id
stringlengths 2
115
| private
bool 1
class | tags
list | description
stringlengths 0
5.93k
⌀ | downloads
int64 0
1.14M
| likes
int64 0
1.79k
|
---|---|---|---|---|---|
LTress/lrl_transfer_hubert | false | []
| LibriAdapt (For more information refer to the original paper at https://doi.org/10.1109%2Ficassp40776.2020.9053074) | 0 | 0 |
Cheatham/unlabelled-EU-JAV-Italian | false | []
| null | 0 | 0 |
wrice/sv_corpora_parliament_processed | false | []
| null | 0 | 0 |
ErenHali/disaster_edited | false | [
"license:afl-3.0"
]
| null | 0 | 0 |
pinecone/yt-transcriptions | false | []
| null | 19 | 1 |
Yah216/APCD_only_meter_data | false | []
| null | 0 | 0 |
merionum/ru_paraphraser | false | [
"task_categories:text-classification",
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:sentence-similarity",
"task_ids:semantic-similarity-scoring",
"annotations_creators:crowdsourced",
"annotations_creators:expert-generated",
"annotations_creators:machine-generated",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:1M<n<10M",
"source_datasets:original",
"language:ru",
"license:mit"
]
| null | 46 | 3 |
mteb/toxic_conversations_50k | false | [
"language:en"
]
| null | 217 | 0 |
yanekyuk/wikikey | false | [
"license:mit"
]
| null | 2 | 0 |
mteb/tweet_sentiment_extraction | false | [
"language:en"
]
| null | 2,011 | 3 |
coreybrady/blackwoods | false | [
"license:cc-by-nc-4.0"
]
| null | 0 | 0 |
coreybrady/processedblackwoods | false | []
| null | 0 | 0 |
Aniemore/REPV | false | [
"task_categories:audio-classification",
"task_ids:audio-emotion-recognition",
"annotations_creators:crowdsourced",
"language_creators:expert-generated",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:ru",
"license:mit"
]
| null | 22 | 2 |
Aniemore/REPV-S | false | [
"task_categories:audio-classification",
"task_ids:audio-emotion-recognition",
"annotations_creators:crowdsourced",
"language_creators:expert-generated",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:ru",
"license:mit"
]
| null | 0 | 2 |
coreybrady/blackwoods-sentences | false | []
| null | 0 | 0 |
Evelyn18/becasv2 | false | []
| automatic translation of the Stanford Question Answering Dataset (SQuAD) v2 into Spanish | 0 | 0 |
patrickvonplaten/diffusion_images | false | []
| null | 0 | 0 |
deepakvk/conversational_dialogues_001_holdout | false | []
| null | 0 | 0 |
ChristophSchuhmann/wikiart_with_BLIP_captions | false | [
"license:cc-by-nc-4.0"
]
| null | 0 | 1 |
mbazaNLP/kinyarwanda-tts-dataset | false | [
"language_creators:Digital Umuganda",
"size_categories:3K<n<4K",
"size_categories:~6hours",
"language:rw",
"license:cc-by-4.0"
]
| null | 4 | 0 |
sileod/movie_recommendation | false | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_ids:multiple-choice-qa",
"task_ids:open-domain-qa",
"annotations_creators:expert-generated",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:n<1K",
"source_datasets:original",
"language:en",
"license:apache-2.0",
"movie-recommendation",
"collaborative-filtering",
"movielens",
"film",
"doi:10.57967/hf/0257"
]
| Movie recommendation task based on the Movielens dataset | 7 | 6 |
elham/vv | false | []
| null | 0 | 0 |
sileod/discourse_marker_qa | false | [
"task_categories:question-answering",
"task_categories:multiple-choice",
"task_ids:open-domain-qa",
"task_ids:multiple-choice-qa",
"annotations_creators:expert-generated",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:n<1K",
"source_datasets:original",
"language:en",
"license:apache-2.0"
]
| Discourse marker/connective prediction as multiple choice questions based on the Discovery dataset | 0 | 3 |
deepakvk/conversational_dialogues_001_iteration | false | []
| null | 0 | 0 |
blinoff/medical_institutions_reviews | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"language:ru"
]
| null | 0 | 0 |
wrice/sv_corpora_parliament_processed_punctuation | false | []
| null | 0 | 0 |
nickmuchi/fin-class-label | false | []
| null | 0 | 0 |
wrice/wikipedia-en-punctuated | false | []
| null | 0 | 0 |
Yah216/APCD-Poem_Rawiy_detection | false | [
"task_categories:text-classification",
"language:ar"
]
| null | 0 | 0 |
Yah216/Poem_APCD_text_only | false | []
| null | 0 | 0 |
cat-state/clip-embeddings | false | []
| null | 0 | 0 |
Abdelrahman-Rezk/Arabic_Poem_Comprehensive_Dataset_APCD | false | []
| null | 0 | 0 |
jet-universe/top_landscape | false | []
| null | 0 | 0 |
jet-universe/quark_gluon | false | []
| null | 0 | 0 |
gary109/sv_corpora_parliament_processed | false | []
| null | 0 | 0 |
Lais/Sentiment-Analysis-on-Movie-Reviews | false | []
| null | 0 | 0 |
gary109/onset-singing_corpora_parliament_processed | false | []
| null | 0 | 0 |
diegorysr/sentiment-banking | false | []
| null | 0 | 0 |
jonas/undp_jobs_raw | false | [
"license:wtfpl"
]
| null | 0 | 0 |
diegorysr/sentiment-banking-pln | false | []
| null | 0 | 0 |
diversifix/inclusive_words | false | [
"language:de",
"license:other"
]
| null | 0 | 1 |
daniel-dona/dani-voice | false | [
"license:cc0-1.0"
]
| null | 0 | 0 |
Rexhaif/xsum_reduced | false | []
| null | 0 | 0 |
abdoutony207/en_ar_dataset | false | []
| null | 0 | 0 |
vcv/sentiment-banking | false | []
| null | 2 | 0 |
meghazisofiane/mt-ar-en-1 | false | []
| null | 0 | 0 |
Rexhaif/xnli_ru | false | []
| null | 0 | 0 |
ashesicsis1/asr-sample | false | []
| Sample automatic speech recognition dataset from Librispeech (clean) by Dennis Owusu. | 0 | 0 |
stfuowned/rick2 | false | []
| null | 0 | 0 |
silver/lccc | false | [
"task_categories:conversational",
"task_ids:dialogue-generation",
"annotations_creators:other",
"language_creators:other",
"multilinguality:monolingual",
"size_categories:10M<n<100M",
"source_datasets:original",
"language:zh",
"license:mit",
"dialogue-response-retrieval",
"arxiv:2008.03946"
]
| LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
This pipeline involves a set of rules and several classifier-based filters.
Noises such as offensive or sensitive words, special symbols, emojis,
grammatically incorrect sentences, and incoherent conversations are filtered. | 0 | 7 |
silver/mmchat | false | [
"task_categories:conversational",
"task_ids:dialogue-generation",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:10M<n<100M",
"source_datasets:original",
"language:zh",
"license:other",
"arxiv:2108.07154",
"arxiv:2008.03946"
]
| MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese.
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue).
We design various strategies to ensure the quality of the dialogues in MMChat. | 2 | 7 |
avacaondata/fullnovalid | false | []
| null | 0 | 0 |
silver/personal_dialog | false | [
"task_categories:conversational",
"task_ids:dialogue-generation",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:10M<n<100M",
"source_datasets:original",
"language:zh",
"license:other",
"arxiv:1901.09672"
]
| The PersonalDialog dataset is a large-scale multi-turn Chinese dialogue dataset containing various traits from a large number of speakers.
We are releasing about 5M sessions of carefully filtered dialogues.
Each utterance in PersonalDialog is associated with a speaker marked with traits like Gender, Location, Interest Tags. | 66 | 7 |
w4ngatang/squality | false | []
| null | 1 | 0 |
GEM/squality | false | [
"task_categories:summarization",
"annotations_creators:crowd-sourced",
"language_creators:unknown",
"multilinguality:unknown",
"size_categories:unknown",
"source_datasets:original",
"language:en",
"license:cc-by-4.0",
"arxiv:2205.11465",
"arxiv:2112.07637",
"arxiv:2104.05938"
]
| This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | 5 | 0 |
danielhou13/cogs402dataset | false | []
| null | 0 | 0 |
cat-state/mscoco-1st-caption | false | [
"license:cc-by-4.0"
]
| null | 0 | 0 |
Rexhaif/cedr-full | false | []
| null | 0 | 0 |
meetyildiz/toqad-aug | false | []
| Turkish Question Answering Dataset - Base | 0 | 0 |
aaraki/github-issues8 | false | []
| null | 0 | 0 |
eabayed/EmiratiDialictShowsAudioTranscription | false | [
"license:afl-3.0"
]
| null | 0 | 1 |
Wangchunshu/VLUE | false | [
"license:afl-3.0"
]
| null | 0 | 1 |
juletxara/xquad_xtreme | false | [
"task_categories:question-answering",
"task_ids:extractive-qa",
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:multilingual",
"size_categories:unknown",
"source_datasets:extended|squad",
"language:en",
"language:es",
"language:de",
"language:el",
"language:hi",
"language:th",
"language:ru",
"language:tr",
"language:ar",
"language:vi",
"language:zh",
"language:ro",
"license:cc-by-sa-4.0",
"arxiv:1910.11856"
]
| XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering
performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set
of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into ten languages: Spanish, German,
Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi and Romanian. Consequently, the dataset is entirely parallel
across 12 languages.
We also include "translate-train", "translate-dev", and "translate-test" splits for each non-English language from XTREME (Hu et al., 2020). These can be used to run XQuAD in the "translate-train" or "translate-test" settings. | 0 | 3 |
Lehrig/Monkey-Species-Collection | false | []
| This dataset is intended as a test case for fine-grain classification tasks (10 different kinds of monkey species). The dataset consists of almost 1400 JPEG images grouped into two splits - training and validation. Each split contains 10 categories labeled as n0~n9, each corresponding a species from [Wikipedia's monkey cladogram](https://en.wikipedia.org/wiki/Monkey). Images were downloaded with help of the [googliser](https://github.com/teracow/googliser) open source code.
| Label | Latin Name | Common Name | Train Images | Validation Images |
| ----- | --------------------- | ------------------------- | ------------ | ----------------- |
| n0 | alouatta_palliata | mantled_howler | 131 | 26 |
| n1 | erythrocebus_patas | patas_monkey | 139 | 28 |
| n2 | cacajao_calvus | bald_uakari | 137 | 27 |
| n3 | macaca_fuscata | japanese_macaque | 152 | 30 |
| n4 | cebuella_pygmea | pygmy_marmoset | 131 | 26 |
| n5 | cebus_capucinus | white_headed_capuchin | 141 | 28 |
| n6 | mico_argentatus | silvery_marmoset | 132 | 26 |
| n7 | saimiri_sciureus | common_squirrel_monkey | 142 | 28 |
| n8 | aotus_nigriceps | black_headed_night_monkey | 133 | 27 |
| n9 | trachypithecus_johnii | nilgiri_langur | 132 | 26 |
This collection includes the following GTZAN variants:
* original (images are 400x300 px or larger; ~550 MB)
* downsized (images are downsized to 224x224 px; ~40 MB) | 6 | 1 |
momilla/flattened_contracts | false | []
| null | 1 | 0 |
anton-l/earnings21 | false | [
"license:cc-by-sa-4.0"
]
| null | 0 | 0 |
DFKI-SLT/wikitext_linked | false | [
"task_categories:fill-mask",
"task_categories:token-classification",
"task_categories:text-classification",
"task_ids:masked-language-modeling",
"task_ids:named-entity-recognition",
"task_ids:part-of-speech",
"task_ids:lemmatization",
"task_ids:parsing",
"task_ids:entity-linking-classification",
"annotations_creators:machine-generated",
"language_creators:machine-generated",
"multilinguality:monolingual",
"size_categories:1M<n<10M",
"source_datasets:extended|wikitext",
"language:en",
"license:cc-by-sa-4.0",
"arxiv:1609.07843"
]
| The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
Good and Featured articles on Wikipedia. Dependency Relations, POS, NER tags are marked with trankit and
entities are linked with entity-fishing.
The dataset is available under the Creative Commons Attribution-ShareAlike License. | 13 | 1 |
hongdijk/kluekornlu | false | [
"license:other"
]
| null | 0 | 0 |
cahya/paper_abstract | false | []
| null | 0 | 0 |
hongdijk/AUGAUG | false | [
"license:other"
]
| null | 0 | 0 |
mteb/mind_small | false | []
| null | 127 | 0 |
yananchen/few_nerd_seq2seq | false | []
| null | 0 | 0 |
mteb/sts22-crosslingual-sts | false | [
"language:ar",
"language:de",
"language:en",
"language:es",
"language:fr",
"language:it",
"language:pl",
"language:ru",
"language:tr",
"language:zh"
]
| SemEval 2022 Task 8: Multilingual News Article Similarity | 27,198 | 3 |
cestwc/lsnli-full-uncertain | false | []
| null | 0 | 0 |
prajdabre/KreolMorisienMT | false | [
"license:cc"
]
| null | 0 | 1 |
declare-lab/cicero | false | [
"license:mit",
"arxiv:2203.13926",
"arxiv:1710.03957",
"arxiv:1902.00164",
"arxiv:2004.04494"
]
| null | 8 | 1 |
zdreiosis/ffa_grab_1 | false | [
"license:other"
]
| null | 0 | 0 |
mbazaNLP/kinyarwanda-language-model-dataset | false | []
| null | 0 | 0 |
ibm/vira-intents | false | []
| null | 3 | 0 |
twnlp/mydataset | false | []
| null | 0 | 0 |
mikehemberger/topex_dataset | false | []
| null | 0 | 0 |
cestwc/quora | false | []
| null | 0 | 0 |
mikehemberger/topex_dennis | false | []
| null | 0 | 0 |
fpaulino/portuguese-tweets | false | []
| null | 0 | 0 |
biwi_kinect_head_pose | false | [
"task_categories:other",
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"source_datasets:original",
"language:en",
"license:other",
"head-pose-estimation"
]
| The Biwi Kinect Head Pose Database is acquired with the Microsoft Kinect sensor, a structured IR light device.It contains 15K images of 20 people with 6 females and 14 males where 4 people were recorded twice. | 0 | 0 |
blinoff/restaurants_reviews | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"language:ru"
]
| null | 0 | 0 |
myvision/yuanchuan-synthetic-dataset-final | false | []
| null | 0 | 0 |
jakka/warehouse_part1 | false | []
| null | 0 | 0 |
mikehemberger/topex | false | []
| null | 0 | 0 |
martinolmos/discursos_peron | false | [
"license:cc-by-sa-4.0"
]
| null | 3 | 0 |
dcfidalgo/liar_sentiment | false | []
| null | 0 | 0 |
Rauljj95/Rubrix | false | []
| null | 0 | 0 |
angie-chen55/python-github-code | false | []
| null | 0 | 1 |
JoseMiguel/sa | false | []
| null | 0 | 0 |
aleon215/sentiment-banking | false | []
| null | 0 | 0 |
nferruz/dataset_fastas | false | [
"license:mit"
]
| null | 2 | 0 |
arize-ai/ecommerce_reviews_with_language_drift | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"source_datasets:extended|imdb",
"language:en",
"license:mit"
]
| This dataset was crafted to be used in our tutorial [Link to the tutorial when
ready]. It consists on product reviews from an e-commerce store. The reviews
are labeled on a scale from 1 to 5 (stars). The training & validation sets are
fully composed by reviews written in english. However, the production set has
some reviews written in spanish. At Arize, we work to surface this issue and
help you solve it. | 22 | 1 |
lyakaap/laion2B-japanese-subset | false | []
| null | 2 | 1 |
PoolC/1-fold-clone-detection-600k-5fold | false | []
| null | 143 | 2 |
PoolC/2-fold-clone-detection-600k-5fold | false | []
| null | 26 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.