|
--- |
|
language: |
|
- fr |
|
multilinguality: |
|
- monolingual |
|
task_categories: |
|
- token-classification |
|
--- |
|
|
|
# m2m3_qualitative_analysis_ref_ptrn_cmbert_iob2 |
|
|
|
## Introduction |
|
|
|
This dataset was used to perform **qualitative analysis** of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on **nested NER task** using Independant NER layers approach [M1]. |
|
It contains Paris trade directories entries from the 19th century. |
|
|
|
## Dataset parameters |
|
|
|
* Approachrd : M2 and M3 |
|
* Dataset type : ground-truth |
|
* Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) |
|
* Tagging format : IOB2 |
|
* Counts : |
|
* Train : 6084 |
|
* Dev : 676 |
|
* Test : 1685 |
|
* Associated fine-tuned models : |
|
* M2 : [nlpso/m2_joint_label_ref_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m2_joint_label_ref_ptrn_cmbert_iob2) |
|
* M3 : [nlpso/m3_hierarchical_ner_ref_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m3_hierarchical_ner_ref_ptrn_cmbert_iob2) |
|
|
|
## Entity types |
|
|
|
Abbreviation|Entity group (level)|Description |
|
-|-|- |
|
O |1 & 2|Outside of a named entity |
|
PER |1|Person or company name |
|
ACT |1 & 2|Person or company professional activity |
|
TITREH |2|Military or civil distinction |
|
DESC |1|Entry full description |
|
TITREP |2|Professionnal reward |
|
SPAT |1|Address |
|
LOC |2|Street name |
|
CARDINAL |2|Street number |
|
FT |2|Geographical feature |
|
|
|
## How to use this dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
train_dev_test = load_dataset("nlpso/m2m3_qualitative_analysis_ref_ptrn_cmbert_iob2") |
|
|