id
stringlengths
2
115
private
bool
1 class
tags
list
description
stringlengths
0
5.93k
downloads
int64
0
1.14M
likes
int64
0
1.79k
sentence-transformers/NQ-retrieval
false
[]
null
8
0
GEM-submissions/lewtun__this-is-a-test-name__1648111972
false
[ "benchmark:gem", "evaluation", "benchmark" ]
null
0
0
M-Quan/sv_corpora_parliament_processed
false
[]
null
0
0
huggan/CelebA-HQ
false
[ "arxiv:1710.10196" ]
null
87
3
Jira/mao
false
[ "license:gpl" ]
null
0
0
huggan/cartoon-faces
false
[]
null
1
0
huggan/cats
false
[]
null
2
0
Gare/Classical_Chinese_to_Modern_Chinese
false
[ "license:mit" ]
null
2
0
Vipitis/Shadertoys-bimodal
false
[]
null
0
0
ebrigham/NOS-news
false
[]
null
0
0
GEM-submissions/lewtun__this-is-a-test-name__1648137608
false
[ "benchmark:gem", "evaluation", "benchmark" ]
null
0
0
wesamhaddad14/spanishNLP
false
[]
null
0
0
Openmindedness/mc_chat_scraped_from_toxigon_anarchy
false
[ "license:cc" ]
null
0
0
huggan/AFHQ
false
[]
null
5,624
0
DrishtiSharma/MESD-Processed-Dataset-v2
false
[]
null
0
0
beyond/20NG
false
[]
null
1
0
huggan/AFHQv2
false
[]
null
13
0
DFKI-SLT/scidtb
false
[ "task_categories:token-classification", "task_ids:parsing", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:unknown", "source_datasets:original", "language:en" ]
Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question answering. SciDTB is a domain-specific discourse treebank annotated on scientific articles. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating discourse dependency parsers, on which we provide several baselines as fundamental work.
0
2
huggan/metfaces
false
[]
null
0
0
pietrolesci/nli_fever
false
[]
null
43
1
pietrolesci/conj_nli
false
[]
null
161
0
Fatima-Gh/GLARE
false
[]
null
0
0
sosuke/dataset_for_ease
false
[]
null
0
1
GEM-submissions/lewtun__this-is-a-test-name__1648220072
false
[ "benchmark:gem", "evaluation", "benchmark" ]
null
0
0
roman_urdu_hate_speech
false
[ "task_categories:text-classification", "task_ids:multi-class-classification", "annotations_creators:expert-generated", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ur", "license:mit", "binary classification" ]
The Roman Urdu Hate-Speech and Offensive Language Detection (RUHSOLD) dataset is a Roman Urdu dataset of tweets annotated by experts in the relevant language. The authors develop the gold-standard for two sub-tasks. First sub-task is based on binary labels of Hate-Offensive content and Normal content (i.e., inoffensive language). These labels are self-explanatory. The authors refer to this sub-task as coarse-grained classification. Second sub-task defines Hate-Offensive content with four labels at a granular level. These labels are the most relevant for the demographic of users who converse in RU and are defined in related literature. The authors refer to this sub-task as fine-grained classification. The objective behind creating two gold-standards is to enable the researchers to evaluate the hate speech detection approaches on both easier (coarse-grained) and challenging (fine-grained) scenarios. \
51
1
JuanJoseMV/CIE10-classifier-Test_Dataset
false
[]
null
0
0
nndhung/garlic
false
[]
null
0
0
avacaondata/lfqa_squad
false
[]
null
0
0
Splend1dchan/NMSQA_w2v2-st-ft
false
[]
null
0
0
Gare/github-issues
false
[]
null
1
0
benjamin/ner-uk
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "multilinguality:monolingual", "language:uk", "license:cc-by-nc-sa-4.0" ]
null
0
0
laion/laion2B-en-safety
false
[ "license:cc-by-4.0" ]
null
0
0
laion/laion2B-multi-safety
false
[ "license:cc-by-4.0" ]
null
0
0
laion/laion1B-nolang-safety
false
[ "license:cc-by-4.0" ]
null
2
0
laion/laion5B-index
false
[ "license:cc-by-4.0" ]
null
0
12
Marmoot/Fake_News_jpposadas
false
[ "license:cc-by-4.0" ]
null
0
0
Marmoot/Kaggle_1
false
[]
null
0
0
Georgii/russianPoetry
false
[ "license:mit" ]
null
2
1
MorVentura/TRBLLmaker
false
[]
null
0
1
jglaser/pdbbind_complexes
false
[ "molecules", "chemistry", "SMILES" ]
A dataset to fine-tune language models on protein-ligand binding affinity and contact prediction.
0
0
ashishpapanai/inverted_vs_normal
false
[]
null
0
0
Jiangjie/ekar_chinese
false
[ "task_categories:question-answering", "task_categories:text-generation", "task_ids:explanation-generation", "size_categories:1K<n<2K", "source_datasets:original", "language:zh", "license:afl-3.0" ]
null
1
4
Jiangjie/ekar_english
false
[ "task_categories:question-answering", "task_categories:text-generation", "task_ids:explanation-generation", "size_categories:1K<n<2K", "source_datasets:original", "language:en", "license:afl-3.0" ]
null
0
3
atenglens/taiwanese_english_translation
false
[ "task_categories:question-answering", "task_categories:text2text-generation", "task_categories:text-generation", "task_categories:translation", "task_ids:language-modeling", "language_creators:other", "multilinguality:translation", "size_categories:unknown", "source_datasets:extended|other", "language:tw", "language:en", "conditional-text-generation" ]
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
3
1
nadhifikbarw/id_ohsuhmed
false
[ "task_categories:text-classification", "language:id" ]
null
8
0
tomekkorbak/pile-toxic-chunk-0
false
[]
null
0
0
UrukHan/wav2vec2-russian
false
[]
null
0
0
T-202/github-issues
false
[]
null
0
0
TzRain/AMPs
false
[]
null
0
0
smilegate-ai/kor_unsmile
false
[]
null
450
0
UrukHan/t5-russian-spell_I
false
[]
null
6
0
UrukHan/t5-russian-spell_II
false
[]
null
0
0
UrukHan/t5-russian-spell_III
false
[]
null
0
0
stjokerli/TextToText_DocNLI_seqio
false
[]
null
0
0
laion/conceptual-captions-12m-webdataset
false
[]
null
1
3
leonadase/fdRE
false
[]
\ fdRE是一个中文的轴承故障诊断领域的关系抽取数据集 该数据集主要包含正向从属、反向从属以及无关三类标签
0
0
IIC/spanish_biomedical_crawled_corpus_splitted
false
[ "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:1M<n<10M", "source_datasets:IIC/spanish_biomedical_crawled_corpus", "language:es", "arxiv:2109.07765" ]
null
0
0
mrm8488/AnswerSum
false
[]
null
0
0
IIC/ms_marco_es
false
[ "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:ms_marco", "language:es" ]
null
0
0
stjokerli/TextToText_squad_seqio
false
[]
null
0
0
sac3tf/roman_urdu
false
[]
null
0
0
adv_glue
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:sentiment-classification", "annotations_creators:other", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:n<1K", "source_datasets:extended|glue", "language:en", "license:cc-by-sa-4.0", "paraphrase-identification", "qa-nli", "arxiv:2111.02840" ]
Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark that focuses on the adversarial robustness evaluation of language models. It covers five natural language understanding tasks from the famous GLUE tasks and is an adversarial version of GLUE benchmark.
133
2
sichenzhong/squad_v2_synonym_aug
false
[]
null
0
0
carolina-c4ai/corpus-carolina
false
[ "task_categories:fill-mask", "task_categories:text-generation", "task_ids:masked-language-modeling", "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:1B<n<10B", "source_datasets:original", "language:pt", "license:cc-by-nc-sa-4.0" ]
Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a robust volume of texts of varied typology in contemporary Brazilian Portuguese (1970-2021).
37
4
wrapper228/arxiv_data_extended
false
[]
null
0
0
nobodylll/test_huggingface_dataset
false
[]
null
0
0
laion/laion-synthetic-115m
false
[]
null
3
2
IIC/msmarco_es
false
[ "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:ms_marco", "language:es" ]
null
0
0
laion/laion2B-en-watermark
false
[ "license:cc-by-4.0" ]
null
1
0
KeithHorgan98/autotrain-data-TweetClimateAnalysis
false
[ "task_categories:text-classification" ]
null
0
0
laion/water-vit-webdataset
false
[]
null
5
1
Splend1dchan/NMSQA_w2v2-st-ft2
false
[]
null
0
0
Pavithra/sampled-code-parrot-ds-train
false
[]
null
0
0
Pavithra/sampled-code-parrot-ds-valid
false
[]
null
0
0
M-Quan/sv_corpora_parliament_processe
false
[]
null
0
0
hackathon-pln-es/Dataset-Acoso-Twitter-Es
false
[ "license:gpl-3.0" ]
null
0
2
abdusah/arabic_speech_massive_sm
false
[]
null
0
1
huggan/horse2zebra
false
[ "arxiv:1703.10593" ]
null
5
0
tskolm/youtube_top_popular_videos_comments
false
[]
null
0
0
huggan/monet2photo
false
[ "arxiv:1703.10593" ]
null
0
0
huggan/cezanne2photo
false
[ "arxiv:1703.10593" ]
null
0
0
huggan/ukiyoe2photo
false
[ "arxiv:1703.10593" ]
null
0
0
huggan/vangogh2photo
false
[ "arxiv:1703.10593" ]
null
0
0
huggan/apple2orange
false
[ "arxiv:1703.10593" ]
null
0
0
huggan/iphone2dslr_flower
false
[ "arxiv:1703.10593" ]
null
0
0
huggan/summer2winter_yosemite
false
[ "arxiv:1703.10593" ]
null
2
0
huggan/grumpifycat
false
[ "arxiv:1703.10593" ]
null
0
0
malay-huggingface/jelapang-padi
false
[]
null
0
0
rzhang123/UScourt
false
[]
null
0
0
marksverdhei/clickbait_title_classification
false
[ "license:mit", "arxiv:1610.09786" ]
null
19
3
laion/laion2B-en-joined
false
[ "license:cc-by-4.0" ]
null
179
4
laion/laion2B-multi-joined
false
[ "license:cc-by-4.0" ]
null
0
2
laion/laion1B-nolang-joined
false
[]
null
0
0
liza-alx/tokenized_data_yahoo
false
[]
null
0
0
liza-alx/tokenized_data
false
[]
null
0
0
laion/laion2B-multi-watermark
false
[ "license:cc-by-4.0" ]
null
3
1
laion/laion1B-nolang-watermark
false
[ "license:cc-by-4.0" ]
null
0
1
hackathon-pln-es/nli-es
false
[ "arxiv:1809.05053" ]
null
12
3
sichenzhong/squad_v2_word2vec_aug
false
[]
null
0
0
vumichien/pitch_japanese_data
false
[]
null
0
2