nlpso's picture
Upload README.md with huggingface_hub
d1cca50
|
raw
history blame
2.1 kB
metadata
language:
  - fr
multilinguality:
  - monolingual
task_categories:
  - token-classification
dataset_info:
  features:
    - name: tokens
      sequence: string
    - name: ner_tags_niv1
      sequence: string
    - name: ner_tags_niv2
      sequence: string
    - name: input_ids
      sequence: int32
    - name: attention_mask
      sequence: int8
    - name: labels_niv1
      sequence: int64
    - name: labels_niv2
      sequence: int64
  splits:
    - name: train
      num_bytes: 6312919
      num_examples: 6084
    - name: dev
      num_bytes: 691832
      num_examples: 676
    - name: test
      num_bytes: 1683259
      num_examples: 1685
  download_size: 1063464
  dataset_size: 8688010

m1_fine_tuning_ref_ptrn_cmbert_io

Introduction

This dataset was used to fine-tuned HueyNemud/das22-10-camembert_pretrained for nested NER task using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century.

Dataset parameters

Entity types

Abbreviation Entity group (level) Description
O 1 & 2 Outside of a named entity
PER 1 Person or company name
ACT 1 & 2 Person or company professional activity
TITREH 2 Military or civil distinction
DESC 1 Entry full description
TITREP 2 Professionnal reward
SPAT 1 Address
LOC 2 Street name
CARDINAL 2 Street number
FT 2 Geographical feature

How to use this dataset

from datasets import load_dataset

train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_ptrn_cmbert_io")