content
stringlengths
5
1.05M
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import division from __future__ import unicode_literals import logging import tensorflow as tf class AutoEncoder: """ Autoencoder implemented with tensorflow """ def __init__(self, encoder_dims, decoder_dims=None, lr=1e-05, logger=None): """ Constructor of the model :param encoder_dims: encoder's dimensions list. ex) [4, 2] => x -> 4dim -> 2dim(z) :param decoder_dims: decoder's dimensions list. ex) None, encoder_dims: [4, 2] => z -> 4dim ex) [2, 4]: z -> 2dim -> 4dim :param lr: learning rate """ self.encoder_dims = encoder_dims if decoder_dims: self.decoder_dims = decoder_dims else: self.decoder_dims = list(reversed(encoder_dims))[1:] self.learning_rate = lr if not logger: self.logger = logging.getLogger(__name__) self.logger.setLevel('DEBUG') else: self.logger = logger def build_graph(self, x_ph): """ Build graph :param x_ph: the placeholder of input :return: None """ with tf.name_scope('regularizer'): regularizer = tf.contrib.layers.l2_regularizer(scale=0.1) with tf.variable_scope('encoder'): self.x = x_ph self.logger.debug('x: {}'.format(self.x)) self.z = self.encoder(self.x, regularizer=regularizer) self.logger.debug('z: {}'.format(self.z)) with tf.variable_scope('decoder'): self.x_ = self.decoder(self.z, regularizer=regularizer) self.logger.debug('x_: {}'.format(self.x_)) with tf.name_scope('train'): self.loss = tf.losses.mean_squared_error(self.x, self.x_) self.logger.debug('loss: {}'.format(self.loss)) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) self.logger.debug('optimizer: {}'.format(self.optimizer)) self.train = self.optimizer.minimize(self.loss) self.logger.debug('train: {}'.format(self.train)) def encoder(self, x, regularizer=None): """ Encoder activation: leaky_relu for test :param x: input :return: encoded_x """ result_x = x for dim in self.encoder_dims: try: result_x = tf.layers.dense(result_x, dim, activation=tf.nn.leaky_relu, kernel_regularizer=regularizer, reuse=tf.get_variable_scope().reuse) except ValueError: raise ValueError('use tensorflow 1.8.0 or dtype=tf.float32') self.logger.debug('result_x: {}'.format(result_x)) return result_x def decoder(self, z, regularizer=None): """ Decoder activation: leaky_relu for test :param z: latent variables :return: decoded(x_hat) """ result_z = z for dim in self.decoder_dims + [self.x.shape[-1]]: try: result_z = tf.layers.dense(result_z, dim, activation=tf.nn.leaky_relu, kernel_regularizer=regularizer, reuse=tf.get_variable_scope().reuse) except ValueError: raise ValueError('use tensorflow 1.8.0 or dtype=tf.float32') self.logger.debug('result_z: {}'.format(result_z)) return result_z
import pandas as pd import argparse from imblearn.over_sampling import SVMSMOTE import numpy as np import os import shutil import argparse import json from json_manager import JsonManager import pipeline_constants as constants def process_command_line_args(): ap = argparse.ArgumentParser() ap.add_argument("-c", "--config", required = True, help = "Full path to json config file, relative paths work as well") ap.add_argument("-o", "--outputlog", required = True, help = "Path to log file") args = vars(ap.parse_args()) return args["config"], args["outputlog"] def run_upsample(json_file_path, fmt_file_path): json_manager = JsonManager(json_file_path) if json_manager.get_upsample_status() == True: print(f"Upsampling started using {json_file_path} and {fmt_file_path}") upsampled_path = json_manager.get_upsampled_path() constants.remove_folder_if_exists(\ constants.UPSAMPLED_CSV_FOLDER_NAME, upsampled_path) print("Upsampling") hot_encoded_folder = os.fsdecode(os.path.join(\ json_manager.get_hot_encoded_path(), \ constants.HOT_ENCODED_CSV_FOLDER_NAME)) hot_encoded_file = os.fsdecode(os.path.join(\ hot_encoded_folder, \ constants.HOT_ENCODED_CSV_FILENAME)) hotEncoded_data = pd.read_csv(hot_encoded_file) features_data = pd.read_csv(hot_encoded_file, \ usecols = list(hotEncoded_data.columns)[:-1]) # everything except label labels_data = pd.read_csv(hot_encoded_file, \ usecols = [list(hotEncoded_data.columns)[-1]]) # label sm = SVMSMOTE(random_state = json_manager.get_random_state()) X_res, y_res = sm.fit_resample(features_data, labels_data) csv_ready = np.append(X_res, y_res, axis = constants.COLUMN_AXIS) upsampled_folder = constants.add_folder_to_directory(\ constants.UPSAMPLED_CSV_FOLDER_NAME, upsampled_path) upsampled_file_path = os.fsdecode(os.path.join(\ upsampled_folder, constants.UPSAMPLED_CSV_FILENAME)) if os.path.exists(upsampled_file_path): os.remove(upsampled_file_path) f = open(fmt_file_path, "r") fmt = f.readline() f.close() header = ','.join(str(i) for i in hotEncoded_data.columns) np.savetxt(upsampled_file_path, csv_ready, \ fmt = fmt, \ delimiter = constants.CSV_DELIMITER, \ header = header, \ comments='') print(f"Upsampling finished, results in {upsampled_file_path}") def main(): json_file_path, fmt_file_path = process_command_line_args() run_upsample(json_file_path, fmt_file_path) if __name__ == '__main__': main()
from subprocess import call import time import os import selenium from selenium.webdriver.support.ui import Select from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from config import EMAIL def click_option(driver, menu, text): select = Select(driver.find_element_by_name(menu)) select.select_by_visible_text(text) def run(rejected, background, folder='.', name=''): """ run webgestalt GO-enrichment analysis with given rejected and background files. Specify folder to save to other location than current. >>> rejected = 'test/rej.txt' >>> background = 'test/background.txt' >>> run(rejected, background, folder='test', name='results') """ rejected = os.path.abspath(rejected) background = os.path.abspath(background) folder = os.path.abspath(folder) driver = selenium.webdriver.Firefox() main_window = driver.window_handles[0] driver.implicitly_wait(5) driver.get('http://bioinfo.vanderbilt.edu/webgestalt') start = driver.find_element_by_link_text('START') start.click() # LOGIN login_form = driver.find_element_by_id('loginForm') login_form_email = login_form.find_element_by_id('email') login_form_email.send_keys(EMAIL) time.sleep(1) login_form_submit = login_form.find_element_by_name('submit') login_form_submit.click() # INPUT click_option(driver, 'organism', 'hsapiens') time.sleep(4) click_option(driver, 'idtype', 'hsapiens__entrezgene') time.sleep(4) inputfile = driver.find_element_by_name('inputfile') inputfile.send_keys(rejected) enter = driver.find_element_by_css_selector('[value=ENTER]') enter.click() # ANALYSIS id_info = driver.find_element_by_link_text('[Download]') call(['wget', '-O', os.path.join(folder, '{}_idinfo.tab'.format(name)), id_info.get_attribute('href')]) analysis_menu = driver.find_element_by_class_name('dropdown') analysis_menu.click() # makes options visible analysis = driver.find_element_by_link_text('GO Analysis') analysis.click() refsetfile = driver.find_element_by_name('refsetfile') refsetfile.send_keys(background) click_option(driver, 'upload_idtype', 'hsapiens__entrezgene') submit = driver.find_element_by_css_selector('[value="Run Enrichment Analysis"]') submit.click() # RESULTS driver.switch_to_window(driver.window_handles[1]) element = WebDriverWait(driver, 100).until( EC.presence_of_element_located((By.LINK_TEXT, "View results")) ) element.click() driver.switch_to_window(driver.window_handles[2]) img = driver.find_element_by_tag_name('img') img_src = img.get_attribute('src') call(['wget', '-O', os.path.join(folder, '{}.gif'.format(name)), img_src]) for window in driver.window_handles: driver.switch_to_window(window) driver.close()
from __future__ import absolute_import import pytest import numpy as np from astropy import units as u from astropy.coordinates import Longitude, Latitude, Angle from sunpy.physics.transforms.differential_rotation import diff_rot, _sun_pos, _calc_P_B0_SD, rot_hpc from sunpy.tests.helpers import assert_quantity_allclose #pylint: disable=C0103,R0904,W0201,W0212,W0232,E1103 # Please note the numbers in these tests are not checked for physical # accuracy, only that they are the values the function was outputting upon # implementation. @pytest.fixture def seconds_per_day(): return 24 * 60 * 60.0 * u.s def test_single(seconds_per_day): rot = diff_rot(10 * seconds_per_day, 30 * u.deg) assert rot == 136.8216 * u.deg def test_array(seconds_per_day): rot = diff_rot(10 * seconds_per_day, np.linspace(-70, 70, 2) * u.deg) assert_quantity_allclose(rot, Longitude(np.array([110.2725, 110.2725]) * u.deg)) def test_synodic(seconds_per_day): rot = diff_rot(10 * seconds_per_day, 30 * u.deg, rot_type='howard', frame_time='synodic') assert rot == 126.9656 * u.deg def test_sidereal(seconds_per_day): rot = diff_rot(10 * seconds_per_day, 30 * u.deg, rot_type='howard', frame_time='sidereal') assert rot == 136.8216 * u.deg def test_howard(seconds_per_day): rot = diff_rot(10 * seconds_per_day, 30 * u.deg, rot_type='howard') assert rot == 136.8216 * u.deg def test_allen(seconds_per_day): rot = diff_rot(10 * seconds_per_day, 30 * u.deg, rot_type='allen') assert rot == 136.9 * u.deg def test_snodgrass(seconds_per_day): rot = diff_rot(10 * seconds_per_day, 30 * u.deg, rot_type='snodgrass') assert rot == 135.4232 * u.deg def test_fail(seconds_per_day): with pytest.raises(ValueError): rot = diff_rot(10 * seconds_per_day, 30 * u.deg, rot_type='garbage') def test_sunpos(): result = _sun_pos('2013-05-14') assertion = {'obliq': (23.4358, Angle, u.deg), 'app_long': (53.3683, Longitude, u.deg), 'dec': (18.6125, Latitude, u.deg), 'ra': (50.9796, Longitude, u.deg), 'longitude': (53.3705, Longitude, u.deg)} for k in assertion: np.testing.assert_almost_equal(result[k].to(u.deg).value, assertion[k][0], decimal=4) isinstance(result[k], assertion[k][1]) result[k].unit == assertion[k][2] def test_calc_P_B0_SD(): result = _calc_P_B0_SD('2012-12-14') assertion = {'p': (10.4868, Angle, u.deg), 'b0': (-0.8127, Angle, u.deg), 'l0': (0.0000, Angle, u.deg), 'sd': (16.2364 / 60.0, Angle, u.arcmin)} for k in assertion: np.testing.assert_almost_equal(result[k].to(u.degree).value, assertion[k][0], decimal=4) # Test that the correct astropy Quantity objects are returned and # that they have the expected units. isinstance(result[k], assertion[k][1]) result[k].unit == assertion[k][2] def test_rot_hpc(): # testing along the Sun-Earth line, observer is on the Earth x, y = rot_hpc(451.4 * u.arcsec, -108.9 * u.arcsec, '2012-06-15', '2012-06-15 16:05:23') np.testing.assert_almost_equal(x.to(u.arcsec).value, 574.2, decimal=1) np.testing.assert_almost_equal(y.to(u.arcsec).value, -108.4, decimal=1) # Test that astropy Angles are returned and that they have the expected # units isinstance(x, Angle) x.unit == u.arcsec isinstance(y, Angle) y.unit == u.arcsec
import sys import os import pytest root_path = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) if root_path not in sys.path: sys.path.append(root_path) from common import base # common_path = os.path.join(os.getcwd(), r'../../common') # # print(common_path) # if common_path not in sys.path: # sys.path.append(common_path) # # import base
import torch from typing import Union, Optional from colossalai.tensor import ColoTensor GeneralTensor = Union[ColoTensor, torch.Tensor] Number = Union[int, float] def convert_to_colo_tensor(tensor: Optional[GeneralTensor]) -> Optional[ColoTensor]: if tensor is not None and not isinstance(tensor, ColoTensor): tensor = ColoTensor.from_torch_tensor(tensor) return tensor
# pyskel import time from random import random has_legs = False class Simulation(object): def __init__(self, pars): self.pars = pars self.pd = None def mod_run(sim, p): _, p2 = sim.pars sim.pars = p, p2 return run(sim) def run(sim): pd = [] p1, p2 = sim.pars for ctr in range(3): pd.append([p1, p2]) time.sleep(random() * 5) print(pd) return "done"
import numpy as np import pytest from alitra import AlignFrames, Euler, FrameTransform, PointList, Translation @pytest.mark.parametrize( "eul_rot, ref_translations, p_robot,rotation_axes", [ ( Euler(psi=np.pi * -0.0, from_="robot", to_="asset"), Translation(x=200030, y=10000, from_="robot", to_="asset"), PointList.from_array( np.array( [ [10, 1, 0], [20, 2, 0], [30, 7, 0], [40, 5, 0], ] ), frame="robot", ), "z", ), ( Euler(psi=np.pi / 2, from_="robot", to_="asset"), Translation(x=10, y=0, from_="robot", to_="asset"), PointList.from_array( np.array([[5, 0, 0], [5, 2, 0], [7, 5, 0], [3, 5, 0]]), frame="robot", ), "z", ), ( Euler(theta=np.pi * 0.9, from_="robot", to_="asset"), Translation(x=1, y=10, from_="robot", to_="asset"), PointList.from_array( np.array([[10, 0, 0], [5, 2, 0], [7, 5, 0], [3, 5, 0]]), frame="robot" ), "x", ), ( Euler(phi=1 * 0.2, theta=1, psi=0.4, from_="robot", to_="asset"), Translation(x=0, y=10, z=2, from_="robot", to_="asset"), PointList.from_array( np.array( [ [0, 1, 2], [5, 2, 6], [7, 5, 0], [3, 5, 0], [3, 5, 10], [3, 5, 11], ] ), frame="robot", ), "xyz", ), ( Euler(psi=np.pi / 4, from_="robot", to_="asset"), Translation(x=1, y=0, from_="robot", to_="asset"), PointList.from_array(np.array([[1, 1, 0], [10, 1, 0]]), frame="robot"), "z", ), ( Euler(phi=np.pi * 0.2, from_="robot", to_="asset"), Translation(x=1, y=10, z=2, from_="robot", to_="asset"), PointList.from_array( np.array([[0, 1, 2], [5, 2, 0], [7, 5, 0], [3, 5, 0]]), frame="robot" ), "y", ), ], ) def test_align_frames(eul_rot, ref_translations, p_robot, rotation_axes): rotations_c2to_c1 = eul_rot.as_np_array() c_frame_transform = FrameTransform( euler=eul_rot, translation=ref_translations, from_=eul_rot.from_, to_=eul_rot.to_, ) ref_translation_array = ref_translations.as_np_array() p_asset = c_frame_transform.transform_point(p_robot, from_="robot", to_="asset") transform = AlignFrames.align_frames(p_robot, p_asset, rotation_axes) assert np.allclose( transform.transform.translation.as_np_array(), ref_translation_array ) assert np.allclose(transform.transform.euler.as_np_array(), rotations_c2to_c1) p_robot_noisy = PointList.from_array( p_robot.as_np_array() + np.clip( np.random.normal(np.zeros(p_robot.as_np_array().shape), 0.1), -0.1, 0.1 ), frame="robot", ) p_asset_noisy = PointList.from_array( p_asset.as_np_array() + np.clip( np.random.normal(np.zeros(p_asset.as_np_array().shape), 0.1), -0.1, 0.1 ), frame="asset", ) transform_noisy = AlignFrames.align_frames( p_robot_noisy, p_asset_noisy, rotation_axes ) translation_arr_noise = transform_noisy.transform.translation.as_np_array() euler_arr_noise = transform_noisy.transform.euler.as_np_array() rotations = np.absolute(euler_arr_noise - rotations_c2to_c1) translations = np.absolute(translation_arr_noise - ref_translation_array) assert np.any(rotations > 0.3) == False assert np.any(translations > 0.4) == False @pytest.mark.parametrize( "p_asset, p_robot,rotation_frame", [ ( PointList.from_array(np.array([[10, 0, 0], [5, 2, 0], [7, 5, 0]]), "asset"), PointList.from_array(np.array([[12, 0, 0], [5, 2, 0], [7, 5, 0]]), "robot"), "z", ), ( PointList.from_array(np.array([[10, 0, 0], [5, 2, 0]]), "asset"), PointList.from_array(np.array([[13, 2, 0], [7, 4, 0]]), "robot"), "z", ), ( PointList.from_array(np.array([[10, 0, 0], [5, 2, 0]]), "robot"), PointList.from_array(np.array([[11, 0, 0], [6, 2, 0]]), "asset"), "z", ), ( PointList.from_array( np.array([[10, 0, 0], [10, 0, 0], [5, 2, 0], [7, 5, 0]]), "asset" ), PointList.from_array( np.array([[11, 0, 0], [11, 0, 0], [5, 2, 0], [7, 5, 0]]), "robot" ), "z", ), ( PointList.from_array(np.array([[10, 0, 0], [5, 2, 0]]), "asset"), PointList.from_array(np.array([[11, 0, 0], [6, 2, 0]]), "robot"), "xyz", ), ], ) def test_align_frames_exceptions(p_robot, p_asset, rotation_frame): with pytest.raises(ValueError): AlignFrames.align_frames(p_1=p_robot, p_2=p_asset, rot_axes=rotation_frame)
# Copyright (C) 2018 Hatching B.V. # This file is licensed under the MIT License, see also LICENSE. import base64 import datetime import logging import os.path import yaml from arbiter.const import MINIMUM_STAKE_DEFAULT log = logging.getLogger(__name__) def repr_timedelta(dumper, data): # Fun for days r = {} for k in ("days", "seconds", "microseconds", "milliseconds", "minutes", "hours", "weeks"): v = getattr(data, k, 0) if v != 0: r[k] = v return dumper.represent_data(r) yaml.add_representer(datetime.timedelta, repr_timedelta) class ConfigFile(object): defaults = { "bind": ":9080", "url": "http://localhost:9080", "polyproxy": "", "polyswarmd": "polyswarmd.polyswarm.io", "apikey": "a"*32, "addr": "", "addr_privkey": "", "chain": "side", "minimum_stake": MINIMUM_STAKE_DEFAULT, "dashboard_password": "", "api_secret": "", "artifacts": "~/.artifacts", "dburi": "postgresql://arbiter:arbiter@localhost/arbiter", "expires": datetime.timedelta(days=5), "analysis_backends": {}, "trusted_experts": [], "testing_mode": False, "monitor_bind": "10.1.0.12:12333", } def __init__(self, path=None): if not path: self.properties = {} self.properties.update(self.defaults) else: self.properties = yaml.safe_load(open(path, "rb")) or {} for k, v in self.defaults.items(): if k not in self.properties: self.properties[k] = v for k in ("dashboard_password", "api_secret"): if not self.properties.get(k): log.warning("Please configure `%s`!. Creating random secret...", k) pw = base64.b64encode(os.urandom(16)).decode("utf8").rstrip("=") self.properties[k] = pw def __getattr__(self, name): if name in self.properties: return self.properties[name] if name in self.defaults: return self.defaults[name] raise AttributeError(name) @property def api_secret(self): return self.__getattr__("api_secret").encode("utf8") @property def artifacts(self): return os.path.expanduser(self.__getattr__("artifacts")) @property def expires(self): exp = self.__getattr__("expires") if isinstance(exp, dict): return datetime.timedelta(**exp) if isinstance(exp, int): return datetime.timedelta(hours=int(exp)) return exp
from .sphere import Sphere
# -*- coding: utf-8 -*- """Uniform Resource Identifier .. seealso:: :rfc:`3986` """ # TODO: parse HTTP/1.0-';'-params? import re from socket import AF_INET, AF_INET6, error as SocketError, inet_ntop, inet_pton from httoop.exceptions import InvalidURI from httoop.six import int2byte, iterbytes, with_metaclass from httoop.uri.percent_encoding import Percent from httoop.uri.query_string import QueryString from httoop.uri.type import URIType from httoop.util import Unicode, _, integer class URI(with_metaclass(URIType)): u"""Uniform Resource Identifier""" __slots__ = ('scheme', 'username', 'password', 'host', '_port', 'path', 'query_string', 'fragment') slots = __slots__ SCHEMES = {} SCHEME = None PORT = None encoding = 'UTF-8' @property def query(self): return tuple(QueryString.decode(self.query_string.encode(self.encoding), self.encoding)) @query.setter def query(self, query): self.query_string = QueryString.encode(query, self.encoding).decode(self.encoding) @property def path_segments(self): return [Unicode.replace(p, u'%2f', u'/') for p in self.path.split(u'/')] @path_segments.setter def path_segments(self, path): self.path = u'/'.join(seq.replace(u'/', u'%2f') for seq in path) @property def hostname(self): host = self.host if host.startswith(u'[v') and host.endswith(u']') and u'.' in host and host[2:-1].split(u'.', 1)[0].isdigit(): return host[2:-1].split(u'.', 1)[1] return host.rstrip(u']').lstrip(u'[').lower() @property def port(self): return self._port or self.PORT @port.setter def port(self, port): port = port or self.PORT if port: try: port = integer(port) if not 0 < integer(port) <= 65535: raise ValueError except ValueError: raise InvalidURI(_(u'Invalid port: %r'), port) # TODO: TypeError self._port = port def __init__(self, uri=None, *args, **kwargs): self.set(kwargs or args or uri or b'') def join(self, other=None, *args, **kwargs): u"""Join a URI with another absolute or relative URI""" relative = URI(other or args or kwargs) joined = URI() current = URI(self) if relative.scheme: current = relative current.normalize() return current joined.scheme = current.scheme if relative.host: current = relative joined.username = current.username joined.password = current.password joined.host = current.host joined.port = current.port if relative.path: current = relative joined.path = current.path if relative.path and not relative.path.startswith(u'/'): joined.path = u'%s%s%s' % (self.path, u'' if self.path.endswith(u'/') else u'/../', relative.path) if relative.query_string: current = relative joined.query_string = current.query_string if relative.fragment: current = relative joined.fragment = current.fragment joined.normalize() return joined def normalize(self): u"""Normalize the URI to make it compareable. .. seealso:: :rfc:`3986#section-6` """ self.scheme = self.scheme.lower() self.host = self.host.lower() if not self.port: self.port = self.PORT self.abspath() if not self.path.startswith(u'/') and self.host and self.scheme and self.path: self.path = u'/%s' % (self.path, ) def abspath(self): """Clear out any '..' and excessive slashes from the path >>> dangerous = (u'/./', u'/../', u'./', u'/.', u'../', u'/..', u'//') >>> uris = (URI(b'/foo/./bar/../baz//blah/.'), ) >>> _ = [uri.abspath() for uri in uris] >>> all(all(d not in uri.path for d in dangerous) for uri in uris) True >>> u = URI(b'/foo/../bar/.'); u.abspath(); u.path == u'/bar/' True """ path = re.sub(u'\\/{2,}', u'/', self.path) # remove // if not path: return unsplit = [] directory = False for part in path.split(u'/'): if part == u'..' and (not unsplit or unsplit.pop() is not None): directory = True elif part != u'.': unsplit.append(part) directory = False else: directory = True if directory: unsplit.append(u'') self.path = u'/'.join(unsplit) or u'/' def set(self, uri): if isinstance(uri, Unicode): uri = uri.encode(self.encoding) # FIXME: remove? if isinstance(uri, bytes): self.parse(uri) elif isinstance(uri, URI): self.tuple = uri.tuple elif isinstance(uri, tuple): self.tuple = uri elif isinstance(uri, dict): self.dict = uri else: raise TypeError('URI must be bytes/unicode/tuple/dict not %r' % (type(uri).__name__, )) @property def dict(self): slots = (key.lstrip('_') for key in self.slots) return dict((key, getattr(self, key)) for key in slots) @dict.setter def dict(self, uri): for key in self.slots: key = key.lstrip('_') setattr(self, key, uri.get(key, u'')) @property def tuple(self): return tuple(getattr(self, key) for key in self.slots) @tuple.setter def tuple(self, tuple_): (self.scheme, self.username, self.password, self.host, self.port, self.path, self.query_string, self.fragment) = tuple_ def parse(self, uri): r"""Parses a well formed absolute or relative URI. foo://example.com:8042/over/there?name=ferret#nose \_/ \______________/\_________/ \_________/ \__/ | | | | | scheme authority path query fragment | _____________________|__ / \ / \ urn:example:animal:ferret:nose https://username:password@[::1]:8090/some/path?query#fragment <scheme>://<username>:<password>@<host>:<port>/<path>?<query>#<fragment> [<scheme>:][//[<username>[:<password>]@][<host>][:<port>]/]<path>[?<query>][#<fragment>] """ if type(self) is URI and b':' in uri: self.scheme = uri.split(b':', 1)[0].lower() if type(self) is not URI: return self.parse(uri) if uri and uri.strip(b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'): raise InvalidURI(_(u'Invalid URI: must consist of printable ASCII characters without whitespace.')) uri, __, fragment = uri.partition(b'#') uri, __, query_string = uri.partition(b'?') scheme, authority_exists, uri = uri.rpartition(b'://') if not authority_exists and uri.startswith(b'//'): uri = uri[2:] authority_exists = True if not authority_exists and b':' in uri: scheme, __, uri = uri.partition(b':') authority, path = b'', uri if authority_exists: authority, __, path = uri.partition(b'/') path = b'%s%s' % (__, path) userinfo, __, hostport = authority.rpartition(b'@') username, __, password = userinfo.partition(b':') if b':' in hostport and not hostport.endswith(b']'): host, __, port = hostport.rpartition(b':') else: host, port = hostport, b'' unquote = self.unquote path = u'/'.join([unquote(seq).replace(u'/', u'%2f') for seq in path.split(b'/')]) try: scheme = scheme.decode('ascii').lower() except UnicodeDecodeError: # pragma: no cover raise InvalidURI(_(u'Invalid scheme: must be ASCII.')) if scheme and scheme.strip(u'abcdefghijklmnopqrstuvwxyz0123456789.-+'): raise InvalidURI(_(u'Invalid scheme: must only contain alphanumeric letters or plus, dash, dot.')) if query_string: query_string = QueryString.encode(QueryString.decode(query_string, self.encoding), self.encoding) self.tuple = ( scheme, unquote(username), unquote(password), self._unquote_host(host), port, path, query_string.decode(self.encoding), unquote(fragment) ) def _unquote_host(self, host): # IPv6 / IPvFuture if host.startswith(b'[') and host.endswith(b']'): host = host[1:-1] try: host = inet_ntop(AF_INET6, inet_pton(AF_INET6, host.decode('ascii'))) if isinstance(host, bytes): # Python 2 host = host.decode('ascii') return u'[%s]' % (host, ) except (SocketError, UnicodeDecodeError): # IPvFuture if host.startswith(b'v') and b'.' in host and host[1:].split(b'.', 1)[0].isdigit(): try: return u'[%s]' % host.decode('ascii') except UnicodeDecodeError: # pragma: no cover raise InvalidURI(_('Invalid IPvFuture address: must be ASCII.')) raise InvalidURI(_('Invalid IP address in URI.')) # IPv4 if all(x.isdigit() for x in host.split(b'.')): try: host = inet_ntop(AF_INET, inet_pton(AF_INET, host.decode('ascii'))) if isinstance(host, bytes): # Python 2 host = host.decode('ascii') return host except (SocketError, UnicodeDecodeError): raise InvalidURI(_('Invalid IPv4 address in URI.')) if host.strip(Percent.UNRESERVED + Percent.SUB_DELIMS + b'%'): raise InvalidURI(_('Invalid URI host.')) # DNS hostname host = self.unquote(host) try: return host.encode('ascii').decode('idna').lower() except UnicodeError: # pragma: no cover raise InvalidURI(_('Invalid host.')) def compose(self): return b''.join(self._compose_absolute_iter()) def _compose_absolute_iter(self): u"""composes the whole URI""" scheme, username, password, host, port, path, _, fragment = self.tuple if scheme: yield self.quote(scheme, Percent.SCHEME) yield b':' authority = b''.join(self._compose_authority_iter()) if authority: yield b'//' yield authority yield b''.join(self._compose_relative_iter()) def _compose_authority_iter(self): if not self.host: return username, password, host, port, quote = self.username, self.password, self.host, self.port, self.quote if username: yield quote(username, Percent.USERINFO) if password: yield b':' yield quote(password, Percent.USERINFO) yield b'@' yield host.encode('idna') if port and integer(port) != self.PORT: yield b':%d' % integer(port) def _compose_relative_iter(self): u"""Composes the relative URI beginning with the path""" scheme, path, query_string, quote, fragment = self.scheme, self.path, self.query_string, self.quote, self.fragment PATH = Percent.PATH if not scheme and not path.startswith(u'/'): PATH = b''.join({int2byte(c) for c in iterbytes(PATH)} - {b':', b'@'}) yield b'/'.join(quote(x, PATH) for x in path.split(u'/')) if query_string: yield b'?' yield query_string.encode(self.encoding) if fragment: yield b'#' yield quote(fragment, Percent.FRAGMENT) def unquote(self, data): return Percent.unquote(bytes(data)).decode(self.encoding) def quote(self, data, charset): return Percent.quote(Unicode(data).encode(self.encoding), charset) def __eq__(self, other): u"""Compares the URI with another string or URI .. seealso:: :rfc:`2616#section-3.2.3` .. seealso:: :rfc:`3986#section-6` >>> u1 = URI(b'http://abc.com:80/~smith/home.html') >>> u2 = b'http://ABC.com/%7Esmith/home.html' >>> u3 = URI(b'http://ABC.com:/%7esmith/home.html') >>> u1 == u2 == u3 True """ cls = type(self) self_, other = cls(self), cls(other) self_.normalize() other.normalize() return self_.tuple == other.tuple def __setattr__(self, name, value): if name.startswith('_'): return super(URI, self).__setattr__(name, value) if name == 'scheme' and value: self.__class__ = self.SCHEMES.get(value if isinstance(value, bytes) else value.encode(), URI) if name in self.slots: if isinstance(value, bytes): try: value = value.decode('UTF-8') except UnicodeDecodeError: value = value.decode('ISO8859-1') if value is None: pass elif not isinstance(value, Unicode): raise TypeError('%r must be string, not %s' % (name, type(value).__name__)) super(URI, self).__setattr__(name, value) def __repr__(self): return '<URI(%s)>' % bytes(self)
# coding=utf-8 #pylint:disable=no-name-in-module """ Module for video source acquisition. Classes capture data from a video source into a numpy array. """ import logging import datetime import cv2 import numpy as np import sksurgerycore.utilities.validate_file as vf import sksurgeryimage.utilities.camera_utilities as cu LOGGER = logging.getLogger(__name__) class TimestampedVideoSource: """ Capture and store data from camera/file source. Augments the cv2.VideoCapture() to provide passing of camera dimensions in constructor, and storage of frame data. """ def __init__(self, source_num_or_file, dims=None): """ Constructs a TimestampedVideoSource. :param source_num_or_file: integer camera number or file path :param dims: optional (width, height) as a pair of integers """ self.source = cv2.VideoCapture(source_num_or_file) self.timestamp = None if not self.source.isOpened(): raise RuntimeError("Failed to open Video camera:" + str(source_num_or_file)) self.source_name = source_num_or_file LOGGER.info("Adding input from source: %s", self.source_name) if dims: width, height = dims if not isinstance(width, int): raise TypeError("Width must be an integer") if not isinstance(height, int): raise TypeError("Height must be an integer") if width < 1: raise ValueError("Width must be >= 1") if height < 1: raise ValueError("Height must be >= 1") self.set_resolution(width, height) else: width = int(self.source.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(self.source.get(cv2.CAP_PROP_FRAME_HEIGHT)) LOGGER.info("Source dimensions %s %s", width, height) self.frame = np.empty((height, width, 3), dtype=np.uint8) self.ret = None def set_resolution(self, width: int, height: int): """Set the resolution of the input source. :param width: Width :type width: int :param height: Height :type height: int :raises ValueError: If resolution is not supported. """ self.source.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.source.set(cv2.CAP_PROP_FRAME_HEIGHT, height) set_w = self.source.get(cv2.CAP_PROP_FRAME_WIDTH) set_h = self.source.get(cv2.CAP_PROP_FRAME_HEIGHT) if set_w != width or set_h != height: raise ValueError(f"Tried to set width/height to {width} x {height} \ but failed. Width and height set to {set_w} x {set_h}") def grab(self): """ Call the cv2.VideoCapture grab function and get a timestamp. """ self.ret = self.source.grab() self.timestamp = datetime.datetime.now() return self.ret def retrieve(self): """ Call the cv2.VideoCapture retrieve function and store the returned frame. """ self.ret, self.frame = self.source.retrieve() return self.ret, self.frame def read(self): """ Do a grab(), then retrieve() operation. """ self.grab() self.retrieve() return self.ret, self.frame def isOpened(self): """ Call the cv2.VideoCapture isOpened function. """ # pylint: disable=invalid-name # using isOpened to be consistent with OpenCV function name return self.source.isOpened() def release(self): """ Release the cv2.VideoCapture source. """ self.source.release() class VideoSourceWrapper: """ Wrapper for multiple TimestampedVideoSource objects. """ def __init__(self): self.sources = [] self.frames = [] self.timestamps = [] self.save_timestamps = True self.num_sources = 0 def add_camera(self, camera_number, dims=None): """ Create VideoCapture object from camera and add it to the list of sources. :param camera_number: integer camera number :param dims: (width, height) as integer numbers of pixels """ cu.validate_camera_input(camera_number) self.add_source(camera_number, dims) def add_file(self, filename, dims=None): """ Create videoCapture object from file and add it to the list of sources. :param filename: a string containing a valid file path :param dims: (width, height) as integer numbers of pixels """ vf.validate_is_file(filename) self.add_source(filename, dims) def add_source(self, camera_num_or_file, dims=None): """ Add a video source (camera or file) to the list of sources. :param camera_num_or_file: either an integer camera number or filename :param dims: (width, height) as integer numbers of pixels """ video_source = TimestampedVideoSource(camera_num_or_file, dims) self.sources.append(video_source) self.num_sources = len(self.sources) def are_all_sources_open(self): """ Check all input sources are active/open. """ for source in self.sources: if not source.isOpened(): return False return True def release_all_sources(self): """ Close all camera/file sources. """ logging.info("Releasing video sources") for source in self.sources: source.release() def get_next_frames(self): """ Do a grab() operation for each source, followed by a retrieve(). """ self.grab() self.retrieve() def grab(self): """ Perform a grab() operation for each source """ if self.are_all_sources_open(): for source in self.sources: source.grab() def retrieve(self): """ Perform a retrieve operation for each source. Should only be run after a grab() operation. :returns list of views on frames """ self.frames = [] for source in self.sources: source.retrieve() self.frames.append(source.frame) return self.frames
from __future__ import absolute_import from __future__ import print_function from __future__ import division import functools import math import numpy as np from collections import OrderedDict import veriloggen as vg import nngen.basic_types as bt import nngen.util as util class slice_(bt._Operator): """ Create a sliced tensor with a similar API to the numpy slice. """ input_chainable = False output_chainable = False def __sub_str__(self): begins = str(self.begins) ends = str(self.ends) strides = str(self.strides) par = ' par:%d' % self.par if self.par > 1 else '' value_ram_size = (' value_ram_size:%d' % self.value_ram_size if self.value_ram_size is not None else '') out_ram_size = (' out_ram_size:%d' % self.out_ram_size if self.out_ram_size is not None else '') return (' begins:%s ends:%s strides:%s %s%s%s' % (begins, ends, strides, par, value_ram_size, out_ram_size)) def __init__(self, value, begins, ends, strides, dtype=None, name=None, par=1, value_ram_size=None, out_ram_size=None): if not isinstance(begins, (tuple, list)): raise TypeError('begins must be tuple or list.') if not isinstance(ends, (tuple, list)): raise TypeError('ends must be tuple or list.') if not isinstance(strides, (tuple, list)): raise TypeError('strides must be tuple or list.') if len(value.shape) != len(begins): raise ValueError('length mismatch between value.shape and begins: %d != %d' % (len(value.shape), len(begins))) if len(value.shape) != len(ends): raise ValueError('length mismatch between value.shape and ends: %d != %d' % (len(value.shape), len(ends))) if len(value.shape) != len(strides): raise ValueError('length mismatch between value.shape and strides: %d != %d' % (len(value.shape), len(strides))) for begin in begins: begin = int(begin) if not isinstance(begin, int): raise TypeError('values of begins must be int, not %s' % str(type(begin))) for end in ends: end = int(end) if not isinstance(end, int): raise TypeError('values of ends must be int, not %s' % str(type(end))) for stride in strides: stride = int(stride) if not isinstance(stride, int): raise TypeError('values of strides must be int, not %s' % str(type(stride))) if strides[-1] != 1 and par != 1: raise ValueError("par must be 1 when strides[-1] is not 1") if value_ram_size is not None and value_ram_size < 1: raise ValueError('value_ram_size must be greater than 0') if out_ram_size is not None and out_ram_size < 1: raise ValueError('out_ram_size must be greater than 0') # delegate a shape calculation to numpy slices = to_slices(begins, ends, strides) shape = np.zeros(value.shape)[slices].shape bt._Operator.__init__(self, value, dtype=dtype, shape=shape, name=name, par=par) self.begins = tuple(begins) self.ends = tuple(ends) self.strides = tuple(strides) # attribute self.value_ram_size = value_ram_size self.out_ram_size = out_ram_size slice_.attribute(self, par, value_ram_size, out_ram_size) def attribute(self, par=None, value_ram_size=None, out_ram_size=None): if par is not None: if (par - 1) & par != 0: raise ValueError('par must be power of 2.') self.par = par for arg in self.args: arg.add_alignment_request(self.par) self.add_alignment_request(self.par) if value_ram_size is not None: if value_ram_size < 1: raise ValueError('value_ram_size must be greater than 0') self.value_ram_size = value_ram_size if out_ram_size is not None: if out_ram_size < 1: raise ValueError('out_ram_size must be greater than 0') self.out_ram_size = out_ram_size def get_required_rams(self): act = self.args[0] act_shape = act.get_aligned_shape() out_shape = self.get_aligned_shape() input_min_size = ((act_shape[-1] // self.par) * (act_shape[-2] if len(act_shape) > 1 else 1) * 2) if self.value_ram_size is not None and input_min_size < self.value_ram_size: input_min_size = self.value_ram_size input_width = act.get_ram_width() * self.par output_min_size = ((out_shape[-1] // self.par) * (out_shape[-2] if len(out_shape) > 1 else 1) * 2) if self.out_ram_size is not None and output_min_size < self.out_ram_size: output_min_size = self.out_ram_size output_width = self.get_ram_width() * self.par inputs = [] inputs.append((input_width, input_min_size)) outputs = [] outputs.append((output_width, output_min_size)) temps = [] return inputs, outputs, temps def get_stream_hash(self): base = bt._Operator.get_stream_hash(self) rank = len(self.shape) return (base, rank, self.par) def get_stream_func(self): def func(strm): arg = self.args[0] datawidth = arg.get_op_width() vec_datawidth = datawidth * self.par point = arg.get_op_point() signed = arg.get_signed() vec_act_var = strm.source(datawidth=vec_datawidth, signed=False) strm.sink(vec_act_var) return func def get_control_param_values(self): act = self.args[0] act_shape = act.get_aligned_shape() act_num_ch = act_shape[-1] out_shape = self.get_aligned_shape() out_num_ch = out_shape[-1] act_offset_base = bt.to_byte(act_num_ch * act.get_ram_width()) act_offset_begins = [] act_offset_strides = [] for i, (begin, stride) in enumerate(zip(reversed(self.begins[:-2]), reversed(self.strides[:-2]))): mul = functools.reduce(lambda x, y: x * y, act_shape[-i - 2:-1], 1) act_offset_begin = act_offset_base * mul * begin act_offset_begins.append(act_offset_begin) act_offset_stride = act_offset_base * mul * stride act_offset_strides.append(act_offset_stride) act_offset_begins.reverse() act_offset_strides.reverse() act_read_size = ((act_num_ch // self.par) * (act_shape[-2] if len(act_shape) > 1 else 1)) out_offset_base = bt.to_byte(out_num_ch * self.get_ram_width()) out_offset_strides = [] for i in range(len(out_shape) - 2): mul = functools.reduce(lambda x, y: x * y, out_shape[-i - 2:-1], 1) out_offset_stride = out_offset_base * mul out_offset_strides.append(out_offset_stride) out_offset_strides.reverse() out_write_size = ((out_num_ch // self.par) * (out_shape[-2] if len(out_shape) > 1 else 1)) stream_size = out_num_ch // self.par if len(self.strides) > 1: stream_stride = self.strides[-2] * (act_num_ch // self.par) stream_local = self.begins[-2] * (act_num_ch // self.par) + self.begins[-1] else: stream_stride = 0 stream_local = self.begins[-1] return OrderedDict([('act_shape', act_shape), ('out_shape', out_shape), ('act_begins', self.begins), ('act_strides', self.strides), ('act_offset_begins', act_offset_begins), ('act_offset_strides', act_offset_strides), ('act_read_size', act_read_size), ('out_offset_strides', out_offset_strides), ('out_write_size', out_write_size), ('stream_size', stream_size), ('stream_stride', stream_stride), ('stream_local', stream_local)]) def control_sequence(self, fsm): act_ram = self.input_rams[0] out_ram = self.output_rams[0] act_base_offset = self.m.Wire(self._name('act_base_offset'), self.maxi.addrwidth, signed=True) act_offsets = [self.m.Reg(self._name('act_offset_%d' % i), self.maxi.addrwidth, initval=0, signed=True) for i, _ in enumerate(self.act_shape[:-2])] if act_offsets: v = act_offsets[0] for act_offset in act_offsets[1:]: v += act_offset act_base_offset.assign(v) else: act_base_offset.assign(0) out_base_offset = self.m.Wire(self._name('out_base_offset'), self.maxi.addrwidth, signed=True) out_offsets = [self.m.Reg(self._name('out_offset_%d' % i), self.maxi.addrwidth, initval=0, signed=True) for i, _ in enumerate(self.out_shape[:-2])] if out_offsets: v = out_offsets[0] for out_offset in out_offsets[1:]: v += out_offset out_base_offset.assign(v) else: out_base_offset.assign(0) counts = [self.m.Reg(self._name('count_%d' % i), self.maxi.addrwidth, initval=0) for i, _ in enumerate(self.act_shape[:-2])] prev_counts = [self.m.Reg(self._name('prev_count_%d' % i), self.maxi.addrwidth, initval=0) for i, _ in enumerate(self.act_shape[:-2])] stream_act_local = self.m.Reg(self._name('stream_act_local'), self.maxi.addrwidth, initval=0) stream_out_local = self.m.Reg(self._name('stream_out_local'), self.maxi.addrwidth, initval=0) comp_count = self.m.Reg(self._name('comp_count'), self.maxi.addrwidth, initval=0) out_count = self.m.Reg(self._name('out_count'), self.maxi.addrwidth, initval=0) act_page = self.m.Reg(self._name('act_page'), initval=0) act_page_comp_offset = self.m.Reg(self._name('act_page_comp_offset'), self.maxi.addrwidth, initval=0) act_page_dma_offset = self.m.Reg(self._name('act_page_dma_offset'), self.maxi.addrwidth, initval=0) out_page = self.m.Reg(self._name('out_page'), initval=0) out_page_comp_offset = self.m.Reg(self._name('out_page_comp_offset'), self.maxi.addrwidth, initval=0) out_page_dma_offset = self.m.Reg(self._name('out_page_dma_offset'), self.maxi.addrwidth, initval=0) act_page_size = act_ram.length // 2 out_page_size = out_ram.length // 2 skip_read_act = self.m.Reg(self._name('skip_read_act'), initval=0) skip_comp = self.m.Reg(self._name('skip_comp'), initval=0) skip_write_out = self.m.Reg(self._name('skip_write_out'), initval=0) # -------------------- # initialization phase # -------------------- # ReadAct: offset for act_offset, act_offset_begin in zip(act_offsets, self.act_offset_begins): fsm( act_offset(act_offset_begin) ) # ReadAct: double buffer control fsm( act_page(0), act_page_comp_offset(0), act_page_dma_offset(0) ) # WriteOutput: offset for out_offset in out_offsets: fsm( out_offset(0) ) out_offset = out_base_offset # WriteOutput: double buffer control fsm( out_page(0), out_page_comp_offset(0), out_page_dma_offset(0) ) # counter fsm( [count(0) for count in counts], [prev_count(0) for prev_count in prev_counts] ) # double buffer control fsm( skip_read_act(0), skip_comp(0), skip_write_out(1) ) fsm( out_count(0) ) state_init = fsm.current fsm.goto_next() # -------------------- # ReadAct phase # -------------------- state_read_act = fsm.current act_gaddr = self.arg_objaddrs[0] + act_base_offset bt.bus_lock(self.maxi, fsm) act_laddr = act_page_dma_offset begin_state_read = fsm.current fsm.goto_next() bt.dma_read(self.maxi, fsm, act_ram, act_laddr, act_gaddr, self.act_read_size, port=1) end_state_read = fsm.current # -------------------- # Comp phase # -------------------- state_comp = fsm.current # Stream Control FSM comp_fsm = vg.FSM(self.m, self._name('comp_fsm'), self.clk, self.rst) comp_state_init = comp_fsm.current comp_fsm.If(fsm.state == state_comp, vg.Not(skip_comp)).goto_next() fsm.If(comp_fsm.state == comp_state_init).goto_next() # waiting for previous DMA write completion bt.dma_wait_write_idle(self.maxi, comp_fsm) # local address comp_fsm( stream_act_local(self.stream_local), stream_out_local(0) ) act_page_comp_offset_buf = self.m.Reg(self._name('act_page_comp_offset_buf'), self.maxi.addrwidth, initval=0) out_page_comp_offset_buf = self.m.Reg(self._name('out_page_comp_offset_buf'), self.maxi.addrwidth, initval=0) comp_fsm( act_page_comp_offset_buf(act_page_comp_offset), out_page_comp_offset_buf(out_page_comp_offset) ) comp_fsm.goto_next() # busy check self.stream.source_join(comp_fsm) # set_source name = list(self.stream.sources.keys())[0] local = stream_act_local + act_page_comp_offset_buf if len(self.out_shape) > 1: pat = ((self.stream_size, self.act_strides[-1]), (self.out_shape[-2], self.stream_stride)) else: pat = ((self.stream_size, self.act_strides[-1]),) self.stream.set_source_pattern(comp_fsm, name, act_ram, local, pat) comp_fsm.set_index(comp_fsm.current - 1) # set_sink name = list(self.stream.sinks.keys())[0] local = stream_out_local + out_page_comp_offset_buf if len(self.out_shape) > 1: pat = ((self.stream_size, 1), (self.out_shape[-2], self.stream_size)) else: pat = ((self.stream_size, 1),) self.stream.set_sink_pattern(comp_fsm, name, out_ram, local, pat) # stream run (async) self.stream.run(comp_fsm) comp_fsm.goto_init() # sync with WriteOut control comp_fsm.seq.If(fsm.state == state_init)( comp_count(0) ) comp_fsm.seq.If(self.stream.source_stop)( comp_count.inc() ) # -------------------- # WriteOut phase # -------------------- state_write_out = fsm.current # sync with Comp control fsm.If(comp_count > out_count).goto_next() out_laddr = out_page_dma_offset out_gaddr = self.objaddr + out_offset bt.bus_lock(self.maxi, fsm) bt.dma_write(self.maxi, fsm, out_ram, out_laddr, out_gaddr, self.out_write_size, port=1, use_async=True) bt.bus_unlock(self.maxi, fsm) fsm( out_count.inc() ) fsm.goto_next() state_write_out_end = fsm.current fsm.If(skip_write_out).goto_from(state_write_out, state_write_out_end) # -------------------- # update for next iteration # -------------------- # ReadAct: count cond = None for size, count in zip(reversed(self.out_shape[:-2]), reversed(counts)): fsm.If(cond)( count.inc() ) fsm.If(cond, count >= size - 1)( count(0) ) if cond is not None: cond = vg.Ands(cond, count >= size - 1) else: cond = count >= size - 1 # ReadAct: offset cond = None for size, count, act_offset, act_offset_stride in zip( reversed(self.out_shape[:-2]), reversed(counts), reversed(act_offsets), reversed(self.act_offset_strides)): fsm.If(cond)( act_offset.add(act_offset_stride) ) fsm.If(cond, count >= size - 1)( act_offset(0) ) if cond is not None: cond = vg.Ands(cond, count >= size - 1) else: cond = count >= size - 1 # ReadAct and Comp: double buffer fsm.If(vg.Not(act_page))( act_page_comp_offset(act_page_size), act_page_dma_offset(act_page_size), act_page(1) ) fsm.If(act_page)( act_page_comp_offset(0), act_page_dma_offset(0), act_page(0) ) # WriteOut: offset cond = vg.Not(skip_write_out) for size, prev_count, out_offset, out_offset_stride in zip( reversed(self.out_shape[:-2]), reversed(prev_counts), reversed(out_offsets), reversed(self.out_offset_strides)): fsm.If(cond)( out_offset.add(out_offset_stride) ) fsm.If(cond, prev_count >= size - 1)( out_offset(0) ) cond = vg.Ands(cond, prev_count >= size - 1) # WriteOut and Comp: double buffer fsm.If(vg.Not(out_page))( out_page_comp_offset(out_page_size), out_page_dma_offset(0), out_page(1) ) fsm.If(out_page)( out_page_comp_offset(0), out_page_dma_offset(out_page_size), out_page(0) ) # ReadAct and WriteOut: prev for count, prev_count in zip(counts, prev_counts): fsm( prev_count(count) ) # ReadAct, Comp, WriteOut: skip cond_skip_read_act = None cond_skip_comp = None for size, count in zip(reversed(self.out_shape[:-2]), reversed(counts)): if cond_skip_read_act is not None: cond_skip_read_act = vg.Ands(cond_skip_read_act, count >= size - 1) else: cond_skip_read_act = count >= size - 1 cond_skip_comp = cond_skip_read_act cond_cancel_write_out = None for size, prev_count in zip(reversed(self.out_shape[:-2]), reversed(prev_counts)): if cond_cancel_write_out is not None: cond_cancel_write_out = vg.Ands(cond_cancel_write_out, prev_count == 0) else: cond_cancel_write_out = prev_count == 0 cond_done = None for size, prev_count in zip(reversed(self.out_shape[:-2]), reversed(prev_counts)): if cond_done is not None: cond_done = vg.Ands(cond_done, prev_count >= size - 1) else: cond_done = prev_count >= size - 1 fsm.If(cond_skip_read_act)( skip_read_act(1) ) fsm.If(cond_skip_comp)( skip_comp(1) ) fsm.If(skip_write_out, cond_cancel_write_out)( skip_write_out(0) ) fsm.goto(state_read_act) fsm.If(vg.Not(skip_write_out), cond_done).goto_next() # wait for last DMA write bt.dma_wait_write(self.maxi, fsm) def eval(self, memo, input_dict, **kwargs): if id(self) in memo: return memo[id(self)] import nngen.verify as verify name = self.__class__.__name__ args = [arg.eval(memo, input_dict) for arg in self.args] value = args[0] kwargs['begins'] = self.begins kwargs['ends'] = self.ends kwargs['strides'] = self.strides kwargs['dtype'] = self.dtype kwargs['name'] = self.name kwargs['par'] = self.par method = self.get_eval_method() ret = method(value, **kwargs) memo[id(self)] = ret return ret def to_slices(begins, ends, strides): slices = [] for begin, end, stride in zip(begins, ends, strides): slices.append(slice(begin, end, stride)) return tuple(slices)
# before changing tasks, task, activity_type to task from django.views.generic.list import ListView from django.views.generic.edit import CreateView, UpdateView from django.views.generic import TemplateView from django import forms from avs.models import * from avs.forms import * from django.shortcuts import redirect from django.core.urlresolvers import reverse from django.contrib.auth.decorators import login_required from django.shortcuts import render_to_response from django.forms.models import inlineformset_factory from django.db.models import Sum, Max, Min, Q import datetime from datetime import timedelta import time import re from datetime import datetime as from_datetime from django.template import RequestContext from django.views.decorators.csrf import csrf_protect # Summary - Fire @login_required def firesummary(request, str_date_to=None, str_date_from=None): state = '' state_type = '' table = '' header = '' if request.method == 'POST': # If the form has been submitted... drForm = DateRangeForm(request.POST) # A form bound to the POST data if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = from_datetime.strptime( "30/06/" + str(datetime.date.today().year), "%d/%m/%Y") else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: date_from = from_datetime.strptime( "01/07/" + str(datetime.date.today().year - 1), "%d/%m/%Y") else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") data = {'date_to': str_date_to, 'date_from': str_date_from} drForm = DateRangeForm(data) if date_from > date_to: state = 'Date From must be less than Date To' state_type = 'Warning' else: fire_flightlogs = AircraftFlightLogDetail.objects.exclude( fire_number='').exclude( fire_number=None).filter( aircraft_flight_log__date__gte=date_from).filter( aircraft_flight_log__date__lte=date_to) logs_2000 = AircraftFlightLogDetail.objects header = '<th>Flight Log Number</th><th>Date</th><th>Task</th><th>Fire Number</th><th>Job Number</th><th>Datcon</th>' table = '' for fl in fire_flightlogs: table = table + '<tr>' table = table + '<td>' + '<a href="' + str(fl.aircraft_flight_log.get_absolute_url( )) + '">' + str(fl.aircraft_flight_log.flight_log_number) + '</a>' + '</td>' #table = table + '<td>' + str(fl.aircraft_flight_log.flight_log_number) + '</td>' table = table + '<td>' + \ str(fl.aircraft_flight_log.date.strftime("%d/%m/%Y")) + '</td>' if fl.task is None: table = table + '<td></td>' else: table = table + '<td>' + fl.task.name + '</td>' table = table + '<td>' + fl.fire_number + '</td>' table = table + '<td>' + fl.job_number + '</td>' table = table + '<td>' + str(fl.datcon) + '</td>' table = table + '</tr>' return render_to_response("summaryfire.html", {'table': table, 'header': header, 'drForm': drForm, 'state': state, 'state_type': state_type, 'pagetitle': 'Datcon Fire Summary'}, context_instance=RequestContext(request)) def createSummaryFlightHTML(aircraft_post, task_post, pilot_post): task = task_post.order_by("name") # ----- Create Header Row -------- header = "<th>Year</th>" footer = '<th></th>' header_size = 0 for a in task: header = header + "<th>" + a.name + "</th>" footer = footer + '<th></th>' header_size = header_size + 1 header = header + "<th>Total</th>" header_size = header_size + 2 footer = footer + '<th></th>' table = '' # ------------- ''' logs_2000 = AircraftFlightLogDetail.objects.filter(aircraft_flight_log__date__gte=date_from).filter(aircraft_flight_log__date__lte=date_to) \ .filter(Q(pilot_in_command__in = pilot_ids) | Q(pilot_in_command_under_supervision__in = pilot_ids)) ''' flightlogs = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__aircraft__in=aircraft_post) flightlogs = flightlogs.filter(Q(pilot_in_command__in=pilot_post) | Q( pilot_in_command_under_supervision__in=pilot_post)) #flightlogs = AircraftFlightLogDetail.objects.extra(where=["1=0"]) # if (flightlogs) = 0: # if len(aircraft) != 0 and len(flightlogs) != 0: if flightlogs: # Determine start and finish date for years maxYear = flightlogs.aggregate(Max('aircraft_flight_log__date'))[ 'aircraft_flight_log__date__max'].year minYear = flightlogs.aggregate(Min('aircraft_flight_log__date'))[ 'aircraft_flight_log__date__min'].year # Create Table with Sum of months table = '' year = minYear - 1 while year <= maxYear: table = table + '<tr>' table += '<td>' + str(year) + '/' + str(year + 1) + '</td>' date_from = from_datetime.strptime( "01/07/" + str(year), "%d/%m/%Y") date_to = from_datetime.strptime( "30/06/" + str(year + 1), "%d/%m/%Y") fl_year = flightlogs.filter( aircraft_flight_log__date__gte=date_from).filter( aircraft_flight_log__date__lte=date_to) total = 0 for a in task: sum_datcon = 0 fl_year_task = fl_year.filter(task=a) sum_datcon = fl_year_task.aggregate(Sum('datcon'))[ 'datcon__sum'] if sum_datcon is None: sum_datcon = 0 total += sum_datcon table = table + '<td>' + str(sum_datcon) + '</td>' table = table + '<td>' + str(total) + '</td>' table = table + '</tr>' year += 1 #header_size = header_size + 1 return (header, table, footer, header_size) # Summary - Flight Task @login_required def flightsummary(request): aircraft_post = [] task_post = [] pilot_post = [] if request.method == 'POST': # If the form has been submitted... drForm = FieldFilterForm(request.POST) # A form bound to the POST data if drForm.is_valid(): # All validation rules pass aircraft_post = drForm.cleaned_data['aircraft'] task_post = drForm.cleaned_data['task'] pilot_post = drForm.cleaned_data['pilot'] aircraft_ids = [] for x in aircraft_post: aircraft_ids.append(x.id) task_ids = [] for x in task_post: task_ids.append(x.id) pilot_ids = [] for x in pilot_post: pilot_ids.append(x.id) if len(aircraft_ids) == 0 or len(pilot_ids) == 0 or len(task_ids) == 0: header = '' table = '' footer = '' header_size = 0 state = 'Please select a minimum of 1 item from each select list.' state_type = 'Warning' else: #header, table, footer, header_size = createSummaryPilotHTML(pilot_post, task_post, logs_2000, 'command') #header, table, footer, header_size = createSummaryAircraftHTML(logs_2000, aircraft_post, task_post, ) header, table, footer, header_size = createSummaryFlightHTML( aircraft_post, task_post, pilot_post) state = '' state_type = '' default_data = { 'aircraft': aircraft_ids, 'pilot': pilot_ids, 'task': task_ids} drForm = FieldFilterForm(default_data) #header, table, footer, header_size = createSummaryFlightHTML(aircraft_post) return render_to_response("summaryflight.html", {'pagetitle': 'Datcon Flight Summary', 'table': table, 'header': header, 'footer': footer, 'header_size': header_size, 'drForm': drForm, 'state': state, 'state_type': state_type}, context_instance=RequestContext(request)) def createSummaryPilotHTML(pilots, tasks, flightlogs, pilot_type): time_start = time.time() #tasks = Task.objects.all().order_by("name") # ----- Create Header Row -------- header = "<th>Pilot</th>" footer = '<th></th>' header_size = 0 for a in tasks: header = header + "<th>" + a.name + "</th>" footer = footer + '<th></th>' header_size = header_size + 1 # Add 2 more onto header size. 1 because javascript counts from 0 and # another for the total on the end. header_size = header_size + 2 header = header + "<th>Total</th>" footer = footer + '<th></th>' # ------------- table = '' time_middle = time.time() time_total = time_middle - time_start # print 'Create Header: ' +str(time_total) for p in pilots: time_section = time.time() # Start New Row temp_table = table table = table + '<tr>' if pilot_type == 'command': logs_2000_pilot = flightlogs.filter(pilot_in_command=p) elif pilot_type == 'training': logs_2000_pilot = flightlogs.filter( pilot_in_command_under_supervision=p) table = table + '<td>' + p.first_name + " " + p.last_name + '</td>' total = 0 for a in tasks: sum_datcon = 0 logs_2000_task = logs_2000_pilot.filter(task=a) #total += logs_2000_task.count() sum_datcon = logs_2000_task.aggregate(Sum('datcon'))['datcon__sum'] # print sum_datcon if sum_datcon is None: sum_datcon = 0 total += sum_datcon # print a.name + ": " + str(logs_2000_task.count()) table = table + '<td>' + str(sum_datcon) + '</td>' if total == 0: table = temp_table else: table = table + '<td>' + str(total) + '</td>' # End Row table = table + '</tr>' time_middle = time.time() time_total = time_middle - time_section # print 'Create Row: ' + p.first_name + ' - ' +str(time_total) time_total = time_middle - time_start # print 'Create Row: ' + p.first_name + ' - ' +str(time_total) time_end = time.time() time_total = time_end - time_start # print 'Total: ' +str(time_total) return (header, table, footer, header_size) # Summary - Training Pilot Task @login_required def trainingpilotsummary(request, str_date_to=None, str_date_from=None, aircraft_post=None, pilot_post=None, task_post=None): # print '+++++++++++++++' #time_start = time.time() state = '' state_type = '' if request.method == 'POST': # If the form has been submitted... # A form bound to the POST data drForm = FieldFilterDRForm(request.POST) if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] aircraft_post = drForm.cleaned_data['aircraft'] pilot_post = drForm.cleaned_data['pilot'] task_post = drForm.cleaned_data['task'] # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = from_datetime.strptime( "30/06/" + str(datetime.date.today().year), "%d/%m/%Y") else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: date_from = from_datetime.strptime( "01/07/" + str(datetime.date.today().year - 1), "%d/%m/%Y") else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") table = '' logs_2000 = AircraftFlightLogDetail.objects.extra(where=["1=0"]) aircraft_ids = [] if aircraft_post is not None: logs_2000 = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__date__gte=date_from).filter( aircraft_flight_log__date__lte=date_to) .filter( aircraft_flight_log__aircraft__in=aircraft_post) for x in aircraft_post: aircraft_ids.append(x.id) pilot_ids = [] if pilot_post is not None: for p in pilot_post: pilot_ids.append(p.id) task_ids = [] if task_post is not None: for a in task_post: task_ids.append(a.id) data = { 'date_to': str_date_to, 'date_from': str_date_from, 'aircraft': aircraft_ids, 'pilot': pilot_ids, 'task': task_ids} drForm = FieldFilterDRForm(data) if date_from < date_to: if len(aircraft_ids) == 0 or len(pilot_ids) == 0 or len(task_ids) == 0: header = '' table = '' footer = '' header_size = 0 state = 'Please select a minimum of 1 item from each select list.' state_type = 'Warning' else: header, table, footer, header_size = createSummaryPilotHTML( pilot_post, task_post, logs_2000, 'training') else: header = '' table = '' footer = '' header_size = 0 state = 'Date From must be less than Date To' state_type = 'Warning' #time_end = time.time() #time_total = time_end - time_start # print 'Total Time: ' +str(time_total) return render_to_response( "summarytrainingpilot.html", { 'pagetitle': 'Datcon Pilot in Command Under Supervision Summary', 'table': table, 'drForm': drForm, 'header': header, 'footer': footer, 'header_size': header_size, "state": state, "state_type": state_type}, context_instance=RequestContext(request)) # Summary - Time @login_required def timesummary(request): state = '' state_type = '' aircraft_post = [] task_post = [] pilot_post = [] if request.method == 'POST': # If the form has been submitted... drForm = FieldFilterForm(request.POST) # A form bound to the POST data if drForm.is_valid(): # All validation rules pass aircraft_post = drForm.cleaned_data['aircraft'] task_post = drForm.cleaned_data['task'] pilot_post = drForm.cleaned_data['pilot'] aircraft_ids = [] task_ids = [] pilot_ids = [] for x in aircraft_post: aircraft_ids.append(int(x.id)) for x in task_post: task_ids.append(int(x.id)) for x in pilot_post: pilot_ids.append(int(x.id)) flightlogs = AircraftFlightLogDetail.objects.extra(where=["1=0"]) if len(aircraft_ids) == 0 or len(pilot_ids) == 0 or len(task_ids) == 0: header = '' table = '' footer = '' header_size = 0 state = 'Please select a minimum of 1 item from each select list.' state_type = 'Warning' else: flightlogs = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__aircraft__in=aircraft_ids) flightlogs = flightlogs.filter(task__in=task_ids) flightlogs = flightlogs.filter(Q(pilot_in_command__in=pilot_ids) | Q( pilot_in_command_under_supervision__in=pilot_ids)) go = 1 # Create Month Array [(1,'Jan') month_choices = [] for i in range(7, 13): month_choices.append((i, datetime.date(2008, i, 1).strftime('%b'))) for i in range(1, 7): month_choices.append((i, datetime.date(2008, i, 1).strftime('%b'))) footer = '<th></th>' # Create Table Header with Months header = '' header += '<th>Year</th>' for month in month_choices: header += '<th>' + month[1] + '</th>' footer = footer + '<th></th>' header += '<th>Total</th>' footer = footer + '<th></th>' table = '' if flightlogs: # print len(flightlogs) # Determine start and finish date for years maxYear = flightlogs.aggregate(Max('aircraft_flight_log__date'))[ 'aircraft_flight_log__date__max'].year minYear = flightlogs.aggregate(Min('aircraft_flight_log__date'))[ 'aircraft_flight_log__date__min'].year # print maxYear # print minYear # Create Table with Sum of months year = minYear - 1 while year <= maxYear: # print 'Row: ' + str(year) table = table + '<tr>' total = 0 table += '<td>' + str(year) + '/' + str(year + 1) + '</td>' # July to Dec fl_year = flightlogs.filter( aircraft_flight_log__date__year=year) # print len(fl_year) counter = 0 while counter < 6: fl_month = fl_year.filter( aircraft_flight_log__date__month=month_choices[counter][0]) sum_datcon = fl_month.aggregate( Sum('datcon'))['datcon__sum'] # print str(year) + " : " + str(month_choices[counter][0]) # + " : " + str(sum_datcon) if sum_datcon is None: sum_datcon = 0 table = table + '<td>' + str(sum_datcon) + '</td>' total += sum_datcon counter += 1 # Jan to June fl_year = flightlogs.filter( aircraft_flight_log__date__year=year + 1) # print len(fl_year) while counter < 12: fl_month = fl_year.filter( aircraft_flight_log__date__month=month_choices[counter][0]) sum_datcon = fl_month.aggregate( Sum('datcon'))['datcon__sum'] # print str(year) + " : " + str(month_choices[counter][0]) # + " : " + str(sum_datcon) if sum_datcon is None: sum_datcon = 0 table = table + '<td>' + str(sum_datcon) + '</td>' total += sum_datcon counter += 1 table = table + '<td>' + str(total) + '</td>' table = table + '</tr>' year += 1 default_data = { 'aircraft': aircraft_ids, 'task': task_ids, 'pilot': pilot_ids} drForm = FieldFilterForm(default_data) return render_to_response("summarytime.html", {'pagetitle': 'Datcon Time Summary', 'table': table, 'header': header, 'footer': footer, 'drForm': drForm, 'state': state, 'state_type': state_type}, context_instance=RequestContext(request)) def createSummaryAircraftHTML(flightlogs, aircraft_post, task_post): # print flightlogs task = task_post.order_by("name") # ----- Create Header Row -------- header = '<th style="width: 80px;">Aircraft</th>' footer = '<th></th>' header_size = 0 for a in task: header = header + "<th>" + a.name + "</th>" footer = footer + '<th></th>' header_size = header_size + 1 header = header + "<th>Total</th>" footer = footer + '<th></th>' # ------------- table = '' for ac in aircraft_post: # Start New Row temp_table = table table = table + '<tr>' logs_2000_aircraft = flightlogs.filter( aircraft_flight_log__aircraft=ac) table = table + '<td>' + ac.name + '</td>' total = 0 for a in task: sum_datcon = 0 logs_2000_task = logs_2000_aircraft.filter(task=a) sum_datcon = logs_2000_task.aggregate(Sum('datcon'))['datcon__sum'] if sum_datcon is None: sum_datcon = 0 total += sum_datcon # print a.name + ": " + str(logs_2000_task.count()) table = table + '<td>' + str(sum_datcon) + '</td>' if total == 0: table = temp_table #table = table + '<td>'+ str(total) + '</td>' else: table = table + '<td>' + str(total) + '</td>' # End Row table = table + '</tr>' # add 2, 1 because javascript starts at 0 and 1 for the total column header_size = header_size + 2 return (header, table, footer, header_size) # Summary - Aircraft Task @login_required def aircraftsummary(request, str_date_to=None, str_date_from=None): pilot_post = [] task_post = [] aircraft_post = [] pilot_ids = [] aircraft_ids = [] task_ids = [] if request.method == 'POST': # If the form has been submitted... # A form bound to the POST data drForm = FieldFilterDRForm(request.POST) if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] #aircraft_post = request.POST['aircraft'] pilot_post = drForm.cleaned_data['pilot'] task_post = drForm.cleaned_data['task'] aircraft_post = drForm.cleaned_data['aircraft'] # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = from_datetime.strptime( "30/06/" + str(datetime.date.today().year), "%d/%m/%Y") else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: date_from = from_datetime.strptime( "01/07/" + str(datetime.date.today().year - 1), "%d/%m/%Y") else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") if date_from > date_to: header = '' table = '' footer = '' header_size = 0 state = 'Date From must be less than Date To' state_type = 'Warning' else: logs_2000 = AircraftFlightLogDetail.objects.extra(where=["1=0"]) for x in pilot_post: pilot_ids.append(x.id) for x in aircraft_post: aircraft_ids.append(x.id) for x in task_post: task_ids.append(x.id) ''' logs_2000 = AircraftFlightLogDetail.objects.filter(aircraft_flight_log__date__gte=date_from).filter(aircraft_flight_log__date__lte=date_to) \ .filter(Q(pilot_in_command__in = pilot_post) | Q(pilot_in_command_under_supervision__in = pilot_post) | \ Q(task__in = task_post) | Q(aircraft_flight_log__aircraft__in = aircraft_post) ) ''' logs_2000 = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__date__gte=date_from).filter( aircraft_flight_log__date__lte=date_to) .filter( Q( pilot_in_command__in=pilot_ids) | Q( pilot_in_command_under_supervision__in=pilot_ids)) if len(aircraft_ids) == 0 or len(pilot_ids) == 0 or len(task_ids) == 0: header = '' table = '' footer = '' header_size = 0 state = 'Please select a minimum of 1 item from each select list.' state_type = 'Warning' else: #header, table, footer, header_size = createSummaryPilotHTML(pilot_post, task_post, logs_2000, 'command') header, table, footer, header_size = createSummaryAircraftHTML( logs_2000, aircraft_post, task_post) state = '' state_type = '' data = { 'date_to': str_date_to, 'date_from': str_date_from, 'pilot': pilot_ids, 'aircraft': aircraft_ids, 'task': task_ids} drForm = FieldFilterDRForm(data) #header, table, footer, header_size = createSummaryAircraftHTML(logs_2000, aircraft, task) return render_to_response("summaryaircraft.html", {'pagetitle': 'Datcon Aircraft Summary', 'table': table, 'drForm': drForm, 'header': header, 'footer': footer, 'header_size': header_size, "state": state, "state_type": state_type}, context_instance=RequestContext(request)) # Summary - Command Pilot Task @login_required def commandpilotsummary(request, str_date_to=None, str_date_from=None, aircraft_post=None, pilot_post=None, task_post=None): # print '+++++++++++++++' #time_start = time.time() if request.method == 'POST': # If the form has been submitted... # A form bound to the POST data drForm = FieldFilterDRForm(request.POST) if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] aircraft_post = drForm.cleaned_data['aircraft'] pilot_post = drForm.cleaned_data['pilot'] task_post = drForm.cleaned_data['task'] # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = from_datetime.strptime( "30/06/" + str(datetime.date.today().year), "%d/%m/%Y") else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: date_from = from_datetime.strptime( "01/07/" + str(datetime.date.today().year - 1), "%d/%m/%Y") else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") table = '' logs_2000 = AircraftFlightLogDetail.objects.extra(where=["1=0"]) aircraft_ids = [] if aircraft_post is not None: logs_2000 = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__date__gte=date_from).filter( aircraft_flight_log__date__lte=date_to) .filter( aircraft_flight_log__aircraft__in=aircraft_post) for x in aircraft_post: aircraft_ids.append(x.id) pilot_ids = [] if pilot_post is not None: for p in pilot_post: pilot_ids.append(p.id) task_ids = [] if task_post is not None: for a in task_post: task_ids.append(a.id) data = { 'date_to': str_date_to, 'date_from': str_date_from, 'aircraft': aircraft_ids, 'pilot': pilot_ids, 'task': task_ids} drForm = FieldFilterDRForm(data) state = '' state_type = '' if date_from < date_to: if len(aircraft_ids) == 0 or len(pilot_ids) == 0 or len(task_ids) == 0: header = '' table = '' footer = '' header_size = 0 state = 'Please select a minimum of 1 item from each select list.' state_type = 'Warning' else: header, table, footer, header_size = createSummaryPilotHTML( pilot_post, task_post, logs_2000, 'command') else: header = '' table = '' footer = '' header_size = 0 state = 'Date From must be less than Date To' state_type = 'Warning' #time_end = time.time() #time_total = time_end - time_start # print 'Total Time: ' +str(time_total) return render_to_response("summarycommandpilot.html", {'pagetitle': 'Datcon Pilot in Command Summary', 'table': table, 'drForm': drForm, 'header': header, 'footer': footer, 'header_size': header_size, "state": state, "state_type": state_type}, context_instance=RequestContext(request)) # Pilots @login_required def pilotlist(request, state='', state_type=''): queryset = Pilot.objects.all() # return object_list(request, queryset = queryset, template_name = # 'pilotlist.html', extra_context={'title':'Pilot List','pagetitle':'Pilot # List', 'state':state, 'state_type':state_type}) depracated view = ListView.as_view(template_name='pilotlist.html', queryset=queryset) return view( request, extra_context={ 'title': 'Pilot List', 'pagetitle': 'Pilot List', 'state': state, 'state_type': state_type}) @login_required def pilotadd(request): state = '' state_type = '' # print request.user if request.method == 'POST': form = PilotForm(data=request.POST) if form.is_valid(): new_pilot = form.save(commit=False) new_pilot.creator = request.user new_pilot.modifer = request.user new_pilot.save() return redirect('pilotlist_saved') else: state = 'Warning - Pilot not valid' state_type = 'Warning' # return create_object(request, template_name = 'lookupadd.html', # form_class = PilotForm, extra_context={'pagetitle':'Add # Pilot','title':'Add Pilot','state':state, 'state_type':state_type}) # depracated view = CreateView.as_view( template_name='lookupadd.html', form_class=PilotForm) return view( request, extra_context={ 'pagetitle': 'Add Pilot', 'title': 'Add Pilot', 'state': state, 'state_type': state_type}) class PilotUpdate(UpdateView): # look at # https:/ccbv.co.uk/projects/Django/1.4/django.views.generic.edit.UpdateView/ state = '' state_type = '' model = Pilot form_class = PilotForm template_name = 'lookupupdate.html' extra_context = { 'pagetitle': 'Update Pilot', 'title': 'Update Pilot', 'state': state, 'state_type': state_type} def get_success_url(self): return reverse('pilotlist_saved') def get_context_data(self, **kwargs): context = super(PilotUpdate, self).get_context_data(**kwargs) context.update(self.extra_context) return context def form_invalid(self, form): state = 'Warning - Pilot not valid' state_type = 'Warning' return self.render_to_response(self.get_context_data(form=form)) @login_required def pilotupdate(request, id): state = '' state_type = '' pilot = Pilot.objects.get(id=id) if request.method == 'POST': form = PilotForm(data=request.POST, instance=pilot) if form.is_valid(): new_pilot = form.save(commit=False) new_pilot.creator = request.user new_pilot.modifer = request.user new_pilot.save() return redirect('pilotlist_saved') else: state = 'Warning - Pilot not valid' state_type = 'Warning' # return update_object(request, object_id = id, model = Pilot, # template_name = 'lookupupdate.html', form_class = PilotForm, # extra_context={'pagetitle':'Update Pilot','title':'Update # Pilot','state':state, 'state_type':state_type}) depracated # Aircraft @login_required def aircraftlist(request, state='', state_type=''): queryset = Aircraft.objects.all() # return object_list(request, queryset = queryset, template_name = # 'lookuplist.html', extra_context={'title':'Aircraft List', # 'state':state, 'state_type':state_type,'pagetitle':'Aircraft List'}) # depracated view = ListView.as_view(template_name='lookuplist.html', queryset=queryset) return view( request, extra_context={ 'title': 'Aircraft List', 'state': state, 'state_type': state_type, 'pagetitle': 'Aircraft List'}) @login_required def aircraftadd(request): # print request.user state = '' state_type = '' if request.method == 'POST': form = AircraftForm(data=request.POST) if form.is_valid(): new_aircraft = form.save(commit=False) new_aircraft.creator = request.user new_aircraft.modifer = request.user new_aircraft.save() return redirect('aircraftlist_saved') else: state = 'Warning - Aircraft not valid' state_type = 'Warning' # return create_object(request, template_name = 'lookupadd.html', # form_class = AircraftForm, extra_context={'title':'Add Aircraft', # 'state':state, 'state_type':state_type, 'pagetitle':'Add Aircraft'}) # depracated view = CreateView.as_view( template_name='lookupadd.html', form_class=AircraftForm) return view( request, extra_context={ 'title': 'Add Aircraft', 'state': state, 'state_type': state_type, 'pagetitle': 'Add Aircraft'}) class AircraftUpdate(UpdateView): # look at # https:/ccbv.co.uk/projects/Django/1.4/django.views.generic.edit.UpdateView/ state = '' state_type = '' model = Aircraft form_class = AircraftForm template_name = 'lookupupdate.html' extra_context = { 'pagetitle': 'Update Aircraft', 'title': 'Update Aircraft', 'state': state, 'state_type': state_type} def get_success_url(self): return reverse('aircraftlist_saved') def get_context_data(self, **kwargs): context = super(AircraftUpdate, self).get_context_data(**kwargs) context.update(self.extra_context) return context def form_invalid(self, form): state = 'Warning - Aircraft not valid' state_type = 'Warning' return self.render_to_response(self.get_context_data(form=form)) @login_required def aircraftupdate(request, id): state = '' state_type = '' aircraft = Aircraft.objects.get(id=id) if request.method == 'POST': form = AircraftForm(data=request.POST, instance=aircraft) if form.is_valid(): new_aircraft = form.save(commit=False) new_aircraft.creator = request.user new_aircraft.modifer = request.user new_aircraft.save() return redirect('aircraftlist_saved') else: state = 'Warning - Aircraft not valid' state_type = 'Warning' # return update_object(request, object_id = id, model = Aircraft, # template_name = 'lookupupdate.html', form_class = AircraftForm, # extra_context={'pagetitle':'Update Aircraft','title':'Update Aircraft', # 'state':state, 'state_type':state_type}) depracated view = UpdateView.as_view( template_name='lookupupdate.html', form_class=AircraftForm) return view( request, object_id=id, model=Aircraft, extra_context={ 'pagetitle': 'Update Aircraft', 'title': 'Update Aircraft', 'state': state, 'state_type': state_type}) # Task @login_required def tasklist(request, state='', state_type=''): queryset = Task.objects.all() # return object_list(request, queryset = queryset, template_name = # 'lookuplist.html', extra_context={'pagetitle':'Task List','title':'Task # List','pagetitle':'Task List', 'state':state, 'state_type':state_type,}) # depracated view = ListView.as_view(template_name='lookuplist.html', queryset=queryset) return view( request, extra_context={ 'pagetitle': 'Task List', 'title': 'Task List', 'pagetitle': 'Task List', 'state': state, 'state_type': state_type, }) @login_required def taskadd(request): # print request.user state = '' state_type = '' if request.method == 'POST': form = TaskForm(data=request.POST) if form.is_valid(): new_task = form.save(commit=False) new_task.creator = request.user new_task.modifer = request.user new_task.save() return redirect('tasklist_saved') else: state = 'Warning - Task not valid' state_type = 'Warning' # return create_object(request, template_name = 'lookupadd.html', # form_class = TaskForm, extra_context={'pagetitle':'Add # Task','title':'Add Task', 'state':state, 'state_type':state_type}) # depracated view = CreateView.as_view( template_name='lookupadd.html', form_class=TaskForm) return view( request, extra_context={ 'pagetitle': 'Add Task', 'title': 'Add Task', 'state': state, 'state_type': state_type}) class TaskUpdate(UpdateView): # look at # https:/ccbv.co.uk/projects/Django/1.4/django.views.generic.edit.UpdateView/ state = '' state_type = '' model = Task form_class = TaskForm template_name = 'lookupupdate.html' extra_context = { 'pagetitle': 'Task Update', 'title': 'Update Task', 'state': state, 'state_type': state_type} def get_success_url(self): return reverse('tasklist_saved') def get_context_data(self, **kwargs): context = super(TaskUpdate, self).get_context_data(**kwargs) context.update(self.extra_context) return context def form_invalid(self, form): state = 'Warning - Task not valid' state_type = 'Warning' return self.render_to_response(self.get_context_data(form=form)) @login_required def taskupdate(request, pk): state = '' state_type = '' task = Task.objects.get(id=pk) if request.method == 'POST': form = TaskForm(data=request.POST, instance=task) if form.is_valid(): new_task = form.save(commit=False) new_task.creator = request.user new_task.modifer = request.user new_task.save() return redirect('tasklist_saved') else: state = 'Warning - Task not valid' state_type = 'Warning' # return update_object(request, object_id = id, model = Task, # template_name = 'lookupupdate.html', form_class = TaskForm, # extra_context={'pagetitle':'Task Update','title':'Update Task', # 'state':state, 'state_type':state_type}) depracated # look at # https:/ccbv.co.uk/projects/Django/1.4/django.views.generic.edit.UpdateView/ # Aircraft Flight Log Report - Detailed @login_required @csrf_protect def aircraftflightloglistdetailed( request, str_date_to=None, str_date_from=None): # print '-------------------' time_start = time.time() # print 'time start: ' + str(time_start) aircraft = '' aircraft_ids = [] task = '' task_ids = [] pilot = '' pilot_ids = [] flight_log_number = '' fire_number = '' job_number = '' if request.method == 'POST': # If the form has been submitted... # drForm = DateRangeForm(request.POST) # A form bound to the POST data # A form bound to the POST data drForm = FlightLogFieldSearch(request.POST) # FlightLogFieldSearch if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] aircraft = drForm.cleaned_data['aircraft'] task = drForm.cleaned_data['task'] pilot = drForm.cleaned_data['pilot'] flight_log_number = request.POST['flight_log_number'] fire_number = request.POST['fire_number'] job_number = request.POST['job_number'] for a in aircraft: aircraft_ids.append(a.id) for t in task: task_ids.append(t.id) for p in pilot: pilot_ids.append(p.id) else: aircraft_qs = Aircraft.objects.all() for a in aircraft_qs: aircraft_ids.append(a.id) task_qs = Task.objects.all() for t in task_qs: task_ids.append(t.id) pilot_qs = Pilot.objects.all() for p in pilot_qs: pilot_ids.append(p.id) # Create Headers for Table table = '' # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = datetime.date.today() else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: diff = datetime.timedelta(days=7) date_from = datetime.date.today() - diff else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") data = { 'date_to': str_date_to, 'date_from': str_date_from, 'aircraft': aircraft_ids, 'task': task_ids, 'pilot': pilot_ids, 'flight_log_number': flight_log_number, 'fire_number': fire_number, 'job_number': job_number} drForm = FlightLogFieldSearch(data) # Filter on Flight Log Fields queryset = AircraftFlightLog.objects.filter( date__gte=date_from).filter( date__lte=date_to) queryset = queryset.filter(aircraft__in=aircraft_ids) if len(flight_log_number) != 0: # print flight_log_number queryset = queryset.filter( flight_log_number__icontains=flight_log_number) # Fitler on Flight Log Detail Fields queryset_details = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__in=queryset) if len(fire_number) != 0: queryset_details = queryset_details.filter( fire_number__icontains=fire_number) if len(job_number) != 0: queryset_details = queryset_details.filter( job_number__icontains=job_number) queryset_details = queryset_details.filter(task__in=task_ids) queryset_details = queryset_details.filter(Q(pilot_in_command__in=pilot_ids) | Q( pilot_in_command_under_supervision__in=pilot_ids)) ''' queryset_details = AircraftFlightLogDetail.objects.filter(aircraft_flight_log__in=queryset) kwargs = {} if len(fire_number) != 0: kwargs['fire_number__icontains'] = fire_number if len(job_number) != 0: kwargs['job_number__icontains'] = job_number kwargs['task__in'] = task_ids args = ( Q(pilot_in_command__in = pilot_ids) | Q(pilot_in_command_under_supervision__in = pilot_ids), ) queryset_details = queryset_details.filter(*args, **kwargs) ''' # Cycle Through Flight Logs for detail in queryset_details: # Start Row table = table + '<tr>' # Aircraft Flgiht Log table = table + '<td>' + '<a href="' + str(detail.aircraft_flight_log.get_absolute_url( )) + '">' + str(detail.aircraft_flight_log.flight_log_number) + '</a>' + '</td>' # Date table = table + '<td>' + \ str(detail.aircraft_flight_log.date.strftime("%d/%m/%Y")) + '</td>' # Aircraft table = table + '<td>' + \ str(detail.aircraft_flight_log.aircraft.name) + '</td>' # FDI fdi = detail.aircraft_flight_log.fire_danger_index if fdi is None: table = table + '<td></td>' else: table = table + '<td>' + str(fdi) + '</td>' # Datcon datcon = detail.datcon if datcon is None: datcon_sum = '0' table = table + '<td>' + str(datcon) + '</td>' # WST Out time_out = detail.time_out.strftime("%H:%M") table = table + '<td>' + time_out + '</td>' # Task table = table + '<td>' + detail.task.name + '</td>' # Fuel Added fuel_added = detail.fuel_added if fuel_added is None: fuel_added = '' table = table + '<td>' + str(fuel_added) + '</td>' # Landings landings = detail.landings if landings is None: landings = '' table = table + '<td>' + str(landings) + '</td>' # Fire Number fire_number = detail.fire_number if fire_number is None: fire_number = '' table = table + '<td>' + fire_number + '</td>' # Job Number job_number = detail.job_number if job_number is None: job_number = '' table = table + '<td>' + job_number + '</td>' # Pilot in Command pilot_in_command = detail.pilot_in_command.first_name + \ ' ' + detail.pilot_in_command.last_name table = table + '<td>' + pilot_in_command + '</td>' # Pilot in Command Under Super try: pilot_in_command_under_supervision = detail.pilot_in_command_under_supervision.first_name + \ ' ' + detail.pilot_in_command_under_supervision.last_name table = table + '<td>' + pilot_in_command_under_supervision + '</td>' except: table = table + '<td>' + '' + '</td>' # End Row table = table + '</tr>' state = '' state_type = '' if date_from > date_to: state = 'Date From must be less than Date To' state_type = 'Warning' time_finish = time.time() # print 'time finish: ' + str(time_finish) total_time = time_finish - time_start # print 'total time: ' + str(total_time) return render_to_response('aircraftflightloglistdetailed.html', {'table': table, 'drForm': drForm, 'state': state, 'state_type': state_type, 'pagetitle': 'Aircraft Flight Log Report - Detailed'}, context_instance=RequestContext(request)) # Aircraft Flight Log Report - Summary @login_required @csrf_protect def aircraftflightloglist(request, str_date_to=None, str_date_from=None): aircraft = '' aircraft_ids = [] task = '' task_ids = [] pilot = '' pilot_ids = [] flight_log_number = '' fire_number = '' job_number = '' if request.method == 'POST': # If the form has been submitted... # drForm = DateRangeForm(request.POST) # A form bound to the POST data # A form bound to the POST data drForm = FlightLogFieldSearch(request.POST) # FlightLogFieldSearch if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] aircraft = drForm.cleaned_data['aircraft'] task = drForm.cleaned_data['task'] pilot = drForm.cleaned_data['pilot'] flight_log_number = request.POST['flight_log_number'] fire_number = request.POST['fire_number'] job_number = request.POST['job_number'] for a in aircraft: aircraft_ids.append(a.id) for t in task: task_ids.append(t.id) for p in pilot: pilot_ids.append(p.id) else: aircraft_qs = Aircraft.objects.all() for a in aircraft_qs: aircraft_ids.append(a.id) task_qs = Task.objects.all() for t in task_qs: task_ids.append(t.id) pilot_qs = Pilot.objects.all() for p in pilot_qs: pilot_ids.append(p.id) # Create Headers for Table table = '' # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = datetime.date.today() else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: diff = datetime.timedelta(days=7) date_from = datetime.date.today() - diff else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") # print 'ADSAA##$' data = { 'date_to': str_date_to, 'date_from': str_date_from, 'aircraft': aircraft_ids, 'task': task_ids, 'pilot': pilot_ids, 'flight_log_number': flight_log_number, 'fire_number': fire_number, 'job_number': job_number} drForm = FlightLogFieldSearch(data) # Filter on Flight Log Fields queryset = AircraftFlightLog.objects.filter( date__gte=date_from).filter( date__lte=date_to) queryset = queryset.filter(aircraft__in=aircraft_ids) if len(flight_log_number) != 0: # print flight_log_number queryset = queryset.filter( flight_log_number__icontains=flight_log_number) flight_ids_master = [] for y in queryset: flight_ids_master.append(y.id) # Fitler on Flight Log Detail Fields queryset_details = AircraftFlightLogDetail.objects.filter( aircraft_flight_log__in=queryset) flight_ids_detail = [] for y in queryset_details: flight_ids_detail.append(y.aircraft_flight_log_id) s = set(flight_ids_detail) # gets difference between 2 lists. flight_ids_master - flight_ids_detail. # Get list of flight logs without detail children no_detail_logs = [x for x in flight_ids_master if x not in s] # print 'difference' # print no_detail_logs if len(fire_number) != 0: queryset_details = queryset_details.filter( fire_number__icontains=fire_number) no_detail_logs = [] if len(job_number) != 0: queryset_details = queryset_details.filter( job_number__icontains=job_number) no_detail_logs = [] task_total = Task.objects.all() if len(task_ids) != len(task_total): no_detail_logs = [] queryset_details = queryset_details.filter(task__in=task_ids) pilot_total = Pilot.objects.all() if len(pilot_ids) != len(pilot_total): no_detail_logs = [] queryset_details = queryset_details.filter(Q(pilot_in_command__in=pilot_ids) | Q( pilot_in_command_under_supervision__in=pilot_ids)) flight_ids = [] for y in queryset_details: flight_ids.append(y.aircraft_flight_log_id) flight_ids.extend(no_detail_logs) queryset = queryset.filter(id__in=flight_ids) # Cycle Through Flight Logs for flightlog in queryset: # Start Row table = table + '<tr>' # Aircraft Flgiht Log table = table + '<td>' + '<a href="' + \ str(flightlog.get_absolute_url()) + '">' + \ str(flightlog.flight_log_number) + '</a>' + '</td>' # Date table = table + '<td>' + \ str(flightlog.date.strftime("%d/%m/%Y")) + '</td>' # WST Out job_num = None if flightlog.aircraftflightlogdetail_set.all(): details = flightlog.aircraftflightlogdetail_set.all().order_by('time_out') # print details[0].time_out.strftime("%H:%M") table = table + '<td>' + \ details[0].time_out.strftime("%H:%M") + '</td>' job_num = details[0].job_number #table = table + '<td>' + str(details[0].time_out) + '</td>' else: table = table + '<td></td>' # Aircraft table = table + '<td>' + str(flightlog.aircraft.name) + '</td>' # VDO Time datcon_sum = flightlog.aircraftflightlogdetail_set.all().aggregate(Sum('datcon')) datcon_sum = datcon_sum['datcon__sum'] if datcon_sum is None: datcon_sum = '0' table = table + '<td>' + str(datcon_sum) + '</td>' # Job Number if job_num is None: table = table + '<td></td>' else: table = table + '<td>' + job_num + '</td>' #Pilot in Command if flightlog.aircraftflightlogdetail_set.all(): details = flightlog.aircraftflightlogdetail_set.all().order_by('time_out') table = table + '<td>' + \ details[0].pilot_in_command.first_name + ' ' + \ details[0].pilot_in_command.last_name + '</td>' if details[0].pilot_in_command_under_supervision: table = table + '<td>' + details[0].pilot_in_command_under_supervision.first_name + ' ' + details[ 0].pilot_in_command_under_supervision.last_name + '</td>' else: table = table + '<td></td>' ''' if details[0].task: table = table + '<td>' + details[0].task.name + '</td>' else: table = table + '<td></td>' ''' if details[0].task: table = table + '<td>' + details[0].task.name + '</td>' else: table = table + '<td></td>' ''' if details[0].activity_type: table = table + '<td>' + details[0].activity_type.name + '</td>' else: table = table + '<td></td>' ''' else: table = table + '<td></td>' table = table + '<td></td>' table = table + '<td></td>' # End Row table = table + '</tr>' state = '' state_type = '' if date_from > date_to: state = 'Date From must be less than Date To' state_type = 'Warning' return render_to_response('aircraftflightloglist.html', {'table': table, 'drForm': drForm, 'state': state, 'state_type': state_type, 'pagetitle': 'Aircraft Flight Log Report'}, context_instance=RequestContext(request)) @login_required def aircraftflightlogadd(request): # print request.user state = '' state_type = '' if request.method == 'POST': form = AircraftFlightLogForm(data=request.POST) if form.is_valid(): new_aircraftflightlog = form.save(commit=False) new_aircraftflightlog.creator = request.user new_aircraftflightlog.modifer = request.user new_aircraftflightlog.save() # print new_aircraftflightlog.id state = 'Saved' state_type = 'OK' return redirect(reverse('aircraftflightlog_saved', kwargs={'id': new_aircraftflightlog.id})) else: state = 'Warning - Flight Log is not valid.' state_type = 'Warning' # return create_object(request, template_name = # 'aircraftflightlogadd.html', form_class = AircraftFlightLogForm, # extra_context ={'state':state,'state_type':state_type,'pagetitle':'Add # Aircraft Flight Log'}) depracated view = CreateView.as_view( template_name='aircraftflightlogadd.html', form_class=AircraftFlightLogForm) return view( request, extra_context={ 'state': state, 'state_type': state_type, 'pagetitle': 'Add Aircraft Flight Log'}) @login_required @csrf_protect def aircraftflightlogdetailsadd(request, id, state='', state_type=''): # print request.user #state = '' #state_type = '' flightlog = AircraftFlightLog.objects.get(pk=id) # filter the select lists flightlogdetails = flightlog.aircraftflightlogdetail_set.all() # aircraft select list equals all active aicraft + aircraft that are # already selected. try: aircraft_array = [] aircraft_array.append(flightlog.aircraft_id) aircraft_qs = Aircraft.objects.filter(id__in=aircraft_array) aircraft_qs = aircraft_qs | Aircraft.objects.filter( effective_to__exact=None) except IndexError as e: # Default list of no child records found aircraft_qs = Aircraft.objects.filter(effective_to__exact=None) # task select list equals all active tasks + inactive tasks that are # already selected. try: task_array = [] for detail in flightlogdetails: task_array.append(detail.task_id) task_qs = Task.objects.filter(id__in=task_array) task_qs = task_qs | Task.objects.filter(effective_to__exact=None) except IndexError as e: # Default list of no child records found task_qs = Task.objects.filter(effective_to__exact=None) # pilot in command select list equals all active tasks + inactive tasks # that are already selected. try: pilot_array = [] for detail in flightlogdetails: pilot_array.append(detail.pilot_in_command_id) pilot_qs = Pilot.objects.filter(id__in=pilot_array) pilot_qs = pilot_qs | Pilot.objects.filter(effective_to__exact=None) except IndexError as e: # Default list of no child records found pilot_qs = Pilot.objects.filter(effective_to__exact=None) # pilot in command select list equals all active tasks + inactive tasks # that are already selected. try: pilot_array = [] for detail in flightlogdetails: pilot_array.append(detail.pilot_in_command_under_supervision_id) pilot_under_qs = Pilot.objects.filter(id__in=pilot_array) pilot_under_qs = pilot_under_qs | Pilot.objects.filter( effective_to__exact=None) except IndexError as e: # Default list of no child records found pilot_qs = Pilot.objects.filter(effective_to__exact=None) form_master = AircraftFlightLogForm(instance=flightlog) # Overrides Form Defaults form_master.fields['aircraft'].queryset = aircraft_qs # Make Form details_form = AircraftFlightLogDetailForm # Overrides Form Defaults details_form.declared_fields['task'] = forms.ModelChoiceField( queryset=task_qs, empty_label="", widget=forms.Select( attrs={ 'class': 'chzn-select-task', 'style': 'width:200px', })) details_form.declared_fields['pilot_in_command'] = forms.ModelChoiceField( queryset=pilot_qs, empty_label="", widget=forms.Select( attrs={ 'class': 'chzn-select-command', 'style': 'width:200px', })) details_form.declared_fields['pilot_in_command_under_supervision'] = forms.ModelChoiceField( queryset=pilot_under_qs, empty_label="", required=False, widget=forms.Select( attrs={ 'class': 'chzn-select-super', 'style': 'width:200px', })) print "-=-=-=---=-=-=-=-=-" FlightLogDetailInlineFormSet = inlineformset_factory( AircraftFlightLog, AircraftFlightLogDetail, extra=6, exclude=( 'creator', 'modifier'), can_delete=False, form=details_form) if request.method == 'POST': form = AircraftFlightLogForm(data=request.POST, instance=flightlog) formset = FlightLogDetailInlineFormSet( request.POST, request.FILES, instance=flightlog) #formset = FlightLogDetailInlineFormSet(request.POST) if form.is_valid(): new_aircraftflightlog = form.save(commit=False) new_aircraftflightlog.creator = request.user new_aircraftflightlog.modifer = request.user # print formset # print 'HHHHHHHHHHHH' if formset.is_valid(): #instances = formset.save(commit=False) # for f in formset: # print 'Datcon' + str(f['datcon']) return_time_last = 0 counter = 1 error = 0 for f in formset: # print 'Datcon' + str(f['datcon']) if error == 0: datcon_html = str(f['datcon']) datcon_array = datcon_html.split("\"") if len(datcon_array) == 11: datcon = datcon_array[7] # print 'datcon: ' + datcon try: datcon_hour = int(datcon.split(".")[0]) except: datcon = "0" + datcon datcon_hour = int(datcon.split(".")[0]) datcon_24h = datcon_hour * 60 try: datcon_minute = int(datcon.split(".")[1]) except: datcon_minute = 0 datcon_min = datcon_minute * 6 total_datcon_minutes = datcon_24h + datcon_min # print 'time Out' + str(f['time_out']) timeout_html = str(f['time_out']) timeout_array = timeout_html.split("\"") # if len(timeout_array) == 13: timeout_str = timeout_array[5] if len(timeout_str) == 4: timeout_hh = int(timeout_str[:2]) timeout_mm = int(timeout_str[2:]) else: timeout_hh = int(timeout_str[:1]) timeout_mm = int(timeout_str[1:]) #timeout_int = int(timeout_str) timeout_total_minutes = ( int(timeout_hh) * 60) + int(timeout_mm) return_time_minutes = total_datcon_minutes + timeout_total_minutes ''' print 'datcon: ' + str(datcon) print 'datcon in minutes: ' + str(total_datcon_minutes) print 'time out: ' + str(timeout_str) print 'time out in minutes: ' + str(timeout_total_minutes) print 'return time in minutes: ' + str(return_time_minutes) print 'return time last: ' + str(return_time_last) ''' if return_time_last > timeout_total_minutes: state = 'Warning (Rows ' + str(counter - 1) + ", " + str( counter) + ') - Aircraft leaving before it has returned. See Datcon and Time Out.' state_type = 'Warning' error = 1 return_time_last = return_time_minutes counter = counter + 1 # f.save() if error == 0: new_aircraftflightlog.save() formset.save() state = 'Saved' state_type = 'OK' formset = FlightLogDetailInlineFormSet(instance=flightlog) form = form_master else: state = 'Warning - Flight Log Details are not valid.' state_type = 'Warning' else: state = 'Warning - Flight Log is not valid.' state_type = 'Warning' # return # render_to_response('aircraftflightlogdetailsadd.html',{"formset": # formset,"form":form}, context_instance=RequestContext(request)) else: #state = '' #state_type = '' formset = FlightLogDetailInlineFormSet(instance=flightlog) form = form_master #form = AircraftFlightLogForm(instance=flightlog) return render_to_response("aircraftflightlogdetailsadd.html", {"formset": formset, "form": form, "state": state, "state_type": state_type, 'pagetitle': 'Aircraft Flight Log Details'}, context_instance=RequestContext(request)) @login_required # Duty Time @login_required @csrf_protect def dutytimeadd(request): # print '+++++++++++++++' time_start = time.time() state = '' state_type = '' pilots = Pilot.objects.filter( effective_to__exact=None).order_by('last_name') table = '' # print 'pilots' # print pilots for pilot in pilots: # print "Pilot Name: " + pilot.first_name # print "Pilot ID: " + str(pilot.id) table += '<tr>' table += '<td>' try: table += '<a href="' + \ str(pilot.dutytime_set.all()[0].get_absolute_url()) + '">' table += '<input type="image" src="/static/img/page_white_edit.png" name="edit" width="24" height="24" alt="Edit">' table += '</a>' except IndexError as e: table += '<img type="image" src="/static/img/cross.png" name="edit" width="24" height="24" alt="No Duty Time Records">' table += '</td>' table += '<td>' try: table += '<a href="../' + str(pilot.id) + '/hours">' table += '<input type="image" src="/static/img/page_white_edit.png" name="edit" width="24" height="24" alt="Edit">' table += '</a>' except IndexError as e: table += '<img type="image" src="/static/img/cross.png" name="edit" width="24" height="24" alt="No Duty Time Records">' table += '</td>' table += '<td style="text-align:center" >' table += '<input type="radio" name="rdio" value="' + \ str(pilot.id) + '">' table += '</td>' table += '<td>' table += str(pilot.first_name) table += '</td>' table += '<td>' table += pilot.last_name table += '</td>' table += '<td id="date_' + str(pilot.id) + '">' # print '---------' try: dt_date = pilot.dutytime_set.order_by( '-date')[0].date.strftime("%d/%m/%Y") # print dt_date except IndexError as e: # print pilot.first_name + ' ' + pilot.last_name + ' has no Last # Date.' dt_date = '' table += dt_date table += '</td>' table += '</tr>' if request.method == 'POST': # Validate Dates # print '^^^^^^^^^^^^^^^^^^^^^' # print request.POST['pilot_id'] # Check if pilot id is sent back if request.POST['pilot_id'] != '': pilot = Pilot.objects.get(id=int(request.POST['pilot_id'])) # print pilot # print pilot.id # Check if both dates have been chosen if request.POST['date_from'] != '' and request.POST[ 'date_to'] != '': date_from = from_datetime.strptime( request.POST['date_from'], "%d/%m/%Y") date_to = from_datetime.strptime( request.POST['date_to'], "%d/%m/%Y") # print date_from # print date_to # Check date range is valid if date_to >= date_from: # Make one day oneday = datetime.timedelta(days=1) # While date_change is less than date_to - create day # records date_change = date_from while (date_change <= date_to): # print date_change dt = DutyTime(date=date_change, pilot=pilot) dt.creator = request.user dt.modifer = request.user dt.save() date_change = date_change + oneday # print date_change state = 'Saved' state_type = 'OK' return redirect( reverse( 'dutytimeaddset_saved', kwargs={ 'id': pilot.id})) else: # No dates. Send user message. state = 'Warning - Enter values for both date fields' state_type = 'Warning' else: # No pilot id. Send user message. state = "Warning - No pilot selected" state_type = "Warning" drForm = DateRangeForm() time_end = time.time() time_total = time_end - time_start # print 'Total Time: ' +str(time_total) return render_to_response("dutytimeadd.html", {'pagetitle': 'Duty Times', "drForm": drForm, 'pilots': table, "state": state, "state_type": state_type}, context_instance=RequestContext(request)) @login_required @csrf_protect def dutytimeaddset(request, id, str_date_to=None, str_date_from=None, state='', state_type=''): time_start = time.time() state = '' state_type = '' pilot = Pilot.objects.get(pk=id) name = pilot.first_name + ' ' + pilot.last_name # inlineformset DutyTimeInlineFormSet = inlineformset_factory(Pilot, DutyTime, exclude=( 'creator', 'modifier'), can_delete=False, form=DutyTimeForm, extra=0) #dt_formset = formset_factory(DutyTimeForm, extra=2) # Do this if something submitted if request.method == "POST": # ^^^^^^^^^^^^^^^ time_mid = time.time() time_total = time_mid - time_start # print "enter post: " + str(time_total) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # if duty times are saved do this if request.POST['type'] == 'Save': # print request.POST formset = DutyTimeInlineFormSet( request.POST, request.FILES, instance=pilot) #formset = DutyTimeInlineFormSet(request.POST, request.FILES) # print formset # ^^^^^^^^^^^^^^^ time_mid = time.time() time_total = time_mid - time_start # print "after formset get: " + str(time_total) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if len(formset) == 0: date_to = pilot.dutytime_set.order_by('-date')[0].date # get date using last entered date - 14 days date_from = date_to - timedelta(days=13) # Create formset sort = 'A' state = 'Warning - No Records Submitted To Save' state_type = 'Warning' else: # ^^^^^^^^^^^^^^^ time_mid = time.time() time_total = time_mid - time_start # print "Before Date Range: " + str(time_total) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ formsetstring = str(formset) formsetdates = re.findall(r"\d{2}/\d{2}/\d{4}", formsetstring) date_from = from_datetime.strptime("01/01/2050", "%d/%m/%Y") date_to = from_datetime.strptime("01/01/1900", "%d/%m/%Y") for formdate in formsetdates: thedate = from_datetime.strptime(formdate, "%d/%m/%Y") if thedate > date_to: date_to = thedate if thedate < date_from: date_from = thedate # ^^^^^^^^^^^^^^^ time_mid = time.time() time_total = time_mid - time_start # print "After Date Range: " + str(time_total) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ try: if from_datetime.strptime( formsetdates[0], "%d/%m/%Y") > from_datetime.strptime(formsetdates[1], "%d/%m/%Y"): sort = 'D' else: sort = 'A' except: sort = 'A' # ^^^^^^^^^^^^^^^ time_mid = time.time() time_total = time_mid - time_start # print "After Order Calc: " + str(time_total) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if formset.is_valid(): error = 0 counter = 0 for f in formset: counter = counter + 1 ontime = str(f['datetime_on_first']) offtime = str(f['datetime_off_first']) thedate = str(f['date']) # print thedate day = thedate.split("\"")[3] ontime_arr = ontime.split("\"") offtime_arr = offtime.split("\"") if len(ontime_arr) == 11 and len(offtime_arr) == 11: ontime = int(ontime_arr[7]) offtime = int(offtime_arr[7]) if ontime >= offtime: state = 'Warning - Duty Time is not valid (' + \ day + '). Time On must be less than Time Off' state_type = 'Warning' error = 1 elif len(ontime_arr) == 11 and len(offtime_arr) == 9: state = 'Warning - Duty Time is not valid (' + \ day + '). Missing Time Off value.' state_type = 'Warning' error = 1 elif len(ontime_arr) == 9 and len(offtime_arr) == 11: state = 'Warning - Duty Time is not valid (' + \ day + '). Missing Time On value.' state_type = 'Warning' error = 1 # print "Counter (rows): " + str(counter) if error == 0: formset.save() state = 'Saved' state_type = 'OK' # ^^^^^^^^^^^^^^^ time_mid = time.time() time_total = time_mid - time_start # print "After Formset Saved: " + str(time_total) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ else: state = 'Warning - Duty Time is not valid.' state_type = 'Warning' # if date filter submitted do this elif request.POST['type'] == 'Go': drForm = DateRangeForm(request.POST) # print 'Date Range Submitted' if drForm.is_valid(): # All validation rules pass # get date from POST str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] # convert date from string to date object date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") sort = request.POST['sort'] if sort == 'A': order = 'date' if sort == 'D': order = '-date' #formset = DutyTimeInlineFormSet(instance=pilot, queryset=DutyTime.objects.filter(date__gte=date_from).filter(date__lte=date_to.order_by(order))) formset = DutyTimeInlineFormSet( instance=pilot, queryset=DutyTime.objects.filter( date__gte=date_from).filter( date__lte=date_to).order_by(order)) state = 'Duty Times Sorted' state_type = 'OK' else: state = 'Warning - Sorting Failed' state_type = 'Warning' # Do this if nothing submitted else: # do default date query here # get the last entered date for the pilot date_to = pilot.dutytime_set.order_by('-date')[0].date # get date using alst entered date - 14 days date_from = date_to - timedelta(days=13) # Create formset sort = 'A' #formset = DutyTimeInlineFormSet(instance=pilot, queryset=DutyTime.objects.filter(date__gte=date_from).filter(date__lte=date_to.order_by('-date'))) formset = DutyTimeInlineFormSet( instance=pilot, queryset=DutyTime.objects.filter( date__gte=date_from).filter( date__lte=date_to).order_by('date')) # convert dates to strings str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") # make dictionary to put in form data = {'date_to': str_date_to, 'date_from': str_date_from, 'sort': sort} # Create form drForm = DateRangeSortForm(data) if date_from > date_to: state = 'Date From must be less than Date To' state_type = 'Warning' time_end = time.time() time_total = time_end - time_start # print "total time: " + str(time_total) return render_to_response("dutytimeaddset.html", {'pagetitle': 'Edit Duty Times / ' + name, "formset": formset, 'state': state, 'state_type': state_type, "name": name, "drForm": drForm}, context_instance=RequestContext(request)) @login_required @csrf_protect def dutytimehours(request, id, str_date_to=None, str_date_from=None, str_start_point=None): # print '+++++++++++++++' time_start = time.time() pilot = Pilot.objects.get(pk=id) name = pilot.first_name + ' ' + pilot.last_name # ------- Change to date filtered. Takes too long to get all flightlogs_command = pilot.pilot_in_command.all() # ------- Change to date filtered. Takes too long to get all flightlogs_supervised = pilot.aircraftflightlogdetail_set.all() if request.method == 'POST': # If the form has been submitted... drForm = DateRangeForm(request.POST) # A form bound to the POST data if drForm.is_valid(): # All validation rules pass str_date_from = request.POST['date_from'] str_date_to = request.POST['date_to'] str_start_point = request.POST['start_point'] # Create Headers for Table table = '' # Get Filtered Aircraft Flight Logs if str_date_to is None: date_to = from_datetime.today() else: date_to = from_datetime.strptime(str_date_to, "%d/%m/%Y") if str_date_from is None: diff = datetime.timedelta(days=59) date_from = from_datetime.today() - diff else: date_from = from_datetime.strptime(str_date_from, "%d/%m/%Y") if str_start_point is None: start_point = from_datetime.strptime("15/01/2011", "%d/%m/%Y") else: start_point = from_datetime.strptime(str_start_point, "%d/%m/%Y") date_from = date_from.date() date_to = date_to.date() start_point = start_point.date() str_date_to = date_to.strftime("%d/%m/%Y") str_date_from = date_from.strftime("%d/%m/%Y") str_start_point = start_point.strftime("%d/%m/%Y") data = { 'date_to': str_date_to, 'date_from': str_date_from, 'start_point': str_start_point} drForm = DutyRangeForm(data) dutytimes = pilot.dutytime_set.filter( date__gt=( date_from - datetime.timedelta( days=365))).filter( date__lte=date_to).order_by('date') # Look thoughs each dutytime counter = 0 date_counter = date_from - datetime.timedelta(days=365) # print 'date_from: ' + str(date_from) # print 'date_to: ' + str(date_to) this_total = 0 dutytime_arr = [] datcon_arr = [] while date_counter <= date_to: # print '###' if date_counter >= date_from: time_section_start = time.time() # print date_counter # Start Row table += '<tr>' # Pilot table += '<td>' table += name table += '</td>' # Date table += '<td>' table += date_counter.strftime("%d/%m/%Y") table += '</td>' date_diff = start_point - date_counter int_diff = int(date_diff.days) ''' if int_diff % 28 == 0: day = date_counter.strftime("%A") + ' (7 + 14 + 28 Day Reset)' elif int_diff % 14 == 0: day = date_counter.strftime("%A") + ' (7 + 14 Day Reset)' elif int_diff % 7 == 0: day = date_counter.strftime("%A") + ' (7 Day Reset)' else day = date_counter.strftime("%A") ''' if int_diff % 7 == 0: day = date_counter.strftime("%A") + ' (7 Day Reset)' if int_diff % 14 == 0: day = date_counter.strftime("%A") + ' (7/14 Day Reset)' if int_diff % 28 == 0: day = date_counter.strftime( "%A") + ' (7/14/28 Day Reset)' else: day = date_counter.strftime("%A") table += '<td>' table += day table += '</td>' time_section_2_start = time.time() # get a duty time record if there is one try: dtime = dutytimes.filter(date=date_counter)[0] except IndexError as e: # print 'IndexError' dtime = None if dtime: # Date On table += '<td>' if dtime.datetime_on_first: table += dtime.datetime_on_first.strftime("%H:%M") table += '</td>' # Date Off table += '<td>' if dtime.datetime_off_first: table += dtime.datetime_off_first.strftime("%H:%M") table += '</td>' # if dtime.datetime_on_first: on_hour = dtime.datetime_on_first.hour on_min = float(dtime.datetime_on_first.minute) on_min = on_min / 60 # print on_min on_time = float(on_hour) + on_min # print str(on_time) if dtime.datetime_off_first: off_hour = dtime.datetime_off_first.hour off_min = float(dtime.datetime_off_first.minute) off_min = off_min / 60 # print off_min off_time = float(off_hour) + off_min # print off_time diff = 0.0 diff = off_time - on_time diff = round(diff, 1) else: diff = 0.00 else: diff = 0.00 dutytime_arr.append(diff) # Daily Total table += '<td>' table += str("%.1f" % diff) #table+= str(diff) table += '</td>' else: # Date On table += '<td>' table += '' table += '</td>' # Date Off table += '<td>' table += '' table += '</td>' # Daily table += '<td>' table += '0.00' table += '</td>' dutytime_arr.append(0) # 7 Days date_diff = start_point - date_counter int_diff = int(date_diff.days) mod_diff = int_diff % 7 mod_changed = (7 - mod_diff) arr_slice = (mod_changed + 1) * -1 if arr_slice == -8: arr_slice = -1 table += '<td>' table += str("%.1f" % sum(dutytime_arr[arr_slice:])) #table+= str(sum(dutytime_arr[arr_slice:])) table += '</td>' # 14 Days date_diff = start_point - date_counter int_diff = int(date_diff.days) mod_diff = int_diff % 14 mod_changed = (14 - mod_diff) arr_slice = (mod_changed + 1) * -1 if arr_slice == -15: arr_slice = -1 table += '<td>' table += str("%.1f" % sum(dutytime_arr[arr_slice:])) table += '</td>' # 28 Days date_diff = start_point - date_counter int_diff = int(date_diff.days) mod_diff = int_diff % 28 mod_changed = (28 - mod_diff) arr_slice = (mod_changed + 1) * -1 if arr_slice == -29: arr_slice = -1 table += '<td>' table += str("%.1f" % sum(dutytime_arr[arr_slice:])) table += '</td>' # Travel dtime = dutytimes.filter(date=date_counter) travel = '0' if dtime.count() > 0: if dtime[0].travel_km: travel = str(dtime[0].travel_km) table += '<td>' table += travel table += '</td>' # Daily # Command flightlogs_comm = flightlogs_command.filter( aircraft_flight_log__date=date_counter) time_total_comm = 0.0 time_total_super = 0.0 if flightlogs_comm.count() > 0: # print flightlogs_comm for f in flightlogs_comm: # print 'command time: ' + str(f.datcon) time_total_comm += float(f.datcon) # print 'time total: ' + str(time_total) # Supervised flightlogs_super = flightlogs_supervised.filter( aircraft_flight_log__date=date_counter) if flightlogs_super.count() > 0: # print flightlogs_super for f in flightlogs_super: # print 'super time: ' + str(f.datcon) time_total_super += float(f.datcon) time_total_both = time_total_comm + time_total_super datcon_arr.append(time_total_both) table += '<td>' table += str("%.1f" % time_total_both) table += '</td>' # 7 Day # Command # seven_days table += '<td>' table += str(sum(datcon_arr[-7:])) table += '</td>' # 30 Days table += '<td>' table += str(sum(datcon_arr[-30:])) table += '</td>' # 365 Day table += '<td>' table += str(sum(datcon_arr[-365:])) table += '</td>' # WST Out flightlogs_comm = flightlogs_command.filter( aircraft_flight_log__date=date_counter) flightlogs_super = flightlogs_supervised.filter( aircraft_flight_log__date=date_counter) wst_time = '' flight_time = 0.0 if flightlogs_comm.count() > 0 and flightlogs_super.count() > 0: min_time = flightlogs_comm[0].time_out for fl in flightlogs_comm: new_time = fl.time_out if new_time < min_time: min_time = new_time flight_time += float(fl.datcon) for fl in flightlogs_super: new_time = fl.time_out if new_time < min_time: min_time = new_time flight_time += float(fl.datcon) wst_time = min_time.strftime("%H:%M") flight_time = str("%.1f" % flight_time) elif flightlogs_comm.count() > 0: min_time = flightlogs_comm[0].time_out for fl in flightlogs_comm: new_time = fl.time_out if new_time < min_time: min_time = new_time flight_time += float(fl.datcon) flight_time = str("%.1f" % flight_time) wst_time = min_time.strftime("%H:%M") elif flightlogs_super.count() > 0: min_time = flightlogs_super[0].time_out for fl in flightlogs_super: new_time = fl.time_out if new_time < min_time: min_time = new_time flight_time += float(fl.datcon) wst_time = min_time.strftime("%H:%M") flight_time = str("%.1f" % flight_time) else: flight_time = '' # WST Out table += '<td>' table += wst_time table += '</td>' # Time - Day Total table += '<td>' table += flight_time table += '</td>' # Fuel - Day Total table += '<td>' table += '0' table += '</td>' # End Row table += '</tr>' else: # Calc Duty Day Total try: dtime = dutytimes.filter(date=date_counter)[0] except IndexError as e: # print 'IndexError' dtime = None if dtime: if dtime.datetime_on_first: on_hour = dtime.datetime_on_first.hour on_min = float(dtime.datetime_on_first.minute) on_min = on_min / 60 # print on_min on_time = float(on_hour) + on_min # print str(on_time) if dtime.datetime_off_first: off_hour = dtime.datetime_off_first.hour off_min = float(dtime.datetime_off_first.minute) off_min = off_min / 60 # print off_min off_time = float(off_hour) + off_min # print off_time diff = 0.00 diff = off_time - on_time else: diff = 0.00 else: diff = 0.00 x = diff else: x = 0 dutytime_arr.append(x) # Calc Datcon Daily Total flightlogs_comm = flightlogs_command.filter( aircraft_flight_log__date=date_counter) time_total_comm = 0.0 time_total_super = 0.0 if flightlogs_comm.count() > 0: # print flightlogs_comm for f in flightlogs_comm: # print 'command time: ' + str(f.datcon) time_total_comm += float(f.datcon) # print 'time total: ' + str(time_total) # Supervised flightlogs_super = flightlogs_supervised.filter( aircraft_flight_log__date=date_counter) if flightlogs_super.count() > 0: # print flightlogs_super for f in flightlogs_super: # print 'super time: ' + str(f.datcon) time_total_super += float(f.datcon) time_total_both = time_total_comm + time_total_super y = time_total_both datcon_arr.append(y) date_counter += datetime.timedelta(days=1) state = '' state_type = '' if date_from > date_to: state = 'Date From must be less than Date To' state_type = 'Warning' return render_to_response("dutytimehours.html", {'pagetitle': 'Duty Times + Flights - Report / ' + name, 'name': name, 'table': table, 'drForm': drForm, 'state': state, 'state_type': state_type}, context_instance=RequestContext(request)) # This is required in order for the extra context can be added to the view. class ExtraContextTemplateView(TemplateView): extra_context = None def get_context_data(self, *args, **kwargs): context = super( ExtraContextTemplateView, self).get_context_data( *args, **kwargs) if self.extra_context: context.update(self.extra_context) return context
# coding: utf-8 import unittest from getsub.util import extract_name class TestExtractName(unittest.TestCase): def test_all_en(self): name = "Young.Sheldon.S01.1080p.WEB-DL.DD5.1.H.264-YFN[v].rar" new_name = extract_name(name) self.assertEqual(new_name, name) def test_mixed(self): name1 = "[SPS辛普森一家字幕组].[丑陋的美国人.第一季].Ugly.Americans.S01E01.rmvb" name2 = ( "行尸走肉 第10季第15集【本季终】.The.Walking.Dead.[WEB.1080P]中英文字幕【YYeTs字幕组 简繁英双语字幕】" "The.Walking.Dead.S10E15.The.Tower.720p/1080p.AMZN.WEB-DL.DD+5.1.H.264-CasStudio" ) result = (extract_name(name1), extract_name(name2)) self.assertEqual( result, ( "Ugly.Americans.S01E01.rmvb", "The.Walking.Dead.S10E15.The.Tower.720p/1080p.AMZN.WEB-DL.DD+5.1.H.264-CasStudio", ), ) def test_most_en(self): name = "少年谢尔顿 第一季(第22集-简繁英双语字幕)Young.Sheldon.S01E22.720p.HDTV.rar" new_name = extract_name(name) self.assertEqual(new_name, "Young.Sheldon.S01E22.720p.HDTV.rar") def test_most_ch(self): name = "少年谢尔顿 第一季(第22集-简繁英双语字幕)Young.Sheldon.S01E22.720p.rar" new_name = extract_name(name) self.assertEqual(new_name, "少年谢尔顿 第一季(第22集-简繁英双语字幕).rar") def test_force_en(self): name = "少年谢尔顿 第一季(第22集-简繁英双语字幕)Young.Sheldon.S01E22.720p.rar" new_name = extract_name(name, en=True) self.assertEqual(new_name, "Young.Sheldon.S01E22.720p.rar")
#!/usr/bin/env python # Use joystick input to launch behavioral nodes in jackal # # Intro to Robotics - EE5531 - Spring 2018 # Final Project # # Group #1 # Narendra # Alex # Shivam # # version: v1.5 # define imports import rospy import roslaunch import sys import time import os import numpy as np from sensor_msgs.msg import Joy, LaserScan # class to read joystick messages and launch node class joy_control(object): # define self routine def __init__(self): # define subscriber rospy.Subscriber("/bluetooth_teleop/joy", Joy, self.joy_callback) rospy.Subscriber("/scan",LaserScan, self.laser_callback) rate = rospy.Rate(5) rospy.loginfo('started joystick routine..') # define and init variables self.person_following_start = False self.person_following_stop = False self.wall_following_start = False self.wall_following_stop = False self.lane_following_start = False self.lane_following_stop = False self.stop_line_start = False self.stop_line_stop = False # configure node roslaunch api package = 'quad_pkg' executable_person_following = 'person_following3.py' node_person_following = roslaunch.core.Node(package, executable_person_following) executable_wall_following = 'wall_following.py' node_wall_following = roslaunch.core.Node(package, executable_wall_following) executable_stop_line = 'stop_line2.py' node_stop_line = roslaunch.core.Node(package, executable_stop_line) executable_lane_following = 'lane_following2.py' node_lane_following = roslaunch.core.Node(package, executable_lane_following) launch = roslaunch.scriptapi.ROSLaunch() launch.start() while not rospy.is_shutdown(): # if start flag set: launch main launch-file if self.person_following_start: person_following_process = launch.launch(node_person_following) # if stop flag set: shutdown main launch-file if self.person_following_stop: if 'person_following_process' in locals(): person_following_process.stop() # if start flag set: launch main launch-file if self.wall_following_start: wall_following_process = launch.launch(node_wall_following) # if stop flag set: shutdown main launch-file if self.wall_following_stop: if 'wall_following_process' in locals(): wall_following_process.stop() # if start flag set: launch main launch-file if self.lane_following_start: lane_following_process = launch.launch(node_lane_following) # if stop flag set: shutdown main launch-file if self.lane_following_stop: if 'lane_following_process' in locals(): lane_following_process.stop() # if start flag set: launch main launch-file if self.stop_line_start: stop_line_process = launch.launch(node_stop_line) # if stop flag set: shutdown main launch-file if self.stop_line_stop: if 'stop_line_process' in locals(): stop_line_process.stop() # reset trigger self.person_following_start = False self.person_following_stop = False self.wall_following_start = False self.wall_following_stop = False self.lane_following_start = False self.lane_following_stop = False self.stop_line_start = False self.stop_line_stop = False rate.sleep() # joystick callback routine def joy_callback(self, data): # define joystick buttons x, circ, sq, tri, L1, R1, share, options, p4, L3, R3, DL, DR, DU, DD = data.buttons llr, lud, L2, rlr, rud, R2 = data.axes # Start person following if (tri == 1) and (self.person_following_start == False): rospy.loginfo("Starting the person following routine...") # set the start flag self.person_following_start = True # Start wall following if (sq == 1) and (self.wall_following_start == False): rospy.loginfo("Starting the wall following routine...") # set the start flag self.wall_following_start = True # Start lane following if (circ == 1) and (self.lane_following_start == False): rospy.loginfo("Starting the lane following routine...") # set the start flag self.lane_following_start = True # Start stop line if (x == 1) and (self.stop_line_start == False): rospy.loginfo("Starting the stop line routine...") # set the start flag self.stop_line_start = True # Terminate everything running and return to manual if (R1 == 1): rospy.loginfo("Terminating the predator routine...") # set stop flag self.person_following_stop = True self.wall_following_stop = True self.lane_following_stop = True self.stop_line_stop = True def laser_callback(self,data): if (self.stop_line_stop ==False) and (np.min(np.asarray(data.ranges[250:450])) <=0.5): rospy.loginfo("Terminating stop line") self.stop_line_stop = True if __name__ == "__main__": try: rospy.init_node("joy_start", anonymous=False) run = joy_control() except rospy.ROSInterruptException: rospy.loginfo("joy_start node terminated.")
#!/usr/bin/python """ Test the function that maps from EOS """ import numpy as np import pylab as P import scipy.integrate import scipy.interpolate import radiofisher as rf from radiofisher.experiments import cosmo C = 3e5 ax1 = P.subplot(111) def old_eos_fisher_matrix_derivs(cosmo, cosmo_fns): """ Pre-calculate derivatives required to transform (aperp, apar) into dark energy parameters (Omega_k, Omega_DE, w0, wa, h, gamma). Returns interpolation functions for d(f,a_perp,par)/d(DE params) as fn. of a. """ w0 = cosmo['w0']; wa = cosmo['wa'] om = cosmo['omega_M_0']; ol = cosmo['omega_lambda_0'] ok = 1. - om - ol # Omega_DE(a) and E(a) functions omegaDE = lambda a: ol * np.exp(3.*wa*(a - 1.)) / a**(3.*(1. + w0 + wa)) E = lambda a: np.sqrt( om * a**(-3.) + ok * a**(-2.) + omegaDE(a) ) # Derivatives of E(z) w.r.t. parameters #dE_omegaM = lambda a: 0.5 * a**(-3.) / E(a) if np.abs(ok) < 1e-7: # Effectively zero dE_omegak = lambda a: 0.5 * a**(-2.) / E(a) else: dE_omegak = lambda a: 0.5 * a**(-2.) / E(a) * (1. - 1./a) dE_omegaM = lambda a: 0.5 * a**(-3.) / E(a) dE_omegaDE = lambda a: 0.5 / E(a) * (1. - 1./a**3.) dE_w0 = lambda a: -1.5 * omegaDE(a) * np.log(a) / E(a) dE_wa = lambda a: -1.5 * omegaDE(a) * (np.log(a) + 1. - a) / E(a) # Bundle functions into list (for performing repetitive operations with them) fns = [dE_omegak, dE_omegaDE, dE_w0, dE_wa] # Set sampling of scale factor, and precompute some values HH, rr, DD, ff = cosmo_fns aa = np.linspace(1., 1e-4, 500) zz = 1./aa - 1. EE = E(aa); fz = ff(aa) gamma = cosmo['gamma']; H0 = 100. * cosmo['h']; h = cosmo['h'] # Derivatives of apar w.r.t. parameters derivs_apar = [f(aa)/EE for f in fns] # Derivatives of f(z) w.r.t. parameters f_fac = -gamma * fz / EE df_domegak = f_fac * (EE/om + dE_omegak(aa)) df_domegaDE = f_fac * (EE/om + dE_omegaDE(aa)) df_w0 = f_fac * dE_w0(aa) df_wa = f_fac * dE_wa(aa) df_dh = np.zeros(aa.shape) df_dgamma = fz * np.log(rf.omegaM_z(zz, cosmo)) derivs_f = [df_domegak, df_domegaDE, df_w0, df_wa, df_dh, df_dgamma] # Calculate comoving distance (including curvature) r_c = scipy.integrate.cumtrapz(1./(aa**2. * EE)) # FIXME! r_c = np.concatenate(([0.], r_c)) if ok > 0.: r = C/(H0*np.sqrt(ok)) * np.sinh(r_c * np.sqrt(ok)) elif ok < 0.: r = C/(H0*np.sqrt(-ok)) * np.sin(r_c * np.sqrt(-ok)) else: r = C/H0 * r_c # Perform integrals needed to calculate derivs. of aperp # FIXME: No factor of 2! print "*"*190 derivs_aperp = [(C/H0)/r[1:] * scipy.integrate.cumtrapz( f(aa)/(aa * EE)**2.) for f in fns] # FIXME # Add additional term to curvature integral (idx 1) # N.B. I think Pedro's result is wrong (for fiducial Omega_k=0 at least), # so I'm commenting it out #derivs_aperp[1] -= (H0 * r[1:] / C)**2. / 6. # Add initial values (to deal with 1/(r=0) at origin) inivals = [0.5, 0.0, 0., 0.] # FIXME: Are these OK? derivs_aperp = [ np.concatenate(([inivals[i]], derivs_aperp[i])) for i in range(len(derivs_aperp)) ] # Add (h, gamma) derivs to aperp,apar derivs_aperp += [np.ones(aa.shape)/h, np.zeros(aa.shape)] derivs_apar += [np.ones(aa.shape)/h, np.zeros(aa.shape)] # Construct interpolation functions interp_f = [scipy.interpolate.interp1d(aa[::-1], d[::-1], kind='linear', bounds_error=False) for d in derivs_f] interp_apar = [scipy.interpolate.interp1d(aa[::-1], d[::-1], kind='linear', bounds_error=False) for d in derivs_apar] interp_aperp = [scipy.interpolate.interp1d(aa[::-1], d[::-1], kind='linear', bounds_error=False) for d in derivs_aperp] return [interp_f, interp_aperp, interp_apar] def eos_fisher_matrix_derivs(cosmo, cosmo_fns): """ Pre-calculate derivatives required to transform (aperp, apar) into dark energy parameters (Omega_k, Omega_DE, w0, wa, h, gamma). Returns interpolation functions for d(f,a_perp,par)/d(DE params) as fn. of a. """ w0 = cosmo['w0']; wa = cosmo['wa'] om = cosmo['omega_M_0']; ol = cosmo['omega_lambda_0'] ok = 1. - om - ol # Omega_DE(a) and E(a) functions omegaDE = lambda a: ol * np.exp(3.*wa*(a - 1.)) / a**(3.*(1. + w0 + wa)) E = lambda a: np.sqrt( om * a**(-3.) + ok * a**(-2.) + omegaDE(a) ) # Derivatives of E(z) w.r.t. parameters #dE_omegaM = lambda a: 0.5 * a**(-3.) / E(a) if np.abs(ok) < 1e-7: # Effectively zero dE_omegak = lambda a: 0.5 * a**(-2.) / E(a) else: dE_omegak = lambda a: 0.5 * a**(-2.) / E(a) * (1. - 1./a) dE_omegaM = lambda a: 0.5 * a**(-3.) / E(a) dE_omegaDE = lambda a: 0.5 / E(a) * (1. - 1./a**3.) dE_w0 = lambda a: -1.5 * omegaDE(a) * np.log(a) / E(a) dE_wa = lambda a: -1.5 * omegaDE(a) * (np.log(a) + 1. - a) / E(a) # Bundle functions into list (for performing repetitive operations with them) fns = [dE_omegak, dE_omegaDE, dE_w0, dE_wa] # Set sampling of scale factor, and precompute some values HH, rr, DD, ff = cosmo_fns aa = np.linspace(1., 1e-4, 500) zz = 1./aa - 1. EE = E(aa); fz = ff(aa) gamma = cosmo['gamma']; H0 = 100. * cosmo['h']; h = cosmo['h'] # Derivatives of apar w.r.t. parameters derivs_apar = [f(aa)/EE for f in fns] # Derivatives of f(z) w.r.t. parameters f_fac = -gamma * fz / EE df_domegak = f_fac * (EE/om + dE_omegak(aa)) df_domegaDE = f_fac * (EE/om + dE_omegaDE(aa)) df_w0 = f_fac * dE_w0(aa) df_wa = f_fac * dE_wa(aa) df_dh = np.zeros(aa.shape) df_dgamma = fz * np.log(rf.omegaM_z(zz, cosmo)) # FIXME: rf.omegaM_z derivs_f = [df_domegak, df_domegaDE, df_w0, df_wa, df_dh, df_dgamma] # Calculate comoving distance (including curvature) r_c = scipy.integrate.cumtrapz(1./(aa**2. * EE), aa) # FIXME! r_c = np.concatenate(([0.], r_c)) if ok > 0.: r = C/(H0*np.sqrt(ok)) * np.sinh(r_c * np.sqrt(ok)) elif ok < 0.: r = C/(H0*np.sqrt(-ok)) * np.sin(r_c * np.sqrt(-ok)) else: r = C/H0 * r_c # Perform integrals needed to calculate derivs. of aperp print "*"*190 derivs_aperp = [(C/H0)/r[1:] * scipy.integrate.cumtrapz( f(aa)/(aa * EE)**2., aa) for f in fns] # FIXME # Add additional term to curvature integral (idx 1) # N.B. I think Pedro's result is wrong (for fiducial Omega_k=0 at least), # so I'm commenting it out #derivs_aperp[1] -= (H0 * r[1:] / C)**2. / 6. # Add initial values (to deal with 1/(r=0) at origin) inivals = [0.5, 0.0, 0., 0.] # FIXME: Are these OK? derivs_aperp = [ np.concatenate(([inivals[i]], derivs_aperp[i])) for i in range(len(derivs_aperp)) ] # Add (h, gamma) derivs to aperp,apar derivs_aperp += [np.ones(aa.shape)/h, np.zeros(aa.shape)] derivs_apar += [np.ones(aa.shape)/h, np.zeros(aa.shape)] # Construct interpolation functions interp_f = [scipy.interpolate.interp1d(aa[::-1], d[::-1], kind='linear', bounds_error=False) for d in derivs_f] interp_apar = [scipy.interpolate.interp1d(aa[::-1], d[::-1], kind='linear', bounds_error=False) for d in derivs_apar] interp_aperp = [scipy.interpolate.interp1d(aa[::-1], d[::-1], kind='linear', bounds_error=False) for d in derivs_aperp] return [interp_f, interp_aperp, interp_apar] # Precompute cosmo functions cosmo_fns = rf.background_evolution_splines(cosmo) # OLD old_f, old_aperp, old_apar = old_eos_fisher_matrix_derivs(cosmo, cosmo_fns) # NEW new_f, new_aperp, new_apar = eos_fisher_matrix_derivs(cosmo, cosmo_fns) z = np.linspace(0., 7., 1000) a = 1. / (1. + z) # Plot results P.subplot(111) cols = ['r', 'g', 'b', 'y', 'c', 'm'] for i in range(len(new_f)): P.plot(z, old_f[i](a), lw=1.5, color=cols[i], alpha=0.4) P.plot(z, new_f[i](a), lw=1.5, color=cols[i], ls='dashed') P.show()
import pyparsing as _pp def _swap_infix(s, l, t): t[0][0], t[0][1] = t[0][1], t[0][0] _quoted = _pp.QuotedString('"', escChar='\\') _plain_tag = _pp.Word(_pp.alphas + "_", _pp.alphanums + "_-") _tag = (_quoted | _plain_tag).setParseAction(lambda s, l, t: [['$', t[0]]]) _const = _pp.Word('01', exact=1).setParseAction(lambda s, l, t: [[t[0]]]) _term = _tag | _const _expr = _pp.infixNotation( _term, [ ("!", 1, _pp.opAssoc.RIGHT), ("&", 2, _pp.opAssoc.RIGHT, _swap_infix), ("|", 2, _pp.opAssoc.RIGHT, _swap_infix), ] ) def compile(expr): try: ast = _expr.parseString(expr, parseAll=True).asList()[0] except _pp.ParseException as e: raise RuntimeError("Error parsing tag expression at \"@@@\": {}".format(e.markInputline("@@@"))) from e def evaluate(tags): def recurse(ast): if ast[0] == '$': return ast[1] in tags if ast[0] == '0': return False if ast[0] == '1': return True if ast[0] == '!': return not recurse(ast[1]) if ast[0] == '&': return recurse(ast[1]) and recurse(ast[2]) if ast[0] == '|': return recurse(ast[1]) or recurse(ast[2]) assert 0 return recurse(ast) return evaluate
# Generated by Django 2.2.6 on 2019-10-14 20:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('backend', '0007_connection_guacdserver'), ] operations = [ migrations.AddField( model_name='connection', name='credentials', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='backend.Credentials', verbose_name='Credentials'), ), ]
#!/usr/bin/env python -u """py65mon -- interact with a simulated 6502-based system Usage: %s [options] Options: -h, --help : Show this message -m, --mpu <device> : Choose which MPU device (default is 6502) -l, --load <file> : Load a file at address 0 -r, --rom <file> : Load a rom at the top of address space and reset into it -g, --goto <address> : Perform a goto command after loading any files -i, --input <address> : define location of getc (default $f004) -o, --output <address> : define location of putc (default $f001) """ import cmd import getopt import os import re import shlex import sys from asyncore import compact_traceback from py65.devices.mpu6502 import MPU as NMOS6502 from py65.devices.mpu65c02 import MPU as CMOS65C02 from py65.devices.mpu65org16 import MPU as V65Org16 from py65.disassembler import Disassembler from py65.assembler import Assembler from py65.utils.addressing import AddressParser from py65.utils import console from py65.utils.conversions import itoa from py65.memory import ObservableMemory try: from urllib2 import urlopen except ImportError: # Python 3 from urllib.request import urlopen class Monitor(cmd.Cmd): Microprocessors = {'6502': NMOS6502, '65C02': CMOS65C02, '65Org16': V65Org16} def __init__(self, argv=None, stdin=None, stdout=None, mpu_type=NMOS6502, memory=None, putc_addr=0xF001, getc_addr=0xF004): self.mpu_type = mpu_type self.memory = memory self.putc_addr = putc_addr self.getc_addr = getc_addr self._breakpoints = [] self._width = 78 self.prompt = "." self._add_shortcuts() # Save the current system input mode so it can be restored after # after processing commands and before exiting. console.save_mode(sys.stdin) # Attempt to get a copy of stdin that is unbuffered on systems # that support it. This allows for immediate response to # typed input as well as pasted input. If unable to get an # unbuffered version of stdin, the original version is returned. self.unbuffered_stdin = console.get_unbuffered_stdin(stdin) cmd.Cmd.__init__(self, stdin=self.unbuffered_stdin, stdout=stdout) # Check for any exceptions thrown during __init__ while # processing the arguments. try: if argv is None: argv = sys.argv load, rom, goto = self._parse_args(argv) self._reset(self.mpu_type, self.getc_addr, self.putc_addr) if load is not None: self.do_load("%r" % load) if goto is not None: self.do_goto(goto) if rom is not None: # load a ROM and run from the reset vector self.do_load("%r top" % rom) physMask = self._mpu.memory.physMask reset = self._mpu.RESET & physMask dest = self._mpu.memory[reset] + \ (self._mpu.memory[reset + 1] << self.byteWidth) self.do_goto("$%x" % dest) except: # Restore input mode on any exception and then rethrow the # exception. console.restore_mode() raise def __del__(self): try: # Restore the input mode. console.restore_mode() # Close the unbuffered input file handle, if it exists. if self.unbuffered_stdin != None: if self.unbuffered_stdin != sys.stdin: self.unbuffered_stdin.close() except: pass def _parse_args(self, argv): try: shortopts = 'hi:o:m:l:r:g:' longopts = ['help', 'mpu=', 'input=', 'output=', 'load=', 'rom=', 'goto='] options, args = getopt.getopt(argv[1:], shortopts, longopts) except getopt.GetoptError as exc: self._output(exc.args[0]) self._usage() self._exit(1) load, rom, goto = None, None, None for opt, value in options: if opt in ('-i', '--input'): self.getc_addr = int(value, 16) if opt in ('-o', '--output'): self.putc_addr = int(value, 16) if opt in ('-m', '--mpu'): mpu_type = self._get_mpu(value) if mpu_type is None: mpus = sorted(self.Microprocessors.keys()) msg = "Fatal: no such MPU. Available MPUs: %s" self._output(msg % ', '.join(mpus)) sys.exit(1) self.mpu_type = mpu_type if opt in ("-h", "--help"): self._usage() self._exit(0) if opt in ('-l', '--load'): load = value if opt in ('-r', '--rom'): rom = value if opt in ('-g', '--goto'): goto = value return load, rom, goto def _usage(self): usage = __doc__ % sys.argv[0] self._output(usage) def onecmd(self, line): line = self._preprocess_line(line) result = None try: result = cmd.Cmd.onecmd(self, line) except KeyboardInterrupt: self._output("Interrupt") except Exception: (file, fun, line), t, v, tbinfo = compact_traceback() error = 'Error: %s, %s: file: %s line: %s' % (t, v, file, line) self._output(error) if not line.startswith("quit"): self._output_mpu_status() # Switch back to the previous input mode. console.restore_mode() return result def _reset(self, mpu_type, getc_addr=0xF004, putc_addr=0xF001): self._mpu = mpu_type(memory=self.memory) self.addrWidth = self._mpu.ADDR_WIDTH self.byteWidth = self._mpu.BYTE_WIDTH self.addrFmt = self._mpu.ADDR_FORMAT self.byteFmt = self._mpu.BYTE_FORMAT self.addrMask = self._mpu.addrMask self.byteMask = self._mpu.byteMask if getc_addr and putc_addr: self._install_mpu_observers(getc_addr, putc_addr) self._address_parser = AddressParser() self._disassembler = Disassembler(self._mpu, self._address_parser) self._assembler = Assembler(self._mpu, self._address_parser) def _add_shortcuts(self): self._shortcuts = {'EOF': 'quit', '~': 'tilde', 'a': 'assemble', 'ab': 'add_breakpoint', 'al': 'add_label', 'd': 'disassemble', 'db': 'delete_breakpoint', 'dl': 'delete_label', 'exit': 'quit', 'f': 'fill', '>': 'fill', 'g': 'goto', 'h': 'help', '?': 'help', 'l': 'load', 'm': 'mem', 'q': 'quit', 'r': 'registers', 'ret': 'return', 'rad': 'radix', 's': 'save', 'shb': 'show_breakpoints', 'shl': 'show_labels', 'x': 'quit', 'z': 'step'} def _preprocess_line(self, line): # line comments quoted = False for pos, char in enumerate(line): if char in ('"', "'"): quoted = not quoted if (not quoted) and (char == ';'): line = line[:pos] break # whitespace & leading dots line = line.strip(' \t').lstrip('.') # special case for vice compatibility if line.startswith('~'): line = self._shortcuts['~'] + ' ' + line[1:] # command shortcuts for shortcut, command in self._shortcuts.items(): if line == shortcut: line = command break pattern = '^%s\s+' % re.escape(shortcut) matches = re.match(pattern, line) if matches: start, end = matches.span() line = "%s %s" % (command, line[end:]) break return line def _get_mpu(self, name): requested = name.lower() mpu = None for key, klass in self.Microprocessors.items(): if key.lower() == requested: mpu = klass break return mpu def _install_mpu_observers(self, getc_addr, putc_addr): def putc(address, value): try: self.stdout.write(chr(value)) except UnicodeEncodeError: # Python 3 self.stdout.write("?") self.stdout.flush() def getc(address): char = console.getch_noblock(self.stdin) if char: byte = ord(char) else: byte = 0 return byte m = ObservableMemory(subject=self.memory, addrWidth=self.addrWidth) m.subscribe_to_write([self.putc_addr], putc) m.subscribe_to_read([self.getc_addr], getc) self._mpu.memory = m def _output_mpu_status(self): self._output("\n" + repr(self._mpu)) def _output(self, stuff): self.stdout.write("%s\n" % stuff) def _exit(self, exitcode=0): sys.exit(exitcode) def do_help(self, args): args = self._shortcuts.get(args.strip(), args) return cmd.Cmd.do_help(self, args) def help_version(self): self._output("version\t\tDisplay Py65 version information.") def do_version(self, args): self._output("\nPy65 Monitor UCSB IEEE Edition") def help_help(self): self._output("help\t\tPrint a list of available actions.") self._output("help <action>\tPrint help for <action>.") def help_reset(self): self._output("reset\t\tReset the microprocessor") def do_reset(self, args): klass = self._mpu.__class__ self._reset(mpu_type=klass) def do_mpu(self, args): def available_mpus(): mpus = list(self.Microprocessors.keys()) mpus.sort() self._output("Available MPUs: %s" % ', '.join(mpus)) if args == '': self._output("Current MPU is %s" % self._mpu.name) available_mpus() else: new_mpu = self._get_mpu(args) if new_mpu is None: self._output("Unknown MPU: %s" % args) available_mpus() else: self._reset(new_mpu,self.getc_addr,self.putc_addr) self._output("Reset with new MPU %s" % self._mpu.name) def help_mpu(self): self._output("mpu\t\tPrint available microprocessors.") self._output("mpu <type>\tSelect a new microprocessor.") def do_quit(self, args): self._output('') return 1 def help_quit(self): self._output("To quit, type ^D or use the quit command.") def do_assemble(self, args): splitted = args.split(None, 1) if len(splitted) != 2: return self._interactive_assemble(args) statement = splitted[1] try: start = self._address_parser.number(splitted[0]) bytes = self._assembler.assemble(statement, start) end = start + len(bytes) self._mpu.memory[start:end] = bytes self.do_disassemble(self.addrFmt % start) except KeyError as exc: self._output(exc.args[0]) # "Label not found: foo" except OverflowError: self._output("Overflow error: %s" % args) except SyntaxError: self._output("Syntax error: %s" % statement) def help_assemble(self): self._output("assemble\t\t\t" "Start interactive assembly at the program counter.") self._output("assemble <address>\t\t" "Start interactive assembly at the address.") self._output("assemble <address> <statement>\t" "Assemble a statement at the address.") def _interactive_assemble(self, args): if args == '': start = self._mpu.pc else: try: start = self._address_parser.number(args) except KeyError as exc: self._output(exc.args[0]) # "Label not found: foo" return while True: prompt = "\r$" + (self.addrFmt % start) + " " + \ (" " * int(1 + self.byteWidth / 4) * 3) line = console.line_input(prompt, stdin=self.stdin, stdout=self.stdout) if not line.strip(): self.stdout.write("\n") return # assemble into memory try: bytes = self._assembler.assemble(line, pc=start) numbytes = len(bytes) end = start + numbytes self._mpu.memory[start:end] = bytes # print disassembly _, disasm = self._disassembler.instruction_at(start) fdisasm = self._format_disassembly(start, numbytes, disasm) indent = ' ' * (len(prompt + line) + 5) self.stdout.write("\r" + indent + "\r") self.stdout.write(fdisasm + "\n") # advance to next address start += numbytes if start >= (2 ** self._mpu.ADDR_WIDTH): start = 0 except KeyError: addr = self.addrFmt % start self.stdout.write("\r$%s ?Label\n" % addr) except OverflowError: addr = self.addrFmt % start self.stdout.write("\r$%s ?Overflow\n" % addr) except SyntaxError: addr = self.addrFmt % start self.stdout.write("\r$%s ?Syntax\n" % addr) def do_disassemble(self, args): splitted = shlex.split(args) if len(splitted) != 1: return self.help_disassemble() address_parts = splitted[0].split(":") start = self._address_parser.number(address_parts[0]) if len(address_parts) > 1: end = self._address_parser.number(address_parts[1]) else: end = start max_address = (2 ** self._mpu.ADDR_WIDTH) - 1 cur_address = start needs_wrap = start > end while needs_wrap or cur_address <= end: length, disasm = self._disassembler.instruction_at(cur_address) self._output(self._format_disassembly(cur_address, length, disasm)) remaining = length while remaining: remaining -= 1 cur_address += 1 if start > end and cur_address > max_address: needs_wrap = False cur_address = 0 def _format_disassembly(self, address, length, disasm): cur_address = address max_address = (2 ** self._mpu.ADDR_WIDTH) - 1 bytes_remaining = length dump = '' while bytes_remaining: if cur_address > max_address: cur_address = 0 dump += self.byteFmt % self._mpu.memory[cur_address] + " " cur_address += 1 bytes_remaining -= 1 fieldwidth = 1 + int(1 + self.byteWidth / 4) * 3 fieldfmt = "%%-%ds" % fieldwidth return "$" + self.addrFmt % address + " " + fieldfmt % dump + disasm def help_disassemble(self): self._output("disassemble <address_range>") self._output("Disassemble instructions in the address range.") self._output('Range is specified like "<start>:<end>".') def help_step(self): self._output("step") self._output("Single-step through instructions.") def do_step(self, args): self._mpu.step() self.do_disassemble(self.addrFmt % self._mpu.pc) def help_return(self): self._output("return") self._output("Continues execution and returns to the monitor just") self._output("before the next RTS or RTI is executed.") def do_return(self, args): returns = [0x60, 0x40] # RTS, RTI self._run(stopcodes=returns) def help_goto(self): self._output("goto <address>") self._output("Change the PC to address and continue execution.") def do_goto(self, args): if args == '': return self.help_goto() self._mpu.pc = self._address_parser.number(args) stps = [0xdb] # STP self._run(stopcodes=stps) def _run(self, stopcodes): stopcodes = set(stopcodes) breakpoints = set(self._breakpoints) mpu = self._mpu mem = self._mpu.memory # Switch to immediate (noncanonical) no-echo input mode on POSIX # operating systems. This has no effect on Windows. console.noncanonical_mode(self.stdin) if not breakpoints: while True: if mem[mpu.pc] in stopcodes: break mpu.step() else: while True: pc = mpu.pc if mem[pc] in stopcodes: break if pc in breakpoints: msg = "Breakpoint %d reached." self._output(msg % self._breakpoints.index(pc)) break mpu.step() # Switch back to the previous input mode. console.restore_mode() def help_radix(self): self._output("radix [H|D|O|B]") self._output("Set default radix to hex, decimal, octal, or binary.") self._output("With no argument, the current radix is printed.") def help_cycles(self): self._output("Display the total number of cycles executed.") def do_cycles(self, args): self._output(str(self._mpu.processorCycles)) def do_radix(self, args): radixes = {'Hexadecimal': 16, 'Decimal': 10, 'Octal': 8, 'Binary': 2} if args != '': new = args[0].lower() changed = False for name, radix in radixes.items(): if name[0].lower() == new: self._address_parser.radix = radix changed = True if not changed: self._output("Illegal radix: %s" % args) for name, radix in radixes.items(): if self._address_parser.radix == radix: self._output("Default radix is %s" % name) def help_tilde(self): self._output("~ <number>") self._output("Display a number in decimal, hex, octal, and binary.") def do_tilde(self, args): if args == '': return self.help_tilde() try: num = self._address_parser.number(args) self._output("+%u" % num) self._output("$" + self.byteFmt % num) self._output("%04o" % num) self._output(itoa(num, 2).zfill(8)) except KeyError: self._output("Bad label: %s" % args) except OverflowError: self._output("Overflow error: %s" % args) def help_registers(self): self._output("registers[<name>=<value> [, <name>=<value>]*]") self._output("Assign respective registers. With no parameters,") self._output("display register values.") def do_registers(self, args): if args == '': return pairs = re.findall('([^=,\s]*)=([^=,\s]*)', args) if pairs == []: return self._output("Syntax error: %s" % args) for register, value in pairs: if register not in ('pc', 'sp', 'a', 'x', 'y', 'p'): self._output("Invalid register: %s" % register) else: try: intval = self._address_parser.number(value) except KeyError as exc: # label not found self._output(exc.args[0]) continue except OverflowError as exc: # wider than address space msg = "Overflow: %r too wide for register %r" self._output(msg % (value, register)) continue if register != 'pc': if intval != (intval & self.byteMask): msg = "Overflow: %r too wide for register %r" self._output(msg % (value, register)) continue setattr(self._mpu, register, intval) def help_cd(self): self._output("cd <directory>") self._output("Change the working directory.") def do_cd(self, args): if args == '': return self.help_cd() try: os.chdir(args) except OSError as exc: msg = "Cannot change directory: [%d] %s" % (exc.errno, exc.strerror) self._output(msg) self.do_pwd() def help_pwd(self): self._output("Show the current working directory.") def do_pwd(self, args=None): cwd = os.getcwd() self._output(cwd) def help_load(self): self._output("load <filename|url> <address|top>") self._output("Load a file into memory at the specified address.") self._output('An address of "top" loads into the top of memory.') self._output("Commodore-style load address bytes are ignored.") def do_load(self, args): split = shlex.split(args) if len(split) not in (1, 2): self._output("Syntax error: %s" % args) return filename = split[0] if "://" in filename: try: f = urlopen(filename) bytes = f.read() f.close() except Exception as exc: msg = "Cannot fetch remote file: %s" % str(exc) self._output(msg) return else: try: f = open(filename, 'rb') bytes = f.read() f.close() except (OSError, IOError) as exc: msg = "Cannot load file: [%d] %s" % (exc.errno, exc.strerror) self._output(msg) return if len(split) == 2: if split[1] == "top": # load a ROM to top of memory top_address = self.addrMask program_size = len(bytes) // (self.byteWidth // 8) start = top_address - program_size + 1 else: start = self._address_parser.number(split[1]) else: start = self._mpu.pc if self.byteWidth == 8: if isinstance(bytes, str): bytes = map(ord, bytes) else: # Python 3 bytes = [ b for b in bytes ] elif self.byteWidth == 16: def format(msb, lsb): if isinstance(bytes, str): return (ord(msb) << 8) + ord(lsb) else: # Python 3 return (msb << 8) + lsb bytes = list(map(format, bytes[0::2], bytes[1::2])) self._fill(start, start, bytes) def help_save(self): self._output("save \"filename\" <start> <end>") self._output("Save the specified memory range as a binary file.") self._output("Commodore-style load address bytes are not written.") def do_save(self, args): split = shlex.split(args) if len(split) != 3: self._output("Syntax error: %s" % args) return filename = split[0] start = self._address_parser.number(split[1]) end = self._address_parser.number(split[2]) mem = self._mpu.memory[start:end + 1] try: f = open(filename, 'wb') for m in mem: # output each octect from msb first for shift in range(self.byteWidth - 8, -1, -8): f.write(bytearray([(m >> shift) & 0xff])) f.close() except (OSError, IOError) as exc: msg = "Cannot save file: [%d] %s" % (exc.errno, exc.strerror) self._output(msg) return self._output("Saved +%d bytes to %s" % (len(mem), filename)) def help_fill(self): self._output("fill <address_range> <data_list>") self._output("Fill memory in the address range with the data in") self._output("<data_list>. If the size of the address range is") self._output("greater than the size of the data_list, the data_list ") self._output("is repeated.") def do_fill(self, args): split = shlex.split(args) if len(split) < 2: return self.help_fill() try: start, end = self._address_parser.range(split[0]) filler = list(map(self._address_parser.number, split[1:])) except KeyError as exc: self._output(exc.args[0]) # "Label not found: foo" else: self._fill(start, end, filler) def _fill(self, start, end, filler): address = start length, index = len(filler), 0 if start == end: end = start + length - 1 if (end > self.addrMask): end = self.addrMask while address <= end: address &= self.addrMask self._mpu.memory[address] = (filler[index] & self.byteMask) index += 1 if index == length: index = 0 address += 1 fmt = (end - start + 1, start, end) starttoend = "$" + self.addrFmt + " to $" + self.addrFmt self._output(("Wrote +%d bytes from " + starttoend) % fmt) def help_mem(self): self._output("mem <address_range>") self._output("Display the contents of memory.") self._output('Range is specified like "<start:end>".') def do_mem(self, args): split = shlex.split(args) if len(split) != 1: return self.help_mem() start, end = self._address_parser.range(split[0]) line = self.addrFmt % start + ":" for address in range(start, end + 1): byte = self._mpu.memory[address] more = " " + self.byteFmt % byte exceeded = len(line) + len(more) > self._width if exceeded: self._output(line) line = self.addrFmt % address + ":" line += more self._output(line) def help_add_label(self): self._output("add_label <address> <label>") self._output("Map a given address to a label.") def do_add_label(self, args): split = shlex.split(args) if len(split) != 2: self._output("Syntax error: %s" % args) return self.help_add_label() try: address = self._address_parser.number(split[0]) except KeyError as exc: self._output(exc.args[0]) # "Label not found: foo" except OverflowError: self._output("Overflow error: %s" % args) else: label = split[1] self._address_parser.labels[label] = address def help_show_labels(self): self._output("show_labels") self._output("Display current label mappings.") def do_show_labels(self, args): values = list(self._address_parser.labels.values()) keys = list(self._address_parser.labels.keys()) byaddress = list(zip(values, keys)) byaddress.sort() for address, label in byaddress: self._output(self.addrFmt % address + ": " + label) def help_delete_label(self): self._output("delete_label <label>") self._output("Remove the specified label from the label tables.") def do_delete_label(self, args): if args == '': return self.help_delete_label() if args in self._address_parser.labels: del self._address_parser.labels[args] def do_width(self, args): if args != '': try: new_width = int(args) if new_width >= 10: self._width = new_width else: self._output("Minimum terminal width is 10") except ValueError: self._output("Illegal width: %s" % args) self._output("Terminal width is %d" % self._width) def help_width(self): self._output("width <columns>") self._output("Set the width used by some commands to wrap output.") self._output("With no argument, the current width is printed.") def do_add_breakpoint(self, args): split = shlex.split(args) if len(split) != 1: self._output("Syntax error: %s" % args) return self.help_add_breakpoint() address = self._address_parser.number(split[0]) if address in self._breakpoints: self._output("Breakpoint already present at $%04X" % address) else: self._breakpoints.append(address) msg = "Breakpoint %d added at $%04X" self._output(msg % (len(self._breakpoints) - 1, address)) def help_add_breakpoint(self): self._output("add_breakpoint <address|label>") self._output("Add a breakpoint on execution at the given address or label") def do_delete_breakpoint(self, args): split = shlex.split(args) if len(split) != 1: self._output("Syntax error: %s" % args) return self.help_delete_breakpoint() number = None try: number = int(split[0]) if number < 0 or number > len(self._breakpoints): self._output("Invalid breakpoint number %d", number) return except ValueError: self._output("Illegal number: %s" % args) return if self._breakpoints[number] is not None: self._breakpoints[number] = None self._output("Breakpoint %d removed" % number) else: self._output("Breakpoint %d already removed" % number) def help_delete_breakpoint(self): self._output("delete_breakpoint <number>") self._output("Delete the breakpoint on execution marked by the given number") def do_show_breakpoints(self, args): for i, address in enumerate(self._breakpoints): if address is not None: bpinfo = "Breakpoint %d: $%04X" % (i, address) label = self._address_parser.label_for(address) if label is not None: bpinfo += " " + label self._output(bpinfo) def help_show_breakpoints(self): self._output("show_breakpoints") self._output("Lists the currently assigned breakpoints") def main(args=None): c = Monitor() try: import readline readline = readline # pyflakes except ImportError: pass try: c.onecmd('version') c.cmdloop() except KeyboardInterrupt: c._output('') console.restore_mode() if __name__ == "__main__": main()
import asyncio import multiprocessing import queue import sys import time import pytest from aplex.executor import (SubmitItem, HandlerCommands, WorkStates, WorkerStates) from aplex.process import _ProcessWorker from aplex.thread import _ThreadWorker @pytest.fixture(scope='function', params=[ (_ProcessWorker, multiprocessing.SimpleQueue), (_ThreadWorker, queue.Queue), ]) def worker(request): Worker, ResultQueue = request.param worker = Worker(ResultQueue()) worker.start() yield worker worker.close() async def async_work(meta): if isinstance(meta, Exception): raise meta return meta def sync_work(meta): if isinstance(meta, Exception): raise meta return meta async def work_to_cancel(): await asyncio.sleep(999) class TestReceive: @pytest.mark.parametrize(('work_state', 'work_state_meta'), [ (WorkStates.SUCCESS, 'result'), (WorkStates.EXCEPTION, Exception('exc')), ]) @pytest.mark.parametrize('work', [async_work, sync_work]) def test_receive_work(self, worker, work, work_state, work_state_meta): item = SubmitItem.work_form(work=work, args=(work_state_meta,), kwargs={}, work_id=666, load_balancing_meta=None) worker.submit(item) result_item = worker._result_queue.get() assert result_item.work_state == work_state if work_state == WorkStates.EXCEPTION: returned_meta = result_item.work_state_meta # Compare two exceptions. assert (type(returned_meta) == type(work_state_meta) and returned_meta.args == work_state_meta.args) else: assert result_item.work_state_meta == work_state_meta @pytest.mark.parametrize(('command', 'command_meta'), [ (HandlerCommands.CANCEL, 666), (HandlerCommands.CLOSE, None), ]) def test_receive_command(self, worker, command, command_meta): work_id = 666 item = SubmitItem.work_form(work=work_to_cancel, args=(), kwargs={}, work_id=work_id, load_balancing_meta=None) worker.submit(item) item = SubmitItem.command_form(command=command, command_meta=command_meta) worker.submit(item) # Close command will also trigger cancellation. result_item = worker._result_queue.get() assert (result_item.work_id == work_id and result_item.work_state == WorkStates.CANCELLED) if command == HandlerCommands.CLOSE: result_item = worker._result_queue.get() assert (result_item.worker_state == WorkerStates.CLOSING and result_item.worker_state_meta == worker.ident) async def async_raise_base_exc(): raise BaseException('base_exception') def sync_raise_base_exc(): raise BaseException('base_exception') @pytest.mark.parametrize('work', [async_raise_base_exc, sync_raise_base_exc]) def test_base_exception_raised(worker, work): item = SubmitItem.work_form(work=work, args=(), kwargs={}, work_id=666, load_balancing_meta=None) worker.submit(item) item = worker._result_queue.get() assert item.worker_state == WorkerStates.ERROR time.sleep(2) assert not worker.is_alive() @pytest.mark.parametrize('loop_factory', [ asyncio.SelectorEventLoop, pytest.param('asyncio.ProactorEventLoop', marks=pytest.mark.skipif(sys.platform != 'win32', reason='Windows only.')), pytest.param('uvloop.Loop', marks=pytest.mark.skipif(sys.platform == 'win32', reason='Not support Windows.')), ]) @pytest.mark.parametrize('worker_factory', [_ProcessWorker, _ThreadWorker]) def test_loop_factory(worker_factory, loop_factory): if loop_factory == 'asyncio.ProactorEventLoop': loop_factory = asyncio.ProactorEventLoop elif loop_factory == 'uvloop.Loop': import uvloop loop_factory = uvloop.Loop if worker_factory == _ProcessWorker: q = multiprocessing.SimpleQueue() else: q = queue.Queue() worker = worker_factory(q, loop_factory) worker.start() time.sleep(3) assert worker.is_alive() worker.close()
# Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Package for analyzing elastic tensors and properties. """ from .elastic import * # noqa from .strain import * # noqa from .stress import * # noqa
import time from requests import request, ConnectionError from ..utils import SSLHttpAdapter, module_member, parse_qs, user_agent from ..exceptions import AuthFailed class BaseAuth: """A authentication backend that authenticates the user based on the provider response""" name = '' # provider name, it's stored in database supports_inactive_user = False # Django auth ID_KEY = None EXTRA_DATA = None GET_ALL_EXTRA_DATA = False REQUIRES_EMAIL_VALIDATION = False SEND_USER_AGENT = False SSL_PROTOCOL = None def __init__(self, strategy, redirect_uri=None): self.strategy = strategy self.redirect_uri = redirect_uri self.data = self.strategy.request_data() self.redirect_uri = self.strategy.absolute_uri( self.redirect_uri ) def setting(self, name, default=None): """Return setting value from strategy""" return self.strategy.setting(name, default=default, backend=self) def start(self): if self.uses_redirect(): return self.strategy.redirect(self.auth_url()) else: return self.strategy.html(self.auth_html()) def complete(self, *args, **kwargs): return self.auth_complete(*args, **kwargs) def auth_url(self): """Must return redirect URL to auth provider""" raise NotImplementedError('Implement in subclass') def auth_html(self): """Must return login HTML content returned by provider""" raise NotImplementedError('Implement in subclass') def auth_complete(self, *args, **kwargs): """Completes login process, must return user instance""" raise NotImplementedError('Implement in subclass') def process_error(self, data): """Process data for errors, raise exception if needed. Call this method on any override of auth_complete.""" pass def authenticate(self, *args, **kwargs): """Authenticate user using social credentials Authentication is made if this is the correct backend, backend verification is made by kwargs inspection for current backend name presence. """ # Validate backend and arguments. Require that the Social Auth # response be passed in as a keyword argument, to make sure we # don't match the username/password calling conventions of # authenticate. if 'backend' not in kwargs or kwargs['backend'].name != self.name or \ 'strategy' not in kwargs or 'response' not in kwargs: return None self.strategy = kwargs.get('strategy') or self.strategy self.redirect_uri = kwargs.get('redirect_uri') or self.redirect_uri self.data = self.strategy.request_data() kwargs.setdefault('is_new', False) pipeline = self.strategy.get_pipeline(self) args, kwargs = self.strategy.clean_authenticate_args(*args, **kwargs) return self.pipeline(pipeline, *args, **kwargs) def pipeline(self, pipeline, pipeline_index=0, *args, **kwargs): out = self.run_pipeline(pipeline, pipeline_index, *args, **kwargs) if not isinstance(out, dict): return out user = out.get('user') if user: user.social_user = out.get('social') user.is_new = out.get('is_new') return user def disconnect(self, *args, **kwargs): pipeline = self.strategy.get_disconnect_pipeline(self) kwargs['name'] = self.name kwargs['user_storage'] = self.strategy.storage.user return self.run_pipeline(pipeline, *args, **kwargs) def run_pipeline(self, pipeline, pipeline_index=0, *args, **kwargs): out = kwargs.copy() out.setdefault('strategy', self.strategy) out.setdefault('backend', out.pop(self.name, None) or self) out.setdefault('request', self.strategy.request_data()) out.setdefault('details', {}) if not isinstance(pipeline_index, int) or \ pipeline_index < 0 or \ pipeline_index >= len(pipeline): pipeline_index = 0 for idx, name in enumerate(pipeline[pipeline_index:]): out['pipeline_index'] = pipeline_index + idx func = module_member(name) result = func(*args, **out) or {} if not isinstance(result, dict): return result out.update(result) return out def extra_data(self, user, uid, response, details=None, *args, **kwargs): """Return default extra data to store in extra_data field""" data = { # store the last time authentication toke place 'auth_time': int(time.time()) } extra_data_entries = [] if self.GET_ALL_EXTRA_DATA or self.setting('GET_ALL_EXTRA_DATA', False): extra_data_entries = response.keys() else: extra_data_entries = (self.EXTRA_DATA or []) + self.setting('EXTRA_DATA', []) for entry in extra_data_entries: if not isinstance(entry, (list, tuple)): entry = (entry,) size = len(entry) if size >= 1 and size <= 3: if size == 3: name, alias, discard = entry elif size == 2: (name, alias), discard = entry, False elif size == 1: name = alias = entry[0] discard = False value = response.get(name) or details.get(name) or details.get(alias) if discard and not value: continue data[alias] = value return data def auth_allowed(self, response, details): """Return True if the user should be allowed to authenticate, by default check if email is whitelisted (if there's a whitelist)""" emails = self.setting('WHITELISTED_EMAILS', []) domains = self.setting('WHITELISTED_DOMAINS', []) email = details.get('email') allowed = True if email and (emails or domains): domain = email.split('@', 1)[1] allowed = email in emails or domain in domains return allowed def get_user_id(self, details, response): """Return a unique ID for the current user, by default from server response.""" return response.get(self.ID_KEY) def get_user_details(self, response): """Must return user details in a know internal struct: {'username': <username if any>, 'email': <user email if any>, 'fullname': <user full name if any>, 'first_name': <user first name if any>, 'last_name': <user last name if any>} """ raise NotImplementedError('Implement in subclass') def get_user_names(self, fullname='', first_name='', last_name=''): # Avoid None values fullname = fullname or '' first_name = first_name or '' last_name = last_name or '' if fullname and not (first_name or last_name): try: first_name, last_name = fullname.split(' ', 1) except ValueError: first_name = first_name or fullname or '' last_name = last_name or '' fullname = fullname or ' '.join((first_name, last_name)) return fullname.strip(), first_name.strip(), last_name.strip() def get_user(self, user_id): """ Return user with given ID from the User model used by this backend. This is called by django.contrib.auth.middleware. """ return self.strategy.get_user(user_id) def continue_pipeline(self, partial): """Continue previous halted pipeline""" return self.strategy.authenticate(self, pipeline_index=partial.next_step, *partial.args, **partial.kwargs) def auth_extra_arguments(self): """Return extra arguments needed on auth process. The defaults can be overridden by GET parameters.""" extra_arguments = self.setting('AUTH_EXTRA_ARGUMENTS', {}).copy() extra_arguments.update((key, self.data[key]) for key in extra_arguments if key in self.data) return extra_arguments def uses_redirect(self): """Return True if this provider uses redirect url method, otherwise return false.""" return True def request(self, url, method='GET', *args, **kwargs): kwargs.setdefault('headers', {}) if self.setting('PROXIES') is not None: kwargs.setdefault('proxies', self.setting('PROXIES')) if self.setting('VERIFY_SSL') is not None: kwargs.setdefault('verify', self.setting('VERIFY_SSL')) kwargs.setdefault('timeout', self.setting('REQUESTS_TIMEOUT') or self.setting('URLOPEN_TIMEOUT')) if self.SEND_USER_AGENT and 'User-Agent' not in kwargs['headers']: kwargs['headers']['User-Agent'] = self.setting('USER_AGENT') or \ user_agent() try: if self.SSL_PROTOCOL: session = SSLHttpAdapter.ssl_adapter_session(self.SSL_PROTOCOL) response = session.request(method, url, *args, **kwargs) else: response = request(method, url, *args, **kwargs) except ConnectionError as err: raise AuthFailed(self, str(err)) response.raise_for_status() return response def get_json(self, url, *args, **kwargs): return self.request(url, *args, **kwargs).json() def get_querystring(self, url, *args, **kwargs): return parse_qs(self.request(url, *args, **kwargs).text) def get_key_and_secret(self): """Return tuple with Consumer Key and Consumer Secret for current service provider. Must return (key, secret), order *must* be respected. """ return self.setting('KEY'), self.setting('SECRET')
#! /usr/bin/env python # --coding:utf-8-- # coding: utf-8 # ━━━━━━神兽出没━━━━━━ #    ┏┓   ┏┓ #   ┏┛┻━━━┛┻┓ #   ┃       ┃ #   ┃   ━   ┃ #   ┃ ┳┛ ┗┳ ┃ #   ┃       ┃ #   ┃   ┻   ┃ #   ┃       ┃ #   ┗━┓   ┏━┛ #     ┃   ┃神兽保佑, 永无BUG! #     ┃   ┃Code is far away from bug with the animal protecting #     ┃   ┗━━━┓ #     ┃       ┣┓ #     ┃       ┏┛ #     ┗┓┓┏━┳┓┏┛ #      ┃┫┫ ┃┫┫ #      ┗┻┛ ┗┻┛ # ━━━━━━感觉萌萌哒━━━━━━ # Module Desc:clover # User: z.mm | [email protected] # Date: 2016/1/1 # Time: 15:06 from com.common.BaseLoggingObj import BaseLoggingObj from com.common.BaseLoggingObj import logger import json import psutil import os __author__ = 'Administrator' class DiskModule(BaseLoggingObj, object): def __init__(self): BaseLoggingObj.__init__(self) self.logging.info("DiskModule added") def list(self): return {"type": "disk", "items": [{"name": "存储信息", "function": "getDiskInfo"}]} def __getDiskPartitionInfo(self): return psutil.disk_partitions() def __getDiskPartitionUsageInfo(self, path): return psutil.disk_usage(path) def getDiskInfo(self): diskInfo = [] partitions = self.__getDiskPartitionInfo() for partition in partitions: try: diskInfo.append({"partition": partition[1], "detail": self.__getDiskPartitionUsageInfo(partition[1])}) except Exception, e: partition return json.dumps(diskInfo) def getPathDetail(self, path): '''传入路径必须是绝对路径''' data = json.dumps(os.listdir(path), encoding="utf-8") return data
from abc import abstractmethod from typing import Dict, Tuple from federate_learning.common.parameters import NDArrayList from federate_learning.common.metrics import Metrics from federate_learning.orchestrator.control_strategy import ControlStrategy class Model: def __init__(self, name: str, framework: str, control_strategy: ControlStrategy = None, model=None, logger=None): self.name = name self.framework = framework self.logger = logger self.model = model self.weights = None self.metrics = Metrics() if control_strategy: self.control_strategy = control_strategy self.control_strategy.metrics = self.metrics self.control_strategy.logger = self.logger @abstractmethod def get_weights(self) -> NDArrayList: """ :return: """ @abstractmethod def fit(self, weights: NDArrayList, config: Dict[str, str]) -> Tuple[NDArrayList, int, float, float]: """ :param weights: :param config: :return: """ @abstractmethod def evaluate(self, weights: NDArrayList, config: Dict[str, str]) -> Tuple[int, float, float]: """ :param weights: :param config: :return: """
from django.contrib import admin from apps.commons import models as commons_models from import_export.admin import ImportExportModelAdmin class OwnershipTypeAdmin(ImportExportModelAdmin): search_fields = ("name",) admin.site.register(commons_models.OwnershipType, OwnershipTypeAdmin)
"""Tests for logger: model User.""" from django.test import TestCase from geokey.core.models import LoggerHistory from geokey.users.tests.model_factories import UserFactory class LogUserTest(TestCase): """Test model User.""" def setUp(self): """Set up test.""" self.user = UserFactory.create() def test_log_create(self): """Test when user gets created.""" log_count_init = LoggerHistory.objects.count() UserFactory.create() self.assertEqual(LoggerHistory.objects.count(), log_count_init) def test_log_update_display_name(self): """Test when display name changes.""" log_count_init = LoggerHistory.objects.count() self.user.display_name = '%s UPDATED' % self.user.display_name self.user.save() self.assertEqual(LoggerHistory.objects.count(), log_count_init)
"""Tests runner module.""" import os import random import time import uuid import webbrowser from collections import OrderedDict from schema import Schema, Or, Use from testplan import defaults from testplan.common.config import ConfigOption from testplan.common.entity import Entity, RunnableConfig, RunnableStatus, \ RunnableResult, Runnable from testplan.common.exporters import BaseExporter, ExporterResult from testplan.common.utils.path import default_runpath from testplan.exporters import testing as test_exporters from testplan.logger import log_test_status, TEST_INFO, TESTPLAN_LOGGER from testplan.testing.base import TestResult from testplan.report import TestReport from testplan.report.testing import TestGroupReport, Status from testplan.report.testing.styles import Style from testplan.testing import listing, filtering, ordering, tagging from .runners.base import Executor from .runners.pools.tasks import Task, TaskResult def get_default_exporters(config): """ Instantiate certain exporters if related cmdline argument (e.g. --pdf) is passed but there aren't any exporter declarations. """ result = [] if config.pdf_path: result.append(test_exporters.PDFExporter()) if config.report_tags or config.report_tags_all: result.append(test_exporters.TagFilteredPDFExporter()) if config.json_path: result.append(test_exporters.JSONExporter()) if config.xml_dir: result.append(test_exporters.XMLExporter()) return result def get_exporters(values): """ Validation function for exporter declarations. :param values: Single or a list of exporter declaration(s). :return: List of initialized exporter objects. """ def get_exporter(value): if isinstance(value, BaseExporter): return value elif isinstance(value, tuple): exporter_cls, params = value return exporter_cls(**params) raise TypeError('Invalid exporter value: {}'.format(value)) if isinstance(values, list): return [get_exporter(v) for v in values] return [get_exporter(values)] def result_for_failed_task(original_result): """ Create a new result entry for invalid result retrieved from a resource. """ result = TestResult() result.report = TestGroupReport(name=original_result.task.name) attrs = [attr for attr in original_result.task.all_attrs] result_lines = ['{}: {}'.format(attr, getattr(original_result.task, attr))\ if getattr(original_result.task, attr, None) else ''\ for attr in attrs] result.report.logger.error( os.linesep.join([line for line in result_lines if line])) result.report.logger.error(original_result.reason) result.report.status_override = Status.ERROR return result class TestRunnerConfig(RunnableConfig): """ Configuration object for :py:class:`~testplan.runnable.TestRunner` runnable object. """ def configuration_schema(self): """ Schema for options validation and assignment of default values. """ overrides = Schema({ 'name': str, ConfigOption('logger_level', default=TEST_INFO): int, ConfigOption('runpath', default=default_runpath): Or(None, str, lambda x: callable(x)), ConfigOption('path_cleanup', default=True): bool, ConfigOption('all_tasks_local', default=False): bool, ConfigOption('shuffle', default=[]): list, # list of string choices ConfigOption( 'shuffle_seed', default=float(random.randint(1, 9999))): float, ConfigOption( 'exporters', default=None): Use(get_exporters), ConfigOption( 'stdout_style', default=defaults.STDOUT_STYLE): Style, ConfigOption('report_dir', default=defaults.REPORT_DIR): str, ConfigOption('xml_dir', default=None): Or(str, None), ConfigOption('pdf_path', default=None): Or(str, None), ConfigOption('json_path', default=None): Or(str, None), ConfigOption( 'pdf_style', default=defaults.PDF_STYLE): Style, ConfigOption('report_tags', default=[]): [Use(tagging.validate_tag_value)], ConfigOption('report_tags_all', default=[]): [Use(tagging.validate_tag_value)], ConfigOption('browse', default=False): bool, ConfigOption( 'test_filter', default=filtering.Filter()): filtering.BaseFilter, ConfigOption( 'test_sorter', default=ordering.NoopSorter()): ordering.BaseSorter, # Test lister is None by default, otherwise Testplan would # list tests, not run them ConfigOption('test_lister', default=None): Or(None, listing.BaseLister) }, ignore_extra_keys=True) return self.inherit_schema(overrides, super(TestRunnerConfig, self)) class TestRunnerStatus(RunnableStatus): """ Status of a :py:class:`TestRunner <testplan.runnable.TestRunner>` runnable object. """ class TestRunnerResult(RunnableResult): """ Result object of a :py:class:`TestRunner <testplan.runnable.TestRunner>` runnable object. """ def __init__(self): super(TestRunnerResult, self). __init__() self.test_results = OrderedDict() self.exporter_results = [] self.test_report = None @property def report(self): """Tests report.""" return self.test_report @property def success(self): """Run was successful.""" return self.test_report.passed and all( [exporter_result.success for exporter_result in self.exporter_results]) class TestRunner(Runnable): """ Adds tests to test :py:class:`executor <testplan.runners.base.Executor>` resources and invoke report :py:class:`exporter <testplan.exporters.testing.base.Exporter>` objects to create the :py:class:`~testplan.runnable.TestRunnerResult`. :param name: Name of test runner. :type name: ``str`` :param logger_level: Logger level. :type logger_level: ``int`` :param runpath: Input runpath. :type runpath: ``str`` or ``callable`` :param path_cleanup: Clean previous runpath entries. :type path_cleanup: ``bool`` :param all_tasks_local: TODO :type all_tasks_local: ``bool`` :param shuffle: Shuffle strategy. :type shuffle: ``list`` of ``str`` :param shuffle_seed: Shuffle seed. :type shuffle_seed: ``float`` :param exporters: Exporters for reports creation. :type exporters: ``list`` :param stdout_style: Styling output options. :type stdout_style: :py:class:`Style <testplan.report.testing.styles.Style>` :param report_dir: Report directory. :type report_dir: ``str`` :param xml_dir: XML output directory. :type xml_dir: ``str`` :param pdf_path: PDF output path ..path/*.pdf. :type pdf_path: ``str`` :param json_path: JSON output path ..path/*.json. :type json_path: ``str`` :param pdf_style: PDF creation styling options. :type pdf_style: :py:class:`Style <testplan.report.testing.styles.Style>` :param report_tags: Matches tests marked with any of the given tags. :type report_tags: ``list`` :param report_tags_all: Match tests marked with all of the given tags. :type report_tags_all: ``list`` :param test_filter: Tests filtering class. :type test_filter: Subclass of :py:class:`BaseFilter <testplan.testing.filtering.BaseFilter>` :param test_sorter: Tests sorting class. :type test_sorter: Subclass of :py:class:`BaseSorter <testplan.testing.ordering.BaseSorter>` :param test_lister: Tests listing class. :type test_lister: Subclass of :py:class:`BaseLister <testplan.testing.listing.BaseLister>` Also inherits all :py:class:`~testplan.common.entity.base.Runnable` options. """ CONFIG = TestRunnerConfig STATUS = TestRunnerStatus RESULT = TestRunnerResult def __init__(self, **options): super(TestRunner, self).__init__(**options) self._tests = OrderedDict() # uid to resource self._result.test_report = TestReport(name=self.cfg.name) @property def report(self): """Tests report.""" return self._result.test_report def add_resource(self, resource, uid=None): """ Adds a test :py:class:`executor <testplan.runners.base.Executor>` resource in the test runner environment. :param resource: Test executor to be added. :type resource: Subclass of :py:class:`~testplan.runners.base.Executor` :param uid: Optional input resource uid. :type uid: ``str`` :return: Resource uid assigned. :rtype: ``str`` """ resource.cfg.parent = self.cfg resource.parent = self return self.resources.add( resource, uid=uid or getattr(resource, 'uid', uuid.uuid4)()) def schedule(self, task=None, resource=None, uid=None, **options): """ Schedules a serializable :py:class:`~testplan.runners.pools.tasks.base.Task` in a task runner :py:class:`~testplan.runners.pools.base.Pool` executor resource. :param task: Input task. :param task: :py:class:`~testplan.runners.pools.tasks.base.Task` :param resource: Target pool resource. :param resource: :py:class:`~testplan.runners.pools.base.Pool` :param uid: Optional uid for task. :param uid: ``str`` :param options: Task input options. :param options: ``dict`` :return uid: Assigned uid for task. :rtype: ``str`` """ return self.add(task or Task(uid=uid, **options), resource=resource, uid=uid) def add(self, runnable, resource=None, uid=None): """ Adds a :py:class:`runnable <testplan.common.entity.base.Runnable>` tests entity to an :py:class:`~testplan.runners.base.Executor` resource. :param runnable: Test runner entity. :type runnable: :py:class:`~testplan.common.entity.base.Runnable` :param resource: Test executor resource. :type resource: :py:class:`~testplan.runners.base.Executor` :param uid: Optional test uid. :type uid: ``str`` :return: Assigned uid for test. :rtype: ``str`` """ uid = uid or getattr(runnable, 'uid', uuid.uuid4)() if uid in self._tests: self.logger.error( 'Skip adding {} with uid {}.. already added.'.format( runnable, uid)) return uid if isinstance(runnable, Entity): runnable.cfg.parent = self.cfg runnable.parent = self elif isinstance(runnable, Task): pass elif callable(runnable): runnable.parent_cfg = self.cfg runnable.parent = self # Check if test should not be added only when a filter is used. if type(self.cfg.test_filter) is not filtering.Filter or\ self.cfg.test_lister is not None: if not self.should_be_added(runnable): return None if resource is None: resource = self.resources.first() if resource not in self.resources: raise RuntimeError('Resource "{}" does not exist.'.format(resource)) self.resources[resource].add(runnable, uid) self._tests[uid] = resource return uid def should_be_added(self, runnable): """Determines if a test runnable should be added for execution.""" if isinstance(runnable, Task): target = runnable.materialize() target.cfg.parent = self.cfg target.parent = self elif callable(runnable): target = runnable() target.cfg.parent = runnable.parent_cfg target.parent = runnable.parent else: target = runnable should_run = target.should_run() # --list always returns False if should_run and self.cfg.test_lister is not None: self.cfg.test_lister.log_test_info(target) return False return should_run def _add_step(self, step, *args, **kwargs): if self.cfg.test_lister is None: super(TestRunner, self)._add_step(step, *args, **kwargs) def _record_start(self): self.report.timer.start('run') def _record_end(self): self.report.timer.end('run') def pre_resource_steps(self): """Steps to be executed before resources started.""" # self._add_step(self._runpath_initialization) self._add_step(self._record_start) self._add_step(self.make_runpath_dirs) def main_batch_steps(self): """Steps to be executed while resources are running.""" self._add_step(self._wait_ongoing) def post_resource_steps(self): """Steps to be executed after resources stopped.""" self._add_step(self._create_result) self._add_step(self._log_test_status) self._add_step(self._record_end) # needs to happen before export self._add_step(self._invoke_exporters) self._add_step(self._post_exporters) def _wait_ongoing(self): self.logger.info('{} runpath: {}'.format(self, self.runpath)) if self.resources.start_exceptions: self.abort() return while self.active: ongoing = False for resource in self.resources: if resource.ongoing: # Maybe print periodically ongoing resource ongoing = True if ongoing is False: break time.sleep(self.cfg.active_loop_sleep) def _create_result(self): step_result = True test_results = self._result.test_results for uid, resource in self._tests.items(): if not isinstance(self.resources[resource], Executor): continue resource_result = self.resources[resource].results[uid] if isinstance(resource_result, TaskResult): if resource_result.status is False: test_results[uid] = result_for_failed_task(resource_result) else: test_results[uid] = resource_result.result else: test_results[uid] = resource_result self._result.test_report.append(test_results[uid].report) step_result = step_result and test_results[uid].run return step_result def uid(self): """Entity uid.""" return self.cfg.name def _log_test_status(self): log_test_status( name=self.cfg.name, passed=self._result.test_report.passed ) def _invoke_exporters(self): # Add this logic into a ReportExporter(Runnable) # that will return a result containing errors if self.cfg.exporters is None: exporters = get_default_exporters(self.cfg) else: exporters = self.cfg.exporters for exporter in exporters: if hasattr(exporter, 'cfg'): exporter.cfg.parent = self.cfg if isinstance(exporter, test_exporters.Exporter): exp_result = ExporterResult.run_exporter( exporter=exporter, source=self._result.test_report, type='test', ) if not exp_result.success: TESTPLAN_LOGGER.error(exp_result.traceback) self._result.exporter_results.append(exp_result) else: raise NotImplementedError( 'Exporter logic not' ' implemented for: {}'.format(type(exporter))) def _post_exporters(self): if self.cfg.browse: # Open exporter url to browse. for result in self._result.exporter_results: if result.exporter.url is not None: webbrowser.open(result.exporter.url) break def aborting(self): """Suppressing not implemented debug log from parent class.""" pass
# Twowaits Twowaits Problem # Function to print words which can be created # using given set of characters def charCount(word): dict = {} for i in word: dict[i] = dict.get(i, 0) + 1 return dict def possible_words(lwords, charSet): for word in lwords: flag = 1 chars = charCount(word) for key in chars: if key not in charSet: flag = 0 else: if charSet.count(key) != chars[key]: flag = 0 if flag == 1: print(word) if __name__ == "__main__": input = ['goo', 'bat', 'me', 'eat', 'goal', 'boy', 'run'] charSet = ['e', 'o', 'b', 'a', 'm', 'g', 'l'] possible_words(input, charSet)
import urllib.request,json from .models import Article,Source # Getting api key api_key = None # Getting the movie base url base_url = None # all_articles = api_key.get_everything(sort_by='source') def configure_request(app): global api_key,base_url api_key = app.config['NEWS_API_KEY'] base_url = app.config['NEWS_API_BASE_URL']
from mne import events_from_annotations, annotations_from_events def transform_event_id(raw, transform_dic=None, description_transform=None): """Transform the description of Raw. Parameters ---------- raw : mne.Raw Raw instance. transform_dic : None | dic Dictionary holds the new id required for conversion. Which key is the old id and the value is the new id. description_transform : None | callable Function use raw as input and return new_events and new_event_id. Returns ------- None Notes ----- """ if description_transform: all_events, all_event_id = description_transform(raw) else: all_events, all_event_id = events_from_annotations(raw) if transform_dic: new_all_event_id = _transform_from_dict(all_event_id, transform_dic) else: new_all_event_id = {v: k for k, v in all_event_id.items()} annotation_new = annotations_from_events(all_events, raw.info['sfreq'], new_all_event_id) raw.set_annotations(annotation_new) def _transform_from_dict(dic1, dic2): """Transform dic1's key from dic2's value. """ dic_new = {} for key, value in dic1.items(): key_new = dic2[key] if key in dic2 else key dic_new[value] = key_new return dic_new
from django.core.mail import EmailMessage from django.dispatch import receiver from django.template.loader import render_to_string from django.urls import reverse from django.conf import settings from django_rest_passwordreset.signals import reset_password_token_created @receiver(reset_password_token_created) def password_reset_token_created(sender, instance, reset_password_token, *args, **kwargs): """ Handles password reset tokens When a token is created, an e-mail needs to be sent to the user :param sender: View Class that sent the signal :param instance: View Instance that sent the signal :param reset_password_token: Token Model Object :param args: :param kwargs: :return: """ # send an e-mail to the user context = { "current_user": reset_password_token.user, "username": reset_password_token.user.username, "email": reset_password_token.user.email, "reset_password_url": "{}/password_reset/{}".format(settings.CURRENT_DOMAIN, reset_password_token.key), } # render email text email_html_message = render_to_string("email/user_reset_password.html", context) email_plaintext_message = render_to_string("email/user_reset_password.txt", context) msg = EmailMessage( "Password Reset for Care", email_html_message, settings.DEFAULT_FROM_EMAIL, (reset_password_token.user.email,) ) msg.content_subtype = "html" # Main content is now text/html msg.send()
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.distributions as D class SimpleNet(nn.Module): def __init__(self, s_dim, a_dim): super(SimpleNet, self).__init__() self.s_dim = s_dim self.a_dim = a_dim self.a1 = nn.Linear(s_dim, 100) self.mu = nn.Linear(100, 1) self.sigma = nn.Linear(100, 1) self.c1 = nn.Linear(s_dim, 100) self.v = nn.Linear(100, 1) layers = [self.a1, self.mu, self.sigma, self.c1, self.v] for layer in layers: nn.init.normal(layer.weight, mean=0., std=0.1) nn.init.constant(layer.bias, 0.1) def forward(self, s): a1 = F.relu(self.a1(s)) # mu = 2 * F.tanh(self.mu(a1)) mu = F.tanh(self.mu(a1)) # sigma = F.softplus(self.sigma(a1)) + 0.001 # avoid 0 sigma = F.relu(self.sigma(a1)) + 0.001 c1 = F.relu(self.c1(s)) value = self.v(c1) return mu, sigma, value def choose_action(self, s): mu, sigma, _ = self.forward(s) # m = self.distribution(mean=mu.view(1, ).data, std=sigma.view(1, ).data) # gauss = D.Normal(mu.data, sigma.data) gauss = D.Normal(mu, sigma) return gauss.sample().data.numpy() def loss_fn(self, s, a, v_td): # critic loss mu, sigma, value = self.forward(s) td_error = v_td - value critic_loss = td_error.pow(2) # policy gradient loss for actor gauss = D.Normal(mu, sigma) log_prob = gauss.log_prob(a) entropy = torch.log(gauss.std) # exploration # classic actor gradient * reward actor_loss = -(log_prob * td_error.detach() + 0.001 * entropy) # combine together return (critic_loss + actor_loss).mean()
from setuptools import setup, find_packages setup( name="aiogh", version="0.0.1dev", packages=find_packages(), install_requires=["aiohttp", "aiohttp_session", "cryptography"], )
import numpy as np import yaml import sys import os import platform from pathlib import Path from setuptools import setup, find_packages from pybind11.setup_helpers import Pybind11Extension, build_ext script_dir = Path(os.path.abspath(os.path.dirname(__file__))) with open(script_dir / 'environment.yml') as f: required = yaml.safe_load(f.read())['dependencies'][-1]['pip'] is_arm = (platform.machine() == "arm64") # Apple Silicon or ARM? if is_arm: # workaround for cpufeature not available on Apple M1 as of 2021/09. required = list(filter(lambda s: not s.startswith("cpufeature"), required)) src_path = (script_dir / 'pyalign' / 'algorithm').resolve() assert src_path.exists() sources = [ src_path / 'module.cpp' ] include_dirs = [Path(np.get_include()), script_dir] if sys.platform == 'darwin': cc = os.environ.get("CC") if cc and cc.startswith("gcc"): import pybind11.setup_helpers pybind11.setup_helpers.MACOS = False def mk_ext(name, arch=None, cpu=None): extra_compile_args = [] extra_link_args = [] is_sanitize = os.environ.get('PYALIGN_SANITIZE_ADDRESS', False) if is_sanitize: is_debug_build = True else: is_debug_build = os.environ.get("PYALIGN_DEBUG_BUILD", False) if os.name == 'nt': pass else: if is_debug_build: extra_compile_args.append("-O0") extra_compile_args.append("-g") else: extra_compile_args.append("-O3") extra_compile_args.extend([ "-ftemplate-backtrace-limit=0"]) if arch is not None: extra_compile_args.append(f"-march={arch}") if cpu is not None: extra_compile_args.append(f"-mcpu={cpu}") if is_sanitize: extra_compile_args.append('-fsanitize=address') extra_compile_args.append('-fno-omit-frame-pointer') extra_compile_args.append('-fno-optimize-sibling-calls') extra_link_args.append('-fsanitize=address') return Pybind11Extension( f'pyalign.algorithm.{name}.algorithm', [str(x) for x in sorted(sources)], cxx_std=17, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, include_dirs=[str(x) for x in include_dirs], ) ext_modules = [] if os.environ.get("PYALIGN_PREBUILT_MARCH"): ext_modules.append(mk_ext('generic', None)) if is_arm: ext_modules.append(mk_ext('apple_m1', cpu='apple-m1')) else: ext_modules.append(mk_ext('intel_avx2', arch='haswell')) elif is_arm: ext_modules.append(mk_ext('generic', None)) else: ext_modules.append(mk_ext('native', arch='native')) with open(script_dir / 'README.md') as f: long_description = f.read() exec(open("pyalign/_version.py").read()) setup( name='pyalign', version=__version__, packages=find_packages(include=[ 'pyalign', 'pyalign.algorithm', 'pyalign.problems', 'pyalign.gaps', 'pyalign.io', 'pyalign.tests']), python_requires='>=3.8', license='GPLv2', author='Bernhard Liebl', author_email='[email protected]', ext_modules=ext_modules, cmdclass={"build_ext": build_ext}, install_requires=required, test_suite='nose.collector', tests_require=['nose'], description='Fast and Versatile Alignments for Python', long_description=long_description, long_description_content_type='text/markdown', #include_package_data=True, )
############################### # - Set the fileToAverage name: fileToAverage = "SetTheFileName.txt" ############################### entriesToAverage = input("How much entries to average [int]?") outputFile = "ave_" + str(entriesToAverage) + "_" + fileToAverage current_list = open(fileToAverage, 'r').readlines() output_list = [] print print print print "Input file:", fileToAverage print "Averaging input file with lenght", len(current_list), "..." i=0 while i < len(current_list): j=0 temp_sum = 0 while j < entriesToAverage: try: current_element = float(current_list[i+j].split()[0]) except: pass temp_sum += current_element j+=1 entry = temp_sum / float(entriesToAverage) output_list.append(entry) i+=entriesToAverage print "Output file lenght:", len(output_list) print "Saving to file:", outputFile saveFile = open(outputFile, 'w') i=0 while i < len(output_list): saveFile.write(str(output_list[i])) saveFile.write('000') saveFile.write('\n') i+=1 saveFile.close() print "- Done!" print
import os import glob import numpy as np from sklearn.manifold import TSNE from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt from pyLZJD import digest, sim #First, lets check if we have the t5 corpus if not (os.path.exists("t5-corpus.zip") or os.path.exists("t5") ): print("Downloading t5 dataset") import urllib.request urllib.request.urlretrieve('http://roussev.net/t5/t5-corpus.zip', 't5-corpus.zip') import zipfile with zipfile.ZipFile("t5-corpus.zip","r") as zip_ref: zip_ref.extractall(".") #Lets collect up all the files in the t5 corpus. Its organized as one big folder, and the extension of each file tells us what kind of file it is. X_paths = glob.glob("t5/*") labels_true = list(set([ x[x.find(".")+1:] for x in X_paths])) print("Labels:", labels_true) #Label every file based on which file type it was Y = np.asarray([ labels_true.index(x[x.find(".")+1:]) for x in X_paths]) #Lets hash all the files now! We have a list of paths, pyLZJD can take that dirrectly and convert it to hashes X_hashes = digest(X_paths, processes=-1, mode="sh") print("Done hashing!") #We are going to use some tools from scikit-learn. It needs a distance function between data stored as a list of vectors. #So we will create a list of 1-D vectors, each each vector sotres the index to it's hash in X_hashes X = [ [i] for i in range(len(X_hashes))] #Now we define a distance function between two vectors in X. It accesses the index value, and computes the LZJD distance def lzjd_dist(a, b): a_i = X_hashes[int(a[0])] b_i = X_hashes[int(b[0])] return 1.0-sim(a_i, b_i) knn_model = KNeighborsClassifier(n_neighbors=5, algorithm='brute', metric=lzjd_dist) scores = cross_val_score(knn_model, X, Y, cv=5) print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) X_embedded = TSNE(n_components=2, perplexity=5, metric=lzjd_dist).fit_transform(X) colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(labels_true))] for k, col in zip([z for z in range(len(labels_true))], colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = (Y == k) xy = X_embedded[class_member_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=5, label=labels_true[k]) plt.title('TSNE Visualization') plt.legend(loc='upper left') plt.show()
import json import logging import random import numpy as np import tflearn from django.conf import settings from django.utils import timezone from classifier.models import Sentence, Train, Category from classifier.utils import init_network, get_tokenized_words, get_categories, get_words logger = logging.getLogger(__name__) def train(): # get a list of all categories to train for # Check if there unprocessed categories or sentences if not Category.objects.filter(processed=False).exists() and not Sentence.objects.filter(processed=False).exists(): logger.info('No unprocessed categories or sentences') return # Mark all as processed now categories_qs = Category.objects.all() categories_qs.filter(processed=False).update(processed=True) sentences_qs = Sentence.objects.all() sentences_qs.filter(processed=False).update(processed=True) # Use same QuerySets to train models categories = get_categories(qs=categories_qs) words = get_words(qs=sentences_qs) train_obj = Train.objects.create( started=timezone.now(), data=json.dumps(dict( words=words, categories=categories ), indent=2) ) # a list of tuples with words in the sentence and category name docs = [] for sentence in Sentence.objects.all(): docs.append((get_tokenized_words(sentence.text), sentence.category.title)) # create our training data training = [] # create an empty array for our output output_empty = [0] * len(categories) for doc in docs: # initialize our bag of words for each document in the list # list of tokenized words for the pattern token_words = doc[0] # Create bag of words array bag_of_words = [1 if word in token_words else 0 for word in words] output_row = list(output_empty) output_row[categories.index(doc[1])] = 1 # Our training set will contain a the bag of words model # and the output row that tells which category that bag of words belongs to. training.append([bag_of_words, output_row]) # Shuffle our features and turn into np.array as TensorFlow takes in numpy array random.shuffle(training) training = np.array(training) # x_inputs contains the Bag of words and y_targets contains the category x_inputs = list(training[:, 0]) y_targets = list(training[:, 1]) # Define model and setup TensorBoard x_size = len(x_inputs[0]) y_size = len(y_targets[0]) network = init_network(x_size, y_size) model = tflearn.DNN(network) # Start training (apply gradient descent algorithm) model.fit(x_inputs, y_targets, n_epoch=1000, batch_size=8, show_metric=True) model.save(settings.CLASSIFIER_MODEL_PATH) train_obj.finished = timezone.now() train_obj.save()
from .mlp import MLP from .affine_transform import AffineTransform
import dash import dash_core_components as dcc import dash_html_components as html import plotly.express as px import pandas as pd import plotly.figure_factory as ff import numpy as np import pandas as pd import plotly.graph_objects as go import os import networkx as nx import matplotlib.pyplot as plt def plot_fig(node_list, edge_list, save_name): # G = nx.random_geometric_graph(40, 0.125) G = nx.Graph() node_len = len(node_list) node_label = [i.replace('the ', '').replace('The ', '') for i in node_list] edge_pair = edge_list # edge_weight = np.sqrt(np.array([i[1] for i in edge_pair])) person_node = list(set([i[0] for i in edge_pair])) node = np.linspace(1, node_len, node_len, dtype=int) - 1 node_color = ['LightSkyBlue' if i in person_node else 'DarkSlateGrey' for i in node] G.add_nodes_from(node) G.add_weighted_edges_from(edge_pair) # pos = nx.kamada_kawai_layout(G) pos = nx.spring_layout(G, k=5/np.sqrt(node_len)) # pos = nx.spiral_layout(G) # pos = nx.multipartite_layout(G) # pos = nx.spectral_layout(G) # pos = nx.random_layout(G) # pos = nx.bipartite_layout(G, person_node) edge_x = [] edge_y = [] node_size = [] for edge in G.edges(): # x0, y0 = G.nodes[edge[0]]['pos'] # x1, y1 = G.nodes[edge[1]]['pos'] x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_x.append(x0) edge_x.append(x1) edge_x.append(None) edge_y.append(y0) edge_y.append(y1) edge_y.append(None) edge_trace = go.Scatter( x=edge_x, y=edge_y, line=dict(width=0.5, color='#888'), hoverinfo='none', mode='lines' ) node_x = [] node_y = [] for node in G.nodes(): # x, y = G.nodes[node]['pos'] x, y = pos[node] node_x.append(x) node_y.append(y) node_trace = go.Scatter( x=node_x, y=node_y, mode='markers+text', text=node_label, textposition='top center', hoverinfo='text', marker=dict( showscale=False, # colorscale options #'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' | #'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' | #'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' | # colorscale='YlGnBu', reversescale=True, opacity = 0.9, color=node_color, size=10, # colorbar=dict( # thickness=15, # title='Node Connections', # xanchor='left', # titleside='right' # ), line_width=2)) node_adjacencies = np.zeros(node_len) node_text = node_label for i in edge_pair: node_adjacencies[i[0]] += i[2] node_adjacencies[i[1]] += i[2] node_adjacencies = node_adjacencies # for node, adjacencies in enumerate(G.adjacency()): # node_adjacencies.append(len(adjacencies[1])) # node_text.append('# of connections: '+str(len(adjacencies[1]))) # node_trace.marker.color = node_adjacencies node_trace.marker.size = node_adjacencies node_trace.text = node_text year_num = save_name[:4] q_num = int((int(save_name[5:7]) - 1) / 3 + 1) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout( title='IRTM NBA News Relation Visulization: {0} Q{1} Human-Team Relations'.format(year_num, q_num), titlefont_size=35, showlegend=False, hovermode='closest', margin=dict(b=20,l=5,r=5,t=40), annotations=[ dict( text="{0} Q{1} Human-Team Relations based on NBA News Report".format(year_num, q_num), showarrow=False, xref="paper", yref="paper", x=0.005, y=-0.002 ) ], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)) ) fig.update_layout( autosize=False, width=1500, height=1500, margin=dict( l=50, r=50, b=100, t=100, pad=4 ), ) if not os.path.exists("images"): os.mkdir("images") fig.write_image("images/{}_spring_layout.png".format(save_name)) return fig
n, k = map(int, input().split()) numbers = map(int,input().split()) remainder_counts = [0] * k for number in numbers: remainder_counts[number % k] += 1 result = min(remainder_counts[0], 1) for i in range(1, k//2 + 1): if i != k - i: result += max( remainder_counts[i], remainder_counts[k-i] ) if k % 2 == 0: result += 1 print(result)
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import os import pandas as pd def main(txt_file, output_flag, check_all_frames, t_res, imgfmt, layer, no_stop): """Report if all the inputs OR outputs exist""" idx_table = {'video': 0, 'f-init': 1} df = pd.read_csv(txt_file, sep=' ', header=None) check_fn = os.path.isdir if output_flag: check_fn = os.path.isfile for i, row in df.iterrows(): video = row[idx_table['video']] if output_flag: video = video + layer if not check_fn(video): print(video) if not no_stop: break if check_all_frames and not output_flag: f_init = row[idx_table['f-init']] for j in range(f_init, f_init + t_res): imgfile = os.path.join(video, imgfmt.format(j)) if not os.path.isfile(imgfile): print(imgfile) break if __name__ == '__main__': description = 'Check missing inputs (frames) or outputs (features)' p = ArgumentParser(description=description, formatter_class=ArgumentDefaultsHelpFormatter) p.add_argument('-i', '--txt-file', required=True, help='Input/Output list given to extract features') p.add_argument('-o', '--output-flag', action='store_true', help='txt-file is an output list') p.add_argument('-c', '--check-all-frames', action='store_false', help='Ensure all frames requested by a line are there') p.add_argument('-l', '--t-res', default=16, type=int, help='temporal length of the clips') p.add_argument('-f', '--imgfmt', default='{0:06d}.png', help='Image format') p.add_argument('-of', '--layer', default='.fc6-1', help='Extracted layer') p.add_argument('-ns', '--no-stop', action='store_true', help='Nop stop at first error') main(**vars(p.parse_args()))
import random def main(): print("Welcome to Hi-Low") the_number = random.randint(1, 100) guess = get_guess() while guess != the_number: if guess > the_number: print("Sorry, too high") elif guess < the_number: print("Sorry too low") guess = get_guess() print("Nice work, you got it!") print("done") def get_guess(): guess_text = input('Enter a number between 1 and 100: ') guess = int(guess_text) return guess print("Module name is {}".format(__name__)) if __name__ == '__main__': main()
import torch import torch.nn as nn import random class MeanPredictor(nn.Module): def __init__(self, data): super(MeanPredictor, self).__init__() self._throwaway_param = nn.Linear(1, 1) self.mean = sum(datum.y for datum in data.train) / float(len(data.train)) print('we gonna predict {}'.format(self.mean)) def remove_refs(self, arg): pass def forward(self, datum): return torch.tensor([self.mean]).squeeze() class RandomPredictor(nn.Module): def __init__(self, data): super(RandomPredictor, self).__init__() self._throwaway_param = nn.Linear(1, 1) self.data = data def remove_refs(self, arg): pass def forward(self, datum): guess = random.choice(self.data.train).y return torch.tensor([guess]).squeeze()
"""Test the doctr-versions-menu CLI interface.""" import json import logging import platform import subprocess import sys from distutils.dir_util import copy_tree from pathlib import Path from click.testing import CliRunner from pkg_resources import parse_version import doctr_versions_menu from doctr_versions_menu.cli import main as doctr_versions_menu_command def test_version(): """Test ``doctr-versions-menu --version``.""" runner = CliRunner() result = runner.invoke(doctr_versions_menu_command, ['--version']) assert result.exit_code == 0 normalized_version = str(parse_version(doctr_versions_menu.__version__)) assert normalized_version in result.output def test_bad_config(): """Test ``doctr-versions-menu --config for non-existing config``.""" runner = CliRunner() result = runner.invoke( doctr_versions_menu_command, ['--debug', '--config', 'xxx'] ) assert result.exit_code != 0 if sys.platform.startswith('win'): # Windows might have slightly different messages return msg = "Cannot read configuration file: File 'xxx' does not exist" if platform.python_version().startswith('3.5'): # Python 3.5 hits the IOError earlier, resulting in a different message msg = "No such file or directory" assert msg in result.stdout def get_staged_files(): """Return output of `git ls-files` as list of Path objects.""" proc = subprocess.run( ['git', 'ls-files'], check=True, universal_newlines=True, stdout=subprocess.PIPE, ) return [Path(file) for file in proc.stdout.split("\n")] def test_default_run(caplog): """Test doctr-versions-menu "default" run.""" root = Path(__file__).with_suffix('') / 'gh_pages_default' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command) assert result.exit_code == 0 staged = get_staged_files() expected_files = [ 'index.html', '.nojekyll', 'versions.json', 'versions.py', ] for file in expected_files: assert (cwd / file).is_file() assert Path(file) in staged with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data['folders'] == ['master', 'v0.1.0', 'v1.0.0'] assert versions_data['versions'] == ['master', 'v1.0.0', 'v0.1.0'] assert versions_data['labels'] == { 'master': 'master', 'v0.1.0': 'v0.1.0', 'v1.0.0': 'v1.0.0 (latest)', } assert 'outdated' in versions_data['warnings']['v0.1.0'] assert versions_data['latest'] == 'v1.0.0' assert versions_data['downloads']['master'] == [ ['pdf', '/master/master.pdf'], ['zip', '/master/master.zip'], ['epub', '/master/master.epub'], ] assert versions_data['downloads']['v1.0.0'] == [ ['pdf', 'https://host/v1.0.0/v1.0.0.pdf'], ['html', 'https://host/v1.0.0/v1.0.0.zip'], ['epub', 'https://host/v1.0.0/v1.0.0.epub'], ] index_html = (cwd / 'index.html').read_text() # fmt: off assert '<meta http-equiv="Refresh" content="0; url=v1.0.0" />' in index_html assert '<p>Go to the <a href="v1.0.0">default documentation</a>.</p>' in index_html # fmt: on def test_many_releases(caplog): """Test doctr-versions-menu run for project with many releases.""" root = Path(__file__).with_suffix('') / 'gh_pages_many_releases' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command) assert result.exit_code == 0 assert (cwd / 'index.html').is_file() assert (cwd / '.nojekyll').is_file() assert (cwd / 'versions.json').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data == { 'downloads': { 'doc-testing': [], 'master': [ ['pdf', '/master/master.pdf'], ['zip', '/master/master.zip'], ['epub', '/master/master.epub'], ], 'testing': [], 'v0.1.0': [ ['pdf', '/v0.1.0/v0.1.0.pdf'], ['html', '/v0.1.0/v0.1.0.zip'], ['epub', '/v0.1.0/v0.1.0.epub'], ], 'v0.2.0': [ ['pdf', '/v0.2.0/v0.2.0.pdf'], ['html', '/v0.2.0/v0.2.0.zip'], ['epub', '/v0.2.0/v0.2.0.epub'], ], 'v1.0.0': [ ['pdf', 'https://host/v1.0.0/v1.0.0.pdf'], ['html', 'https://host/v1.0.0/v1.0.0.zip'], ['epub', 'https://host/v1.0.0/v1.0.0.epub'], ], 'v1.0.0+dev': [], 'v1.0.0-dev0': [], 'v1.0.0-post1': [ ['pdf', 'https://host/v1.0.0/v1.0.0.pdf'], ['html', 'https://host/v1.0.0/v1.0.0.zip'], ['epub', 'https://host/v1.0.0/v1.0.0.epub'], ], 'v1.0.0-rc1': [], 'v1.1.0-rc1': [], }, 'folders': [ 'doc-testing', 'master', 'testing', 'v0.1.0', 'v0.2.0', 'v1.0.0', 'v1.0.0+dev', 'v1.0.0-dev0', 'v1.0.0-post1', 'v1.0.0-rc1', 'v1.1.0-rc1', ], 'labels': { 'doc-testing': 'doc-testing', 'master': 'master', 'testing': 'testing', 'v0.1.0': 'v0.1.0', 'v0.2.0': 'v0.2.0', 'v1.0.0': 'v1.0.0', 'v1.0.0+dev': 'v1.0.0+dev', 'v1.0.0-dev0': 'v1.0.0-dev0', 'v1.0.0-post1': 'v1.0.0-post1 (latest)', 'v1.0.0-rc1': 'v1.0.0-rc1', 'v1.1.0-rc1': 'v1.1.0-rc1', }, 'latest': 'v1.0.0-post1', 'versions': [ 'master', 'v1.1.0-rc1', 'v1.0.0-post1', 'v1.0.0+dev', 'v1.0.0', 'v1.0.0-rc1', 'v1.0.0-dev0', 'v0.2.0', 'v0.1.0', 'testing', 'doc-testing', ], 'warnings': { 'doc-testing': ['unreleased'], 'master': ['unreleased'], 'testing': ['unreleased'], 'v0.1.0': ['outdated'], 'v0.2.0': ['outdated'], 'v1.0.0': ['outdated'], 'v1.0.0+dev': ['outdated', 'unreleased'], 'v1.0.0-dev0': ['outdated', 'prereleased'], 'v1.0.0-post1': [], 'v1.0.0-rc1': ['outdated', 'prereleased'], 'v1.1.0-rc1': ['prereleased'], }, } def test_no_release(caplog): """Test doctr-versions-menu for when there is no "latest public release". """ root = Path(__file__).with_suffix('') / 'gh_pages_no_release' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command) assert result.exit_code == 0 with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data['latest'] is None assert versions_data['warnings'] == { 'master': ['unreleased'], 'v1.0.0-rc1': ['prereleased'], } index_html = (cwd / 'index.html').read_text() # fmt: off assert '<meta http-equiv="Refresh" content="0; url=master" />' in index_html assert '<p>Go to the <a href="master">default documentation</a>.</p>' in index_html # fmt: on def test_custom_index_html(caplog): """Test using a custom index.html.""" root = Path(__file__).with_suffix('') / 'gh_pages_custom_index' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command) assert result.exit_code == 0 assert (cwd / 'index.html').is_file() assert (cwd / '.nojekyll').is_file() assert (cwd / 'versions.json').is_file() msg = "This is the index.html for the gh_pages_custom_index test." assert msg in (cwd / 'index.html').read_text() if sys.platform.startswith('win'): # Windows might have slightly different messages return assert 'Using index.html template from index.html_t' in caplog.messages def test_custom_downloads_file(caplog): """Test using a custom downloads_file.""" root = Path(__file__).with_suffix('') / 'gh_pages_custom_downloads' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command, ['--debug']) assert result.exit_code == 0 assert (cwd / 'versions.json').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data['folders'] == ['master', 'v0.1.0', 'v1.0.0'] assert versions_data['downloads']['master'] == [ ['pdf', '/master/master.pdf'], ['zip', '/master/master.zip'], ] assert versions_data['downloads']['v1.0.0'] == [ ['pdf', 'https://host/v1.0.0/v1.0.0.pdf'], ['html', 'https://host/v1.0.0/v1.0.0.zip'], ['epub', 'https://host/v1.0.0/v1.0.0.epub'], ] if sys.platform.startswith('win'): # Windows might have slightly different messages return assert 'Processing downloads_file master/downloads.md' in caplog.messages assert 'INVALID URL: ./master/master.epub' in caplog.messages def test_no_downloads_file(caplog): """Test using ``--no-downloads-file``.""" root = Path(__file__).with_suffix('') / 'gh_pages_custom_downloads' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke( doctr_versions_menu_command, ['--no-downloads-file', '--debug'] ) assert result.exit_code == 0 assert (cwd / 'versions.json').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data['folders'] == ['master', 'v0.1.0', 'v1.0.0'] assert versions_data['downloads']['master'] == [] assert versions_data['downloads']['v1.0.0'] == [] assert 'Disable download links (downloads_file is None)' in caplog.messages def test_no_downloads_file_config(caplog): """Test using ``downloads_file = False`` in config.""" root = Path(__file__).with_suffix('') / 'gh_pages_no_downloads' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command, ['--debug']) assert result.exit_code == 0 assert (cwd / 'versions.json').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data['folders'] == ['master', 'v0.1.0', 'v1.0.0'] assert versions_data['downloads']['master'] == [] assert versions_data['downloads']['v1.0.0'] == [] assert 'Disable download links (downloads_file is None)' in caplog.messages def test_custom_suffix(caplog): """Test using a custom suffixes for latest versions. Also tests the the -c / --config flag. """ root = Path(__file__).with_suffix('') / 'gh_pages_custom_suffix' runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command, ['-c', 'config']) assert result.exit_code == 0 assert (cwd / 'versions.json').is_file() assert not (cwd / 'versions.py').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data['labels'] == { 'master': 'master', 'v0.1.0': 'v0.1.0', 'v1.0.0': 'v1.0.0 [latest]', } def test_custom_envvars(caplog): """Test using environment variables for configuration. """ root = Path(__file__).with_suffix('') / 'gh_pages_envvars' env = { 'DOCTR_VERSIONS_MENU_LATEST': 'master', 'DOCTR_VERSIONS_MENU_DEBUG': "true", 'DOCTR_VERSIONS_MENU_VERSIONS': "<branches>, <releases>", 'DOCTR_VERSIONS_MENU_SUFFIX_LATEST': " [latest]", 'DOCTR_VERSIONS_MENU_WRITE_VERSIONS_PY': 'false', 'DOCTR_VERSIONS_MENU_WRITE_INDEX_HTML': 'false', 'DOCTR_VERSIONS_MENU_ENSURE_NO_JEKYLL': 'false', 'DOCTR_VERSIONS_MENU_DOWNLOADS_FILE': '', 'DOCTR_VERSIONS_MENU_WARNING': "post: <post-releases>; outdated: (<releases> < 0.2); prereleased:", 'DOCTR_VERSIONS_MENU_LABEL': "<releases>: {{ folder | replace('v', '', 1) }}; doc-testing: doc; testing: {{ folder }} (latest dev branch)", } runner = CliRunner() caplog.set_level(logging.DEBUG) with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command, env=env) assert result.exit_code == 0 assert (cwd / 'versions.json').is_file() assert not (cwd / 'versions.py').is_file() assert not (cwd / 'index.html').is_file() assert not (cwd / '.nojekyll').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data == { 'downloads': { 'doc-testing': [], 'master': [], 'testing': [], 'v0.1.0': [], 'v0.2.0': [], 'v1.0.0': [], 'v1.0.0+dev': [], 'v1.0.0-dev0': [], 'v1.0.0-post1': [], 'v1.0.0-rc1': [], 'v1.1.0-rc1': [], }, 'folders': [ 'doc-testing', 'master', 'testing', 'v0.1.0', 'v0.2.0', 'v1.0.0', 'v1.0.0+dev', 'v1.0.0-dev0', 'v1.0.0-post1', 'v1.0.0-rc1', 'v1.1.0-rc1', ], 'labels': { 'v0.1.0': '0.1.0', 'v0.2.0': '0.2.0', 'v1.0.0-dev0': '1.0.0-dev0', 'v1.0.0-rc1': '1.0.0-rc1', 'v1.0.0': '1.0.0', 'v1.0.0+dev': '1.0.0+dev', 'v1.0.0-post1': '1.0.0-post1', 'v1.1.0-rc1': '1.1.0-rc1', 'doc-testing': 'doc', 'master': 'master [latest]', 'testing': 'testing (latest dev branch)', }, 'latest': 'master', 'versions': [ 'v1.1.0-rc1', 'v1.0.0-post1', 'v1.0.0+dev', 'v1.0.0', 'v1.0.0-rc1', 'v1.0.0-dev0', 'v0.2.0', 'v0.1.0', 'testing', 'master', 'doc-testing', ], 'warnings': { 'doc-testing': ['unreleased'], 'master': ['unreleased'], 'testing': ['unreleased'], 'v0.1.0': ['outdated'], 'v0.2.0': [], 'v1.0.0': [], 'v1.0.0+dev': ['unreleased'], 'v1.0.0-dev0': [], 'v1.0.0-post1': ['post'], 'v1.0.0-rc1': [], 'v1.1.0-rc1': [], }, } def test_custom_labels_warnings(caplog): """Test custom versions, labels, and warnings.""" root = Path(__file__).with_suffix('') / 'gh_pages_custom_labels_warnings' runner = CliRunner() caplog.set_level(logging.DEBUG) expected_versions_data = { 'downloads': { 'doc-testing': [], 'master': [], 'testing': [], 'v0.1.0': [], 'v0.2.0': [], 'v1.0.0': [], 'v1.0.0+dev': [], 'v1.0.0-dev0': [], 'v1.0.0-post1': [], 'v1.0.0-rc1': [], 'v1.1.0-rc1': [], }, 'folders': [ 'doc-testing', 'master', 'testing', 'v0.1.0', 'v0.2.0', 'v1.0.0', 'v1.0.0+dev', 'v1.0.0-dev0', 'v1.0.0-post1', 'v1.0.0-rc1', 'v1.1.0-rc1', ], 'labels': { 'doc-testing': 'doc', 'master': 'master (latest dev branch)', 'testing': 'testing', 'v0.1.0': '0.1.0', 'v0.2.0': '0.2.0', 'v1.0.0': '1.0.0 (stable)', 'v1.0.0+dev': '1.0.0+dev', 'v1.0.0-dev0': '1.0.0-dev0', 'v1.0.0-post1': '1.0.0-post1', 'v1.0.0-rc1': '1.0.0-rc1', 'v1.1.0-rc1': '1.1.0-rc1', }, 'latest': 'v1.0.0', 'versions': [ 'doc-testing', 'testing', 'v0.1.0', 'v0.2.0', 'v1.0.0-dev0', 'v1.0.0-rc1', 'v1.0.0', 'v1.0.0+dev', 'v1.0.0-post1', 'v1.1.0-rc1', 'master', ], 'warnings': { 'doc-testing': ['unreleased'], 'master': ['unreleased'], 'testing': ['unreleased'], 'v0.1.0': ['outdated'], 'v0.2.0': [], 'v1.0.0': [], 'v1.0.0+dev': ['unreleased'], 'v1.0.0-dev0': [], 'v1.0.0-post1': ['post'], 'v1.0.0-rc1': [], 'v1.1.0-rc1': [], }, } with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke(doctr_versions_menu_command) assert result.exit_code == 0 assert (cwd / 'index.html').is_file() assert (cwd / '.nojekyll').is_file() assert (cwd / 'versions.json').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data == expected_versions_data with runner.isolated_filesystem(): cwd = Path.cwd() subprocess.run(['git', 'init'], check=True) copy_tree(str(root), str(cwd)) result = runner.invoke( doctr_versions_menu_command, [ '-c', 'noconf', '--suffix-latest= (stable)', '--versions', '((<branches> != master), <releases>, master)[::-1]', '--no-write-versions-py', '--warning', 'post', '<post-releases>', '--warning', 'outdated', '(<releases> < 0.2)', '--warning', 'prereleased', '', '--latest=v1.0.0', '--label', '<releases>', "{{ folder | replace('v', '', 1) }}", '--label', 'doc-testing', 'doc', '--label', 'master', '{{ folder }} (latest dev branch)', ], ) assert result.exit_code == 0 assert (cwd / 'index.html').is_file() assert (cwd / '.nojekyll').is_file() assert (cwd / 'versions.json').is_file() with (cwd / 'versions.json').open() as versions_json: versions_data = json.load(versions_json) assert versions_data == expected_versions_data
# body = {"email": "[email protected]", "name": "John Smith", "id": 3} from flask import Flask from flask_restful import Resource, Api from flask_restful.reqparse import RequestParser app = Flask(__name__) api = Api(app, prefix="/api/v1") users = [ {"email": "[email protected]", "name": "Masnun", "id": 1, "price": 12.99 } ] subscriber_request_parser = RequestParser(bundle_errors=True) subscriber_request_parser.add_argument("name", type=str, required=True, help="Name has to be valid string") subscriber_request_parser.add_argument("email", required=True) subscriber_request_parser.add_argument("id", type=int, required=True, help="Please enter valid integer as ID") subscriber_request_parser.add_argument("price", type=float, required=True, help="Please enter valid price") class SubscriberCollection(Resource): def get(self): return users def post(self): args = subscriber_request_parser.parse_args() #print(args.get("price")) print(args["price"]) users.append(args) return {"msg": "Subscriber added", "subscriber_data": args} class Subscriber(Resource): def get(self, id): return {"msg": "Details about user id {}".format(id)} def put(self, id): return {"msg": "Update user id {}".format(id)} def delete(self, id): return {"msg": "Delete user id {}".format(id)} api.add_resource(SubscriberCollection, '/subscribers') api.add_resource(Subscriber, '/subscribers/<int:id>') if __name__ == '__main__': app.run(debug=True)
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pyotherside def read(path): try: with open(path, 'r') as f: read_data = f.read() pyotherside.send('log', "read file {0}".format(path)) return read_data except IOError: pyotherside.send('ioerror', "{0} file not readable".format(path)) if not os.path.exists(os.path.dirname(path)): pyotherside.send('ioerror', "{0} dir does not exist".format(os.path.dirname(path))) elif not os.path.isfile(path): pyotherside.send('ioerror', "{0} file does not exist".format(path)) return "" def write(path, content): try: with open(path, 'w') as f: f.write(content) pyotherside.send('log', "content saved") except IOError: pyotherside.send('ioerror', "{0} file not writeable".format(path)) if not os.path.exists(os.path.dirname(path)): pyotherside.send('ioerror', "{0} dir does not exist".format(os.path.dirname(path))) if not os.path.isfile(path): pyotherside.send('ioerror', "{0} file does not exist".format(path)) def create(path): try: with open(path, 'w+') as f: pyotherside.send('log', "file {0} created.".format(path)) except IOError: pyotherside.send('ioerror', "{0} file not writeable".format(path)) if not os.path.exists(os.path.dirname(path)): pyotherside.send('ioerror', "{0} dir does not exist".format(os.path.dirname(path)))
import re import contextlib instance = None frontend = None RE_REVIEW_URL = re.compile(r"^remote:\s+http://.*/r/(\d+)\s*$") @contextlib.contextmanager def settings(user, settings, repository=None): data = { "settings": [{ "item": item, "value": value } for item, value in settings.items()] } if repository: data["repository"] = repository # Set requested settings. with frontend.signin(user): frontend.operation("savesettings", data=data) try: yield finally: data = { "settings": [{ "item": item } for item, value in settings.items()] } if repository: data["repository"] = repository # Reset settings back to the default. with frontend.signin(user): frontend.operation("savesettings", data=data) def createReviewViaPush(work, owner, commit="HEAD"): with settings(owner, { "review.createViaPush": True }): remote_url = instance.repository_url(owner) output = work.run(["push", remote_url, "HEAD"], TERM="dumb") for line in output.splitlines(): match = RE_REVIEW_URL.match(line) if match: return int(match.group(1)) else: testing.expect.check("<review URL in 'git push' output>", "<no review URL found>")
# Generated by Django 2.2.10 on 2020-05-05 15:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('controlled_vocabulary', '0004_remove_controlledvocabulary_test'), ('core', '0025_resourcelanguage'), ] operations = [ migrations.AlterUniqueTogether( name='resourcelanguage', unique_together={('resource', 'language')}, ), ]
# -*- coding: utf-8 -*- #***************************************************************************** # Copyright (C) 2003-2006 Gary Bishop. # Copyright (C) 2006 Jorgen Stenarson. <[email protected]> # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #***************************************************************************** from __future__ import print_function, unicode_literals, absolute_import import System from .common import validkey, KeyPress, make_KeyPress_from_keydescr c32 = System.ConsoleKey Shift = System.ConsoleModifiers.Shift Control = System.ConsoleModifiers.Control Alt = System.ConsoleModifiers.Alt # table for translating virtual keys to X windows key symbols code2sym_map = {#c32.CANCEL: 'Cancel', c32.Backspace: 'BackSpace', c32.Tab: 'Tab', c32.Clear: 'Clear', c32.Enter: 'Return', # c32.Shift: 'Shift_L', # c32.Control: 'Control_L', # c32.Menu: 'Alt_L', c32.Pause: 'Pause', # c32.Capital: 'Caps_Lock', c32.Escape: 'Escape', # c32.Space: 'space', c32.PageUp: 'Prior', c32.PageDown: 'Next', c32.End: 'End', c32.Home: 'Home', c32.LeftArrow: 'Left', c32.UpArrow: 'Up', c32.RightArrow: 'Right', c32.DownArrow: 'Down', c32.Select: 'Select', c32.Print: 'Print', c32.Execute: 'Execute', # c32.Snapshot: 'Snapshot', c32.Insert: 'Insert', c32.Delete: 'Delete', c32.Help: 'Help', c32.F1: 'F1', c32.F2: 'F2', c32.F3: 'F3', c32.F4: 'F4', c32.F5: 'F5', c32.F6: 'F6', c32.F7: 'F7', c32.F8: 'F8', c32.F9: 'F9', c32.F10: 'F10', c32.F11: 'F11', c32.F12: 'F12', c32.F13: 'F13', c32.F14: 'F14', c32.F15: 'F15', c32.F16: 'F16', c32.F17: 'F17', c32.F18: 'F18', c32.F19: 'F19', c32.F20: 'F20', c32.F21: 'F21', c32.F22: 'F22', c32.F23: 'F23', c32.F24: 'F24', # c32.Numlock: 'Num_Lock,', # c32.Scroll: 'Scroll_Lock', # c32.Apps: 'VK_APPS', # c32.ProcesskeY: 'VK_PROCESSKEY', # c32.Attn: 'VK_ATTN', # c32.Crsel: 'VK_CRSEL', # c32.Exsel: 'VK_EXSEL', # c32.Ereof: 'VK_EREOF', # c32.Play: 'VK_PLAY', # c32.Zoom: 'VK_ZOOM', # c32.Noname: 'VK_NONAME', # c32.Pa1: 'VK_PA1', c32.OemClear: 'VK_OEM_CLEAR', c32.NumPad0: 'NUMPAD0', c32.NumPad1: 'NUMPAD1', c32.NumPad2: 'NUMPAD2', c32.NumPad3: 'NUMPAD3', c32.NumPad4: 'NUMPAD4', c32.NumPad5: 'NUMPAD5', c32.NumPad6: 'NUMPAD6', c32.NumPad7: 'NUMPAD7', c32.NumPad8: 'NUMPAD8', c32.NumPad9: 'NUMPAD9', c32.Divide: 'Divide', c32.Multiply: 'Multiply', c32.Add: 'Add', c32.Subtract: 'Subtract', c32.Decimal: 'VK_DECIMAL' } # function to handle the mapping def make_keysym(keycode): try: sym = code2sym_map[keycode] except KeyError: sym = '' return sym sym2code_map = {} for code,sym in code2sym_map.items(): sym2code_map[sym.lower()] = code def key_text_to_keyinfo(keytext): '''Convert a GNU readline style textual description of a key to keycode with modifiers''' if keytext.startswith('"'): # " return keyseq_to_keyinfo(keytext[1:-1]) else: return keyname_to_keyinfo(keytext) def char_to_keyinfo(char, control=False, meta=False, shift=False): vk = (ord(char)) if vk & 0xffff == 0xffff: print('VkKeyScan("%s") = %x' % (char, vk)) raise ValueError('bad key') if vk & 0x100: shift = True if vk & 0x200: control = True if vk & 0x400: meta = True return (control, meta, shift, vk & 0xff) def keyname_to_keyinfo(keyname): control = False meta = False shift = False while 1: lkeyname = keyname.lower() if lkeyname.startswith('control-'): control = True keyname = keyname[8:] elif lkeyname.startswith('ctrl-'): control = True keyname = keyname[5:] elif lkeyname.startswith('meta-'): meta = True keyname = keyname[5:] elif lkeyname.startswith('alt-'): meta = True keyname = keyname[4:] elif lkeyname.startswith('shift-'): shift = True keyname = keyname[6:] else: if len(keyname) > 1: return (control, meta, shift, sym2code_map.get(keyname.lower()," ")) else: return char_to_keyinfo(keyname, control, meta, shift) def keyseq_to_keyinfo(keyseq): res = [] control = False meta = False shift = False while 1: if keyseq.startswith('\\C-'): control = True keyseq = keyseq[3:] elif keyseq.startswith('\\M-'): meta = True keyseq = keyseq[3:] elif keyseq.startswith('\\e'): res.append(char_to_keyinfo('\033', control, meta, shift)) control = meta = shift = False keyseq = keyseq[2:] elif len(keyseq) >= 1: res.append(char_to_keyinfo(keyseq[0], control, meta, shift)) control = meta = shift = False keyseq = keyseq[1:] else: return res[0] def make_keyinfo(keycode, state): control = False meta =False shift = False return (control, meta, shift, keycode) def make_KeyPress(char, state, keycode): shift = bool(int(state) & int(Shift)) control = bool(int(state) & int(Control)) meta = bool(int(state) & int(Alt)) keyname = code2sym_map.get(keycode, "").lower() if control and meta: #equivalent to altgr so clear flags control = False meta = False elif control: char = str(keycode) return KeyPress(char, shift, control, meta, keyname)
import unittest import torch import gpytorch from gpytorch.distributions import MultivariateNormal from gpytorch.lazy import CholLazyTensor, TriangularLazyTensor from gpytorch.variational import NaturalVariationalDistribution, TrilNaturalVariationalDistribution class Float64Test(unittest.TestCase): def setUp(self): self.prev_type = torch.get_default_dtype() torch.set_default_dtype(torch.float64) def tearDown(self): torch.set_default_dtype(self.prev_type) class TestNatVariational(Float64Test): def test_invertible_init(self, D=5): mu = torch.randn(D) cov = torch.randn(D, D).tril_() dist = MultivariateNormal(mu, CholLazyTensor(TriangularLazyTensor(cov))) v_dist = NaturalVariationalDistribution(D, mean_init_std=0.0) v_dist.initialize_variational_distribution(dist) out_dist = v_dist() assert torch.allclose(out_dist.mean, dist.mean, rtol=1e-04, atol=1e-06) assert torch.allclose(out_dist.covariance_matrix, dist.covariance_matrix) def test_natgrad(self, D=5): mu = torch.randn(D) cov = torch.randn(D, D).tril_() dist = MultivariateNormal(mu, CholLazyTensor(TriangularLazyTensor(cov))) sample = dist.sample() v_dist = NaturalVariationalDistribution(D) v_dist.initialize_variational_distribution(dist) mu = v_dist().mean.detach() v_dist().log_prob(sample).squeeze().backward() eta1 = mu.clone().requires_grad_(True) eta2 = (mu[:, None] * mu + cov @ cov.t()).requires_grad_(True) L = torch.cholesky(eta2 - eta1[:, None] * eta1) dist2 = MultivariateNormal(eta1, CholLazyTensor(TriangularLazyTensor(L))) dist2.log_prob(sample).squeeze().backward() assert torch.allclose(v_dist.natural_vec.grad, eta1.grad) assert torch.allclose(v_dist.natural_mat.grad, eta2.grad) def test_optimization_optimal_error(self, num_inducing=16, num_data=32, D=2): inducing_points = torch.randn(num_inducing, D) class SVGP(gpytorch.models.ApproximateGP): def __init__(self): v_dist = NaturalVariationalDistribution(num_inducing) v_strat = gpytorch.variational.UnwhitenedVariationalStrategy(self, inducing_points, v_dist) super().__init__(v_strat) self.mean_module = gpytorch.means.ZeroMean() self.covar_module = gpytorch.kernels.RBFKernel() def forward(self, x): return MultivariateNormal(self.mean_module(x), self.covar_module(x)) model = SVGP().train() likelihood = gpytorch.likelihoods.GaussianLikelihood().train() mll = gpytorch.mlls.VariationalELBO(likelihood, model, num_data) X = torch.randn((num_data, D)) y = torch.randn(num_data) def loss(): return -mll(model(X), y) optimizer = torch.optim.SGD( model.variational_strategy._variational_distribution.parameters(), lr=float(num_data) ) optimizer.zero_grad() loss().backward() optimizer.step() # Now we should be at the optimum optimizer.zero_grad() loss().backward() natgrad_natural_vec2, natgrad_natural_mat2 = ( model.variational_strategy._variational_distribution.natural_vec.grad.clone(), model.variational_strategy._variational_distribution.natural_mat.grad.clone(), ) # At the optimum, the (natural) gradients are zero: assert torch.allclose(natgrad_natural_vec2, torch.zeros(())) assert torch.allclose(natgrad_natural_mat2, torch.zeros(())) class TestTrilNatVariational(Float64Test): def test_invertible_init(self, D=5): mu = torch.randn(D) cov = torch.randn(D, D).tril_() dist = MultivariateNormal(mu, CholLazyTensor(TriangularLazyTensor(cov))) v_dist = TrilNaturalVariationalDistribution(D, mean_init_std=0.0) v_dist.initialize_variational_distribution(dist) out_dist = v_dist() assert torch.allclose(out_dist.mean, dist.mean) assert torch.allclose(out_dist.covariance_matrix, dist.covariance_matrix) def test_natgrad(self, D=5): mu = torch.randn(D) cov = torch.randn(D, D) cov = cov @ cov.t() dist = MultivariateNormal(mu, CholLazyTensor(TriangularLazyTensor(cov.cholesky()))) sample = dist.sample() v_dist = TrilNaturalVariationalDistribution(D, mean_init_std=0.0) v_dist.initialize_variational_distribution(dist) v_dist().log_prob(sample).squeeze().backward() dout_dnat1 = v_dist.natural_vec.grad dout_dnat2 = v_dist.natural_tril_mat.grad # mean_init_std=0. because we need to ensure both have the same distribution v_dist_ref = NaturalVariationalDistribution(D, mean_init_std=0.0) v_dist_ref.initialize_variational_distribution(dist) v_dist_ref().log_prob(sample).squeeze().backward() dout_dnat1_noforward_ref = v_dist_ref.natural_vec.grad dout_dnat2_noforward_ref = v_dist_ref.natural_mat.grad def f(natural_vec, natural_tril_mat): "Transform natural_tril_mat to L" Sigma = torch.inverse(-2 * natural_tril_mat) mu = natural_vec return mu, Sigma.cholesky().inverse().tril() (mu_ref, natural_tril_mat_ref), (dout_dmu_ref, dout_dnat2_ref) = jvp( f, (v_dist_ref.natural_vec.detach(), v_dist_ref.natural_mat.detach()), (dout_dnat1_noforward_ref, dout_dnat2_noforward_ref), ) assert torch.allclose(natural_tril_mat_ref, v_dist.natural_tril_mat), "Sigma transformation" assert torch.allclose(dout_dnat2_ref, dout_dnat2), "Sigma gradient" assert torch.allclose(mu_ref, v_dist.natural_vec), "mu transformation" assert torch.allclose(dout_dmu_ref, dout_dnat1), "mu gradient" def jvp(f, x, v): "Simulate forward-mode AD using two reverse-mode AD" x = tuple(xx.requires_grad_(True) for xx in x) v = tuple(vv.requires_grad_(True) for vv in v) y = f(*x) grad_x = torch.autograd.grad(y, x, v, create_graph=True) jvp_val = torch.autograd.grad(grad_x, v, v) return y, jvp_val
# -*- ################# # --------------------------------------------------------------------------- # Export_JSON_To_Shapefile.py # Created on: 2016-10-19 15:40:33.00000 # Usage: Export_JSON_To_Shapefile <Point_Input_JSON> <Line_Input_JSON> <Polygon_Input_JSON> # Description: # --------------------------------------------------------------------------- # Import arcpy module import arcpy import json import os, random import zipfile # Script arguments Point_Input_JSON = arcpy.GetParameterAsText(0) Line_Input_JSON = arcpy.GetParameterAsText(1) Polygon_Input_JSON = arcpy.GetParameterAsText(2) # local variables scatch_ws = arcpy.env.scratchWorkspace Features_By_Shape = {} # # main process # if Point_Input_JSON is None or len(Point_Input_JSON.strip()) == 0: arcpy.AddMessage("empty point data") else: try: Features_By_Shape["Point"] = json.loads(Point_Input_JSON) except Exception as e: arcpy.AddError("ignore point data. %s" % e.message) pass if Line_Input_JSON is None or len(Line_Input_JSON.strip()) == 0: arcpy.AddMessage("empty line data") else: try: Features_By_Shape["Line"] = json.loads(Line_Input_JSON) except Exception as e: arcpy.AddError("ignore line data. %s" % e.message) pass if Polygon_Input_JSON is None or len(Polygon_Input_JSON.strip()) == 0: arcpy.AddMessage("empty polygon data") else: try: Features_By_Shape["Polygon"] = json.loads(Polygon_Input_JSON) except Exception as e: arcpy.AddError("ignore polygon data. %s" % e.message) pass # create the staging folders stg_json_folder = os.path.join(scatch_ws, "json") os.mkdir(stg_json_folder) stg_shp_folder = os.path.join(scatch_ws, "shape") os.mkdir(stg_shp_folder) # convert json to shapefile for shape_type in Features_By_Shape.keys(): if len(Features_By_Shape[shape_type]) > 0: # Process: JSON To Features with open(os.path.join(stg_json_folder, shape_type+".json"), "w") as json_file: json_file.write(json.dumps(Features_By_Shape[shape_type])) featureClass = "in_memory\\" + shape_type arcpy.JSONToFeatures_conversion(json_file.name, featureClass) # Process: Feature Class To Shapefile (multiple) arcpy.FeatureClassToShapefile_conversion(featureClass, stg_shp_folder) Export_File_Path = os.path.join(scatch_ws, "export.zip") with zipfile.ZipFile(Export_File_Path, "w", zipfile.ZIP_DEFLATED) as zf: for dirname, subdirs, files in os.walk(stg_shp_folder): for filename in files: zf.write(os.path.join(dirname, filename), filename) arcpy.SetParameter(3, Export_File_Path) arcpy.AddMessage("export completed")
# MIT License # # Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np import gym, random, re, timeit, sys, ray, torch import glob, os, argparse, json from matplotlib import pyplot as plt import dill from collections import defaultdict from smarts.core.utils.episodes import episodes from ultra.scenarios.common.visualization import ( draw_intersection, convert_to_gif, profile_vehicles, ) from smarts.core.agent import AgentSpec, Agent from smarts.core.controllers import ActionSpaceType from smarts.core.agent_interface import ( AgentInterface, AgentType, NeighborhoodVehicles, ) from ultra.scenarios.common.social_vehicle_definitions import get_social_vehicle_color from ultra.scenarios.generate_scenarios import get_direction from ultra.scenarios.analysis.base_analysis import BaseAnalysis num_gpus = 1 if torch.cuda.is_available() else 0 @ray.remote(num_gpus=num_gpus / 2) class BehaviorAnalysis(BaseAnalysis): def __init__(self): super(BaseAnalysis, self).__init__() self.analysis = [] def draw_plots(self, save_dir, failure_time=None): start = 0 end = 600 behaviors = {} for scenario in self.analysis: for behavior in scenario.keys(): if behavior not in behaviors: behaviors[behavior] = { "avg_speed_junction": [], "min_speed_junction": [], "max_speed_junction": [], "avg_accel_junction": [], "min_accel_junction": [], "max_accel_junction": [], "total_steps_junction": [], "exceeds_speed_limit": 0, } s, e = scenario[behavior]["in_junction"][0] behaviors[behavior]["avg_speed_junction"].append( np.mean(scenario[behavior]["speeds"][s:e]) ) behaviors[behavior]["min_speed_junction"].append( scenario[behavior]["min_speed_junction"][0] ) behaviors[behavior]["max_speed_junction"].append( scenario[behavior]["max_speed_junction"][0] ) behaviors[behavior]["avg_accel_junction"].append( np.mean(scenario[behavior]["accels"][s:e]) ) behaviors[behavior]["min_accel_junction"].append( scenario[behavior]["min_accel_junction"][0] ) behaviors[behavior]["max_accel_junction"].append( scenario[behavior]["max_accel_junction"][0] ) behaviors[behavior]["total_steps_junction"].append( scenario[behavior]["steps_in_junction"][0] ) for key in [ "min_speed_junction", "max_speed_junction", "avg_speed_junction", "min_accel_junction", "max_accel_junction", "avg_accel_junction", "total_steps_junction", ]: plt.figure() if "speed" in key: bins = [i for i in range(40)] elif "accel" in key: bins = [i for i in range(-15, 15)] else: bins = [i for i in range(1000)] for behavior, data in behaviors.items(): n, bins, patches = plt.hist( x=data[key], bins=bins, color="#0504aa", alpha=0.7, rwidth=0.85 ) plt.grid(axis="y", alpha=0.75) plt.xlabel(key) plt.title(behavior) plt.ylabel("Frequency") maxfreq = n.max() # Set a clean upper y-axis limit. plt.ylim( ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10 ) plt.savefig(f"{save_dir}/{behavior}_{key}.png") plt.close() def analyze(self, episode_time, stopwatcher_max_steps, simulation_data): analysis = {} for v_id, v_state in self.social_vehicles_states.items(): if "stopwatcher" in v_state["behavior"]: _, behavior = v_state["behavior"].split("_") if behavior not in self.analysis: analysis[behavior] = { "max_steps": [], "steps_in_junction": [], "max_road_speed": None, "speeds": [], "accels": [], "min_speed_junction": [], "max_speed_junction": [], "min_accel_junction": [], "max_accel_junction": [], "in_junction": [], "steps_in_junction": [], } in_junction = v_state["in_junction"] speed_in_junction = v_state["speeds"][in_junction[0] : in_junction[1]] accel_in_junction = v_state["accels"][in_junction[0] : in_junction[1]] analysis[behavior]["in_junction"].append(in_junction) analysis[behavior]["min_speed_junction"].append(min(speed_in_junction)) analysis[behavior]["max_speed_junction"].append(max(speed_in_junction)) analysis[behavior]["min_accel_junction"].append(min(accel_in_junction)) analysis[behavior]["max_accel_junction"].append(max(accel_in_junction)) print("in junction", in_junction) analysis[behavior]["max_steps"].append(v_state["steps"]) analysis[behavior]["steps_in_junction"].append( int(in_junction[1]) - int(in_junction[0]) ) analysis[behavior][ "max_road_speed" ] = 19.44 # road_speads[v_state["route"]] analysis[behavior]["speeds"] = v_state["speeds"] analysis[behavior]["accels"] = v_state["accels"] self.analysis.append(analysis) def save_data(self, save_dir): with open(f"{save_dir}/analysis.pkl", "wb") as handle: dill.dump(self.analysis, handle) print(f"saved data to {save_dir}/analysis.pkl") def load_data(self, path): with open(path, "rb") as handle: self.analysis = dill.load(handle) print(f"loaded data {len(self.analysis)} from {path}") def run(self, **params): super().run(**params, analyze_func=self.analyze)
import base from sys import argv import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import operator from collections import defaultdict THRESHOLD = 0.4 GRAPHFILE='per-char-analysis.png' if len(argv)!=2: print("Usage python h5_analyzer.py <db.h5>") exit(1) X, Y = base.H5Dataset(argv[1], "Conjunto").get_XY() total = X.shape[0] cant = defaultdict(int) for y in Y: cant[chr(base.to_categorical(y)+32)] += 1 cant['Espacios']=cant[' '] del cant[' '] cant = sorted(cant.items(), key=operator.itemgetter(1)) for i,(c,q) in enumerate(cant): print("(#{}) {}: {} ({:.2f}%)".format(len(cant)-i, c, q, q/float(total)*100.)) print('Total: {}'.format(total)) print(list(reversed(cant))) print('Guardando grafico en {}...'.format(GRAPHFILE)) qotros = sum([q for _,q in cant if q/float(total)*100<THRESHOLD]) cant = [(c,q) for c,q in cant if q/float(total)*100>=THRESHOLD] cant = sorted(cant+[('Otros', qotros)], key=operator.itemgetter(1)) cant = list(reversed(cant)) cant = [(c,q/float(total)*100.) for c,q in cant] C, Q = zip(*cant) #~ print(plt.rcParams["figure.figsize"]) #~ plt.rcParams["figure.figsize"] = [8, 15] y_pos = np.arange(len(cant)) plt.barh(y_pos, Q, align='center', alpha=0.4) plt.yticks(y_pos, C) plt.xlabel('Porcentaje del dataset que representa') plt.ylabel('Caracter') plt.grid(True) plt.title('') for i, q in enumerate(Q): plt.text(q + 0.01, i, "{:.2f}%".format(q), color='black', fontweight='bold') plt.savefig(GRAPHFILE, bbox_inches='tight', dpi = 300, figsize=(100, 100)) plt.clf()
import unittest import numpy as np from itertools import product from apal import Khachaturyan from apal_cxx import PyKhachaturyan from apal_cxx import pytest_functional_derivative from apal_cxx import pytest_contract_tensors from apal_cxx import pytest_B_tensor_element from apal_cxx import pytest_strain_energy_sphere from apal.tools import to_full_rank4 class TestKhacaturyan(unittest.TestCase): K = 50.0 G = 26.0 def get_isotropic_tensor(self): C = np.zeros((6, 6)) C[0, 0] = C[1, 1] = C[2, 2] = self.K + 4*self.G/3.0 C[0, 1] = C[0, 2] = \ C[1, 0] = C[1, 2] = \ C[2, 0] = C[2, 1] = self.K - 2.0*self.G/3.0 C[3, 3] = C[4, 4] = C[5, 5] = 2*self.G return C @property def poisson(self): return 0.5*(3*self.K - 2*self.G)/(3*self.K + self.G) def isotropic_green_function(self, k): return np.eye(3)/self.G - 0.5*np.outer(k, k)/(self.G*(1.0 - self.poisson)) def get_sphere_voxels(self, N): shape_func = np.zeros((N, N, N), dtype=np.uint8) indx = np.array(range(N)) ix, iy, iz = np.meshgrid(indx, indx, indx) r_sq = (ix-N/2)**2 + (iy-N/2)**2 + (iz-N/2)**2 r = N/8.0 shape_func[r_sq<r] = 1 return shape_func def eff_stress(self, elastic, misfit): return np.einsum('ijkl,kl->ij', elastic, misfit) def get_plate_voxels(self, N): shape_func = np.zeros((N, N, N), dtype=np.uint8) width = int(N/4) shape_func[:width, :width, :2] = 1 return shape_func def get_needle_voxels(self, N): shape_func = np.zeros((N, N, N), dtype=np.uint8) width = int(N/4) shape_func[:width, :2, :2] = 1 return shape_func def test_isotropic(self): misfit = np.eye(3)*0.05 strain = Khachaturyan(elastic_tensor=self.get_isotropic_tensor(), misfit_strain=misfit) k = np.array([5.0, -2.0, 7.0]) khat = k/np.sqrt(k.dot(k)) zeroth = strain.zeroth_order_green_function(khat) self.assertTrue(np.allclose(zeroth, self.isotropic_green_function(khat))) def eshelby_strain_energy_sphere(self, misfit): return 2*(1+self.poisson)*self.G*misfit**2/(1-self.poisson) def eshelby_strain_energy_plate(self, misfit): return 2*(1+self.poisson)*self.G*misfit**2/(1-self.poisson) def eshelby_strain_energy_needle(self, misfit): return 2*(1+self.poisson)*self.G*misfit**2/(1-self.poisson) def test_green_function_cpp(self): misfit = np.eye(3)*0.05 elastic = to_full_rank4(self.get_isotropic_tensor()) pykhach = PyKhachaturyan(3, elastic, misfit) k = np.array([-1.0, 3.0, 2.5]) k /= np.sqrt(k.dot(k)) gf = pykhach.green_function(k) self.assertTrue(np.allclose(gf, self.isotropic_green_function(k))) def test_frequency(self): misfit = np.eye(3)*0.05 ft = np.zeros((8, 8, 8)) elastic = to_full_rank4(self.get_isotropic_tensor()) pykhach = PyKhachaturyan(3, elastic, misfit) freq = np.fft.fftfreq(ft.shape[0]) for i in range(ft.shape[0]): indx = np.array([i, 0, 0]) self.assertAlmostEqual(freq[i], pykhach.wave_vector(indx, ft.shape[0])[0]) def test_sphere(self): eps = 0.05 misfit = np.eye(3)*eps strain = Khachaturyan(elastic_tensor=self.get_isotropic_tensor(), misfit_strain=misfit) sph = self.get_sphere_voxels(256) E = strain.strain_energy_voxels(sph) E_eshelby = self.eshelby_strain_energy_sphere(eps) self.assertAlmostEqual(E, E_eshelby, places=3) def test_sphere_pure_python(self): eps = 0.05 misfit = np.eye(3)*eps strain = Khachaturyan(elastic_tensor=self.get_isotropic_tensor(), misfit_strain=misfit) sph = self.get_sphere_voxels(32) E = strain.strain_energy_voxels(sph) E_eshelby = self.eshelby_strain_energy_sphere(eps) self.assertAlmostEqual(E, E_eshelby, places=3) def test_plate_voxels(self): eps = 0.05 misfit = np.eye(3)*eps strain = Khachaturyan(elastic_tensor=self.get_isotropic_tensor(), misfit_strain=misfit) plate = self.get_plate_voxels(256) E = strain.strain_energy_voxels(plate) E_eshelby = self.eshelby_strain_energy_plate(eps) self.assertAlmostEqual(E, E_eshelby, places=3) def test_needle_voxels(self): eps = 0.05 misfit = np.eye(3)*eps strain = Khachaturyan(elastic_tensor=self.get_isotropic_tensor(), misfit_strain=misfit) needle = self.get_needle_voxels(256) E = strain.strain_energy_voxels(needle) E_eshelby = self.eshelby_strain_energy_needle(eps) self.assertAlmostEqual(E, E_eshelby, places=3) def test_effective_stress(self): eps = 0.05 misfit = np.eye(3)*eps misfit[0, 1] = 0.01 misfit[0, 2] = -0.2 misfit[1, 2] = 0.1 misfit = 0.5*(misfit + misfit.T) elastic = to_full_rank4(self.get_isotropic_tensor()) stress = self.eff_stress(elastic, misfit) khac = PyKhachaturyan(3, elastic, misfit) stress_cpp = khac.effective_stress() self.assertTrue(np.allclose(stress, stress_cpp)) def test_contract_tensors(self): t1 = [[0.1, 0.2, 0.1], [0.1, 5.0, -0.2], [0.1, -0.2, -2.0]] t2 = [[-0.11, 2.0, 3.0], [2.0, 4.0, 0.2], [3.0, 0.2, -1.0]] cpp_contract = pytest_contract_tensors(t1, t2) pycontract = np.einsum("ij,ij", t1, t2) self.assertAlmostEqual(cpp_contract, pycontract) def test_B_tensor_element(self): gf = [[0.5, 0.2, 0.1], [0.2, -0.2, 0.3], [0.1, 0.3, 1.0]] t1 = [[0.1, 0.2, 0.1], [0.1, 5.0, -0.2], [0.1, -0.2, -2.0]] t2 = [[-0.11, 2.0, 3.0], [2.0, 4.0, 0.2], [3.0, 0.2, -1.0]] direction = np.array([0.3, 0.4, -0.1]) direction /= np.sqrt(direction.dot(direction)) cpp_element = pytest_B_tensor_element(direction, gf, t1, t2) py_elem = np.einsum("i,ij,jk,kl,l", direction, t1, gf, t2, direction) self.assertAlmostEqual(cpp_element, py_elem) def test_functional_derivative_one_field(self): elastic = to_full_rank4(self.get_isotropic_tensor()) misfit = np.eye(3) misfit[0, 0] = 0.05 misfit[1, 1] = -0.02 misfit[2, 2] = 0.0 init_field = np.zeros((128, 128)) init_field[:15, :15] = 0.8 try: result = pytest_functional_derivative(elastic, misfit, init_field.ravel()) except RuntimeError as exc: # If fails, make sure that it is for the right reason self.assertTrue("The package was compiled without FFTW!" in str(exc)) return func_deriv = result["func_deriv"] # Test 1 make sure that all entries outside 15x15 is zero self.assertTrue(np.allclose(init_field[15:, 15:], 0.0)) init_field /= 0.8 # Make sure field was passed correctly self.assertTrue(np.allclose(init_field, result["shape_squared_in"])) ft = np.fft.fft2(init_field**2) freq = np.fft.fftfreq(ft.shape[0]) # Make sure that the real part of FFT match self.assertTrue(np.allclose(np.real(ft), result["ft_shape_real"])) V = 15*15 stress = self.eff_stress(elastic, misfit) # Anlytical calculation for indx in product(range(ft.shape[0]), repeat=2): kvec = np.array([freq[indx[0]], freq[indx[1]], 0.0]) k = np.sqrt(kvec.dot(kvec)) if k < 1E-6: continue unit_vec = kvec/k G = self.isotropic_green_function(unit_vec) B = np.einsum('i,ij,jk,kl,l', unit_vec, stress, G, stress, unit_vec) ft[indx] *= B # Set the origin to the average value of the neighbours ft[0, 0] = 0.25*(ft[0, 1] + ft[1, 0] + ft[-1, 0] + ft[0, -1]) self.assertTrue(np.allclose(np.real(ft), result["b_tensor_dot_ft_squared"])) ift_full = np.fft.ifft2(ft) self.assertTrue(np.allclose(np.imag(ift_full), 0.0)) ift = np.real(ift_full) misfit_contrib = np.einsum('ijkl,ij,kl', elastic, misfit, misfit)*init_field**2 self.assertTrue(np.allclose(misfit_contrib, result["misfit_energy_contrib"])) expect = 2*init_field*(misfit_contrib - ift) self.assertTrue(np.allclose(func_deriv, expect)) def test_strain_field(self): misfit = np.zeros((3, 3)) misfit[0, 0] = 0.05 khach = Khachaturyan(elastic_tensor=self.get_isotropic_tensor(), misfit_strain=misfit) shape = np.zeros((128, 128)) shape[:, :20] = 1.0 strain = khach.strain_field(shape) # Compare with exact solution self.assertTrue(np.allclose(strain[(0, 0)], 0.0)) self.assertTrue(np.allclose(strain[(2, 2)], 0.0)) self.assertTrue(np.allclose(strain[(0, 1)], 0.0)) self.assertTrue(np.allclose(strain[(0, 2)], 0.0)) self.assertTrue(np.allclose(strain[(1, 2)], 0.0)) # TODO: Confirm that strain[(1, 1)] also satisfies # the solution. It seems to have the right structure # at least... def test_strain_energy(self): misfit = np.zeros((3, 3)) misfit[0, 0] = misfit[1, 1] = misfit[2, 2] = 0.05 elastic = to_full_rank4(self.get_isotropic_tensor()) try: result = pytest_strain_energy_sphere(elastic, misfit) except RuntimeError as exc: # If fails, make sure that it is for the right reason self.assertTrue("The package was compiled without FFTW!" in str(exc)) return # Expected misfit contribution vol = result["volume"] expected_misfit = 0.5*np.einsum("ijkl,ij,kl", elastic, misfit, misfit) self.assertAlmostEqual(expected_misfit, result["misfit_contrib"]/vol) eshelby_energy = self.eshelby_strain_energy_sphere(misfit[0, 0]) self.assertAlmostEqual(eshelby_energy, result["energy"], places=2) if __name__ == "__main__": unittest.main()
from django.contrib import admin from nano.badge.models import Badge class BadgeAdmin(admin.ModelAdmin): list_display = ('level', 'name', 'description') list_filter = ('level',) ordering = ('level', 'name',) admin.site.register(Badge, BadgeAdmin)
import pandas as pd #from datetime import datetime import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes import matplotlib.pyplot as plt from scipy import interpolate # some processing stuff df = pd.read_excel( "data/cruise-arrivals.xlsx", dtype= {"YEAR":int, "ARRIVED DATE": str, "TIME": str, "HOURS": str}) df = df[df["Year"] == 2018] df["ARRIVAL"] = pd.to_datetime(df["ARRIVED DATE"] + " " + df["TIME"] ) df["DEPATURE"] = df["ARRIVAL"] + pd.to_timedelta(df['HOURS'],"h") # create function to interpolate based on relative time length stay of ship demand = np.array([12, 12, 10, 6, 4, 4, 4, 4, 6, 10, 12, 12]) timerel = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])/11 f = interpolate.interp1d(timerel, demand) # create demand profiles for every arrived ships based on its duration stays = {} for _, row in df.iterrows(): df_ = pd.DataFrame(index= pd.date_range(row["ARRIVAL"], row["DEPATURE"], freq="h")) df_["timerel"] = [i/len(df_) for i in range(1, len(df_)+1)] df_["demand"] = df_.apply(lambda x: f(x["timerel"]), axis=1) stays[_] = df_ # concat, resample and aggregated values, demand_agg = pd.concat(stays.values(), axis=0).sort_index() demand_agg_sum = demand_agg.resample("H").sum() demand_agg_sum.sum() # fix missing indices and fillna with 0 demand_agg_sum = demand_agg_sum.reindex(pd.date_range(start="2018", periods=8760, freq="H")).fillna(0)["demand"] cruise_profile = demand_agg_sum / demand_agg_sum.sum() cruise_profile.to_csv("data/cruise_ship_profile.csv") # plot to see how it looks :-) ax = demand_agg_sum.plot() ax.set_ylabel("Aggregated Cruise Ship Demand in MW") plt.savefig("visualization/figures/input-cruise-ship-demand.pdf") # to see the structure of the arrivals and depatures df["ARRIVAL TIME"] = pd.to_timedelta(df["TIME"]) / pd.offsets.Hour(1) #.astype("float") df["HOURS OF STAY"] = pd.to_timedelta(df["HOURS"]) / pd.offsets.Hour(1) #.astype("float") df.plot.scatter(x="ARRIVAL TIME", y="HOURS OF STAY") plt.savefig("visualization/figures/input-arrival-and-stay.pdf") load = pd.read_excel("scenarios/REF.xls", sheet_name="load", index_col=0) df = pd.read_excel("scenarios/REF.xls", sheet_name="profiles", index_col=0, parse_dates=True) profiles= df.iloc[:, 0:3] amount = load["amount"].values abs_profiles = profiles.multiply(amount) abs_profiles["BB-Aggregated"] = abs_profiles.sum(axis=1) ax = abs_profiles.iloc[4:168+4].plot(grid=True, color=["orange", "green", "skyblue", "darkred"]) #ax.set_ylim(0, 400) ax.set_ylabel("Demand in MWh") ax.set_xlabel("Hour") handles, labels = ax.get_legend_handles_labels() lgd = {k: v for k, v in dict(zip(handles, labels)).items()} ax.set_ylabel("Demand in MW") ax.grid(linestyle="--", lw=0.2) lgd = ax.legend( list(lgd.keys()), ["el-demand", "evcc-demand", "cruise-demand", "aggregated-demand"], loc="lower left", bbox_to_anchor=(0.1, -0.40), ncol=2, borderaxespad=0, frameon=False, ) inset = inset_axes(ax, width="30%", # width = 30% of parent_bbox height=1, # height : 1 inch loc=1) abs_profiles.iloc[:,2].plot(ax=inset, color="skyblue") inset.set_title("Cruise Ships", backgroundcolor='w') inset.set_ylabel("Demand in MW.", backgroundcolor='w') inset.set_xlabel("Hour of year", backgroundcolor='w') inset.set_xticklabels([""], backgroundcolor='w') plt.savefig( "visualization/figures/load-profiles-input.pdf", #bbox_extra_artists=(lgd,), bbox_inches="tight", )
from django.contrib import admin from .models import WikiArticleModel,WikiPermModel # Register your models here. # Wiki @admin.register(WikiArticleModel) class CustomGroupAdmin(admin.ModelAdmin): search_fields = ('title','level') @admin.register(WikiPermModel) class CustomGroupAdmin(admin.ModelAdmin): pass
import unittest import transaction import random from pyramid import testing from pyramid.response import Response import pytest from mood_bot.models import ( User, Sentiments, get_tm_session, ) from mood_bot.models.meta import Base from faker import Faker from passlib.apps import custom_app_context as context @pytest.fixture(scope="session") def configuration(request): """Set up a Configurator instance. This Configurator instance sets up a pointer to the location of the database. It also includes the models from your app's model package. Finally it tears everything down, including the in-memory SQLite database. This configuration will persist for the entire duration of your PyTest run. """ config = testing.setUp(settings={ 'sqlalchemy.url': 'postgres://localhost:5432/test_moodybot' }) config.include("mood_bot.models") config.include("mood_bot.routes") config.include("mood_bot.security") def teardown(): testing.tearDown() request.addfinalizer(teardown) return config @pytest.fixture def db_session(configuration, request): """Create a session for interacting with the test database. This uses the dbsession_factory on the configurator instance to create a new database session. It binds that session to the available engine and returns a new session for every call of the dummy_request object. """ SessionFactory = configuration.registry["dbsession_factory"] session = SessionFactory() engine = session.bind Base.metadata.create_all(engine) FAKE_USER = [ {'username': 'kurtykurt', 'password': context.hash('kurtkurt')}, {'username': 'caseyisawesome', 'password': context.hash('casey')}, {'username': 'ajshorty', 'password': context.hash('shorty')}, {'username': 'annabanana', 'password': context.hash('banana')} ] fake_data = Faker() FAKE_DATA = [ {'body': fake_data.text(), 'negative_sentiment': fake_data.random.random(), 'positive_sentiment': fake_data.random.random(), 'user_id': random.randint(1, 3)} for i in range(20) ] faker_user = [] for fake in FAKE_USER: even_newer_result = User( username=fake['username'], password=fake['password'], ) faker_user.append(even_newer_result) session.add_all(faker_user) faker_models = [] for fake in FAKE_DATA: newer_results = Sentiments( body=fake['body'], negative_sentiment=fake['negative_sentiment'], positive_sentiment=fake['positive_sentiment'], user_id=fake['user_id'] ) faker_models.append(newer_results) session.add_all(faker_models) def teardown(): session.transaction.rollback() Base.metadata.drop_all(engine) request.addfinalizer(teardown) return session @pytest.fixture def post_request(dummy_request): dummy_request.method = "POST" return dummy_request @pytest.fixture def dummy_request(db_session): """Dummy request fixture.""" return testing.DummyRequest(dbsession=db_session) def test_home_view_returns_response(): """Home view returns a Response object.""" from mood_bot.views.default import home_view request = testing.DummyRequest() response = home_view(request) assert isinstance(response, dict) def test_login_view_returns_response(): """Login view returns a Response object.""" from mood_bot.views.default import login request = testing.DummyRequest() response = login(request) assert isinstance(response, dict) def test_login_error(dummy_request): """Test error for login.""" from mood_bot.views.default import login dummy_request.method = "POST" data_dict = {'username': 'thisismylogin', 'password': 'notmypassword'} dummy_request.POST = data_dict response = login(dummy_request) assert response == {'error': 'Invalid username or password.'} # def test_login_redirects_to_home_view(post_request): # """Test that login redirects to the home page after login.""" # from mood_bot.views.default import login # from pyramid.httpexceptions import HTTPFound # data_dict = {'username': 'kurtykurt', 'password': 'kurtkurt'} # post_request.POST = data_dict # response = login(post_request) # assert response.status_code == 302 # assert isinstance(response, HTTPFound) def test_about_view_returns_response(): """About view returns a Response object.""" from mood_bot.views.default import about_view request = testing.DummyRequest() response = about_view(request) assert isinstance(response, dict) def test_register_view_returns_response(): """Register view returns a Response object.""" from mood_bot.views.default import register request = testing.DummyRequest() response = register(request) assert isinstance(response, dict) # def test_register_user_for_login(dummy_request): # """Test that checks for user login.""" # from mood_bot.views.default import register # from pyramid.httpexceptions import HTTPFound # data_dict = {'username': 'kurtykurt', 'password': 'kurtkurt', 'password-check': 'kurtkurt'} # dummy_request.POST = data_dict # response = register(dummy_request) # assert response.status_code == 302 # assert isinstance(response, HTTPFound) def test_register_error(dummy_request): """Test that login error raises for invalid registration.""" from mood_bot.views.default import register data_dict = {'username': '', 'password': '', 'password-check': ''} dummy_request.POST = data_dict response = register(dummy_request) assert response == {'error': 'Please provide a username and password.'} def test_register_error_for_non_matching_password(dummy_request): """Test that login error raises for not matching password.""" from mood_bot.views.default import register data_dict = {'username': 'kurtykurt', 'password': 'kurtkurt', 'password-check': 'kurt'} dummy_request.POST = data_dict response = register(dummy_request) assert response == {'error': 'Passwords do not match.'} def test_twitter_main_response_is_response(): """Test that the main function in twitter returns response.""" from mood_bot.scripts.twitter import main query = 'Dinosaur' response = main(query) assert response == response def test_twitter_main_tweets_is_response(): """Test the main function does the thing.""" from mood_bot.scripts.twitter import main query = 'nhuntwalker' response = main(query) tweets = [] tweets.extend(response) assert response == tweets def test_twitter_view_does_the_thing(): """About twitter returns a Response object.""" from mood_bot.views.default import twitter_view request = testing.DummyRequest() response = twitter_view(request) assert isinstance(response, dict) def test_twitter_view_post_request(post_request): """Test that twitter post request returns results.""" tweets = 'Dinosaur' post_request.POST = tweets response = post_request.POST assert response == tweets
# Copyright 2018 Davide Spadini # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import platform import sys import psutil from pydriller import RepositoryMining from datetime import datetime logging.basicConfig(level=logging.WARNING) skip_remote = True def test_memory(caplog): if skip_remote: return caplog.set_level(logging.WARNING) logging.warning("Starting with nothing...") diff_with_nothing, all_commits_with_nothing = mine(0) logging.warning("Starting with everything...") diff_with_everything, all_commits_with_everything = mine(1) logging.warning("Starting with metrics...") diff_with_metrics, all_commits_with_metrics = mine(2) max_values = [max(all_commits_with_nothing), max(all_commits_with_everything), max(all_commits_with_metrics)] logging.warning("Max values are: {}".format(max_values)) minutes_with_everything = (diff_with_everything.seconds % 3600) // 60 minutes_with_metrics = (diff_with_metrics.seconds % 3600) // 60 logging.warning("TIME: With nothing: {}:{}:{} ({} commits/sec), " "with everything: {}:{}:{} ({} commits/sec), " "with metrics: {}:{}:{} ({} commits/sec)".format( diff_with_nothing.seconds // 3600, (diff_with_nothing.seconds % 3600) // 60, diff_with_nothing.seconds % 60, 973 // diff_with_nothing.seconds if diff_with_nothing.seconds != 0 else 0, diff_with_everything.seconds // 3600, (diff_with_everything.seconds % 3600) // 60, diff_with_everything.seconds % 60, 973 // diff_with_everything.seconds, diff_with_metrics.seconds // 3600, (diff_with_metrics.seconds % 3600) // 60, diff_with_metrics.seconds % 60, 973 // diff_with_metrics.seconds )) if any(val > 250 for val in max_values) or \ minutes_with_everything >= 1 or \ minutes_with_metrics >= 7: # if to analyze 1000 commits requires more than 250MB of RAM, # more than 1 minute without metrics or # 7 minutes with metrics, print it log(diff_with_nothing, all_commits_with_nothing, diff_with_everything, all_commits_with_everything, diff_with_metrics, all_commits_with_metrics) assert 973 == len(all_commits_with_nothing) == len(all_commits_with_everything) == len(all_commits_with_metrics) def log(diff_with_nothing, all_commits_with_nothing, diff_with_everything, all_commits_with_everything, diff_with_metrics, all_commits_with_metrics): text = "*PYTHON V{}.{} - System: {}*\n" \ "*Max memory (MB)*\n" \ "With nothing: {}, with everything: {}, with metrics: {}\n" \ "*Min memory (MB)*\n" \ "With nothing: {}, with everything: {}, with metrics: {} \n" \ "*Time*\n" \ "With nothing: {}:{}:{}, with everything: {}:{}:{}, with metrics: {}:{}:{} \n" \ "*Total number of commits*: {}\n" \ "*Commits per second:*\n" \ "With nothing: {}, with everything: {}, with metrics: {}" print(text.format( sys.version_info[0], sys.version_info[1], platform.system(), max(all_commits_with_nothing), max(all_commits_with_everything), max(all_commits_with_metrics), min(all_commits_with_nothing), min(all_commits_with_everything), min(all_commits_with_metrics), diff_with_nothing.seconds // 3600, (diff_with_nothing.seconds % 3600) // 60, diff_with_nothing.seconds % 60, diff_with_everything.seconds // 3600, (diff_with_everything.seconds % 3600) // 60, diff_with_everything.seconds % 60, diff_with_metrics.seconds // 3600, (diff_with_metrics.seconds % 3600) // 60, diff_with_metrics.seconds % 60, len(all_commits_with_nothing), len(all_commits_with_nothing) / diff_with_nothing.seconds, len(all_commits_with_everything) / diff_with_everything.seconds, len(all_commits_with_metrics) / diff_with_metrics.seconds )) def mine(_type): p = psutil.Process(os.getpid()) dt1 = datetime(2017, 1, 1) dt2 = datetime(2017, 7, 1) all_commits = [] start = datetime.now() for commit in RepositoryMining('test-repos-hadoop/hadoop', since=dt1, to=dt2).traverse_commits(): memory = p.memory_info()[0] / (2 ** 20) all_commits.append(memory) h = commit.author.name if _type == 0: continue for mod in commit.modifications: dd = mod.diff if _type == 1: continue if mod.filename.endswith('.java'): cc = mod.complexity end = datetime.now() diff = end - start return diff, all_commits
#!/usr/bin/env python """Tests for `deep_translator` package.""" import pytest from deep_translator import PonsTranslator, exceptions @pytest.fixture def pons(): return PonsTranslator(source="english", target="french") def test_content(pons): """Sample pytest test function with the pytest fixture as an argument.""" # from bs4 import BeautifulSoup # assert 'GitHub' in BeautifulSoup(response.content).title.string assert pons.translate(word="good") is not None def test_inputs(): with pytest.raises(exceptions.InvalidSourceOrTargetLanguage): PonsTranslator(source="", target="") with pytest.raises(exceptions.InvalidSourceOrTargetLanguage): PonsTranslator(source="auto", target="") with pytest.raises(exceptions.InvalidSourceOrTargetLanguage): PonsTranslator(source="", target="en") l1 = PonsTranslator("en", "fr") l2 = PonsTranslator("english", "french") assert l1._source == l2._source assert l1._target == l2._target def test_payload(pons): with pytest.raises(exceptions.NotValidPayload): pons.translate(123) with pytest.raises(exceptions.NotValidPayload): pons.translate({}) with pytest.raises(exceptions.NotValidPayload): pons.translate([]) with pytest.raises(exceptions.NotValidLength): pons.translate("a" * 51)
""" Copyright 2021, Institute e-Austria, Timisoara, Romania http://www.ieat.ro/ Developers: * Gabriel Iuhasz, [email protected] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from edelogger import logger import csv import os import io from io import StringIO from datetime import datetime import time import sys import pandas as pd import numpy as np import glob from util import csvheaders2colNames # TODO Check ARFF compatibility from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import StandardScaler, OrdinalEncoder # from sklearn.externals import joblib # if dump fails import joblib import importlib from functools import reduce import tqdm # import weka.core.jvm as jvm import warnings # warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=FutureWarning) class DataFormatter: def __init__(self, dataDir): self.dataDir = dataDir self.fmHead = 0 self.scaler_mod = 'sklearn.preprocessing' def getJson(self): return 'load Json' def getGT(self, data, gt='target'): if gt is None: logger.warning('[{}] : [WARN] Ground truth column not defined, fetching last column as target'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) features = data.columns[:-1] X = data[features] y = data.iloc[:, -1].values else: logger.info('[{}] : [INFO] Ground truth column set to {} '.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), gt)) y = data[gt].values X = data.drop([gt], axis=1) return X, y def computeOnColumns(self, df, operations, remove_filtered=True): if operations: if 'STD' in list(operations.keys()): std = operations['STD'] else: std = None if 'Mean' in list(operations.keys()): mean = operations['Mean'] else: mean = None if 'Median' in list(operations.keys()): median = operations['Median'] else: median = None all_processed_columns = [] if std or std is not None: for cl_std in std: for ncol_n, fcol_n in cl_std.items(): df_std = self.filterColumns(df, lColumns=fcol_n) logger.info('[{}] : [INFO] Computing standard deviation {} on columns {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), ncol_n, fcol_n)) std_df = df_std.std(axis=1, skipna=True) df[ncol_n] = std_df for c in fcol_n: all_processed_columns.append(c) if mean or mean is not None: for cl_mean in mean: for ncol_n, fcol_n in cl_mean.items(): df_mean = self.filterColumns(df, lColumns=fcol_n) logger.info('[{}] : [INFO] Computing mean {} on columns {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), ncol_n, fcol_n)) mean_df = df_mean.mean(axis=1, skipna=True) df[ncol_n] = mean_df for c in fcol_n: all_processed_columns.append(c) if median or median is not None: for cl_median in median: for ncol_n, fcol_n in cl_median.items(): df_median = self.filterColumns(df, lColumns=fcol_n) logger.info('[{}] : [INFO] Computing median {} on columns {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), ncol_n, fcol_n)) median_df = df_median.median(axis=1, skipna=True) df[ncol_n] = median_df for c in fcol_n: all_processed_columns.append(c) if "Method" in list(operations.keys()): df = self.__operationMethod(operations['Method'], data=df) if remove_filtered: unique_all_processed_columns = list(set(all_processed_columns)) logger.warning('[{}] : [WARN] Droping columns used for computation ...'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), unique_all_processed_columns)) self.dropColumns(df, unique_all_processed_columns, cp=False) else: logger.info('[{}] : [INFO] No data operations/augmentations defined'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) logger.info('[{}] : [INFO] Augmented data shape {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), df.shape)) return df def filterColumns(self, df, lColumns): ''' :param df: -> dataframe :param lColumns: -> column names :return: -> filtered df ''' if not isinstance(lColumns, list): logger.error('[%s] : [ERROR] Dataformatter filter method expects list of column names not %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(lColumns)) sys.exit(1) if not lColumns in df.columns.values: # todo checK FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison # print(lColumns) result = any(elem in lColumns for elem in df.columns.values) # todo check why all doesn't work if not result: logger.error('[%s] : [ERROR] Dataformatter filter method unknown columns %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), lColumns) # print(len(df.columns.values)) # for e in df.columns.values: # print("{},".format(e)) sys.exit(1) return df[lColumns] def filterWildcard(self, df, wild_card, keep=False): """ :param df: dataframe to filer :param wild_card: str wildcard of columns to be filtered :param keep: if keep True, only cols with wildcard are kept, if False they will be deleted :return: filtered dataframe """ filtr_list = [] mask = df.columns.str.contains(wild_card) filtr_list.extend(list(df.loc[:, mask].columns.values)) logger.info('[%s] : [INFO] Columns to be filtered based on wildcard: %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), filtr_list) if keep: df_wild = df[filtr_list] else: df_wild = df.drop(filtr_list, axis=1) logger.info('[%s] : [INFO] Filtered shape: %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), df_wild.shape) # print("Columns of filtered data:") # print(df_concat_filtered.columns) return df_wild def filterRows(self, df, ld, gd=0): ''' :param df: -> dataframe :param ld: -> less then key based timeframe in utc :param gd: -> greter then key based timeframe in utc :return: -> new filtered dataframe ''' if gd: try: df = df[df.time > gd] return df[df.time < ld] except Exception as inst: logger.error('[%s] : [ERROR] Dataformatter filter method row exited with %s and %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) sys.exit(1) else: try: return df[df.time < ld] except Exception as inst: logger.error('[%s] : [ERROR] Dataformatter filter method row exited with %s and %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) sys.exit(1) def dropColumns(self, df, lColumns, cp=True): ''' Inplace true means the selected df will be modified :param df: dataframe :param lColumns: filtere clolumns :param cp: create new df ''' if cp: try: return df.drop(lColumns, axis=1) except Exception as inst: logger.error('[%s] : [ERROR] Dataformatter filter method drop columns exited with %s and %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) sys.exit(1) else: try: df.drop(lColumns, axis=1, inplace=True) except Exception as inst: logger.error('[%s] : [ERROR] Dataformatter filter method drop columns exited with %s and %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) sys.exit(1) return 0 def filterLowVariance(self, df): logger.info('[{}] : [INFO] Checking low variance columns ...'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) uniques = df.apply(lambda x: x.nunique()) rm_columns = [] for uindex, uvalue in uniques.iteritems(): if uvalue == 1: rm_columns.append(uindex) logger.info('[{}] : [INFO] Found {} low variance columns removing ...'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), len(rm_columns))) logger.debug('[{}] : [INFO] Found {} low variance columns: {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), len(rm_columns), rm_columns)) df.drop(rm_columns, inplace=True, axis=1) def fillMissing(self, df): logger.info('[{}] : [INFO] Filling in missing values with 0'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) df.fillna(0, inplace=True) def dropMissing(self, df): logger.info('[{}] : [INFO] Dropping columns with in missing values'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) df.dropna(axis=1, how='all', inplace=True) def merge(self, csvOne, csvTwo, merged): ''' :param csvOne: first csv to load :param csvTwo: second csv to load :param merged: merged file name :return: ''' fone = pd.read_csv(csvOne) ftwo = pd.read_csv(csvTwo) mergedCsv = fone.merge(ftwo, on='key') mergedCsv.to_csv(merged, index=False) logger.info('[%s] : [INFO] Merged %s and %s into %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(csvOne), str(csvTwo), str(merged)) def merge2(self, csvOne, csvTwo, merged): ''' Second version :param csvOne: first csv to load :param csvTwo: second csv to load :param merged: merged file name :return: ''' fone = pd.read_csv(csvOne) ftwo = pd.read_csv(csvTwo) mergedCsv = pd.concat([fone, ftwo], axis=1, keys='key') mergedCsv.to_csv(merged, index=False) def mergeall(self, datadir, merged): ''' :param datadir: -> datadir lication :param merged: -> name of merged file :return: ''' all_files = glob.glob(os.path.join(datadir, "*.csv")) df_from_each_file = (pd.read_csv(f) for f in all_files) concatDF = pd.concat(df_from_each_file, ignore_index=True) concatDF.to_csv(merged) def chainMerge(self, lFiles, colNames, iterStart=1): ''' :param lFiles: -> list of files to be opened :param colNames: -> dict with master column names :param iterStart: -> start of iteration default is 1 :return: -> merged dataframe ''' #Parsing colNames slaveCol = {} for k, v in colNames.items(): slaveCol[k] = '_'.join([v.split('_')[0], 'slave']) dfList = [] if all(isinstance(x, str) for x in lFiles): for f in lFiles: df = pd.read_csv(f) dfList.append(df) elif all(isinstance(x, pd.DataFrame) for x in lFiles): dfList = lFiles else: logger.error('[%s] : [ERROR] Cannot merge type %s ', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(type(dfList[0]))) sys.exit(1) # Get first df and set as master current = dfList[0].rename(columns=colNames) for i, frame in enumerate(dfList[1:], iterStart): iterSlave = {} for k, v in slaveCol.items(): iterSlave[k] = v+str(i) current = current.merge(frame).rename(columns=iterSlave) #current.to_csv(mergedFile) # current.set_index('key', inplace=True) return current def chainMergeNR(self, interface=None, memory=None, load=None, packets=None): ''' :return: -> merged dataframe System metrics ''' if interface is None and memory is None and load is None and packets is None: interface = os.path.join(self.dataDir, "Interface.csv") memory = os.path.join(self.dataDir, "Memory.csv") load = os.path.join(self.dataDir, "Load.csv") packets = os.path.join(self.dataDir, "Packets.csv") lFiles = [interface, memory, load, packets] return self.listMerge(lFiles) def chainMergeDFS(self, dfs=None, dfsfs=None, fsop=None): ''' :return: -> merged dfs metrics ''' if dfs is None and dfsfs is None and fsop is None: dfs = os.path.join(self.dataDir, "DFS.csv") dfsfs = os.path.join(self.dataDir, "DFSFS.csv") fsop = os.path.join(self.dataDir, "FSOP.csv") lFiles = [dfs, dfsfs, fsop] return self.listMerge(lFiles) def chainMergeCluster(self, clusterMetrics=None, queue=None, jvmRM=None): ''' :return: -> merged cluster metrics ''' if clusterMetrics is None and queue is None and jvmRM is None: clusterMetrics = os.path.join(self.dataDir, "ClusterMetrics.csv") queue = os.path.join(self.dataDir, "ResourceManagerQueue.csv") jvmRM = os.path.join(self.dataDir, "JVM_RM.csv") # jvmmrapp = os.path.join(self.dataDir, "JVM_MRAPP.csv") lFiles = [clusterMetrics, queue, jvmRM] return self.listMerge(lFiles) def chainMergeNM(self, lNM=None, lNMJvm=None, lShuffle=None): ''' :return: -> merged namemanager metrics ''' # Read files if lNM is None and lNMJvm is None and lShuffle is None: allNM = glob.glob(os.path.join(self.dataDir, "NM_*.csv")) allNMJvm = glob.glob(os.path.join(self.dataDir, "JVM_NM_*.csv")) allShuffle = glob.glob(os.path.join(self.dataDir, "Shuffle_*.csv")) else: allNM =lNM allNMJvm = lNMJvm allShuffle = lShuffle # Get column headers and gen dict with new col headers colNamesNM = csvheaders2colNames(allNM[0], 'slave1') df_NM = self.chainMerge(allNM, colNamesNM, iterStart=2) colNamesJVMNM = csvheaders2colNames(allNMJvm[0], 'slave1') df_NM_JVM = self.chainMerge(allNMJvm, colNamesJVMNM, iterStart=2) colNamesShuffle = csvheaders2colNames(allShuffle[0], 'slave1') df_Shuffle = self.chainMerge(allShuffle, colNamesShuffle, iterStart=2) return df_NM, df_NM_JVM, df_Shuffle def chainMergeDN(self, lDN=None): ''' :return: -> merged datanode metrics ''' # Read files if lDN is None: allDN = glob.glob(os.path.join(self.dataDir, "DN_*.csv")) else: allDN = lDN # Get column headers and gen dict with new col headers colNamesDN = csvheaders2colNames(allDN[0], 'slave1') df_DN = self.chainMerge(allDN, colNamesDN, iterStart=2) return df_DN def chainMergeCassandra(self, lcassandra): ''' :param lcassandra: -> list of cassandra dataframes :return: -> merged Cassandra metrics ''' # Read files # Get column headers and gen dict with new col headers colNamesCa = csvheaders2colNames(lcassandra[0], 'node1') df_CA = self.chainMerge(lcassandra, colNamesCa, iterStart=2) return df_CA def chainMergeMongoDB(self, lmongo): ''' :param lmongo: -> list of mongodb dataframes :return: -> merged mongodb metrics ''' # Read files # Get column headers and gen dict with new col headers colNamesMD = csvheaders2colNames(lmongo[0], 'node1') df_MD = self.chainMerge(lmongo, colNamesMD, iterStart=2) return df_MD def listMerge(self, lFiles): ''' :param lFiles: -> list of files :return: merged dataframe :note: Only use if dataframes have divergent headers ''' dfList = [] if all(isinstance(x, str) for x in lFiles): for f in lFiles: if not f: logger.warning('[%s] : [WARN] Found empty string instead of abs path ...', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) try: df = pd.read_csv(f) except Exception as inst: logger.error('[%s] : [ERROR] Cannot load file at %s exiting', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), f) sys.exit(1) dfList.append(df) elif all(isinstance(x, pd.DataFrame) for x in lFiles): dfList = lFiles else: incomp = [] for el in lFiles: if not isinstance(el, pd.DataFrame): incomp.append(type(el)) logger.error('[%s] : [ERROR] Incompatible type detected for merging, cannot merge type %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(incomp)) # for d in dfList: # if d.empty: # logger.warning('[%s] : [INFO] Detected empty dataframe in final merge, removing ...', # datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) # # dfList.pop(dfList.index(d)) try: current = reduce(lambda x, y: pd.merge(x, y, on='key'), dfList) except Exception as inst: logger.error('[%s] : [ERROR] Merge dataframes exception %s with args %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) logger.error('[%s] : [ERROR] Merge dataframes exception df list %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), dfList) sys.exit(1) # current.set_index('key', inplace=True) return current def df2csv(self, dataFrame, mergedFile): ''' :param dataFrame: dataframe to save as csv :param mergedFile: merged csv file name :return: ''' # dataFrame.set_index('key', inplace=True) -> if inplace it modifies all copies of df including # in memory resident ones if dataFrame.empty: logger.error('[%s] : [ERROR] Received empty dataframe for %s ', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), mergedFile) print("Received empty dataframe for %s " % mergedFile) sys.exit(1) if dataFrame.index.name == 'key': kDF = dataFrame else: try: kDF = dataFrame.set_index('key') except Exception as inst: logger.error('[%s] : [ERROR] Cannot write dataframe exception %s with arguments %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) print(dataFrame.index.name) sys.exit(1) kDF.to_csv(mergedFile) def chainMergeSystem(self, linterface=None, lload=None, lmemory=None, lpack=None): logger.info('[%s] : [INFO] Startig system metrics merge .......', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) # Read files if linterface is None and lload is None and lmemory is None and lpack is None: allIterface = glob.glob(os.path.join(self.dataDir, "Interface_*.csv")) allLoad = glob.glob(os.path.join(self.dataDir, "Load_*.csv")) allMemory = glob.glob(os.path.join(self.dataDir, "Memory_*.csv")) allPackets = glob.glob(os.path.join(self.dataDir, "Packets_*.csv")) # Name of merged files mergedInterface = os.path.join(self.dataDir, "Interface.csv") mergedLoad = os.path.join(self.dataDir, "Load.csv") mergedMemory = os.path.join(self.dataDir, "Memory.csv") mergedPacket = os.path.join(self.dataDir, "Packets.csv") ftd = 1 else: allIterface = linterface allLoad = lload allMemory = lmemory allPackets = lpack ftd = 0 colNamesInterface = {'rx': 'rx_master', 'tx': 'tx_master'} df_interface = self.chainMerge(allIterface, colNamesInterface) logger.info('[%s] : [INFO] Interface metrics merge complete', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) colNamesPacket = {'rx': 'rx_master', 'tx': 'tx_master'} df_packet = self.chainMerge(allPackets, colNamesPacket) logger.info('[%s] : [INFO] Packet metrics merge complete', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) colNamesLoad = {'shortterm': 'shortterm_master', 'midterm': 'midterm_master', 'longterm': 'longterm_master'} df_load = self.chainMerge(allLoad, colNamesLoad) logger.info('[%s] : [INFO] Load metrics merge complete', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) colNamesMemory = {'cached': 'cached_master', 'buffered': 'buffered_master', 'used': 'used_master', 'free': 'free_master'} df_memory = self.chainMerge(allMemory, colNamesMemory) logger.info('[%s] : [INFO] Memory metrics merge complete', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) logger.info('[%s] : [INFO] Sistem metrics merge complete', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) if ftd: self.df2csv(df_interface, mergedInterface) self.df2csv(df_packet, mergedPacket) self.df2csv(df_load, mergedLoad) self.df2csv(df_memory, mergedMemory) return 0 else: return df_interface, df_load, df_memory, df_packet def mergeFinal(self, dfs=None, cluster=None, nodeMng=None, jvmnodeMng=None, dataNode=None, jvmNameNode=None, shuffle=None, system=None): if dfs is None and cluster is None and nodeMng is None and jvmnodeMng is None and dataNode is None and jvmNameNode is None and system is None and shuffle is None: dfs = os.path.join(self.dataDir, "DFS_Merged.csv") cluster = os.path.join(self.dataDir, "Cluster_Merged.csv") nodeMng = os.path.join(self.dataDir, "NM_Merged.csv") jvmnodeMng = os.path.join(self.dataDir, "JVM_NM_Merged.csv") dataNode = os.path.join(self.dataDir, "NM_Shuffle.csv") system = os.path.join(self.dataDir, "System.csv") jvmNameNode = os.path.join(self.dataDir, "JVM_NN.csv") shuffle = os.path.join(self.dataDir, "Merged_Shuffle.csv") lFile = [dfs, cluster, nodeMng, jvmnodeMng, dataNode, jvmNameNode, shuffle, system] merged_df = self.listMerge(lFile) merged_df.sort_index(axis=1, inplace=True) # merged_df.set_index('key', inplace=True) #self.dropMissing(merged_df) self.fillMissing(merged_df) self.fmHead = list(merged_df.columns.values) return merged_df def dict2csv(self, response, query, filename, df=False): ''' :param response: elasticsearch response :param query: elasticserch query :param filename: name of file :param df: if set to true method returns dataframe and doesn't save to file. :return: 0 if saved to file and dataframe if not ''' requiredMetrics = [] logger.info('[%s] : [INFO] Started response to csv conversion', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) # print "This is the query _------------_-> %s" %query # print "This is the response _------------_-> %s" %response for key, value in response['aggregations'].items(): for k, v in value.items(): for r in v: dictMetrics = {} # print "This is the dictionary ---------> %s " % str(r) for rKey, rValue in r.items(): if rKey == 'doc_count' or rKey == 'key_as_string': pass elif rKey == 'key': logger.debug('[%s] : [DEBUG] Request has keys %s and values %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), rKey, rValue) # print "%s -> %s"% (rKey, rValue) dictMetrics['key'] = rValue elif list(query['aggs'].values())[0].values()[1].values()[0].values()[0].values()[0] == 'type_instance.raw' \ or list(query['aggs'].values())[0].values()[1].values()[0].values()[0].values()[0] == 'type_instance': logger.debug('[%s] : [DEBUG] Detected Memory type aggregation', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) # print "This is rValue ________________> %s" % str(rValue) # print "Keys of rValue ________________> %s" % str(rValue.keys()) try: for val in rValue['buckets']: dictMetrics[val['key']] = val['1']['value'] except Exception as inst: logger.error('[%s] : [ERROR] Failed to find key with %s and %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), rKey, rValue['value']) sys.exit(1) else: # print "Values -> %s" % rValue # print "rKey -> %s" % rKey # print "This is the rValue ___________> %s " % str(rValue) logger.debug('[%s] : [DEBUG] Request has keys %s and flattened values %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), rKey, rValue['value']) dictMetrics[rKey] = rValue['value'] requiredMetrics.append(dictMetrics) # print "Required Metrics -> %s" % requiredMetrics csvOut = os.path.join(self.dataDir, filename) cheaders = [] if list(query['aggs'].values())[0].values()[1].values()[0].values()[0].values()[0] == "type_instance.raw" or \ list(query['aggs'].values())[0].values()[1].values()[0].values()[0].values()[0] == 'type_instance': logger.debug('[%s] : [DEBUG] Detected Memory type query', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) try: cheaders = list(requiredMetrics[0].keys()) except IndexError: logger.error('[%s] : [ERROR] Empty response detected from DMon, stoping detection, check DMon.', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) print("Empty response detected from DMon, stoping detection, check DMon") sys.exit(1) else: kvImp = {} for qKey, qValue in query['aggs'].items(): logger.info('[%s] : [INFO] Value aggs from query %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), qValue['aggs']) for v, t in qValue['aggs'].items(): kvImp[v] = t['avg']['field'] cheaders.append(v) cheaders.append('key') for key, value in kvImp.items(): cheaders[cheaders.index(key)] = value for e in requiredMetrics: for krep, vrep in kvImp.items(): e[vrep] = e.pop(krep) logger.info('[%s] : [INFO] Dict translator %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(kvImp)) logger.info('[%s] : [INFO] Headers detected %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(cheaders)) if not df: try: with open(csvOut, 'wb') as csvfile: w = csv.DictWriter(csvfile, cheaders) w.writeheader() for metrics in requiredMetrics: if set(cheaders) != set(metrics.keys()): logger.error('[%s] : [ERROR] Headers different from required metrics: headers -> %s, metrics ->%s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(cheaders), str(list(metrics.keys()))) diff = list(set(metrics.keys()) - set(cheaders)) print("Headers different from required metrics with %s " % diff) print("Check qInterval setting for all metrics. Try increasing it!") sys.exit(1) w.writerow(metrics) csvfile.close() except EnvironmentError: logger.error('[%s] : [ERROR] File %s could not be created', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), csvOut) sys.exit(1) logger.info('[%s] : [INFO] Finished csv %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), filename) return 0 else: df = pd.DataFrame(requiredMetrics) # df.set_index('key', inplace=True) logger.info('[%s] : [INFO] Created dataframe', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) return df def prtoDF(self, data, checkpoint=False, verbose=False, index=None, detect=False): """ From PR backend to dataframe :param data: PR response JSON :return: dataframe """ if not data: logger.error('[{}] : [ERROR] PR query response is empty, exiting.'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) sys.exit(2) df = pd.DataFrame() df_time = pd.DataFrame() if verbose: dr = tqdm.tqdm(data['data']['result']) else: dr = data['data']['result'] for el in dr: metric_name = el['metric']['__name__'] instance_name = el['metric']['instance'] new_metric = "{}_{}".format(metric_name, instance_name) values = el['values'] proc_val = [] proc_time = [] for val in values: proc_val.append(val[1]) proc_time.append(val[0]) df[new_metric] = proc_val time_new_metric = "time_{}".format(new_metric) df_time[time_new_metric] = proc_time # Calculate the meant time for all metrics df_time['mean'] = df_time.mean(axis=1) # Round to np.ceil all metrics df_time['mean'] = df_time['mean'].apply(np.ceil) # Add the meant time to rest of metrics df['time'] = df_time['mean'] logger.info('[{}] : [INFO] PR query resulted in dataframe of size: {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), df.shape)) if index is not None: df.set_index(index, inplace=True) logger.warning('[{}] : [WARN] PR query dataframe index set to {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), index)) if checkpoint: if detect: pr = "pr_data_detect.csv" else: pr = "pr_data.csv" pr_csv_loc = os.path.join(self.dataDir, pr) df.to_csv(pr_csv_loc, index=True) logger.info('[{}] : [INFO] PR query dataframe persisted to {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), self.dataDir)) return df def df2dict(self, df): kdf = df.set_index('key') return kdf.to_dict() # def dict2arff(self, fileIn, fileOut): # ''' # :param fileIn: name of csv file # :param fileOut: name of new arff file # :return: # ''' # dataIn = os.path.join(self.dataDir, fileIn) # dataOut = os.path.join(self.dataDir, fileOut) # logger.info('[%s] : [INFO] Starting conversion of %s to %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), dataIn, dataOut) # try: # jvm.start() # convertCsvtoArff(dataIn, dataOut) # except Exception as inst: # pass # finally: # logger.error('[%s] : [ERROR] Exception occured while converting to arff with %s and %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args) # jvm.stop() # logger.info('[%s] : [INFO] Finished conversion of %s to %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), dataIn, dataOut) def normalize(self, dataFrame): ''' :param dataFrame: dataframe to be normalized :return: normalized data frame ''' dataFrame_norm = (dataFrame -dataFrame.mean())/(dataFrame.max()-dataFrame.min()) return dataFrame_norm def loadData(self, csvList=[]): ''' :param csvList: list of CSVs :return: list of data frames ''' if csvList: all_files = csvList else: all_files = glob.glob(os.path.join(self.dataDir, "*.csv")) #df_from_each_file = (pd.read_csv(f) for f in all_files) dfList = [] for f in all_files: df = pd.read_csv(f) dfList.append(df) return dfList def toDF(self, fileName): ''' :param fileName: absolute path to file :return: dataframe ''' if not os.path.isfile(fileName): print("File %s does not exist, cannot load data! Exiting ..." % str(fileName)) logger.error('[%s] : [ERROR] File %s does not exist', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(fileName)) sys.exit(1) df = pd.read_csv(fileName) return df def dtoDF(self, dlist): ''' :param dlist: list of dictionaries :return: dataframe ''' df = pd.DataFrame(dlist) return df def df2BytesIO(self, df): out = io.BytesIO() self.df2csv(df, out) return out def df2cStringIO(self, df): out = StringIO.StringIO() self.df2csv(df, out) return out def ohEncoding(self, data, cols=None, replace=True): if cols is None: cols = [] for el, v in data.dtypes.items(): if v == 'object': if el == 'time': pass else: cols.append(el) logger.info('[%s] : [INFO] Categorical features not set, detected as categorical: %s', datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(cols)) logger.info('[{}] : [INFO] Categorical features now set to {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), str(cols))) vec = DictVectorizer() mkdict = lambda row: dict((col, row[col]) for col in cols) vecData = pd.DataFrame(vec.fit_transform(data[cols].apply(mkdict, axis=1)).toarray()) vecData.columns = vec.get_feature_names() vecData.index = data.index if replace is True: data = data.drop(cols, axis=1) data = data.join(vecData) return data, vecData, vec def scale(self, data, scaler_type=None, rindex='time'): # todo, integrate if not scaler_type: logger.warning('[{}] : [WARN] No data scaling used!'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) return data if scaler_type is None: scaler_type = {"StandardScaler": {"copy": True, "with_mean": True, "with_std": True}} logger.warning('[{}] : [WARN] No user defined scaler using default'.format(datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), scaler_type)) scaler_name = list(scaler_type.keys())[-1] scaler_attr = list(scaler_type.values())[-1] logger.info('[{}] : [INFO] Scaler set to {} with parameters {}.'.format(datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), scaler_name, scaler_attr)) try: sc_mod = importlib.import_module(self.scaler_mod) scaler_instance = getattr(sc_mod, scaler_name) scaler = scaler_instance(**scaler_attr) except Exception as inst: logger.error('[{}] : [ERROR] Error while initializing scaler {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), scaler_name)) sys.exit(2) # Fit and transform data logger.info('[{}] : [INFO] Scaling data ...'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) scaled_data = scaler.fit_transform(data) # Transform numpy array into dataframe, re-add columns to scaled numpyarray df_scaled = pd.DataFrame(scaled_data, columns=data.columns) df_scaled[rindex] = list(data.index) df_scaled.set_index(rindex, inplace=True) scaler_file = '{}.scaler'.format(scaler_name) logger.info('[{}] : [INFO] Saving scaler instance {} ...'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), scaler_file)) scale_file_location = os.path.join(self.dataDir, scaler_file) joblib.dump(scaler, filename=scale_file_location) return df_scaled def load_scaler(self, data, scaler_loc, rindex='time'): scaler = joblib.load(scaler_loc) sdata = scaler.transform(data) # Transform numpy array into dataframe, re-add columns to scaled numpyarray df_scaled = pd.DataFrame(sdata, columns=data.columns) df_scaled[rindex] = list(data.index) df_scaled.set_index(rindex, inplace=True) return df_scaled def __operationMethod(self, method, data): try: logger.info('[{}] : [INFO] Loading user defined operation'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) data_op = method(data) except Exception as inst: logger.error('[{}] : [ERROR] Failed to load user operation with {} and {}'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args)) return data logger.info('[{}] : [INFO] Finished user operation'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) return data_op def labelEncoding(self, data_column): logger.info('[{}] : [INFO] Label encoding ...'.format( datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))) enc = OrdinalEncoder() enc.fit(data_column) enc_data_column = enc.transform(data_column) return enc_data_column
import os import sys __version__ = "0.3.2" from .spectrum import Spectrum INSTDIR = os.path.join(sys.prefix, 'starfish_inst_data') __all__ = [ "constants", "emulator", "grid_tools", "models", "samplers", "spectrum", "Spectrum", "transforms", "utils", ]
import numpy as np import pandas as pd from scipy.special import expit from scipy.special import logit from scipy.stats import lognorm from itertools import product import sys from operator import mul from functools import reduce from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern # Functional form last # Stationarity first # Colinearity middle # Sampling middle # Measurment occaisons def random_offset(value): if value<=0.0001: return(value+np.random.uniform(low=0.0005, high=0.05)) elif value>=0.9999: return(value-np.random.uniform(low=0.0005, high=0.05)) else: return(value) def piecewise_sample(stationarity_change_points,is_high,index,max_index): high=stationarity_change_points[max_index] low=0 if is_high: high=stationarity_change_points[index] if index>0: low=stationarity_change_points[index-1] else: low=stationarity_change_points[index] if index<max_index: high=stationarity_change_points[index+1] return(np.random.uniform(low=low, high=high)) def normalize_adjustment(feature_values): mod_vals=np.ceil(feature_values) vals=(mod_vals==1) vals2=(mod_vals==2)*1.1 vals3=(mod_vals==3)*1.25 vals4=(mod_vals>3)*1.5 return(vals+vals2+vals3+vals4) def get_sample_times(bucket,measurment_occaisons,feature_values,abnormal_ratio,measure_max,sampling_function=None): if bucket == "equal": return(np.linspace(0,((0.9999-abnormal_ratio)+abnormal_ratio*(measurment_occaisons/measure_max)),measurment_occaisons)) elif bucket == "random": return(np.random.uniform(low=0.0, high=((1-abnormal_ratio)+abnormal_ratio*(measurment_occaisons/measure_max)), size=measurment_occaisons)) elif bucket == "not-random": abnormal_x={} either=[] first=True for feature in feature_values: ab_x=np.abs(feature_values[feature])>=1 if first: first=False either=ab_x else: either=either+ab_x neither=np.logical_not(either) precent_ab=np.sum(either)/measurment_occaisons step_size=(((1-abnormal_ratio)+abnormal_ratio*precent_ab*(measurment_occaisons/measure_max))/(measurment_occaisons-1))*np.ones(measurment_occaisons) for feature in feature_values: abnormal_x[feature]=(step_size/normalize_adjustment(np.abs(feature_values[feature])))*either abnormal_x[feature]=np.insert(abnormal_x[feature],0,0)[0:-1] neither=np.insert(neither,0,False)[0:-1] return(np.cumsum(step_size*neither+np.minimum.reduce([abnormal_x[x] for x in abnormal_x]))) elif bucket == "custom-no-features": return(sampling_function(measurment_occaisons,abnormal_ratio,measure_max)) elif bucket == "custom-feature-values": return(sampling_function(measurment_occaisons,feature_values,abnormal_ratio,measure_max)) def split_between_cutpoints(times,entity_to_split,stationarity_change_points): stationarity_index=0 i=0 model_count=0 return_dict={} items_to_sort=len(times) periods=len(stationarity_change_points) while i < items_to_sort: s_time=1 if stationarity_index < periods: s_time=stationarity_change_points[stationarity_index] if times[i] < s_time: if model_count not in return_dict: return_dict[model_count]=[entity_to_split[i]] else: return_dict[model_count].append(entity_to_split[i]) i+=1 else: stationarity_index+=1 model_count+=1 return(return_dict) def get_colinearity(bucket,count_vector): if bucket == "low-low": return((0.1,round(np.random.uniform(low=0.005, high=0.04),3),np.random.uniform(0.01,0.33))) elif bucket == "low-moderate": return((0.1,round(np.random.uniform(low=0.05, high=0.12),2),np.random.uniform(0.01,0.33))) elif bucket == "low-high": return((0.1,round(np.random.uniform(low=0.13, high=0.3),2),np.random.uniform(0.01,0.33))) elif bucket == "moderate-high": return((round(np.random.uniform(low=0.75, high=0.9),2),1.5,np.random.uniform(0.33,0.66))) elif bucket == "high-high": return((round(np.random.uniform(low=1.0, high=2.0),2),1.5,np.random.uniform(0.66,0.999))) def get_relative_time(sorted_time_points): offset_time=np.insert(sorted_time_points,0,sorted_time_points[0]) offset_time=np.delete(offset_time,-1) return(sorted_time_points-offset_time) def get_stationarity_change_points(stationarity_count): return(np.random.uniform(low=0.0, high=1.0, size=stationarity_count)) def binary_y(arr_y,probability_threshold): if probability_threshold==None: draw=np.random.uniform(0,1,arr_y.size) return((draw<=arr_y).astype(int)) else: return((probability_threshold<=arr_y).astype(int)) def data_sorter(b_value,quantile_cutoff,quantile_sub,b_var): if b_value>quantile_cutoff: return(quantile_sub+np.random.uniform(-1*np.sqrt(b_var)/10,np.sqrt(b_var)/10)) else: return(np.abs(b_value)) class patient_model(): def __init__(self,period_index,b_values,coefficient_values,link_fn,obs_error,times,first_obs_index,relative_time,period_features,period_extraneous_variables,stationarity_trend_bucket,probability_threshold): self.b_values={} self.coefficient_values={} for b in b_values: self.b_values[b]=b_values[b] for coefficient in coefficient_values: self.coefficient_values[coefficient]=coefficient_values[coefficient][period_index] self.time_points=times self.num_obs=len(times) self.link_fn=link_fn self.obs_index=np.array(range(first_obs_index,first_obs_index+self.num_obs)) self.features=period_features self.extraneous_variables=period_extraneous_variables self.obs_error=obs_error self.relative_time=relative_time self.stationarity_trend_bucket=stationarity_trend_bucket self.probability_threshold=probability_threshold def generate_data(self): y=np.ones(self.num_obs)*self.coefficient_values["intercept"] y+=np.multiply(np.ones(self.num_obs)*self.coefficient_values["time"],self.time_points) if self.stationarity_trend_bucket=="quadratic": y+=np.multiply(np.ones(self.num_obs)*self.coefficient_values["trend-time"],np.sqrt(self.time_points)) elif self.stationarity_trend_bucket=="seasonal": y+=np.multiply(np.ones(self.num_obs)*self.coefficient_values["trend-time"],np.cos(np.multiply(np.pi*10,self.time_points))) for feature in self.features: y+=self.coefficient_values[feature]*np.array(self.features[feature]) for effect in self.b_values: if effect=="intercept": y+=np.ones(self.num_obs)*self.b_values[effect] elif effect=="time": y+=np.multiply(np.ones(self.num_obs)*self.b_values[effect],self.time_points) elif effect=="trend-time": if self.stationarity_trend_bucket=="quadratic": y+=np.multiply(np.ones(self.num_obs)*self.b_values[effect],np.sqrt(self.time_points)) elif self.stationarity_trend_bucket=="seasonal": y+=np.multiply(np.ones(self.num_obs)*self.b_values[effect],np.cos(np.multiply(np.pi*10,self.time_points))) else: y+=self.b_values[eff]*self.features[effect] if self.link_fn=="identity": self.y=y+self.obs_error elif self.link_fn=="log": self.y=np.exp(y)+self.obs_error elif self.link_fn=="logit": self.y_prob=np.maximum(expit(y),self.obs_error) self.y=binary_y(self.y_prob,self.probability_threshold) elif self.link_fn=="inverse": self.y=np.power(y,-1)+self.obs_error def export_data_frame(self): if self.link_fn=="logit": df={"obs_index":list(self.obs_index),"y":list(self.y),"y_prob":list(self.y_prob),"time":list(self.time_points),"relative_time":list(self.relative_time), "unobserved_error":list(self.obs_error)} for feature in self.features: df[feature]=self.features[feature] for variable in self.extraneous_variables: df[variable]=self.extraneous_variables[variable] return(df) else: df={"obs_index":list(self.obs_index),"y":list(self.y),"time":list(self.time_points),"relative_time":list(self.relative_time), "unobserved_error":list(self.obs_error)} for feature in self.features: df[feature]=self.features[feature] for variable in self.extraneous_variables: df[variable]=self.extraneous_variables[variable] return(df) class patient: def __init__(self,pat_id,b_values,features,coefficient_values,extraneous_variables,colinearity,stationarity_change_points ,measurements,sampling_bucket,link_fn,sigma_e,stationarity_trend_bucket,sampling_function,probability_threshold ,abnormal_ratio,measure_max,random_effects_links): self.b_values=b_values self.id=pat_id self.coefficient_values=coefficient_values self.models=[] self.sigma_e=sigma_e self.stationarity_trend_bucket=stationarity_trend_bucket if measurements<1: self.measure_count=1 else: self.measure_count=int(measurements) obs_error=[] if link_fn=="identity": obs_error=np.random.normal(0,self.sigma_e,self.measure_count) elif link_fn=="log": obs_error=np.random.poisson(self.sigma_e,self.measure_count) elif link_fn=="logit": new_sigma_e=(1.0-np.sqrt(1.0-4.0*self.sigma_e**(3)/self.measure_count))/2.0 obs_error=np.random.binomial(self.measure_count,new_sigma_e,self.measure_count) elif link_fn=="inverse": obs_error=np.random.gamma(1,np.sqrt(self.sigma_e)/self.measure_count,self.measure_count) periods=len(stationarity_change_points)+1 feature_values={} extraneous_variable_values={} b_factor=0 if "features" in random_effects_links: if len(self.b_values) > 0: if "intercept" in self.b_values: b_factor=self.b_values["intercept"] elif "time" in self.b_values: b_factor=self.b_values["time"] elif "trend-time" in self.b_values: b_factor=self.b_values["trend-time"] else: for b in b_values: b_factor=self.b_values[b] break if (sampling_bucket=="not-random") | (sampling_bucket=="custom-feature-values"): total_length=len(features)+len(extraneous_variables) x_cov_matrix=np.ones((total_length,total_length))*colinearity[2] np.fill_diagonal(x_cov_matrix,1) x=np.random.multivariate_normal(tuple(np.ones(total_length)*b_factor), x_cov_matrix, self.measure_count) index=0 for feature in features: feature_values[feature]=x[:,index] index+=1 index=0 for variable in extraneous_variables: extraneous_variable_values[variable]=x[:,index] index+=1 time_points=get_sample_times(sampling_bucket,self.measure_count,feature_values,abnormal_ratio,measure_max,sampling_function) time_points=np.sort(time_points) if (sampling_bucket!="not-random") & (sampling_bucket!="custom-feature-values"): kernel=(1.0+np.abs(b_factor)) * Matern(length_scale=colinearity[0], length_scale_bounds=(1e-5, 1e5), nu=colinearity[1]) gp = GaussianProcessRegressor(kernel=kernel) y_samples = gp.sample_y(time_points[:, np.newaxis],len(features)) index=0 for feature in features: feature_values[feature]=y_samples.T[index] index+=1 index=0 for variable in extraneous_variables: extraneous_variable_values[variable]=y_samples.T[index] index+=1 relative_time=get_relative_time(time_points) sorted_times=split_between_cutpoints(time_points,time_points,stationarity_change_points) relative_time=split_between_cutpoints(time_points,relative_time,stationarity_change_points) for feature in feature_values: feature_values[feature]=split_between_cutpoints(time_points,feature_values[feature],stationarity_change_points) for variable in extraneous_variable_values: extraneous_variable_values[variable]=split_between_cutpoints(time_points,extraneous_variable_values[variable],stationarity_change_points) obs_error=split_between_cutpoints(time_points,obs_error,stationarity_change_points) period_index=0 obs_index=1 for key in sorted_times: period_features={} period_extraneous_variables={} for feature in feature_values: period_features[feature]=feature_values[feature][key] for variable in extraneous_variable_values: period_extraneous_variables[variable]=extraneous_variable_values[variable][key] self.models.append(patient_model(period_index,self.b_values,self.coefficient_values,link_fn,np.array(obs_error[key]),sorted_times[key],obs_index,relative_time[key],period_features,period_extraneous_variables,stationarity_trend_bucket,probability_threshold)) period_index+=1 obs_index+=len(sorted_times[key]) def export_to_data_frame(self): first=True return_frame={} for model in self.models: model.generate_data() if first: return_frame=model.export_data_frame() first=False else: new_data=model.export_data_frame() for key in return_frame: return_frame[key].extend(new_data[key]) if self.measure_count>0: return_frame['pat_id']=list(np.ones(len(return_frame["time"]))*self.id) return(return_frame) class long_data_set: def __init__(self,n=2000,measurement_distribution="log-normal",measurement_parameters={"loc":25,"scale":5},collinearity_bucket="low-low",trend_bucket="linear",sampling_bucket="random" ,sampling_function=None,b_colin=0.13,beta_var=1,b_var=1,time_importance_factor=3,sigma_e=0.05,num_features=2,num_extraneous_variables=0,link_fn="identity",num_piecewise_breaks=0 ,random_effects=["intercept","time","trend-time"],coefficient_values={},time_breaks=[],probability_threshold=None,random_effects_links=["timespan","features","measurements"] ,percentile_sort_cutoff=1,percentile_sub=1): self.num_of_patients=n self.measurement_distribution=measurement_distribution self.measurement_parameters=measurement_parameters self.colinearity_bucket=collinearity_bucket self.stationarity_trend_bucket=trend_bucket self.num_piecewise_breaks=num_piecewise_breaks self.sampling_bucket=sampling_bucket self.link_fn=link_fn self.inflation_factor=time_importance_factor self.beta_var=beta_var self.b_var=b_var self.b_colin=b_colin self.sigma_e=sigma_e self.sampling_function=sampling_function self.percentile_sort_cutoff=percentile_sort_cutoff self.percentile_sub=percentile_sub self.random_effects_links=random_effects_links ############################### self.features=[] self.probability_threshold=probability_threshold for i in range(num_features): self.features.append("x"+str(i+1)) self.extraneous_variables=[] for i in range(num_extraneous_variables): self.extraneous_variables.append("ext_"+str(i+1)) self.random_effects=random_effects self.coefficient_values=coefficient_values self.time_breaks=time_breaks ############################### def create_data_set(self): if len(self.time_breaks)>0: if len(self.time_breaks)!=self.num_piecewise_breaks: raise ValueError('Number of specific time_breaks do not match num_piecewise_breaks') else: self.change_points=np.sort(self.time_breaks) else: self.change_points=np.sort(get_stationarity_change_points(self.num_piecewise_breaks)) measures=[] if self.measurement_distribution=="equal": measures=np.ones(self.num_of_patients)*self.measurement_parameters['loc'] elif self.measurement_distribution=="poisson": measures=np.random.poisson(lam=self.measurement_parameters['loc'], size=self.num_of_patients) measures=np.sort(measures) elif self.measurement_distribution=="normal": measures=np.random.normal(loc=self.measurement_parameters['loc'], scale=self.measurement_parameters['scale'], size=self.num_of_patients) measures=np.sort(np.round(measures,0)) elif self.measurement_distribution=="log-normal": measures=lognorm.rvs(0.75,loc=self.measurement_parameters['loc'], scale=self.measurement_parameters['scale'], size=self.num_of_patients, random_state=None) measures=np.sort(np.round(measures,0)) elif self.measurement_distribution=="gamma": measures=np.random.gamma(shape=self.measurement_parameters['loc'], scale=self.measurement_parameters['scale'], size=self.num_of_patients) measures=np.sort(np.round(measures,0)) ro_x=get_colinearity(self.colinearity_bucket,self.num_of_patients) b_cov_matrix=np.zeros((len(self.random_effects),len(self.random_effects))) b_cov_matrix.fill(np.sqrt(self.b_var)*self.b_colin) np.fill_diagonal(b_cov_matrix,self.b_var) b=np.random.multivariate_normal(tuple(np.zeros(len(self.random_effects))), b_cov_matrix, self.num_of_patients) self.b_dict={} b_index=0 for effect in self.random_effects: self.b_dict[effect]=b[:,b_index] b_index+=1 if "measurements" in self.random_effects_links: b_df=pd.DataFrame(self.b_dict) if len(self.random_effects) > 0: if "intercept" in self.b_dict: cut_off=np.quantile(b_df["intercept"],self.percentile_sort_cutoff) sub_value=np.quantile(b_df["intercept"].abs(),self.percentile_sub) b_df['sort_col']=b_df["intercept"].apply(lambda v: data_sorter(v,cut_off,sub_value,self.b_var)) elif "time" in self.b_dict: cut_off=np.quantile(b_df["time"],self.percentile_sort_cutoff) sub_value=np.quantile(b_df["time"].abs(),self.percentile_sub) b_df['sort_col']=b_df["time"].apply(lambda v: data_sorter(v,cut_off,sub_value,self.b_var)) elif "trend-time" in self.b_dict: cut_off=np.quantile(b_df["trend-time"],self.percentile_sort_cutoff) sub_value=np.quantile(b_df["trend-time"].abs(),self.percentile_sub) b_df['sort_col']=b_df["trend-time"].apply(lambda v: data_sorter(v,cut_off,sub_value,self.b_var)) else: sort_col=b_df.columns.values[0] cut_off=np.quantile(sort_col,self.percentile_sort_cutoff) b_df['sort_col']=b_df[sort_col] sub_value=np.quantile(b_df['sort_col'].abs(),self.percentile_sub) b_df['sort_col']=b_df["sort_col"].apply(lambda v: data_sorter(v,cut_off,sub_value,self.b_var)) b_df=b_df.sort_values(by=['sort_col']) b_df=b_df.reset_index(drop=True) for effect in self.random_effects: self.b_dict[effect]=b_df[effect].values long_data=[] first=True periods=len(self.change_points)+1 if len(self.coefficient_values)==0: self.coefficient_values={"intercept":np.zeros(periods),"time":np.zeros(periods),"trend-time":np.zeros(periods)} for feature in self.features: self.coefficient_values[feature]=np.zeros(periods) for i in range(periods): for feature in self.coefficient_values: if feature=="time": self.coefficient_values[feature][i]=np.random.normal(self.coefficient_values[feature][i-1],self.inflation_factor*self.beta_var) elif feature=="trend-time": self.coefficient_values[feature][i]=np.random.normal(self.coefficient_values[feature][i-1],self.inflation_factor*self.beta_var) else: self.coefficient_values[feature][i]=np.random.normal(self.coefficient_values[feature][i-1],self.beta_var) abnormal_ratio=0 if "timespan" in self.random_effects_links: for i in range(19): ratio=1.0/float(i+2) min_step=(1.0-ratio)/(np.min(measures)-1) ab_step=0.91/(np.max(measures)-1) if min_step > (ab_step): if ratio > abnormal_ratio: abnormal_ratio=ratio ratio=1.0-(1.0/float(i+2)) ab_step=0.91/(np.max(measures)-1) if min_step > ab_step: if ratio > abnormal_ratio: abnormal_ratio=ratio self.abnormal_ratio=abnormal_ratio for p_id in range(self.num_of_patients): b_values={} for b in self.b_dict: b_values[b]=self.b_dict[b][p_id] pat=patient(p_id,b_values,self.features,self.coefficient_values,self.extraneous_variables,ro_x,self.change_points,measures[p_id],self.sampling_bucket,self.link_fn,self.sigma_e,self.stationarity_trend_bucket,self.sampling_function,self.probability_threshold,abnormal_ratio,np.max(measures),self.random_effects_links) if first: first=False long_data=pat.export_to_data_frame() else: new_data=pat.export_to_data_frame() for key in long_data: long_data[key].extend(new_data[key]) self.data_frame=pd.DataFrame(long_data) def export_to_csv(self,path_name,file_name): self.data_frame.to_csv(path_name+"data_"+file_name+".csv") param_values={"piecewise_shifts":np.append(self.change_points,[1]),"cons_":self.coefficient_values["intercept"],"time_linear":self.coefficient_values["time"]} if self.stationarity_trend_bucket=="quadratic": param_values["sqrt_time"]=self.coefficient_values["trend-time"] elif self.stationarity_trend_bucket=="seasonal": param_values["cos_time"]=self.coefficient_values["trend-time"] for feature in self.features: param_values[feature]=self.coefficient_values[feature] pd.DataFrame(param_values).to_csv(path_name+"params_"+file_name+".csv") def transform_variable_feature(self,column_names,transformation_function): comparison_change_points=[0]+list(self.change_points)+[1] if "time" in column_names: self.change_points=transformation_function(self.change_points) new_y=[] new_prob_y=[] new_x=[] self.data_frame=self.data_frame.sort_values(by=['time']) if self.link_fn=="logit": self.data_frame["new_y"]=logit(self.data_frame["y_prob"]) elif self.link_fn=="log": self.data_frame["new_y"]=np.log(self.data_frame["y"]-self.data_frame["unobserved_error"]) elif self.link_fn=="inverse": self.data_frame["new_y"]=np.power(self.data_frame["y"]-self.data_frame["unobserved_error"],-1) else: self.data_frame["new_y"]=self.data_frame["y"]-self.data_frame["unobserved_error"] for column in column_names: for period_index in range(1,len(comparison_change_points)): period_data_frame=self.data_frame[(self.data_frame['time'] > comparison_change_points[period_index-1]) & (self.data_frame['time'] <= comparison_change_points[period_index])] period_y=[] period_x=[] period_x=transformation_function(period_data_frame[column]) if column in self.features: period_y=period_data_frame["new_y"]+(self.coefficient_values[column][period_index-1]*(period_x-period_data_frame[column])) if column in self.b_dict: period_y=period_data_frame["new_y"]+np.multiply(self.b_dict[column][period_index-1],(period_x-period_data_frame[column])) if column == "time": if (self.stationarity_trend_bucket=="quadratic") | (self.stationarity_trend_bucket=="seasonal"): period_y=period_data_frame["new_y"]+(self.coefficient_values["trend-time"][period_index-1]*(period_x-period_data_frame[column])) if "trend-time" in self.b_dict: period_y=period_data_frame["new_y"]+np.multiply(self.b_dict["trend-time"][period_index-1],(period_x-period_data_frame[column])) if len(period_y)>0: if period_index==1: new_x=period_x new_y=period_y else: new_x=np.concatenate([new_x,period_x]) new_y=np.concatenate([new_y,period_y]) self.data_frame["new_"+column]=new_x self.data_frame["new_y"]=new_y if self.link_fn=="logit": self.data_frame["new_y_prob"]=expit(self.data_frame["new_y"]) self.data_frame["new_y"]=binary_y(self.data_frame["new_y_prob"]) elif self.link_fn=="log": self.data_frame["new_y"]=np.exp(self.data_frame["new_y"])+self.data_frame["unobserved_error"] elif self.link_fn=="inverse": self.data_frame["new_y"]=np.power(self.data_frame["new_y"],-1)+period_data_frame["unobserved_error"] else: self.data_frame["new_y"]=self.data_frame["new_y"]+self.data_frame["unobserved_error"]
import jax.numpy as jnp from jax import random import chex from jsl.experimental.seql.utils import classification_loss, regression_loss class SequentialDataEnvironment: def __init__(self, X_train: chex.Array, y_train: chex.Array, X_test: chex.Array, y_test: chex.Array, train_batch_size: int, test_batch_size: int, classification: bool): ntrain, nfeatures = X_train.shape ntest, _ = X_test.shape _, out = y_train.shape # TODO: It will produce an error if ntrain % train_batch_size != 0 ntrain_batches = ntrain // train_batch_size # TODO: It will produce an error if ntest % test_batch_size != 0 ntest_batches = ntest // test_batch_size self.X_train = jnp.reshape(X_train, [ntrain_batches, train_batch_size, nfeatures]) self.y_train = jnp.reshape(y_train, [ntrain_batches, train_batch_size, out]) self.X_test = jnp.reshape(X_test, [ntest_batches, test_batch_size, nfeatures]) self.y_test =jnp.reshape(y_test, [ntest_batches, test_batch_size, out]) if classification: self.loss_fn = classification_loss else: self.loss_fn = regression_loss def get_data(self, t: int): return self.X_train[t], self.y_train[t], self.X_test, self.y_test def reward(self, mu_pred: chex.Array, sigma_pred: chex.Array, y_test: chex.Array): loss = self.loss_fn(y_test, mu_pred, sigma_pred) return -loss def shuffle_data(self, key: chex.PRNGKey): train_key, test_key = random.split(key) ntrain = len(self.X_train) train_indices = jnp.arange(ntrain) train_indices = random.shuffle(train_key, train_indices) self.X_train = self.X_train[train_indices] self.y_train = self.y_train[train_indices] ntest = len(self.X_test) test_indices = jnp.arange(ntest) test_indices = random.shuffle(test_key, test_indices) self.X_test = self.X_test[test_indices] self.y_test = self.y_test[test_indices] def reset(self, key: chex.PRNGKey): ntrain_batches, train_batch_size, nfeatures = self.X_train.shape ntest_batches, test_batch_size, out = self.y_test.shape self.shuffle_data(key) self.X_train = jnp.reshape(self.X_train, [ntrain_batches, train_batch_size, nfeatures]) self.y_train = jnp.reshape(self.y_train, [ntrain_batches, train_batch_size, out]) self.X_test = jnp.reshape(self.X_test, [ntest_batches, test_batch_size, nfeatures]) self.y_test =jnp.reshape(self.y_test, [ntest_batches, test_batch_size, out])
import random from selenium.common.exceptions import NoSuchWindowException from selenium.webdriver.common.by import By from . import * URL = "https://web.vconf.garr.it/webapp/conference" logger = logging.getLogger(__name__) warnings.filterwarnings("ignore", category=UserWarning) def run(room='videodrone', y4m='./y4m', lifetime=360, headless=1, pin=None, **kwargs): drone_name = build_drone_name(**kwargs) url = kwargs.get('url') or URL browser = get_chrome_browser(y4m=y4m, headless=headless) browser.get(f'{url}/{room}') time.sleep(3) browser.find_element_by_id('display-name-dialog-input').send_keys(drone_name) time.sleep(1) browser.find_element_by_id('display-name-dialog-ok').click() time.sleep(3) browser.find_element_by_id('dialog-pin-input').send_keys(pin) time.sleep(1) browser.find_element_by_id('conference-pin-btn').click() time.sleep(lifetime) # leave the room try: browser.close() except NoSuchWindowException as e: logging.warning('Browser already closed.') logger.info('Drone say goodbye ... Destroyed.')
from setuptools import setup def readme(): with open('README.md') as f: return f.read() setup( name='gap_loader', version='0.3', description='Import hook for GAP files in SAGE math.', long_description=readme(), long_description_content_type='text/markdown', classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', ], url='http://github.com/jorants/gap-loader', author='Joran van Apeldoorn (Control-K)', author_email='[email protected]', license='MIT', packages=['gap_loader'], install_requires=[ 'sage', ], zip_safe=False)
import re def nice_print(t): s = "" for l in t: s += "".join(l[250:]) + "\n" print(s) xmin = 108 - 1 w = 537-108+3 ymin = 3 h = 1913-3+1 clay = [["." for _ in range(w)] for _ in range(h)] while True: try: line = input() except: break # (x1, y1, x2, y2) a, b, c = map(int,re.match(r".=(\d*), .=(\d*)..(\d*)", line).groups()) if line[0] == "x": #vertical for i in range(b, c+1): clay[i-ymin][a-xmin] = "#" else: #horizontal for i in range(b, c+1): clay[a-ymin][i-xmin] = "#" clay[0][500-xmin] = "o" alive = [(0, 500-xmin)] for i in range(46423): # while len(alive) > 0: print(len(alive)) if i > 46420: nice_print(clay) print(len(alive)) #print(alive) j, i = alive.pop() if j + 1 == h: continue if clay[j+1][i] == "o" and clay[j][i+1] in "o#" and clay[j][i-1] in "o#": continue if clay[j+1][i] in "#o": trapped = True #to left and right for k in [-1, 1]: if clay[j][i+k] in "o#": continue d = 0 while True: d += k if clay[j][i+d] in ".o" and clay[j+1][i+d-k] in "#o": clay[j][i+d] = "o" elif clay[j+1][i+d] == ".": alive.append((j, i+d-k)) trapped = False break else: break if trapped: clay[j-1][i] = "o" alive.append((j-1, i)) else: clay[j+1][i] = "o" alive.append((j+1, i)) nice_print(clay) print(sum([x.count("o") for x in clay]))
""" Various constants and utility functions for lexing """ import re from usfm_utils.usfm.tokens import Token UNESCAPED_FLAG_PREFIX = "$" FLAG_PREFIX = re.escape(UNESCAPED_FLAG_PREFIX) WHITESPACE = " \r\t\n" def make_flag(flag, boundary=True): """ A regex-compatible USFM flag :param str flag: flag of USFM marker (i.e. "v" for verse numbers) :param bool boundary: whether returned regex should assert that the flag doesn't occur inside a larger word :rtype: str """ assert(isinstance(flag, str) or isinstance(flag, unicode)) bound = r"\b" if boundary else "" return r"{prefix}{flag}{b}".format(prefix=FLAG_PREFIX, flag=flag, b=bound) def thunk(regex): """ :param str regex: regular expression for """ def regex_inner(token): token.value = Token.Builder(token.value) # raise AssertionError() return token regex_inner.__doc__ = regex return regex_inner def standalone(flag): return thunk(make_flag(flag)) def one_arg_regex(flag): return r"{flag}\s+[^{prefix}\s]+".format(flag=make_flag(flag), prefix=FLAG_PREFIX) def one_arg(flag): def one_arg_inner(token): token.value = Token.Builder(token.value.split()[1]) return token one_arg_inner.__doc__ = one_arg_regex(flag) return one_arg_inner def open_token_regex(flag): return r"{flag}[^\*]".format(flag=make_flag(flag)) def open_token(flag): return thunk(open_token_regex(flag)) def close_token_regex(flag): return r"{flag}\*".format(flag=make_flag(flag)) def close_token(flag): return thunk(close_token_regex(flag)) def rest_of_line(flag): def rest_of_line_inner(token): line = token.value[:-1] # ignore newline token.value = Token.Builder(drop_first_word(line)) return token rest_of_line_inner.__doc__ = r"{flag}(\s[^\n]*)?\n".format(flag=make_flag(flag)) return rest_of_line_inner def until_next_flag(flag): def until_next_flag_inner(token): text = token.value token.value = Token.Builder(drop_first_word(text)) return token until_next_flag_inner.__doc__ = r"{flag}\s[^{prefix}]*".format(flag=make_flag(flag), prefix=FLAG_PREFIX) return until_next_flag_inner def drop_first_word(line): """ :param str line: :rtype: str """ match = re.match(r"[^\s]*[\s]*", line) if match is None: msg = "Could not drop first word from {}".format(repr(line)) raise ValueError(msg) return line[match.end():] def scale(flag): def scale_inner(token): text = token.value match = re.search(r"[0-9]*$", text) if match is None: raise ValueError("Malformatted input: {}".format(token.value)) number_str = match.group() number = 1 if len(number_str) == 0 else int(number_str) token.value = Token.Builder(text).set_number(number) return token scale_inner.__doc__ = r"{flag}[0-9]*\b".format(flag=make_flag(flag, boundary=False)) return scale_inner def scale_and_rest_of_line(flag): def scale_and_rest_of_line_inner(token): line = token.value[:-1] rgx = r"{flag}([0-9]+)".format(flag=make_flag(flag, boundary=False)) number_match = re.match(rgx, line) if number_match is None: number = 1 else: number = int(number_match.group(1)) rest = drop_first_word(line) token.value = Token.Builder(rest).set_number(number) return token scale_and_rest_of_line_inner.__doc__ = r"{flag}[0-9]*([ \r\t][^\n]*)?\n"\ .format(flag=make_flag(flag, boundary=False)) return scale_and_rest_of_line_inner
#!/usr/bin/env python # encoding: utf-8 from distutils.core import setup setup(name='clock_puzzle_solver', description='Script for solving the "clock puzzle" mini-games present in the Final Fantasy XIII-2 role-playing game.', author='Thomas Nyman', author_email='[email protected]', url='http://github.com/thomasnyman/clock_puzzle_solver', scripts=['bin/clock_puzzle_solver'] )
import sys import torch import random ID,FORM,LEMMA,UPOS,XPOS,FEATS,HEAD,DEPREL,DEPS,MISC=range(10) def read_conllu(inp,max_sent=0,drop_tokens=True,drop_nulls=True): comments=[] sent=[] yielded=0 for line in inp: line=line.strip() if line.startswith("#"): comments.append(line) elif not line: if sent: yield sent,comments yielded+=1 if max_sent>0 and yielded==max_sent: break sent,comments=[],[] else: cols=line.split("\t") if drop_tokens and "-" in cols[ID]: continue if drop_nulls and "." in cols[ID]: continue sent.append(cols) else: if sent: yield sent,comments def get_text(comments): for c in comments: if c.startswith("# text = "): return c[len("# text = "):] return None if __name__=="__main__": import torch import transformers transformers.BERT_PRETRAINED_MODEL_ARCHIVE_MAP["bert-base-finnish-cased"]="http://dl.turkunlp.org/finbert/torch-transformers/bert-base-finnish-cased/pytorch_model.bin" transformers.BERT_PRETRAINED_CONFIG_ARCHIVE_MAP["bert-base-finnish-cased"]="http://dl.turkunlp.org/finbert/torch-transformers/bert-base-finnish-cased/config.json" transformers.tokenization_bert.PRETRAINED_VOCAB_FILES_MAP["vocab_file"]["bert-base-finnish-cased"]="http://dl.turkunlp.org/finbert/torch-transformers/bert-base-finnish-cased/vocab.txt" transformers.tokenization_bert.PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES["bert-base-finnish-cased"]=512 transformers.tokenization_bert.PRETRAINED_INIT_CONFIGURATION["bert-base-finnish-cased"]={'do_lower_case': False} tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-finnish-cased") #print("done loading stuff") # sent_examples=sent_examples_from_conllu(sys.stdin) # for idx,x in enumerate(batch(sent_examples, tokenizer)): # print(idx,end="\r") #ones=torch.ones((7,),dtype=torch.long) #print(sentence_example(ones+3,ones+4,tokenizer)) docs=doc_examples_from_plaintext(sys.stdin) for doc in docs: for b in document_batch(doc,tokenizer): for x in b: print(x.shape)
class _VolumeData(object): def __init__(self, size_x, size_y, size_z, delta_x, delta_y, delta_z): #byte array for speed. #if we later speed up array serializer #or make this an API, we should #convert to float [] self._data = [] self._size_x = size_x self._size_y = size_y self._size_z = size_z self._delta_x = delta_x self._delta_y = delta_y self._delta_z = delta_z self._origin_x = 0.0 self._origin_y = 0.0 self._origin_z = 0.0
from os.path import join, dirname, isfile from PySide2.QtWidgets import QDialog, QMessageBox, QLayout from PySide2.QtCore import Qt, Signal from logging import getLogger from numpy import pi, array, array_equal from .....GUI.Dialog.DMatLib.DMatSetup.Gen_DMatSetup import Gen_DMatSetup from .....Classes.Material import Material from .....Classes.ImportMatrixVal import ImportMatrixVal from .....Classes.ImportMatrix import ImportMatrix from .....Classes.ImportMatrixXls import ImportMatrixXls from .....Functions.path_tools import rel_file_path from .....loggers import GUI_LOG_NAME class DMatSetup(Gen_DMatSetup, QDialog): # Signal to DMatLib to update material treeview saveNeededChanged = Signal() # Modified / Saved / Canceled (add/remove *) materialToDelete = Signal() # Material will be deleted in DMatLib materialToRename = Signal() # Material name/path has changed => rename in DMatLib materialToRevert = Signal() # Revert reference from DMatLib materialToSave = Signal() # Material to save (update reference/file/machine) def __init__(self, parent=None, material=None): """Dialog for edit/show material properties Parameters ---------- material : Material material to edit parent : Widget Parent Widget (DMatLib) material : Material Material object to show/edit """ # Build the interface according to the .ui file QDialog.__init__(self) self.setupUi(self) self.is_save_needed = False self.init_name = None # Initial name of current Material (to revert rename) self.init_path = None # Initial part of current Material (for rename) self.mat = None # Current material being edited # Set initial material if material is not None: self.set_material(material=material) # === setup signals === # General self.le_name.editingFinished.connect(self.set_name) self.cb_material_type.currentIndexChanged.connect(self.set_is_isotropic) # Elec self.lf_rho_elec.editingFinished.connect(self.set_rho_elec) # Magnetics self.lf_mur_lin.editingFinished.connect(self.set_mur_lin) self.lf_Brm20.editingFinished.connect(self.set_Brm20) self.lf_alpha_Br.editingFinished.connect(self.set_alpha_Br) self.lf_Wlam.editingFinished.connect(self.set_Wlam) # Economical self.lf_cost_unit.editingFinished.connect(self.set_cost_unit) # Thermics self.lf_Cp.editingFinished.connect(self.set_Cp) self.lf_alpha.editingFinished.connect(self.set_alpha) self.lf_L.editingFinished.connect(self.set_lambda) self.lf_Lx.editingFinished.connect(self.set_lambda_x) self.lf_Ly.editingFinished.connect(self.set_lambda_y) self.lf_Lz.editingFinished.connect(self.set_lambda_z) # Mechanics self.lf_rho_meca.editingFinished.connect(self.set_rho_meca) self.lf_E.editingFinished.connect(self.set_E) self.lf_Ex.editingFinished.connect(self.set_Ex) self.lf_Ey.editingFinished.connect(self.set_Ey) self.lf_Ez.editingFinished.connect(self.set_Ez) self.lf_G.editingFinished.connect(self.set_G) self.lf_Gxy.editingFinished.connect(self.set_Gxy) self.lf_Gxz.editingFinished.connect(self.set_Gxz) self.lf_Gyz.editingFinished.connect(self.set_Gyz) self.lf_nu.editingFinished.connect(self.set_nu) self.lf_nu_xy.editingFinished.connect(self.set_nu_xy) self.lf_nu_xz.editingFinished.connect(self.set_nu_xz) self.lf_nu_yz.editingFinished.connect(self.set_nu_yz) self.tab_values.saveNeeded.connect(self.set_table_values) self.c_type_material.currentIndexChanged.connect(self.change_type_material) # Connect buttons self.b_delete.clicked.connect(lambda: self.materialToDelete.emit()) self.b_save.clicked.connect(lambda: self.materialToSave.emit()) self.b_cancel.clicked.connect(lambda: self.materialToRevert.emit()) def set_save_needed(self, is_save_needed=True): """Set if there are unsaved modifications within the object Parameters ---------- self : DMatSetup A DMatSetup object is_save_needed : bool New value for is_save_needed """ old = self.is_save_needed # Keep old values self.is_save_needed = is_save_needed self.b_save.setEnabled(is_save_needed) self.b_cancel.setEnabled(is_save_needed) if is_save_needed != old: # Raise signal only if value is different getLogger(GUI_LOG_NAME).debug("DMatSetup: Sending saveNeededChanged") self.saveNeededChanged.emit() def set_material(self, material, is_save_needed=False): """Update the current material and setup all the widgets Parameters ---------- self : DMatSetup A DMatSetup object material : Material The material to edit/show is_save_needed : bool True if the material is different from the reference """ old_mat = self.mat self.mat = material self.init_name = self.mat.name # Keep to revert rename self.init_path = self.mat.path getLogger(GUI_LOG_NAME).debug("DMatSetup: Setting material " + self.mat.name) self.le_name.setText(self.mat.name) if self.mat.is_isotropic: self.cb_material_type.setCurrentIndex(1) else: self.cb_material_type.setCurrentIndex(0) # === check material attribute and set values === # Elec if self.mat.elec is None: self.set_default("elec") self.lf_rho_elec.setValue(self.mat.elec.rho) # Economical if self.mat.eco is None: self.set_default("eco") self.lf_cost_unit.setValue(self.mat.eco.cost_unit) # Thermics if self.mat.HT is None: self.set_default("HT") self.lf_Cp.setValue(self.mat.HT.Cp) self.lf_alpha.setValue(self.mat.HT.alpha) self.lf_L.setValue(self.mat.HT.lambda_x) self.lf_Lx.setValue(self.mat.HT.lambda_x) self.lf_Ly.setValue(self.mat.HT.lambda_y) self.lf_Lz.setValue(self.mat.HT.lambda_z) # Structural if self.mat.struct is None: self.set_default("struct") self.lf_rho_meca.setValue(self.mat.struct.rho) if self.mat.struct.Ex not in [0, None]: self.lf_E.setValue(self.mat.struct.Ex / 1e9) self.lf_Ex.setValue(self.mat.struct.Ex / 1e9) else: self.lf_E.setValue(self.mat.struct.Ex) self.lf_Ex.setValue(self.mat.struct.Ex) if self.mat.struct.Ey not in [0, None]: self.lf_Ey.setValue(self.mat.struct.Ey / 1e9) else: self.lf_Ey.setValue(self.mat.struct.Ey) if self.mat.struct.Ez not in [0, None]: self.lf_Ez.setValue(self.mat.struct.Ez / 1e9) else: self.lf_Ez.setValue(self.mat.struct.Ez) if self.mat.struct.Gxy not in [0, None]: self.lf_G.setValue(self.mat.struct.Gxy / 1e9) self.lf_Gxy.setValue(self.mat.struct.Gxy / 1e9) else: self.lf_G.setValue(self.mat.struct.Gxy) self.lf_Gxy.setValue(self.mat.struct.Gxy) if self.mat.struct.Gxz not in [0, None]: self.lf_Gxz.setValue(self.mat.struct.Gxz / 1e9) else: self.lf_Gxz.setValue(self.mat.struct.Gxz) if self.mat.struct.Gyz not in [0, None]: self.lf_Gyz.setValue(self.mat.struct.Gyz / 1e9) else: self.lf_Gyz.setValue(self.mat.struct.Gyz) self.lf_nu.setValue(self.mat.struct.nu_xy) self.lf_nu_xy.setValue(self.mat.struct.nu_xy) self.lf_nu_xz.setValue(self.mat.struct.nu_xz) self.lf_nu_yz.setValue(self.mat.struct.nu_yz) # Magnetical if self.mat.mag is None: self.set_default("mag") self.lf_mur_lin.setValue(self.mat.mag.mur_lin) self.lf_Brm20.setValue(self.mat.mag.Brm20) self.lf_alpha_Br.setValue(self.mat.mag.alpha_Br) self.lf_Wlam.setValue(self.mat.mag.Wlam) # Setup tab values if not isinstance(self.mat.mag.BH_curve, ImportMatrixVal): self.g_BH_import.setChecked(False) elif array_equal(self.mat.mag.BH_curve.value, array([[0, 0]])): self.g_BH_import.setChecked(False) else: self.g_BH_import.setChecked(True) self.tab_values.setWindowFlags(self.tab_values.windowFlags() & ~Qt.Dialog) self.tab_values.title = self.g_BH_import.title() self.tab_values.N_row_txt = "Nb of Points" self.tab_values.shape_max = (None, 2) self.tab_values.shape_min = (None, 2) self.tab_values.col_header = ["H-curve(A/m)", "B-curve(T)"] self.tab_values.unit_order = ["First column H", "First column B"] self.tab_values.button_plot_title = "B(H)" self.tab_values.si_col.hide() self.tab_values.in_col.hide() self.tab_values.b_close.hide() self.tab_values.b_import.setHidden(False) self.tab_values.b_export.setHidden(False) if isinstance(self.mat.mag.BH_curve, ImportMatrixXls): self.mat.mag.BH_curve = ImportMatrixVal(self.mat.mag.BH_curve.get_data()) self.tab_values.data = self.mat.mag.BH_curve.get_data() elif not isinstance(self.mat.mag.BH_curve, ImportMatrixVal): self.tab_values.data = array([[0, 0]]) elif self.mat.mag.BH_curve.get_data() is not None: self.tab_values.data = self.mat.mag.BH_curve.get_data() else: self.tab_values.data = array([[0, 0]]) self.tab_values.update() if isinstance(self.mat.mag.BH_curve, ImportMatrixVal) and not array_equal( self.mat.mag.BH_curve.value, array([[0, 0]]) ): self.c_type_material.setCurrentIndex(2) elif self.mat.mag.Brm20 != 0 and self.mat.mag.alpha_Br != 0: self.c_type_material.setCurrentIndex(1) else: self.c_type_material.setCurrentIndex(0) self.change_type_material() # Hide useless widget self.in_epsr.hide() self.lf_epsr.hide() self.unit_epsr.hide() # Enable/Disable buttons self.blockSignals(True) self.set_save_needed(is_save_needed=is_save_needed) self.blockSignals(False) def set_default(self, attr): """When mat.elec or mat.mag are None, initialize with default values Parameters ---------- self : DMatSetup A DMatSetup widget attr : str name of the property to set """ setattr(self.mat, attr, type(getattr(Material(), attr))()) def set_name(self): """Signal to update the value of name according to the line edit Parameters ---------- self : DMatSetup A DMatSetup object """ file_name = str(self.le_name.text()) if file_name == self.init_name: return # New name is the same as the previous one # Check that the user wants to rename the materials msg = self.tr( "Do you want to rename your material to " + file_name + " ?\nAll current modifications (if any) on the material will be saved." ) reply = QMessageBox.question( self, self.tr("Renaming material"), msg, QMessageBox.Yes, QMessageBox.No, ) self.qmessagebox_question = reply if reply == QMessageBox.No: # Revert name self.le_name.blockSignals(True) self.le_name.setText(self.init_name) self.le_name.blockSignals(False) return # Check that new name is correct (doesn't exist) filepath = rel_file_path( join(dirname(self.mat.path), file_name + ".json"), "MATLIB_DIR" ) if isfile(filepath): QMessageBox().critical( self, self.tr("Error"), self.tr( "A material with the name " + file_name + " already exist!\nPlease enter another name." ), ) # Revert name self.le_name.blockSignals(True) self.le_name.setText(self.init_name) self.le_name.blockSignals(False) return # Update name and path self.mat.name = file_name self.le_name.setText(self.mat.name) self.mat.path = rel_file_path( join(dirname(self.mat.path), file_name + ".json"), "MATLIB_DIR" ) self.set_save_needed(is_save_needed=False) self.materialToRename.emit() # Update reference and treeview def set_is_isotropic(self): """Signal to update the value of is_isotropic according to the checkbox Parameters ---------- self : A DMatSetup object is_checked : State of the checkbox Returns ------- None """ if self.cb_material_type.currentText() == "Isotropic": self.mat.is_isotropic = True self.nav_meca.setCurrentIndex(1) self.nav_ther.setCurrentIndex(1) elif self.cb_material_type.currentText() == "Orthotropic": self.mat.is_isotropic = False self.nav_meca.setCurrentIndex(0) self.nav_ther.setCurrentIndex(0) self.set_save_needed(is_save_needed=True) def set_rho_elec(self): """Signal to update the value of rho_elec according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.elec.rho != self.lf_rho_elec.value(): self.mat.elec.rho = self.lf_rho_elec.value() self.set_save_needed(is_save_needed=True) def set_mur_lin(self): """Signal to update the value of mur_lin according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.mag.mur_lin != self.lf_mur_lin.value(): self.mat.mag.mur_lin = self.lf_mur_lin.value() self.set_save_needed(is_save_needed=True) def set_Brm20(self): """Signal to update the value of Brm20 according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.mag.Brm20 != self.lf_Brm20.value(): self.mat.mag.Brm20 = self.lf_Brm20.value() self.set_save_needed(is_save_needed=True) def set_alpha_Br(self): """Signal to update the value of alpha_Br according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.mag.alpha_Br != self.lf_alpha_Br.value(): self.mat.mag.alpha_Br = self.lf_alpha_Br.value() self.set_save_needed(is_save_needed=True) def set_Wlam(self): """Signal to update the value of Wlam according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.mag.Wlam != self.lf_Wlam.value(): self.mat.mag.Wlam = self.lf_Wlam.value() self.set_save_needed(is_save_needed=True) def set_cost_unit(self): """Signal to update the value of cost_unit according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.eco.cost_unit != self.lf_cost_unit.value(): self.mat.eco.cost_unit = self.lf_cost_unit.value() self.set_save_needed(is_save_needed=True) def set_Cp(self): """Signal to update the value of Cp according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.HT.Cp != self.lf_Cp.value(): self.mat.HT.Cp = self.lf_Cp.value() self.set_save_needed(is_save_needed=True) def set_alpha(self): """Signal to update the value of alpha according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.HT.alpha != self.lf_alpha.value(): self.mat.HT.alpha = self.lf_alpha.value() self.set_save_needed(is_save_needed=True) def set_lambda(self): """Signal to update the value of lambda according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.HT.lambda_x != self.lf_L.value(): self.mat.HT.lambda_x = self.lf_L.value() self.mat.HT.lambda_y = self.lf_L.value() self.mat.HT.lambda_z = self.lf_L.value() self.set_save_needed(is_save_needed=True) def set_lambda_x(self): """Signal to update the value of lambda_x according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.HT.lambda_x != self.lf_Lx.value(): self.mat.HT.lambda_x = self.lf_Lx.value() self.set_save_needed(is_save_needed=True) def set_lambda_y(self): """Signal to update the value of lambda_y according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.HT.lambda_y != self.lf_Ly.value(): self.mat.HT.lambda_y = self.lf_Ly.value() self.set_save_needed(is_save_needed=True) def set_lambda_z(self): """Signal to update the value of lambda_z according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.HT.lambda_z != self.lf_Lz.value(): self.mat.HT.lambda_z = self.lf_Lz.value() self.set_save_needed(is_save_needed=True) def set_rho_meca(self): """Signal to update the value of rho_meca according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.rho != self.lf_rho_meca.value(): self.mat.struct.rho = self.lf_rho_meca.value() self.set_save_needed(is_save_needed=True) def set_E(self): """Signal to update the value of Ex according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Ex != self.lf_E.value() * 1e9: self.mat.struct.Ex = self.lf_E.value() * 1e9 self.mat.struct.Ey = self.lf_E.value() * 1e9 self.mat.struct.Ez = self.lf_E.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_Ex(self): """Signal to update the value of Ex according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Ex != self.lf_Ex.value() * 1e9: self.mat.struct.Ex = self.lf_Ex.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_Ey(self): """Signal to update the value of Ey according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Ey != self.lf_Ey.value() * 1e9: self.mat.struct.Ey = self.lf_Ey.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_Ez(self): """Signal to update the value of Ez according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Ez != self.lf_Ez.value() * 1e9: self.mat.struct.Ez = self.lf_Ez.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_G(self): """Signal to update the value of G according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Gxy != self.lf_G.value() * 1e9: self.mat.struct.Gxy = self.lf_G.value() * 1e9 self.mat.struct.Gxz = self.lf_G.value() * 1e9 self.mat.struct.Gyz = self.lf_G.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_Gxy(self): """Signal to update the value of Gxy according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Gxy != self.lf_Gxy.value() * 1e9: self.mat.struct.Gxy = self.lf_Gxy.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_Gxz(self): """Signal to update the value of Gxz according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Gxz != self.lf_Gxz.value() * 1e9: self.mat.struct.Gxz = self.lf_Gxz.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_Gyz(self): """Signal to update the value of Gyz according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.Gyz != self.lf_Gyz.value() * 1e9: self.mat.struct.Gyz = self.lf_Gyz.value() * 1e9 self.set_save_needed(is_save_needed=True) def set_nu(self): """Signal to update the value of nu_xy according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.nu_xy != self.lf_nu.value(): self.mat.struct.nu_xy = self.lf_nu.value() self.mat.struct.nu_xz = self.lf_nu.value() self.mat.struct.nu_yz = self.lf_nu.value() self.set_save_needed(is_save_needed=True) def set_nu_xy(self): """Signal to update the value of nu_xy according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.nu_xy != self.lf_nu_xy.value(): self.mat.struct.nu_xy = self.lf_nu_xy.value() self.set_save_needed(is_save_needed=True) def set_nu_xz(self): """Signal to update the value of nu_xz according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.nu_xz != self.lf_nu_xz.value(): self.mat.struct.nu_xz = self.lf_nu_xz.value() self.set_save_needed(is_save_needed=True) def set_nu_yz(self): """Signal to update the value of nu_yz according to the line edit Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.mat.struct.nu_yz != self.lf_nu_yz.value(): self.mat.struct.nu_yz = self.lf_nu_yz.value() self.set_save_needed(is_save_needed=True) def set_table_values(self): """Signal to update the value of the table according to the table Parameters ---------- self : A DMatSetup object Returns ------- None """ if isinstance(self.mat.mag.BH_curve, ImportMatrixVal): if not array_equal(self.mat.mag.BH_curve.value, self.tab_values.get_data()): self.mat.mag.BH_curve.value = self.tab_values.get_data() self.set_save_needed(is_save_needed=True) elif isinstance(self.mat.mag.BH_curve, (ImportMatrixXls, ImportMatrix)): self.mat.mag.BH_curve = ImportMatrixVal(self.tab_values.get_data()) self.set_save_needed(is_save_needed=True) def change_type_material(self): """Hide or show units that need to be defined depending on the type of the material Parameters ---------- self : A DMatSetup object Returns ------- None """ if self.c_type_material.currentIndex() == 0: # Linear self.in_Brm20.setHidden(True) self.lf_Brm20.setHidden(True) self.unit_Brm20.setHidden(True) self.in_alpha_Br.setHidden(True) self.lf_alpha_Br.setHidden(True) self.unit_alpha_Br.setHidden(True) self.nav_mag.setCurrentIndex(0) elif self.c_type_material.currentIndex() == 1: # Magnetic self.in_Brm20.setHidden(False) self.lf_Brm20.setHidden(False) self.unit_Brm20.setHidden(False) self.in_alpha_Br.setHidden(False) self.lf_alpha_Br.setHidden(False) self.unit_alpha_Br.setHidden(False) self.nav_mag.setCurrentIndex(0) else: # Lamination self.nav_mag.setCurrentIndex(1)
r=float(input('Digite o valor em reais que você possui na carteira: R$ ')) cot=4.85 d=(r/cot) print(' x.x '*25) print('Com o valor em sua carteira de R$ {} você pode comprar U$$ {:.2f}!'.format(r,d))
from utils.batchManagers import MultiNLIBatchManager, MRPCBatchManager, PDBBatchManager, SICKBatchManager, IBMBatchManager from math import sqrt import random random.seed(42) class MultiTaskTrainLoader(): """ Custom batch manager for multi-task learning. Iterating over this object yields a batch from one of the datasets (randomly) """ def __init__(self, batch_size, device): self.batch_size = batch_size self.device = device # batchmanagers we care about self.batchmanagers = { 'NLI' : MultiNLIBatchManager(batch_size, device), 'PDB' : PDBBatchManager(batch_size, device), 'MRPC' : MRPCBatchManager(batch_size, device) } self.tasks = list(self.batchmanagers.keys()) # save the iterator of the dataloaders # need to do so because dataloaders are not iterators directly self.iter_dataloaders = {task:iter(bm.train_iter) for task, bm in self.batchmanagers.items()} # this is used to sample the dataloaders. See function description self.proportions = self._getProportions() # task iterator (we shuffle every time) random.shuffle(self.proportions) self.task_iter = iter(self.proportions) # total number of batches per one epoch self.totalBatches = max((bm.task_size() for bm in self.batchmanagers.values())) // self.batch_size # used to iterate. self.counter = 0 def getTasksWithNClasses(self): return {name: len(bm.classes()) for name, bm in self.batchmanagers.items()} def _getProportions(self): """ returns a list of strings, each string is the name of the task. The number of strings in this list are proportional to the sizes of the datasets (square rooted) Returns: (list(str)): list representing the proportions """ min_size = min((bm.task_size() for bm in self.batchmanagers.values())) proportions = [] for name, bm in self.batchmanagers.items(): size = round(sqrt(bm.task_size() / min_size)) proportions += [name] * size return proportions def __len__(self): return self.totalBatches def __iter__(self): return self def __next__(self): """ Iterator main function Returns: (str, object): name of the task and a batch """ # if we are out of index, stop the iteration... # (but restart the counter for next time!) if self.counter >= self.totalBatches: self.counter = 0 raise StopIteration else: # augment the index self.counter += 1 # pick a task (this is a string) try: task = next(self.task_iter) except StopIteration: random.shuffle(self.proportions) self.task_iter = iter(self.proportions) task = next(self.task_iter) # get the corresponding dataloader-iterator dataloader = self.iter_dataloaders[task] try: # get the next batch batch = next(dataloader) except StopIteration: # if this did not work, restart the iterator. self.iter_dataloaders[task] = iter(self.batchmanagers[task].train_iter) dataloader = self.iter_dataloaders[task] batch = next(dataloader) return task, batch
import datetime n = int(input()) fmt = '%a %d %b %Y %H:%M:%S %z' for i in range(n): l = input() m = input() print(int(abs((datetime.datetime.strptime(l, fmt)-datetime.datetime.strptime(m, fmt)).total_seconds())))
# 284. Peeking Iterator # Given an Iterator class interface with methods: next() and hasNext(), # design and implement a PeekingIterator that support the peek() operation -- # it essentially peek() at the element that will be returned by the next call to next(). # Here is an example. # Assume that the iterator is initialized to the beginning of the list: [1, 2, 3]. # Call next() gets you 1, the first element in the list. # Now you call peek() and it returns 2, the next element. Calling next() after that still return 2. # You call next() the final time and it returns 3, the last element. # Calling hasNext() after that should return false. # Hint: # Think of "looking ahead". You want to cache the next element. # Is one variable sufficient? Why or why not? # Test your design with call order of peek() before next() vs next() before peek(). # For a clean implementation, check out Google's guava library source code. # Follow up: How would you extend your design to be generic and work with all types, not just integer? # Below is the interface for Iterator, which is already defined for you. class Iterator(object): def __init__(self, nums): """ Initializes an iterator object to the beginning of a list. :type nums: List[int] """ self.it = iter(nums) def hasNext(self): """ Returns true if the iteration has more elements. :rtype: bool """ return def next(self): """ Returns the next element in the iteration. :rtype: int """ # it = iter(self.nums) return next(self.it) # http://bookshadow.com/weblog/2015/09/21/leetcode-peeking-iterator/ # 引入两个额外的变量nextElement和peekFlag: # nextElement标识peek操作预先获取的下一个元素, # peekFlag记录当前是否已经执行过peek操作 class PeekingIterator(object): def __init__(self, iterator): """ Initialize your data structure here. :type iterator: Iterator """ self.iter = iterator self.peekFlag = False self.nextElement = None def peek(self): """ Returns the next element in the iteration without advancing the iterator. :rtype: int """ if not self.peekFlag: # save next element and set flag to true self.nextElement = self.iter.next() self.peekFlag = True return self.nextElement def next(self): """ :rtype: int """ if not self.peekFlag: # return normal next return self.iter.next() nextElement = self.nextElement # save next element self.peekFlag = False # reset attributes back self.nextElement = None return nextElement def hasNext(self): """ :rtype: bool """ return self.peekFlag or self.iter.hasNext() # Your PeekingIterator object will be instantiated and called as such: nums = [1, 2, 3] it = PeekingIterator(Iterator(nums)) val = it.peek() print(val) it.next() val = it.peek() print(val) # while it.hasNext(): # val = it.peek() # Get the next element but not advance the iterator. # it.next() # Should return the same value as [val].
"""Implements the base crawler which all the rules are based on. Crawlers, crawl through the trees returned by the parser and evaluate particular rules. The intent is that it should be possible for the rules to be expressed as simply as possible, with as much of the complexity abstracted away. The evaluation function should take enough arguments that it can evaluate the position of the given segment in relation to its neighbors, and that the segment which finally "triggers" the error, should be the one that would be corrected OR if the rule relates to something that is missing, then it should flag on the segment FOLLOWING, the place that the desired element is missing. """ import copy import logging from collections import namedtuple from sqlfluff.core.parser import RawSegment, KeywordSegment, BaseSegment, SymbolSegment from sqlfluff.core.errors import SQLLintError # The ghost of a rule (mostly used for testing) RuleGhost = namedtuple("RuleGhost", ["code", "description"]) # Instantiate the rules logger rules_logger = logging.getLogger("sqlfluff.rules") class RuleLoggingAdapter(logging.LoggerAdapter): """A LoggingAdapter for rules which adds the code of the rule to it.""" def process(self, msg, kwargs): """Add the code element to the logging message before emit.""" return "[%s] %s" % (self.extra["code"], msg), kwargs class LintResult: """A class to hold the results of a crawl operation. Args: anchor (:obj:`BaseSegment`, optional): A segment which represents the *position* of the a problem. NB: Each fix will also hold its own reference to position, so this position is mostly for alerting the user to where the *problem* is. fixes (:obj:`list` of :obj:`LintFix`, optional): An array of any fixes which would correct this issue. If not present then it's assumed that this issue will have to manually fixed. memory (:obj:`dict`, optional): An object which stores any working memory for the crawler. The `memory` returned in any `LintResult` will be passed as an input to the next segment to be crawled. description (:obj:`str`, optional): A description of the problem identified as part of this result. This will override the description of the rule as what gets reported to the user with the problem if provided. """ def __init__(self, anchor=None, fixes=None, memory=None, description=None): # An anchor of none, means no issue self.anchor = anchor # Fixes might be blank self.fixes = fixes or [] # When instantiating the result, we filter any fixes which are "trivial". self.fixes = [f for f in self.fixes if not f.is_trivial()] # Memory is passed back in the linting result self.memory = memory # store a description_override for later self.description = description def to_linting_error(self, rule): """Convert a linting result to a :exc:`SQLLintError` if appropriate.""" if self.anchor: # Allow description override from the LintResult description = self.description or rule.description return SQLLintError( rule=rule, segment=self.anchor, fixes=self.fixes, description=description, ) else: return None class LintFix: """A class to hold a potential fix to a linting violation. Args: edit_type (:obj:`str`): One of `create`, `edit`, `delete` to indicate the kind of fix this represents. anchor (:obj:`BaseSegment`): A segment which represents the *position* that this fix should be applied at. For deletions it represents the segment to delete, for creations it implies the position to create at (with the existing element at this position to be moved *after* the edit), for an `edit` it implies the segment to be replaced. edit (:obj:`BaseSegment`, optional): For `edit` and `create` fixes, this hold the segment, or iterable of segments to create to replace at the given `anchor` point. """ def __init__(self, edit_type, anchor, edit=None): if edit_type not in ["create", "edit", "delete"]: raise ValueError("Unexpected edit_type: {0}".format(edit_type)) self.edit_type = edit_type self.anchor = anchor # Coerce to list if isinstance(edit, BaseSegment): edit = [edit] # Copy all the elements of edit to stop contamination. # We're about to start stripping the position markers # of some of the elements and we don't want to end up # stripping the positions of the original elements of # the parsed structure. self.edit = copy.deepcopy(edit) if self.edit: # Strip position markers of anything enriched, otherwise things can get blurry for seg in self.edit: seg.pos_marker = seg.pos_marker.strip() # Once stripped, we shouldn't replace any markers because # later code may rely on them being accurate, which we # can't guarantee with edits. def is_trivial(self): """Return true if the fix is trivial. Trivial edits are: - Anything of zero length. - Any edits which result in themselves. Removing these makes the routines which process fixes much faster. """ if self.edit_type == "create": if isinstance(self.edit, BaseSegment): if len(self.edit.raw) == 0: return True elif all(len(elem.raw) == 0 for elem in self.edit): return True elif self.edit_type == "edit" and self.edit == self.anchor: return True return False def __repr__(self): if self.edit_type == "delete": detail = "delete:{0!r}".format(self.anchor.raw) elif self.edit_type in ("edit", "create"): if hasattr(self.edit, "raw"): new_detail = self.edit.raw else: new_detail = "".join(s.raw for s in self.edit) if self.edit_type == "edit": detail = "edt:{0!r}->{1!r}".format(self.anchor.raw, new_detail) else: detail = "create:{0!r}".format(new_detail) else: detail = "" return "<LintFix: {0} @{1} {2}>".format( self.edit_type, self.anchor.pos_marker, detail ) def __eq__(self, other): """Compare equality with another fix. A fix is equal to another if is in the same place (position), with the same type and (if appropriate) the same edit values. """ if not self.edit_type == other.edit_type: return False if not self.anchor == other.anchor: return False if not self.edit == other.edit: return False return True class BaseCrawler: """The base class for a crawler, of which all rules are derived from. Args: code (:obj:`str`): The identifier for this rule, used in inclusion or exclusion. description (:obj:`str`): A human readable description of what this rule does. It will be displayed when any violations are found. """ _works_on_unparsable = True def __init__(self, code, description, **kwargs): self.description = description self.code = code # kwargs represents the config passed to the crawler. Add all kwargs as class attributes # so they can be accessed in rules which inherit from this class for key, value in kwargs.items(): self.__dict__[key] = value # We also define a custom logger here, which also includes the code # of the rule in the logging. self.logger = RuleLoggingAdapter(rules_logger, {"code": code}) # Validate that declared configuration options exist try: for keyword in self.config_keywords: if keyword not in kwargs.keys(): raise ValueError( ( "Unrecognized config '{0}' for Rule {1}. If this " "is a new option, please add it to " "`default_config.cfg`" ).format(keyword, code) ) except AttributeError: self.logger.info("No config_keywords defined for {0}".format(code)) def _eval(self, **kwargs): """Evaluate this rule against the current context. This should indicate whether a linting violation has occurred and/or whether there is something to remember from this evaluation. Note that an evaluate function should always accept `**kwargs`, but if it relies on any available kwargs, it should explicitly call them out at definition. Returns: :obj:`LintResult` or :obj:`None`. The reason that this method is called :meth:`_eval` and not `eval` is a bit of a hack with sphinx autodoc, to make it so that the rule documentation auto-generates nicely. """ raise NotImplementedError( ( "{0} has not had its `eval` function defined. This is a problem " "with the rule setup." ).format(self.__class__.__name__) ) def crawl( self, segment, dialect, parent_stack=None, siblings_pre=None, siblings_post=None, raw_stack=None, memory=None, ): """Recursively perform the crawl operation on a given segment. Returns: A tuple of (vs, raw_stack, fixes, memory) """ # parent stack should be a tuple if it exists # crawlers, should evaluate on segments FIRST, before evaluating on their # children. They should also return a list of violations. parent_stack = parent_stack or () raw_stack = raw_stack or () siblings_post = siblings_post or () siblings_pre = siblings_pre or () memory = memory or {} vs = [] fixes = [] # First, check whether we're looking at an unparsable and whether # this rule will still operate on that. if not self._works_on_unparsable and segment.is_type("unparsable"): # Abort here if it doesn't. Otherwise we'll get odd results. return vs, raw_stack, [], memory # TODO: Document what options are available to the evaluation function. try: res = self._eval( segment=segment, parent_stack=parent_stack, siblings_pre=siblings_pre, siblings_post=siblings_post, raw_stack=raw_stack, memory=memory, dialect=dialect, ) # Any exception at this point would halt the linter and # cause the user to get no results except Exception as e: self.logger.critical( f"Applying rule {self.code} threw an Exception: {e}", exc_info=True ) vs.append( SQLLintError( rule=self, segment=segment, fixes=[], description=( f"""Unexpected exception: {str(e)}; Could you open an issue at https://github.com/sqlfluff/sqlfluff/issues ? You can ignore this exception for now, by adding '--noqa: {self.code}' at the end of line {segment.pos_marker.line_no} """ ), ) ) return vs, raw_stack, fixes, memory if res is None: # Assume this means no problems (also means no memory) pass elif isinstance(res, LintResult): # Extract any memory memory = res.memory lerr = res.to_linting_error(rule=self) if lerr: vs.append(lerr) fixes += res.fixes elif isinstance(res, list) and all( isinstance(elem, LintResult) for elem in res ): # Extract any memory from the *last* one, assuming # it was the last to be added memory = res[-1].memory for elem in res: lerr = elem.to_linting_error(rule=self) if lerr: vs.append(lerr) fixes += elem.fixes else: raise TypeError( "Got unexpected result [{0!r}] back from linting rule: {1!r}".format( res, self.code ) ) # The raw stack only keeps track of the previous raw segments if len(segment.segments) == 0: raw_stack += (segment,) # Parent stack keeps track of all the parent segments parent_stack += (segment,) for idx, child in enumerate(segment.segments): dvs, raw_stack, child_fixes, memory = self.crawl( segment=child, parent_stack=parent_stack, siblings_pre=segment.segments[:idx], siblings_post=segment.segments[idx + 1 :], raw_stack=raw_stack, memory=memory, dialect=dialect, ) vs += dvs fixes += child_fixes return vs, raw_stack, fixes, memory # HELPER METHODS -------- @staticmethod def filter_meta(segments, keep_meta=False): """Filter the segments to non-meta. Or optionally the opposite if keep_meta is True. """ buff = [] for elem in segments: if elem.is_meta is keep_meta: buff.append(elem) return tuple(buff) @classmethod def get_parent_of(cls, segment, root_segment): """Return the segment immediately containing segment. NB: This is recursive. Args: segment: The segment to look for. root_segment: Some known parent of the segment we're looking for (although likely not the direct parent in question). """ if segment in root_segment.segments: return root_segment elif root_segment.segments: # try each of the subsegments for sub in root_segment.segments: p = cls.get_parent_of(segment, sub) if p: return p # Not directly in the segment and # no subsegments to check. Return None. return None @classmethod def make_whitespace(cls, raw, pos_marker): """Make a whitespace segment.""" WhitespaceSegment = RawSegment.make(" ", name="whitespace", type="whitespace") return WhitespaceSegment(raw=raw, pos_marker=pos_marker) @classmethod def make_newline(cls, pos_marker, raw=None): """Make a newline segment.""" # Default the newline to \n raw = raw or "\n" nls = RawSegment.make("\n", name="newline", type="newline") return nls(raw=raw, pos_marker=pos_marker) @classmethod def make_keyword(cls, raw, pos_marker): """Make a keyword segment.""" # For the name of the segment, we force the string to lowercase. kws = KeywordSegment.make(raw.lower()) # At the moment we let the rule dictate *case* here. return kws(raw=raw, pos_marker=pos_marker) @classmethod def make_symbol(cls, raw, pos_marker, seg_type, name=None): """Make a symbol segment.""" # For the name of the segment, we force the string to lowercase. symbol_seg = SymbolSegment.make( raw.lower(), name=name or seg_type, type=seg_type ) # At the moment we let the rule dictate *case* here. return symbol_seg(raw=raw, pos_marker=pos_marker) class RuleSet: """Class to define a ruleset. A rule set is instantiated on module load, but the references to each of its classes are instantiated at runtime. This means that configuration values can be passed to those rules live and be responsive to any changes in configuration from the path that the file is in. Rules should be fetched using the :meth:`get_rulelist` command which also handles any filtering (i.e. whitelisting and blacklisting). New rules should be added to the instance of this class using the :meth:`register` decorator. That decorator registers the class, but also performs basic type and name-convention checks. The code for the rule will be parsed from the name, the description from the docstring. The eval function is assumed that it will be overriden by the subclass, and the parent class raises an error on this function if not overriden. """ def __init__(self, name, config_info): self.name = name self.config_info = config_info self._register = {} def _validate_config_options(self, config, rule=None): """Ensure that all config options are valid. Config options can also be checked for a specific rule e.g L010. """ rule_config = config.get_section("rules") for config_name, info_dict in self.config_info.items(): config_option = ( rule_config.get(config_name) if not rule else rule_config.get(rule).get(config_name) ) valid_options = info_dict["validation"] if config_option not in valid_options and config_option is not None: raise ValueError( ( "Invalid option '{0}' for {1} configuration. Must be one of {2}" ).format( config_option, config_name, valid_options, ) ) def register(self, cls): """Decorate a class with this to add it to the ruleset. .. code-block:: python @myruleset.register class Rule_L001(BaseCrawler): "Description of rule." def eval(self, **kwargs): return LintResult() We expect that rules are defined as classes with the name `Rule_XXXX` where `XXXX` is of the form `LNNN`, where L is a letter (literally L for *linting* by default) and N is a three digit number. If this receives classes by any other name, then it will raise a :exc:`ValueError`. """ elems = cls.__name__.split("_") # Validate the name if len(elems) != 2 or elems[0] != "Rule" or len(elems[1]) != 4: raise ValueError( ( "Tried to register rule on set {0!r} with unexpected " "format: {1}" ).format(self.name, cls.__name__) ) code = elems[1] # If the docstring is multiline, then we extract just summary. description = cls.__doc__.split("\n")[0] # Keep track of the *class* in the register. Don't instantiate yet. if code in self._register: raise ValueError( "Rule {0!r} has already been registered on RuleSet {1!r}!".format( code, self.name ) ) self._register[code] = dict(code=code, description=description, cls=cls) # Make sure we actually return the original class return cls def get_rulelist(self, config): """Use the config to return the appropriate rules. We use the config both for whitelisting and blacklisting, but also for configuring the rules given the given config. Returns: :obj:`list` of instantiated :obj:`BaseCrawler`. """ # Validate all generic rule configs self._validate_config_options(config) # default the whitelist to all the rules if not set whitelist = config.get("rule_whitelist") or list(self._register.keys()) blacklist = config.get("rule_blacklist") or [] whitelisted_unknown_rule_codes = [ r for r in whitelist if r not in self._register ] if any(whitelisted_unknown_rule_codes): rules_logger.warning( "Tried to whitelist unknown rules: {0!r}".format( whitelisted_unknown_rule_codes ) ) blacklisted_unknown_rule_codes = [ r for r in blacklist if r not in self._register ] if any(blacklisted_unknown_rule_codes): rules_logger.warning( "Tried to blacklist unknown rules: {0!r}".format( blacklisted_unknown_rule_codes ) ) keylist = sorted(self._register.keys()) # First we filter the rules keylist = [r for r in keylist if r in whitelist and r not in blacklist] # Construct the kwargs for instantiation before we actually do it. rule_kwargs = {} for k in keylist: kwargs = {} generic_rule_config = config.get_section("rules") specific_rule_config = config.get_section( ("rules", self._register[k]["code"]) ) if generic_rule_config: kwargs.update(generic_rule_config) if specific_rule_config: # Validate specific rule config before adding self._validate_config_options(config, self._register[k]["code"]) kwargs.update(specific_rule_config) kwargs["code"] = self._register[k]["code"] # Allow variable substitution in making the description kwargs["description"] = self._register[k]["description"].format(**kwargs) rule_kwargs[k] = kwargs # Instantiate in the final step return [self._register[k]["cls"](**rule_kwargs[k]) for k in keylist] def copy(self): """Return a copy of self with a separate register.""" new_ruleset = copy.copy(self) new_ruleset._register = self._register.copy() return new_ruleset
import copy import re import unicodedata as ud from enum import Enum from WiktionaryTags import WiktionaryTags # State: Is the parser reading an etymology or a pronunciation entry? 0 if no, 1 if etymology, 2 if pronunciation class State(Enum): OTHER = 0 ETYM = 1 PRONOUNCE = 2 # Stores a single entry for the etymology dictionary class WiktionaryEntry(object): __slots__ = ('word', 'raw_text', 'iso_code', 'pos', 'ipa', 'root_lang', 'nonstandard_root_code', 'root_word', 'root_roman', 'root_ipa', 'derivation', 'etym_number', 'universal_pronunciation', 'other_entries', 'headers', 'TAGS', 'latin_letters') def __init__(self, word, raw_text): self.word = self.process_word(word) self.raw_text = raw_text self.iso_code = '' self.pos = [] self.ipa = '' self.root_lang = '' self.nonstandard_root_code = '' self.root_word = [] self.root_roman = '' self.root_ipa = '' self.derivation = '' self.etym_number = 0 self.universal_pronunciation = False self.other_entries = [] # Stores other etymologies for the same entry self.headers = [] # To help with debugging self.TAGS = WiktionaryTags() self.latin_letters = {} # To ensure that romanizations are in Latin letters self.parse() def reinitialize(self, reinit_pos=True): if reinit_pos: self.pos = [] if not self.universal_pronunciation: self.ipa = '' self.root_lang = '' self.nonstandard_root_code = '' self.root_word = [] self.root_roman = '' self.root_ipa = '' self.derivation = '' # Denote reconstructions with * @staticmethod def process_word(word): processed = re.sub('^Reconstruction:[\w ]+/', '*', word) return processed def process_src_word_var(self, word): if type(word) is list: word = self.combine_last_elements(word) return word @staticmethod def split_key(line): for i, char in enumerate(line): if char == '=': return [line[:i], line[i+1:]] elif not char.isalpha(): break return ['', line] @staticmethod def separate_pipes(line): sections = [] start_idx = 0 depth = 0 i = 0 while i + 1 < len(line): char = line[i] next_char = line[i+1] if char == '{' and next_char == '{': depth += 1 i += 1 elif char == '}' and next_char == '}': depth -= 1 i += 1 elif char == '|' and depth == 0: sections.append(line[start_idx:i]) start_idx = i + 1 i += 1 sections.append(line[start_idx:]) return sections @staticmethod def get_curly_braces(line): sections = [] compound_flag = False paren_flag = False start_idx = None depth = 0 i = 0 while i + 1 < len(line): char = line[i] next_char = line[i+1] if char == '(': paren_flag = True elif paren_flag: if char == ')': paren_flag = False elif char == '{' and next_char == '{': if depth == 0: start_idx = i + 2 depth += 1 i += 1 elif char == '}' and next_char == '}': depth -= 1 i += 1 if depth == 0: if compound_flag: if len(sections): if type(sections[-1]) is not list: sections[-1] = [sections[-1]] sections[-1].append(line[start_idx:i-1]) compound_flag = False else: sections.append(line[start_idx:i-1]) elif char == '+' and depth == 0: # Compound compound_flag = True i += 1 return sections def get_base_list(self, l): if len(l) == 1 and type(l[0]) is list: return self.get_base_list(l[0]) return l def process_sub_braces(self, e): sub = [] children = self.separate_pipes(e) for i, c in enumerate(children): key, val = self.split_key(c) e_child = self.get_curly_braces(val) if len(e_child): dub_sub = [] for e_c in self.get_base_list(e_child): dub_sub.append(self.separate_pipes(e_c)) sub.append([key, dub_sub]) else: sub.append([key, val]) return sub def get_all_braces(self, line): output = [] entries = self.get_curly_braces(line) for e in entries: if type(e) is list: sub = [] for cmp in e: compound_sub = self.process_sub_braces(cmp) sub.append(compound_sub) else: sub = self.process_sub_braces(e) output.append(sub) return output @staticmethod def is_header(line): if line[0] == '=': return True return False @staticmethod def get_header_depth(header_line): i = 0 while header_line[i] == '=': i += 1 return i @staticmethod def is_lang(line): if line[:18] == '{{wikipedia||lang=': return True return False def create_other_entry(self, reinit_pos=True, increment_etym=False): new_entry = copy.copy(self) # Only have "self" contain list of other entries (prevent useless deeper recursion) self.other_entries = new_entry.other_entries new_entry.other_entries = [] self.other_entries.append(new_entry) self.reinitialize(reinit_pos) if increment_etym: self.etym_number += 1 def process_header(self, line): header_depth = self.get_header_depth(line) header = line[header_depth:-header_depth].strip() self.headers.append(header + '-' + str(header_depth)) lang_depth = 2 if header_depth == lang_depth and header in self.TAGS.lang2iso: self.iso_code = self.TAGS.lang2iso[header] elif header == 'Pronunciation': return State.PRONOUNCE elif header_depth == 3: if header[:9] == 'Etymology': if len(header) > 9 and header != 'Etymology 1': # Create another Entry if multiple etymologies given self.create_other_entry(increment_etym=True) return State.ETYM if header in self.TAGS.POS: self.pos.append(header) return State.OTHER def process_lang(self, line): lang_id = line[18:-2] self.iso_code = self.iso2full_iso(lang_id) def set_derivation(self, der): if der in self.TAGS.save_ety_tags: self.derivation = self.TAGS.save_ety_tags[der] return True return False def set_root_lang(self, lang_id): self.root_lang = self.iso2full_iso(lang_id) if len(self.root_lang): return True return False def set_root_word(self, src_words, rom, ipa): result = False for word in src_words: if len(word) and word != '-': self.root_word.append(word) result = True if len(rom): self.root_roman = re.sub(' ', '+', rom) result = True if len(ipa): self.root_ipa = ipa result = True return result @staticmethod def process_src_word(src_word): src_word = re.sub('\([^)]*\)', '', src_word) src_word = re.sub('\[', '', src_word) src_word = re.sub(']', '', src_word) # If there is a list of words, split the words into a list splits = re.search(', ', src_word) if splits is not None: words = [src_word[:splits.start()], src_word[splits.end():]] else: words = [re.sub('\s+', '+', src_word.strip())] return words def set_nonstandard_root(self, lang_id): self.nonstandard_root_code = lang_id if lang_id in self.TAGS.nonstandard2standard: self.root_lang = self.TAGS.nonstandard2standard[lang_id] def parse_etymology(self, etym): # Check if compound if type(etym[0][0]) is list: cmp_der, cmp_src_lang_id, cmp_src_word, cmp_rom, cmp_ipa = [], [], [], [], [] for cmp in etym: der, src_lang_id, src_word, rom, ipa = self.get_etym_vars(cmp) cmp_der.append(der) cmp_src_lang_id.append(src_lang_id) if len(src_word): cmp_src_word.append(src_word) if len(rom): cmp_rom.append(rom) if len(ipa): cmp_ipa.append(ipa) der = cmp_der[0] src_lang_id = cmp_src_lang_id[0] src_word = '+'.join(cmp_src_word) rom = '+'.join(cmp_rom) ipa = '+'.join(cmp_ipa) else: der, src_lang_id, src_word, rom, ipa = self.get_etym_vars(etym) result = True result *= self.set_derivation(der) if not self.set_root_lang(src_lang_id): self.set_nonstandard_root(src_lang_id) self.set_root_word(self.process_src_word(src_word), rom, ipa) if not result: # If any of the steps failed, delete the other parts self.reinitialize(reinit_pos=False) def compare_entry(self, der, lang_id, src_word, entry): if der in self.TAGS.save_ety_tags: der_tag = self.TAGS.save_ety_tags[der] iso = self.iso2full_iso(lang_id) if not len(iso): if lang_id != entry.nonstandard_root_code: return False if entry.derivation == der_tag and src_word in entry.root_word: return True return False def iso2full_iso(self, lang_id): if lang_id not in self.TAGS.iso2lang: return '' lang = self.TAGS.iso2lang[lang_id] iso = self.TAGS.lang2iso[lang] return iso def combine_last_elements(self, l): combined = [] for e in l: combined.append(e[-1]) return '+'.join(combined) def is_latin(self, uchr): try: return self.latin_letters[uchr] except KeyError: return self.latin_letters.setdefault(uchr, 'LATIN' in ud.name(uchr)) def only_roman_chars(self, unistr): return all(self.is_latin(uchr) for uchr in unistr if uchr.isalpha()) # isalpha suggested by John Machin def process_tr(self, string): if type(string) is list: string = self.combine_last_elements(string) if not self.only_roman_chars(string): return '' processed = re.sub('[\[\]]', '', string) processed = re.sub(r'<sub>\w*</sub>', '', processed) processed = re.sub(r'<sup>\w*</sup>\.?', '', processed) processed = re.sub(r'&lt;sub&gt;\w*&lt;/sub&gt;', '', processed) processed = re.sub(r'&lt;sup&gt;\w*&lt;/sup&gt;\.?', '', processed) return processed def get_etym_vars(self, etym): der = src_lang_id = src_word = romanized = ipa = '' for i, (key, var) in enumerate(etym): if key == 'tr': romanized = self.process_tr(var) elif key == 'ts': ipa = '/{}/'.format(self.process_tr(var)) elif key == 'sort': # TODO: implement. Should this accept the next entry as the root word? pass elif not len(key): if i == 0: der = var if der not in self.TAGS.save_ety_tags and der != 'm': break elif der in ['cognate', 'cog', 'm']: if i == 1: src_lang_id = var elif i == 2: src_word = self.process_src_word_var(var) elif i == 2: src_lang_id = var elif i == 3: src_word = self.process_src_word_var(var) return der, src_lang_id, src_word, romanized, ipa def process_etymologies(self, line): etyms = self.get_all_braces(line) for i, etym in enumerate(etyms): self.create_other_entry(reinit_pos=False) self.parse_etymology(etym) # Some Middle Chinese words are split across two etymology tags if self.root_lang == 'ltc' and not len(self.root_word): if i + 1 < len(etyms): next_etym = etyms[i+1] if len(next_etym) >= 2 and next_etym[0][1] == 'ltc-l': word = re.sub('[\[\]\(\)]', '', next_etym[1][1]) self.root_word.append(word) def is_compound_pair(self, pair): if len(pair) > 1 and type(pair[1]) is list: return True return False def get_pron_vars(self, pron): lbl = phonemic = phonetic = '' for i, pair in enumerate(pron): if self.is_compound_pair(pair): continue key, val = pair if len(key): continue elif i == 0: lbl = val if lbl not in ['IPA', 'IPAchar']: break elif i > 1 and len(val): if val[0] == '/' and not len(phonemic): phonemic = val break elif val[0] == '[' and not len(phonetic): phonetic = val break return lbl, phonemic, phonetic def parse_pronunciation(self, pron, accent=''): self.universal_pronunciation = True for header in self.headers: if header[:9] == 'Etymology': self.universal_pronunciation = False break _, phonemic, phonetic = self.get_pron_vars(pron) if not len(self.ipa): if len(phonemic): self.ipa = phonemic elif len(phonetic): self.ipa = phonetic elif self.ipa[0] == '[' and len(phonemic): self.ipa = phonemic def process_pronunciation(self, line): pronunciations = self.get_all_braces(line) accent = '' for i, pron in enumerate(pronunciations): if len(pron) == 2 and pron[0][1] == 'a': accent = pron[1][1] else: self.parse_pronunciation(pron, accent) for entry in self.other_entries: if entry.etym_number == self.etym_number: entry.ipa = self.ipa def parse(self): state = State.OTHER for line in self.raw_text: if self.is_header(line): state = self.process_header(line) elif self.is_lang(line): self.process_lang(line) elif state is State.ETYM: self.process_etymologies(line) elif state is State.PRONOUNCE: self.process_pronunciation(line) def to_list(self, dist): output = [] if not len(self.root_word): # If only a transcription or romanization is available output.append([self.word, self.iso_code, self.pos, self.ipa, self.root_lang, self.nonstandard_root_code, '', self.root_roman, self.root_ipa, self.derivation, dist, self.etym_number]) for word in self.root_word: output.append([self.word, self.iso_code, self.pos, self.ipa, self.root_lang, self.nonstandard_root_code, word, self.root_roman, self.root_ipa, self.derivation, dist, self.etym_number]) return output def to_full_list(self): full_list = [] dist = 0 prev_etym_number = self.etym_number for entry in self.other_entries: if entry.etym_number != prev_etym_number: dist = 0 prev_etym_number = entry.etym_number if len(entry.root_lang) or len(entry.nonstandard_root_code): if entry.derivation in ['cognate', 'cog', 'm']: # Don't set a dist for words that aren't ancestors if len(entry.root_word) or len(entry.root_roman) or len(entry.root_ipa): full_list.extend(entry.to_list(dist=0)) else: dist += 1 full_list.extend(entry.to_list(dist)) if len(self.root_lang) or len(self.nonstandard_root_code): if self.derivation in ['cognate', 'cog', 'm']: # Don't set a dist for words that aren't ancestors if len(self.root_word) or len(self.root_roman) or len(self.root_ipa): full_list.extend(self.to_list(0)) else: dist += 1 full_list.extend(self.to_list(dist)) return full_list @staticmethod def combine_first(l1, l2, idx): return l1[idx] @staticmethod def combine_pos(l1, l2, idx): pos1 = l1[idx] pos2 = l2[idx] return list(set(pos1) | set(pos2)) @staticmethod def combine_ipa(l1, l2, idx): ipa1 = l1[idx] ipa2 = l2[idx] if not len(ipa1): return ipa2 if not len(ipa2): return ipa1 if ipa1[0] == '/' and ipa2[0] != '/': return ipa1 if ipa1[0] != '/' and ipa2[0] == '/': return ipa2 if len(ipa1) >= len(ipa2): return ipa1 return ipa2 @staticmethod def combine_by_greater_length(l1, l2, idx): val1 = l1[idx] val2 = l2[idx] if len(val1) >= len(val2): return val1 return val2 @staticmethod def combine_der(l1, l2, idx): der1 = l1[idx] der2 = l2[idx] if der1 == 'der' and der2 != 'cog': return der2 return der1 @staticmethod def combine_dist(l1, l2, idx): dist1 = l1[idx] dist2 = l2[idx] if dist1 == 0: return dist2 elif dist2 == 0: return dist1 elif dist1 <= dist2: return dist1 return dist2 def combine_duplicates(self, l1, l2): combined = [self.combine_first(l1, l2, 0)] combined.append(self.combine_first(l1, l2, 1)) combined.append(self.combine_pos(l1, l2, 2)) combined.append(self.combine_ipa(l1, l2, 3)) combined.append(self.combine_by_greater_length(l1, l2, 4)) combined.append(self.combine_by_greater_length(l1, l2, 5)) combined.append(self.combine_by_greater_length(l1, l2, 6)) combined.append(self.combine_by_greater_length(l1, l2, 7)) combined.append(self.combine_by_greater_length(l1, l2, 8)) combined.append(self.combine_der(l1, l2, 9)) combined.append(self.combine_dist(l1, l2, 10)) combined.append(self.combine_dist(l1, l2, 11)) return combined def lang_duplicates(self, l1, l2): lang1 = l1[4] lang2 = l2[4] return lang1 == lang2 def word_duplicates(self, l1, l2): word1 = l1[6] word2 = l2[6] if word1 == word2 or not len(word1) or not len(word2): return True return False def are_duplicates(self, l1, l2): return self.lang_duplicates(l1, l2) and self.word_duplicates(l1, l2) def check_list_duplicates(self, full_list): while True: temp_list = [] merged_idxs = [] for i, l1 in enumerate(full_list): for j, l2 in enumerate(full_list): if i >= j or i in merged_idxs or j in merged_idxs: continue if self.are_duplicates(l1, l2): temp_list.append(self.combine_duplicates(l1, l2)) merged_idxs.append(i) merged_idxs.append(j) for k, l in enumerate(full_list): if k not in merged_idxs: temp_list.append(l) if len(temp_list) == len(full_list): break full_list = temp_list return full_list @staticmethod def list_to_string(entry_list): pos = entry_list[2] entry_list[2] = '/'.join(sorted(pos)) entry_list = entry_list[:-1] entry_list[-1] = str(entry_list[-1]) entry_list.append('wik') return ','.join(entry_list) def to_full_string(self): full_list = self.to_full_list() final_list = self.check_list_duplicates(full_list) return '\n'.join([self.list_to_string(x) for x in sorted(final_list, key=lambda x: (x[-1], x[-2]))]) if __name__ == "__main__": word = 'test' raw_text = [] with open('inputs/test.txt', 'r', encoding='utf-8') as f: raw_text = [x for x in f.read().splitlines() if len(x)] test = WiktionaryEntry(word, raw_text) # print(test.check_list_duplicates(test.to_full_list())) print(test.to_full_string()) # line = 'From {{bor|id|jv|ꦲꦭꦱ꧀|t=forest|tr={{l|jv|alas}}}}, from {{der|id|poz-pro|*halas|t=forest, wilderness, woods, jungle}}, from {{der|id|map-pro|*Salas|t=forest, wilderness, woods}}. Cognate to {{cog|ban|ᬳᬮᬲ᭄|t=forest|tr=alas}}.' # line = 'From {{inh|af|nl|({{l|nl|de}}) {{l|nl|hare}}}}.' # line = '{{calque|fr|ja|日本||Japan|tr={{l|ja|にほん}}, Nihon}}.' # line = 'Borrowing from {{bor|ja|vi|東京|sort=とんきん|tr={{l|vi|Đông Kinh}}|t=[[Eastern]] [[capital]]}}, a historical name for [[Hanoi]]. {{rfv-etym|ja}}' # entries = test.get_all_braces(line) # for e in entries: # print(e) # TODO: {{etyl|la|en}} {{m|la|geologia}} # TODO: when one entry contains etymologyical relations not contained in those words' entries... separate into chain? # TODO: check borrowings with dist > 1. Should this be possible? # TODO: check compounds with space vs. with +, compare with main entry word)) # (TODO: handle non-standard codes) # (TODO: set distance to word) # (TODO: include romanization/transcription if available (tr/ts)) # (TODO: check that right-to-left languages are saved properly) # (TODO: fix "sort=") # (TODO: check that there are no duplicates) # (TODO: Fix that pronunciations aren't processed until after the etymologies have already been saved) # (TODO: include pronunciation for recipient words, if available) # (TODO: handle compounds > 2) # TODO: (remove [[ ]], (.*), and add + to internal compounds)
import os import pickle import requests from flask import Flask from datetime import datetime app = Flask(__name__) def send_notification(message): """Send push notification.""" pushover_token = os.getenv('PUSHOVER_TOKEN') pushover_url = 'https://api.pushover.net/1/messages.json' params = { 'token': pushover_token, 'user': 'uga9w2s6wJsnGUwTjpmJnyMQnV6E5q', 'priority': -1, 'message': message, 'title': message } requests.post(pushover_url, params=params) def get_social_time(): rescuetime_token = os.getenv('RESCUETIME_TOKEN') url = 'https://www.rescuetime.com/anapi/data' params = {'format': 'json', 'resolution_time': 'minute', 'restrict_kind': 'overview', 'key': rescuetime_token} time = 0 r = requests.get(url, params=params) j = r.json() social_media = [row for row in j['rows'] if 'Social Networking' in row] if social_media: time = social_media[0][1] / 60 return int(time) @app.route('/') def index(): fp = open('data.pkl', 'rb') details = pickle.load(fp) fp.close() last_distracted = details['last_distracted'] last_mins = details['minutes'] today = datetime.today().strftime('%D') sent = (last_distracted == today) used_time = get_social_time() if not sent: if used_time > 20: send_notification('Focus: {}'.format(used_time)) last_mins = used_time last_distracted = today else: if (used_time - last_mins) > 15: send_notification('Focus: {}'.format(used_time)) last_mins = used_time details = {'minutes': last_mins, 'last_distracted': last_distracted} fp = open('data.pkl', 'wb') pickle.dump(details, fp) fp.close() return str(details) @app.route('/reset') def reset(): details = {'minutes': 30, 'last_distracted': '10/02/17'} pickle.dump(details, open('data.pkl', 'wb')) return 'Done.' if __name__ == '__main__': app.run()
""" Simple example custom service, used to drive shell commands on a node. """ from typing import Tuple from core.nodes.base import CoreNode from core.services.coreservices import CoreService, ServiceMode class ExampleService(CoreService): """ Example Custom CORE Service :cvar name: name used as a unique ID for this service and is required, no spaces :cvar group: allows you to group services within the GUI under a common name :cvar executables: executables this service depends on to function, if executable is not on the path, service will not be loaded :cvar dependencies: services that this service depends on for startup, tuple of service names :cvar dirs: directories that this service will create within a node :cvar configs: files that this service will generate, without a full path this file goes in the node's directory e.g. /tmp/pycore.12345/n1.conf/myfile :cvar startup: commands used to start this service, any non-zero exit code will cause a failure :cvar validate: commands used to validate that a service was started, any non-zero exit code will cause a failure :cvar validation_mode: validation mode, used to determine startup success. NON_BLOCKING - runs startup commands, and validates success with validation commands BLOCKING - runs startup commands, and validates success with the startup commands themselves TIMER - runs startup commands, and validates success by waiting for "validation_timer" alone :cvar validation_timer: time in seconds for a service to wait for validation, before determining success in TIMER/NON_BLOCKING modes. :cvar validation_period: period in seconds to wait before retrying validation, only used in NON_BLOCKING mode :cvar shutdown: shutdown commands to stop this service """ name: str = "ExampleService" group: str = "Utility" executables: Tuple[str, ...] = () dependencies: Tuple[str, ...] = () dirs: Tuple[str, ...] = () configs: Tuple[str, ...] = ("myservice1.sh", "myservice2.sh") startup: Tuple[str, ...] = tuple(f"sh {x}" for x in configs) validate: Tuple[str, ...] = () validation_mode: ServiceMode = ServiceMode.NON_BLOCKING validation_timer: int = 5 validation_period: float = 0.5 shutdown: Tuple[str, ...] = () @classmethod def on_load(cls) -> None: """ Provides a way to run some arbitrary logic when the service is loaded, possibly to help facilitate dynamic settings for the environment. :return: nothing """ pass @classmethod def get_configs(cls, node: CoreNode) -> Tuple[str, ...]: """ Provides a way to dynamically generate the config files from the node a service will run. Defaults to the class definition and can be left out entirely if not needed. :param node: core node that the service is being ran on :return: tuple of config files to create """ return cls.configs @classmethod def generate_config(cls, node: CoreNode, filename: str) -> str: """ Returns a string representation for a file, given the node the service is starting on the config filename that this information will be used for. This must be defined, if "configs" are defined. :param node: core node that the service is being ran on :param filename: configuration file to generate :return: configuration file content """ cfg = "#!/bin/sh\n" if filename == cls.configs[0]: cfg += "# auto-generated by MyService (sample.py)\n" for iface in node.get_ifaces(): cfg += f'echo "Node {node.name} has interface {iface.name}"\n' elif filename == cls.configs[1]: cfg += "echo hello" return cfg @classmethod def get_startup(cls, node: CoreNode) -> Tuple[str, ...]: """ Provides a way to dynamically generate the startup commands from the node a service will run. Defaults to the class definition and can be left out entirely if not needed. :param node: core node that the service is being ran on :return: tuple of startup commands to run """ return cls.startup @classmethod def get_validate(cls, node: CoreNode) -> Tuple[str, ...]: """ Provides a way to dynamically generate the validate commands from the node a service will run. Defaults to the class definition and can be left out entirely if not needed. :param node: core node that the service is being ran on :return: tuple of commands to validate service startup with """ return cls.validate
import asyncio from contextlib import suppress from sanic import Blueprint, response from sanic.exceptions import abort from sanic_openapi import doc from .. import helpers, settings, utils from ..models import Template blueprint = Blueprint("Templates", url_prefix="/templates") @blueprint.get("/") @doc.summary("List all templates") # TODO: https://github.com/jacebrowning/memegen/issues/580 # @doc.consumes( # doc.String(name="filter", description="Part of the name or example to match"), # location="query", # ) @doc.produces( # Can't use doc.List(Template) because the jsonify method is slightly different doc.List( { "id": str, "name": str, "styles": doc.List(str), "blank": str, "example": str, "source": str, "_self": str, } ), description="Successfully returned a list of all templates", content_type="application/json", ) async def index(request): query = request.args.get("filter", "").lower() data = await asyncio.to_thread(helpers.get_valid_templates, request, query) return response.json(data) @blueprint.get("/<id>") @doc.summary("View a specific template") @doc.produces( { "id": str, "name": str, "styles": doc.List(str), "blank": str, "example": str, "source": str, "_self": str, }, description="Successfully returned a specific templates", content_type="application/json", ) @doc.response(404, str, description="Template not found") async def detail(request, id): template = Template.objects.get_or_none(id) if template: return response.json(template.jsonify(request.app)) abort(404) @blueprint.post("/<id>") @doc.tag("Memes") @doc.operation("Memes.create_from_template") @doc.exclude(settings.DEPLOYED) @doc.summary(settings.PREFIX + "Create a meme from a template") @doc.consumes( doc.JsonBody({"text_lines": [str], "extension": str, "redirect": bool}), content_type="application/json", location="body", ) @doc.response( 201, {"url": str}, description="Successfully created a meme from a template" ) async def build(request, id): if request.form: payload = dict(request.form) with suppress(KeyError): payload["image_url"] = payload.pop("image_url")[0] with suppress(KeyError): payload["extension"] = payload.pop("extension")[0] with suppress(KeyError): payload["redirect"] = payload.pop("redirect")[0] else: payload = request.json or {} with suppress(KeyError): payload["text_lines"] = payload.pop("text_lines[]") template = Template.objects.get_or_create(id) url = template.build_custom_url( request, payload.get("text_lines") or [], extension=payload.get("extension"), ) url, _updated = await utils.meta.tokenize(request, url) if payload.get("redirect", False): return response.redirect(url) if template.valid: status = 201 else: status = 404 template.delete() return response.json({"url": url}, status=status) @blueprint.post("/custom") @doc.tag("Memes") @doc.exclude(settings.DEPLOYED) @doc.summary(settings.PREFIX + "Create a meme from any image") @doc.consumes( doc.JsonBody( {"image_url": str, "text_lines": [str], "extension": str, "redirect": bool} ), content_type="application/json", location="body", ) @doc.response( 201, {"url": str}, description="Successfully created a meme from a custom image" ) async def custom(request): if request.form: payload = dict(request.form) with suppress(KeyError): payload["image_url"] = payload.pop("image_url")[0] with suppress(KeyError): payload["extension"] = payload.pop("extension")[0] with suppress(KeyError): payload["redirect"] = payload.pop("redirect")[0] else: payload = request.json or {} with suppress(KeyError): payload["text_lines"] = payload.pop("text_lines[]") url = Template("_custom").build_custom_url( request, payload.get("text_lines") or [], background=payload.get("image_url", ""), extension=payload.get("extension", ""), ) url, _updated = await utils.meta.tokenize(request, url) if payload.get("redirect", False): return response.redirect(url) return response.json({"url": url}, status=201)
import sqlite3 from modules.create_connect import create_or_connect as db_link from modules.utils import dict_factory from modules import vaccine_lot from contextlib import closing from datetime import datetime class Person: def __init__(self, person_id, first_name, last_name, address, phone, email, city, birth_date): self.__id = person_id self.__first_name = first_name self.__last_name = last_name self.__address = address self.__phone = phone self.__email = email self.__city = city self.__birth_date = birth_date def set_id(self, person_id): self.__id = person_id def get_id(self): return self.__id def set_first_name(self, first_name): self.__first_name = first_name def get_first_name(self): return self.__first_name def set_last_name(self, last_name): self.__last_name = last_name def get_last_name(self): return self.__last_name def set_address(self, address): self.__address = address def get_address(self): return self.__address def set_phone(self, phone): self.__phone = phone def get_phone(self): return self.__phone def set_email(self, email): self.__email = email def get_email(self): return self.__email def set_city(self, city): self.__city = city def get_city(self): return self.__city def set_birth_date(self, birth_date): self.__birth_date = birth_date def get_birth_date(self): return self.__birth_date class Affiliate(Person): def __init__(self, person_id, first_name, last_name, address, phone, email, city, birth_date, affiliation_date): self.__affiliation_date = affiliation_date self.__vaccinated = False self.__disaffiliation_date = None super().__init__(person_id, first_name, last_name, address, phone, email, city, birth_date) def set_affiliation_date(self, affiliation_date): self.__affiliation_date = affiliation_date def get_affiliation_date(self): return self.__affiliation_date def set_vaccinated(self, vaccinated): self.__vaccinated = vaccinated def get_vaccinated(self): return self.__vaccinated def set_disaffiliation_date(self, disaffiliation_date): self.__disaffiliation_date = disaffiliation_date def get_disaffiliation_date(self): return self.__disaffiliation_date """ OVERVIEW: This module contains the means to create(add), search(find), manage affiliation information(affiliate/disaffiliate), and manage users' vaccination status(vaccinate). """ class AffiliateManager: """ Description: This function add affiliates to the [affiliate] table. It manages its feedback once created, being True if everything went ok in addition to a short confirmation reply, or False if something is not working as expected. Arguments: * affiliate_id: Affiliate's ID number. * first_name: Affiliate's fisrt and possible middle name. * last_name: Affiliate's last name. * address: Affiliate's address. * phone: Affiliate's phone number. * email: Affiliate's email address. * city: Affiliate's home city. * birth_date: Affiliate's birth date. * affiliation_date: Affiliate's affiliation date. * vaccinated=False: Affiliate's vaccination status, initialized as False (as required). * disaffiliation_date: Affiliate's disaffiliation date, initialized as none (as required). """ def add(self, affiliate: Affiliate): try: with db_link() as con: with closing(con.cursor()) as cur: cur.execute("INSERT INTO affiliate VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", ( affiliate.get_id(), affiliate.get_first_name(), affiliate.get_last_name(), affiliate.get_address(), affiliate.get_phone(), affiliate.get_email(), affiliate.get_city(), affiliate.get_birth_date(), affiliate.get_affiliation_date(), affiliate.get_vaccinated(), affiliate.get_disaffiliation_date() )) return True except sqlite3.IntegrityError: return False """ Description: The find function finds..well actually it searches for affiliates data and confirms if there is an affiliate associated with the search... Arguments: * affiliate_id: Affiliate's ID number. """ def find(self, affiliate_id): try: with db_link() as con: con.row_factory = dict_factory with closing(con.cursor()) as cur: cur.execute("SELECT * from affiliate WHERE affiliate_id = (?)", (affiliate_id, )) items = cur.fetchone() return items except sqlite3.IntegrityError: return None """ Description: It affiliates an user by its ID and affiliation date. Arguments: * affiliate_id: Affiliate's ID number. * date: This is the dissafiliation date, formatted as timestamp. """ def affiliate_(self, affiliate_id, date): try: with db_link() as con: with closing(con.cursor()) as cur: cur.execute("UPDATE affiliate SET affiliation_date = (?), disaffiliation_date = NULL WHERE affiliate_id = (?)",(date, affiliate_id,)) return True except sqlite3.IntegrityError: return False """ Description: It disaffiliates an user by its ID and disaffiliation date. Arguments: * affiliate_id: Affiliate's ID number. * date: This is the disaffiliation date, formatted as timestamp. """ def disaffiliate(self, affiliate_id, date): try: with db_link() as con: with closing(con.cursor()) as cur: cur.execute("UPDATE affiliate SET disaffiliation_date = (?), affiliation_date = NULL WHERE affiliate_id = (?)",(date, affiliate_id,)) return True except sqlite3.IntegrityError: return False """ Description: This function is in a quest for trialing every possible flop while trying to change affiliate's vaccination status. Arguments: * affiliate_id: Affiliate's ID number. Return: 0: User registrantion was successful. 1: There was an error user could not be vaccinated. 2: There is no vaccination plan related to user with given id. 3: User was already vaccinated. 4: There was an error user could not be vaccinated. """ def vaccinate(self, affiliate_id): try: vaccinated = self.find(affiliate_id) if vaccinated: vaccinated = vaccinated['vaccinated'] now = datetime.now() if not vaccinated: items = self.get_vaccination_schedule(affiliate_id) if items: check_vaccine_lot = vaccine_lot.VaccineLotManager() if check_vaccine_lot.use_vaccine(items['vaccine_lot_id']): self.update_status(affiliate_id, True) return 0 else: return 1 else: return 2 else: return 3 except sqlite3.IntegrityError: return 4 """ Description: Grabs affiliates vaccination schedule... with column names and return an object with the information. Arguments: * affiliate_id: Affiliate's ID number. """ def get_vaccination_schedule(self, affiliate_id): self.affiliate_id = affiliate_id try: with db_link() as con: con.row_factory = dict_factory with closing(con.cursor()) as cur: cur.execute("SELECT * from VaccinationSchedule WHERE affiliate_id = (?)",(affiliate_id,)) items = cur.fetchone() return items except sqlite3.IntegrityError: return None """ Description: It actually vaccinates the affiliate, its only purpose is to update the user's vaccination status once the other considerations have been tested. Arguments: * affiliate_id: Affiliate's ID number. * status: vaccination state, it gets a 1 when vaccinating affiliates. """ def update_status(self, affiliate_id, status): self.affiliate_id = affiliate_id self.vaccinated = status try: with db_link() as con: with closing(con.cursor()) as cur: cur.execute("UPDATE affiliate SET vaccinated = (?) WHERE affiliate_id = (?)",(self.vaccinated,self.affiliate_id,)) return True except sqlite3.IntegrityError: return False
# -*- coding: utf-8 -*- """ Exploring Box animation. Inquisitive pair of cubes of LEDs. """ import random from ..engine import Animation from ..sprites import Cube class SpiralPath: def __init__(self, margin, offset=0.0): steps_x = 8 - margin[0] steps_y = 8 - margin[1] self._max_z = 8 - margin[2] self._xy = [] self._xy += zip([0] * steps_y, range(0, steps_y)) self._xy += zip(range(0, steps_x), [steps_y] * steps_x) self._xy += zip([steps_x] * steps_y, range(steps_y - 1, -1, -1)) self._xy += zip(range(steps_x - 1, -1, -1), [0] * steps_x) self._t = int(len(self._xy) * offset) def next(self): once_around = len(self._xy) pz = self._t // once_around r = self._t % once_around px, py = self._xy[r] self._t += 1 self._t %= (self._max_z + 1) * once_around return (px, py, pz) class ExploringBox(Animation): ANIMATION = __name__ ARGS = { } def post_init(self): size1 = random.choice([2, 3, 4, 5]) self._cube1 = Cube(size=size1) self._spiral_path1 = SpiralPath( margin=(size1, size1, size1)) size2 = random.choice([2, 3, 4, 5]) self._cube2 = Cube(size=size2) self._spiral_path2 = SpiralPath( margin=(size2, size2, size2), offset=0.5) def render(self, frame): self._cube1.pos = self._spiral_path1.next() self._cube1.render(frame) self._cube2.pos = self._spiral_path2.next() self._cube2.render(frame)
''' Base class for DataBear sensors ''' from databear.errors import SensorConfigError, MeasureError import datetime import time class Sensor: interface_version = '1.2' hardware_settings = {} measurements = [] #List of measurement names units = {} #List of units associated with measurement names measurement_description = {} min_interval = 1 #Minimum interval that sensor can be polled uses_portlock = False # Set to true in all sensor classes that require a portlock (modbus sensors) def __init__(self,name,sn,address): ''' Create a new sensor Inputs - name (string): sensor name - sn (string): serial number - address (int): default 0 - interval (float): measurement interval in seconds ''' try: self.name = name self.sn = sn self.address = address except KeyError as ke: raise SensorConfigError('YAML missing required sensor setting') #Define characteristics of this sensor self.configid = None self.min_interval = 0 #Minimum interval that sensor can be polled #Initialize data structure self.data = {} for measure_name in self.measurements: self.data[measure_name] = [] self.connected = False def __str__(self): ''' Standardized way to print sensor: <Sensor Name> - <measure name>:(dt,val), ... ''' output = self.name + '\n' #Initialize #Get current values currentdata = self.getcurrentdata() #Create output string for m,v in currentdata.items(): if v: dtstr = v[0].strftime('%Y-%m-%d %H:%M:%S:%f') output = output + '{}: {}, {}\n'.format(m,dtstr,v[1]) else: output = output + '{}: No Data\n'.format(m) return output def connect(self,port): pass def measure(self): pass def getcurrentdata(self): ''' Return most recent data from sensor Output: {'name':(dt,val),'name2'...} Return None if no data for particular measurement ''' currentdata = {} for key,val in self.data.items(): try: currentdata[key]=val[-1] except IndexError: #Assign none if there is nothing in list currentdata[key]=None return currentdata def getdata(self,name,startdt,enddt): ''' Return a list of values such that startdt <= timestamps < enddt - Inputs: datetime objects ''' output = [] try: data = self.data[name] for val in data: if (val[0]>=startdt) and (val[0]<enddt): output.append(val) return output except KeyError as ke: print(name + " missing from " + data) raise MeasureError(name, [], "name missing from dictionary") def cleardata(self,name,startdt,enddt): ''' Clear data values for a particular measurement Loop through values and remove. Note: This is probably inefficient if the data structure is large. ''' savedata = [] data = self.data[name] for val in data: if (val[0]<startdt) or (val[0]>=enddt): savedata.append(val) self.data[name] = savedata class BusSensor(Sensor): ''' A base class for a sensor that can be part of a bus network architecture. ''' def __init__(self,name,sn,address): ''' Override base class to add port lock ''' super().__init__(name,sn,address) self.portlock = None def connect(self,port,portlock): ''' Set up portlock and connection ''' self.portlock = portlock def startMeasure(self): ''' Begin a concurrent measurement Return the wait time between start and read ''' return 0 def readMeasure(self,starttime): ''' Read measurement from sensor ''' pass def measure(self): ''' Coordinate start and read measure with port locks on the bus ''' dt = datetime.datetime.now() try: #The start measurement sequence self.portlock.acquire() s = self.startMeasure() self.portlock.release() #Wait s then read time.sleep(s) self.portlock.acquire() self.readMeasure(dt) self.portlock.release() except: #Unlock the port if any exception self.portlock.release() #Raise again so that the exception is logged raise
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Overrides the standard Polyencoder Agent to only return the attention weights. """ import torch import torch.nn import torch.nn.functional as F from typing import Optional, Tuple, Dict, Union from parlai.agents.transformer.modules import ( MultiHeadAttention, TransformerEncoder, TransformerEncoderLayer, ) from parlai.agents.transformer.polyencoder import ( PolyencoderAgent as BasePolyencoderAgent, PolyEncoderModule, PolyBasicAttention, ) from parlai.core.dict import DictionaryAgent from parlai.core.loader import register_agent from parlai.core.opt import Opt from parlai.core.params import ParlaiParser from parlai.core.torch_agent import Batch from parlai.utils.torch import PipelineHelper @register_agent('return_code_weights_agent') class PolyencoderReturnCodeWeightsAgent(BasePolyencoderAgent): """ A polyencoder agent where the model returns attention weights, rather than encoded context. """ @classmethod def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: BasePolyencoderAgent.add_cmdline_args(parser, partial_opt) group = parser.add_argument_group('Return Weights Poly Group') group.add_argument( '--top-k', type=int, default=100, help='How many tokens to output when outputting relevant tokens', ) return parser def build_model(self, states=None): """ Return built model. """ return PolyencoderReturnWeightsModule(self.opt, self.dict, self.NULL_IDX) def get_ctxt_rep( self, batch: Batch, get_weights: bool = False ) -> Tuple[torch.Tensor, torch.BoolTensor, torch.Tensor]: """ Encode context representation. Override to extract weights appropriately. """ ctxt_rep, ctxt_rep_mask, weights, _ = self.model( **self._model_context_input(batch) ) return ctxt_rep, ctxt_rep_mask, weights def score_candidates(self, batch, cand_vecs, cand_encs=None): """ Score candidates. Override to extract weights appropriately, if needed. """ original_dim = cand_vecs.dim() if original_dim == 2: cand_vecs = cand_vecs.unsqueeze(1) ctxt_rep, ret_weights, ctxt_rep_mask, cand_rep = self.model( **self._model_context_input(batch), cand_tokens=cand_vecs ) if original_dim == 2: num_cands = cand_rep.size(0) # will be bsz if using batch cands cand_rep = ( cand_rep.expand(num_cands, batch.text_vec.size(0), -1) .transpose(0, 1) .contiguous() ) ctxt_code_weights, ctxt_rep_mask = self.model( ctxt_rep=ctxt_rep, ctxt_rep_mask=ctxt_rep_mask, cand_rep=cand_rep ) character_weights = torch.bmm(ctxt_code_weights, ret_weights) return character_weights, ctxt_rep_mask def _v2t(self, vec): """ Convert token indices to string of tokens. """ new_vec = [] if hasattr(vec, 'cpu'): vec = vec.cpu() for i in vec: if i == self.END_IDX: break elif i != self.START_IDX: new_vec.append(i) return self.dict.vec2txt(new_vec) class TransformerReturnWeightsEncoderLayer(TransformerEncoderLayer): """ Overridden TransformerEncoderLayer that returns the self-attn weights. """ def forward( self, tensor: torch.Tensor, mask: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """ Forward pass. Override to return weights. """ residual = tensor if self.variant == 'prelayernorm': tensor = self.norm1(tensor) #################### # Begin Difference # #################### attended_tensor, _, raw_weights, *_ = self.attention(tensor, mask=mask) bsz, seq_len, _ = tensor.size() weights = ( raw_weights.view(bsz, self.opt['n_heads'], seq_len, seq_len).max(1).values ) #################### # \End Difference # #################### tensor = residual + self.dropout(attended_tensor) if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart': tensor = self.norm1(tensor) residual = tensor if self.variant == 'prelayernorm': tensor = self.norm2(tensor) tensor = residual + self.dropout(self.ffn(tensor)) if self.variant == 'aiayn' or self.variant == 'xlm' or self.variant == 'bart': tensor = self.norm2(tensor) tensor *= mask.unsqueeze(-1).type_as(tensor) return tensor, weights class TransformerReturnWeightsEncoder(TransformerEncoder): """ Override TransformerEncoder to return the self-attn weights. """ def forward( # type: ignore self, input: torch.LongTensor, positions: Optional[torch.LongTensor] = None, segments: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[ Tuple[torch.Tensor, Optional[torch.Tensor]], Tuple[torch.Tensor, torch.BoolTensor, Optional[torch.Tensor]], ]: """ Forward pass. Propagate kwargs """ # embed input tensor, mask = self.forward_embedding(input, positions, segments) if self.variant == 'xlm' or self.variant == 'bart': tensor = self.norm_embeddings(tensor) # --dropout on the embeddings tensor = self.dropout(tensor) tensor *= mask.unsqueeze(-1).type_as(tensor) # apply transformer layers tensor = self.forward_layers(tensor, mask, **kwargs) ################### # BEGIN DIFFERENCE# ################### tensor, weights = tensor ################### # \End DIFFERENCE# ################### if self.variant == 'prelayernorm': tensor = self.norm_embeddings(tensor) # reduce output tensor, out_mask = self.reduce_output(tensor, mask) if out_mask is not None: return tensor, out_mask, weights else: return tensor, weights def forward_layers( self, tensor: torch.Tensor, mask: torch.BoolTensor, **kwargs ) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]: """ Override to return attention weights. """ weights = None if getattr(self.layers, 'is_model_parallel', False): # factored out for readability. It is equivalent to the other # condition tensor, weights = self._apply_model_parallel(tensor, mask, **kwargs) else: for i in range(self.n_layers): tensor, weights = self.layers[i](tensor, mask, **kwargs) return tensor, weights def _apply_model_parallel( self, tensor, mask, **kwargs ) -> Tuple[torch.Tensor, torch.Tensor]: """ Override to return attention weights. """ chunks = PipelineHelper.split((tensor, mask)) work_items = PipelineHelper.schedule_work_items(self.layers, chunks) for chunk_idx, layer_nos, next_device in work_items: s_weights = None try: s_tensor, s_mask = chunks[chunk_idx] except ValueError: s_tensor, s_mask, s_weights = chunks[chunk_idx] for layer_no in layer_nos: s_tensor, s_weights = self.layers[layer_no](s_tensor, s_mask, **kwargs) chunks[chunk_idx] = PipelineHelper.chunk_to( (s_tensor, s_mask, s_weights), next_device ) joined = PipelineHelper.join(chunks) tensor_out, out_mask, weights = joined return tensor_out, weights class PolyencoderReturnWeightsModule(PolyEncoderModule): """ Constructs attentions and saves their weights! """ def __init__(self, opt: Opt, dict_: DictionaryAgent, null_idx: int): super().__init__(opt, dict_, null_idx) self.opt = opt assert self.type == 'codes' if isinstance(self.code_attention, PolyBasicAttention): self.code_attention.get_weights = True if self.attention_type != 'multihead': self.attention.get_weights = True def get_encoder(self, opt, dict_, null_idx, reduction_type, for_context: bool): """ Override to not build the cand encoder. """ if not for_context: wrapped_class = TransformerEncoder else: wrapped_class = TransformerReturnWeightsEncoder.with_components( layer=TransformerReturnWeightsEncoderLayer ) embeddings = self._get_embeddings( dict_=dict_, null_idx=null_idx, embedding_size=opt['embedding_size'] ) return wrapped_class( opt=opt, embedding=embeddings, vocabulary_size=len(dict_), padding_idx=null_idx, reduction_type=reduction_type, ) def attend( self, attention_layer: torch.nn.Module, queries: torch.Tensor, keys: Optional[torch.Tensor], values: torch.Tensor, mask: torch.BoolTensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Return attended tensor and weights. """ if keys is None: keys = values if isinstance(attention_layer, PolyBasicAttention): attended, weights = attention_layer( queries, keys, mask_ys=mask, values=values ) elif isinstance(attention_layer, MultiHeadAttention): attended, _, weights = attention_layer(queries, keys, values, mask) else: raise Exception('Unrecognized type of attention') return attended, weights def encode( self, cand_tokens: Optional[torch.Tensor], **ctxt_inputs: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.BoolTensor, Optional[torch.Tensor]]: """ Override Polyencoder.encode to *only* return the coded/self-attn attention weights. """ assert len(ctxt_inputs) > 0 assert 'ctxt_tokens' in ctxt_inputs assert len(ctxt_inputs['ctxt_tokens'].shape) == 2 assert self.type == 'codes' cand_embed = None if cand_tokens is not None: if len(cand_tokens.shape) != 3: cand_tokens = cand_tokens.unsqueeze(1) bsz = cand_tokens.size(0) num_cands = cand_tokens.size(1) cand_embed = self.encoder_cand(cand_tokens.view(bsz * num_cands, -1)) cand_embed = cand_embed.view(bsz, num_cands, -1) bsz = self._get_context_batch_size(**ctxt_inputs) # get context_representation. Now that depends on the cases. ctxt_out, ctxt_mask, ctxt_self_attn_weights = self.encoder_ctxt( **self._context_encoder_input(ctxt_inputs) ) ctxt_self_attn_weights = F.softmax(ctxt_self_attn_weights, dim=-1) ctxt_rep, ctxt_code_weights = self.attend( self.code_attention, queries=self.codes.repeat(bsz, 1, 1), keys=ctxt_out, values=ctxt_out, mask=ctxt_mask, ) return ctxt_rep, ctxt_code_weights, ctxt_mask, cand_embed def score( self, ctxt_rep: torch.Tensor, ctxt_rep_mask: torch.Tensor, cand_embed: torch.Tensor, ): """ Override score to return the attention weights **RATHER THAN THE SCORES** """ ones_mask = ctxt_rep.new_ones( ctxt_rep.size(0), self.n_codes ).byte() # type: ignore ctxt_final_rep, ctxt_code_weights = self.attend( self.attention, cand_embed, ctxt_rep, ctxt_rep, ones_mask # type: ignore ) return ctxt_code_weights, ctxt_rep_mask
""" 获取可用于训练网络的训练数据集 需要四十分钟左右,产生的训练数据大小3G左右 """ import os import sys sys.path.append(os.path.split(sys.path[0])[0]) import shutil from time import time import numpy as np from tqdm import tqdm import SimpleITK as sitk import scipy.ndimage as ndimage #Path to store processed data training_set_path = '/home/ubuntu/Research/dataset/Pancreas-CT_processed_down_scale0.5_expand20' #Path of original data train_ct_path = '/home/ubuntu/NIH-Pancreas-CT/data/' train_seg_path = '/home/ubuntu/NIH-Pancreas-CT/TCIA_pancreas_labels-02-05-2017' #Maximum value upper = 240 lower = -100 #Downsampling scale for x and y down_scale = 0.5 slice_thickness = 1 expand_slice = 20 if os.path.exists(training_set_path): shutil.rmtree(training_set_path) new_ct_path = os.path.join(training_set_path, 'ct') new_seg_dir = os.path.join(training_set_path, 'seg') os.mkdir(training_set_path) os.mkdir(new_ct_path) os.mkdir(new_seg_dir) start_slices = [43, 151, 167] end_slices = [227, 368, 405] FULL_SIZE=True if not FULL_SIZE: for i in range(3): start_slices[i] = start_slices[i] - expand_slice end_slices[i] = end_slices[i] + expand_slice # mean_z = [] # mean_y = [] # mean_x = [] start = time() for file in tqdm(os.listdir(train_ct_path)): # 将CT和金标准入读内存 print(os.path.join(train_ct_path, file)) ct = sitk.ReadImage(os.path.join(train_ct_path, file), sitk.sitkInt16) ct_array = sitk.GetArrayFromImage(ct) # print(ct.GetSpacing()) # print(ct_array.shape) # print(ct.GetDirection()) # print(ct.GetOrigin()) seg = sitk.ReadImage(os.path.join(train_seg_path, file.replace('PANCREAS_', 'label')), sitk.sitkUInt8) seg_array = sitk.GetArrayFromImage(seg) # print(seg.GetSpacing()) # print(seg.GetDirection()) # print(seg.GetOrigin()) # # 将金标准中肝脏和肝肿瘤的标签融合为一个 # seg_array[seg_array > 0] = 1 if ct.GetSpacing()[-1] != slice_thickness: ct_array = ndimage.zoom(ct_array, (ct.GetSpacing()[-1] / slice_thickness, 1, 1), order=3) # print(ct_array.shape) seg_array = ndimage.zoom(seg_array, (ct.GetSpacing()[-1] / slice_thickness, 1, 1), order=0) # print(seg_array.shape) if not FULL_SIZE: for i in range(3): start_slices[i] = max(0, start_slices[i]) end_slices[i] = min(seg_array.shape[i] - 1, end_slices[i]) ct_array = ct_array[start_slices[0]:end_slices[0] + 1, start_slices[1]:end_slices[1] + 1, start_slices[2]:end_slices[2] + 1] #The dataset mismatch between label and data ct_array = np.flip(ct_array, 1) seg_array = seg_array[start_slices[0]:end_slices[0] + 1, start_slices[1]:end_slices[1] + 1, start_slices[2]:end_slices[2] + 1] # 对CT数据在横断面上进行降采样,并进行重采样,将所有数据的z轴的spacing调整到1mm if down_scale != 1: ct_array = ndimage.zoom(ct_array, (down_scale, down_scale, down_scale), order=3) # print(ct_array.shape) seg_array = ndimage.zoom(seg_array, (down_scale, down_scale, down_scale), order=0) # print(seg_array.shape) # 将灰度值在阈值之外的截断掉 ct_array[ct_array > upper] = upper ct_array[ct_array < lower] = lower # if ct_array.shape[0] < min_z: # min_z = ct_array.shape[0] # elif ct_array.shape[0] > max_z: # max_z = ct_array.shape[0] # 找到肝脏区域开始和结束的slice,并各向外扩张slice # z = np.any(seg_array, axis=(1, 2)) # x = np.any(seg_array, axis=(0,1)) # y = np.any(seg_array, axis=(0, 2)) # mean_z.append(np.where(z)[0][[-1]] - np.where(z)[0][[0]]) # mean_x.append(np.where(x)[0][[-1]] - np.where(x)[0][[0]]) # mean_y.append(np.where(y)[0][[-1]] - np.where(y)[0][[0]]) # mean_z.append(np.where(z)[0][[-1]]) # mean_x.append(np.where(x)[0][[-1]]) # mean_y.append(np.where(y)[0][[-1]]) # mean_z.append(np.where(z)[0][[0]]) # mean_x.append(np.where(x)[0][[0]]) # mean_y.append(np.where(y)[0][[0]]) # print(np.where(z)[0][[0]] - np.where(z)[0][[-1]]) # print(np.where(x)[0][[0]] - np.where(x)[0][[-1]]) # print(np.where(y)[0][[0]] - np.where(y)[0][[-1]]) # start_slice, end_slice = np.where(z)[0][[0, -1]] # 两个方向上各扩张slice # start_slice = max(0, start_slice - expand_slice) # end_slice = min(seg_array.shape[0] - 1, end_slice + expand_slice) # # # 如果这时候剩下的slice数量不足size,直接放弃该数据,这样的数据很少,所以不用担心 # # if end_slice - start_slice + 1 < para.size: # # print('!!!!!!!!!!!!!!!!') # # print(file, 'have too little slice', ct_array.shape[0]) # # print('!!!!!!!!!!!!!!!!') # # continue print(ct_array.shape) print(seg_array.shape) # 最终将数据保存为nii new_ct = sitk.GetImageFromArray(ct_array) new_ct.SetDirection(ct.GetDirection()) new_ct.SetOrigin(ct.GetOrigin()) new_ct.SetSpacing((ct.GetSpacing()[0] * int(1 / down_scale), ct.GetSpacing()[1] * int(1 / down_scale), slice_thickness / down_scale)) new_seg = sitk.GetImageFromArray(seg_array) new_seg.SetDirection(ct.GetDirection()) new_seg.SetOrigin(ct.GetOrigin()) new_seg.SetSpacing((ct.GetSpacing()[0] * int(1 / down_scale), ct.GetSpacing()[1] * int(1 / down_scale), slice_thickness / down_scale)) sitk.WriteImage(new_ct, os.path.join(new_ct_path, file)) sitk.WriteImage(new_seg, os.path.join(new_seg_dir, file.replace('PANCREAS_', 'label'))) # print(min_z, max_z) # print(np.max(mean_z), np.min(mean_z)) # print(np.max(mean_y), np.min(mean_y)) # print(np.max(mean_x), np.min(mean_x))
# coding=utf-8 # 配置库 import torch from torch import nn from torch.autograd import Variable from torchvision import datasets # load model # 保存模型 # torch.save(model.state_dict(), './cnn.pth') # 定义卷积神经网络模型 class Cnn(nn.Module): def __init__(self, in_dim, n_class): # 28x28x1 super(Cnn, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_dim, 6, 3, stride=1, padding=1), # 28 x28 nn.ReLU(True), nn.MaxPool2d(2, 2), # 14 x 14 nn.Conv2d(6, 16, 5, stride=1, padding=0), # 10 * 10*16 nn.ReLU(True), nn.MaxPool2d(2, 2)) # 5x5x16 self.fc = nn.Sequential( nn.Linear(400, 120), # 400 = 5 * 5 * 16 nn.Linear(120, 84), nn.Linear(84, n_class)) def forward(self, x): out = self.conv(x) out = out.view(out.size(0), 400) # 400 = 5 * 5 * 16, out = self.fc(out) return out # 打印模型 print(Cnn) model = Cnn(1, 10) # 图片大小是28x28, 10 # cnn = torch.load('./cnn.pth')['state_dict'] model.load_state_dict(torch.load('./cnn.pth')) # 识别 print(model) test_data = datasets.MNIST(root='./data', train=False, download=True) test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[ :20] / 255.0 # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1) test_y = test_data.test_labels[:20] print(test_x.size()) test_output = model(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, 'predict result') print(test_y[:10].numpy(), 'real result')
from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation from keras.layers import Bidirectional, GlobalMaxPool1D from keras.models import Model from keras import initializers, regularizers, constraints, optimizers, layers from keras.models import load_model import pickle import cleanup model = load_model('embedding_LSTM.h5') tokenizer = pickle.load(open('tokenizer.pickle', 'rb')) index_to_cat = {0: 'math.MP', 1: 'math.CO', 2: 'math.AG', 3: 'math.PR', 4: 'math.AP', 5: 'math.DG', 6: 'math.IT', 7: 'math.NT', 8: 'math.DS', 9: 'math.OC', 10: 'math.FA', 11: 'math.RT', 12: 'math.NA', 13: 'math.GT', 14: 'math.QA', 15: 'math.CA', 16: 'math.GR', 17: 'math.ST', 18: 'math.RA', 19: 'math.CV', 20: 'math.AT', 21: 'math.OA', 22: 'math.AC', 23: 'math.LO', 24: 'math.MG', 25: 'math.SG', 26: 'math.SP', 27: 'math.CT', 28: 'math.KT', 29: 'math.GN', 30: 'math.GM', 31: 'math.HO'} cat_to_index = {'math.MP': 0, 'math.CO': 1, 'math.AG': 2, 'math.PR': 3, 'math.AP': 4, 'math.DG': 5, 'math.IT': 6, 'math.NT': 7, 'math.DS': 8, 'math.OC': 9, 'math.FA': 10, 'math.RT': 11, 'math.NA': 12, 'math.GT': 13, 'math.QA': 14, 'math.CA': 15, 'math.GR': 16, 'math.ST': 17, 'math.RA': 18, 'math.CV': 19, 'math.AT': 20, 'math.OA': 21, 'math.AC': 22, 'math.LO': 23, 'math.MG': 24, 'math.SG': 25, 'math.SP': 26, 'math.CT': 27, 'math.KT': 28, 'math.GN': 29, 'math.GM': 30, 'math.HO': 31} def abstract_category_predict(text, model=model, tokenizer=tokenizer): clean = cleanup.cleanup(stem_on=True) X = [clean.transform(text)] X_tt = tokenizer.texts_to_sequences(X) maxlen = 200 X = pad_sequences(X_tt, maxlen=maxlen) y_pred = model.predict(X) y_pred2 = (y_pred > 0.5).astype(int) y_pred2 = y_pred2[0] Ans = [] for i in range(len(index_to_cat)): if y_pred2[i] == 1: Ans += [index_to_cat[i]] return Ans ####example #print(predict("Using schubert variety to construct degenration of MV cycles and it results in represnetation of simisimple lie algebra "))
import optparse import os import sys import tempfile import src.model.network as network from src.model.mp2vec_s import MP2Vec __author__ = 'sheep' def HIN2vec(graph_fname, output_datafold, options): '''\ %prog [options] <graph_fname> <node_vec_fname> <path_vec_fname> graph_fname: the graph file It can be a file contained edges per line (e.g., res/karate_club_edges.txt) or a pickled graph file. node_vec_fname: the output file for nodes' vectors path_vec_fname: the output file for meta-paths' vectors ''' node_vec_fname = output_datafold + "node.txt" path_vec_fname = output_datafold + "metapath.txt" options.allow_circle = False options.correct_neg = False print('Load a HIN...') g = load_a_HIN(graph_fname) print('Generate random walks...') _, tmp_walk_fname = tempfile.mkstemp() # print(tmp_walk_fname) with open(tmp_walk_fname, 'w') as f: for walk in g.random_walks(options.num_walks, options.walk_length): f.write('%s\n' % ' '.join(map(str, walk))) _, tmp_node_vec_fname = tempfile.mkstemp() _, tmp_path_vec_fname = tempfile.mkstemp() model = MP2Vec(size=options.dim, window=options.window_size, neg=options.neg_num, num_processes=options.num_workers, # iterations=i, alpha=options.alpha, same_w=True, normed=False, is_no_circle_path=False, ) neighbors = None if options.correct_neg: for id_ in g.graph: g._get_k_hop_neighborhood(id_, options.window_size) neighbors = g.k_hop_neighbors[options.window_size] model.train(g, tmp_walk_fname, g.class_nodes, k_hop_neighbors=neighbors, ) model.dump_to_file(tmp_node_vec_fname, type_='node') model.dump_to_file(tmp_path_vec_fname, type_='path') print('Dump vectors...') output_node2vec(g, tmp_node_vec_fname, node_vec_fname) output_path2vec(g, tmp_path_vec_fname, path_vec_fname) return 0 def output_node2vec(g, tmp_node_vec_fname, node_vec_fname): with open(tmp_node_vec_fname) as f: with open(node_vec_fname, 'w') as fo: id2node = dict([(v, k) for k, v in g.node2id.items()]) first = True for line in f: if first: first = False fo.write(line) continue id_, vectors = line.strip().split(' ', 1) line = '%s %s\n' % (id2node[int(id_)], vectors) fo.write(line) #FIXME: to support more than 10 different meta-paths def output_path2vec(g, tmp_path_vec_fname, path_vec_fname): with open(tmp_path_vec_fname) as f: with open(path_vec_fname, 'w') as fo: id2edge_class = dict([(v, k) for k, v in g.edge_class2id.items()]) print(id2edge_class) first = True for line in f: if first: first = False fo.write(line) continue ids, vectors = line.strip().split(' ', 1) ids = map(int, ids.split(',')) edge = ','.join([id2edge_class[id_] for id_ in ids]) line = '%s %s\n' % (edge, vectors) fo.write(line) def load_a_HIN(fname): g = network.HIN() relation_dict = fname.relation_dict for relation in relation_dict: src_class = relation[0] dst_class = relation[2] edge_class = relation for src in relation_dict[relation]: for dst in relation_dict[relation][src]: g.add_edge(src_class+src, src_class, dst_class+dst, dst_class, edge_class) #g.print_statistics() return g
from django.contrib.auth.forms import UserCreationForm, AuthenticationForm from django.contrib.auth import get_user_model from django import forms
from ltypes import i64 def fib(n: i64) -> i64: if n < 2: return n else: return fib(n - 1) + fib(n - 2) def main0(): ans: i64 ans = fib(15) assert ans == 610 def main(): # test of issue-529 ans: i64 ans = fib(10) assert ans == 55 main0() main()
''' @authors: Adrian Oeftiger @date: 17/04/2015 ''' import numpy as np from scipy.constants import c, epsilon_0, pi from scipy.interpolate import splrep, splev from functools import wraps from PyHEADTAIL.general.element import Element from PyHEADTAIL.general import pmath as pm from PyHEADTAIL.particles.slicing import clean_slices class LongSpaceCharge(Element): '''Contains longitudinal space charge (SC) via Chao's expression: dp' = - e^2 * g * lambda'(z) / (2 * pi * eps_0 * gamma^2 * p_0) cf. the original HEADTAIL version. ''' '''Geometry factor for long bunched bunches. Involved approximations: - transversely round beam - finite wall resistivity (perfectly conducting boundary) - geometry factor averaged along z (considering equivalent linear longitudinal electric field) use directSC = 0.67 for further assumptions: - ellipsoidally bunched beam of uniform density - bunch length > 3/2 pipe radius - transversely averaged contribution use directSC = 0.5 for further assumptions: - continuous beam - low frequency disturbance (displacement currents neglected) - emittance dominated beam - transversely averaged contribution use directSC = 1.0 for further assumptions: - same as directSC = 0.5 only transversely maximum contribution directly on z-axis cf. Martin Reiser's discussion in 'Theory and Design of Charged Particle Beams'. ''' directSC = 0.67 def __init__(self, slicer, pipe_radius, length, n_slice_sigma=3, *args, **kwargs): '''Arguments: - pipe_radius is the the radius of the vacuum pipe in metres. - length is an s interval (in metres) along which the SC force is integrated. Usually you want to set this to circumference in conjunction with the LongitudinalOneTurnMap RFSystems. - n_slice_sigma indicates the number of slices taken as a sigma for the Gaussian kernel that smoothens the line charge density derivative (see SliceSet.lambda_prime_bins for more info). ''' self.slicer = slicer self.pipe_radius = pipe_radius self.length = length self.n_slice_sigma = n_slice_sigma self._gfactor = self._gfactor0 def track(self, beam): '''Add the longitudinal space charge contribution to the beam's dp kick. ''' slices = beam.get_slices(self.slicer) lambda_prime = slices.lambda_prime_bins(sigma=self.n_slice_sigma) lambda_prime_z = lambda_prime / slices.slice_widths[0] slice_kicks = (self._prefactor(slices) * self._gfactor(beam) * lambda_prime_z) * (self.length / (beam.beta * c)) kicks = slices.convert_to_particles(slice_kicks) beam.dp -= kicks @staticmethod def _prefactor(beam): return (beam.charge / (4.*np.pi*epsilon_0 * beam.gamma**2 * beam.p0)) def _gfactor0(self, beam): '''Geometry factor for Gaussian beam on-axis in symmetric vacuum pipe. ''' # transverse beam size: # (sigx+sigz)/2 * sqrt(2) <<< formula is for uniform distribution, # corresponding Gaussian sigmae are sqrt(2) larger r_beam = (beam.sigma_x() + beam.sigma_y()) / np.sqrt(8.) return self.directSC + 2. * pm.log(self.pipe_radius / r_beam) def make_force(self, beam): '''Return the electric force field due to space charge of the given SliceSet instance as a function of z in units of Coul*Volt/metre. ''' sliceset = beam.get_slices(self.slicer) gfac_spline = splrep( sliceset.z_centers, pm.ones(sliceset.n_slices) * self._gfactor(beam), s=0) def force(z): gfac = splev(z, gfac_spline, ext=1) return (self._prefactor(beam) * gfac * -sliceset.lambda_prime_z(z) * beam.p0) return force def make_potential(self, beam): '''Return the electric potential energy due to space charge of the given SliceSet instance as a function of z in units of Coul*Volt. ''' sliceset = beam.get_slices(self.slicer) gfac_spline = splrep( sliceset.z_centers, pm.ones(sliceset.n_slices) * self._gfactor(beam), s=0) def potential(z): gfac = splev(z, gfac_spline, ext=1) return (self._prefactor(beam) * gfac * sliceset.lambda_z(z) * beam.p0) return potential class LongSpaceChargeRectPipe(LongSpaceCharge): '''Longitudinal space charge with a gfactor computed for a rectangular beam pipe. See K.Y. Ng, Part. Accel. 16, 63 (1984), L. Wang and Y. Li, Phys. Rev. ST Accel Beams 18, 024201 (2015) ''' def __init__(self, slicer, pipe_width, pipe_height, length, n_slice_sigma=3, *args, **kwargs): '''Assumes a rectangular beam pipe. Arguments: - pipe_width is the the width of the vacuum pipe in metres. - pipe_height is the the height of the vacuum pipe in metres. - length is an s interval (in metres) along which the SC force is integrated. Usually you want to set this to circumference in conjunction with the LongitudinalOneTurnMap RFSystems. - n_slice_sigma indicates the number of slices taken as a sigma for the Gaussian kernel that smoothens the line charge density derivative (see SliceSet.lambda_prime_bins for more info). ''' pipe_radius = 2 * pipe_height / np.pi * np.tanh( np.pi * pipe_width / (2 * pipe_height)) super().__init__(slicer, abs(pipe_radius), length, n_slice_sigma, *args, **kwargs) class TransverseGaussianSpaceCharge(Element): '''Contains transverse space charge for a Gaussian configuration. Applies the Bassetti-Erskine electric field expression slice-wise for each particle centred around the slice centre. ''' '''Threshold for relative transverse beam size difference below which the beam is assumed to be round: abs(1 - sig_y / sig_x) < ratio_threshold ==> round beam ''' ratio_threshold = 1e-3 '''Threshold for absolute transverse beam size difference below which the beam is assumed to be round: abs(sig_y - sig_x) < absolute_threshold ==> round beam ''' absolute_threshold = 1e-10 def __init__(self, slicer, length, sig_check=True, other_efieldn=None): '''Arguments: - slicer determines the slicing parameters for the slices over which the Bassetti-Erskine electric field expression is applied, given a slicer with n_slices == 1, you can apply a longitudinally averaged kick over the whole beam. - length is an s interval along which the space charge force is integrated. - sig_check exchanges x and y quantities for sigma_x < sigma_y and applies the round beam formula for sigma_x == sigma_y . sig_check defaults to True and should not usually be False. - other_efieldn can be used to use a different implementation of the charge-normalised electric field expression (there are four different implementations to choose from in this class: _efieldn_mit, _efield_mitmod, _efieldn_koelbig, _efieldn_pyecloud; in order of computational time consumption) ''' self.slicer = slicer self.length = length if other_efieldn is None: self._efieldn = self._efieldn_mit else: self._efieldn = other_efieldn if sig_check: self._efieldn = self.add_sigma_check(self._efieldn) def track(self, beam): '''Add the transverse space charge contribution to the beam's transverse kicks. ''' slices = beam.get_slices( self.slicer, statistics=["mean_x", "mean_y", "sigma_x", "sigma_y"]) prefactor = (beam.charge * self.length / (beam.p0 * beam.betagamma * beam.gamma * c)) # Nlambda_i is the line density [Coul/m] for the current slice for s_i, (Nlambda_i, mean_x, mean_y, sig_x, sig_y) in enumerate(zip( slices.lambda_bins(smoothen=False)/slices.slice_widths, slices.mean_x, slices.mean_y, slices.sigma_x, slices.sigma_y)): p_id = slices.particle_indices_of_slice(s_i) if len(p_id) == 0: continue en_x, en_y = self.get_efieldn( pm.take(beam.x, p_id), pm.take(beam.y, p_id), mean_x, mean_y, sig_x, sig_y) kicks_x = (en_x * Nlambda_i) * prefactor kicks_y = (en_y * Nlambda_i) * prefactor kicked_xp = pm.take(beam.xp, p_id) + kicks_x kicked_yp = pm.take(beam.yp, p_id) + kicks_y pm.put(beam.xp, p_id, kicked_xp) pm.put(beam.yp, p_id, kicked_yp) def get_efieldn(self, xr, yr, mean_x, mean_y, sig_x, sig_y): '''The charge-normalised electric field components of a two-dimensional Gaussian charge distribution according to M. Bassetti and G. A. Erskine in CERN-ISR-TH/80-06. Return (E_x / Q, E_y / Q). ''' x = xr - mean_x y = yr - mean_y # absolute values for convergence reasons of erfc en_x, en_y = self._efieldn(pm.abs(x), pm.abs(y), sig_x, sig_y) en_x = pm.abs(en_x) * pm.sign(x) en_y = pm.abs(en_y) * pm.sign(y) return en_x, en_y @staticmethod def _sig_sqrt(sig_x, sig_y): return pm.sqrt(2 * (sig_x**2 - sig_y**2)) @staticmethod def _efieldn_mit(x, y, sig_x, sig_y): '''The charge-normalised electric field components of a two-dimensional Gaussian charge distribution according to M. Bassetti and G. A. Erskine in CERN-ISR-TH/80-06. Return (E_x / Q, E_y / Q). Assumes sig_x > sig_y and mean_x == 0 as well as mean_y == 0. For convergence reasons of the erfc, use only x > 0 and y > 0. Uses FADDEEVA C++ implementation from MIT (via SciPy >= 0.13.0). ''' # timing was ~0.522 ms for: # x = np.arange(-1e-5, 1e-5, 1e-8) # y = np.empty(len(x)) # sig_x = 1.2e-6 # sig_y = 1e-6 sig_sqrt = TransverseGaussianSpaceCharge._sig_sqrt(sig_x, sig_y) w1re, w1im = pm.wofz(x / sig_sqrt, y / sig_sqrt) ex = pm.exp(-x*x / (2 * sig_x*sig_x) + -y*y / (2 * sig_y*sig_y)) w2re, w2im = pm.wofz(x * sig_y/(sig_x*sig_sqrt), y * sig_x/(sig_y*sig_sqrt)) denom = 2. * epsilon_0 * np.sqrt(pi) * sig_sqrt return (w1im - ex * w2im) / denom, (w1re - ex * w2re) / denom @staticmethod def _efieldn_mitmod(x, y, sig_x, sig_y): '''The charge-normalised electric field components of a two-dimensional Gaussian charge distribution according to M. Bassetti and G. A. Erskine in CERN-ISR-TH/80-06. Return (E_x / Q, E_y / Q). Assumes sig_x > sig_y and mean_x == 0 as well as mean_y == 0. For convergence reasons of the erfc, use only x > 0 and y > 0. Uses erfc C++ implementation from MIT (via SciPy >= 0.13.0) and calculates wofz (FADDEEVA function) explicitely. ''' # timing was ~1.01ms for same situation as _efieldn_mit sig_sqrt = TransverseGaussianSpaceCharge._sig_sqrt(sig_x, sig_y) w1 = pm._errfadd((x + 1j * y) / sig_sqrt) ex = pm.exp(-x*x / (2 * sig_x*sig_x) + -y*y / (2 * sig_y*sig_y)) w2 = pm._errfadd(x * sig_y/(sig_x*sig_sqrt) + y * sig_x/(sig_y*sig_sqrt) * 1j) val = (w1 - ex * w2) / (2 * epsilon_0 * np.sqrt(pi) * sig_sqrt) return val.imag, val.real @staticmethod def _efieldn_koelbig(x, y, sig_x, sig_y): '''The charge-normalised electric field components of a two-dimensional Gaussian charge distribution according to M. Bassetti and G. A. Erskine in CERN-ISR-TH/80-06. Return (E_x / Q, E_y / Q). Assumes sig_x > sig_y and mean_x == 0 as well as mean_y == 0. For convergence reasons of the erfc, use only x > 0 and y > 0. Uses CERN library from K. Koelbig. ''' # timing was ~3.35ms for same situation as _efieldn_mit if not pm._errf: raise ImportError('errfff cannot be imported for using ' + 'TransverseSpaceCharge._efield_koelbig .' + 'Did you call make (or f2py general/errfff.f)?') sig_sqrt = TransverseGaussianSpaceCharge._sig_sqrt(sig_x, sig_y) w1re, w1im = pm._errf(x/sig_sqrt, y/sig_sqrt) ex = pm.exp(-x*x / (2 * sig_x*sig_x) + -y*y / (2 * sig_y*sig_y)) w2re, w2im = pm._errf(x * sig_y/(sig_x*sig_sqrt), y * sig_x/(sig_y*sig_sqrt)) pref = 1. / (2 * epsilon_0 * np.sqrt(pi) * sig_sqrt) return pref * (w1im - ex * w2im), pref * (w1re - ex * w2re) @staticmethod def wfun(z): '''FADDEEVA function as implemented in PyECLOUD, vectorised.''' x=z.real y=z.imag if not pm._errf: raise ImportError('errfff cannot be imported for using ' + 'TransverseSpaceCharge._efield_pyecloud .' + 'Did you f2py errfff.f?') wx,wy=pm._errf(x,y) # in PyECLOUD only pm._errf_f (not vectorised) return wx+1j*wy @staticmethod def _efieldn_pyecloud(xin, yin, sigmax, sigmay): '''The charge-normalised electric field components of a two-dimensional Gaussian charge distribution according to M. Bassetti and G. A. Erskine in CERN-ISR-TH/80-06. Return (E_x / Q, E_y / Q). Effective copy of PyECLOUD.BassErsk.BassErsk implementation. ''' # timing was ~3.52ms for same situation as _efieldn_mit wfun = TransverseGaussianSpaceCharge.wfun x=abs(xin); y=abs(yin); eps0=8.854187817620e-12; if sigmax>sigmay: S=np.sqrt(2*(sigmax*sigmax-sigmay*sigmay)); factBE=1/(2*eps0*np.sqrt(pi)*S); etaBE=sigmay/sigmax*x+1j*sigmax/sigmay*y; zetaBE=x+1j*y; val=factBE*(wfun(zetaBE/S)- np.exp( -x*x/(2*sigmax*sigmax)-y*y/(2*sigmay*sigmay))* wfun(etaBE/S) ); Ex=abs(val.imag)*np.sign(xin); Ey=abs(val.real)*np.sign(yin); else: S=np.sqrt(2*(sigmay*sigmay-sigmax*sigmax)); factBE=1/(2*eps0*np.sqrt(pi)*S); etaBE=sigmax/sigmay*y+1j*sigmay/sigmax*x; yetaBE=y+1j*x; val=factBE*(wfun(yetaBE/S)- np.exp( -y*y/(2*sigmay*sigmay)-x*x/(2*sigmax*sigmax))* wfun(etaBE/S) ); Ey=abs(val.imag)*np.sign(yin); Ex=abs(val.real)*np.sign(xin); return Ex, Ey @staticmethod def _efieldn_round(x, y, sig_r): '''Return (E_x / Q, E_y / Q) for a round distribution with sigma_x == sigma_y == sig_r . ''' r2 = x*x + y*y amplitude = (1 - pm.exp(-r2/(2*sig_r*sig_r))) / (2*pi*epsilon_0 * r2) return x * amplitude, y * amplitude @staticmethod def add_sigma_check(efieldn): '''Wrapper for a normalised electric field function. Adds the following actions before calculating the field: - exchange x and y quantities if sigma_x < sigma_y - apply round beam field formula when sigma_x close to sigma_y ''' efieldn_round = TransverseGaussianSpaceCharge._efieldn_round @wraps(efieldn) def efieldn_checked(x, y, sig_x, sig_y, *args, **kwargs): tol_kwargs = dict( rtol=TransverseGaussianSpaceCharge.ratio_threshold, atol=TransverseGaussianSpaceCharge.absolute_threshold ) if pm.allclose(sig_y, sig_x, **tol_kwargs): if pm.almost_zero(sig_y, **tol_kwargs): en_x = en_y = pm.zeros(x.shape, dtype=x.dtype) else: en_x, en_y = efieldn_round(x, y, sig_x, *args, **kwargs) elif pm.all(sig_x < sig_y): en_y, en_x = efieldn(y, x, sig_y, sig_x, *args, **kwargs) else: en_x, en_y = efieldn(x, y, sig_x, sig_y, *args, **kwargs) return en_x, en_y return efieldn_checked
from torch import nn import torch class GRU4REC(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers=1, final_act='tanh', dropout_hidden=.5, dropout_input=0, batch_size=50, embedding_dim=-1, use_cuda=False): super(GRU4REC, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.dropout_hidden = dropout_hidden self.dropout_input = dropout_input self.embedding_dim = embedding_dim self.batch_size = batch_size self.use_cuda = use_cuda self.device = torch.device('cuda' if use_cuda else 'cpu') self.onehot_buffer = self.init_emb() self.h2o = nn.Linear(hidden_size, output_size) self.create_final_activation(final_act) if self.embedding_dim != -1: self.look_up = nn.Embedding(input_size, self.embedding_dim) self.gru = nn.GRU(self.embedding_dim, self.hidden_size, self.num_layers, dropout=self.dropout_hidden) else: self.gru = nn.GRU(self.input_size, self.hidden_size, self.num_layers, dropout=self.dropout_hidden) self = self.to(self.device) def create_final_activation(self, final_act): if final_act == 'tanh': self.final_activation = nn.Tanh() elif final_act == 'relu': self.final_activation = nn.ReLU() elif final_act == 'softmax': self.final_activation = nn.Softmax() elif final_act == 'softmax_logit': self.final_activation = nn.LogSoftmax() elif final_act.startswith('elu-'): self.final_activation = nn.ELU(alpha=float(final_act.split('-')[1])) elif final_act.startswith('leaky-'): self.final_activation = nn.LeakyReLU(negative_slope=float(final_act.split('-')[1])) def forward(self, input, hidden): ''' Args: input (B,): a batch of item indices from a session-parallel mini-batch. target (B,): torch.LongTensor of next item indices from a session-parallel mini-batch. Returns: logit (B,C): Variable that stores the logits for the next items in the session-parallel mini-batch hidden: GRU hidden state ''' if self.embedding_dim == -1: embedded = self.onehot_encode(input) if self.training and self.dropout_input > 0: embedded = self.embedding_dropout(embedded) embedded = embedded.unsqueeze(0) else: embedded = input.unsqueeze(0) embedded = self.look_up(embedded) output, hidden = self.gru(embedded, hidden) #(num_layer, B, H) output = output.view(-1, output.size(-1)) #(B,H) logit = self.final_activation(self.h2o(output)) return logit, hidden def init_emb(self): ''' Initialize the one_hot embedding buffer, which will be used for producing the one-hot embeddings efficiently ''' onehot_buffer = torch.FloatTensor(self.batch_size, self.output_size) onehot_buffer = onehot_buffer.to(self.device) return onehot_buffer def onehot_encode(self, input): """ Returns a one-hot vector corresponding to the input Args: input (B,): torch.LongTensor of item indices buffer (B,output_size): buffer that stores the one-hot vector Returns: one_hot (B,C): torch.FloatTensor of one-hot vectors """ self.onehot_buffer.zero_() index = input.view(-1, 1) one_hot = self.onehot_buffer.scatter_(1, index, 1) return one_hot def embedding_dropout(self, input): p_drop = torch.Tensor(input.size(0), 1).fill_(1 - self.dropout_input) mask = torch.bernoulli(p_drop).expand_as(input) / (1 - self.dropout_input) mask = mask.to(self.device) input = input * mask return input def init_hidden(self): ''' Initialize the hidden state of the GRU ''' try: h0 = torch.zeros(self.num_layers, self.batch_size, self.hidden_size).to(self.device) except: self.device = 'cpu' h0 = torch.zeros(self.num_layers, self.batch_size, self.hidden_size).to(self.device) return h0
import enrich_db import couchDB import auth db = couchDB.Cloudant(auth.user, auth.password)
from aiger import atom from aiger_analysis import is_satisfiable x, y = atom('x'), atom('y') expr_sat = x | y expr_unsat = expr_sat & ~ expr_sat def test_satisfiable(): assert is_satisfiable(expr_sat) def test_satisfiable_2(): assert is_satisfiable(atom(True)) def test_unsatisfiable(): assert not is_satisfiable(expr_unsat) def test_unsatisfiable_2(): assert not is_satisfiable(atom(False)) def test_unsatisfiable_aig(): assert not is_satisfiable(expr_unsat.aig)
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of OTC Tool released under MIT license. # Copyright (C) 2016 T-systems Kurt Garloff, Zsolt Nagy from otcclient.core.OtcConfig import OtcConfig from otcclient.utils import utils_http from otcclient.utils import utils_http, utils_templates from otcclient.core.otcpluginbase import otcpluginbase from otcclient.core.pluginmanager import getplugin import base64 from time import sleep import sys import json import os class ecs(otcpluginbase): ar = {} @staticmethod def otcOutputHandler(): return getplugin(OtcConfig.OUTPUT_FORMAT) def otctype(self): return "func" @staticmethod def describe_instances(): url = "https://" + OtcConfig.DEFAULT_HOST + "/v2/" + OtcConfig.PROJECT_ID + "/servers" if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() if OtcConfig.INSTANCE_ID is None: ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey = "servers", listkey={"id", "name"}) else: ret = utils_http.get(url + '/' + OtcConfig.INSTANCE_ID ) maindata = json.loads(ret) if "itemNotFound" in maindata: raise RuntimeError("Not found!") ecs.otcOutputHandler().print_output(ret,mainkey="server") return ret @staticmethod def describe_vpcs(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/vpcs" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey = "vpcs", listkey={"id", "name", "status", "cidr"}) return ret @staticmethod def describe_addresses(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/publicips" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="publicips", listkey={"id", "status", "public_ip_address", "private_ip_address", "type", "create_time", "bandwidth_size"}) return ret @staticmethod def describe_bandwiths(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/bandwidths" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="bandwidths", listkey={"id", "name", "publicip_info", "size"}) return ret @staticmethod def describe_private_addresses(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() if not OtcConfig.SUBNETNAME is None: ecs.convertSUBNETNameToId() if OtcConfig.VPCID is None: print("VPC definition not Correct ! Check VPCs:") print("otc ecs describe-vpcs") os._exit(1) if OtcConfig.SUBNETID is None: print("Subnet definition not Correct ! Check subnets:") print("otc ecs describe-subnets") os._exit(1) url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/subnets/" + OtcConfig.SUBNETID + "/privateips" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="privateips", listkey={"id", "status", "ip_address", "device_owner", "subnet_id"}) return ret @staticmethod def describe_security_groups(): if (not (OtcConfig.SECUGROUPNAME is None)) or (not (OtcConfig.SECUGROUP is None)): if (not (OtcConfig.SECUGROUPNAME is None)): ecs.convertSECUGROUPNameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2.0/security-group-rules?security_group_id=" + OtcConfig.SECUGROUP ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey= "security_group_rules", listkey={"id","direction", "protocol","port_range_min","port_range_max" }) else: url="https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/security-groups" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey= "security_groups", listkey={"id", "name", "vpc_id" }) return ret @staticmethod def describe_subnets(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/subnets" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="subnets", listkey={"id", "name", "cidr", "status", "vpc_id", "gateway_ip", "primary_dns", "availability_zone"}) return ret @staticmethod def describe_network_interfaces(): if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/servers/" + OtcConfig.INSTANCE_ID + "/os-interface" ret = utils_http.get(url) # print ret ecs.otcOutputHandler().print_output(ret, mainkey="interfaceAttachments", listkey={"port_state", "fixed_ips", "port_id", "net_id", "mac_addr"}) return ret @staticmethod def describe_images(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/cloudimages" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="images", listkey={"id", "name", "__os_type", "updated_at", "deleted"}) return ret @staticmethod def describe_flavors(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/flavors" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="flavors", listkey= {"id", "name", "vcpus", "ram", "disk", "swap"}) return ret @staticmethod def describe_key_pairs(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/os-keypairs" ret = utils_http.get( url ) ecs.otcOutputHandler().print_output(ret, mainkey="keypairs", subkey="keypair", listkey={"name", "fingerprint", "public_key"}) return ret @staticmethod def create_key_pair(): REQ_CREATE_KEYPAIR = "{ \"keypair\": { \"name\": \"" + OtcConfig.KEYNAME + "\", " + "\"public_key\": \"" + OtcConfig.PUBLICKEY + "\" } }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/os-keypairs" ret = utils_http.post(url, REQ_CREATE_KEYPAIR) parsed = json.loads(ret) if "keypair" not in parsed: print("Can not create:" +ret) os._exit( 1 ) ecs.otcOutputHandler().print_output(ret, mainkey="keypair") return ret @staticmethod def allocate_address(): REQ_CREATE_PUBLICIP = "{\"publicip\":{\"type\":\"5_bgp\"},\"bandwidth\":{\"name\":\"apiTest\",\"size\":5,\"share_type\":\"PER\",\"charge_mode\":\"traffic\"}}" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/publicips" ret = utils_http.post(url, REQ_CREATE_PUBLICIP) print( ret ) maindata = json.loads(ret) if "code" in maindata: print("Can not create:" +maindata["message"]) os._exit( 1 ) ecs.otcOutputHandler().print_output(ret, mainkey="publicip") return ret @staticmethod def release_address(): if not (OtcConfig.PUBLICIP is None): ecs.convertPublicIpNameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/publicips" + \ "/" + OtcConfig.PUBLICIPID ret = utils_http.delete(url) print(ret) return ret @staticmethod def release_private_address(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/privateips" + OtcConfig.PRIVATEIPID ret = utils_http.delete(url) print(ret) return ret @staticmethod def associate_address(): REQ_ASSOCIATE_PUBLICIP = "{ \"publicip\": { \"port_id\": \"" + OtcConfig.NETWORKINTERFACEID + "\" } }" #print REQ_ASSOCIATE_PUBLICIP if not (OtcConfig.PUBLICIP is None): ecs.convertPublicIpNameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/publicips" + "/" + OtcConfig.PUBLICIPID ret = utils_http.put(url, REQ_ASSOCIATE_PUBLICIP) print(ret) return ret @staticmethod def resize_instance(): if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() if not OtcConfig.INSTANCE_TYPE_NAME is None: ecs.convertFlavorNameToId() if OtcConfig.INSTANCE_ID is None : raise RuntimeError( "Error. Must be specify the Instance Name or ID!") url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/" + OtcConfig.INSTANCE_ID + "/resize" req = utils_templates.create_request("ecs_resize") ret = utils_http.post(url, req) print(ret) return ret @staticmethod def delete_key_pair(): """ generated source for method KEYPAIRDelete """ url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/os-keypairs"+ "/" + OtcConfig.KEYNAME ret = utils_http.delete(url ) return ret @staticmethod def getECSJOBList(): """ generated source for method getECSJOBList """ url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/jobs/" + OtcConfig.ECSTASKID ret = utils_http.get(url) newstatus = str( json.loads(ret)["status"]).upper() if newstatus != OtcConfig.ECSCREATEJOBSTATUS: sys.stdout.write( "\n" + newstatus ) OtcConfig.ECSCREATEJOBSTATUS = newstatus return OtcConfig.ECSCREATEJOBSTATUS @staticmethod def getFileContentJSON( aSource, aTarget): """ generated source for method getFileContentJSON """ with open(aSource, "rb") as _file: FILECONTENT = base64.b64encode(_file.read()) FILE_TEMPLATE = "{ \"path\": \"" + aTarget + "\", \"contents\": \"" + FILECONTENT + "\" }" return FILE_TEMPLATE @staticmethod def getUserDataContent(aSource): USER_DATA = "" with open(aSource, "rb") as _file: USER_DATA = base64.b64encode(_file.read()) return USER_DATA @staticmethod def getPersonalizationJSON(): """ generated source for method getPersonalizationJSON """ FILEJSONITEM = "" if not OtcConfig.FILE1 is None: ar = str(OtcConfig.FILE1).split("=") FILEJSONITEM = ecs.getFileContentJSON(ar[1], ar[0]) FILECOLLECTIONJSON = FILEJSONITEM FILEJSONITEM = "" if not OtcConfig.FILE2 is None: ar = str(OtcConfig.FILE2).split("=") if len(FILECOLLECTIONJSON) > 0: FILEJSONITEM = "," FILEJSONITEM = FILEJSONITEM + ecs.getFileContentJSON(ar[1], ar[0]) FILECOLLECTIONJSON = FILECOLLECTIONJSON + FILEJSONITEM FILEJSONITEM = "" if not OtcConfig.FILE3 is None: ar = str(OtcConfig.FILE3).split("=") if len(FILECOLLECTIONJSON) > 0: FILEJSONITEM = "," FILEJSONITEM = ecs.getFileContentJSON(ar[1], ar[0]) FILECOLLECTIONJSON = FILECOLLECTIONJSON + FILEJSONITEM FILEJSONITEM = "" if not OtcConfig.FILE4 is None: ar = str(OtcConfig.FILE4).split("=") if len(FILECOLLECTIONJSON) > 0: FILEJSONITEM = "," FILEJSONITEM = ecs.getFileContentJSON(ar[1], ar[0]) FILECOLLECTIONJSON = FILECOLLECTIONJSON + FILEJSONITEM FILEJSONITEM = "" if not OtcConfig.FILE5 is None: ar = str(OtcConfig.FILE5).split("=") if len(FILECOLLECTIONJSON) > 0: FILEJSONITEM = "," FILEJSONITEM = ecs.getFileContentJSON(ar[1], ar[0]) FILECOLLECTIONJSON = FILECOLLECTIONJSON + FILEJSONITEM PERSONALIZATION = "" if len(FILECOLLECTIONJSON) > 0: PERSONALIZATION = "\"personality\": [ " + FILECOLLECTIONJSON + "]," return PERSONALIZATION @staticmethod def ECSAction(): if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() if OtcConfig.INSTANCE_ID is None : raise RuntimeError( "Error. Must be specify the Instance Name or ID!") REQ_ECS_ACTION_VM = "{ " + " \"" + OtcConfig.ECSACTION + "\": " + " { " + " \"type\":\"" + OtcConfig.ECSACTIONTYPE + "\", " + " \"servers\": [ { \"id\": \"" + OtcConfig.INSTANCE_ID + "\" }] " + " } " + "}" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/action" ret = utils_http.post(url, REQ_ECS_ACTION_VM) print(ret) return ret @staticmethod def start_instances(): OtcConfig.ECSACTION = "os-start" ecs.ECSAction() @staticmethod def stop_instances(): OtcConfig.ECSACTION = "os-stop" ecs.ECSAction() @staticmethod def delete_instances(): if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() if OtcConfig.INSTANCE_ID is None : raise RuntimeError( "Error. Must be specify the Instance ID!") REQ_ECS_DELETE_VM = "{ \"servers\": [ { \"id\": \"" + OtcConfig.INSTANCE_ID + "\" } ]," + " \"delete_publicip\": \"" + OtcConfig.DELETE_PUBLICIP + "\", \"delete_volume\": \"" + OtcConfig.DELETE_VOLUME + "\" }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers" + "/delete" ret = utils_http.post(url, REQ_ECS_DELETE_VM) print(ret) return ret @staticmethod def create_vpc(): REQ_CREATE_VPC = "{ \"vpc\": { \"name\": \"" + OtcConfig.VPCNAME + "\", \"cidr\": \"" + OtcConfig.CIDR + "\" } }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/vpcs" ret = utils_http.post(url, REQ_CREATE_VPC) print(ret) return ret @staticmethod def delete_vpc(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/vpcs" + OtcConfig.VPCID ret = utils_http.delete(url) print(ret) return ret @staticmethod def create_subnet(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() REQ_CREATE_SUBNET = "{ \"subnet\": { \"name\": \"" + OtcConfig.SUBNETNAME + "\", \"cidr\": \"" + OtcConfig.CIDR + "\", \"gateway_ip\": \"" + OtcConfig.GWIP + "\", \"dhcp_enable\": \"true\", \"primary_dns\": \"" + OtcConfig.PRIMARYDNS + "\", \"secondary_dns\": \"" + OtcConfig.SECDNS + "\", \"availability_zone\":\"" + OtcConfig.AZ + "\", \"vpc_id\":\"" + OtcConfig.VPCID + "\" } }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/subnets" ret = utils_http.post(url, REQ_CREATE_SUBNET) print(ret) return ret @staticmethod def delete_subnet(): if OtcConfig.SUBNETNAME: ecs.convertSUBNETNameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/subnets" + OtcConfig.SUBNETID ret = utils_http.delete(url) return ret @staticmethod def create_network_interface(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() if not OtcConfig.SUBNETNAME is None: ecs.convertSUBNETNameToId() if not OtcConfig.SECUGROUPNAME is None: ecs.convertSECUGROUPNameToId() if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/" + OtcConfig.INSTANCE_ID + "/nics" req = utils_templates.create_request("add_nics") ret = utils_http.post(url, req) return ret @staticmethod def create_security_group(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() REQ_CREATE_SECGROUP = "{ \"security_group\": { \"name\":\"" + OtcConfig.SECUGROUPNAME + "\", \"vpc_id\" : \"" + OtcConfig.VPCID + "\" } }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/security-groups" ret = utils_http.post(url, REQ_CREATE_SECGROUP) return ret @staticmethod def delete_security_group(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() if not (OtcConfig.SECUGROUPNAME is None): ecs.convertSECUGROUPNameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2.0/" + "/security-groups" + "/"+ OtcConfig.SECUGROUP ret = utils_http.delete(url) return ret @staticmethod def authorize_security_group_ingress(): OtcConfig.DIRECTION = "ingress" ecs._secgrouprulecreate() @staticmethod def authorize_security_group_egress(): OtcConfig.DIRECTION = "egress" ecs._secgrouprulecreate() @staticmethod def _secgrouprulecreate(): if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() if not (OtcConfig.SECUGROUPNAME is None): ecs.convertSECUGROUPNameToId() sourceIp = "" if not OtcConfig.CIDR is None: sourceIp = "\", \"remote_ip_prefix\":\"" + OtcConfig.CIDR remoteGroup = "" if not OtcConfig.SOURCE_GROUP_ID is None: remoteGroup = "\", \"remote_group_id\":\"" + OtcConfig.SOURCE_GROUP_ID portrange = "" if not OtcConfig.PORTMIN is None and not OtcConfig.PORTMAX is None: portrange = "\", \"port_range_min\":\"" + OtcConfig.PORTMIN + "\", \"port_range_max\":\"" ''+ OtcConfig.PORTMAX REQ_CREATE_SECGROUPRULE = "{\"security_group_rule\":{ \"direction\":\"" + OtcConfig.DIRECTION + "\",\"ethertype\":\"" + OtcConfig.ETHERTYPE + "\", \"protocol\":\""+ OtcConfig.PROTOCOL+ portrange +remoteGroup + sourceIp+ "\" , \"security_group_id\":\""+ OtcConfig.SECUGROUP + "\" } }" #REQ_CREATE_SECGROUPRULE = "{\"security_group_rule\":{ \"direction\":\"" + OtcConfig.DIRECTION + "\", \"port_range_min\":\"" + OtcConfig.PORTMIN + "\", \"ethertype\":\"" + OtcConfig.ETHERTYPE + "\", \"port_range_max\":\"" ''+ OtcConfig.PORTMAX+ "\", \"protocol\":\""+ OtcConfig.PROTOCOL+ remoteGroup + sourceIp+ "\" , \"security_group_id\":\""+ OtcConfig.SECUGROUP + "\" } }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2.0/security-group-rules" ret = utils_http.post(url, REQ_CREATE_SECGROUPRULE) #print REQ_CREATE_SECGROUPRULE print (ret) ecs.otcOutputHandler().print_output(ret, mainkey="security_group_rule") return ret @staticmethod def run_instances(): if not OtcConfig.VPCNAME is None: ecs.convertVPCNameToId() if not OtcConfig.SUBNETNAME is None: ecs.convertSUBNETNameToId() if not OtcConfig.IMAGENAME is None: ecs.convertIMAGENameToId() if not OtcConfig.SECUGROUPNAME is None: ecs.convertSECUGROUPNameToId() if not OtcConfig.INSTANCE_TYPE_NAME is None: ecs.convertFlavorNameToId() if OtcConfig.IMAGE_ID is None: print("Image definition not Correct ! Check images:") print("otc ecs describe-images") os._exit(1) if OtcConfig.INSTANCE_TYPE is None: print("Instance Type definition not Correct ! Check flavors:") print("otc ecs describe-flavors") os._exit(1) if OtcConfig.VPCID is None: print("VPC definition not Correct ! Check VPCs:") print("otc ecs describe-vpcs") os._exit(1) if OtcConfig.SECUGROUP is None: print("Security Group definition not Correct ! Check security groups:") print("otc ecs describe-security-groups") os._exit(1) if OtcConfig.SUBNETID is None: print("Subnet definition not Correct ! Check subnets:") print("otc ecs describe-subnets") os._exit(1) PUBLICIPJSON = "" # if OtcConfig.CREATE_ECS_WITH_PUBLIC_IP: # PUBLICIPJSON = "\"publicip\": { \"eip\": { \"iptype\": \"5_bgp\", \"bandwidth\": { \"size\": 5, \"sharetype\": \"PER\", \"chargemode\": \"traffic\" } } }," PERSONALIZATION = ecs.getPersonalizationJSON() if not OtcConfig.USER_DATA_PATH is None: USER_DATA = ecs.getUserDataContent(OtcConfig.USER_DATA_PATH) OtcConfig.USER_DATA = USER_DATA # OtcConfig.PUBLICIPJSON = PUBLICIPJSON OtcConfig.PERSONALIZATION = PERSONALIZATION # REQ_CREATE_VM = " { " + " \"server\": { " + " \"availability_zone\": \"" + OtcConfig.AZ + "\", " + " \"name\": \"" + OtcConfig.INSTANCE_NAME + "\", " + " \"imageRef\": \"" + OtcConfig.IMAGE_ID + "\", " + " \"root_volume\": { " + " \"volumetype\": \"SATA\" " + " }, " + " \"flavorRef\": \"" + OtcConfig.INSTANCE_TYPE + "\"," + PERSONALIZATION + " \"vpcid\": \"" + OtcConfig.VPCID + "\", " + " \"security_groups\": [ " + " { " + " \"id\": \"" + OtcConfig.SECUGROUP + "\" " + " } " + " ], " + " \"nics\": [ " + " { " + " \"subnet_id\": \"" + OtcConfig.SUBNETID + "\" " + " } " + " ], " + PUBLICIPJSON + " \"key_name\": \"" + OtcConfig.KEYNAME + "\", " + " \"adminPass\": \"" + OtcConfig.ADMINPASS + "\", " + " \"count\": \"" + OtcConfig.NUMCOUNT + "\", " + " \"},\": { " + " \"__vnc_keymap\": \"de\" " + " } " + " } " + " } " + " " REQ_CREATE_VM=utils_templates.create_request("create_vm") url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers" #print REQ_CREATE_VM ret = utils_http.post(url, REQ_CREATE_VM) #print ret OtcConfig.ECSTASKID = json.loads(ret)["job_id"] if OtcConfig.WAIT_CREATE: ecs.getECSJOBList() while OtcConfig.ECSCREATEJOBSTATUS in ["RUNNING", "INIT"]: sleep(10) ecs.getECSJOBList() sys.stdout.write('.') #sys.stdout.flush() if "SUCCESS" == OtcConfig.ECSCREATEJOBSTATUS: return OtcConfig.ECSCREATEJOBSTATUS print("ECS Creation status: " + OtcConfig.ECSCREATEJOBSTATUS) return ret @staticmethod def getIamToken(): if OtcConfig.PROJECT_NAME != None: project = "\"name\": \"" + OtcConfig.PROJECT_NAME + "\" " else: project = "\"id\": \"" + OtcConfig.PROJECT_ID + "\"" REQ_IAM = " {" + " \"auth\": { " + " \"identity\": { " + " \"methods\": [" + " \"password\" " + " ], " + " \"password\": { " + " \"user\": { " + " \"name\": \"" + OtcConfig.USERNAME + "\", " + " \"password\": \"" + OtcConfig.PASSWORD + "\"," + " \"domain\": { " + " \"name\": \"" + OtcConfig.DOMAIN + "\" " + " } " + " } " + " } " + " }, " + " \"scope\": { " + " \"project\": {" + project + " } " + " } " + " } " + " }" url = "https://" + OtcConfig.DEFAULT_HOST +":443/v3/auth/tokens" ret = utils_http.post(url, REQ_IAM) maindata = json.loads(ret) OtcConfig.PROJECT_ID = maindata['token']['project']['id'] return ret @staticmethod def getIamTokenAKSK(): if OtcConfig.PROJECT_NAME != None: project = "\"name\": \"" + OtcConfig.PROJECT_NAME + "\" " else: project = "\"id\": \"" + OtcConfig.PROJECT_ID + "\"" REQ_IAM = " {" + " \"auth\": { " + " \"identity\": { " + " \"methods\": [" + " \"password\" " + " ], " + " \"password\": { " + " \"user\": { " + " \"name\": \"" + OtcConfig.USERNAME + "\", " + " \"password\": \"" + OtcConfig.PASSWORD + "\"," + " \"domain\": { " + " \"name\": \"" + OtcConfig.DOMAIN + "\" " + " } " + " } " + " } " + " }, " + " \"scope\": { " + " \"project\": {" + project + " } " + " } " + " } " + " }" url = "https://" + OtcConfig.DEFAULT_HOST +":443/v3/auth/tokens" ret = utils_http.post(url, REQ_IAM) maindata = json.loads(ret) OtcConfig.PROJECT_ID = maindata['token']['project']['id'] return ret @staticmethod def convertFlavorNameToId(): """ generated source for method convertFlavorNameToId """ url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/flavors" JSON = utils_http.get(url) parsed = json.loads(JSON) flavors = parsed["flavors"] ret = None for flavor in flavors: if flavor.get("name") == OtcConfig.INSTANCE_TYPE_NAME: ret = flavor["id"] OtcConfig.INSTANCE_TYPE = ret @staticmethod def convertPublicIpNameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/publicips" JSON = utils_http.get(url) parsed = json.loads(JSON) publicips = parsed["publicips"] ret = None for publicip in publicips: if publicip.get("public_ip_address") == OtcConfig.PUBLICIP: ret = publicip["id"] OtcConfig.PUBLICIPID = ret @staticmethod def convertVPCNameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/vpcs" JSON = utils_http.get(url) parsed = json.loads(JSON) vpcs = parsed["vpcs"] ret = None for vpc in vpcs: if vpc.get("name") == OtcConfig.VPCNAME: ret = vpc["id"] OtcConfig.VPCID = ret @staticmethod def convertVOLUMENameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudvolumes" JSON = utils_http.get(url) parsed = json.loads(JSON) #print JSON cloudvolumes = parsed["volumes"] ret = None for cloudvolume in cloudvolumes: if cloudvolume.get("name") == OtcConfig.VOLUME_NAME: ret = cloudvolume["id"] OtcConfig.VOLUME_ID = ret @staticmethod def convertSUBNETNameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/subnets" ar = [] ar.append(OtcConfig.SUBNETNAME) if "," in OtcConfig.SUBNETNAME: ar=str(OtcConfig.SUBNETNAME).split(",") JSON = utils_http.get(url) parsed = json.loads(JSON) subnets = parsed["subnets"] ret = "" for item in ar: for subnet in subnets: if subnet.get("name") == item and subnet.get("vpc_id") == OtcConfig.VPCID: if len(ret) > 0: ret = ret + "," ret = ret + subnet["id"] OtcConfig.SUBNETID = ret @staticmethod def convertIMAGENameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/cloudimages" JSON = utils_http.get(url) parsed = json.loads(JSON) images = parsed["images"] ret = None for image in images: if image.get("name") == OtcConfig.IMAGENAME: ret = image["id"] OtcConfig.IMAGE_ID = ret @staticmethod def convertINSTANCENameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/servers" JSON = utils_http.get(url) parsed = json.loads(JSON) servers = parsed["servers"] ret = None for server in servers: if server.get("name") == OtcConfig.INSTANCE_NAME: ret = server["id"] OtcConfig.INSTANCE_ID = ret @staticmethod def convertSECUGROUPNameToId(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/security-groups" JSON = utils_http.get(url) parsed = json.loads(JSON) security_groups = parsed["security_groups"] if not (OtcConfig.VPCNAME is None): ecs.convertVPCNameToId() for security_group in security_groups: if security_group.get("name") == OtcConfig.SECUGROUPNAME and ( security_group.get("vpc_id") == OtcConfig.VPCID or OtcConfig.VPCID is None ) : OtcConfig.SECUGROUP = security_group["id"] if security_group.get("name") == OtcConfig.SOURCE_GROUP and ( security_group.get("vpc_id") == OtcConfig.VPCID or OtcConfig.VPCID is None ) : OtcConfig.SOURCE_GROUP_ID = security_group["id"] OtcConfig.SECUGROUP = OtcConfig.SECUGROUP return OtcConfig.SECUGROUP @staticmethod def describe_volumes(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudvolumes"+ "/detail" ret = utils_http.get( url ) ecs.otcOutputHandler().print_output(ret, mainkey = "volumes", listkey= {"id", "name", "volume_type", "size", "status", "bootable", "availability_zone", "limit", "attachments", "source_volid", "snapshot_id", "description", "created_at"}) return ret @staticmethod def list_volumes(): if not OtcConfig.INSTANCE_NAME is None: ecs.convertINSTANCENameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/servers/"+ OtcConfig.INSTANCE_ID + "/os-volume_attachments" ret = utils_http.get( url ) print ret # TODO: output fix need #ecs.otcOutputHandler().print_output(ret, mainkey = "volumes", listkey= {"id", "name", "volume_type", "size", "status", "bootable", "availability_zone", "limit", "attachments", "source_volid", "snapshot_id", "description", "created_at"}) return ret @staticmethod def create_volume(): REQ_CREATE_CLOUDVOLUMES = "{ \"volume\": { \"backup_id\": " + OtcConfig.SNAPSHOTID + ", " + "\"count\": " + OtcConfig.NUMCOUNT + ", \"availability_zone\": \"" + OtcConfig.AZ + "\",\"description\": \"" + OtcConfig.VOLUME_NAME + "\", \"size\": " + OtcConfig.VOLUME_SIZE + ", \"name\": \"" + OtcConfig.VOLUME_NAME + "\", \"imageRef\": " + "null" + ", \"volume_type\": \"" + OtcConfig.VOLUME_TYPE + "\" } }" #print REQ_CREATE_CLOUDVOLUMES url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudvolumes" ret = utils_http.post(url, REQ_CREATE_CLOUDVOLUMES) print(ret) return ret @staticmethod def attach_volume(): """ generated source for method AttachVolume """ REQ_ATTACH_CLOUDVOLUMES = "{ \"volumeAttachment\": { \"volumeId\": \"" + OtcConfig.VOLUME_ID + "\", \"device\": \"" + OtcConfig.EVS_DEVICE + "\" } }" url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/" + OtcConfig.INSTANCE_ID + "/attachvolume" ret = utils_http.post(url, REQ_ATTACH_CLOUDVOLUMES) print(ret) return ret @staticmethod def detach_volume(): """ generated source for method DetachVolume """ url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/" + OtcConfig.INSTANCE_ID + "/detachvolume/" + OtcConfig.VOLUME_ID ret = utils_http.delete(url) print(ret) return ret @staticmethod def delete_volume(): if not OtcConfig.VOLUME_NAME is None: ecs.convertVOLUMENameToId() url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudvolumes" + "/" + OtcConfig.VOLUME_ID ret = utils_http.delete(url) print(ret) return ret @staticmethod def describe_quotas(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v1/" + OtcConfig.PROJECT_ID + "/cloudservers/limits" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey="absolute") return ret @staticmethod def describe_snapshots(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/backups/detail" ret = utils_http.get(url) ecs.otcOutputHandler().print_output(ret, mainkey = "backups", listkey={"name","id","size","status","description","created_at", "created_at"} ) return ret @staticmethod def restore_snapshot(): if not OtcConfig.VOLUME_NAME is None: ecs.convertVOLUMENameToId() if OtcConfig.VOLUME_ID is None or OtcConfig.SNAPSHOTID is None: print("Image definition not Correct ! Check images:") print("otc ecs describe-backups") os._exit(1) REQ_RESTORE_BACKUP = "{ \"restore\":{ \"volume_id\":\"" + OtcConfig.VOLUME_ID + "\" } }" #print REQ_RESTORE_BACKUP url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudbackups" +"/" + OtcConfig.SNAPSHOTID + "/restore" ret = utils_http.post(url, REQ_RESTORE_BACKUP) print(ret) return ret @staticmethod def delete_snapshot(): url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudbackups"+ "/" + OtcConfig.SNAPSHOTID ret = utils_http.post( url , "") print(ret) return ret @staticmethod def create_snapshot(): if not OtcConfig.VOLUME_NAME is None: ecs.convertVOLUMENameToId() if not OtcConfig.DESCRIPTION is None: OtcConfig.DESCRIPTION = OtcConfig.VOLUME_ID if not OtcConfig.VOLUME_NAME is None: OtcConfig.DESCRIPTION = OtcConfig.VOLUME_NAME REQ_CREATE_BACKUP = "{ \"backup\":{ \"" + "volume_id\":\"" + OtcConfig.VOLUME_ID + "\", " + "\"name\":\"" + OtcConfig.DESCRIPTION + "\", \"description\":\"" + OtcConfig.DESCRIPTION + "\" } }" #print REQ_CREATE_BACKUP url = "https://" + OtcConfig.DEFAULT_HOST+ "/v2/" + OtcConfig.PROJECT_ID + "/cloudbackups" ret = utils_http.post(url, REQ_CREATE_BACKUP) print (ret) return ret
# Imports the monkeyrunner modules used by this program from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice import sys, os import random class areas: GOLD = ((900,600),(1000, 750)) # Connects to the current device, returning a MonkeyDevice object device = MonkeyRunner.waitForConnection() def get_tap_on_gold(): return ( random.randint(areas.GOLD[0][0], areas.GOLD[1][0]), random.randint(areas.GOLD[0][1], areas.GOLD[1][1]) ) def iterate(): tap = get_tap_on_gold() print(" click: %s" % (tap,) ) device.touch(tap[0],tap[1],MonkeyDevice.DOWN_AND_UP) MonkeyRunner.sleep(random.randint(9,12)/1.0) def must_exit(): f = open('must_exit', 'r') request = f.read() f.close() print(request) return request.strip() == "1" counter = 0 #while True: for j in range(1000): if must_exit(): sys.exit(0) print("click: %d" % (j) ) iterate() # Takes a screenshot #result = device.takeSnapshot() # Output file image #fileImage = os.path.join(os.path.dirname(os.sys.argv[0]), "shot1.png") # Writes the screenshot to a file #result.writeToFile(fileImage,'png')
from oadr_core.oadr_payloads.oadr_payloads_general import ELEMENTS, eiResponse def oadrCanceledOpt(code, description, requestID, optID): canceled_element = ELEMENTS['oadr'].oadrCanceledOpt( eiResponse(code, description, requestID), ELEMENTS['ei'].optID(optID) ) return canceled_element def oadrCreatedOpt(code, description, requestID, optID): created_element = ELEMENTS['oadr'].oadrCreatedOpt( eiResponse(code, description, requestID), ELEMENTS['ei'].optID(optID) ) return created_element
# Problem: https://docs.google.com/document/d/1zaGh6rGnx07dI_ooeY8tp_y9h68fAMg6D3CA6a_giIY/edit?usp=sharing import math l,s=map(int,open(0)) print(math.ceil(l*20/s))