id
stringlengths
2
115
private
bool
1 class
tags
list
description
stringlengths
0
5.93k
downloads
int64
0
1.14M
likes
int64
0
1.79k
google/wit
false
[ "task_categories:text-retrieval", "task_categories:image-to-text", "task_ids:image-captioning", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:multilingual", "size_categories:10M<n<100M", "source_datasets:original", "source_datasets:extended|wikipedia", "language:af", "language:ar", "language:ast", "language:azb", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:cs", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:hr", "language:hu", "language:hy", "language:id", "language:it", "language:iw", "language:ja", "language:ka", "language:ko", "language:la", "language:lt", "language:lv", "language:mk", "language:ml", "language:ms", "language:nl", "language:nn", "language:no", "language:pl", "language:pt", "language:ro", "language:ru", "language:sk", "language:sl", "language:sr", "language:sv", "language:th", "language:tr", "language:uk", "language:ur", "language:vi", "language:vo", "language:zh", "license:cc-by-sa-3.0", "arxiv:2103.01913" ]
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal machine learning models.
15
8
hnchen/ricr_data
false
[]
null
0
0
lanesket/r-asts-splitted
false
[]
null
0
0
jdrl96/sv_corpora_parliament_processed
false
[]
null
0
0
Gifted/iris
false
[]
null
0
0
Davincilee/door_inner_with_SAE
false
[ "license:other" ]
null
0
0
shanya/crd3
false
[ "task_categories:summarization", "task_categories:text-generation", "task_categories:fill-mask", "task_ids:dialogue-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc-by-sa-4.0" ]
Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset. Critical Role is an unscripted, live-streamed show where a fixed group of people play Dungeons and Dragons, an open-ended role-playing game. The dataset is collected from 159 Critical Role episodes transcribed to text dialogues, consisting of 398,682 turns. It also includes corresponding abstractive summaries collected from the Fandom wiki. The dataset is linguistically unique in that the narratives are generated entirely through player collaboration and spoken interaction. For each dialogue, there are a large number of turns, multiple abstractive summaries with varying levels of detail, and semantic ties to the previous dialogues.
13
0
wikimedia/wit_base
false
[ "task_categories:image-to-text", "task_categories:text-retrieval", "task_ids:image-captioning", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:multilingual", "size_categories:1M<n<10M", "source_datasets:original", "source_datasets:extended|wikipedia", "language:af", "language:an", "language:ar", "language:arz", "language:ast", "language:az", "language:azb", "language:ba", "language:bar", "language:be", "language:bg", "language:bn", "language:br", "language:bs", "language:ca", "language:ce", "language:ceb", "language:ckb", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fil", "language:fr", "language:fy", "language:ga", "language:gl", "language:hi", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:io", "language:is", "language:it", "language:iw", "language:ja", "language:jv", "language:ka", "language:kk", "language:kn", "language:ko", "language:la", "language:lah", "language:lb", "language:lmo", "language:lt", "language:lv", "language:mg", "language:mk", "language:ml", "language:mn", "language:mr", "language:ms", "language:my", "language:nan", "language:nds", "language:ne", "language:nl", "language:nn", "language:no", "language:nv", "language:oc", "language:pa", "language:pl", "language:pt", "language:qu", "language:ro", "language:ru", "language:sco", "language:si", "language:sk", "language:sl", "language:sq", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:tg", "language:th", "language:tr", "language:tt", "language:uk", "language:ur", "language:uz", "language:vec", "language:vi", "language:vo", "language:war", "language:xmf", "language:yue", "language:zh", "license:cc-by-sa-4.0", "text-image-retrieval", "arxiv:2103.01913", "arxiv:1512.03385", "arxiv:1905.00641" ]
null
1,482
11
nielsr/cord-layoutlmv3
false
[]
https://github.com/clovaai/cord/
348
2
pauli31/czech-subjectivity-dataset
false
[ "task_categories:text-classification", "task_ids:sentiment-classification", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:cs-CZ", "license:cc-by-nc-sa-4.0", "arxiv:2204.13915" ]
null
3
1
ppate192/conll.eng.testa
false
[]
null
0
0
arbml/masader
false
[ "license:mit" ]
Masader is the largest public catalogue for Arabic NLP datasets, which consists of more than 200 datasets annotated with 25 attributes.
3
3
wza/roc_stories
false
[]
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
88
1
Apo/AKE20K_sky
false
[]
null
0
0
carlosejimenez/snli_aug
false
[]
null
0
0
Apo/ADE20K_sky_13labels
false
[ "license:afl-3.0" ]
null
0
0
Apo/AKE20K_sky_13labels
false
[]
null
0
0
Vardan/train
false
[]
null
0
0
Erwin/coffee_reviews_corpus
false
[ "license:mit" ]
null
2
0
lanesket/r-asts-splitted-tokenized
false
[]
null
0
0
NishinoTSK/Dissertacao
false
[]
null
0
0
tne
false
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:mit", "arxiv:2109.12085" ]
TNE is an NLU task, which focus on relations between noun phrases (NPs) that can be mediated via prepositions. The dataset contains 5,497 documents, annotated exhaustively with all possible links between the NPs in each document.
179
0
vencortex/TechNews
false
[ "doi:10.57967/hf/0115" ]
null
1
1
carlosejimenez/qqp_aug
false
[]
null
0
0
LHF/escorpius-mr
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "multilinguality:multilingual", "size_categories:100B<n<1T", "source_datasets:original", "language:af", "language:ar", "language:bn", "language:ca", "language:cs", "language:da", "language:de", "language:el", "language:eu", "language:fa", "language:fi", "language:fr", "language:gl", "language:hi", "language:hr", "language:it", "language:ja", "language:ko", "language:mt", "language:nl", "language:no", "language:oc", "language:pa", "language:pl", "language:pt", "language:ro", "language:sl", "language:sr", "language:sv", "language:tr", "language:uk", "language:ur", "license:cc-by-nc-nd-4.0", "arxiv:2206.15147" ]
null
0
1
farazeftekhar/geojson
false
[ "license:other" ]
null
0
0
orieg/elsevier-oa-cc-by
false
[ "task_categories:fill-mask", "task_categories:summarization", "task_categories:text-classification", "task_ids:masked-language-modeling", "task_ids:news-articles-summarization", "task_ids:news-articles-headline-generation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc-by-4.0", "arxiv:2008.00774" ]
Elsevier OA CC-By is a corpus of 40k (40, 091) open access (OA) CC-BY articles from across Elsevier’s journals and include the full text of the article, the metadata, the bibliographic information for each reference, and author highlights.
32
8
enoriega/keyword_pubmed
false
[]
null
0
0
allenai/drug-combo-extraction
false
[ "license:mit" ]
null
8
2
Ukhushn/home-depot
false
[ "task_categories:sentence-similarity", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "language:en", "license:afl-3.0" ]
null
0
0
vumichien/japanese_large_dataset
false
[]
null
0
0
ntinouldinho/el_corpora_parliament_processed
false
[]
null
0
0
Seledorn/SwissProt-EC-leaf_upd
false
[]
null
0
0
Seledorn/SwissProt-EC-leaf_upt_again
false
[]
null
0
0
cestwc/lsnli
false
[]
null
0
0
nielsr/test
false
[]
null
0
0
nlpconnect/DocVQA
false
[ "license:apache-2.0" ]
null
6
0
cncoleman/CA_LEA_Manuals
false
[]
null
0
0
IsaacRodgz/DravidianCodeMix-Dataset
false
[]
null
0
0
Alayt/gcode
false
[]
null
0
0
textvqa
false
[ "task_categories:visual-question-answering", "task_ids:visual-question-answering", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc-by-4.0", "arxiv:1904.08920", "arxiv:2007.00398" ]
TextVQA requires models to read and reason about text in images to answer questions about them. Specifically, models need to incorporate a new modality of text present in the images and reason over it to answer TextVQA questions. TextVQA dataset contains 45,336 questions over 28,408 images from the OpenImages dataset.
674
1
chrisvinsen/id_kenlm_language_model
false
[]
null
0
0
00data00/data
false
[ "license:afl-3.0" ]
null
0
0
ett
false
[ "task_categories:time-series-forecasting", "task_ids:univariate-time-series-forecasting", "task_ids:multivariate-time-series-forecasting", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "license:cc-by-4.0", "arxiv:2012.07436" ]
The data of Electricity Transformers from two separated counties in China collected for two years at hourly and 15-min frequencies. Each data point consists of the target value "oil temperature" and 6 power load features. The train/val/test is 12/4/4 months.
14
2
BK-V/arman
false
[]
ArmanPersoNERCorpus includes 250,015 tokens and 7,682 Persian sentences in total.The NER tags are in IOB format.
0
0
ghomasHudson/hotpotExtendedAnoLM
false
[]
null
0
0
truthisneverlinear/eleventh-doctor-scripts
false
[ "language:en", "NLP", "conservation", "dialogue" ]
null
0
1
marwansalam/art_split_datasets
false
[]
null
0
0
marwansalam/araucaria_split_datasets
false
[]
null
0
0
marwansalam/araucaria_nolabel_split_datasets
false
[]
null
0
0
boli-ai-admin/vishal
false
[ "license:apache-2.0" ]
null
0
0
PoolC/news-corpus-mini
false
[]
null
0
0
ablam/gcode
false
[]
null
0
0
adsabs/WIESP2022-NER
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "language:en", "license:cc-by-4.0" ]
null
1
3
dlwh/wikitext_103_detokenized
false
[]
null
8
0
dlwh/wikitext_2_detokenized
false
[]
null
1
0
nateraw/gradio-guides-files
false
[ "license:mit" ]
null
2
0
BennoKrojer/ImageCoDe
false
[ "license:afl-3.0", "arxiv:2203.15867" ]
null
40
1
ashraq/youtube-transcription
false
[]
This is YouTube video transcription dataset built from YTTTS Speech Collection for semantic search.
10
1
nateraw/test-imagefolder-metadata
false
[]
null
0
0
nateraw/test-imagefolder-metadata-csv
false
[]
null
0
0
nateraw/test-imagefolder-metadata-2
false
[]
null
0
0
zzzzzzttt/train
false
[]
null
0
0
ntt123/viet-tts-dataset
false
[ "license:cc-by-nc-4.0" ]
null
3
0
searle-j/kote
false
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "annotations_creators:crowdsourced", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:kor", "license:mit" ]
50k Korean online comments labeled for 44 emotion categories.
161
2
crystina-z/mmarco-passage
false
[]
null
1
0
filwsyl/video_understanding
false
[]
null
0
1
mdroth/github-issues
false
[]
null
0
0
medmcqa
false
[ "task_categories:question-answering", "task_categories:multiple-choice", "task_ids:multiple-choice-qa", "task_ids:open-domain-qa", "annotations_creators:no-annotation", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:apache-2.0" ]
MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. MedMCQA has more than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity. The dataset contains questions about the following topics: Anesthesia, Anatomy, Biochemistry, Dental, ENT, Forensic Medicine (FM) Obstetrics and Gynecology (O&G), Medicine, Microbiology, Ophthalmology, Orthopedics Pathology, Pediatrics, Pharmacology, Physiology, Psychiatry, Radiology Skin, Preventive & Social Medicine (PSM) and Surgery
1,580
9
Fhrozen/FSD50k
false
[ "task_categories:audio-classification", "annotations_creators:unknown", "language_creators:unknown", "size_categories:10K<n<100K", "source_datasets:unknown", "license:cc-by-4.0", "arxiv:2010.00475" ]
null
10
0
SetFit/amazon_massive_scenario_af-ZA
false
[]
null
0
0
SetFit/amazon_massive_scenario_am-ET
false
[]
null
0
0
SetFit/amazon_massive_scenario_ar-SA
false
[]
null
0
0
SetFit/amazon_massive_scenario_az-AZ
false
[]
null
0
0
SetFit/amazon_massive_scenario_bn-BD
false
[]
null
0
0
SetFit/amazon_massive_scenario_cy-GB
false
[]
null
0
0
SetFit/amazon_massive_scenario_da-DK
false
[]
null
0
0
SetFit/amazon_massive_scenario_de-DE
false
[]
null
0
0
SetFit/amazon_massive_scenario_el-GR
false
[]
null
0
0
SetFit/amazon_massive_scenario_en-US
false
[]
null
1
0
SetFit/amazon_massive_scenario_es-ES
false
[]
null
0
0
SetFit/amazon_massive_scenario_fa-IR
false
[]
null
0
0
SetFit/amazon_massive_scenario_fi-FI
false
[]
null
0
0
SetFit/amazon_massive_scenario_fr-FR
false
[]
null
0
0
SetFit/amazon_massive_scenario_he-IL
false
[]
null
0
0
SetFit/amazon_massive_scenario_hi-IN
false
[]
null
0
0
SetFit/amazon_massive_scenario_hu-HU
false
[]
null
0
0
SetFit/amazon_massive_scenario_hy-AM
false
[]
null
0
0
SetFit/amazon_massive_scenario_id-ID
false
[]
null
0
0
SetFit/amazon_massive_scenario_is-IS
false
[]
null
0
0
SetFit/amazon_massive_scenario_it-IT
false
[]
null
0
0
SetFit/amazon_massive_scenario_ja-JP
false
[]
null
0
0
SetFit/amazon_massive_scenario_jv-ID
false
[]
null
0
0
SetFit/amazon_massive_scenario_ka-GE
false
[]
null
0
0
SetFit/amazon_massive_scenario_km-KH
false
[]
null
0
0
SetFit/amazon_massive_scenario_kn-IN
false
[]
null
0
0
SetFit/amazon_massive_scenario_ko-KR
false
[]
null
0
0
SetFit/amazon_massive_scenario_lv-LV
false
[]
null
0
0
SetFit/amazon_massive_scenario_mn-MN
false
[]
null
0
0
SetFit/amazon_massive_scenario_ms-MY
false
[]
null
0
0