metadata
language:
- fr
multilinguality:
- monolingual
task_categories:
- token-classification
dataset_info:
features:
- name: tokens
sequence: string
- name: ner_tags_niv1
sequence: string
- name: ner_tags_niv2
sequence: string
- name: input_ids
sequence: int32
- name: attention_mask
sequence: int8
- name: labels_niv1
sequence: int64
- name: labels_niv2
sequence: int64
splits:
- name: train
num_bytes: 6312919
num_examples: 6084
- name: dev
num_bytes: 691832
num_examples: 676
- name: test
num_bytes: 1683259
num_examples: 1685
download_size: 1063464
dataset_size: 8688010
m1_fine_tuning_ref_ptrn_cmbert_io
Introduction
This dataset was used to fine-tuned HueyNemud/das22-10-camembert_pretrained for nested NER task using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century.
Dataset parameters
- Approach : M1
- Dataset type : ground-truth
- Tokenizer : HueyNemud/das22-10-camembert_pretrained
- Tagging format : IO
- Counts :
- Train : 6084
- Dev : 676
- Test : 1685
- Associated fine-tuned models :
Entity types
Abbreviation | Entity group (level) | Description |
---|---|---|
O | 1 & 2 | Outside of a named entity |
PER | 1 | Person or company name |
ACT | 1 & 2 | Person or company professional activity |
TITREH | 2 | Military or civil distinction |
DESC | 1 | Entry full description |
TITREP | 2 | Professionnal reward |
SPAT | 1 | Address |
LOC | 2 | Street name |
CARDINAL | 2 | Street number |
FT | 2 | Geographical feature |
How to use this dataset
from datasets import load_dataset
train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_ptrn_cmbert_io")