File size: 3,001 Bytes
dc25053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f3245
dc25053
 
 
 
 
 
 
 
 
 
 
 
 
392b907
dc25053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# coding=utf-8
# Copyright 2022 the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pandas as pd 
import datasets
import json
from huggingface_hub import hf_hub_url

_INPUT_CSV = "open_images_extended_miap_boxes_test_labeled.csv"
_INPUT_IMAGES = "images_openImages_miap"
_REPO_ID = "nlphuji/open_images_dataset_v7"
_IMAGE_EXTENSION = 'jpg'

class Dataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="TEST", version=VERSION, description="test"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                 {
                "image": datasets.Image(),
                "ImageID": datasets.Value('string'),
                "LabelName": datasets.Value('string'),
                "Confidence": datasets.Value('float32'),
                "XMin": datasets.Value('float32'),
                "XMax": datasets.Value('float32'),
                "YMin": datasets.Value('float32'),
                "YMax": datasets.Value('float32'),
                "IsOccluded": datasets.Value('int64'),
                "IsTruncated": datasets.Value('int64'),
                "IsGroupOf": datasets.Value('int64'),
                "IsDepictionOf": datasets.Value('int64'),
                "IsInsideOf": datasets.Value('int64'),
                "GenderPresentation": datasets.Value('string'),
                "AgePresentation": datasets.Value('string'),
                "label": datasets.Value('string')
                }
            ),
            task_templates=[],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        repo_id = _REPO_ID
        data_dir = dl_manager.download_and_extract({
            "examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV),
            "images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES}.zip")
        })

        return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)]


    def _generate_examples(self, examples_csv, images_dir):
        """Yields examples."""
        df = pd.read_csv(examples_csv)

        for r_idx, r in df.iterrows():
            r_dict = r.to_dict()
            image_path = os.path.join(images_dir, _INPUT_IMAGES, f"{r_dict['ImageID']}.{_IMAGE_EXTENSION}")
            r_dict['image'] = image_path
            yield r_idx, r_dict