311550885438919, 0.13078373670578003, 0.130154550075531, 0.1296483725309372, 0.1294194608926773, 0.12897707521915436, 0.12878157198429108, 0.12839968502521515, 0.12813791632652283, 0.12794016301631927, 0.127616286277771, 0.12715895473957062, 0.12721049785614014, 0.12672457098960876, 0.12648063898086548, 0.12652838230133057, 0.12635426223278046, 0.12599827349185944, 0.12594787776470184, 0.12578772008419037, 0.12594535946846008, 0.12584179639816284, 0.12572622299194336, 0.1253417581319809, 0.12534385919570923, 0.12552067637443542, 0.12552782893180847, 0.1254911720752716, 0.12551414966583252, 0.12537963688373566, 0.12546998262405396, 0.12544065713882446, 0.12555497884750366, 0.1255529522895813, 0.12559042870998383, 0.1255866140127182, 0.12576580047607422, 0.12582141160964966, 0.1259608268737793, 0.12607309222221375, 0.12626877427101135, 0.12627995014190674, 0.12640318274497986, 0.1264580935239792, 0.12670743465423584, 0.126683309674263, 0.12687517702579498, 0.12701520323753357, 0.12725453078746796, 0.1273999810218811, 0.12762989103794098, 0.12778374552726746, 0.12795989215373993, 0.1280672550201416, 0.12846659123897552, 0.1287492960691452, 0.1290655881166458, 0.1292874813079834, 0.1296805441379547, 0.12978419661521912, 0.13002178072929382, 0.13022078573703766, 0.13058802485466003, 0.13087955117225647, 0.13125506043434143, 0.13132280111312866, 0.13167330622673035, 0.13202489912509918, 0.1323847472667694, 0.13260358572006226, 0.13301017880439758, 0.13318505883216858, 0.13359428942203522, 0.1339586079120636, 0.13416869938373566, 0.134586900472641, 0.13489389419555664, 0.1350838541984558, 0.1355653554201126, 0.13578404486179352, 0.13623575866222382, 0.13661232590675354, 0.1370251476764679, 0.13739144802093506, 0.13773508369922638, 0.13797834515571594, 0.13846638798713684], "SR-octree":[2.17677903175354, 3.104686737060547, 4.043375015258789, 4.037208557128906, 4.919696807861328, 5.874845504760742, 6.2145538330078125, 6.847893714904785, 7.0682477951049805, 7.276698589324951, 7.544886589050293, 7.74085807800293, 7.777347087860107, 7.984922409057617, 8.12092399597168, 8.410907745361328, 8.589017868041992, 8.80884838104248, 9.000163078308105, 9.18309497833252, 9.34698486328125, 9.463083267211914, 9.539694786071777, 9.696228981018066, 9.7568941116333, 9.933374404907227, 9.937393188476562, 10.075197219848633, 10.151405334472656, 10.271442413330078, 10.316315650939941, 10.415536880493164, 10.535900115966797, 10.610088348388672, 10.73361587524414, 10.794353485107422, 10.822015762329102, 10.972721099853516, 11.053365707397461, 11.175329208374023, 11.213326454162598, 11.322216033935547, 11.321980476379395, 11.381351470947266, 11.37746524810791, 11.416399002075195, 11.463138580322266, 11.52442741394043, 11.55345344543457, 11.60187816619873, 11.626443862915039, 11.648893356323242, 11.609807014465332, 11.608047485351562, 11.581705093383789, 11.57864761352539, 11.59166431427002, 11.564367294311523, 11.611806869506836, 11.585509300231934, 11.54958724975586, 11.591119766235352, 11.512060165405273, 11.541635513305664, 11.442058563232422, 11.432317733764648, 11.370356559753418, 11.346770286560059, 11.323681831359863, 11.246341705322266, 11.24929428100586, 11.263555526733398, 11.189676284790039, 11.172561645507812, 11.127989768981934, 11.109527587890625, 11.025104522705078, 10.93754768371582, 10.87304973602295, 10.828706741333008, 10.773083686828613, 10.73055648803711, 10.691869735717773, 10.672197341918945, 10.602753639221191, 10.565139770507812, 10.472122192382812, 10.436323165893555, 10.384164810180664, 10.307401657104492, 10.244791030883789, 10.187444686889648, 10.133800506591797, 10.053133010864258, 9.98469066619873, 9.944353103637695, 9.868850708007812, 9.82454776763916, 9.760875701904297, 9.713533401489258, 9.636054992675781, 9.573599815368652, 9.500782012939453, 9.448432922363281, 9.378438949584961, 9.313541412353516, 9.23959732055664, 9.18528938293457, 9.09572982788086, 9.068514823913574, 8.998703956604004, 8.928522109985352, 8.880106925964355, 8.817352294921875, 8.758609771728516, 8.687564849853516, 8.623149871826172, 8.560752868652344, 8.500204086303711, 8.43880844116211, 8.361600875854492, 8.317346572875977, 8.25059700012207, 8.209114074707031, 8.130905151367188, 8.076295852661133, 8.017139434814453, 7.965965747833252, 7.907797813415527, 7.84065580368042, 7.799917697906494, 7.758687973022461, 7.68281364440918, 7.627373218536377, 7.573716163635254, 7.519899368286133, 7.457916259765625, 7.397641181945801, 7.358355522155762, 7.32036828994751, 7.266603469848633, 7.226200103759766, 7.178731441497803, 7.144039154052734, 7.082544326782227, 7.045069694519043, 6.994504928588867, 6.961493015289307, 6.912945747375488, 6.869272232055664, 6.82679557800293, 6.802300453186035, 6.76731014251709, 6.724225044250488, 6.694716453552246, 6.665427207946777, 6.637665271759033, 6.601127624511719, 6.570601463317871, 6.55035400390625, 6.521780967712402, 6.493141174316406, 6.459081649780273, 6.441119194030762, 6.4113569259643555, 6.389740467071533, 6.367619514465332, 6.360256195068359, 6.339751243591309, 6.32916259765625, 6.317852973937988, 6.301746368408203, 6.2907280921936035, 6.273906707763672, 6.252493858337402, 6.241593837738037, 6.233564376831055, 6.2279157638549805, 6.2212419509887695, 6.213734149932861, 6.20947790145874, 6.22147274017334, 6.211834907531738, 6.213722229003906, 6.207303524017334, 6.221661567687988, 6.212750434875488, 6.214476108551025, 6.21366024017334, 6.223293781280518, 6.221900463104248, 6.224071025848389, 6.22590446472168, 6.234245300292969, 6.237458229064941, 6.233868598937988, 6.241415023803711, 6.249100685119629, 6.248523235321045, 6.256603240966797, 6.259876251220703, 6.273702621459961, 6.27950382232666, 6.289096832275391, 6.293007850646973, 6.297235488891602, 6.301527500152588, 6.298032760620117, 6.297462463378906, 6.294023513793945, 6.291060447692871, 6.304028511047363, 6.300370693206787, 6.30103063583374, 6.298976421356201, 6.296726226806641, 6.291236400604248, 6.282033443450928, 6.275025367736816, 6.267657279968262, 6.258029937744141, 6.253689289093018, 6.23329496383667, 6.222102642059326, 6.199103832244873, 6.181999683380127, 6.157290458679199, 6.129861831665039, 6.096798419952393, 6.0693511962890625, 6.038651466369629, 6.005161285400391, 5.967451095581055, 5.922616958618164, 5.8816070556640625, 5.838935852050781, 5.783500671386719, 5.735221862792969, 5.679076194763184, 5.627633094787598, 5.560635566711426, 5.496788024902344, 5.427298545837402, 5.342999458312988, 5.254882335662842, 5.17019510269165, 5.070696830749512, 4.9738569259643555, 4.871763229370117, 4.771126747131348, 4.658448219299316, 4.535346984863281, 4.411426544189453, 4.275084018707275, 4.1309332847595215, 4.0061116218566895, 3.914379119873047, 3.8543171882629395, 3.821730852127075, 3.8338818550109863, 3.8677101135253906, 3.9125382900238037, 3.9539642333984375, 4.002926826477051, 4.0449371337890625, 4.090041637420654, 4.138810634613037, 4.185399532318115, 4.234495162963867, 4.282010555267334, 4.3295440673828125, 4.379822731018066, 4.421647071838379, 4.465240955352783, 4.506595611572266, 4.540782928466797, 4.575828552246094, 4.611869812011719, 4.645750522613525, 4.678774833679199, 4.708827972412109, 4.747437477111816, 4.7737274169921875, 4.807931900024414, 4.831366539001465, 4.85777473449707, 4.8805317878723145, 4.900992393493652, 4.919943332672119, 4.936578273773193, 4.956294536590576, 4.975931644439697, 4.987401008605957, 5.0027666091918945, 5.011504650115967, 5.023746490478516, 5.032135963439941, 5.037472724914551, 5.047362327575684, 5.051031589508057, 5.057233810424805, 5.061892986297607, 5.061836242675781, 5.067837715148926, 5.067499160766602, 5.074305534362793, 5.0682053565979, 5.072011470794678, 5.070659637451172, 5.067062854766846, 5.064232349395752, 5.062520980834961, 5.061490058898926, 5.058897972106934, 5.058325290679932, 5.0545244216918945, 5.05312442779541, 5.048454284667969, 5.037303447723389, 5.040555477142334, 5.036755084991455, 5.039066314697266, 5.034225940704346, 5.033823013305664, 5.037308216094971, 5.036977767944336, 5.034346103668213, 5.034607410430908, 5.038334846496582, 5.03901481628418, 5.036465644836426, 5.045547008514404, 5.048652648925781, 5.05712890625, 5.063508987426758, 5.075639724731445, 5.085427284240723, 5.094447612762451, 5.106485843658447, 5.114947319030762, 5.125388145446777, 5.1417999267578125, 5.154247283935547, 5.1744208335876465, 5.18792724609375, 5.207650661468506, 5.229397773742676, 5.250720024108887, 5.271365165710449, 5.293094635009766, 5.319616794586182, 5.347279071807861, 5.3690032958984375, 5.396540641784668, 5.420563697814941, 5.449283599853516, 5.474859237670898, 5.501993179321289, 5.533157825469971, 5.559548377990723, 5.590087890625, 5.621253967285156, 5.648688316345215, 5.678748607635498, 5.698730945587158, 5.727315902709961, 5.745884895324707, 5.771259307861328, 5.7925214767456055, 5.8118896484375, 5.838423252105713, 5.859399795532227, 5.8812761306762695, 5.905402660369873, 5.925880432128906, 5.955153942108154, 5.977754592895508, 6.005517959594727, 6.02662467956543, 6.052084922790527, 6.0818281173706055, 6.108105182647705, 6.13942813873291, 6.16900634765625, 6.197851657867432, 6.232394695281982, 6.262883186340332, 6.296454429626465, 6.319486618041992, 6.351753234863281, 6.381895065307617, 6.415424823760986, 6.443106651306152, 6.472728729248047, 6.512679100036621, 6.546327590942383, 6.583624839782715, 6.619935512542725, 6.654709815979004, 6.691723823547363, 6.724106788635254, 6.764636993408203, 6.7952985763549805, 6.840662479400635, 6.880825996398926, 6.916048526763916, 6.9608259201049805, 7.000340461730957, 7.038213729858398, 7.080545425415039, 7.117116928100586, 7.1634440422058105, 7.197575569152832, 7.242242813110352, 7.280797958374023, 7.32054328918457, 7.366442680358887, 7.4085798263549805, 7.4543046951293945, 7.496654510498047, 7.541134357452393, 7.584671974182129, 7.6252007484436035, 7.673555374145508, 7.71476411819458, 7.759086608886719, 7.8000168800354, 7.84334135055542, 7.881185054779053, 7.916384696960449, 7.9546966552734375, 7.992111682891846, 8.031181335449219, 8.076112747192383, 8.114800453186035, 8.159378051757812, 8.196464538574219, 8.238592147827148, 8.276259422302246, 8.319649696350098, 8.355762481689453, 8.391340255737305, 8.430968284606934, 8.470632553100586, 8.500429153442383, 8.538912773132324, 8.567869186401367, 8.603072166442871, 8.634054183959961, 8.664288520812988, 8.690605163574219, 8.71954345703125, 8.751075744628906, 8.771533012390137, 8.790977478027344, 8.815882682800293, 8.832954406738281, 8.855300903320312, 8.868273735046387, 8.889711380004883, 8.905672073364258, 8.920380592346191, 8.931053161621094, 8.941938400268555, 8.953032493591309, 8.960453033447266, 8.966425895690918, 8.966469764709473, 8.962377548217773, 8.963920593261719, 8.95942497253418, 8.946266174316406, 8.930642127990723, 8.920928955078125, 8.900790214538574, 8.878737449645996, 8.849403381347656, 8.828131675720215, 8.79581356048584, 8.76168441772461, 8.722474098205566, 8.68349552154541, 8.640190124511719, 8.5897798538208, 8.537193298339844, 8.476903915405273, 8.405702590942383, 8.338116645812988, 8.260357856750488, 8.182703018188477, 8.100356101989746, 8.015028953552246, 7.922852516174316, 7.824296951293945, 7.716063499450684, 7.601341247558594, 7.478263854980469, 7.349638938903809, 7.216497421264648, 7.072693824768066, 6.924648284912109, 6.76527214050293, 6.596034049987793, 6.420612335205078, 6.227963447570801, 6.034524917602539, 5.822513580322266, 5.598674774169922, 5.357320308685303, 5.093730449676514, 4.806214809417725, 4.531240463256836], "SZ": [1.1190619468688965, 0.34201210737228394, 0.9333475828170776, 1.5620157718658447, 1.681032419204712, 2.0469706058502197, 2.0127103328704834, 2.206033706665039, 2.328901767730713, 2.538883686065674, 2.504638195037842, 2.4975924491882324, 2.5137884616851807, 2.663048028945923, 2.66184663772583, 2.805690050125122, 2.863844871520996, 2.9515700340270996, 3.002574920654297, 3.05953311920166, 3.107973337173462, 3.1872987747192383, 3.193516254425049, 3.2624454498291016, 3.2178006172180176, 3.308588981628418, 3.379387855529785, 3.4514007568359375, 3.369500160217285, 3.4174001216888428, 3.457951307296753, 3.5173583030700684, 3.5882511138916016, 3.623811960220337, 3.5844874382019043, 3.639864921569824, 3.674999713897705, 3.713590621948242, 3.72645902633667, 3.8242640495300293, 3.824152946472168, 3.87026309967041, 3.8501853942871094, 3.8670477867126465, 3.87192440032959, 3.8959081172943115, 3.8859715461730957, 3.929947853088379, 3.9506988525390625, 3.9905550479888916, 3.984234571456909, 3.989090919494629, 3.9621353149414062, 3.9815280437469482, 3.9457390308380127, 3.9499614238739014, 3.9740636348724365, 3.9659032821655273, 3.9558870792388916, 3.9726500511169434, 3.965010643005371, 3.961996555328369, 3.920492172241211, 3.961965560913086, 3.888455390930176, 3.9148354530334473, 3.8792693614959717, 3.8292994499206543, 3.846773386001587, 3.8487887382507324, 3.8078389167785645, 3.797238826751709, 3.7817800045013428, 3.8223776817321777, 3.774991512298584, 3.730078935623169, 3.705967426300049, 3.697174549102783, 3.6367387771606445, 3.6035876274108887, 3.5847620964050293, 3.574397325515747, 3.5516433715820312, 3.547213554382324, 3.4986047744750977, 3.480088472366333, 3.4480583667755127, 3.412999153137207, 3.358727216720581, 3.363582134246826, 3.3452863693237305, 3.2854080200195312, 3.249812364578247, 3.224419593811035, 3.172354221343994, 3.1627469062805176, 3.1287827491760254, 3.1047301292419434, 3.065045118331909, 3.0283141136169434, 2.9875917434692383, 2.980961322784424, 2.933614730834961, 2.894111156463623, 2.8704631328582764, 2.8376266956329346, 2.7843897342681885, 2.7737069129943848, 2.7284021377563477, 2.698416233062744, 2.668336868286133, 2.644864797592163, 2.613569736480713, 2.577439308166504, 2.5467350482940674, 2.516451835632324, 2.479862928390503, 2.451566219329834, 2.4199094772338867, 2.3976221084594727, 2.3656129837036133, 2.3447184562683105, 2.3087923526763916, 2.298741102218628, 2.2678747177124023, 2.246103286743164, 2.211454391479492, 2.1820895671844482, 2.1698617935180664, 2.1587369441986084, 2.1336708068847656, 2.10846209526062, 2.091322898864746, 2.0862746238708496, 2.0507583618164062, 2.0341908931732178, 2.026151180267334, 2.013186454772949, 1.9952553510665894, 1.977057695388794, 1.9700067043304443, 1.9659950733184814, 1.9434460401535034, 1.9407951831817627, 1.9257279634475708, 1.920248031616211, 1.9045746326446533, 1.896983027458191, 1.8830678462982178, 1.8751592636108398, 1.8624513149261475, 1.8502843379974365, 1.8464475870132446, 1.8492474555969238, 1.8319069147109985, 1.814847707748413, 1.8049674034118652, 1.8076651096343994, 1.8015028238296509, 1.789158582687378, 1.7714269161224365, 1.7646206617355347, 1.7562837600708008, 1.740386962890625, 1.7293846607208252, 1.72336745262146, 1.6951992511749268, 1.6874486207962036, 1.6726592779159546, 1.6632044315338135, 1.6531035900115967, 1.6374624967575073, 1.6177810430526733, 1.5999736785888672, 1.5852718353271484, 1.5754683017730713, 1.559812307357788, 1.5473434925079346, 1.5335639715194702, 1.532987117767334, 1.5183902978897095, 1.5057533979415894, 1.5027167797088623, 1.5002946853637695, 1.4879395961761475, 1.4833570718765259, 1.4836971759796143, 1.484024167060852, 1.4773701429367065, 1.4800664186477661, 1.476729393005371, 1.4892044067382812, 1.4902658462524414, 1.4929455518722534, 1.5034515857696533, 1.5082266330718994, 1.5139641761779785, 1.5147325992584229, 1.5236027240753174, 1.5412383079528809, 1.5489773750305176, 1.5626559257507324, 1.5696327686309814, 1.58928644657135, 1.5965263843536377, 1.6088354587554932, 1.6241027116775513, 1.631760597229004, 1.6459665298461914, 1.6623057126998901, 1.6740193367004395, 1.6926474571228027, 1.7119553089141846, 1.7354670763015747, 1.742661952972412, 1.755727767944336, 1.7755937576293945, 1.7953863143920898, 1.8119704723358154, 1.830310583114624, 1.8414878845214844, 1.8616740703582764, 1.8796923160552979, 1.8994557857513428, 1.9166967868804932, 1.9364278316497803, 1.9453483819961548, 1.965328335762024, 1.978123426437378, 1.996690034866333, 2.015673875808716, 2.033355951309204, 2.0503053665161133, 2.0690176486968994, 2.076859951019287, 2.0888333320617676, 2.101884603500366, 2.1133601665496826, 2.120739459991455, 2.132235527038574, 2.1358509063720703, 2.144136428833008, 2.1499228477478027, 2.1540470123291016, 2.1492269039154053, 2.1441752910614014, 2.134638786315918, 2.136739730834961, 2.1230297088623047, 2.109149217605591, 2.1046860218048096, 2.1003265380859375, 2.085144519805908, 2.074223279953003, 2.066187858581543, 2.056112051010132, 2.0417754650115967, 2.037087917327881, 2.0283091068267822, 2.0150649547576904, 2.000258445739746, 1.9921152591705322, 1.9744106531143188, 1.9654525518417358, 1.954437255859375, 1.9428000450134277, 1.9261436462402344, 1.9171143770217896, 1.9140522480010986, 1.9042999744415283, 1.8850293159484863, 1.8793892860412598, 1.8692011833190918, 1.859171748161316, 1.8457446098327637, 1.8362152576446533, 1.831392526626587, 1.8193511962890625, 1.806980848312378, 1.806101679801941, 1.7964414358139038, 1.7908635139465332, 1.7779438495635986, 1.7726483345031738, 1.764747142791748, 1.756056308746338, 1.7478394508361816, 1.7419404983520508, 1.732616662979126, 1.7288529872894287, 1.7279545068740845, 1.7195398807525635, 1.7099456787109375, 1.7136808633804321, 1.7060167789459229, 1.6969823837280273, 1.6949162483215332, 1.692852258682251, 1.6855382919311523, 1.6804730892181396, 1.6770415306091309, 1.6766258478164673, 1.6761162281036377, 1.672552227973938, 1.6629319190979004, 1.6659969091415405, 1.6612406969070435, 1.6605236530303955, 1.6580346822738647, 1.6543668508529663, 1.6549453735351562, 1.6527307033538818, 1.6439101696014404, 1.6428707838058472, 1.6452714204788208, 1.6439049243927002, 1.636620283126831, 1.63687264919281, 1.6330581903457642, 1.630275011062622, 1.6241943836212158, 1.6214922666549683, 1.6174169778823853, 1.610004186630249, 1.6001245975494385, 1.5976614952087402, 1.5941195487976074, 1.5871977806091309, 1.5772569179534912, 1.5697910785675049, 1.5614454746246338, 1.551461935043335, 1.5398439168930054, 1.5318961143493652, 1.519102692604065, 1.5117474794387817, 1.4991230964660645, 1.4849053621292114, 1.4740794897079468, 1.4659497737884521, 1.453723669052124, 1.4402424097061157, 1.4239249229431152, 1.4151721000671387, 1.4031044244766235, 1.3928157091140747, 1.379800796508789, 1.3682942390441895, 1.3631805181503296, 1.3555231094360352, 1.342212200164795, 1.3350253105163574, 1.3305249214172363, 1.3306610584259033, 1.3229098320007324, 1.3186655044555664, 1.319215178489685, 1.3192389011383057, 1.3176418542861938, 1.3168869018554688, 1.323311448097229, 1.3292877674102783, 1.3331258296966553, 1.3417787551879883, 1.3464759588241577, 1.3596137762069702, 1.3662841320037842, 1.3784514665603638, 1.394921064376831, 1.4103858470916748, 1.4228129386901855, 1.4383515119552612, 1.4565277099609375, 1.4764289855957031, 1.4967515468597412, 1.516669750213623, 1.5349936485290527, 1.5598375797271729, 1.580789566040039, 1.601300835609436, 1.6218500137329102, 1.6401358842849731, 1.6593494415283203, 1.681135892868042, 1.696661114692688, 1.7121673822402954, 1.7243638038635254, 1.7437570095062256, 1.7577836513519287, 1.7715823650360107, 1.7789584398269653, 1.7877416610717773, 1.8002862930297852, 1.8107786178588867, 1.819185733795166, 1.8323454856872559, 1.8419474363327026, 1.848493218421936, 1.8590577840805054, 1.8680301904678345, 1.8702025413513184, 1.8794498443603516, 1.8853495121002197, 1.893364429473877, 1.8965972661972046, 1.899944543838501, 1.9031002521514893, 1.9080784320831299, 1.9109441041946411, 1.9113426208496094, 1.9081871509552002, 1.910861611366272, 1.9091122150421143, 1.9098503589630127, 1.9054169654846191, 1.9079868793487549, 1.9055787324905396, 1.8974486589431763, 1.8971264362335205, 1.8959470987319946, 1.8905012607574463, 1.8901782035827637, 1.888779878616333, 1.8859139680862427, 1.8776710033416748, 1.8786239624023438, 1.8730659484863281, 1.8658636808395386, 1.8634743690490723, 1.8553334474563599, 1.8453938961029053, 1.8465522527694702, 1.8449242115020752, 1.8397514820098877, 1.8348169326782227, 1.829789161682129, 1.818169116973877, 1.8188124895095825, 1.8141300678253174, 1.810652494430542, 1.808395266532898, 1.8019081354141235, 1.7972506284713745, 1.7935072183609009, 1.7906689643859863, 1.7912800312042236, 1.7862417697906494, 1.7842061519622803, 1.7758066654205322, 1.776123046875, 1.778996467590332, 1.7771673202514648, 1.775059461593628, 1.7733936309814453, 1.7740062475204468, 1.7746773958206177, 1.772887110710144, 1.7773106098175049, 1.7788712978363037, 1.7794239521026611, 1.7782416343688965, 1.7823517322540283, 1.784118413925171, 1.7872034311294556, 1.7922935485839844, 1.7954142093658447, 1.7982006072998047, 1.8040978908538818, 1.8072601556777954, 1.8117246627807617, 1.8147165775299072, 1.8216161727905273, 1.825623631477356, 1.8294861316680908, 1.8323206901550293, 1.838452696800232, 1.8437917232513428, 1.846151351928711, 1.8450276851654053, 1.8512694835662842, 1.8559616804122925, 1.85966956615448, 1.8583629131317139, 1.860475778579712, 1.859307885169983, 1.8560261726379395, 1.8526322841644287, 1.8524503707885742, 1.8470311164855957, 1.84355628490448, 1.8375625610351562, 1.8294399976730347, 1.8221049308776855, 1.8162025213241577, 1.80690598487854, 1.8003500699996948, 1.7895920276641846, 1.7811152935028076, 1.770780086517334, 1.7577975988388062, 1.7454791069030762, 1.7303060293197632, 1.7174433469772339, 1.7074322700500488, 1.6924636363983154, 1.681823492050171, 1.6654127836227417, 1.6525027751922607, 1.6384811401367188, 1.622106909751892, 1.606553077697754, 1.5919227600097656] } ''' ''' results_powerspectrum = { 'xs': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511], 'Raw data' :[25141876.0, 13286992.0, 8955820.0, 4851923.0, 3892812.25, 3050182.5, 2347255.25, 1896700.75, 1525954.875, 1263125.75, 1058105.75, 891347.375, 766699.75, 666951.0, 591555.5625, 529092.9375, 478589.5, 435338.75, 397212.75, 363648.96875, 334474.125, 307504.21875, 283811.53125, 262763.21875, 244826.90625, 227678.6875, 212548.703125, 199033.40625, 187594.328125, 176524.640625, 166688.90625, 157329.78125, 149208.984375, 141788.109375, 134911.921875, 128553.3984375, 122273.7109375, 117257.953125, 112486.9140625, 107833.2578125, 103159.265625, 98889.3125, 94595.4140625, 90664.0859375, 86916.09375, 83536.5234375, 80415.8671875, 77514.640625, 74906.3125, 72001.8359375, 69438.34375, 66829.453125, 64475.94921875, 62029.390625, 59832.98046875, 57838.61328125, 55881.015625, 54059.33984375, 52325.421875, 50618.49609375, 49016.87109375, 47423.12109375, 45925.94140625, 44478.4140625, 43019.53515625, 41686.44140625, 40323.84375, 39139.21875, 37970.7109375, 36828.15625, 35812.4765625, 34841.03125, 33878.5234375, 32892.22265625, 31993.111328125, 31135.845703125, 30199.095703125, 29315.689453125, 28486.3984375, 27708.53515625, 26912.701171875, 26211.685546875, 25568.484375, 24915.564453125, 24270.333984375, 23651.17578125, 23058.09765625, 22437.87109375, 21875.1171875, 21311.974609375, 20782.193359375, 20252.873046875, 19743.4375, 19256.00390625, 18794.548828125, 18340.013671875, 17896.013671875, 17477.669921875, 17076.3984375, 16677.59765625, 16275.0419921875, 15891.75390625, 15531.921875, 15168.0439453125, 14816.1650390625, 14477.1640625, 14148.21484375, 13833.9150390625, 13522.8515625, 13243.140625, 12952.943359375, 12656.0732421875, 12385.1787109375, 12118.4638671875, 11857.0888671875, 11587.1103515625, 11344.759765625, 11107.5771484375, 10871.8876953125, 10635.3154296875, 10405.09375, 10197.33203125, 9975.1748046875, 9770.193359375, 9574.0751953125, 9373.71484375, 9187.4384765625, 8998.6875, 8820.7265625, 8642.431640625, 8467.70703125, 8309.181640625, 8141.38623046875, 7977.49365234375, 7818.611328125, 7665.3271484375, 7511.1474609375, 7362.58056640625, 7221.4130859375, 7088.78173828125, 6956.4443359375, 6825.03271484375, 6700.505859375, 6573.017578125, 6450.48291015625, 6328.498046875, 6206.0390625, 6094.7724609375, 5981.8076171875, 5871.62744140625, 5766.6162109375, 5659.26318359375, 5558.939453125, 5455.3271484375, 5355.41357421875, 5261.1259765625, 5167.3896484375, 5075.70849609375, 4988.44091796875, 4901.6611328125, 4816.58056640625, 4729.3994140625, 4646.001953125, 4565.93701171875, 4486.60009765625, 4409.6845703125, 4334.63232421875, 4262.66748046875, 4190.36083984375, 4120.4677734375, 4050.70361328125, 3980.265625, 3912.138671875, 3845.581298828125, 3779.189208984375, 3715.713623046875, 3655.260498046875, 3595.952880859375, 3538.279541015625, 3481.411865234375, 3425.979248046875, 3370.122314453125, 3313.984619140625, 3259.69482421875, 3206.369873046875, 3154.7890625, 3104.523681640625, 3055.9814453125, 3008.705810546875, 2962.079833984375, 2915.131591796875, 2869.6875, 2824.535888671875, 2778.665771484375, 2733.961181640625, 2691.293701171875, 2649.86474609375, 2609.45263671875, 2569.23388671875, 2531.54052734375, 2492.306396484375, 2454.446533203125, 2417.775390625, 2381.2353515625, 2346.611572265625, 2310.54345703125, 2277.16064453125, 2242.473876953125, 2208.437744140625, 2175.02880859375, 2142.0078125, 2109.7685546875, 2078.712646484375, 2047.566650390625, 2017.1783447265625, 1987.4345703125, 1958.0875244140625, 1930.089599609375, 1902.3743896484375, 1875.690673828125, 1849.054443359375, 1822.3514404296875, 1794.2344970703125, 1768.279296875, 1742.642578125, 1717.462158203125, 1692.822998046875, 1668.912353515625, 1646.3355712890625, 1623.7279052734375, 1600.619384765625, 1578.2537841796875, 1556.806884765625, 1534.783447265625, 1514.194091796875, 1493.203857421875, 1473.034423828125, 1453.0010986328125, 1432.9752197265625, 1414.0389404296875, 1394.798828125, 1375.8853759765625, 1356.8912353515625, 1338.320068359375, 1320.4765625, 1302.3670654296875, 1284.3868408203125, 1266.865966796875, 1250.555419921875, 1234.1126708984375, 1217.716796875, 1201.2408447265625, 1185.488037109375, 1169.4755859375, 1153.5521240234375, 1137.9691162109375, 1122.755859375, 1108.227783203125, 1093.362548828125, 1079.3084716796875, 1065.2711181640625, 1051.5191650390625, 1038.0482177734375, 1024.62939453125, 1011.54248046875, 998.5826416015625, 985.7373657226562, 973.33251953125, 960.98779296875, 948.6842651367188, 936.9301147460938, 925.10791015625, 913.5501098632812, 901.7206420898438, 890.2074584960938, 879.0147705078125, 867.3776245117188, 856.447021484375, 845.5843505859375, 835.097412109375, 824.7184448242188, 814.604248046875, 804.8720092773438, 794.9691772460938, 785.288818359375, 775.722412109375, 766.090087890625, 756.629638671875, 747.1991577148438, 738.093505859375, 729.378173828125, 720.3740844726562, 711.7059936523438, 702.715576171875, 694.3911743164062, 685.609375, 677.0723876953125, 668.9702758789062, 661.0812377929688, 653.4078369140625, 645.7487182617188, 638.44091796875, 630.90185546875, 623.3991088867188, 615.8792724609375, 608.6513671875, 601.4356689453125, 594.442626953125, 587.272216796875, 580.5233154296875, 573.7293090820312, 566.9773559570312, 560.4168701171875, 553.8124389648438, 547.5328369140625, 541.001708984375, 534.7037353515625, 528.7418823242188, 522.623779296875, 516.6343383789062, 510.79779052734375, 505.11456298828125, 499.5931091308594, 493.838134765625, 488.1368103027344, 482.5367126464844, 477.0275573730469, 471.5401916503906, 466.1739501953125, 460.876953125, 455.7603759765625, 450.8058166503906, 445.7428283691406, 440.95294189453125, 436.0252685546875, 431.24224853515625, 426.5335998535156, 421.7265930175781, 417.0493469238281, 412.28155517578125, 407.7283935546875, 403.2799072265625, 398.8334045410156, 394.5728759765625, 390.42376708984375, 386.2483215332031, 382.1973571777344, 378.0982666015625, 374.0193176269531, 369.95556640625, 366.00628662109375, 362.0304260253906, 358.15069580078125, 354.4022521972656, 350.563232421875, 346.8364562988281, 343.095947265625, 339.5651550292969, 335.9510498046875, 332.41156005859375, 329.0798645019531, 325.71551513671875, 322.4022521972656, 319.0783386230469, 315.8150939941406, 312.5162353515625, 309.1629638671875, 305.97344970703125, 302.8131103515625, 299.6266784667969, 296.5963439941406, 293.5699462890625, 290.66156005859375, 287.72503662109375, 284.82684326171875, 282.0689697265625, 279.2023620605469, 276.4267578125, 273.6347351074219, 270.9993896484375, 268.2995300292969, 265.6341857910156, 263.12451171875, 260.5594177246094, 258.14007568359375, 255.58432006835938, 253.18020629882812, 250.76470947265625, 248.32420349121094, 245.9781951904297, 243.6289520263672, 241.35421752929688, 239.12603759765625, 236.83966064453125, 234.6668243408203, 232.48683166503906, 230.33242797851562, 228.1403045654297, 226.03602600097656, 224.0401611328125, 221.9927520751953, 219.97579956054688, 218.04962158203125, 216.21824645996094, 214.32107543945312, 212.45217895507812, 210.67225646972656, 208.91578674316406, 207.0709686279297, 205.23745727539062, 203.53610229492188, 201.83346557617188, 200.0789031982422, 198.37493896484375, 196.71322631835938, 195.14669799804688, 193.5537872314453, 192.01156616210938, 190.51034545898438, 189.04600524902344, 187.65777587890625, 186.22862243652344, 184.8418731689453, 183.44471740722656, 182.13967895507812, 180.82957458496094, 179.55355834960938, 178.34368896484375, 177.09344482421875, 175.91812133789062, 174.7257080078125, 173.57394409179688, 172.47311401367188, 171.37098693847656, 170.2907257080078, 169.26490783691406, 168.30007934570312, 167.37013244628906, 166.39134216308594, 165.5266876220703, 164.70570373535156, 163.8613739013672, 163.08193969726562, 162.29449462890625, 161.552734375, 160.8280487060547, 160.19752502441406, 159.5591583251953, 158.96743774414062, 158.4168701171875, 157.97557067871094, 157.50906372070312, 157.06729125976562, 156.717041015625, 156.31704711914062, 156.00025939941406, 155.70001220703125, 155.55184936523438, 155.39122009277344, 155.25001525878906, 155.2377166748047, 155.30703735351562, 155.43060302734375, 155.5107879638672, 155.71400451660156, 156.0399169921875, 156.40650939941406, 156.82205200195312, 157.3544464111328, 157.99932861328125, 158.7686767578125, 159.61036682128906, 160.59054565429688, 161.67189025878906, 162.86753845214844, 164.1967010498047, 165.6467742919922, 167.3438720703125, 169.35015869140625, 171.19827270507812, 170.92869567871094, 166.2805938720703, 156.95675659179688, 145.14138793945312, 131.62783813476562, 117.17093658447266, 103.91419219970703, 94.19029998779297, 88.37032318115234, 84.25625610351562, 81.04232025146484, 78.44087982177734, 76.24996948242188, 74.35597229003906, 72.68389892578125, 71.15137481689453, 69.74664306640625, 68.44426727294922, 67.24844360351562, 66.10746002197266, 65.03433227539062, 64.03384399414062, 63.08150100708008, 62.179588317871094, 61.30385208129883, 60.47306823730469, 59.66187286376953, 58.893035888671875, 58.153297424316406, 57.452980041503906, 56.77273941040039, 56.099998474121094], 'Ours' : [25086374.0, 13259168.0, 8937381.0, 4842663.0, 3885173.25, 3044032.0, 2342550.25, 1892818.625, 1522778.0, 1260462.625, 1055903.25, 889523.9375, 765123.625, 665592.6875, 590354.0625, 528018.5, 477596.375, 434427.5625, 396375.125, 362877.0, 333769.03125, 306860.1875, 283221.75, 262225.25, 244332.953125, 227216.96875, 212124.03125, 198633.875, 187228.3125, 176180.953125, 166365.25, 157027.890625, 148922.53125, 141518.578125, 134655.84375, 128305.8125, 122042.015625, 117035.9140625, 112280.5703125, 107639.8046875, 102974.2421875, 98719.1328125, 94437.6171875, 90519.3828125, 86774.4140625, 83404.03125, 80289.6328125, 77395.4921875, 74791.6640625, 71890.609375, 69333.796875, 66726.3046875, 64376.4609375, 61938.10546875, 59750.046875, 57760.75390625, 55806.99609375, 53990.32421875, 52257.95703125, 50550.44921875, 48947.95703125, 47358.5078125, 45864.76171875, 44419.671875, 42962.1171875, 41632.4375, 40274.40625, 39092.22265625, 37928.8125, 36785.4921875, 35773.8984375, 34801.140625, 33836.578125, 32848.4453125, 31947.669921875, 31093.68359375, 30159.134765625, 29277.740234375, 28450.388671875, 27675.751953125, 26881.939453125, 26182.416015625, 25539.0390625, 24889.9296875, 24246.859375, 23629.44921875, 23039.3828125, 22424.091796875, 21865.607421875, 21302.857421875, 20772.48828125, 20245.572265625, 19737.921875, 19250.611328125, 18788.515625, 18334.77734375, 17893.62890625, 17474.462890625, 17074.306640625, 16671.51171875, 16267.5830078125, 15884.5634765625, 15523.578125, 15161.1103515625, 14808.560546875, 14467.322265625, 14137.1337890625, 13820.8486328125, 13507.861328125, 13221.720703125, 12923.2060546875, 12623.49609375, 12347.96484375, 12075.1630859375, 11807.74609375, 11533.56640625, 11286.890625, 11043.265625, 10800.7578125, 10559.7890625, 10322.6728515625, 10106.7548828125, 9880.1884765625, 9670.41796875, 9469.931640625, 9263.955078125, 9071.1953125, 8876.318359375, 8691.021484375, 8506.337890625, 8322.4033203125, 8156.54150390625, 7983.7685546875, 7813.23193359375, 7647.44482421875, 7488.02490234375, 7328.13916015625, 7172.0400390625, 7025.375, 6889.3671875, 6752.07763671875, 6614.73291015625, 6483.64306640625, 6350.6962890625, 6221.7275390625, 6091.955078125, 5963.73779296875, 5847.77197265625, 5731.29443359375, 5616.068359375, 5505.533203125, 5396.95458984375, 5293.869140625, 5185.6181640625, 5083.86962890625, 4986.73681640625, 4890.8232421875, 4795.03857421875, 4704.6435546875, 4615.14453125, 4527.46630859375, 4439.59912109375, 4354.14208984375, 4271.55029296875, 4189.880859375, 4112.25439453125, 4037.536865234375, 3965.844970703125, 3894.762939453125, 3825.94677734375, 3757.956787109375, 3689.139892578125, 3621.111572265625, 3554.463623046875, 3488.527099609375, 3425.76611328125, 3366.484619140625, 3307.95703125, 3252.389404296875, 3196.420166015625, 3142.677001953125, 3090.153564453125, 3035.413330078125, 2983.51318359375, 2931.41162109375, 2883.7470703125, 2836.70849609375, 2789.6240234375, 2744.742431640625, 2701.097900390625, 2657.78955078125, 2615.054931640625, 2572.158935546875, 2530.02392578125, 2489.28173828125, 2450.86279296875, 2413.09375, 2376.168701171875, 2339.88037109375, 2305.100341796875, 2269.871826171875, 2234.5224609375, 2201.078125, 2167.69873046875, 2135.7890625, 2103.503173828125, 2074.215576171875, 2043.864013671875, 2013.9686279296875, 1984.635009765625, 1955.6505126953125, 1928.2210693359375, 1900.0267333984375, 1873.1285400390625, 1846.1243896484375, 1820.8114013671875, 1795.4609375, 1770.3046875, 1746.51904296875, 1722.0565185546875, 1698.4722900390625, 1673.7496337890625, 1650.047607421875, 1627.31982421875, 1604.8199462890625, 1583.19189453125, 1561.8165283203125, 1540.7784423828125, 1520.5291748046875, 1500.7432861328125, 1480.2606201171875, 1460.7928466796875, 1442.187744140625, 1422.9251708984375, 1404.593505859375, 1385.6163330078125, 1367.61083984375, 1350.0335693359375, 1331.9691162109375, 1315.490478515625, 1298.43212890625, 1281.9635009765625, 1264.8807373046875, 1248.07568359375, 1231.839111328125, 1215.2337646484375, 1198.8941650390625, 1182.765625, 1167.81787109375, 1152.43017578125, 1137.1143798828125, 1122.1849365234375, 1107.65185546875, 1093.179931640625, 1078.48681640625, 1063.94140625, 1050.2298583984375, 1036.8875732421875, 1023.0238647460938, 1009.609130859375, 996.4658813476562, 983.659912109375, 970.4968872070312, 957.3748168945312, 944.7362060546875, 932.2721557617188, 919.7241821289062, 907.2108764648438, 895.1275634765625, 882.994384765625, 871.3276977539062, 859.210693359375, 847.6813354492188, 836.18115234375, 824.74462890625, 813.4380493164062, 801.924072265625, 790.7955932617188, 779.5589599609375, 768.5333862304688, 757.6715698242188, 746.6666259765625, 736.0463256835938, 725.6542358398438, 715.046875, 704.7596435546875, 694.5159301757812, 684.4671020507812, 674.334228515625, 664.23876953125, 654.5004272460938, 644.4861450195312, 634.5929565429688, 624.852294921875, 615.2882080078125, 605.7454223632812, 596.10888671875, 586.5631103515625, 577.4290161132812, 568.2418823242188, 559.0137329101562, 549.8805541992188, 540.94482421875, 532.1825561523438, 523.365966796875, 514.7274169921875, 506.15985107421875, 497.63250732421875, 489.0686340332031, 480.68609619140625, 472.1288757324219, 463.7294616699219, 455.5837707519531, 447.5718078613281, 439.807861328125, 431.8489990234375, 424.14007568359375, 416.4290771484375, 408.8225402832031, 401.33099365234375, 393.7798156738281, 386.5447692871094, 379.3397216796875, 372.09832763671875, 364.9993896484375, 357.9806823730469, 351.0247497558594, 344.1992492675781, 337.55670166015625, 330.99798583984375, 324.3707580566406, 317.9281311035156, 311.79241943359375, 305.4871826171875, 299.449462890625, 293.56378173828125, 287.6938781738281, 281.85736083984375, 276.0900573730469, 270.5283203125, 264.85797119140625, 259.41693115234375, 254.1158447265625, 248.9314422607422, 243.806396484375, 238.77020263671875, 233.95010375976562, 229.12110900878906, 224.50619506835938, 219.8014373779297, 215.31898498535156, 210.8824462890625, 206.5464630126953, 202.2780303955078, 198.03419494628906, 193.99423217773438, 189.9760284423828, 186.06637573242188, 182.1781463623047, 178.35256958007812, 174.6624755859375, 171.06314086914062, 167.5377960205078, 164.0326690673828, 160.65093994140625, 157.3340606689453, 154.03118896484375, 150.77818298339844, 147.6309356689453, 144.58497619628906, 141.5930938720703, 138.62576293945312, 135.77548217773438, 133.04818725585938, 130.33331298828125, 127.6618881225586, 125.04879760742188, 122.54822540283203, 120.07101440429688, 117.66300964355469, 115.30770111083984, 113.00035858154297, 110.7917251586914, 108.61622619628906, 106.48108673095703, 104.38042449951172, 102.34392547607422, 100.36337280273438, 98.39898681640625, 96.5145034790039, 94.67707824707031, 92.89352416992188, 91.1530532836914, 89.44609832763672, 87.7967529296875, 86.19510650634766, 84.62256622314453, 83.10785675048828, 81.59303283691406, 80.17215728759766, 78.75909423828125, 77.35926818847656, 76.00105285644531, 74.67333984375, 73.42906951904297, 72.18960571289062, 70.99433135986328, 69.82556915283203, 68.71015930175781, 67.62393951416016, 66.54727172851562, 65.4766616821289, 64.46293640136719, 63.45573425292969, 62.49359893798828, 61.54044723510742, 60.64391326904297, 59.763179779052734, 58.89873504638672, 58.082725524902344, 57.272010803222656, 56.502044677734375, 55.733585357666016, 55.00220489501953, 54.294822692871094, 53.59550476074219, 52.9167594909668, 52.252777099609375, 51.61712646484375, 50.9974250793457, 50.386722564697266, 49.807403564453125, 49.25212860107422, 48.721946716308594, 48.19172286987305, 47.68341827392578, 47.20656204223633, 46.7345085144043, 46.280616760253906, 45.836936950683594, 45.40451431274414, 44.98884963989258, 44.57628631591797, 44.19237518310547, 43.79893493652344, 43.42437744140625, 43.07963562011719, 42.72689437866211, 42.38664627075195, 42.056575775146484, 41.73991012573242, 41.42827606201172, 41.126617431640625, 40.83439254760742, 40.559104919433594, 40.275238037109375, 40.00959396362305, 39.750423431396484, 39.48468780517578, 39.24017333984375, 38.99643325805664, 38.76231002807617, 38.52574920654297, 38.299686431884766, 38.089900970458984, 37.88383483886719, 37.680015563964844, 37.47666549682617, 37.28871154785156, 37.109962463378906, 36.92898178100586, 36.75177001953125, 36.57804489135742, 36.409141540527344, 36.245849609375, 36.08535385131836, 35.928245544433594, 35.776817321777344, 35.631954193115234, 35.504520416259766, 35.377323150634766, 35.24844741821289, 35.12152099609375, 35.00223159790039, 34.888038635253906, 34.76499938964844, 34.65043640136719, 34.53892135620117, 34.43434143066406, 34.332366943359375, 34.230281829833984, 34.14014434814453, 34.04792404174805, 33.959495544433594, 33.87434005737305, 33.789676666259766, 33.71051025390625, 33.62729263305664, 33.54425811767578, 33.46764373779297, 33.39337158203125, 33.31790542602539, 33.24443054199219, 33.17169952392578, 33.11022186279297, 33.04153823852539, 32.978519439697266, 32.921058654785156, 32.86847686767578, 32.816802978515625, 32.69873046875, 32.46784210205078], 'SR-octree' : [25132244.0, 13281402.0, 8951631.0, 4848903.5, 3889900.0, 3047375.5, 2344633.25, 1894093.25, 1523378.875, 1260615.625, 1055676.375, 888950.0625, 764311.0625, 664528.375, 589094.4375, 526597.3125, 476018.78125, 432721.59375, 394539.53125, 360944.1875, 331732.9375, 304748.0, 281050.5625, 259982.1875, 242004.734375, 224838.3125, 209688.21875, 196144.625, 184676.703125, 173590.15625, 163750.40625, 154362.96875, 146224.90625, 138787.3125, 131887.625, 125493.71875, 119187.34375, 114149.9140625, 109352.46875, 104672.2578125, 99990.1796875, 95717.953125, 91428.515625, 87486.453125, 83732.8828125, 80343.078125, 77218.3515625, 74311.84375, 71680.3203125, 68771.578125, 66201.0625, 63602.31640625, 61242.62109375, 58804.3203125, 56615.2265625, 54627.60546875, 52678.9453125, 50852.0078125, 49125.234375, 47421.32421875, 45822.37109375, 44238.76953125, 42744.640625, 41310.5, 39861.3203125, 38543.33203125, 37201.390625, 36024.76171875, 34872.0859375, 33740.90625, 32732.736328125, 31760.68359375, 30803.291015625, 29830.77734375, 28940.876953125, 28095.048828125, 27180.693359375, 26321.798828125, 25511.099609375, 24756.1796875, 23985.947265625, 23299.900390625, 22669.26953125, 22036.30078125, 21407.46875, 20800.984375, 20222.861328125, 19628.716796875, 19086.10546875, 18539.935546875, 18029.962890625, 17522.8125, 17039.341796875, 16570.013671875, 16129.7783203125, 15695.2978515625, 15273.40625, 14875.9296875, 14490.0205078125, 14106.98046875, 13722.509765625, 13363.3212890625, 13021.7060546875, 12681.376953125, 12351.5205078125, 12031.814453125, 11723.306640625, 11424.521484375, 11135.63671875, 10871.1240234375, 10597.515625, 10327.3798828125, 10076.9404296875, 9833.5859375, 9593.8486328125, 9349.9873046875, 9130.8212890625, 8914.978515625, 8702.6982421875, 8491.1259765625, 8283.2216796875, 8091.80517578125, 7895.46435546875, 7714.65283203125, 7541.0703125, 7363.92138671875, 7200.4365234375, 7037.5224609375, 6880.341796875, 6722.6484375, 6568.48779296875, 6428.87158203125, 6284.10498046875, 6142.3505859375, 6007.1416015625, 5876.869140625, 5747.47509765625, 5622.4150390625, 5504.80810546875, 5396.02587890625, 5285.89453125, 5176.8916015625, 5074.97412109375, 4970.1201171875, 4869.62451171875, 4769.798828125, 4671.8642578125, 4584.2373046875, 4495.5712890625, 4410.138671875, 4327.9765625, 4247.85009765625, 4173.33984375, 4095.212890625, 4022.4755859375, 3952.232666015625, 3885.27392578125, 3817.199951171875, 3753.499267578125, 3690.28955078125, 3627.267822265625, 3566.835205078125, 3506.520751953125, 3450.7236328125, 3394.744873046875, 3343.28955078125, 3294.80078125, 3247.318359375, 3202.055419921875, 3156.745849609375, 3113.868408203125, 3069.783935546875, 3027.1875, 2984.815673828125, 2943.79931640625, 2904.882568359375, 2868.63818359375, 2831.937744140625, 2797.76611328125, 2764.260498046875, 2731.87060546875, 2701.999267578125, 2670.38330078125, 2641.94189453125, 2612.248046875, 2585.61474609375, 2559.0361328125, 2531.64501953125, 2506.032958984375, 2481.2392578125, 2456.72509765625, 2431.816650390625, 2407.468017578125, 2383.45263671875, 2358.60693359375, 2336.810791015625, 2313.908935546875, 2293.759521484375, 2271.09814453125, 2250.71875, 2231.080322265625, 2210.462890625, 2192.728515625, 2171.860595703125, 2154.205322265625, 2134.06884765625, 2115.39501953125, 2093.932861328125, 2073.0205078125, 2053.96728515625, 2033.6912841796875, 2015.5574951171875, 1996.7813720703125, 1978.93212890625, 1959.3017578125, 1940.0799560546875, 1920.5614013671875, 1901.5845947265625, 1881.5557861328125, 1860.809814453125, 1842.452392578125, 1822.9481201171875, 1802.7069091796875, 1780.9976806640625, 1760.1651611328125, 1739.3118896484375, 1717.093017578125, 1693.622802734375, 1671.4678955078125, 1648.776123046875, 1625.5469970703125, 1602.4229736328125, 1579.2845458984375, 1554.245849609375, 1530.4786376953125, 1505.9620361328125, 1480.3255615234375, 1455.20556640625, 1428.761962890625, 1403.357666015625, 1375.6943359375, 1347.50927734375, 1318.6904296875, 1288.283447265625, 1257.11376953125, 1226.1259765625, 1194.1226806640625, 1161.4693603515625, 1129.00390625, 1096.0333251953125, 1061.69970703125, 1026.0716552734375, 989.4236450195312, 950.93896484375, 912.0731811523438, 877.7230834960938, 850.851806640625, 830.9099731445312, 818.193359375, 814.0968017578125, 815.3104248046875, 818.0100708007812, 820.777099609375, 823.81787109375, 827.1791381835938, 829.7216796875, 832.7659912109375, 835.8765869140625, 839.984619140625, 842.9035034179688, 845.9434204101562, 848.7767944335938, 851.534912109375, 853.7897338867188, 854.3933715820312, 855.5598754882812, 856.0223388671875, 856.4060668945312, 856.35888671875, 855.9899291992188, 856.0278930664062, 855.8786010742188, 855.4097900390625, 854.5775756835938, 853.4462280273438, 851.8607177734375, 850.1112670898438, 847.6365356445312, 845.0194702148438, 842.2386474609375, 839.36767578125, 836.6060791015625, 832.9148559570312, 829.8011474609375, 826.0823364257812, 821.9711303710938, 817.8948974609375, 813.704833984375, 809.6802368164062, 805.043212890625, 800.3983764648438, 795.8177490234375, 790.9659423828125, 786.127685546875, 781.2378540039062, 776.3318481445312, 771.692626953125, 766.4392700195312, 761.2966918945312, 755.89306640625, 750.4918212890625, 745.7673950195312, 740.2044677734375, 735.2103881835938, 730.607177734375, 725.4835815429688, 720.821044921875, 715.47900390625, 710.2374267578125, 705.7545776367188, 700.5547485351562, 696.4874877929688, 691.8468627929688, 687.1177368164062, 683.3565673828125, 678.978271484375, 674.8321533203125, 670.4938354492188, 666.6170654296875, 663.0614013671875, 659.1465454101562, 655.7939453125, 652.7390747070312, 649.8187866210938, 646.8560180664062, 644.2083740234375, 641.6151123046875, 639.03662109375, 636.3818969726562, 633.7366333007812, 631.6297607421875, 629.4259643554688, 627.7952880859375, 626.0906372070312, 624.6311645507812, 623.42529296875, 622.0878295898438, 621.150390625, 620.0771484375, 619.2242431640625, 618.574951171875, 617.9061279296875, 617.3737182617188, 616.7476806640625, 616.2654418945312, 615.666015625, 615.3160400390625, 615.193359375, 614.7626342773438, 614.69970703125, 614.4883422851562, 614.3919677734375, 614.0614013671875, 613.3917236328125, 612.900390625, 611.992919921875, 611.1935424804688, 610.001953125, 609.1231689453125, 608.251708984375, 607.2630004882812, 606.2374877929688, 605.2764892578125, 604.6358642578125, 603.6674194335938, 602.890380859375, 602.3126220703125, 601.82275390625, 601.0425415039062, 600.3038330078125, 599.8391723632812, 599.4749145507812, 599.2013549804688, 598.7662963867188, 598.8283081054688, 598.6171264648438, 598.7136840820312, 598.5442504882812, 598.0870361328125, 597.9546508789062, 597.5980834960938, 597.6692504882812, 597.2802124023438, 597.1073608398438, 597.4594116210938, 597.7301025390625, 598.1304321289062, 598.1954345703125, 598.3310546875, 598.4630126953125, 598.682373046875, 598.9364624023438, 599.0576171875, 599.7174682617188, 600.5422973632812, 600.8466796875, 601.312255859375, 601.9002685546875, 602.3974609375, 602.8402709960938, 602.9353637695312, 603.8067016601562, 604.2817993164062, 604.6519165039062, 605.2142944335938, 605.6998291015625, 606.3735961914062, 606.9798583984375, 607.5481567382812, 608.26318359375, 608.8380737304688, 609.190185546875, 609.953857421875, 610.4891967773438, 611.072265625, 611.5262451171875, 612.291015625, 612.6510620117188, 612.80908203125, 612.9273071289062, 612.9762573242188, 612.8861694335938, 612.9046630859375, 613.596923828125, 613.6477661132812, 613.8983764648438, 614.1630859375, 614.3814697265625, 614.7525024414062, 614.6544799804688, 614.6533813476562, 614.6949462890625, 614.7125244140625, 614.7023315429688, 614.3853759765625, 614.0360107421875, 613.8653564453125, 613.1323852539062, 612.5751342773438, 612.0900268554688, 611.28125, 610.6011352539062, 609.698974609375, 608.8304443359375, 607.5247802734375, 606.4237060546875, 605.121337890625, 603.8177490234375, 602.3216552734375, 600.9725341796875, 599.6211547851562, 597.8339233398438, 596.1483154296875, 594.11962890625, 592.159423828125, 590.2316284179688, 587.9564819335938, 585.444091796875, 582.9096069335938, 580.3082885742188, 577.7213745117188, 574.3182983398438, 570.9820556640625, 567.882080078125, 564.2346801757812, 560.601806640625, 556.4447631835938, 552.6826782226562, 548.4627075195312, 543.9164428710938, 539.3906860351562, 534.3480834960938, 529.59521484375, 524.3068237304688, 519.0333251953125, 513.223876953125, 506.9593505859375, 500.6521301269531, 494.1068420410156, 487.329345703125, 480.4949035644531, 473.3659362792969, 466.2189636230469, 458.52825927734375, 450.35748291015625, 441.810546875, 432.9241943359375, 423.8951721191406, 414.4730224609375, 404.65191650390625, 394.53326416015625, 383.9576721191406, 372.8827819824219, 361.3356018066406, 349.3583984375, 336.9060974121094, 323.8538513183594, 310.1408386230469, 295.6970520019531, 280.0346984863281, 263.290283203125, 247.6102294921875], 'SZ' : [25140042.0, 13286912.0, 8956124.0, 4852523.0, 3893000.0, 3050219.0, 2347155.75, 1896422.25, 1525565.375, 1262613.625, 1057567.75, 890780.125, 766139.0, 666395.5625, 590983.3125, 528536.375, 478005.6875, 434750.625, 396585.65625, 362984.28125, 333786.28125, 306795.5, 283104.6875, 262026.8125, 244060.625, 226894.46875, 211748.53125, 198202.3125, 186728.234375, 175627.453125, 165766.46875, 156399.390625, 148249.8125, 140812.6875, 133905.171875, 127526.09375, 121223.5390625, 116171.875, 111357.375, 106673.84375, 101971.7578125, 97672.765625, 93347.5, 89387.2734375, 85619.03125, 82202.578125, 79052.71875, 76116.0546875, 73472.875, 70546.171875, 67954.09375, 65320.1328125, 62936.2421875, 60465.26953125, 58244.21875, 56215.51953125, 54229.96484375, 52376.75390625, 50612.83984375, 48878.57421875, 47247.171875, 45628.64453125, 44105.515625, 42632.35546875, 41153.09765625, 39797.96875, 38408.25390625, 37198.73828125, 36010.72265625, 34848.60546875, 33810.24609375, 32809.77734375, 31826.859375, 30824.44921875, 29898.32421875, 29020.431640625, 28065.26171875, 27170.822265625, 26328.265625, 25533.955078125, 24729.111328125, 24009.876953125, 23353.111328125, 22680.88671875, 22022.736328125, 21383.53125, 20777.3125, 20148.2421875, 19575.09765625, 19006.8359375, 18470.498046875, 17941.900390625, 17430.849609375, 16939.578125, 16467.470703125, 16009.341796875, 15559.2939453125, 15137.4365234375, 14728.4052734375, 14327.4375, 13930.9677734375, 13550.0498046875, 13193.0849609375, 12834.2021484375, 12489.310546875, 12155.6298828125, 11834.2138671875, 11525.1181640625, 11220.875, 10943.6748046875, 10662.91796875, 10378.0224609375, 10114.8857421875, 9856.4765625, 9606.1884765625, 9352.0341796875, 9118.373046875, 8894.2119140625, 8672.5849609375, 8455.7021484375, 8243.958984375, 8052.16162109375, 7852.7783203125, 7667.26904296875, 7489.75732421875, 7311.4853515625, 7144.90478515625, 6978.806640625, 6822.53857421875, 6665.439453125, 6513.84912109375, 6376.3486328125, 6235.0595703125, 6095.16064453125, 5962.1494140625, 5836.36669921875, 5709.18115234375, 5586.2724609375, 5473.818359375, 5369.4814453125, 5263.53173828125, 5157.97998046875, 5062.037109375, 4964.03955078125, 4866.73583984375, 4772.02490234375, 4678.68603515625, 4594.560546875, 4510.03564453125, 4427.63623046875, 4350.654296875, 4271.654296875, 4199.3017578125, 4123.06396484375, 4050.28076171875, 3984.61181640625, 3916.016357421875, 3851.46826171875, 3790.540771484375, 3729.816650390625, 3669.4658203125, 3606.742919921875, 3549.422119140625, 3491.42919921875, 3433.53955078125, 3379.34765625, 3326.68212890625, 3277.40185546875, 3227.268798828125, 3180.39306640625, 3131.591064453125, 3084.559814453125, 3038.613037109375, 2991.469970703125, 2946.02978515625, 2902.512939453125, 2861.303466796875, 2821.4873046875, 2783.010498046875, 2747.431884765625, 2712.817626953125, 2677.81005859375, 2645.70654296875, 2612.67138671875, 2583.577392578125, 2552.575439453125, 2523.707275390625, 2496.275634765625, 2470.456298828125, 2447.026123046875, 2420.758544921875, 2399.16259765625, 2377.2412109375, 2355.558349609375, 2335.3779296875, 2315.52783203125, 2298.0341796875, 2279.113525390625, 2262.22998046875, 2246.837890625, 2230.16064453125, 2215.310791015625, 2200.21875, 2185.416259765625, 2170.30859375, 2155.8837890625, 2142.55908203125, 2128.677734375, 2116.7421875, 2104.771484375, 2094.0546875, 2082.614501953125, 2070.75, 2059.3076171875, 2046.712890625, 2036.5228271484375, 2024.990234375, 2015.2982177734375, 2005.3648681640625, 1995.4364013671875, 1985.745361328125, 1975.5531005859375, 1964.674560546875, 1953.6842041015625, 1944.018310546875, 1933.4049072265625, 1923.262451171875, 1913.514892578125, 1904.1666259765625, 1894.1085205078125, 1883.1842041015625, 1872.7230224609375, 1863.2755126953125, 1852.108642578125, 1841.407958984375, 1830.5950927734375, 1820.1683349609375, 1808.6009521484375, 1795.8079833984375, 1783.733154296875, 1770.9658203125, 1757.185791015625, 1743.0224609375, 1729.4954833984375, 1715.373046875, 1699.881591796875, 1684.73486328125, 1669.5843505859375, 1653.6278076171875, 1637.039794921875, 1620.498046875, 1604.31396484375, 1588.1661376953125, 1572.4183349609375, 1557.7603759765625, 1543.1405029296875, 1528.9083251953125, 1514.121826171875, 1498.9931640625, 1484.047119140625, 1468.71337890625, 1453.3782958984375, 1438.87939453125, 1425.650634765625, 1412.1048583984375, 1399.462646484375, 1387.0877685546875, 1374.842041015625, 1363.2413330078125, 1350.42041015625, 1339.0184326171875, 1326.730712890625, 1314.91796875, 1303.4271240234375, 1291.5242919921875, 1280.949951171875, 1269.4776611328125, 1259.0809326171875, 1248.303955078125, 1238.0615234375, 1227.9815673828125, 1217.5364990234375, 1207.5390625, 1197.33203125, 1187.800537109375, 1178.13330078125, 1168.038330078125, 1158.6199951171875, 1149.876953125, 1140.857421875, 1132.2454833984375, 1123.378662109375, 1114.7076416015625, 1106.116455078125, 1097.3651123046875, 1089.2049560546875, 1081.0947265625, 1072.9744873046875, 1065.365234375, 1057.7127685546875, 1050.0205078125, 1042.334228515625, 1034.7769775390625, 1027.7977294921875, 1021.0133666992188, 1014.3549194335938, 1007.9764404296875, 1001.3951416015625, 994.8221435546875, 988.298583984375, 982.1041259765625, 975.85546875, 969.9302368164062, 964.248779296875, 958.7221069335938, 953.208984375, 947.3475341796875, 941.79736328125, 936.5003662109375, 931.0283203125, 925.47705078125, 920.4869995117188, 915.7028198242188, 910.82763671875, 905.5574340820312, 900.7262573242188, 895.9791259765625, 890.5762329101562, 885.690185546875, 880.7027587890625, 875.8668823242188, 870.8870239257812, 866.111572265625, 861.6068115234375, 856.7537231445312, 851.8948974609375, 847.0258178710938, 842.700927734375, 837.9742431640625, 833.6423950195312, 829.2338256835938, 825.2230834960938, 821.3671264648438, 817.3464965820312, 813.3553466796875, 809.4246826171875, 805.8170166015625, 801.78076171875, 797.7027587890625, 793.72216796875, 790.3976440429688, 786.8432006835938, 783.23095703125, 780.1178588867188, 777.2537841796875, 774.6553955078125, 771.734619140625, 769.3119506835938, 767.2828979492188, 765.045654296875, 762.9378051757812, 760.9224853515625, 758.83935546875, 757.1056518554688, 755.05322265625, 753.4863891601562, 752.1709594726562, 750.9159545898438, 750.089111328125, 748.9017333984375, 748.0357666015625, 747.5089111328125, 746.8538818359375, 746.1165161132812, 745.4715576171875, 744.9641723632812, 744.5673217773438, 743.9049072265625, 743.268798828125, 742.7949829101562, 742.3162841796875, 741.8408813476562, 741.076416015625, 740.113037109375, 739.5142211914062, 738.7108154296875, 737.664794921875, 736.6333618164062, 735.7399291992188, 734.6648559570312, 733.427978515625, 732.364990234375, 731.1055908203125, 729.7080688476562, 728.3575439453125, 727.30615234375, 726.0611572265625, 724.6103515625, 723.4706420898438, 722.3829956054688, 721.2230224609375, 719.8196411132812, 718.3875732421875, 716.820556640625, 715.3382568359375, 713.7517700195312, 712.394775390625, 710.7255249023438, 709.1192626953125, 707.6550903320312, 706.1121215820312, 704.6255493164062, 702.6729736328125, 701.2367553710938, 699.6781616210938, 698.0101318359375, 696.1544799804688, 694.4179077148438, 692.7006225585938, 690.8418579101562, 689.0565795898438, 687.46875, 685.9212646484375, 684.2257690429688, 682.6304321289062, 680.8450927734375, 679.3353881835938, 677.6156005859375, 675.8213500976562, 674.0729370117188, 672.4496459960938, 670.9967651367188, 669.0643920898438, 667.4789428710938, 665.774658203125, 664.129638671875, 662.5123901367188, 660.8478393554688, 659.385986328125, 657.8442993164062, 656.4347534179688, 654.9685668945312, 653.5841064453125, 652.05810546875, 650.5470581054688, 649.0493774414062, 647.568115234375, 646.0777587890625, 644.5557861328125, 643.2374877929688, 641.9409790039062, 640.453125, 639.1685180664062, 637.9728393554688, 636.580322265625, 635.3001708984375, 634.0682373046875, 632.79638671875, 631.6026611328125, 630.2958374023438, 629.013671875, 627.8966064453125, 626.5953979492188, 625.5006103515625, 624.3063354492188, 623.3893432617188, 622.3204956054688, 621.2110595703125, 620.1679077148438, 619.1118774414062, 618.04541015625, 616.84326171875, 615.9456787109375, 614.9801635742188, 613.9580078125, 612.8753051757812, 611.7736206054688, 610.8096923828125, 609.7308349609375, 608.4657592773438, 607.2495727539062, 606.0509643554688, 604.784423828125, 603.2223510742188, 601.7694702148438, 600.5296020507812, 599.2265625, 597.947509765625, 596.8887939453125, 595.603271484375, 594.39306640625, 593.1397094726562, 591.9876708984375, 590.8253173828125, 589.5977172851562, 588.550048828125, 587.3819580078125, 586.1613159179688, 584.9620971679688, 583.6386108398438, 582.28466796875, 581.0192260742188, 579.824462890625, 578.66357421875, 577.47900390625, 576.4356689453125, 575.3408813476562, 574.2741088867188, 573.1587524414062, 571.9419555664062, 570.5778198242188, 568.8909301757812] } font = {#'font.family' : 'normal', #'font.weight' : 'bold', 'font.size' : 18} plt.rcParams.update(font) xs = results_powerspectrum['xs'] GT_freqs = results_powerspectrum['Raw data'] NN_freqs = results_powerspectrum['Ours'] SZ_freqs = results_powerspectrum['SZ'] octree_freqs = results_powerspectrum['SR-octree'] plt.plot(xs, np.array(GT_freqs), label="Raw data", color="red") plt.plot(xs, np.array(NN_freqs), label="Ours", color="blue") plt.plot(xs, np.array(octree_freqs), label="SR-octree", color="gray") plt.plot(xs, np.array(SZ_freqs), label="SZ", color="green") #plt.legend() plt.xlabel("Wavenumber") plt.title("Iso3D magnitude") plt.ylabel("Power") plt.yscale("log") plt.xscale("log") #plt.xscale("log") #plt.xticks(xs, xs_labels) #plt.title(d) #plt.savefig(os.path.join(save_folder, metric+"_psnr.png")) plt.tight_layout() plt.show() plt.savefig("powerspectra.png") plt.clf() xs = np.array(xs) spot = (xs >= 60) & (xs <= 300) plt.plot(xs[spot], np.array(GT_freqs)[spot], label="Raw data", color="red") plt.plot(xs[spot], np.array(NN_freqs)[spot], label="Ours", color="blue") plt.plot(xs[spot], np.array(octree_freqs)[spot], label="SR-octree", color="gray") plt.plot(xs[spot], np.array(SZ_freqs)[spot], label="SZ", color="green") #plt.title("Iso3D magnitude") #plt.ylabel("Power") #plt.xlabel("Wavenumber") #plt.legend() plt.yscale("log") plt.xscale("log") plt.show() plt.savefig("powerspectra_zoom.png") ''' results_psnr = { "Iso2D magnitude": { "NN": [48.04, 39.64, 32.28, 27.57, 24.64, 22.42], "Bilinear interpolation": [41.79, 33.97, 28.89, 25.52, 23.16, 21.30], "Bicubic interpolation": [43.52, 34.87, 29.31, 25.75, 23.31, 21.47] }, "Iso3D magnitude": { "NN": [52.55, 41.83, 34.44, 29.83], "Trilinear interpolation": [43.11, 35.58, 30.77, 27.62] }, "Mixing3D pressure": { #"NN_old": [51.52, 45.99, 39.68, 36.90, 31.59], "NN":[53.38, 46.536, 40.001, 34.998, 31.59], "Trilinear interpolation": [51.00, 42.37, 36.75, 33.14, 30.72] }, "Mixing2D magnitude": { "NN":[45.43, 39.12, 32.86, 26.67, 22.50, 19.63], "Bilinear interp.": [44.08, 34.91, 28.48, 23.88, 20.90, 18.96], "Bicubic interp.": [45.36, 35.83, 29.13, 24.29, 21.14, 19.09] }, "Vorts": { "NN":[39.73, 35.17, 25.59, 19.06], "Trilinear interpolation": [36.90, 27.94, 22.24, 19.34] }, "Plume":{ "NN":[50.55, 42.90, 37.53, 33.71], "Trilinear interpolation":[47.33, 40.18, 34.82, 29.26] } } results_inner_psnr = { "Mixing2D magnitude": { "NN":[57.11, 45.16, 33.93, 26.83, 22.63, 19.71], "Bilinear interp.": [43.92, 34.77, 28.36, 23.86, 20.90, 18.98], "Bicubic interp.": [45.25, 35.71, 29.01, 24.25, 21.15, 19.12] } } results_ssim = { "Iso2D magnitude": { "NN": [0.990, 0.926, 0.704, 0.474, 0.355, 0.310], "Bilinear interpolation": [0.978, 0.820, 0.575, 0.401, 0.326, 0.299], "Bicubic interpolation": [0.980, 0.854, 0.607, 0.416, 0.332, 0.302] }, "Iso3D magnitude": { "NN": [0.995, 0.930, 0.692, 0.432], "Trilinear interpolation": [0.961, 0.791, 0.519, 0.330] }, "Mixing3D pressure": { #"NN_old": [0.999, 0.999, 0.996, 0.984, 0.962], "NN":[0.9997, 0.9992, 0.9953, 0.9829, 0.962], "Trilinear interpolation": [0.999, 0.997, 0.990, 0.974, 0.953] }, "Mixing2D magnitude": { "NN":[0.997, 0.975, 0.834, 0.576, 0.372, 0.239], "Bilinear interp.": [0.978, 0.879, 0.669, 0.448, 0.298, 0.194], "Bicubic interp.": [0.983, 0.900, 0.700, 0.471, 0.314, 0.207] }, "Vorts": { "NN":[0.961, 0.920, 0.576, 0.150], "Trilinear interpolation": [0.933, 0.698, 0.348, 0.145] }, "Plume":{ "NN":[0.997, 0.986, 0.955, 0.906], "Trilinear interpolation":[0.994, 0.967, 0.902, 0.746] } } font = {#'font.family' : 'normal', #'font.weight' : 'bold', 'font.size' : 18} plt.rcParams.update(font) fig, ax1 = plt.subplots() d = "Vorts" markers = { "NN" : "^", "Bilinear interpolation": "s", "Trilinear interpolation": "s", "Bicubic interpolation": "o", "Bilinear interp.": "s", "Bicubic interp.": "o" } colors = { "NN" : "blue", "Bilinear interpolation": "green", "Trilinear interpolation": "orange", "Bicubic interpolation": "red", "Bilinear interp.": "green", "Bicubic interp.": "red" } for method in results_psnr[d].keys(): xs = [] for i in range(len(results_psnr[d][method])): xs.append(int(2**(i+1))) ax1.plot(xs, results_psnr[d][method], label=method, marker=markers[method], color = colors[method]) ax2 = ax1.twinx() for method in results_ssim[d].keys(): xs = [] for i in range(len(results_ssim[d][method])): xs.append(int(2**(i+1))) ax2.plot(xs, results_ssim[d][method], label=method, marker=markers[method], color = colors[method], linestyle="--") xs_labels = [] for i in range(len(xs)): xs_labels.append(str(xs[i])) print(xs) #plt.legend() ax1.set_ylabel("PSNR (dB)") ax2.set_ylabel("SSIM") ax2.set_ylim(0.15) #plt.ylabel("PSNR (dB)") plt.xscale("log") plt.xticks(xs, xs_labels) plt.xlabel("SR scale factor") ax1.set_xlabel("SR scale factor") plt.title(d) fig.tight_layout() #plt.savefig(os.path.join(save_folder, metric+"_psnr.png")) plt.show() ''' files_to_convert = [ "isomag2D_compressiontest" ] file_loc_base = os.path.join(FlowSTSR_folder_path, "TestingData", "octree_files") f = h5py.File(os.path.join(file_loc_base, files_to_convert[0]+".h5"), 'r') d = np.array(f['data']) #d[0].tofile("512cubed.dat") rootgrp = Dataset(files_to_convert[0]+".nc", "w", format="NETCDF4") rootgrp.createDimension("u") rootgrp.createDimension("v") #rootgrp.createDimension("w") rootgrp.createDimension("channels", d.shape[0]) dim_0 = rootgrp.createVariable("velocity magnitude", np.float32, ("u","v")) dim_0[:] = d[0] #dim_1 = rootgrp.createVariable("v", np.float32, ("u","v", "w")) #dim_1[:] = d[1] #dim_2 = rootgrp.createVariable("w", np.float32, ("u","v", "w")) #dim_2[:] = d[2] ''' ''' def to_netcdf(vf, name): rootgrp = Dataset(name+".nc", "w", format="NETCDF4") if(len(vf.shape) == 3): rootgrp.createDimension("u") rootgrp.createDimension("v") rootgrp.createDimension("channels", vf.shape[0]) for i in range(vf.shape[0]): dim_i = rootgrp.createVariable("dim"+str(i), np.float32, ("u","v")) dim_i[:] = vf[i] if(len(vf.shape) == 4): rootgrp.createDimension("u") rootgrp.createDimension("v") rootgrp.createDimension("w") rootgrp.createDimension("channels", vf.shape[0]) for i in range(vf.shape[0]): dim_i = rootgrp.createVariable("dim"+str(i), np.float32, ("u","v", "w")) dim_i[:] = vf[i] files_to_convert = [ "isomag2D_compressiontest", "isomag3D_compressiontest", "mixing3D_compressiontest", "iso3DVF_compressiontest" ] file_loc_base = os.path.join(FlowSTSR_folder_path, "TestingData", "octree_files") for name in files_to_convert: print("Loading " + name) f = h5py.File(os.path.join(file_loc_base, name+".h5"), 'r') d = np.array(f['data']) to_netcdf(d, name) print("Finished " + name) ''' ''' VF_folder = os.path.join(FlowSTSR_folder_path, "TestingData", "iso1024") new_VF_folder = os.path.join(FlowSTSR_folder_path, "TestingData", "iso3DVF") #mixing_folder = os.path.join(FlowSTSR_folder_path, "InputData", "mixing_p") #new_mixing_folder = os.path.join(FlowSTSR_folder_path, "InputData", "mix_p") for filename in os.listdir(VF_folder): file_loc = os.path.join(VF_folder, filename) f = h5py.File(file_loc, 'r+') d = np.array(f.get('data')) f.close() octant_no = 0 for x in range(0, d.shape[0], int(d.shape[0]/2)): x_end = x+int(d.shape[0]/2) for y in range(0, d.shape[1], int(d.shape[1]/2)): y_end = y+int(d.shape[1]/2) for z in range(0, d.shape[2], int(d.shape[2]/2)): z_end = z+int(d.shape[2]/2) print("Saving octant " + str(octant_no)) f_h5 = h5py.File(os.path.join(new_VF_folder, "vf_ts"+filename+\ "_octant"+str(octant_no)+'.h5'), 'w') a = d[x:x_end, y:y_end, z:z_end,:] a = np.transpose(a, (3, 0, 1, 2)) f_h5.create_dataset("data", data=a) f_h5.close() octant_no += 1 ''' ''' for filename in os.listdir(mixing_folder): file_loc = os.path.join(mixing_folder, filename) f = h5py.File(file_loc, 'r+') d = np.expand_dims(f.get('data')[:,:,:,0], axis=0).astype(np.float32) f.close() file_loc = os.path.join(new_mixing_folder, filename) f = h5py.File(file_loc, 'w') f.create_dataset("data", data=d) f.close() ''' ''' # This simply converts a vector field from some .h5 files # to their magnitude fields, and also splits it into octants before # saving. FlowSTSR_folder_path = os.path.dirname(os.path.abspath(__file__)) location = os.path.join(FlowSTSR_folder_path, "InputData", "iso1024_VF") save_location = os.path.join(FlowSTSR_folder_path, "InputData", "iso1024_magfield") for filename in os.listdir(location): print("Loading " + filename) f = h5py.File(os.path.join(location, filename), 'r') fname = filename.split(".")[0] data = np.array(f['data']) print("Loaded velocity field " + str(data.shape)) mag_field = np.linalg.norm(data, axis=0) print("Converted to velocity magnitude " + str(mag_field.shape)) octant_no = 0 for x_start, x_end in [(0, int(mag_field.shape[0]/2)), (int(mag_field.shape[0]/2), mag_field.shape[0])]: for y_start, y_end in [(0, int(mag_field.shape[1]/2)), (int(mag_field.shape[1]/2), mag_field.shape[1])]: for z_start, z_end in [(0, int(mag_field.shape[2]/2)), (int(mag_field.shape[2]/2), mag_field.shape[2])]: print("Saving octant " + str(octant_no)) f_h5 = h5py.File(os.path.join(save_location, "v_mag_ts"+fname+"_octant"+str(octant_no)+'.h5'), 'w') f_h5.create_dataset("data", data=mag_field[x_start:x_end, y_start:y_end, z_start:z_end]) f_h5.close() octant_no += 1 ''' ''' # Experiment to see if the distribution of downscaled frames that are # downscaled with a method that doesn't follow downscale(x, S) = # downscale(downscale(x, S/2), S/2). # Compare distributions with PCA? T-SNE? Just mean and variance? # from download_JHUTDB import get_full_frame_parallel frames = [] name = "isotropic1024" startts = 1 endts = 1001 ts_skip = 10 ds = 32 ds_once_data = [] ds_many_data = [] ds_once_stats = [] ds_many_stats = [] for i in range(startts, endts, ts_skip): print("TS " + str(i)) f = get_full_frame_parallel(0, 1024, 1,#x 0, 1024, 1, #y 512, 513, 1, #z name, i, "u", 3, 64) f = f[:,:,0,:].astype(np.float32) f_img = f.copy() f_img[:,:,0] -= f_img[:,:,0].min() f_img[:,:,0] *= (255.0/f_img[:,:,0].max()) f_img[:,:,1] -= f_img[:,:,1].min() f_img[:,:,1] *= (255.0/f_img[:,:,1].max()) f_img[:,:,2] -= f_img[:,:,2].min() f_img[:,:,2] *= (255.0/f_img[:,:,2].max()) f_img = f_img.astype(np.uint8) imageio.imwrite("full_res.png", f_img) f = f.swapaxes(0,2).swapaxes(1,2) f = torch.from_numpy(f).unsqueeze(0) f_downscaled_once = F.interpolate(f.clone(), mode="bilinear", align_corners=True, scale_factor=1/ds) f_downscaled_many = f.clone() curr_s = 1 while(curr_s < ds): f_downscaled_many = F.interpolate(f_downscaled_many, mode="bilinear", align_corners=True, scale_factor=1/2) curr_s *= 2 ds_once_data.append(f_downscaled_once.clone().view(1, -1).cpu().numpy()) ds_many_data.append(f_downscaled_many.clone().view(1, -1).cpu().numpy()) ds_once_stats.append(np.array([f_downscaled_once.min(), f_downscaled_once.max(), f_downscaled_once.mean(), f_downscaled_once.std()])) ds_many_stats.append(np.array([f_downscaled_many.min(), f_downscaled_many.max(), f_downscaled_many.mean(), f_downscaled_many.std()])) print("DS_once min/max: %0.03f/%0.03f, mean/std: %0.03f/%0.03f" % \ (f_downscaled_once.min(), f_downscaled_once.max(), f_downscaled_once.mean(), f_downscaled_once.std())) print("DS_many min/max: %0.03f/%0.03f, mean/std: %0.03f/%0.03f" % \ (f_downscaled_many.min(), f_downscaled_many.max(), f_downscaled_many.mean(), f_downscaled_many.std())) ds_once_img = f_downscaled_once[0].permute(1, 2, 0).cpu().numpy() ds_once_img[:,:,0] -= ds_once_img[:,:,0].min() ds_once_img[:,:,0] *= (255.0/ds_once_img[:,:,0].max()) ds_once_img[:,:,1] -= ds_once_img[:,:,1].min() ds_once_img[:,:,1] *= (255.0/ds_once_img[:,:,1].max()) ds_once_img[:,:,2] -= ds_once_img[:,:,2].min() ds_once_img[:,:,2] *= (255.0/ds_once_img[:,:,2].max()) ds_once_img = ds_once_img.astype(np.uint8) imageio.imwrite("downscaled_once.png", ds_once_img) ds_many_img = f_downscaled_many[0].permute(1, 2, 0).cpu().numpy() ds_many_img[:,:,0] -= ds_many_img[:,:,0].min() ds_many_img[:,:,0] *= (255.0/ds_many_img[:,:,0].max()) ds_many_img[:,:,1] -= ds_many_img[:,:,1].min() ds_many_img[:,:,1] *= (255.0/ds_many_img[:,:,1].max()) ds_many_img[:,:,2] -= ds_many_img[:,:,2].min() ds_many_img[:,:,2] *= (255.0/ds_many_img[:,:,2].max()) ds_many_img = ds_many_img.astype(np.uint8) imageio.imwrite("downscaled_many.png", ds_many_img) ds_once_stats = np.array(ds_once_stats) ds_many_stats = np.array(ds_many_stats) ds_once_data = np.concatenate(ds_once_data, axis=0) ds_many_data = np.concatenate(ds_many_data, axis=0) all_data = np.concatenate([ds_once_data, ds_many_data], axis=0) from sklearn.decomposition import PCA pca = PCA(n_components=2, svd_solver='full') pca.fit(all_data) all_data_transformed = pca.transform(all_data) plt.scatter(all_data_transformed[:ds_once_data.shape[0],0], all_data_transformed[:ds_once_data.shape[0],1], color='red', label='downscaled once', marker='x',alpha=0.5) plt.scatter(all_data_transformed[ds_once_data.shape[0]:,0], all_data_transformed[ds_once_data.shape[0]:,1], color='blue', label='downscaled many times', marker='o',alpha=0.5) plt.legend() plt.xlabel("PCA dimension 1") plt.ylabel("PCA dimension 2") plt.title("PCA decomposition of 2D "+str(ds)+"x downscaled fluid frames slices") plt.show() plt.clf() plt.plot() plt.plot(np.arange(0, ds_once_stats.shape[0]), ds_once_stats[:,0], marker='x', label='downscaled once minimum velocity component') plt.plot(np.arange(0, ds_many_stats.shape[0]), ds_many_stats[:,0], marker='o', label='downscaled many minimum velocity component') plt.plot(np.arange(0, ds_once_stats.shape[0]), ds_once_stats[:,1], marker='x', label='downscaled once maximum velocity component') plt.plot(np.arange(0, ds_many_stats.shape[0]), ds_many_stats[:,1], marker='o', label='downscaled many maximum velocity component') plt.plot(np.arange(0, ds_once_stats.shape[0]), ds_once_stats[:,2], marker='x', label='downscaled once mean velocity component') plt.plot(np.arange(0, ds_many_stats.shape[0]), ds_many_stats[:,2], marker='o', label='downscaled many mean velocity component') plt.plot(np.arange(0, ds_once_stats.shape[0]), ds_once_stats[:,3], marker='x', label='downscaled once std of velocity component') plt.plot(np.arange(0, ds_many_stats.shape[0]), ds_many_stats[:,3], marker='o', label='downscaled many std of velocity component') plt.legend() plt.xlabel("Simulation timestep") plt.ylabel("m/s") plt.title("Min/max/mean/std of data downscaled by a factor of " + str(ds) + "x once or a factor of 2x " + str(int(np.log(ds)/np.log(2))) + " times") plt.show() ''' ''' # This experiment shows the seams between leaf nodes of a quadtree # when they are upscaled separately skip = 32 ds = 8 a = imageio.imread("./TestingData/quadtree_images/Lenna.jpg").astype(np.float32) b = torch.tensor(a).cuda().permute(2, 0, 1).unsqueeze(0) c = F.interpolate(b.clone()[:,:,::ds,::ds], mode="bilinear", scale_factor=ds, align_corners=True) c = c[0].permute(1, 2, 0).cpu().numpy() imageio.imwrite("Lenna_noseams.jpg", c) a[::skip, :, :] = np.array([0, 0, 0]) a[:, ::skip, :] = np.array([0, 0, 0]) imageio.imwrite("Lenna_cutput.jpg", a) for x in range(0, b.shape[2], skip): for y in range(0, b.shape[3], skip): b[:,:,x:x+skip,y:y+skip] = F.interpolate(b[:,:,x:x+skip:ds,y:y+skip:ds], scale_factor=ds, mode="bilinear", align_corners=True) b = b[0].permute(1, 2, 0).cpu().numpy() imageio.imwrite("Lenna_seams.jpg", b) ''' ''' # This experiment tests which downscaling methods follow have the property # downscale(x, S) = downscale(downscale(x, S/2), S/2) a = torch.randn([1, 1, 16, 16]).cuda() b = a.clone() a = F.interpolate(a, scale_factor=0.5, mode='bilinear', align_corners=True) a = F.interpolate(a, scale_factor=0.5, mode='bilinear', align_corners=True) b = F.interpolate(b, scale_factor=0.25, mode='bilinear', align_corners=True) print("Bilinear interpolation difference: " +str((b-a).sum())) a = torch.randn([1, 1, 16, 16]).cuda() b = a.clone() a = F.interpolate(a, scale_factor=0.5, mode='bicubic', align_corners=True) a = F.interpolate(a, scale_factor=0.5, mode='bicubic', align_corners=True) b = F.interpolate(b, scale_factor=0.25, mode='bicubic', align_corners=True) print("Bicubic interpolation difference: " +str((b-a).sum())) a = torch.randn([1, 1, 16, 16]).cuda() b = a.clone() a = AvgPool2D(a, 2) a = AvgPool2D(a, 2) b = AvgPool2D(b, 4) print("Avgerage pooling difference: " +str((b-a).sum())) a = torch.randn([1, 1, 16, 16]).cuda() b = a.clone() a = a[:,:,::2,::2] a = a[:,:,::2,::2] b = b[:,:,::4,::4] print("Subsampling difference: " +str((b-a).sum())) ''' ''' f = h5py.File('bigboy.h5', 'r') data = torch.tensor(f['data']).type(torch.FloatTensor).cuda() f.close() data = data.unsqueeze(0) data_mag = torch.linalg.norm(data,axis=1)[0] data_mag /= data_mag.max() image_out = torch.zeros(data_mag.shape).cuda() image_out = image_out.unsqueeze(2) image_out = image_out.repeat(1, 1, 3) ''' #plt.hist(data_mag.cpu().numpy().flatten(), bins=25, density=True, cumulative=True) #plt.show() ''' # black white red color_mapping_keys = [0.01, 0.3, 0.6] color_mapping_values = [torch.from_numpy(np.array([0.0, 0.0, 0.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([200.0, 200.0, 200.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([200.0, 0.0, 0.0])).type(torch.FloatTensor).cuda()] ''' ''' # rainbow R O Y G B I V R color_mapping_keys = [0.0, 0.08, 0.16, 0.25, 0.3, 0.35, 0.4, 1.0] color_mapping_values = [torch.from_numpy(np.array([128, 0.0, 0.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([255.0, 136.0, 0.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([255.0, 255.0, 0.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([0.0, 255.0, 0.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([0.0, 0.0, 255.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([0.0, 255.0, 200.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([128.0, 76.0, 128.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([128.0, 0.0, 0.0])).type(torch.FloatTensor).cuda()] ''' ''' # another blk Y G B I V R color_mapping_keys = [0.0, 0.21, 0.41, 0.6] color_mapping_values = [torch.from_numpy(np.array([9.0, 171.0, 166.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([0.0, 0.0, 0.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([121.0, 9.0, 9.0])).type(torch.FloatTensor).cuda(), torch.from_numpy(np.array([255.0, 255.0, 255.0])).type(torch.FloatTensor).cuda(), ] image_out[data_mag < color_mapping_keys[0]] = color_mapping_values[0] for i in range(len(color_mapping_keys)-1): ratios = data_mag.clone() ratios -= color_mapping_keys[i] ratios *= 1 / (color_mapping_keys[i+1] - color_mapping_keys[i]) ratios = ratios.type(torch.FloatTensor).cuda() cmap = (1-ratios).view(ratios.shape[0], ratios.shape[0], 1).repeat(1, 1, 3) \ * color_mapping_values[i].view(1, 1, 3).repeat(ratios.shape[0], ratios.shape[1], 1) cmap += color_mapping_values[i+1].view(1, 1, 3).repeat(ratios.shape[0], ratios.shape[1], 1) \ * ratios.view(ratios.shape[0], ratios.shape[0], 1).repeat(1, 1, 3) indices = torch.bitwise_and(data_mag >= color_mapping_keys[i], data_mag < color_mapping_keys[i+1]) image_out[indices] = cmap[indices] image_out[data_mag > color_mapping_keys[-1]] = color_mapping_values[-1] img = image_out.cpu().numpy().astype(np.uint8) imageio.imwrite("bigboy.jpg", img) '''
''' Unit tests for tree_util.py. ''' import unittest import tree_util class TreeUtilTest(unittest.TestCase): def setUp(self): self.root = tree_util.Node({'id':0, 'form':'improve'}, []) self.root.add_child(tree_util.Node({'id':1, 'form':'economy'})) self.root.add_child(tree_util.Node({'id':2, 'form':'to'})) def test_find(self): testcases = [('id', 2), ('form', 'economy'), ('pos', 1), ('form', 'one')] self.assertEqual(self.root.find('id', 2)[0].label['id'], 2) self.assertEqual(self.root.find('form', 'economy')[0].label['form'], 'economy') self.assertEqual(len(self.root.find('pos', 1)), 0) self.assertEqual(len(self.root.find('form', 'one')), 0) if __name__ == '__main__': unittest.main()
""" This project lets you practice NESTED LOOPS (i.e., loops within loops) in the context of SEQUENCES OF SUB-SEQUENCES. Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Mark Hays, Amanda Stouder, Derek Whitley, their colleagues, and PUT_YOUR_NAME_HERE. """ # TODO: 1. PUT YOUR NAME IN THE ABOVE LINE. import time import testing_helper def main(): """ Calls the other functions to test them. """ print() print("Un-comment and re-comment calls in MAIN one by one as you work.") # run_test_sum_numbers() # run_test_multiply_by_c() def run_test_sum_numbers(): """ Tests the sum_numbers function. """ # ------------------------------------------------------------------------- # TODO: 2. Implement this TEST function. # It TESTS the sum_numbers function defined below. # Include at least ** 4 ** tests (we wrote 3 for you). # ------------------------------------------------------------------------- print() print('--------------------------------------------------') print('Testing the sum_numbers function:') print('--------------------------------------------------') format_string = ' sum_numbers( {} )' test_results = [0, 0] # Number of tests passed, failed. # Test 1: expected = 38 print_expected_result_of_test([[(3, 1, 4), (10, 10), [1, 2, 3, 4]]], expected, test_results, format_string) actual = sum_numbers([(3, 1, 4), (10, 10), [1, 2, 3, 4]]) print_actual_result_of_test(expected, actual, test_results) # Test 2: expected = 5 print_expected_result_of_test([([], [5], [])], expected, test_results, format_string) actual = sum_numbers(([], [5], [])) print_actual_result_of_test(expected, actual, test_results) # Test 3: expected = 105 print_expected_result_of_test([[(5, 0, 4), (10,), (), (8, 3, 2, 10, 10), (3, 5), (1, 2, 3, 4, 5, 6, 7, 8, 9)]], expected, test_results, format_string) actual = sum_numbers([(5, 0, 4), (10,), (), (8, 3, 2, 10, 10), (3, 5), (1, 2, 3, 4, 5, 6, 7, 8, 9)]) print_actual_result_of_test(expected, actual, test_results) # ------------------------------------------------------------------------- # TODO: 2 (continued): Add your ADDITIONAL test here: # ------------------------------------------------------------------------- # SUMMARY of test results: print_summary_of_test_results(test_results) def sum_numbers(seq_seq): """ Returns the sum of the numbers in the given sequence of subsequences. For example, if the given argument is: [(3, 1, 4), (10, 10), [1, 2, 3, 4]] then this function returns 38 (which is 3 + 1 + 4 + 10 + 10 + 1 + 2 + 3 + 4). Preconditions: the given argument is a sequences of sequences, and each item in the subsequences is a number. """ # ------------------------------------------------------------------------- # TODO: 3. Implement and test this function. # Note that you should write its TEST function first (above). # __ # NOTE: This is a classic SEQUENCE of SEQUENCES problem: # -- Each loop is simply the pattern you have seen many times. # -- But INSIDE the OUTER loop and BEFORE the INNER loop, # you can 'extract' the current (OUTER loop) SUB-list # to loop through it in the INNER loop. # -- See m2r_nested_loops_in_sequences as needed. # ------------------------------------------------------------------------- def run_test_multiply_by_c(): """ Tests the multiply_by_c function. """ # ------------------------------------------------------------------------- # We have supplied tests for you. No additional tests are required, # although you are welcome to supply more tests if you choose. # ------------------------------------------------------------------------- print() print('------------------------------------------------------') print('Testing the multiply_by_c function:') print('------------------------------------------------------') format_string = ' multiply_by_c( {}, {} )' test_results = [0, 0] # Number of tests passed, failed. # ------------------------------------------------------------------------- # Test 1: Tests whether the function MUTATES the sub-lists correctly. seq_of_lists = ([10, 3, 101], [8, 0]) c = 3 # Each number in each sub-list should be multiplied by this # After the function call, seq_of_lists should be as follows: expected = ([30, 9, 303], [24, 0]) print_expected_result_of_test([c, seq_of_lists], expected, test_results, format_string) actual = multiply_by_c(c, seq_of_lists) print_actual_result_of_test(expected, seq_of_lists, test_results) print('The above is for seq_of_lists (whose lists should be MUTATED.') # Test 2: (a continuation of Test 1) # Tests whether the function does not RETURN a value (i.e., returns None) print_expected_result_of_test([c, seq_of_lists], None, test_results, format_string) print_actual_result_of_test(None, actual, test_results) print('The above is for the RETURNED VALUE, which should be') print('the constant None, NOT the STRING "None".') # ------------------------------------------------------------------------- # ------------------------------------------------------------------------- # Test 3: Tests whether the function MUTATES the sub-lists correctly. seq_of_lists = ([4, 2, 1], [8, 0], [1, 2, 3, 4, 5], [], [101]) c = 2 # Each number in each sub-list should be multiplied by this # After the function call, seq_of_lists should be as follows: expected = ([8, 4, 2], [16, 0], [2, 4, 6, 8, 10], [], [202]) print_expected_result_of_test([c, seq_of_lists], expected, test_results, format_string) actual = multiply_by_c(c, seq_of_lists) print_actual_result_of_test(expected, seq_of_lists, test_results) print('The above is for seq_of_lists (whose lists should be MUTATED.') # Test 4: (a continuation of Test 3) # Tests whether the function does not RETURN a value (i.e., returns None) print_expected_result_of_test([c, seq_of_lists], None, test_results, format_string) print_actual_result_of_test(None, actual, test_results) print('The above is for the RETURNED VALUE, which should be') print('the constant None, NOT the STRING "None".') # ------------------------------------------------------------------------- # ------------------------------------------------------------------------- # Test 5: Tests whether the function MUTATES the sub-lists correctly. seq_of_lists = [[], [1], [20, 2, 30, 4, 100, 8, 2, 2, 2], [], [300], [5, 5], [], [-10, 4]] c = 100 # Each number in each sub-list should be multiplied by this # After the function call, seq_of_lists should be as follows: expected = [[], [100], [2000, 200, 3000, 400, 10000, 800, 200, 200, 200], [], [30000], [500, 500], [], [-1000, 400]] print_expected_result_of_test([c, seq_of_lists], expected, test_results, format_string) actual = multiply_by_c(c, seq_of_lists) print_actual_result_of_test(expected, seq_of_lists, test_results) print('The above is for seq_of_lists (whose lists should be MUTATED.') # Test 6: (a continuation of Test 5) # Tests whether the function does not RETURN a value (i.e., returns None) print_expected_result_of_test([c, seq_of_lists], None, test_results, format_string) print_actual_result_of_test(None, actual, test_results) print('The above is for the RETURNED VALUE, which should be') print('the constant None, NOT the STRING "None".') # ------------------------------------------------------------------------- # SUMMARY of test results: print_summary_of_test_results(test_results) def multiply_by_c(c, sequence_of_lists): """ What comes in: -- a number c -- a sequence of lists, with each item in the lists being a number What goes out: Nothing (i.e. None). Side effects: MUTATES the given lists by multiplying each item in the lists by the given number c. For example, consider the following code: seq_of_lists = ([4, 2, 1], [8, 0], [1, 2, 3, 4, 5], [], [101]) v = multiply_by_c(2, seq_of_lists) After the above code runs, v (the returned value) should be None and seq_of_lists should be: ([8, 4, 2], [16, 0], [2, 4, 6, 8, 10], [], [202]). Type hints: :type: c: float :type sequence_of_lists: sequence of lists of numbers """ # ------------------------------------------------------------------------- # TODO: 4. Implement and test this function. # ** READ THE TESTS that have been written for you (ABOVE). # ** ASK QUESTIONS if you do not understand the TESTS (ABOVE). # ------------------------------------------------------------------------- ############################################################################### # Our tests use the following to print error messages in red. # Do NOT change it. You do NOT have to do anything with it. ############################################################################### def print_expected_result_of_test(arguments, expected, test_results, format_string, suffix=''): testing_helper.print_expected_result_of_test(arguments, expected, test_results, format_string, suffix) def print_actual_result_of_test(expected, actual, test_results, precision=None): testing_helper.print_actual_result_of_test(expected, actual, test_results, precision) def print_summary_of_test_results(test_results): testing_helper.print_summary_of_test_results(test_results) # To allow color-coding the output to the console: USE_COLORING = True # Change to False to revert to OLD style coloring testing_helper.USE_COLORING = USE_COLORING if USE_COLORING: # noinspection PyShadowingBuiltins print = testing_helper.print_colored else: # noinspection PyShadowingBuiltins print = testing_helper.print_uncolored # ----------------------------------------------------------------------------- # Calls main to start the ball rolling. # The try .. except prevents error messages on the console from being # intermingled with ordinary output to the console. # ----------------------------------------------------------------------------- try: main() except Exception: print('ERROR - While running this test,', color='red') print('your code raised the following exception:', color='red') print() time.sleep(1) raise
""" Objects that represent -- and generate code for -- C/C++ Python extension modules. Modules and Sub-modules ======================= A L{Module} object takes care of generating the code for a Python module. The way a Python module is organized is as follows. There is one "root" L{Module} object. There can be any number of L{SubModule}s. Sub-modules themselves can have additional sub-modules. Calling L{Module.generate} on the root module will trigger code generation for the whole module, not only functions and types, but also all its sub-modules. In Python, a sub-module will appear as a I{built-in} Python module that is available as an attribute of its parent module. For instance, a module I{foo} having a sub-module I{xpto} appears like this:: |>>> import foo |>>> foo.xpto |<module 'foo.xpto' (built-in)> Modules and C++ namespaces ========================== Modules can be associated with specific C++ namespaces. This means, for instance, that any C++ class wrapped inside that module must belong to that C++ namespace. Example:: |>>> from cppclass import * |>>> mod = Module("foo", cpp_namespace="::foo") |>>> mod.add_class("Bar") |<pybindgen.CppClass 'foo::Bar'> When we have a toplevel C++ namespace which contains another nested namespace, we want to wrap the nested namespace as a Python sub-module. The method L{ModuleBase.add_cpp_namespace} makes it easy to create sub-modules for wrapping nested namespaces. For instance:: |>>> from cppclass import * |>>> mod = Module("foo", cpp_namespace="::foo") |>>> submod = mod.add_cpp_namespace('xpto') |>>> submod.add_class("Bar") |<pybindgen.CppClass 'foo::xpto::Bar'> """ from pybindgen.function import Function, OverloadedFunction, CustomFunctionWrapper from pybindgen.typehandlers.base import CodeBlock, DeclarationsScope, ReturnValue, TypeHandler from pybindgen.typehandlers.codesink import MemoryCodeSink, CodeSink, FileCodeSink, NullCodeSink from pybindgen.cppclass import CppClass from pybindgen.cppexception import CppException from pybindgen.enum import Enum from pybindgen.container import Container from pybindgen.converter_functions import PythonToCConverter, CToPythonConverter from pybindgen import utils import warnings import traceback import collections class MultiSectionFactory(object): """ Abstract base class for objects providing support for multi-section code generation, i.e., splitting the generated C/C++ code into multiple files. The generated code will generally have the following structure: 1. For each section there is one source file specific to that section; 2. There is a I{main} source file, e.g. C{foomodule.cc}. Code that does not belong to any section will be included in this main file; 3. Finally, there is a common header file, (e.g. foomodule.h), which is included by the main file and section files alike. Typically this header file contains function prototypes and type definitions. @see: L{Module.generate} """ def get_section_code_sink(self, section_name): """ Create and/or return a code sink for a given section. :param section_name: name of the section :return: a L{CodeSink} object that will receive generated code belonging to the section C{section_name} """ raise NotImplementedError def get_main_code_sink(self): """ Create and/or return a code sink for the main file. """ raise NotImplementedError def get_common_header_code_sink(self): """ Create and/or return a code sink for the common header. """ raise NotImplementedError def get_common_header_include(self): """ Return the argument for an #include directive to include the common header. :returns: a string with the header name, including surrounding "" or <>. For example, '"foomodule.h"'. """ raise NotImplementedError class _SinkManager(object): """ Internal abstract base class for bridging differences between multi-file and single-file code generation. """ def get_code_sink_for_wrapper(self, wrapper): """ :param wrapper: wrapper object :returns: (body_code_sink, header_code_sink) """ raise NotImplementedError def get_includes_code_sink(self): raise NotImplementedError def get_main_code_sink(self): raise NotImplementedError def close(self): raise NotImplementedError class _MultiSectionSinkManager(_SinkManager): """ Sink manager that deals with multi-section code generation. """ def __init__(self, multi_section_factory): super(_MultiSectionSinkManager, self).__init__() self.multi_section_factory = multi_section_factory utils.write_preamble(self.multi_section_factory.get_common_header_code_sink()) self.multi_section_factory.get_main_code_sink().writeln( "#include %s" % self.multi_section_factory.get_common_header_include()) self._already_initialized_sections = {} self._already_initialized_sections['__main__'] = True def get_code_sink_for_wrapper(self, wrapper): header_sink = self.multi_section_factory.get_common_header_code_sink() section = getattr(wrapper, "section", None) if section is None: return self.multi_section_factory.get_main_code_sink(), header_sink else: section_sink = self.multi_section_factory.get_section_code_sink(section) if section not in self._already_initialized_sections: self._already_initialized_sections[section] = True section_sink.writeln("#include %s" % self.multi_section_factory.get_common_header_include()) return section_sink, header_sink def get_includes_code_sink(self): return self.multi_section_factory.get_common_header_code_sink() def get_main_code_sink(self): return self.multi_section_factory.get_main_code_sink() def close(self): pass class _MonolithicSinkManager(_SinkManager): """ Sink manager that deals with single-section monolithic code generation. """ def __init__(self, code_sink): super(_MonolithicSinkManager, self).__init__() self.final_code_sink = code_sink self.null_sink = NullCodeSink() self.includes = MemoryCodeSink() self.code_sink = MemoryCodeSink() utils.write_preamble(code_sink) def get_code_sink_for_wrapper(self, dummy_wrapper): return self.code_sink, self.code_sink def get_includes_code_sink(self): return self.includes def get_main_code_sink(self): return self.code_sink def close(self): self.includes.flush_to(self.final_code_sink) self.code_sink.flush_to(self.final_code_sink) class ModuleBase(dict): """ ModuleBase objects can be indexed dictionary style to access contained types. Example:: >>> from enum import Enum >>> from cppclass import CppClass >>> m = Module("foo", cpp_namespace="foo") >>> subm = m.add_cpp_namespace("subm") >>> c1 = m.add_class("Bar") >>> c2 = subm.add_class("Zbr") >>> e1 = m.add_enum("En1", ["XX"]) >>> e2 = subm.add_enum("En2", ["XX"]) >>> m["Bar"] is c1 True >>> m["foo::Bar"] is c1 True >>> m["En1"] is e1 True >>> m["foo::En1"] is e1 True >>> m["badname"] Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 'badname' >>> m["foo::subm::Zbr"] is c2 True >>> m["foo::subm::En2"] is e2 True """ def __init__(self, name, parent=None, docstring=None, cpp_namespace=None): """ Note: this is an abstract base class, see L{Module} :param name: module name :param parent: parent L{module<Module>} (i.e. the one that contains this submodule) or None if this is a root module :param docstring: docstring to use for this module :param cpp_namespace: C++ namespace prefix associated with this module :return: a new module object """ super(ModuleBase, self).__init__() self.parent = parent self.docstring = docstring self.submodules = [] self.enums = [] self.typedefs = [] # list of (wrapper, alias) tuples self._forward_declarations_declared = False self.cpp_namespace = cpp_namespace if self.parent is None: error_return = 'return MOD_ERROR;' self.after_forward_declarations = MemoryCodeSink() else: self.after_forward_declarations = None self.parent.submodules.append(self) error_return = 'return NULL;' self.prefix = None self.init_function_name = None self._name = None self.name = name path = self.get_namespace_path() if path and path[0] == '::': del path[0] self.cpp_namespace_prefix = '::'.join(path) self.declarations = DeclarationsScope() self.functions = collections.OrderedDict() # name => OverloadedFunction self.classes = [] self.containers = [] self.exceptions = [] self.before_init = CodeBlock(error_return, self.declarations) self.after_init = CodeBlock(error_return, self.declarations, predecessor=self.before_init) self.c_function_name_transformer = None self.set_strip_prefix(name + '_') if parent is None: self.header = MemoryCodeSink() self.body = MemoryCodeSink() self.one_time_definitions = {} self.includes = [] else: self.header = parent.header self.body = parent.body self.one_time_definitions = parent.one_time_definitions self.includes = parent.includes self._current_section = '__main__' def get_current_section(self): return self.get_root()._current_section current_section = property(get_current_section) def begin_section(self, section_name): """ Declare that types and functions registered with the module in the future belong to the section given by that section_name parameter, until a matching end_section() is called. .. note:: :meth:`begin_section`/:meth:`end_section` are silently ignored unless a :class:`MultiSectionFactory` object is used as code generation output. """ if self.current_section != '__main__': raise ValueError("begin_section called while current section not ended") if section_name == '__main__': raise ValueError ("__main__ not allowed as section name") assert self.parent is None self._current_section = section_name def end_section(self, section_name): """ Declare the end of a section, i.e. further types and functions will belong to the main module. :param section_name: name of section; must match the one in the previous :meth:`begin_section` call. """ assert self.parent is None if self._current_section != section_name: raise ValueError("end_section called for wrong section: expected %r, got %r" % (self._current_section, section_name)) self._current_section = '__main__' def get_name(self): return self._name def set_name(self, name): self._name = name if self.parent is None: self.prefix = self.name.replace('.', '_') self.init_function_name = "init%s" % (self.name.split('.')[-1],) else: self.prefix = self.parent.prefix + "_" + self.name self.init_function_name = "init%s" % (self.prefix,) name = property(get_name, set_name) def get_submodule(self, submodule_name): "get a submodule by its name" for submodule in self.submodules: if submodule.name == submodule_name: return submodule raise ValueError("submodule %s not found" % submodule_name) def get_root(self): ":return: the root :class:`Module` (even if it is self)" root = self while root.parent is not None: root = root.parent return root def set_strip_prefix(self, prefix): """Sets the prefix string to be used when transforming a C function name into the python function name; the given prefix string is removed from the C function name.""" def strip_prefix(c_name): """A C funtion name transformer that simply strips a common prefix from the name""" if c_name.startswith(prefix): return c_name[len(prefix):] else: return c_name self.c_function_name_transformer = strip_prefix def set_c_function_name_transformer(self, transformer): """Sets the function to be used when transforming a C function name into the python function name; the given given function is called like this:: python_name = transformer(c_name) """ self.c_function_name_transformer = transformer def add_include(self, include): """ Adds an additional include directive, needed to compile this python module :param include: the name of the header file to include, including surrounding "" or <>. """ include = utils.ascii(include) assert include.startswith('"') or include.startswith('<') assert include.endswith('"') or include.endswith('>') if include not in self.includes: self.includes.append(include) def _add_function_obj(self, wrapper): assert isinstance(wrapper, Function) name = utils.ascii(wrapper.custom_name) if name is None: name = self.c_function_name_transformer(wrapper.function_name) name = utils.get_mangled_name(name, wrapper.template_parameters) try: overload = self.functions[name] except KeyError: overload = OverloadedFunction(name) self.functions[name] = overload wrapper.module = self wrapper.section = self.current_section overload.add(wrapper) def add_function(self, *args, **kwargs): """ Add a function to the module/namespace. See the documentation for :meth:`Function.__init__` for information on accepted parameters. """ if len(args) >= 1 and isinstance(args[0], Function): func = args[0] warnings.warn("add_function has changed API; see the API documentation", DeprecationWarning, stacklevel=2) if len(args) == 2: func.custom_name = args[1] elif 'name' in kwargs: assert len(args) == 1 func.custom_name = kwargs['name'] else: assert len(args) == 1 assert len(kwargs) == 0 else: try: func = Function(*args, **kwargs) except utils.SkipWrapper: return None self._add_function_obj(func) return func def add_custom_function_wrapper(self, *args, **kwargs): """ Add a function, using custom wrapper code, to the module/namespace. See the documentation for :class:`pybindgen.function.CustomFunctionWrapper` for information on accepted parameters. """ try: func = CustomFunctionWrapper(*args, **kwargs) except utils.SkipWrapper: return None self._add_function_obj(func) return func def register_type(self, name, full_name, type_wrapper): """ Register a type wrapper with the module, for easy access in the future. Normally should not be called by the programmer, as it is meant for internal pybindgen use and called automatically. :param name: type name without any C++ namespace prefix, or None :param full_name: type name with a C++ namespace prefix, or None :param type_wrapper: the wrapper object for the type (e.g. L{CppClass} or L{Enum}) """ module = self if name: module[name] = type_wrapper if full_name: while module is not None: module[full_name] = type_wrapper module = module.parent def _add_class_obj(self, class_): """ Add a class to the module. :param class_: a CppClass object """ assert isinstance(class_, CppClass) class_.module = self class_.section = self.current_section self.classes.append(class_) self.register_type(class_.name, class_.full_name, class_) def add_class(self, *args, **kwargs): """ Add a class to the module. See the documentation for L{CppClass.__init__} for information on accepted parameters. """ if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], CppClass): cls = args[0] warnings.warn("add_class has changed API; see the API documentation", DeprecationWarning, stacklevel=2) else: cls = CppClass(*args, **kwargs) self._add_class_obj(cls) return cls def add_struct(self, *args, **kwargs): """ Add a struct to the module. In addition to the parameters accepted by L{CppClass.__init__}, this method accepts the following keyword parameters: - no_constructor (bool): if True, the structure will not have a constructor by default (if omitted, it will be considered to have a trivial constructor). - no_copy (bool): if True, the structure will not have a copy constructor by default (if omitted, it will be considered to have a simple copy constructor). """ try: no_constructor = kwargs['no_constructor'] except KeyError: no_constructor = False else: del kwargs['no_constructor'] try: no_copy = kwargs['no_copy'] except KeyError: no_copy = False else: del kwargs['no_copy'] struct = CppClass(*args, **kwargs) struct.stack_where_defined = traceback.extract_stack() self._add_class_obj(struct) if not no_constructor: struct.add_constructor([]) if not no_copy: struct.add_copy_constructor() return struct def add_cpp_namespace(self, name): """ Add a nested module namespace corresponding to a C++ namespace. If the requested namespace was already added, the existing module is returned instead of creating a new one. :param name: name of C++ namespace (just the last component, not full scoped name); this also becomes the name of the submodule. :return: a L{SubModule} object that maps to this namespace. """ name = utils.ascii(name) try: return self.get_submodule(name) except ValueError: module = SubModule(name, parent=self, cpp_namespace=name) module.stack_where_defined = traceback.extract_stack() return module def _add_enum_obj(self, enum): """ Add an enumeration. """ assert isinstance(enum, Enum) self.enums.append(enum) enum.module = self enum.section = self.current_section self.register_type(enum.name, enum.full_name, enum) def add_enum(self, *args, **kwargs): """ Add an enumeration to the module. See the documentation for L{Enum.__init__} for information on accepted parameters. """ if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], Enum): enum = args[0] warnings.warn("add_enum has changed API; see the API documentation", DeprecationWarning, stacklevel=2) else: enum = Enum(*args, **kwargs) enum.stack_where_defined = traceback.extract_stack() self._add_enum_obj(enum) return enum def _add_container_obj(self, container): """ Add a container to the module. :param container: a L{Container} object """ assert isinstance(container, Container) container.module = self container.section = self.current_section self.containers.append(container) self.register_type(container.name, container.full_name, container) def add_container(self, *args, **kwargs): """ Add a container to the module. See the documentation for L{Container.__init__} for information on accepted parameters. """ try: container = Container(*args, **kwargs) except utils.SkipWrapper: return None container.stack_where_defined = traceback.extract_stack() self._add_container_obj(container) return container def _add_exception_obj(self, exc): assert isinstance(exc, CppException) exc.module = self exc.section = self.current_section self.exceptions.append(exc) self.register_type(exc.name, exc.full_name, exc) def add_exception(self, *args, **kwargs): """ Add a C++ exception to the module. See the documentation for L{CppException.__init__} for information on accepted parameters. """ exc = CppException(*args, **kwargs) self._add_exception_obj(exc) return exc def declare_one_time_definition(self, definition_name): """ Internal helper method for code geneneration to coordinate generation of code that can only be defined once per compilation unit (note: assuming here one-to-one mapping between 'module' and 'compilation unit'). :param definition_name: a string that uniquely identifies the code definition that will be added. If the given definition was already declared KeyError is raised. >>> module = Module('foo') >>> module.declare_one_time_definition("zbr") >>> module.declare_one_time_definition("zbr") Traceback (most recent call last): ... KeyError: 'zbr' >>> module.declare_one_time_definition("bar") """ definition_name = utils.ascii(definition_name) if definition_name in self.one_time_definitions: raise KeyError(definition_name) self.one_time_definitions[definition_name] = None def generate_forward_declarations(self, code_sink): """(internal) generate forward declarations for types""" assert not self._forward_declarations_declared if self.classes or self.containers or self.exceptions: code_sink.writeln('/* --- forward declarations --- */') code_sink.writeln() for class_ in [c for c in self.classes if c.import_from_module]: class_.generate_forward_declarations(code_sink, self) for class_ in [c for c in self.classes if not c.import_from_module]: class_.generate_forward_declarations(code_sink, self) for container in self.containers: container.generate_forward_declarations(code_sink, self) for exc in self.exceptions: exc.generate_forward_declarations(code_sink, self) ## recurse to submodules for submodule in self.submodules: submodule.generate_forward_declarations(code_sink) self._forward_declarations_declared = True def get_module_path(self): """Get the full [module, submodule, submodule,...] path """ names = [self.name] parent = self.parent while parent is not None: names.insert(0, parent.name) parent = parent.parent return names def get_namespace_path(self): """Get the full [root_namespace, namespace, namespace,...] path (C++)""" if not self.cpp_namespace: names = [] else: if self.cpp_namespace == '::': names = [] else: names = self.cpp_namespace.split('::') if not names[0]: del names[0] parent = self.parent while parent is not None: if parent.cpp_namespace and parent.cpp_namespace != '::': parent_names = parent.cpp_namespace.split('::') if not parent_names[0]: del parent_names[0] names = parent_names + names parent = parent.parent return names def do_generate(self, out, module_file_base_name=None): """(internal) Generates the module.""" assert isinstance(out, _SinkManager) if self.parent is None: ## generate the include directives (only the root module) forward_declarations_sink = MemoryCodeSink() if not self._forward_declarations_declared: self.generate_forward_declarations(forward_declarations_sink) self.after_forward_declarations.flush_to(forward_declarations_sink) if self.parent is None: for include in self.includes: out.get_includes_code_sink().writeln("#include %s" % include) self.includes = None forward_declarations_sink.flush_to(out.get_includes_code_sink()) else: assert module_file_base_name is None, "only root modules can generate with alternate module_file_base_name" ## generate the submodules for submodule in self.submodules: submodule.do_generate(out) m = self.declarations.declare_variable('PyObject*', 'm') assert m == 'm' if module_file_base_name is None: mod_init_name = '.'.join(self.get_module_path()) else: mod_init_name = module_file_base_name self.before_init.write_code('#if PY_VERSION_HEX >= 0x03000000') self.before_init.write_code( "m = PyModule_Create(&%s_moduledef);" % (self.prefix)) self.before_init.write_code('#else') self.before_init.write_code( "m = Py_InitModule3((char *) \"%s\", %s_functions, %s);" % (mod_init_name, self.prefix, self.docstring and '"'+self.docstring+'"' or 'NULL')) self.before_init.write_code('#endif') self.before_init.write_error_check("m == NULL") main_sink = out.get_main_code_sink() ## generate the function wrappers py_method_defs = [] if self.functions: main_sink.writeln('/* --- module functions --- */') main_sink.writeln() for func_name, overload in self.functions.items(): sink, header_sink = out.get_code_sink_for_wrapper(overload) sink.writeln() try: utils.call_with_error_handling(overload.generate, (sink,), {}, overload) except utils.SkipWrapper: continue try: utils.call_with_error_handling(overload.generate_declaration, (main_sink,), {}, overload) except utils.SkipWrapper: continue sink.writeln() py_method_defs.append(overload.get_py_method_def(func_name)) del sink ## generate the function table main_sink.writeln("static PyMethodDef %s_functions[] = {" % (self.prefix,)) main_sink.indent() for py_method_def in py_method_defs: main_sink.writeln(py_method_def) main_sink.writeln("{NULL, NULL, 0, NULL}") main_sink.unindent() main_sink.writeln("};") ## generate the classes if self.classes: main_sink.writeln('/* --- classes --- */') main_sink.writeln() for class_ in [c for c in self.classes if c.import_from_module]: sink, header_sink = out.get_code_sink_for_wrapper(class_) sink.writeln() class_.generate(sink, self) sink.writeln() for class_ in [c for c in self.classes if not c.import_from_module]: sink, header_sink = out.get_code_sink_for_wrapper(class_) sink.writeln() class_.generate(sink, self) sink.writeln() ## generate the containers if self.containers: main_sink.writeln('/* --- containers --- */') main_sink.writeln() for container in self.containers: sink, header_sink = out.get_code_sink_for_wrapper(container) sink.writeln() container.generate(sink, self) sink.writeln() ## generate the exceptions if self.exceptions: main_sink.writeln('/* --- exceptions --- */') main_sink.writeln() for exc in self.exceptions: sink, header_sink = out.get_code_sink_for_wrapper(exc) sink.writeln() exc.generate(sink, self) sink.writeln() # typedefs for (wrapper, alias) in self.typedefs: if isinstance(wrapper, CppClass): cls = wrapper cls.generate_typedef(self, alias) ## generate the enums if self.enums: main_sink.writeln('/* --- enumerations --- */') main_sink.writeln() for enum in self.enums: sink, header_sink = out.get_code_sink_for_wrapper(enum) sink.writeln() enum.generate(sink) enum.generate_declaration(header_sink, self) sink.writeln() ## register the submodules if self.submodules: submodule_var = self.declarations.declare_variable('PyObject*', 'submodule') for submodule in self.submodules: self.after_init.write_code('%s = %s();' % ( submodule_var, submodule.init_function_name)) self.after_init.write_error_check('%s == NULL' % submodule_var) self.after_init.write_code('Py_INCREF(%s);' % (submodule_var,)) self.after_init.write_code('PyModule_AddObject(m, (char *) "%s", %s);' % (submodule.name, submodule_var,)) ## flush the header section self.header.flush_to(out.get_includes_code_sink()) ## flush the body section self.body.flush_to(main_sink) ## now generate the module init function itself main_sink.writeln('#if PY_VERSION_HEX >= 0x03000000\n' 'static struct PyModuleDef %s_moduledef = {\n' ' PyModuleDef_HEAD_INIT,\n' ' "%s",\n' ' %s,\n' ' -1,\n' ' %s_functions,\n' '};\n' '#endif' % (self.prefix, mod_init_name, self.docstring and '"'+self.docstring+'"' or 'NULL', self.prefix)) main_sink.writeln() if self.parent is None: main_sink.writeln(''' #if PY_VERSION_HEX >= 0x03000000 #define MOD_ERROR NULL #define MOD_INIT(name) PyObject* PyInit_##name(void) #define MOD_RETURN(val) val #else #define MOD_ERROR #define MOD_INIT(name) void init##name(void) #define MOD_RETURN(val) #endif #if defined(__cplusplus) extern "C" #endif #if defined(__GNUC__) && __GNUC__ >= 4 __attribute__ ((visibility("default"))) #endif ''') else: main_sink.writeln("static PyObject *") if self.parent is None: main_sink.writeln("MOD_INIT(%s)" % (self.name,)) elif module_file_base_name is None: main_sink.writeln("%s(void)" % (self.init_function_name,)) else: main_sink.writeln("init%s(void)" % (module_file_base_name,)) main_sink.writeln('{') main_sink.indent() self.declarations.get_code_sink().flush_to(main_sink) self.before_init.sink.flush_to(main_sink) self.after_init.write_cleanup() self.after_init.sink.flush_to(main_sink) if self.parent is not None: main_sink.writeln("return m;") else: main_sink.writeln("return MOD_RETURN(m);") main_sink.unindent() main_sink.writeln('}') def __repr__(self): return "<pybindgen.module.Module %r>" % self.name def add_typedef(self, wrapper, alias): """ Declares an equivalent to a typedef in C:: typedef Foo Bar; :param wrapper: the wrapper object to alias (Foo in the example) :param alias: name of the typedef alias @note: only typedefs for CppClass objects have been implemented so far; others will be implemented in the future. """ assert isinstance(wrapper, CppClass) alias = utils.ascii(alias) self.typedefs.append((wrapper, alias)) self.register_type(alias, alias, wrapper) wrapper.register_alias(alias) full_name = '::'.join(self.get_namespace_path() + [alias]) wrapper.register_alias(full_name) class Module(ModuleBase): def __init__(self, name, docstring=None, cpp_namespace=None): """ :param name: module name :param docstring: docstring to use for this module :param cpp_namespace: C++ namespace prefix associated with this module """ super(Module, self).__init__(name, docstring=docstring, cpp_namespace=cpp_namespace) def generate(self, out, module_file_base_name=None): """Generates the module :type out: a file object, L{FileCodeSink}, or L{MultiSectionFactory} :param module_file_base_name: base name of the module file. This is useful when we want to produce a _foo module that will be imported into a foo module, to avoid making all types docstrings contain _foo.Xpto instead of foo.Xpto. """ if hasattr(out, 'write'): out = FileCodeSink(out) if isinstance(out, CodeSink): sink_manager = _MonolithicSinkManager(out) elif isinstance(out, MultiSectionFactory): sink_manager = _MultiSectionSinkManager(out) else: raise TypeError self.do_generate(sink_manager, module_file_base_name) sink_manager.close() def get_python_to_c_type_converter_function_name(self, value_type): """ Internal API, do not use. """ assert isinstance(value_type, TypeHandler) ctype = value_type.ctype mangled_ctype = utils.mangle_name(str(ctype)) converter_function_name = "_wrap_convert_py2c__%s" % mangled_ctype return converter_function_name def generate_python_to_c_type_converter(self, value_type, code_sink): """ Generates a python-to-c converter function for a given type and returns the name of the generated function. If called multiple times with the same name only the first time is the converter function generated. Use: this method is to be considered pybindgen internal, used by code generation modules. :type value_type: L{ReturnValue} :type code_sink: L{CodeSink} :returns: name of the converter function """ assert isinstance(value_type, TypeHandler) converter_function_name = self.get_python_to_c_type_converter_function_name(value_type) try: self.declare_one_time_definition(converter_function_name) except KeyError: return converter_function_name else: converter = PythonToCConverter(value_type, converter_function_name) self.header.writeln("\n%s;\n" % converter.get_prototype()) code_sink.writeln() converter.generate(code_sink, converter_function_name) code_sink.writeln() return converter_function_name def get_c_to_python_type_converter_function_name(self, value_type): """ Internal API, do not use. """ assert isinstance(value_type, TypeHandler) ctype = value_type.ctype mangled_ctype = utils.mangle_name(str(ctype)) converter_function_name = "_wrap_convert_c2py__%s" % mangled_ctype return converter_function_name def generate_c_to_python_type_converter(self, value_type, code_sink): """ Generates a c-to-python converter function for a given type and returns the name of the generated function. If called multiple times with the same name only the first time is the converter function generated. Use: this method is to be considered pybindgen internal, used by code generation modules. :type value_type: L{ReturnValue} :type code_sink: L{CodeSink} :returns: name of the converter function """ assert isinstance(value_type, TypeHandler) converter_function_name = self.get_c_to_python_type_converter_function_name(value_type) try: self.declare_one_time_definition(converter_function_name) except KeyError: return converter_function_name else: converter = CToPythonConverter(value_type, converter_function_name) self.header.writeln("\n%s;\n" % converter.get_prototype()) code_sink.writeln() converter.generate(code_sink) code_sink.writeln() return converter_function_name class SubModule(ModuleBase): def __init__(self, name, parent, docstring=None, cpp_namespace=None): """ :param parent: parent L{module<Module>} (i.e. the one that contains this submodule) :param name: name of the submodule :param docstring: docstring to use for this module :param cpp_namespace: C++ namespace component associated with this module """ super(SubModule, self).__init__(name, parent, docstring=docstring, cpp_namespace=cpp_namespace)
import sys import click import logging import os from datetime import datetime from trimbot_modules import Configuration, Session, Recipe, V3Api, ResourceServiceFactory, CheckAction, NoCheckAction def configure_logging(trace): if trace: logFormatter = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s (%(name)s)") else: logFormatter = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s") today = datetime.now() timestamp = today.strftime("%Y%m%d%H%M%S") if not os.path.exists('./logs'): os.makedirs('./logs') fileHandler = logging.FileHandler(f"./logs/trimbot_{timestamp}.log") fileHandler.setFormatter(logFormatter) consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(logFormatter) logging.getLogger().setLevel(logging.INFO) logging.getLogger().addHandler(fileHandler) logging.getLogger().addHandler(consoleHandler) def create_child_session(profile, workspace): workspace_profile = workspace.get_profile() if workspace_profile: profile = workspace_profile child_session = Session(profile, workspace.get_role_arn(), workspace.get_external_id()) caller_account_id = child_session.get_connected_account_id() if workspace.get_account() != caller_account_id: raise RuntimeError( f'Connected account id {caller_account_id} differs from turbot expected account id {caller_account_id}') return child_session def create_v3_api(configuration, workspace): configuration_host = configuration.get_turbot_host() configuration_access_key = configuration.get_turbot_access_key() configuration_secret_access_key = configuration.get_turbot_secret_access_key() configuration_verify_ssl = configuration.get_verify_ssl() workspace_host = workspace.get_turbot_host() workspace_access_key = workspace.get_turbot_access_key() workspace_secret_access_key = workspace.get_turbot_secret_access_key() workspace_verify_ssl = workspace.get_verify_ssl() host = workspace_host if workspace_host else configuration_host access_key = workspace_access_key if workspace_access_key else configuration_access_key secret_access_key = workspace_secret_access_key if workspace_secret_access_key else configuration_secret_access_key verify_ssl = workspace_verify_ssl if workspace_verify_ssl != None else configuration_verify_ssl if not host or not access_key or not secret_access_key: return None return V3Api( host, access_key, secret_access_key, verify_ssl ) def load_recipe(configuration, workspace): configuration_recipe = configuration.get_recipe() workspace_recipe = workspace.get_recipe() recipe_location = workspace_recipe if workspace_recipe else configuration_recipe recipe = Recipe(recipe_location) recipe.load() return recipe def resolve_profile(configuration, workspace): configuration_profile = configuration.get_profile() workspace_profile = workspace.get_profile() return workspace_profile if workspace_profile else configuration_profile @ click.command() @ click.option('-f', '--config-file', type=click.File('r'), required=True, help='/path/to/a/configuration/file.yml') @ click.option('-a', '--approve', is_flag=True, default=False, help='If set, destructive changes will be applied') @ click.option('-t', '--trace', is_flag=True, default=False, help='Adds more detailed logging') @ click.option('-c', '--check', is_flag=True, default=False, help='Runs action check only') def cli(config_file, approve, trace, check): try: dry_run = not approve configure_logging(trace) logging.info(f'Started TrimBot') action = CheckAction() if check else NoCheckAction(dry_run) configuration = Configuration(config_file) for workspace in configuration.workspaces: try: # Note, these two values may be empty turbot_account_id = workspace.get_turbot_account() turbot_cluster_id = workspace.get_turbot_cluster() if turbot_account_id and turbot_cluster_id: logging.info(f"Processing account {turbot_account_id} for cluster {turbot_cluster_id}") else: logging.info(f"Processing account {workspace.get_account()}") profile = resolve_profile(configuration, workspace) v3_api = create_v3_api(configuration, workspace) child_session = create_child_session(profile, workspace) master_session = Session(profile) factory = ResourceServiceFactory( master_session, child_session, v3_api, turbot_account_id, turbot_cluster_id ) recipe = load_recipe(configuration, workspace) for recipe_resource in recipe.resources: service = factory.create_resource_service(recipe_resource) if not action.should_process(recipe_resource["actions"]): continue if service.is_global_service(): logging.info( f"Processing global resource named '{service.get_user_defined_name()}' for service {service.get_service_name()} and resource {service.get_resource_name()}") action.run_action(service, child_session.get_default_region(), recipe_resource["actions"]) logging.info( f"Completed - Processing global resource named '{service.get_user_defined_name()}' for service {service.get_service_name()} and resource {service.get_resource_name()}") else: logging.info( f"Processing resource named '{service.get_user_defined_name()}' for service {service.get_service_name()} and resource {service.get_resource_name()}") regions = child_session.get_regions() for region in regions: logging.info(f"Processing region {region}") action.run_action(service, region, recipe_resource["actions"]) logging.info( f"Completed - Processing resource named '{service.get_user_defined_name()}' for service {service.get_service_name()} and resource {service.get_resource_name()}") if turbot_account_id and turbot_cluster_id: logging.info(f"Completed - Processing account {turbot_account_id} for cluster {turbot_cluster_id}") else: logging.info(f"Completed - Processing account {workspace.get_account()}") except Exception as e: logging.error(f'Ignoring workspace for account {workspace.get_account()}') logging.error(e) logging.info(f'TrimBot completed') except Exception as e: logging.error(f'Unexpected exception:') logging.error(e) if __name__ == "__main__": cli()
from django.db import models class ProgrammingLanguage(models.Model): name = models.CharField(max_length=200, null=False, unique=True) def __str__(self): return self.name @property def link(self): return f'/?language={self.name}&rate=all#search-section-form' @staticmethod def get_other_default_language(): return ProgrammingLanguage.objects.get_or_create(name='Other')[0] COMPLEXITY_LEVEL = [ (1, 'Very Easy'), (2, 'Easy'), (3, 'Medium'), (4, 'Hard'), (5, 'Very Hard'), ] class IssueRate(models.Model): rate = models.IntegerField(choices=COMPLEXITY_LEVEL)
#This is code includes the logistic regression algorithm for the classification of the japanese credit dataset. #goto http://ataspinar.com for a detailed explanation of the math behind logistic regression #goto https://github.com/taspinar/siml for the full code #It was used during hackathon4 of the Eindhoven Data Science group: https://www.meetup.com/Eindhoven-Data-Science-Meetup/events/234115346/ import pandas as pd from sets import Set import random import numpy as np datafile = './japanese_credit.data' df = pd.read_csv(datafile, header=None) column_values = list(df.columns.values) categorical_columns = [0,3,4,5,6,8,9,11,12] str_cols = [0,1,3,4,5,6,8,9,11,12,13] int_columns = [10,13,14] float_columns = [1,2,7] #first we select only the rows which do not contain any invalid values for col in str_cols: df = df[df[col] != '?'] #columns containing categorical values are expanded to k different columns with binary values (k is number of categories) for col in categorical_columns: col_values = list(Set(df[col].values)) for col_value in col_values: if col_value != '?': df.loc[df[col] == col_value, str(col)+'_is_'+col_value] = 1 #remove original columns for col in categorical_columns: del df[col] #rename the column with the label to 'label' and make it integer df.loc[df[15] == '+', 'label'] = 1 del df[15] #normalize the columns with integer values by the mean value for col in int_columns: df[col] = df[col].apply(int) col_values = list(df[col].values) mean = np.mean(map(int,col_values)) df[col] = df[col].apply(lambda x: x/float(mean)) #normalize the columns with float values by the mean value for col in float_columns: df[col] = df[col].apply(float) col_values = list(df[col].values) mean = np.mean(map(float,col_values)) df[col] = df[col].apply(lambda x: x/mean) df = df.fillna(0) #create a training and a test set indices = df.index.values random.shuffle(indices) no_training_examples = int(0.7*len(indices)) df_training = df.ix[indices[:no_training_examples]] df_test = df.ix[indices[no_training_examples:]] #create and fill the Y matrices of the training and test set Y = df_training['label'].values Y_test = df_test['label'].values del df_training['label'] del df_test['label'] #create the X matrices of the training and test set and initialize with zero no_features = len(df_training.columns.values) no_test_examples = len(df_test.index.values) X = np.zeros(shape=(no_training_examples, no_features)) X_test = np.zeros(shape=(no_test_examples,no_features)) #fill the X matrices col_values = df_training.columns.values for ii in range(0,len(col_values)): col = col_values[ii] X[:,ii] = df_training[col].values X_test[:,ii] = df_test[col].values
#!/usr/bin/python import sys sys.path.insert(0, "/usr/local/opencv-2.4.11/lib/python2.7/site-packages/") import argparse import commands import cv2 import fnmatch import numpy as np import os.path import random import navpy import simplekml sys.path.append('../lib') import Pose import ProjectMgr import SRTM import transformations # for all the images in the project image_dir, compute the camera # poses from the aircraft pose (and camera mounting transform). # Project the image plane onto an SRTM (DEM) surface for our best # layout guess (at this point before we do any matching/bundle # adjustment work.) parser = argparse.ArgumentParser(description='Set the initial camera poses.') parser.add_argument('--project', required=True, help='project directory') args = parser.parse_args() proj = ProjectMgr.ProjectMgr(args.project) proj.load_image_info() ref = proj.ned_reference_lla # setup SRTM ground interpolator sss = SRTM.NEDGround( ref, 2000, 2000, 30 ) # start a new kml file kml = simplekml.Kml() camw, camh = proj.cam.get_image_params() for image in proj.image_list: print image.name scale = float(image.width) / float(camw) K = proj.cam.get_K(scale) IK = np.linalg.inv(K) corner_list = [] corner_list.append( [0, image.height] ) corner_list.append( [image.width, image.height] ) corner_list.append( [image.width, 0] ) corner_list.append( [0, 0] ) proj_list = proj.projectVectors( IK, image, corner_list ) print "proj_list:\n", proj_list #pts = proj.intersectVectorsWithGroundPlane(image.camera_pose['ned'], # g, proj_list) pts = sss.interpolate_vectors(image.camera_pose, proj_list) #print "pts (ned):\n", pts corners_lonlat = [] for ned in pts: print ned lla = navpy.ned2lla([ned], ref[0], ref[1], ref[2]) corners_lonlat.append([lla[1], lla[0]]) ground = kml.newgroundoverlay(name=image.name) ground.icon.href = "Images/" + image.name ground.gxlatlonquad.coords.addcoordinates(corners_lonlat) filename = args.project + "/GroundOverlay.kml" kml.save(filename)
from pynput.keyboard import Key, Controller, Listener import socket UDP_IP_ADDRESS = "127.0.0.1" UDP_PORT_NO = 6150 SOCK = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) def sendjump(sock): sock.sendto(("JUMP!").encode(), (UDP_IP_ADDRESS, UDP_PORT_NO) ) print("Jump Action Triggered!") def on_press(key): if key == Key.up: sendjump(SOCK) print('{0} pressed'.format( key)) def on_release(key): print('{0} release'.format( key)) if key == Key.esc: # Stop listener return False # Collect events until released with Listener( on_press=on_press, on_release=on_release) as listener: listener.join()
from shared_foundation.models.user import SharedUser from shared_foundation.models.abstract_thing import AbstractSharedThing from shared_foundation.models.abstract_contact_point import AbstractSharedContactPoint from shared_foundation.models.abstract_postal_address import AbstractSharedPostalAddress from shared_foundation.models.abstract_geo_coorindate import AbstractSharedGeoCoordinate from shared_foundation.models.opening_hours_specification import SharedOpeningHoursSpecification from shared_foundation.models.academy import SharedAcademy from shared_foundation.models.academy import SharedAcademyDomain
from __future__ import absolute_import from __future__ import division from multiprocessing import cpu_count, Pool import time, signal import numpy as np from .decision_tree import DecisionTree from .util import iterate_with_progress ################################# # Multi-process funcs & klasses # ################################# class KeyboardInterruptError(Exception): pass def train_tree(args): try: tree, data, labels = args tree.train(data, labels) return tree except KeyboardInterrupt: raise KeyboardInterruptError() def prune_tree(args): try: tree, data, labels = args tree.prune(data, labels) return tree except KeyboardInterrupt: raise KeyboardInterruptError() class RandomForest: def __init__(self, impurity, segmentor, **kwargs): self._impurity = impurity self._segmentor = segmentor self._num_trees = kwargs.get('num_trees', 10) assert self._num_trees > 0 self._max_depth = kwargs.get('max_depth', None) self._min_samples = kwargs.get('min_samples', 2) self._trees = [] def train(self, data, labels): self._klasses = np.unique(labels) print 'Prepare parallel training.' args_list = [] for _ in iterate_with_progress(xrange(self._num_trees)): sampled_data, sampled_labels = self._sample_data_labels(data, labels) tree = DecisionTree(self._impurity, self._segmentor, max_depth=self._max_depth, min_samples=self._min_samples) args_list.append([tree, sampled_data, sampled_labels]) num_processes = cpu_count() print 'Train in parallel with {0} processes.'.format(num_processes) pool = Pool(num_processes) try: start = time.time() self._trees = pool.map(train_tree, args_list) print 'Training takes {0} seconds.'.format(int(time.time() - start)) pool.close() except KeyboardInterrupt: pool.terminate() except Exception, e: pool.terminate() finally: pool.join() def predict(self, data): if not self._trees: raise StandardError("Random forest has not been trained.") def draw_votes(probs): avg_probs = {} for klass in self._klasses: total_prob = sum([prob.get(klass, 0.0) for prob in probs]) avg_probs[klass] = total_prob / self._num_trees return max(avg_probs, key=lambda klass : avg_probs[klass]) tree_results = np.array([tree.predict(data, True) for tree in self._trees]) return np.apply_along_axis(draw_votes, 0, tree_results) def score(self, data, labels): if not self._trees: raise StandardError("Random forest has not been trained.") predictions = self.predict(data) correct_count = np.count_nonzero(predictions == labels) return correct_count / labels.shape[0] def prune(self, data, labels): args_list = [] for tree in self._trees: args_list.append([tree, data, labels]) num_processes = cpu_count() print 'Prune in parallel with {0} processes.'.format(num_processes) pool = Pool(num_processes) try: start = time.time() self._trees = pool.map(prune_tree, args_list) print 'Pruning takes {0} seconds.'.format(int(time.time() - start)) pool.close() return self.score(data, labels) except KeyboardInterrupt: pool.terminate() except Exception, e: pool.terminate() finally: pool.join() def _sample_data_labels(self, data, labels): num_data = len(data) assert num_data == len(labels) data_indices = np.random.choice(num_data, num_data) sampled_data = data[data_indices,:] sampled_labels = labels[data_indices] return sampled_data, sampled_labels
from jet_bridge import fields class SqlParamsSerializers(fields.CharField): def to_internal_value_item(self, value): value = super(SqlParamsSerializers, self).to_internal_value_item(value) if value is None: return [] # value = list(filter(lambda x: x != '', value.split(','))) value = value.split(',') return dict([['param_{}'.format(i), x] for i, x in enumerate(value)]) def to_representation_item(self, value): return list(value)
# -*- coding: utf-8 -*- from django.utils.translation import ugettext as _ from django.db import models from filebrowser.fields import FileBrowseField from const.purpose import * from crm import models as crmmodels class XSLFile(models.Model): title = models.CharField(verbose_name = _("Title"), max_length=100, blank=True, null=True) xslfile = FileBrowseField(verbose_name=_("XSL File"), max_length=200) class Meta: app_label = "djangoUserExtension" #app_label_koalix = _('Djang User Extention') verbose_name = _('XSL File') verbose_name_plural = _('XSL Files') def __unicode__(self): return str(self.id) + ' ' + self.title class UserExtension(models.Model): user = models.ForeignKey('auth.User') defaultTemplateSet = models.ForeignKey('TemplateSet') defaultCurrency = models.ForeignKey('crm.Currency') class Meta: app_label = "djangoUserExtension" #app_label_koalix = _('Djang User Extention') verbose_name = _('User Extention') verbose_name_plural = _('User Extentions') def __unicode__(self): return str(self.id) + ' ' + self.user.__unicode__() class TemplateSet(models.Model): organisationname = models.CharField(verbose_name = _("Name of the Organisation"), max_length=200) title = models.CharField(verbose_name = _("Title"), max_length=100) invoiceXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Invoice"), related_name="db_reltemplateinvoice") quoteXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Quote"), related_name="db_reltemplatequote") purchaseorderXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Purchaseorder"), related_name="db_reltemplatepurchaseorder") purchaseconfirmationXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Purchase Confirmation"), related_name="db_reltemplatepurchaseconfirmation") deilveryorderXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Deilvery Order"), related_name="db_reltemplatedeliveryorder") profitLossStatementXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Profit Loss Statement"), related_name="db_reltemplateprofitlossstatement") balancesheetXSLFile = models.ForeignKey(XSLFile, verbose_name=_("XSL File for Balancesheet"), related_name="db_reltemplatebalancesheet") logo = FileBrowseField(verbose_name=_("Logo for the PDF generation"), blank=True, null=True, max_length=200) bankingaccountref = models.CharField(max_length=60, verbose_name=_("Reference to Banking Account"), blank=True, null=True) addresser = models.CharField(max_length=200, verbose_name=_("Addresser"), blank=True, null=True) fopConfigurationFile = FileBrowseField(verbose_name=_("FOP Configuration File"), blank=True, null=True, max_length=200) footerTextsalesorders = models.TextField(verbose_name=_("Footer Text On Salesorders"), blank=True, null=True) headerTextsalesorders = models.TextField(verbose_name=_("Header Text On Salesorders"), blank=True, null=True) headerTextpurchaseorders = models.TextField(verbose_name=_("Header Text On Purchaseorders"), blank=True, null=True) footerTextpurchaseorders = models.TextField(verbose_name=_("Footer Text On Purchaseorders"), blank=True, null=True) pagefooterleft = models.CharField(max_length=40, verbose_name=_("Page Footer Left"), blank=True, null=True) pagefootermiddle = models.CharField(max_length=40, verbose_name=_("Page Footer Middle"), blank=True, null=True) class Meta: app_label = "djangoUserExtension" #app_label_koalix = _('Djang User Extention') verbose_name = _('Templateset') verbose_name_plural = _('Templatesets') def __unicode__(self): return str(self.id) + ' ' + self.title class UserExtensionPostalAddress(crmmodels.PostalAddress): purpose = models.CharField(verbose_name=_("Purpose"), max_length=1, choices=PURPOSESADDRESSINUSEREXTENTION) userExtension = models.ForeignKey(UserExtension) def __unicode__(self): return self.name + ' ' + self.prename class Meta: app_label = "djangoUserExtension" #app_label_koalix = _('Djang User Extention') verbose_name = _('Postal Address for User Extention') verbose_name_plural = _('Postal Address for User Extention') class UserExtensionPhoneAddress(crmmodels.PhoneAddress): purpose = models.CharField(verbose_name=_("Purpose"), max_length=1, choices=PURPOSESADDRESSINUSEREXTENTION) userExtension = models.ForeignKey(UserExtension) def __unicode__(self): return self.phone class Meta: app_label = "djangoUserExtension" #app_label_koalix = _('Djang User Extention') verbose_name = _('Phonenumber for User Extention') verbose_name_plural = _('Phonenumber for User Extention') class UserExtensionEmailAddress(crmmodels.EmailAddress): purpose = models.CharField(verbose_name=_("Purpose"), max_length=1, choices=PURPOSESADDRESSINUSEREXTENTION) userExtension = models.ForeignKey(UserExtension) def __unicode__(self): return self.email class Meta: app_label = "djangoUserExtension" #app_label_koalix = _('Djang User Extention') verbose_name = _('Email Address for User Extention') verbose_name_plural = _('Email Address for User Extention')
from collections import namedtuple import hashlib import logging import mimetypes import os import subprocess32 as subprocess import time from dropbox.client import DropboxClient from dropbox.rest import ErrorResponse from app import analytics from app import celery from app import db from app import emailer from app import filesystem from app import redis from app.models import User, Book log = logging.getLogger() # Lock expires in 30 minutes, in case there are lots of epubs to convert. LOCK_EXPIRE = 60 * 30 # And can only email 25 books at a time. Sendgrid only allows 20MB at a time, # after encoding to email text, so more like 15. Mailgun is about 25MB? And # can only email 25 books at a time. # Lower ATTACHMENTS_LIMIT to prevent users from hogging the celery workers. ATTACHMENTS_LIMIT = 5 CONVERTIBLE_ATTACHMENTS_LIMIT = 1 ATTACHMENTS_SIZE_LIMIT = 25 * (10**6) AMAZON_SIZE_LIMIT = 50 * (10**6) # Try to send a file this many times before giving up. Sending a file means # successful Dropbox download, file conversion, and correct response from # SendGrid or Mailgun. MAX_SEND_ATTEMPTS = 10 # Number of seconds to wait before timing out calibre conversion CONVERSION_TIMEOUT = 1200 ################################ # Book mimetypes ################################ # Amazon doesn't support these formats, but BookDrop does! EPUB_MIMETYPE = 'application/epub+zip' CBR_MIMETYPE = 'application/x-cbr' CBZ_MIMETYPE = 'application/x-cbz' AZW_MIMETYPE = 'application/vnd.amazon.ebook' # not a real mimetype, but we need to recognize it. CONVERTIBLE_MIMETYPES = {EPUB_MIMETYPE, CBR_MIMETYPE, CBZ_MIMETYPE, AZW_MIMETYPE, } MOBI_MIMETYPE = 'application/x-mobipocket-ebook' # Supported filetypes. # According to: # http://www.amazon.com/gp/help/customer/display.html?nodeId=200375630 BOOK_MIMETYPES = CONVERTIBLE_MIMETYPES.union({ MOBI_MIMETYPE, 'text/plain', 'application/pdf', 'application/msword', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', 'application/rtf', 'text/html', 'image/jpeg', 'image/gif', 'image/x-ms-bmp', 'image/png', }) mimetypes.add_type(MOBI_MIMETYPE, '.mobi') mimetypes.add_type(MOBI_MIMETYPE, '.prc') mimetypes.add_type(AZW_MIMETYPE, '.azw') mimetypes.add_type(AZW_MIMETYPE, '.azw1') mimetypes.add_type(AZW_MIMETYPE, '.azw3') mimetypes.add_type(EPUB_MIMETYPE, '.epub') @celery.task(ignore_result=True) def upload_welcome_pdf(dropbox_id): user = User.query.filter_by(dropbox_id=dropbox_id, active=True).first() if user is None: return False # If we've already sent the welcome PDF before, Dropbox webhook went # trigger, so do it here. if user.uploaded_welcome_pdf: return kindlebox(dropbox_id) analytics.track(str(user.id), 'Sent welcome pdf') client = DropboxClient(user.access_token) try: with open('app/static/bookdrop_welcome.pdf', 'rb') as f: response = client.put_file('Welcome to BookDrop.pdf', f, overwrite=True) if response: log.info(u"Welcome PDF sent to user ID {0}.".format(user.id)) else: raise Exception("No response received after sending welcome PDF") user.set_uploaded_welcome_pdf() db.session.commit() except: log.error((u"Welcome PDF failed for user ID " "{0}.").format(user.id), exc_info=True) return False return True def _kindlebox(user, client): """ The main body of a `kindlebox` task. Processes a single Dropbox delta for the given user. Adds and deletes any books from the database, and updates the user's Dropbox API cursor. """ try: delta = client.delta(user.cursor) except ErrorResponse as e: log.info(u"Marking user id {0} inactive due to {1}".format(user.id, e.error_msg)) user.active = False db.session.commit() return True # Process delta to get added and removed books. Also download any newly # added books and get the hashes. # NOTE: It's possible that the book failed to download here, in which case # each book in `added_books` has `book_hash` None. We still add it to the # database in case it can be downloaded later. added_books = get_added_books(delta['entries'], user.id, client) removed_books = get_removed_books(delta['entries'], user.id) log.debug(u"Delta contains {0} added books, {1} removed " "books".format(len(added_books), len(removed_books))) # If there are no more changes to process, update the cursor and we are # done. if len(added_books) == 0 and len(removed_books) == 0: user.cursor = delta['cursor'] db.session.commit() return True # Add and delete books from the database. for book in added_books: db.session.add(book) for book in removed_books: db.session.delete(book) # Update the Dropbox delta cursor in database. user.cursor = delta['cursor'] db.session.merge(user) db.session.commit() return False @celery.task(ignore_result=True) def kindlebox(dropbox_id): """ Task that continually processes any Dropbox changes for the user associated with the given dropbox ID until there are no more changes. Any books removed from Dropbox are also deleted from the database. The first `ATTACHMENTS_LIMIT` books out of the books added to Dropbox are sent. The rest of the books are queued. """ # Only process Dropbox changes for active users. user = User.query.filter_by(dropbox_id=dropbox_id, active=True).first() if user is None: return kindlebox_lock = acquire_kindlebox_lock(user.id) # Another worker is taking care of it, so I'm done. if kindlebox_lock is None: log.debug(u"Unable to acquire kindlebox lock for user id " "{0}".format(user.id)) return log.info(u"Processing dropbox webhook for user id {0}".format(user.id)) # Loop until there is no delta. # NOTE: There is a slight chance of a race condition between dropbox # webhook and two celery workers that would result in a delta getting # dropped, but hopefully this is better than cluttering the task queues. client = DropboxClient(user.access_token) try: while True: log.debug(u"Processing one kindlebox iteration for user id " "{0}".format(user.id)) done = _kindlebox(user, client) if done: break except: log.error((u"Failed to process dropbox webhook for user id " "{0}.").format(user.id), exc_info=True) kindlebox_lock.release() clear_user_files(user.id, u'kindlebox') if user.active: send_books(user.id) def _send_books(user, books): """ Helper function for the `send_books` celery task. Download, if necessary, and email all the given user's books. Mark each book as `unsent` or not in the database. """ client = DropboxClient(user.access_token) email_from = user.emailer email_to = [row.kindle_name for row in user.kindle_names.all()] attachments = [] attachment_size = 0 for book in books: # If there's an error downloading or converting the book, don't try # to send it. download_book(client, book, u'send_books') if book.book_hash is None: continue error = convert_book(book) if error: log.error(u"Failed to ebook-convert {book} for user id {user_id}\n" "STDERR: {stderr}\n".format(book=book.pathname, user_id=user.id, stderr=error)) continue # If the next book added will put us over the attachment size limit, # send this batch. # NOTE: An individual book with size over the limit will still get sent # using this code. We want to do this in case it actually is possible # to send the file (who knows what sendgrid's limits are?). if (attachment_size + book.get_size() > ATTACHMENTS_SIZE_LIMIT and len(attachments) > 0): email_attachments(email_from, email_to, attachments, user.id) attachments = [] attachment_size = 0 attachments.append(book) attachment_size += book.get_size() if len(attachments) > 0: email_attachments(email_from, email_to, attachments, user.id) @celery.task(ignore_result=True) def send_books(user_id, min_book_id=0, convert=False): """ Task to send any books associated with the given user ID that are marked as `unsent`. Sends a batch of at most `ATTACHMENTS_LIMIT` books, all with Book.id greater than or equal to the given `min_book_id`. Download books. Convert books if `convert` is True. The task queues another `send_books` task for the next batch of (distinct) books. """ send_lock = acquire_send_books_lock(user_id) if send_lock is None: return # Only resend books for active users. user = User.query.filter_by(id=user_id, active=True).first() if user is None: return # Get the next batch of books that haven't been sent yet and are still # under the maximum number of send attempts. unsent_books_query = (user.books.filter_by(unsent=True) .filter(Book.num_attempts < MAX_SEND_ATTEMPTS) .order_by(Book.id)) unsent_books = unsent_books_query.filter(Book.id >= min_book_id).all() # Only short-circuit if there are no new books at all to send, not just # ones that don't need conversion. if len(unsent_books) == 0 and min_book_id == 0: send_lock.release() clear_user_files(user.id, u'send_books') return # Send either books that need conversion or books that don't. compatible_books, convertible_books = [], [] for book in unsent_books: if convert_to_mobi_path(book.pathname) is None: compatible_books.append(book) else: convertible_books.append(book) if convert: unsent_books = convertible_books[:CONVERTIBLE_ATTACHMENTS_LIMIT] else: unsent_books = compatible_books[:ATTACHMENTS_LIMIT] log_string = ['{' + str(i) + '}' for i in range(len(unsent_books))] if len(unsent_books) > 0: log_string = ' '.join(log_string).format(*[book.id for book in unsent_books]) if convert: log_string += ', with conversion' log.info(u"Processing book resend for user id {0}, book ids {1}".format(user_id, log_string)) # Re-download and convert books that failed to send before. try: _send_books(user, unsent_books) # TODO: Reset all attempts to 0 before release. for book in unsent_books: book.num_attempts += 1 db.session.commit() except: log.error(u"Failed to resend books for user id {0}".format(user_id), exc_info=True) next_unsent_book = None if len(unsent_books) > 0: # If there are any more books to send after this batch, requeue them. next_unsent_book = unsent_books_query.filter(Book.id > unsent_books[-1].id).first() send_lock.release() # For some reason, calibre is leaving a lot of garbage files... filesystem.clear_calibre_files() clear_user_files(user.id, u'send_books') if next_unsent_book is None and not convert: send_books.apply_async((user_id, ), {'convert': True}, queue='conversion') elif next_unsent_book is not None: queue_kwarg = {} if convert: queue_kwarg['queue'] = 'conversion' send_books.apply_async((user_id, ), { 'min_book_id': next_unsent_book.id, 'convert': convert, }, **queue_kwarg) def get_added_books(delta_entries, user_id, client): """ Return a list of Books. All books in this list have the correct mimetype, are under the size limit, and don't have a duplicate hash in the database (i.e. not a filepath rename). """ added_entries = [] for entry in delta_entries: pathname, metadata = entry pathname = canonicalize(pathname) # First check that it's not a removed pathname. if metadata is None: continue # Check that pathname is a file, has an okay mimetype and is under the # size limit. if (metadata['is_dir'] or not mimetypes_filter(pathname) or metadata['bytes'] > AMAZON_SIZE_LIMIT): continue book = Book(user_id, pathname, metadata['bytes']) download_book(client, book, u'kindlebox') # Make sure that the book is not a duplicate of a previously added book # (probably a renamed file). duplicate = (Book.query.filter_by(user_id=user_id) .filter_by(book_hash=book.book_hash).first()) if (duplicate is not None): book.unsent = duplicate.unsent added_entries.append(book) return added_entries def get_removed_books(delta_entries, user_id): """ Return a list of Books whose paths were deleted during this delta. """ removed_entries = [canonicalize(entry[0]) for entry in delta_entries if entry[1] is None] if len(removed_entries) > 0: return (Book.query.filter_by(user_id=user_id) .filter(Book.pathname.in_(removed_entries)).all()) else: return [] def convert_book(book): """ Attempt to convert any books of type in `CONVERTIBLE_MIMETYPES` to .mobi, in the same folder as the given temporary path. """ tmp_path = book.get_tmp_pathname(u'send_books') mobi_tmp_path = convert_to_mobi_path(tmp_path) if mobi_tmp_path is None: return None log.info(u"Converting book for user id {0}".format(book.user_id)) try: subprocess.check_output(['ebook-convert', tmp_path, mobi_tmp_path], timeout=CONVERSION_TIMEOUT) except subprocess.CalledProcessError as e: return e.output except subprocess.TimeoutExpired as e: return "Timed out converting book" except Exception as e: return e.message def download_book(client, book, tag): """ Download the given book from the Dropbox client to a temporary path. Make all the directories in the given book path at the temporary root folder if they don't already exist. Set the book's hash of the downloaded file. """ # Make all the necessary nested directories in the temporary directory. tmp_path = book.get_tmp_pathname(tag) try: book_dir = os.path.dirname(tmp_path) if not os.path.exists(book_dir): os.makedirs(book_dir) except OSError: log.error(u"Error creating directories for book {0}".format(book.pathname), exc_info=True) try: md5 = hashlib.md5() with open(tmp_path, 'w') as tmp_book: with client.get_file(book.pathname) as book_file: data = book_file.read() tmp_book.write(data) md5.update(data) book.book_hash = md5.hexdigest() except: log.error(u"Failed to download book {book_path} for user id " "{user_id}".format(book_path=book.pathname, user_id=book.user_id), exc_info=True) return None def email_attachments(email_from, email_to, attachments, user_id): """ Given a 'from' email address and a list of 'to' email addresses, try to email as many of the attachments in the given list as possible. For each attachment, add the book to the user associated with the given ID and mark whether it was successfully emailed or not. """ attachment_paths = [] for book in attachments: tmp_path = book.get_tmp_pathname(u'send_books') # If this book got converted, get the .mobi path instead. mobi_tmp_path = convert_to_mobi_path(tmp_path) if mobi_tmp_path is not None: tmp_path = mobi_tmp_path attachment_paths.append(tmp_path) log.debug(u"Sending email to " + ' '.join(email_to) + " " + ' '.join(attachment_paths)) try: # First try to batch email. _email_attachments(email_from, email_to, attachment_paths) for book in attachments: book.mark_unsent(False) except: log.error(u"Failed to send books for user id {0}".format(user_id), exc_info=True) # If fail to batch email, try sending individually instead. for book, path in zip(attachments, attachment_paths): try: _email_attachments(email_from, email_to, [path]) book.mark_unsent(False) except: log.error(u"Failed to resend book for user id {0}".format(user_id), exc_info=True) book.mark_unsent(True) def _email_attachments(email_from, email_to, attachment_paths): status, message = emailer.send_mail(email_from, email_to, attachment_paths) if status != 200: raise KindleboxException(message) def convert_to_mobi_path(path): if mimetypes.guess_type(path)[0] in CONVERTIBLE_MIMETYPES: stripped_path = os.path.splitext(path)[0] return u'{path}.mobi'.format(path=stripped_path) def canonicalize(pathname): return pathname.lower() def mimetypes_filter(path): return mimetypes.guess_type(path)[0] in BOOK_MIMETYPES def _acquire_lock(method_name, user_id): # Lock per user. lock_id = '{0}-lock-{1}'.format(method_name, user_id) lock = redis.lock(lock_id, timeout=LOCK_EXPIRE) # If non-blocking and unable to acquire lock, discard the task and hope # that another worker finishes it. if not lock.acquire(blocking=False): log.debug(u"Couldn't acquire lock {0}.".format(lock_id)) return None log.debug(u"Lock {0} acquired.".format(lock_id)) return lock def acquire_kindlebox_lock(user_id): """ """ return _acquire_lock(kindlebox.__name__, user_id) def acquire_send_books_lock(user_id): """ """ return _acquire_lock(send_books.__name__, user_id) def clear_user_files(user_id, task): """ Clears as many temporary files as possible for the given `user_id` and celery `task`. If `task` is not one of 'kindlebox' or 'send_books', does nothing. """ if task == u'kindlebox': acquire_method = acquire_send_books_lock elif task == u'send_books': acquire_method = acquire_kindlebox_lock else: return task_directory = filesystem.get_user_directory(user_id, task) filesystem.clear_directory(task_directory) # May be downloading books to send, so don't clear the upper-level # directory yet. lock = acquire_method(user_id) if lock is not None: user_directory = filesystem.get_user_directory(user_id) filesystem.clear_empty_directory(user_directory) lock.release() class KindleboxException(Exception): pass
from .base import * # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'testsecretkey' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['*'] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'test.db', } }
#!/bin/python3 """ Parameters: id: The Bugzilla bug ID to send the attachment to image: The image to use (defaults to quay.io/kubevirt/must-gather) api-key: Use a generated API key instead of a username and login log-folder: Use a specific folder for storing the output of must-gather Requirements: Openshift 4.1+ Python 3.6+ A Bugzilla account for www.bugzilla.redhat.com This script attaches the result of the must-gather command, as executed by the kubevirt must-gather image, to the supplied bugzilla id on the Red Hat bugzilla website. It first creates an output subdirectory in the working directory named gather-files/ and then executes the following command: 'oc adm must-gather --image=quay.io/kubevirt/must-gather --dest-dir=gather-files/' and pipes the output to gather-files/must-gather.log In order to meet the maximum attachment file sizes, logs are trimmed to the last n seconds (defaulting to 30 minutes) It then creates a time-stamped archive file to compress the attachment and prepare it for upload. After doing so, the attachment is encoded as a base64 string. In order to authenticate against the Bugzilla website, a username and password are prompted. A POST request is then sent to the Bugzilla website. If there are any errors (invalid ID or invalid login), the script prompts for those and retries the request until there are no errors. """ import argparse import os import shutil import itertools import re import subprocess import tarfile import datetime import base64 from getpass import getpass import requests NUM_SECONDS = 30 * 60 # 30 minutes BUGZILLA_URL = "https://bugzilla.redhat.com" HEADERS = {'Content-type': 'application/json'} LOGFOLDER = "gather-files/" OUTPUT_FILE = "must-gather.log" ARCHIVE_NAME = "must-gather" MAX_ARCHIVE_SIZE = 19.5 * 1024 * 1024 #19.5 MB as bytes IMAGE = "quay.io/kubevirt/must-gather" NODELOG_TIMESTAMP_REGEX = re.compile(r"(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) \d+ \d+:\d+:\d+") NODELOG_TIMESTAMP_FORMAT = "%b %d %H:%M:%S" PODLOG_TIMESTAMP_REGEX = re.compile(r"^\d{4}-\d{2}-\d{2}T\d+:\d+:\d+") PODLOG_TIMESTAMP_FORMAT = "%Y-%m-%dT%H:%M:%S" _current_time = datetime.datetime.utcnow() def main(): """Main function""" # Start with getting command-line argument(s) parser = argparse.ArgumentParser(description="Sends the result of must-gather to Bugzilla.") parser.add_argument("ID", metavar="id", type=int, help="The ID of the bug in Bugzilla") parser.add_argument("--image", metavar="image", action="append", help="The image to use for must-gather. If none supplied, defaults to quay.io/kubevirt/must-gather") parser.add_argument("--image-stream", metavar="image-stream", action="append", help="Specify an image stream to pass to must-gather") parser.add_argument("--api-key", metavar="api-key", help="Bugzilla API key. Can also be set using BUGZILLA_API_KEY environment variable") parser.add_argument("-t", "--time", type=int, help="Number of minutes to use for trimming the log files. Defaults to 30") parser.add_argument("--log-folder", metavar="log-folder", help="Optional destination for the must-gather output (defaults to creating gather-files/ in the local directory)") parser.add_argument("-r", "--reuse-must-gather", action="store_true", help="Use this to skip rerunning must-gather and just attach what is already gathered") parser.add_argument("-i", "--interactive", action="store_true", help="Use this flag to prompt for a username and password. Using this will prompt for retries if the login is unsuccessful") args = parser.parse_args() bug_id = args.ID if not check_bug_exists(bug_id): print("Bug not found in Bugzilla") exit(1) if args.time: num_seconds = args.time * 60 else: num_seconds = NUM_SECONDS # If an image or an image stream is supplied, use that, if not, use the default if args.image: images = args.image else: if args.image_stream == None: images = [IMAGE] else: images = [] # If a folder is supplied, use that, otherwise use the default in the local folder if args.log_folder: logfolder = args.log_folder else: logfolder = LOGFOLDER api_key = os.environ.get('BUGZILLA_API_KEY', "") if args.api_key: api_key = args.api_key # If there is no API key provided, prompt for a login use_api_key = api_key != None and api_key != "" if not use_api_key: if args.interactive: bugzilla_username = input("Enter Bugzilla username: ") bugzilla_password = getpass(prompt="Enter Bugzilla password: ") else: print("No API key supplied and not in interactive mode.") exit(1) if not args.reuse_must_gather: run_must_gather(images, logfolder, args.image_stream) else: print("Using must-gather results located in %s." % logfolder) #Trim the log folders to the number of seconds trim_logs(logfolder, num_seconds) # Create a time-stamped archive name archive_name = ARCHIVE_NAME + "-%s.tar.gz" % _current_time.strftime("%Y-%m-%d_%H:%M:%SZ") # Add all the files in the log folder to a new archive file, except for the hidden ones with tarfile.open(archive_name, "w:gz") as tar: print("Creating archive: " + archive_name) tar.add(logfolder, filter=filter_hidden) # Now that the archive is created, move the files back in place of the trimmed versions restore_hidden_files(logfolder) if os.path.getsize(archive_name) > MAX_ARCHIVE_SIZE: print("Archive %s is too large to upload (exceeds %d MB)." % (archive_name, MAX_ARCHIVE_SIZE / (1024*1024))) exit() print("Preparing to send the data to " + BUGZILLA_URL) file_data = "" with open(archive_name, "rb") as data_file: file_data = base64.b64encode(data_file.read()).decode() comment = generate_comment(num_seconds) # Send the data to the target URL (depending on whether using API key or not) if use_api_key: authentication = {"api_key": api_key} else: authentication = {"username": bugzilla_username, "password:": bugzilla_password} resp = send_data(bug_id, archive_name, file_data, comment, authentication) resp_json = resp.json() # Handle the potential errors while "error" in resp_json: # Using an api key will disable retries, so just output the error message if use_api_key: print(resp_json["message"]) exit(1) # 300: invalid username or password if resp_json["code"] == 300: print("Incorrect username or password.") bugzilla_username = input("Username (leave blank to exit): ") if bugzilla_username == "": print("Username left blank, exiting") exit(0) bugzilla_password = getpass(prompt="Password: ") authentication = {"username": bugzilla_username, "password:": bugzilla_password} resp = send_data(bug_id, archive_name, file_data, comment, authentication) resp_json = resp.json() # 101: Invalid bug id elif resp_json["code"] == 101: print("Invalid bug id") new_bug_id = input("Enter a new bug id (leave blank to exit): ") if new_bug_id == "": print("ID left blank, exiting") exit(0) bug_id, valid = try_parse_int(new_bug_id) # Try and see if the new supplied ID is a positive integer while not valid or bug_id <= 0: print("Could not parse bug id as valid, try again") new_bug_id = input("Enter a new bug id (leave blank to exit): ") if new_bug_id == "": print("ID left blank, exiting") exit(0) bug_id, valid = try_parse_int(new_bug_id) resp = send_data(bug_id, archive_name, file_data, comment, authentication) resp_json = resp.json() else: print("Error: " + resp_json["message"]) exit(1) print("File successfully uploaded to Bugzilla") def run_must_gather(images, logfolder, image_streams): # If the log folder already exists, delete it if os.path.isdir(logfolder): shutil.rmtree(logfolder) # Make a new log folder os.mkdir(logfolder) image_args = [] if images is not None: for image in images: image_args.append("--image=" + image) if image_streams is not None: for image_stream in image_streams: image_args.append("--image-stream=" + image_stream) # Open the output file with open(logfolder + OUTPUT_FILE, "w+") as out_file: # Run oc adm must-gather with the appropriate image and dest-dir print("Running must-gather") try: subprocess.run( ["oc", "adm", "must-gather", "--dest-dir=" + logfolder] + image_args, stdout=out_file, stderr=subprocess.PIPE, check=True) except subprocess.CalledProcessError as e: print("Error in the execution of must-gather: ") print(e.stderr.decode("utf-8")) exit(1) def trim_logs(logfolder, num_seconds): global _deadline _deadline = _current_time - datetime.timedelta(seconds = num_seconds) for subdir, _, files in os.walk(logfolder): for file in files: if file == "must-gather.log": #Ignore the log made by capturing the output of must-gather continue full_path = os.path.join(subdir, file) if ".log" in file: trim_from_back(full_path, pod_condition(full_path)) #trim_file_by_time(os.path.join(subdir, file), num_seconds, PODLOG_TIMESTAMP_REGEX, PODLOG_TIMESTAMP_FORMAT) elif "kubelet" in file or "NetworkManager" in file: trim_from_back(full_path, node_condition(full_path)) #trim_file_by_time(os.path.join(subdir, file), num_seconds, NODELOG_TIMESTAMP_REGEX, NODELOG_TIMESTAMP_FORMAT) def try_parse_int(value): """Tries to parse the value as an int""" try: return int(value), True except ValueError: return value, False def send_data(bug_id, file_name, file_data, comment, authentication): """Sends the data to Bugzilla with the relevant information""" url = BUGZILLA_URL + '/rest/bug/%s/attachment' % bug_id data = { **authentication, "ids": [bug_id], "comment": comment, "summary": "Result from must-gather command", "content_type": "application/gzip", "file_name": file_name, "data": file_data } return requests.post(url, json=data, headers=HEADERS) """Enum for the possible outputs of the line condition functions""" LINE_LATER = 1 LINE_EARLIER = 0 LINE_NO_TIMESTAMP = -1 """Regex and format for reading the header of a node log""" HEADER_REGEX = re.compile(r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2} \w{3}") HEADER_FORMAT = "%Y-%m-%d %H:%M:%S %Z" def node_condition(filename): """Returns a line condition function based on the timestamp in the header""" with open(filename, "r") as file: header_timestamps = HEADER_REGEX.findall(file.readline()) log_end = datetime.datetime.strptime(header_timestamps[1], HEADER_FORMAT) def check_line(line): #Empty string means end of file, otherwise it would be '\n' if line == '': return LINE_LATER regex_result = NODELOG_TIMESTAMP_REGEX.search(line) if regex_result: timestamp = datetime.datetime.strptime(regex_result.group(0), NODELOG_TIMESTAMP_FORMAT) #Since there's no year provided, default it to the log end's year timestamp = timestamp.replace(year=log_end.year) #If that made the timestamp greater than the log end, it means it was from a previous year, so set it to be the year before the log end if timestamp > log_end: timestamp = timestamp.replace(year=log_end.year - 1) # Check whether the line is earlier or later than the deadline if timestamp < _deadline: return LINE_EARLIER else: return LINE_LATER else: return LINE_NO_TIMESTAMP return check_line def pod_condition(filename): """Returns a condition function for checking the lines of a pod log""" def check_line(line): #Empty string means end of file, otherwise it would be '\n' if line == '': return LINE_LATER regex_result = PODLOG_TIMESTAMP_REGEX.search(line) if regex_result: timestamp = datetime.datetime.strptime(regex_result.group(0), PODLOG_TIMESTAMP_FORMAT) if timestamp < _deadline: return LINE_EARLIER else: return LINE_LATER else: return LINE_NO_TIMESTAMP return check_line """Size of chunk to use for reading from the back of a log file.""" CHUNK_SIZE = 65536 def trim_from_back(filename, condition): """Scans chunks of data from the back of the file until it's reached a point that's earlier than the deadline. It then reads forward line by line until it reaches the correct point to trim.""" print("Trimming %s" % filename) with open(filename, "r+") as file: file.seek(0, os.SEEK_END) curr_chunk_start = file.tell() - CHUNK_SIZE condition_result = LINE_LATER while curr_chunk_start > 0: file.seek(curr_chunk_start) file.readline() #Discard this since it's most likely a partial line condition_result = condition(file.readline()) #This is the first full line in the chunk while condition_result == LINE_NO_TIMESTAMP: condition_result = condition(file.readline()) # Read until there's a line that has a timestamp if condition_result == LINE_EARLIER: break curr_chunk_start -= CHUNK_SIZE #At this point the curr_chunk_start is either less than zero, or the chunk contains the first line later than the deadline if curr_chunk_start < 0: curr_chunk_start = 0 file.seek(curr_chunk_start) trim_start = curr_chunk_start while condition_result != LINE_LATER: line = file.readline() trim_start += len(line) condition_result = condition(line) # trim_start is now right before the last line that was later than the deadline if trim_start == 0: return # Since this file will be trimmed, create a hidden copy of it hidden_filename = os.path.join(os.path.dirname(filename), "." + os.path.basename(filename)) shutil.copy(filename, hidden_filename) file.seek(trim_start) # Read the data we want to keep content_to_keep = file.read() file.seek(0) file.truncate(0) file.write("This file was trimmed to only contain lines since %s\n" % _deadline.strftime("%Y-%m-%d %H:%M:%SZ")) file.write(content_to_keep) def check_bug_exists(bug_id): """Checks whether the bug exists in Bugzilla""" url = BUGZILLA_URL + '/rest/bug/%s' % bug_id return "error" not in requests.get(url).json() def generate_comment(num_seconds): """Creates the comment text for the attachment""" comment = "" comment += "Result from running must-gather" comment += "Log files were trimmed to the last %d" % num_seconds return comment def filter_hidden(file): """Filters out hidden files so that the untrimmed ones won't be added to the archive""" return file if os.path.basename(os.path.normpath(file.name))[0] != "." else None def restore_hidden_files(logfolder): """Finds any hidden files and renames them to their original name""" for subdir, _, files in os.walk(logfolder): for file in files: # If the file is hidden, it was a trimmed file so restore it if file[0] == ".": shutil.move(os.path.join(subdir, file), os.path.join(subdir, file[1:])) main()
import doctest import os import sys from glob import glob from unittest import TestSuite, defaultTestLoader TESTS_ROOT = os.path.abspath(os.path.dirname(__file__)) def suite(): result = TestSuite() result.addTest(doctest.DocTestSuite('django_any.xunit')) result.addTest(doctest.DocTestSuite('django_any.forms')) for filename in glob(os.path.join(TESTS_ROOT, '*.py')): if filename.endswith('__init__.py'): continue module_name = 'testapp.tests.%s' % \ os.path.splitext(os.path.basename(filename))[0] __import__(module_name) result.addTest( defaultTestLoader.loadTestsFromModule(sys.modules[module_name])) return result
import numpy as np import tensorflow as tf from absl.testing import absltest import lm.examples import lm.tf class TestTF(absltest.TestCase): def test_as_dataset(self): def infeed(params): def simplegen(): for i in range(batch_size): yield lm.examples.Seq2SeqSimpleExample( np.ones(8, dtype=np.int64) * i, np.zeros(8, dtype=np.int64) ).serialize() ds = lm.tf.from_generator(lambda: simplegen) ds = ds.batch(params["batch_size"]) return ds batch_size = 8 for ex in lm.tf.consume(infeed, params=dict(batch_size=batch_size)): self.assertEqual(ex.shape, (batch_size,)) break if __name__ == "__main__": absltest.main()
import pytest import six from mock import Mock from thefuck import conf @pytest.fixture def load_source(mocker): return mocker.patch('thefuck.conf.load_source') @pytest.fixture def environ(monkeypatch): data = {} monkeypatch.setattr('thefuck.conf.os.environ', data) return data @pytest.mark.usefixture('environ') def test_settings_defaults(load_source, settings): load_source.return_value = object() settings.init() for key, val in conf.DEFAULT_SETTINGS.items(): assert getattr(settings, key) == val @pytest.mark.usefixture('environ') class TestSettingsFromFile(object): def test_from_file(self, load_source, settings): load_source.return_value = Mock(rules=['test'], wait_command=10, require_confirmation=True, no_colors=True, priority={'vim': 100}, exclude_rules=['git']) settings.init() assert settings.rules == ['test'] assert settings.wait_command == 10 assert settings.require_confirmation is True assert settings.no_colors is True assert settings.priority == {'vim': 100} assert settings.exclude_rules == ['git'] def test_from_file_with_DEFAULT(self, load_source, settings): load_source.return_value = Mock(rules=conf.DEFAULT_RULES + ['test'], wait_command=10, exclude_rules=[], require_confirmation=True, no_colors=True) settings.init() assert settings.rules == conf.DEFAULT_RULES + ['test'] @pytest.mark.usefixture('load_source') class TestSettingsFromEnv(object): def test_from_env(self, environ, settings): environ.update({'THEFUCK_RULES': 'bash:lisp', 'THEFUCK_EXCLUDE_RULES': 'git:vim', 'THEFUCK_WAIT_COMMAND': '55', 'THEFUCK_REQUIRE_CONFIRMATION': 'true', 'THEFUCK_NO_COLORS': 'false', 'THEFUCK_PRIORITY': 'bash=10:lisp=wrong:vim=15'}) settings.init() assert settings.rules == ['bash', 'lisp'] assert settings.exclude_rules == ['git', 'vim'] assert settings.wait_command == 55 assert settings.require_confirmation is True assert settings.no_colors is False assert settings.priority == {'bash': 10, 'vim': 15} def test_from_env_with_DEFAULT(self, environ, settings): environ.update({'THEFUCK_RULES': 'DEFAULT_RULES:bash:lisp'}) settings.init() assert settings.rules == conf.DEFAULT_RULES + ['bash', 'lisp'] class TestInitializeSettingsFile(object): def test_ignore_if_exists(self, settings): settings_path_mock = Mock(is_file=Mock(return_value=True), open=Mock()) settings.user_dir = Mock(joinpath=Mock(return_value=settings_path_mock)) settings._init_settings_file() assert settings_path_mock.is_file.call_count == 1 assert not settings_path_mock.open.called def test_create_if_doesnt_exists(self, settings): settings_file = six.StringIO() settings_path_mock = Mock( is_file=Mock(return_value=False), open=Mock(return_value=Mock( __exit__=lambda *args: None, __enter__=lambda *args: settings_file))) settings.user_dir = Mock(joinpath=Mock(return_value=settings_path_mock)) settings._init_settings_file() settings_file_contents = settings_file.getvalue() assert settings_path_mock.is_file.call_count == 1 assert settings_path_mock.open.call_count == 1 assert conf.SETTINGS_HEADER in settings_file_contents for setting in conf.DEFAULT_SETTINGS.items(): assert '# {} = {}\n'.format(*setting) in settings_file_contents settings_file.close()
from typing import Optional, List import json def load_json(file) -> Optional[any]: json_obj = None with open(file) as f: json_obj = json.load(f) return json_obj def write_json(json_obj, file): with open(file, 'w') as f: json.dump(json_obj, f) def create_json_of_types(): """ The source of the types (little pre-processing step): https://github.com/filipekiss/pokemon-type-chart/blob/master/types.json :return: """ file: str = "types.json" json_obj = load_json(file) new_json_obj = {} for type_obj in json_obj: new_json_obj[type_obj['name']] = {} for attribute in ["immunes", "weaknesses", "strengths"]: new_json_obj[type_obj['name']][attribute] = type_obj[attribute] write_json(new_json_obj, "types-after-gen6.json") def read_file(file: str) -> List[str]: text: List[str] = [] with open(file) as f: text = f.read().splitlines() return text
import matplotlib.pyplot as plt from tkinter import * from tkinter.filedialog import askopenfilename from PIL import Image, ImageTk import matplotlib.image as mpimg from scipy import misc import math import numpy as np import sys as sys from point import P2_Point from point import R2_Point import copy def normalizeImg(image): (row_num, col_num, _) = image.shape maxVal = 0 minValNonZero = sys.maxsize for j in range(0, col_num): for i in range(0, row_num): pxValue = image[i][j][0] if maxVal < pxValue: maxVal = pxValue if minValNonZero > pxValue > 0: minValNonZero = pxValue minValNonZero = 0 for j in range(0, col_num): for i in range(0, row_num): pxValue = image[i][j][0] if pxValue > 0: image[i][j][0] = int((pxValue-minValNonZero)*255/(maxVal-minValNonZero)) image[i][j][1] = int((pxValue-minValNonZero)*255/(maxVal-minValNonZero)) image[i][j][2] = int((pxValue-minValNonZero)*255/(maxVal-minValNonZero)) #print("pxValnorm = ", image[i][j][0]) return image def rotation(vs, theta): xs = vs.x ys = vs.y cosT = math.cos(theta) sinT = math.sin(theta) xu = xs*cosT - ys*sinT yu = xs*sinT + ys*cosT vu = R2_Point(xu, yu) return vu def makeP2Line(P0, v, angle): v.r2Normalize v_angle = rotation(v, angle) (xv, yv) = v_angle.toTuple() (x0, y0, _) = P0.toTuple() p2Line = P2_Point(yv, -xv, -yv*x0 + xv*y0) return p2Line filename = askopenfilename(filetypes=[("all files","*"),("Bitmap Files","*.bmp; *.dib"), ("JPEG", "*.jpg; *.jpe; *.jpeg; *.jfif"), ("PNG", "*.png"), ("TIFF", "*.tiff; *.tif")]) image = misc.imread(filename, mode = 'RGB') #plt.imshow(image) (ySize, xSize, _) = image.shape # Linha do horizonte (x0, y0) = (0, 38) (xf, yf) = (785, 38) #plt.plot([x0, xf], [y0, yf]) # origem (0,0) p00 = R2_Point(0,0) p00.to_img_coord(xSize, ySize) #plt.plot([p00.x], [p00.y], 'x') p00 = p00.toP2_Point() # Pontos de fuga pfb = R2_Point(785, 38)#(665,38) #(785, 38) pfb.to_cartesian_coord(xSize, ySize) PFn = copy.deepcopy(pfb) pfb = pfb.toP2_Point() rfb = p00.cross(pfb) pfa = R2_Point(0,38)#(194,38) #(0,38) pfa.to_cartesian_coord(xSize, ySize) PF0 = copy.deepcopy(pfa) pfa = pfa.toP2_Point() rfa = p00.cross(pfa) vh = PFn - PF0 vh.r2Normalize() p = rfa.cross(rfb) p.normalize() #plt.plot([p.x], [p.y], 'ro') tMax = 180 sMax = 160 dTheta = (PFn.euclideanDistance(PF0))/(tMax) ds = np.pi/sMax #3.14159265/sMax (xb0, yb0) = (300,104) (xbf, ybf) = (527,241) shapeResult = (sMax, tMax, 3) sinograma = np.zeros(shapeResult) for t in range(0, tMax): theta = t*dTheta PFt = PF0 + theta*vh #PFt.to_img_coord(xSize, ySize) #plt.plot([PFt.x], [PFt.y], 'x') for s in range(1, sMax): countR = sinograma[s][t][0] countG = sinograma[s][t][1] countB = sinograma[s][t][2] angle_s = s*ds # calculando reta de fuga Rts = makeP2Line(PFt.toP2_Point(), vh, angle_s) Rts.normalize() bottomSideLine = P2_Point(0, 1, ySize/2) # linha inferior da imagem bottomSideLine.normalize() pbound = Rts.cross(bottomSideLine) pboundImg = pbound.toR2_Point() pboundImg.to_img_coord(xSize, ySize) PFImg = copy.deepcopy(PFt) PFImg.to_img_coord(xSize, ySize) #plt.plot([PFImg.x, pboundImg.x], [PFImg.y, pboundImg.y], 'r--') # raySize = PFt.euclideanDistance(pbound) nu = 100 du = raySize/nu vu = pboundImg - PFImg vu.r2Normalize() for u in range(0, nu): Pxy = PFImg + du*u*vu #Pxy.to_img_coord(width, height) xIdx = Pxy.x yIdx = Pxy.y #print("img: x,y = %f,%f" %(Pxy.x, Pxy.y)) if xb0 <= xIdx < xbf and yb0 <= yIdx < ybf: #if 0 <= xIdx < xSize and 0 <= yIdx < ySize: #plt.plot([xIdx], [yIdx], 'r.') countR = countR + image[yIdx][xIdx][0] countG = countG + image[yIdx][xIdx][1] countB = countB + image[yIdx][xIdx][2] sinograma[s][t][0] = countR sinograma[s][t][1] = countG sinograma[s][t][2] = countB sinograma = normalizeImg(sinograma) plt.imshow(image) #plt.imshow(sinograma) #for x in range(xb0, xbf): # for y in range(yb0, ybf): # Pxy = R2_Point(x, y) # Pxy.to_cartesian_coord(xSize, ySize) plt.show()
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Output formatters for JSON. """ import json from . import base from cliff import columns class JSONFormatter(base.ListFormatter, base.SingleFormatter): def add_argument_group(self, parser): group = parser.add_argument_group(title='json formatter') group.add_argument( '--noindent', action='store_true', dest='noindent', help='whether to disable indenting the JSON' ) def emit_list(self, column_names, data, stdout, parsed_args): items = [] for item in data: items.append( {n: (i.machine_readable() if isinstance(i, columns.FormattableColumn) else i) for n, i in zip(column_names, item)} ) indent = None if parsed_args.noindent else 2 json.dump(items, stdout, indent=indent) def emit_one(self, column_names, data, stdout, parsed_args): one = { n: (i.machine_readable() if isinstance(i, columns.FormattableColumn) else i) for n, i in zip(column_names, data) } indent = None if parsed_args.noindent else 2 json.dump(one, stdout, indent=indent)
from typing import ClassVar, List, Optional from pycfmodel.model.base import CustomModel from pycfmodel.model.resources.properties.policy_document import PolicyDocument from pycfmodel.model.resources.resource import Resource from pycfmodel.model.types import Resolvable, ResolvableStr, ResolvableStrOrList from pycfmodel.model.utils import OptionallyNamedPolicyDocument class IAMPolicyProperties(CustomModel): """ Properties: - Groups: Friendly name of the IAM groups to attach the policy to. - PolicyDocument: A [policy document][pycfmodel.model.resources.properties.policy_document.PolicyDocument] object. - PolicyName: Name of the policy. - Roles: Friendly name of the IAM roles to attach the policy to. - Users: Friendly name of the IAM users to attach the policy to. More info at [AWS Docs](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-policy.html) """ Groups: Optional[ResolvableStrOrList] = None PolicyDocument: Resolvable[PolicyDocument] PolicyName: ResolvableStr Roles: Optional[ResolvableStrOrList] = None Users: Optional[ResolvableStrOrList] = None class IAMPolicy(Resource): """ Properties: - Properties: A [IAM Policy properties][pycfmodel.model.resources.iam_policy.IAMPolicyProperties] object. More info at [AWS Docs](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-policy.html) """ TYPE_VALUE: ClassVar = "AWS::IAM::Policy" Type: str = TYPE_VALUE Properties: Resolvable[IAMPolicyProperties] @property def policy_documents(self) -> List[OptionallyNamedPolicyDocument]: return [ OptionallyNamedPolicyDocument( name=self.Properties.PolicyName, policy_document=self.Properties.PolicyDocument ) ]
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2018 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import time from functools import lru_cache import datetime from QUANTAXIS.QAARP.QAPortfolio import QA_Portfolio from QUANTAXIS.QAARP.QAUser import QA_User from QUANTAXIS.QAEngine.QAEvent import QA_Event from QUANTAXIS.QAFetch.QAQuery_Advance import (QA_fetch_stock_day_adv, QA_fetch_stock_min_adv) from QUANTAXIS.QAMarket.QAMarket import QA_Market from QUANTAXIS.QAMarket.QAShipaneBroker import QA_SPEBroker from QUANTAXIS.QAUtil import (QA_Setting, QA_util_log_info, QA_util_mongo_initial) from QUANTAXIS.QAUtil.QAError import (QAError_database_connection, QAError_market_enging_down, QAError_web_connection) from QUANTAXIS.QAUtil.QAParameter import (AMOUNT_MODEL, BROKER_EVENT, BROKER_TYPE, ENGINE_EVENT, FREQUENCE, MARKET_TYPE, ORDER_DIRECTION, ORDER_MODEL) from QUANTAXIS.QAUtil.QADate_trade import QA_util_if_tradetime class QATrade_Realtime(): def __init__(self, market_type, frequence,): self.user = QA_User() self.if_settled = False self.account = None self.portfolio = None self.market = QA_Market() self.market_type = market_type self.frequence = frequence self.broker = QA_SPEBroker() self.broker_name = 'shipane_broker' self.ingest_data = None @property def now(self): return datetime.datetime.now() def load_account(self, account): # 通过 broke名字 新建立一个 QAAccount 放在的中 session字典中 session 是 { 'cookie' , QAAccount } self.market.login(self.broker_name, account.account_cookie, account) def start_market(self): """ start the market thread and register backtest broker thread QAMarket 继承QATrader, QATrader 中有 trade_engine属性 , trade_engine类型是QA_Engine从 QA_Thread继承 """ # 启动 trade_engine 线程 self.market.start() # 注册 backtest_broker ,并且启动和它关联线程QAThread 存放在 kernels 词典中, { 'broker_name': QAThread } self.market.register(self.broker_name, self.broker) def run(self): """generator driven data flow """ # 如果出现了日期的改变 才会进行结算的事件 _date = None while QA_util_if_tradetime(self.now): for data in self.ingest_data: # 对于在ingest_data中的数据 # <class 'QUANTAXIS.QAData.QADataStruct.QA_DataStruct_Stock_day'> date = data.date[0] if self.market_type is MARKET_TYPE.STOCK_CN: # 如果是股票市场 if _date != date: # 如果新的date # 前一天的交易日已经过去 # 往 broker 和 account 发送 settle 事件 try: self.market.trade_engine.join() # time.sleep(2) self.market._settle(self.broker_name) except Exception as e: raise e # 基金 指数 期货 elif self.market_type in [MARKET_TYPE.FUND_CN, MARKET_TYPE.INDEX_CN, MARKET_TYPE.FUTURE_CN]: self.market._settle(self.broker_name) # print(data) self.broker.run( QA_Event(event_type=ENGINE_EVENT.UPCOMING_DATA, market_data=data)) # 生成 UPCOMING_DATA 事件放到 队列中去执行 self.market.upcoming_data(self.broker_name, data) self.market.trade_engine.join() _date = date
from __future__ import annotations import logging from pathlib import Path import bokeh import bokeh.layouts import bokeh.palettes import pandas from annofabcli.statistics.histogram import get_histogram_figure, get_sub_title_from_series logger = logging.getLogger(__name__) class Task: """'タスクlist.csv'に該当するデータフレームをラップしたクラス""" def __init__(self, df: pandas.DataFrame) -> None: self.df = df def _validate_df_for_output(self, output_file: Path) -> bool: if len(self.df) == 0: logger.warning(f"データが0件のため、{output_file} は出力しません。") return False return True def plot_histogram_of_worktime( self, output_file: Path, bins: int = 20, ): """作業時間に関する情報をヒストグラムでプロットする。 Args: output_file (Path): [description] bins (int, optional): [description]. Defaults to 20. """ if not self._validate_df_for_output(output_file): return logger.debug(f"{output_file} を出力します。") df = self.df histogram_list = [ dict( title="教師付作業時間", column="annotation_worktime_hour", ), dict( title="検査作業時間", column="inspection_worktime_hour", ), dict( title="受入作業時間", column="acceptance_worktime_hour", ), dict(title="総作業時間", column="sum_worktime_hour"), ] figure_list = [] decimals = 2 for hist in histogram_list: column = hist["column"] title = hist["title"] sub_title = get_sub_title_from_series(df[column], decimals=decimals) fig = get_histogram_figure( df[column], x_axis_label="作業時間[hour]", y_axis_label="タスク数", title=title, sub_title=sub_title, bins=bins ) figure_list.append(fig) # 自動検査したタスクを除外して、検査時間をグラフ化する df_ignore_inspection_skipped = df.query("inspection_worktime_hour.notnull() and not inspection_is_skipped") sub_title = get_sub_title_from_series( df_ignore_inspection_skipped["inspection_worktime_hour"], decimals=decimals ) figure_list.append( get_histogram_figure( df_ignore_inspection_skipped["inspection_worktime_hour"], x_axis_label="作業時間[hour]", y_axis_label="タスク数", title="検査作業時間(自動検査されたタスクを除外)", sub_title=sub_title, bins=bins, ) ) df_ignore_acceptance_skipped = df.query("acceptance_worktime_hour.notnull() and not acceptance_is_skipped") sub_title = get_sub_title_from_series( df_ignore_acceptance_skipped["acceptance_worktime_hour"], decimals=decimals ) figure_list.append( get_histogram_figure( df_ignore_acceptance_skipped["acceptance_worktime_hour"], x_axis_label="作業時間[hour]", y_axis_label="タスク数", title="受入作業時間(自動受入されたタスクを除外)", sub_title=sub_title, bins=bins, ) ) bokeh_obj = bokeh.layouts.gridplot(figure_list, ncols=3) output_file.parent.mkdir(exist_ok=True, parents=True) bokeh.plotting.reset_output() bokeh.plotting.output_file(output_file, title=output_file.stem) bokeh.plotting.save(bokeh_obj) def plot_histogram_of_others( self, output_file: Path, bins: int = 20, ): """アノテーション数や、検査コメント数など、作業時間以外の情報をヒストグラムで表示する。 Args: output_file (Path): [description] bins (int, optional): [description]. Defaults to 20. """ if not self._validate_df_for_output(output_file): return logger.debug(f"{output_file} を出力します。") df = self.df histogram_list = [ dict(column="annotation_count", x_axis_label="アノテーション数", title="アノテーション数"), dict(column="input_data_count", x_axis_label="画像枚数", title="画像枚数"), dict(column="inspection_count", x_axis_label="検査コメント数", title="検査コメント数"), dict( column="input_data_count_of_inspection", x_axis_label="指摘を受けた画像枚数", title="指摘を受けた画像枚数", ), # 経過日数 dict( column="diff_days_to_first_inspection_started", x_axis_label="最初の検査を着手するまでの日数", title="最初の検査を着手するまでの日数", ), dict( column="diff_days_to_first_acceptance_started", x_axis_label="最初の受入を着手するまでの日数", title="最初の受入を着手するまでの日数", ), dict( column="diff_days_to_first_acceptance_completed", x_axis_label="初めて受入完了状態になるまでの日数", title="初めて受入完了状態になるまでの日数", ), # 差し戻し回数 dict( column="number_of_rejections_by_inspection", x_axis_label="検査フェーズでの差し戻し回数", title="検査フェーズでの差し戻し回数", ), dict( column="number_of_rejections_by_acceptance", x_axis_label="受入フェーズでの差し戻し回数", title="受入フェーズでの差し戻し回数", ), ] figure_list = [] for hist in histogram_list: column = hist["column"] title = hist["title"] x_axis_label = hist["x_axis_label"] ser = df[column].dropna() sub_title = get_sub_title_from_series(ser, decimals=2) fig = get_histogram_figure( ser, x_axis_label=x_axis_label, y_axis_label="タスク数", title=title, sub_title=sub_title, bins=bins ) figure_list.append(fig) bokeh_obj = bokeh.layouts.gridplot(figure_list, ncols=4) output_file.parent.mkdir(exist_ok=True, parents=True) bokeh.plotting.reset_output() bokeh.plotting.output_file(output_file, title=output_file.stem) bokeh.plotting.save(bokeh_obj)
from math import ceil from typing import List, Tuple # noinspection PyTypeChecker # tag::calculator_class[] class Calculator: freq_items = [ (u"Año", 1, 10), ("Semestre", 2, 10), ("Cuatrimestre", 3, 12), ("Bimestre", 6, 12), ("Mes", 12, 12), ("Quincena", 24, 12), ("Bi-semana", 26, 13), ("Semana", 52, 13), (u"Día", 365, 15), ] def __init__(self, **kwargs): self.freq = self.get_int(kwargs.get("freq", 12)) self.num_of_years = self.get_float(kwargs.get("num_of_years", 0)) self.rate = self.get_float(kwargs.get("rate", 0)) self.time_scale, rows_per_page = self.get_time_scale(self.freq) self.periods = self.get_periods() # end::calculator_class[] self.periods_a = self.get_periods_a() self.periods_m = self.get_periods_m() self.num_of_years_t = self.num_of_years self.nper_t = 0 self.interests = [] self.balances = [] @staticmethod def get_float(val: str) -> float: return float(str(val).replace(",", "")) @staticmethod def get_int(val: str) -> int: return int(str(val).replace(",", "")) def get_periods(self) -> List[int]: return [x + 1 for x in range(ceil(self.freq * self.num_of_years))] def get_periods_a(self) -> List[int]: return [x + 1 for x in range(ceil(1 * self.num_of_years))] def get_periods_m(self) -> List[int]: return [x + 1 for x in range(ceil(12 * self.num_of_years))] def get_time_scale(self, freq: int) -> Tuple[str, int]: f = freq if freq else 12 for item in self.freq_items: if item[1] == f: return item[0], item[2]
import chess import chess.pgn import chess.engine import sys, os import random import time board = chess.Board() print('legal_moves: ', list(board.legal_moves)) print(list(board.legal_moves)[0]) print(type(list(board.legal_moves)[0])) m = list(board.legal_moves)[0] print('m', m) print('uci', m.uci()) print('san', board.san(m)) #sys.exit(0) board.push_san("e4") print(board) print('out:', board.outcome()) print(board.fen()) STOCKFISH = '/opt/homebrew/bin/stockfish' engine = chess.engine.SimpleEngine.popen_uci(STOCKFISH) board = chess.Board('r1bq1b1r/pppnpkpp/8/3n4/3P4/8/PPP2PPP/RNBQKB1R w KQ - 0 7') print(board) limit = chess.engine.Limit(time=0.1) print('before: ', limit) foo = engine.play(board, limit) print('result foo:', foo) print('result foo:', foo.move) print('result foo/type:', type(foo.move)) print('result foo:', foo.ponder) print('result foo:', foo.info) # help(foo) #sys.exit(0) # print('more') moves = [] limit = chess.engine.Limit(depth=1) board = chess.Board('r1bq1b1r/pppnpkpp/8/3n4/3P4/8/PPP2PPP/RNBQKB1R w KQ - 0 7') board = chess.Board() t1 = time.time() while board.outcome() is None: ply = len(moves) rnd = '' if ply % 7 == 0: rnd = '*' move = random.choice(list(board.legal_moves)) else: foo = engine.play(board, limit) move = foo.move uci = str(move) san = board.san(move) #print(uci, san, move, rnd) moves.append(san) board.push(move) print('dt: ', time.time() - t1) print('moves: ', moves) print('final: ', board.outcome()) print(board) print(board.fen) print() col = 0 strs = [] for i, san in enumerate(moves): if i % 2 == 0: s = f' {int(1+(i/2))}.' strs.append(s) col += len(s) strs.append(' ' + san) col += 1 + len(san) if col >= 72: print(''.join(strs)) col = 0 strs = [] engine.quit()
# -*- coding: utf-8 -*- ''' © 2012-2013 eBay Software Foundation Authored by: Tim Keefer Licensed under CDDL 1.0 ''' import os import sys import gevent from optparse import OptionParser sys.path.insert(0, '%s/../' % os.path.dirname(__file__)) from common import dump from ebaysdk.finding import Connection as finding from ebaysdk.http import Connection as html from ebaysdk.exception import ConnectionError def init_options(): usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option("-d", "--debug", action="store_true", dest="debug", default=False, help="Enabled debugging [default: %default]") parser.add_option("-y", "--yaml", dest="yaml", default='ebay.yaml', help="Specifies the name of the YAML defaults file. [default: %default]") parser.add_option("-a", "--appid", dest="appid", default=None, help="Specifies the eBay application id to use.") (opts, args) = parser.parse_args() return opts, args def run(opts): timeout = gevent.Timeout(4) timeout.start() try: calls = [] for page in range(1, 10): api = finding(debug=opts.debug, appid=opts.appid, config_file=opts.yaml) call = gevent.spawn(api.execute, 'findItemsAdvanced', {'keywords': 'python', 'paginationInput': {'pageNumber': page}}) calls.append(call) gevent.joinall(calls) try: call_results = [c.get() for c in calls] toprated = 0 for resp in call_results: for item in resp.reply.searchResult.item: if item.topRatedListing == 'true': toprated += 1 print("Top Rated Listings: %s" % toprated) except ConnectionError as e: print("%s" % e) except gevent.timeout.Timeout as e: print("Calls reached timeout threshold: %s" % e) finally: timeout.cancel() if __name__ == "__main__": (opts, args) = init_options() run(opts)
"""articles_column Revision ID: 49f02f2c2ea Revises: 171e70161dd Create Date: 2016-03-19 22:38:51.402128 """ # revision identifiers, used by Alembic. revision = '49f02f2c2ea' down_revision = '171e70161dd' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('article_columns', sa.Column('id', sa.Integer(), nullable=False), sa.Column('title', sa.String(length=64), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('articles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('title', sa.String(length=64), nullable=True), sa.Column('body', sa.Text(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('author_id', sa.Integer(), nullable=True), sa.Column('article_column_id', sa.Integer(), nullable=True), sa.Column('index', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['article_column_id'], ['article_columns.id'], ), sa.ForeignKeyConstraint(['author_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_articles_timestamp'), 'articles', ['timestamp'], unique=False) op.drop_table('article_column') op.drop_table('article') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('article', sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('title', sa.VARCHAR(length=64), nullable=True), sa.Column('body', sa.TEXT(), nullable=True), sa.Column('timestamp', sa.DATETIME(), nullable=True), sa.Column('author_id', sa.INTEGER(), nullable=True), sa.Column('index', sa.INTEGER(), nullable=True), sa.ForeignKeyConstraint(['author_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('article_column', sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('title', sa.VARCHAR(length=64), nullable=True), sa.PrimaryKeyConstraint('id') ) op.drop_index(op.f('ix_articles_timestamp'), table_name='articles') op.drop_table('articles') op.drop_table('article_columns') ### end Alembic commands ###
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-10 10:39 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Alias', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('source', models.CharField(blank=True, max_length=128)), ], ), migrations.CreateModel( name='DkimDomain', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('selector', models.CharField(max_length=63)), ('private_key', models.TextField()), ('public_key', models.TextField()), ], ), migrations.CreateModel( name='Domain', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=63, unique=True)), ('relay', models.BooleanField()), ], ), migrations.CreateModel( name='Recipient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('address', models.CharField(max_length=192)), ('action', models.CharField(choices=[('REJECT', 'REJECT'), ('DEFER', 'DEFER'), ('421', '421'), ('521', '521')], max_length=8)), ('message', models.CharField(max_length=512)), ], ), migrations.CreateModel( name='SenderCredential', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=128)), ('password', models.CharField(max_length=106)), ('relayhost', models.CharField(max_length=192)), ('domain_name', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pdje.Domain', to_field='name')), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('password', models.CharField(max_length=106)), ], ), migrations.AddField( model_name='dkimdomain', name='domain_name', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pdje.Domain', to_field='name'), ), migrations.AddField( model_name='alias', name='domain', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pdje.Domain'), ), migrations.AddField( model_name='alias', name='target', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pdje.User'), ), ]
class DFDefault: def __repr__(self): return "DEFAULT_VAL" def __str__(self): return self.__repr__() def __bool__(self): return False DEFAULT_VAL = DFDefault() # used for detecting when no parameter was passed without using 'None' or alternatives. EMPTY_ARGS = dict(items=tuple())
''' lanhuage: python Descripttion: version: beta Author: xiaoshuyui Date: 2021-01-06 10:51:46 LastEditors: xiaoshuyui LastEditTime: 2021-02-20 09:41:13 ''' import sys sys.path.append("..") import datetime import importlib import inspect from devtool.devTool import DevTool # import devtool.tests.utils.func1 from devtool.utils.common import (match_datetime, validate_date, validate_datetime) if __name__ == "__main__": # name = 'devtool.tests.utils.func1' # module = importlib.import_module(name) # # print(module) # # # print(dir(devtool.tests.utils.func1)) # member_list = inspect.getmembers(module, predicate=inspect.isfunction) # for v,_ in member_list: # print(v) DevTool.exec('devtool') print(DevTool.storage) DevTool.analysis() DevTool.grep('this','or','123','True') DevTool.treeWithState('devtool') # a = match_datetime('2021-01-07 21:19:35,345 - DevTool - ERROR - __main__.test4 Traceback (most recent call last):') # b = validate_date('2021-01-07 '.strip()) # # print(b) # print(str(datetime.datetime.now())[:11] + '00:00:00') # c = validate_datetime(str(datetime.datetime.now())[:11] + '00:00:00') # print(c) # DevTool.logFilter('ERROR','INFO',start='122',since='1998-01-01') # print(DevTool.logFilter.__annotations__)
import asyncio from typing import Dict, List, Union import dramatiq from . import crud, models, settings, utils MAX_RETRIES = 3 STATUS_MAPPING = { 0: "Pending", 3: "complete", 2: "invalid", 1: "expired", 4: "In progress", 5: "Failed", "Paid": "complete", "Pending": "Pending", "Unknown": "invalid", "Expired": "expired", } @dramatiq.actor(actor_name="poll_updates", max_retries=MAX_RETRIES) @settings.run_sync async def poll_updates(obj: Union[int, models.Invoice], task_wallets: Dict[str, str]): obj = await models.Invoice.get(obj) if not obj: return await crud.invoice_add_related(obj) if settings.TEST: await asyncio.sleep(1) await obj.update(status="test").apply() await utils.publish_message(obj.id, {"status": "test"}) return payment_methods = await models.PaymentMethod.query.where(models.PaymentMethod.invoice_id == obj.id).gino.all() if not payment_methods: return for ind, method in enumerate(payment_methods): payment_methods[ind].coin = settings.get_coin(method.currency, task_wallets[method.currency]) await process_invoice(obj, task_wallets, payment_methods) async def process_invoice( invoice: models.Invoice, task_wallets: Dict[str, str], payment_methods: List[models.PaymentMethod], notify: bool = True ): while not settings.shutdown.is_set(): for method in payment_methods: invoice_data = await method.coin.getrequest(method.payment_address) if invoice_data["status"] != "Pending" and invoice_data["status"] != 0: status = invoice_data["status"] if isinstance(status, int): status = STATUS_MAPPING[status] elif isinstance(status, str) and status in STATUS_MAPPING: status = STATUS_MAPPING[status] if not status: status = "expired" await invoice.update(status=status, discount=method.discount).apply() if status == "complete": await invoice.update(paid_currency=method.currency).apply() if notify: await invoice_notification(invoice, status) return await asyncio.sleep(1) poll_updates.send_with_options(args=(invoice.id, task_wallets), delay=1000) # to run on next startup async def invoice_notification(invoice: models.Invoice, status: str): await crud.invoice_add_related(invoice) await utils.publish_message(invoice.id, {"status": status}) await utils.send_ipn(invoice, status) if status == "complete": store = await models.Store.get(invoice.store_id) await crud.store_add_related(store) await utils.notify(store, await utils.get_notify_template(store, invoice)) if invoice.products: if utils.check_ping( store.email_host, store.email_port, store.email_user, store.email_password, store.email, store.email_use_ssl, ): messages = [] for product_id in invoice.products: product = await models.Product.get(product_id) relation = ( await models.ProductxInvoice.query.where(models.ProductxInvoice.invoice_id == invoice.id) .where(models.ProductxInvoice.product_id == product_id) .gino.first() ) quantity = relation.count messages.append(await utils.get_product_template(store, product, quantity)) utils.send_mail( store, invoice.buyer_email, await utils.get_store_template(store, messages), ) @dramatiq.actor(actor_name="sync_wallet", max_retries=0) @settings.run_sync async def sync_wallet(model: Union[int, models.Wallet]): test = settings.TEST model = await models.Wallet.get(model) if not model: return coin = settings.get_coin(model.currency, model.xpub) balance = await coin.balance() await model.update(balance=balance["confirmed"]).apply() if test: await asyncio.sleep(1) await utils.publish_message(model.id, {"status": "success", "balance": balance["confirmed"]})
# The MIT License (MIT) # Copyright (c) 2019 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import click # noinspection PyShadowingBuiltins,PyUnusedLocal @click.command(name="vars2dim") @click.argument('cube') @click.option('--variable', '--var', metavar='VARIABLE', default='data', help='Name of the new variable that includes all variables. Defaults to "data".') @click.option('--dim_name', '-D', metavar='DIM-NAME', default='var', help='Name of the new dimension into variables. Defaults to "var".') @click.option('--output', '-o', metavar='OUTPUT', help="Output path. If omitted, 'INPUT-vars2dim.FORMAT' will be used.") @click.option('--format', '-f', metavar='FORMAT', type=click.Choice(['zarr', 'netcdf']), help="Format of the output. If not given, guessed from OUTPUT.") def vars2dim(cube, variable, dim_name, output=None, format=None): """ Convert cube variables into new dimension. Moves all variables of CUBE into into a single new variable <var-name> with a new dimension DIM-NAME and writes the results to OUTPUT. """ from xcube.core.dsio import guess_dataset_format from xcube.core.dsio import open_dataset, write_dataset from xcube.core.vars2dim import vars_to_dim import os if not output: dirname = os.path.dirname(cube) basename = os.path.basename(cube) basename, ext = os.path.splitext(basename) output = os.path.join(dirname, basename + '-vars2dim' + ext) format_name = format if format else guess_dataset_format(output) with open_dataset(input_path=cube) as ds: converted_dataset = vars_to_dim(ds, dim_name=dim_name, var_name=variable) write_dataset(converted_dataset, output_path=output, format_name=format_name)
import tensorflow as tf import numpy as np from A3CAgent.helpers import * from A3CAgent.AC_Network import AC_Network from A3CAgent.Worker import Worker import os class A3CAgent: def __init__(self): self.first_init = True self.roll_out_steps = 5 self.this_level = 0 self.worker_number = 0 def init(self, sso, elapsed_timer): s_size = sso.observation.shape[0] * sso.observation.shape[1] * sso.observation.shape[2] # Observations are greyscale frames of 84 * 84 * 1 a_size = len(sso.availableActions) # Agent can move Left, Right, or Fire s_shape = sso.observation.shape if self.first_init or not (s_size == self.s_size and a_size == self.a_size and s_shape == self.s_shape) : #STAT OF FIRST INIT tf.reset_default_graph() self.first_init = False if(len(sso.availableActions) > 0): self.roll_out_steps =len(sso.availableActions)*3 self.gamma = .99 # discount rate for advantage estimation and reward discounting self.prv_observation = None self.prv_score = 0 self.prv_action = 0 self.s_size = sso.observation.shape[0] * sso.observation.shape[1] * sso.observation.shape[2] # Observations are greyscale frames of 84 * 84 * 1 self.a_size = len(sso.availableActions) # Agent can move Left, Right, or Fire self.s_shape = sso.observation.shape # self.model_path = 'tensor_flow/' # if not os.path.exists(self.model_path): # os.makedirs(self.model_path) with tf.device("/cpu:0"): self.trainer = tf.train.AdamOptimizer(learning_rate=1e-4) self.master_network = AC_Network(self.s_size, self.a_size, 'global', None, self.s_shape) # Generate global network self.session = tf.Session() self.session.run(tf.global_variables_initializer()) print("A3CAgent Init ran for first time") #END OF FIRST INIT #Start new worker for level self.worker_number += 1 print("Worker starting : "+str(self.worker_number)) self.Worker = Worker(self.worker_number, self.s_size, self.a_size, self.trainer, self.s_shape,self.session) #Initialize Workers local variables self.session.run(tf.variables_initializer( tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "worker_"+str(self.worker_number)) )) self.prv_observation = sso.observation print("A3CAgent Init ran") def act(self, sso, elapsed_timer): reward = sso.gameScore - self.prv_score if sso.gameTick == 1:# First action of the level action = self.Worker.work(self.gamma, self.session, self.prv_observation , self.prv_action, reward, sso.observation, game_over=False, do_train=False, first_run=True) else: if sso.gameTick % self.roll_out_steps == 0: #Role back onexperiance gained and Train action action = self.Worker.work(self.gamma, self.session, self.prv_observation , self.prv_action, reward, sso.observation, game_over=False, do_train=True, first_run=False) else: #Collect experiance action action = self.Worker.work(self.gamma, self.session, self.prv_observation , self.prv_action, reward, sso.observation, game_over=False, do_train=False, first_run=False) self.prv_observation = sso.observation self.prv_score = sso.gameScore self.prv_action = action return sso.availableActions[action] def result(self, sso, elapsed_timer): reward = sso.gameScore - self.prv_score self.Worker.work(self.gamma, self.session, self.prv_observation , self.prv_action, reward, sso.observation, game_over=True, do_train=True, first_run=False) self.this_level += 1 if self.this_level > 2: self.this_level = 0 print("A3CAgent Result ran") return self.this_level
from __future__ import print_function import httplib2 import os import gspread import praw # https://github.com/burnash/gspread from apiclient import discovery from apiclient import errors import oauth2client from oauth2client import client from oauth2client import tools try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None SCOPES = 'https://www.googleapis.com/auth/drive.metadata.readonly https://spreadsheets.google.com/feeds https://docs.google.com/feeds' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'Drive API Python Quickstart' LOSEIT_ID = '1-EKK8u-6lP7eaaMSmuPeadhg44rgyhkf0EMXPo7wHgw' def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'drive-python-quickstart.json') print (credential_path) store = oauth2client.file.Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials message = """Hello {name}. Week 9 final check-ins have been active since last Friday, but you have not weighed in yet! Please go to the [link for the week 9 weigh ins ](http://goo.gl/forms/aJnKJjTVGW) and enter your reddit user name ({name}), and your current weight. You have until end of day Thursday to weigh in for Week 9. ***ALSO-> You may also be interested in the next 2016 New Year, New you challenge. [Google form] (http://goo.gl/forms/VnWeWOBl14) or [Reddit post] (https://www.reddit.com/r/loseit/comments/401074/challenge_as_the_winter_2015_challenge_comes_to_a/) This is just a PM from a reminder program written by jeffles2, I am not affiliated with the actual contest organizers.. just a zealous Icicle. """ skip_list = ['Gigi tweekz', 'TourmanlineTart', 'ThunderCatsServent', 'Pirite', 'lositinSD', 'JohnS1821', 'evitable_betrayal', 'Doktor_Rutherz', 'Brick_Pudding'] def main(): r = praw.Reddit(user_agent='Send message to loseit weight loss challenge subscribers who have not weighed in by /u/jeffles2') username = raw_input('Enter your reddit username: ') password = raw_input('Enter your password: ') r.login(username, password) credentials = get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build('drive', 'v2', http=http) try: file = service.files().get(fileId=LOSEIT_ID).execute() print('Title: %s' % file['title']) print('MIME type: %s' % file['mimeType']) #for k,v in file.iteritems(): # print (k,v) selflink = file['selfLink'] print ('selflink %s' % selflink) # import pdb;pdb.set_trace() # print ('Export Links %s' % file['exportLinks']) except errors.HttpError, error: print('An error occurred: %sfor k,v ' % error) gc = gspread.authorize(credentials) sheet = gc.open("/r/loseit Holiday 2015 Challenge (Responses)") wks = sheet.get_worksheet(1) # import pdb; pdb.set_trace() # for row_num in range(wks.row_count): # row = wks.row_values(row_num) # print (row) # exit() team_list = wks.range('A2:A3500') name_list = wks.range('B2:B3500') week1_weight_list = wks.range('AC2:AC3500') week2_weight_list = wks.range('AD2:AD3500') #TODO Currently week week3_weight_list = wks.range('AE2:AE3500') #TODO Currently week total = 0 for team, name, weight1, weight2, weight3 in zip(team_list, name_list, week1_weight_list, week2_weight_list, week3_weight_list ): if weight3.value == '' and team.value != 'TEAM ICICLE': if weight1.value == '' and weight2.value == '': continue recipient = name.value if recipient in skip_list: #print (recipient, " is in the skip list") continue custom_message = message.format(name=recipient) if True: #TODO up date to current week column and message title below try: r.send_message(recipient, 'Lose It - Week 9 weigh in reminder', custom_message) except praw.errors.InvalidUser: print ("\n!!! ", recipient, " is an Invalid User") continue import time time.sleep(2) print ("/u/{name} {team}".format(name=recipient, team=team.value)) total +=1 print ("") print ("Total is ", total) if __name__ == '__main__': main()
#!/usr/bin/env python3 # -*- Coding: UTF-8 -*- # # -*- System: Linux -*- # # -*- Usage: *.py -*- # # Owner: Jacob B. Sanders # Source: code.cloud-technology.io # License: BSD 2-Clause License """ ... """ from . import * import Database.SQL as SQL import Database.Association import Database.User.Models.Base as Base import Database.User.Schemas.Nexus as Type import Database.User.Models.Name import Database.User.Models.Note import Database.Business.Models.Company import Database.Business.Models.Unit import Database.User.Models.Verification class Table(Base.Table, SQL.Base): """ A User SQL ORM Class Properties: ID: Column - Primary Key Email: Column - Indexable User Property Representing an Email Address. Note that the email address is not a requirement. Token-Safe N-Bytes: Return a random URL-safe text string, containing nbytes random bytes. The text is Base64 encoded, so on average each byte results in approximately 1.3 characters. If nbytes is None or not supplied, a reasonable default is used. --> 32 // 1.333 := 24 Example: >>> import secrets ... >>> print(32 // 1.333) # --> 24 ... >>> String = secrets.token_urlsafe(24) ... >>> print(String, "Length", "-", len(String)) """ __tablename__ = "User" __mapper_args__ = {"eager_defaults": True} Username: Column = Column( key = "Username", name = "Username", type_ = String, index = True, quote = True, unique = True, default = None, nullable = False, primary_key = False, autoincrement = False ) Email: Column = Column( key = "Email", name = "Email-Address", type_ = String, index = True, quote = True, unique = True, default = None, nullable = False, primary_key = False, autoincrement = False ) Password: Column = Column( key = "Password", name = "Password", type_ = String, index = False, quote = True, unique = False, default = None, nullable = False, primary_key = False, autoincrement = False ) Salt: Column = Column( key = "Salt", name = "Salt", type_ = String, index = False, quote = True, unique = False, default = None, nullable = False, primary_key = False, autoincrement = False ) Active: Column = Column( key = "Active", name = "Active", type_ = Boolean, index = True, quote = True, unique = False, default = None, nullable = False, primary_key = False, autoincrement = False ) Token: Column = Column( key = "Token", name = "Token", type_ = String, index = False, quote = True, unique = True, default = lambda: Token(), nullable = True, primary_key = False, autoincrement = False ) GISO: Column = Column( key = "GISO", name = "GISO", type_ = Enumeration(ISO5218, unique = False, nullable = False, name = "Gender-Code" ), index = True, quote = True, unique = False, default = 0x0, nullable = True, primary_key = False, autoincrement = False ) Preferred: Column = Column( key = "Preferred", name = "Preferred-Name", type_ = String, index = False, quote = True, unique = False, default = "N/A", nullable = True, primary_key = False, autoincrement = False ) Name = Relationship(Database.User.Models.Name.Table, cascade = "all, delete-orphan", uselist = True, lazy = "joined") Note = Relationship(Database.User.Models.Note.Table, cascade = "all, delete-orphan", uselist = True, lazy = "joined") BCFK = Column(UUID, Foreign("Business-Company.ID"), key = "Company-Foreign-Key", name = "Company-Foreign-Key", index = True, quote = True, default = None, nullable = True ); Company: Database.Business.Models.Company.Table = Relationship(Database.Business.Models.Company.Table, single_parent = True, back_populates = "User", lazy = "joined") BUFK = Column(UUID, Foreign("Business-Unit.ID"), key = "Business-Unit-Foreign-Key", name = "Business-Unit-Foreign-Key", index = True, quote = True, default = None, nullable = True ); Unit: Database.Business.Models.Unit.Table = Relationship(Database.Business.Models.Unit.Table, single_parent = True, back_populates = "User", lazy = "joined") UVFK = Column(UUID, Foreign("User-Verification.ID"), key = "VFK", name = "User-Verification-Foreign-Key", index = True, quote = True, default = None, nullable = True ); Verification = Relationship(Database.User.Models.Verification.Table, cascade = "all, delete-orphan", uselist = False, single_parent = True, back_populates = "User", lazy = "joined") HTML: Column = Column( key = "HTML-Foreign-Key", name = "HTML-Foreign-Key", type_ = String, index = True, quote = True, unique = True, default = None, nullable = True, primary_key = False, autoincrement = False ) Meta: MetaData = Table.metadata __all__ = [ "Table", "Meta" ]
""" Blink LED - timer callback On-board LED is connected to GPIO2. """ from machine import Pin, Timer led = Pin(2, Pin.OUT) my_timer = Timer(0) # using timer 0 # define callback function def toggle_led(t): led.value(not led.value()) # reverse led pin state my_timer.init(period = 1000, callback = toggle_led) # 1000ms while True: pass # do nothing
import click from model.MyModel import MyModel from model.utils.lr_schedule import LRSchedule from model.utils.Config import Config from model.pre.data import DataFrameDataset from model.pre.transforms import trans_train, trans_valid from model.pre.split_data import generate_split from torch.utils.data import TensorDataset, DataLoader, Dataset from sklearn.model_selection import train_test_split import pandas as pd @click.command() @click.option('--data', default="config/data.json", help='Path to data json config') @click.option('--training', default="config/training.json", help='Path to training json config') @click.option('--model', default="config/model.json", help='Path to model json config') @click.option('--output', default="results/local/", help='Dir for results and model weights') def main(data, training, model, output): # Load configs dir_output = output config = Config([data, training, model]) config.save(dir_output) # Load datasets # train_ids, cv_ids, train_labels, cv_labels = generate_split(train_label_path, wsi_path) labels = pd.read_csv(config.path_label_train) train, val = train_test_split(labels, stratify=labels.label, test_size=0.2) print(len(train), len(val)) dataset_train = DataFrameDataset(df_data=train, data_dir=config.dir_images_train, transform=trans_train) dataset_valid = DataFrameDataset(df_data=val, data_dir=config.dir_images_train, transform=trans_valid) loader_train = DataLoader(dataset=dataset_train, batch_size=config.batch_size, shuffle=True, num_workers=3) loader_valid = DataLoader(dataset=dataset_valid, batch_size=config.batch_size//2, shuffle=False, num_workers=3) # Define learning rate schedule n_batches_epoch = len(loader_train) lr_schedule = LRSchedule(lr_init=config.lr_init, start_decay=config.start_decay*n_batches_epoch, end_decay=config.end_decay*n_batches_epoch, end_warm=config.end_warm*n_batches_epoch, lr_warm=config.lr_warm, lr_min=config.lr_min) # Build model and train model = MyModel(config, dir_output) model.build_train(config) model.restore() model.train(config, loader_train, loader_valid, lr_schedule) if __name__ == "__main__": main()
def numbers(): return [1, 2, 3] def main(): print("Hello World!") if __name__ == '__main__': main()
import sqlite3 from datetime import datetime #takes the date from the computer where the data is running def handleWriting(next_pin_values): # print(next_pin_values) p0,p1,p2,p3,p4,sink=next_pin_values #sink is a throwaway value date_value = str(datetime.now()) #gives python from the date and time at that time db_conn = sqlite3.connect('movement_db') db_curr = db_conn.cursor() statement0 = f''' INSERT INTO movement_table0 VALUES({p0}, '{date_value}') ''' statement1 = f''' INSERT INTO movement_table1 VALUES({p1}, '{date_value}') ''' statement2 = f''' INSERT INTO movement_table2 VALUES({p2}, '{date_value}') ''' statement3 = f''' INSERT INTO movement_table3 VALUES({p3}, '{date_value}') ''' statement4 = f''' INSERT INTO movement_table4 VALUES({p4}, '{date_value}') ''' # print (statement) db_curr.execute(statement0) db_curr.execute(statement1) db_curr.execute(statement2) db_curr.execute(statement3) db_curr.execute(statement4) db_conn.commit() db_conn.close() if __name__ == "__main__": handleWriting([1000, 2000, 3000, 4000, 5000]) # exercise the code with saple dumy values
# -*- coding: utf-8 -*- # Copyright (C) 2017 Intel Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class MessageDataMonitor(object): def __init__(self): self.device_id = None self.resource_uri = None self.interval = None self.requester_name = None self.push_url = None self.local_path = None self.monitor_id = None self.sequence = None self.process = None def equals(self, obj): if self == obj: return True if obj is None or getattr(self, '__class__') != getattr( obj, '__class__'): return False other = obj if other.local_path == self.local_path: return True return False def hash_code(self): return 0 if self.local_path is None else self.local_path.hash_code() def to_json_string(self): bf = [] bf.append("{") bf.append("\"di\":\"" + self.device_id + "\",") bf.append("\"ri\":\"" + self.resource_uri + "\",") if self.sequence is not None: bf.append('"sequence":{},'.format(self.sequence)) if self.process is not None and self.process is True: bf.append('"process":"{}",'.format(self.process)) bf.append('"interval":{},'.format(self.interval)) bf.append("\"requester\":\"" + self.requester_name + "\",") bf.append("\"purl\":\"" + self.push_url + "\"") bf.append("}") return "".join(bf)
from __future__ import print_function from __future__ import absolute_import from __future__ import division import scriptcontext as sc import compas_rhino from compas_3gs.diagrams import FormNetwork from compas.geometry import Translation from compas_3gs.algorithms import volmesh_dual_network from compas_3gs.rhino import relocate_formdiagram __commandname__ = "TGS_primal" def RunCommand(is_interactive): if '3GS' not in sc.sticky: compas_rhino.display_message('3GS has not been initialised yet.') return scene = sc.sticky['3GS']['scene'] # get ForceVolMeshObject from scene objects = scene.find_by_name('force') if not objects: compas_rhino.display_message("There is no ForceDiagram in the scene.") return force = objects[0] # make FormNetwork form = volmesh_dual_network(force.diagram, cls=FormNetwork) # set dual/primal form.dual = force.diagram force.diagram.primal = form # add FormNetworkObject translation = relocate_formdiagram(force.diagram, form) form.transform(Translation.from_vector(translation)) form.update_angle_deviations() scene.add_formnetwork(form, name='form', layer='3GS::FormDiagram') # update scene.update() scene.save() print('Dual diagram successfully created.') # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": RunCommand(True)
from django.shortcuts import get_object_or_404 from rest_framework import mixins, views, viewsets from ..models import Comment, ReplyComment from .serializers import CommentSerializer, ReplyCommentSerializer class CommentViewSet( mixins.CreateModelMixin, mixins.ListModelMixin, mixins.RetrieveModelMixin, viewsets.GenericViewSet, ): queryset = Comment.objects.filter(is_approved=True) serializer_class = CommentSerializer
import math from typing import Dict, List, Tuple def required_ore( ingredients: Dict[str, Tuple[int, List[Tuple[int, str]]]], fuel: int ) -> int: required = {"FUEL": fuel} stock: Dict[str, int] = {} while {k for k, v in required.items() if v > 0} != {"ORE"}: next_required = next(k for k in required if k != "ORE") required_amount = required.pop(next_required) amount, required_ingredients = ingredients[next_required] multiplier = math.ceil(required_amount / amount) for ing_amount, ingredient in required_ingredients: amnt = ing_amount * multiplier if ingredient in stock: to_rm = min(stock[ingredient], amnt) stock[ingredient] -= to_rm amnt -= to_rm if stock[ingredient] == 0: stock.pop(ingredient) if amnt: required[ingredient] = amnt + required.get(ingredient, 0) if (left_over := amount * multiplier - required_amount) : stock[next_required] = left_over + stock.get(next_required, 0) return required["ORE"] def part2(ingredients: Dict[str, Tuple[int, List[Tuple[int, str]]]]) -> int: ore = 1000000000000 lo, hi = 2, ore while lo < hi: mid = (lo + hi) // 2 if ore < required_ore(ingredients, mid): hi = mid else: lo = mid + 1 return lo - 1 def main() -> None: with open("input.txt") as f: inp = [ x.split() for x in f.read().strip().replace(",", "").replace("=>", "").split("\n") ] ingredients: Dict[ str, Tuple[int, List[Tuple[int, str]]] ] = { # product -> (amount, lst of (amount, ingredient) ) r[-1][1]: (r[-1][0], r[:-1]) for r in [list(zip(map(int, r[::2]), r[1::2])) for r in inp] } print("Part 1:", required_ore(ingredients, 1)) print("Part 2:", part2(ingredients)) main()
# Nicholas Novak # Introduction to Python course assignment #Open the included file dictionary_file = open("lab5_dictionary.txt","r") dictionary_file.readlines() # In this assignment, I created a function to find the longest word in a dictionary text file along with any ties for the longest word in that file. # Notably, each line of the dictionary ends in '\n' which means the ending characters have to be stripped before adding a word to the output list. ## Created function: def long_word(file_name): with open(file_name, 'r') as infile: words = infile.read().split() #This automatically closes a file after reding it. max_len = len(max(words, key=len)) #This creates an integer equal to the length of the longest word iterated over return[i for i in words if len(i) == max_len] #Return statement that returns a list consisting of the longest words found in the file. long_word("lab5_dictionary.txt") # Calling created function for the included text file. #----------------------------------------- # Next, the dictionary will be iterated through to find words containing the most amount of unique letters. # A list will be output that contains all words tied for most unique letters. import string alphabet_string = string.ascii_lowercase #All letters of alphabet as a string print(alphabet_string) # Function to open the file def open_dict(filename): with open(filename, 'r') as f: words = f.readlines() #Open file and close when done return words #Function to determine the amount of unique characters in a word def uniqueness(word): uniques = set() #Using a set here allows the formation of a series of string swith no repeats. In this case, it is more efficient than a slower loop block. for character in word: uniques.add(character) return word, len(uniques) #Funciton to determine the longest word(s) in the dictionary file def unique_words(filename): dictionary = open_dict(filename) #Open the file as a set or list most_unique, unique_count = uniqueness(dictionary[0]) #Reference dictionary words as the unique letter length and unique words print("Most unique words list:\n") for word in dictionary[1:]: curr_word, curr_count = uniqueness(word) #For the current word and length of uniqueness, set it equal to the uniqueness function if curr_count >= unique_count: most_unique, unique_count = curr_word, curr_count #Add the current word to the unique words list if curr_count == 17: #By running this program once without this section, it was found that 17 was the maximum number #therefore, if the word has 17 unique characters, it is added to the result. print('This unique word is', most_unique, 'with', unique_count, 'unique characters\n') unique_words('lab5_dictionary.txt') #----------------------------------------- # For the final exercise, I determined if an anagram of a user input exists within the dictionary file. # # For example, the following words do have anagrams in the included dictionary file: # # 1) restful # # 2) bluster # # 3) binary # # Return all anagrams found. # Provided function def is_anagram(string1,string2): return sorted(string1) == sorted(string2) # Determines if a sorted word is equal to another sorted word. Basically, is it an anagram? def anagram_finder(): with open("lab5_dictionary.txt", 'r') as infile2: dictionary_file_2 = infile2.readlines() user_input = input("Please enter the word you would like to find an anagram for:") # User input print("anagrams below:\n\n") ana_list = [] # Create list for results for s in dictionary_file_2: if is_anagram(s,user_input+"\n") == True: # Check if a word is an anagram print(s) # Display found string ana_list.append(s.rstrip()) # Strip the newline characters before appending to the list return ana_list # Return stripped list print(anagram_finder()) # Run the function
import collections import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.keras import activations from tensorflow.python.keras import backend as K from tensorflow.python.keras import constraints from tensorflow.python.keras import initializers from tensorflow.python.keras import regularizers from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.layers.recurrent import DropoutRNNCellMixin from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging # ************************************************************ # Note : We modified the original tensorflow source code, so # that the GRU_CELL uses a CNN. This was done to avoid the # out of memory leak it tensorflow's TimeDistributed layer. # # Original source code available at : # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/layers/recurrent_v2.py # # ************************************************************ class CNN_GRU_Cell(DropoutRNNCellMixin, Layer): """Cell class for the GRU layer. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). Call arguments: inputs: A 2D tensor. states: List of state tensors corresponding to the previous timestep. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__(self, cnn, units, ip_dims, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, reset_after=False, **kwargs): super().__init__(**kwargs) #changes here self.cnn = cnn self.ip_dims = ip_dims self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) if self.recurrent_dropout != 0 and implementation != 1: logging.debug(RECURRENT_DROPOUT_WARNING_MSG) self.implementation = 1 else: self.implementation = implementation self.reset_after = reset_after self.state_size = self.units self.output_size = self.units @tf_utils.shape_type_conversion def build(self, input_shape): #changes here input_dim = self.ip_dims self.kernel = self.add_weight( shape=(input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 3), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if not self.reset_after: bias_shape = (3 * self.units,) else: # separate biases for input and recurrent kernels # Note: the shape is intentionally different from CuDNNGRU biases # `(2 * 3 * self.units,)`, so that we can distinguish the classes # when loading and converting saved weights. bias_shape = (2, 3 * self.units) self.bias = self.add_weight(shape=bias_shape, name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) #caching_device=default_caching_device) else: self.bias = None self.built = True def call(self, inputs, states,training=None): h_tm1 = states[0] # previous memory # changes here inputs = self.cnn(inputs) dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=3) rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( h_tm1, training, count=3) if self.use_bias: if not self.reset_after: input_bias, recurrent_bias = self.bias, None else: input_bias, recurrent_bias = array_ops.unstack(self.bias) if self.implementation == 1: if 0. < self.dropout < 1.: inputs_z = inputs * dp_mask[0] inputs_r = inputs * dp_mask[1] inputs_h = inputs * dp_mask[2] else: inputs_z = inputs inputs_r = inputs inputs_h = inputs x_z = K.dot(inputs_z, self.kernel[:, :self.units]) x_r = K.dot(inputs_r, self.kernel[:, self.units:self.units * 2]) x_h = K.dot(inputs_h, self.kernel[:, self.units * 2:]) if self.use_bias: x_z = K.bias_add(x_z, input_bias[:self.units]) x_r = K.bias_add(x_r, input_bias[self.units: self.units * 2]) x_h = K.bias_add(x_h, input_bias[self.units * 2:]) if 0. < self.recurrent_dropout < 1.: h_tm1_z = h_tm1 * rec_dp_mask[0] h_tm1_r = h_tm1 * rec_dp_mask[1] h_tm1_h = h_tm1 * rec_dp_mask[2] else: h_tm1_z = h_tm1 h_tm1_r = h_tm1 h_tm1_h = h_tm1 recurrent_z = K.dot(h_tm1_z, self.recurrent_kernel[:, :self.units]) recurrent_r = K.dot(h_tm1_r, self.recurrent_kernel[:, self.units:self.units * 2]) if self.reset_after and self.use_bias: recurrent_z = K.bias_add(recurrent_z, recurrent_bias[:self.units]) recurrent_r = K.bias_add(recurrent_r, recurrent_bias[self.units:self.units * 2]) z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) # reset gate applied after/before matrix multiplication if self.reset_after: recurrent_h = K.dot(h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) if self.use_bias: recurrent_h = K.bias_add(recurrent_h, recurrent_bias[self.units * 2:]) recurrent_h = r * recurrent_h else: recurrent_h = K.dot(r * h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) hh = self.activation(x_h + recurrent_h) else: if 0. < self.dropout < 1.: inputs = inputs * dp_mask[0] # inputs projected by all gate matrices at once matrix_x = K.dot(inputs, self.kernel) if self.use_bias: # biases: bias_z_i, bias_r_i, bias_h_i matrix_x = K.bias_add(matrix_x, input_bias) x_z, x_r, x_h = array_ops.split(matrix_x, 3, axis=-1) if self.reset_after: # hidden state projected by all gate matrices at once matrix_inner = K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: matrix_inner = K.bias_add(matrix_inner, recurrent_bias) else: # hidden state projected separately for update/reset and new matrix_inner = K.dot(h_tm1, self.recurrent_kernel[:, :2 * self.units]) recurrent_z, recurrent_r, recurrent_h = array_ops.split( matrix_inner, [self.units, self.units, -1], axis=-1) z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) if self.reset_after: recurrent_h = r * recurrent_h else: recurrent_h = K.dot(r * h_tm1, self.recurrent_kernel[:, 2 * self.units:]) hh = self.activation(x_h + recurrent_h) # previous and candidate state mixed by update gate h = z * h_tm1 + (1 - z) * hh return h, [h] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after } base_config = super(GRUCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
import os import random from django.db import models from contests.models import Submission, User, Contest VERDICT = ( ('RTE', 'Run Time Error'), ('MLE', 'Memory Limit Exceeded'), ('TLE', 'Time Limit Exceeded'), ('WA', 'Wrong Answer'), ('CE', 'Compilation Error'), ('IE', 'Internal Error'), ('AC', 'Accepted'), ('PENDING', 'Pending'), ) def spec_upload_path(instance, filename): alphanum = '1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM' random_str = ''.join(random.choice(alphanum) for _ in range(64)) return os.path.join("{}-{}-{}".format('gradingspec', instance.id, random_str), filename) class GradingGroup(models.Model): submission = models.ForeignKey( Submission, on_delete=models.CASCADE, related_name='grading_groups') issued_time = models.DateTimeField(auto_now_add=True) verdict = models.CharField( max_length=32, choices=VERDICT, default='PENDING') finish_time = models.DateTimeField(blank=True, null=True) # contain tcgen solution checker submission spec = models.FileField(upload_to=spec_upload_path) grading_size = models.IntegerField() def __str__(self): return "{} - Grading Group #{}".format(self.submission, self.id) class Grading(models.Model): # filled when inserted grading_group = models.ForeignKey( GradingGroup, on_delete=models.CASCADE, related_name='gradings') # for optimization contest = models.ForeignKey( Contest, on_delete=models.CASCADE, related_name='gradings') verdict = models.CharField( max_length=32, choices=VERDICT, default='PENDING') grader_group = models.IntegerField() # filled when claimed claimed_at = models.DateTimeField(blank=True, null=True) claimed_by = models.ForeignKey( User, null=True, blank=True, on_delete=models.SET_NULL) # filled when finished finish_at = models.DateTimeField(blank=True, null=True) output = models.FileField(null=True, blank=True) def __str__(self): return "{} - Grading #{}".format(self.grading_group, self.id)